
Hamburger Beitr�age
zur Angewandten Mathematik

On the Construction of Optimal Monotone Cubic

Spline Interpolation

Sigrid Podewski, Hans Joachim Oberle, and Gerhard

Opfer

Reihe A

Preprint 114

December 1996



Hamburger Beitr�age zur Angewandten Mathematik

Reihe A Preprints

Reihe B Berichte

Reihe C Mathematische Modelle und Simulation

Reihe D Elektrische Netzwerke und Bauelemente



On the Construction of Optimal Monotone

Cubic Spline Interpolation �)

Sigrid Podewski, Hans Joachim Oberle, and Gerhard Opfer

University of Hamburg
Institute of Applied Mathematics

Bundesstrasse 55
D-20146 Hamburg, Germany

Abstract.

In this paper we derive necessary optimality conditions for an interpolating spline function

which minimizes the Holladay approximation of the energy-functional and which stays

monotone if the given interpolation data are monotone. To this end optimal control theory

for state-restricted optimal control problems is applied. The necessary conditions yield a

complete characterization of the optimal spline. In the case of two or three interpolation

knots, which we call the local case, the optimality conditions are treated analytically. They

reduce to polynomial equations which can very easily be solved numerically. These results

are used for the construction of a numerical algorithm for the optimal monotone spline

in the general (global) case via Newton's method. Here, the local optimal spline serves as

a favourable initial estimation for the additional grid points of the optimal spline. Some

numerical examples are presented which are constructed by FORTRAN and MATLAB

programs.

�)Dedicated to Roland Bulirsch, Munich, on the occasion of his 65th birthday
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1. Introduction

In recent years the problem of shape-preserving interpolation and approximation has

become a wide �eld of interest. For a given grid I0 = ft1; : : : ; tng, where

a = t1 < t2 < � � � < tn = b; (1.1)

and given interpolation values xj; j = 1; : : : ; n, where n > 2, one seeks a function x,

which interpolates the given data (tj; xj), which has certain smoothness properties and

which preserves certain properties of the given values like non-negativity, monotonicity or

convexity. The di�erent methods for the construction of such interpolation functions are

characterized by di�erent demands with respect to the degree of smoothness and by local

or global constructions, see for example Akima (1970), Fritsch & Carlson (1980), Schmidt

& Hess (1995).

The authors considered in several investigations also some kind of optimality conditions

generalizing the Holladay property of the classical cubic spline, cf. Hornung (1978, 1980),

Opfer & Oberle (1988, 1994), Fischer et al. (1991), Dontchev (1993) or Andersson &

Elfving (1995). We consider in this paper in continuation of these investigations the prob-

lem of optimal monotone spline interpolation from a local and global point of view.

Problem 1.1. Given the grid (1.1) and numbers xj; j = 1; 2; : : : ; n. We seek a minimizer

x of the Holladay functional

J(x) :=
1

2

Z b

a
(x00(t))2 dt (1.2)

subject to the constraints

x(tj) = xj; j = 1; : : : ; n; (1.3)

x0(t) � x0min; (1.4)

where x0min is a given number, and it is assumed that the following property holds for

the given interpolation data:

(xj+1 � xj) > x0min � (tj+1 � tj) ; j = 1 : : : n� 1: (1.5)
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If s is the linear spline connecting the given data points, the condition (1.5) means that

s0(t) > x0min for all t 2 [t1; tn] n I0.

In general, it is demanded that x belongs to the Sobolev space W 2
2 [a; b] of all functions

with absolutely continuous �rst derivative and square integrable second derivative. But not

much is lost, if the problem is restricted to functions x 2 C2
s [a; b], which are continuously

di�erentiable and have a piecewise continuous second derivative.

There are some obvious modi�cations of Problem 1.1 which can be treated in the same

way and which are relevant in a certain context.

Problem 1.2. The same as Problem 1.1 with additional boundary conditions for the

�rst derivative,

x0(a) = b1; x0(b) = bn; (1.6)

where b1; bn are given numbers with b1; bn > x0min.

Problem 1.3. The same as Problem 1 or Problem 2, however the slope is bounded also

from above:

x0min � x0(t) � x0max; t 2 [a; b]: (1.7)

A solution to Problem 1.1 is usually called a natural spline.

2. Necessary Conditions Derived by Optimal Control Theory

We want to apply the necessary conditions of optimal control theory to Problem 1.1.

Therefore, we consider a general optimal control problem with an inequality constraint

put on the state variables. This control problem has the following form:

Problem 2.1. Determine a piecewise continuous control variable u(t) 2 IR; a � t � b,

which minimizes the functional

J(u) :=
Z b

a
f0(y(t); u(t)) dt (2.1)
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subject to the constraints

y0(t) = f(y(t); u(t)); a � t � b; (a.e.); (2.2)

r(y(t1); y(t2); : : : ; y(tn)) = 0; (2.3)

g(y(t)) � 0: (2.4)

The vector y(t) 2 IRm denotes the state variables. The functions f0 : IRm+1 ! IR,

f : IRm+1 ! IRm, r : IRn�m ! IRk and g : IRm ! IR are assumed to be su�-

ciently smooth. Eq. (2.2) describes the state equations, Eq. (2.3) the multipoint-boundary

conditions and Eq. (2.4) the state variable inequality constraint.

We summarize the necessary conditions due to Jacobson et. al. (1971) and Maurer (1979).

Let (y�; u�) denote a solution of the general optimal control Problem 2.1. It is assumed

that the solution structure consists of a �nite number of contact points, boundary subarcs

and free subarcs. Here, a boundary subarc is an interval I = [�1; �2], �1 < �2, of maximal

length such that g[t] := g(y�(t)) vanishes identically on I, �1 is called the entry point,

and �2 the exit point of the boundary subarc I. An interval I = [�1; �2] is called a free

subarc, if g[t] < 0; �1 < t < �2, holds and, �nally, a point � is called a contact point,

if it is an isolated zero of g[t]. Entry, exit or contact points are summerized as junction

points.

Now, the necessary conditions can be stated as follows. There exist piecewise continuously

di�erentiable adjoint variables �(t) 2 IRm; �(t) � 0 and parameters �0 � 0; l 2 IRk,

�j � 0; j = 1; : : : ; n, �(�) � 0, where � represents an arbitrary junction point, such

that

(�0; �(t); �(t); l1; : : : ; lk; �1; : : : ; �n; �(�1); �(�2); : : :) 6� 0 (2.5)

for t 2 [a; b] and that for the augmented Hamiltonian (Lagrangian)

H(y; u; �; �; �0) := �0 f0(y; u) + �T f(y; u) + � g(y) (2.6)

the following properties hold:

1. Adjoint di�erential equations:

�0(t) = � Hy(y(t); u(t); �(t); �(t); �0); (2.7)
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2. Minimum principle:

u�(t) = arg minu H(y�(t); u; �(t); �(t); �0); (2.8)

3. Natural boundary conditions:

�(t1) = � @

@y(t1)

�
lTr(y(t1); : : : ; y(tn)) + �1 g(y(t1))

�
;

�(t+j ) � �(t�j ) = � @

@y(tj)

�
lTr(y(t1); : : : ; y(tn)) + �j g(y(tj))

�
;

j = 2; : : : ; n� 1;

�(tn) =
@

@y(tn)

�
lTr(y(t1); : : : ; y(tn)) + �n g(y(tn))

�
:

(2.9)

4. Complementarity conditions:

�(t) � g[t] = 0; a � t � b;

�j � g[tj] = 0; j = 1; : : : ; n:

(2.10)

5. Jump conditions : (� junction point)

�(�+) � �(��) = � �(�) gy(y(�));

H[�+] � H[��] = 0:

(2.11)

Here, the abbreviation H[t] := H(y�(t); u�(t); �(t); �(t); �0) is used.

Note, that, in extension of the general formulation (cf. Opfer, Oberle (1988)), the

�j-terms occur in the Eqs. (2.9), see Chudej (1994). This is because in our application

the �xed knots tj may be located within a boundary subarc of the constraint g.

In order to apply the necessary conditions to Problem 1.1, we substitute y1(t) := x(t),

y2(t) := x0(t) and u(t) := x00(t). Then, Problem 1.1 takes the form of the general optimal

control problem 2.1 with f0 := u2=2, f := (y2; u)
T, rj := y1(tj)� xj, j = 1; : : : ; n, and

g(y) := x0min � y2. With these relations the augmented Hamiltonian takes the form

H =
1

2
u2 �0 + �1 y2 + �2 u + � (x0min � y2): (2.12)
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The adjoint di�erential equations are

�01(t) = 0; �02(t) = � � �1; (2.13)

and the natural boundary conditions and the jump relations can be written as follows:

�1(t1) = �l1; �2(t1) = �1;

�1(t
+
j ) = �1(t

�

j ) � lj; �2(t
+
j ) = �2(t

�

j ) + �j; 2 � j � n� 1;

�1(tn) = ln; �2(tn) = ��n;

�1(�
+) = �1(�

�); �2(�
+) = �2(�

�) + �(�);

H[�+] = H[��]:

(2.14)

The degenerate case �0 = 0 can be excluded by an explicit argument: By the minimum

principle the assumption �0 = 0 yields �2(t) � 0 on the whole interval [a; b]. Therefore,

from Eq. (2.13), it follows that �1 vanishes on free subarcs.

On the other hand, Eqs. (2.13{14) show that �1 is a piecewise constant function and

jumps of �1 can occur only at the given interpolation knots. Now, the assumption (1.5)

insures that each interpolation interval [tj; tj+1] contains some points of a free subarc.

Therefore, �1 also vanishes identically on the whole interval [a; b], and so all adjoint

variables do. Altogether, the degeneration assumption contradicts the necessary condition

(2.5), and, thus, we may assume �0 = 1 below.

The minimum principle yields u(t) = ��2(t). Now, the following conclusions can be

drawn:

Lemma 2.1.

a) On a free subinterval If = [�1; �2] the solution x(t) = y1(t) (�rst component of

the vector y) is a cubic C2-spline with respect to the given interpolation data. If

g[t1]; g[tn] < 0, the natural boundary conditions y001(t1) = y001(tn) = 0 are satis�ed.

b) At each contact point � =2 I0 the solution x is arbitrarily smooth (C1), at a
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contact point tj 2 I0 which coincides with an interpolation knot, the solution x

is at least C2, i.e. there do not exist nontrivial contact points.

c) On a boundary subarc Ib = [�1; �2] the solution x is an a�ne-linear function

and it is twice continuously di�erentiable at the junction points �j; j = 1; 2. If Ib

contains no interpolation grid point, u0(��1 ) = u0(�+2 ) holds.

Proof: Property (a) follows from the di�erential equations (with �(t) = 0, cf. (2.10))

y01(t) = y2(t); y001(t) = u(t) = ��2(t); y0001 (t) = �1(t); and y
(4)
1 (t) = 0. At interpolation

grid points tj 2 int(If) the second derivative y001 = ��2 is continuous (�j = 0 due to

(2.10)), whereas y0001 = �1 may have a jump discontinuity.

A contact point � establishes a strict local minimum of y2. Therefore, one obtains the

inequalties y001(�
�) � 0 � y001(�

+). On the other hand, from Eq. (2.14) and �(�) � 0

it follows that y001(�
+) = ��2(�+) � ��2(��) = y001(�

�). Thus, the control u = y001 is

continuous at the contact point, and �(�) = u(�) = 0. The same derivation holds, if

� = tj 2 I0 is a contact point: Due to �j � 0 one obtains �j = 0, x00(tj) = 0. Note

that in this case the natural boundary conditions are satis�ed as well.

We remark that statement (b) agrees with a more general result of Jacobson et al. (1971)

for optimal control problems with regular Hamiltonian and �rst order state constraints.

See also Maurer, Gillessen (1975).

The �rst statement of (c) follows from g[t] = x0min�y2(t) � 0 on Ib. By di�erentiation one

obtains y001(t) = u(t) = ��2(t) � 0. Therefore, �j = 0 holds for all knots tj 2 int(Ib).

At the junction points �1; �2 the minimum property of y01 yields y001(�
�

1 ) � 0; y001(�
+
2 ) � 0.

Thus, if �1; �2 =2 I0, Eq. (2.14) results in 0 = y001(�
+
1 ) = �y001(��1 ) + �(�1), which shows

that u = y001 is continuous at �1. The same holds with respect to the other junction point

�2. Also, the same derivation remains true, if �1 2 I0 or if �2 2 I0, because of �j � 0.

Therefore, x is twice continuously di�erentiable at the junction points.

A further di�erentiation of u(t) = ��2(t) � 0 reveals �(t) = �1(t) � 0; (t 2 Ib). As

�1 is piecewise constant with jumps only at the interpolation knots, it follows in case
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Ib \ I0 = ; that

u0(t) = � �02(t) =

8>>>>>><
>>>>>>:

�1 = const. � 0; if t 2 [tj; �1[;

0; if t 2 [�1; �2];

�1; if t 2]�2; tj+1]:

From this we �nd u0(��1 ) = u0(�+2 ) � 0, and, due to the maximality property of the

boundary subarc, even u0(��1 ) = u0(�+2 ) > 0.

Note that the natural boundary conditions also hold if t1 or tn are endpoints of boundary

subarcs.

It may be recalled that, according to the assumption (1.5), each boundary subarc Ib

contains at most one interpolation grid point. On the other hand, due to the monotone

behaviour of u just described, each interpolation subinterval [tj; tj+1] contains at most

one boundary subarc and further between two boundary subarcs there are at least two

knots of the interpolation grid.

Now, we can summarize the previous results as follows.

Theorem 2.1. Let x be a solution of Problem 1.1, i.e x is a minimizer of the functional

J subject to the interpolation and monotonicity constraints. Then x has the following

properties:

a) x is a natural cubic C2 spline with respect to an augmented grid

a = �1 < �2 < � � � < �N = b;

where the � 's consist of the given interpolation knots tj and possibly some new

knots (to be called additional knots in the sequel), which are endpoints of subintervals

with x0(t) � x0min. The natural boundary conditions hold

x00(t1) = x00(tn) = 0: (2.15)

b) Between two neighboring interpolation knots tj; tj+1 there are at most two additional

knots. If there is precisely one additional knot � between tj; tj+1, then x0min � x0
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vanishes either in [tj; � ] or in [�; tj+1]. If there are precisely two additional knots

�1; �2 between tj; tj+1, then x0min � x0 vanishes between these additional knots,

and

x000(��1 ) = x000(�+2 ) > 0: (2.16)

Corollary 2.1. Analogous properties as given in Theorem 2.1 with the exception of the

natural boundary conditions (2.15), hold for the solution of Problem 1.2. Also for Problem

1.3 analogous properties are valid.

3. Local, Monotone Cubic Spline Interpolation

Theorem 2.1 gives a complete characterization of optimal monotone cubic splines. For

numerical purposes however, it is necessary to obtain some information, or at least a good

estimate, of the number and the relative position of the additional knots with respect to

the original grid. This information about the solution structure is not easy to obtain from

the above Theorem.

Therefore, it is reasonable to consider the problem for one subinterval and for boundary

data of the type (1.5) taken from the unrestricted interpolating spline. We call this problem

the local problem. It is much easier than the general one, and one can solve it essentially

analytically, i.e. in terms of few nonlinear equations which have polynomial form, thus

obtaining suitable initial estimates for the global problem.

In the case of a non-negative constraint this concept has been applied successfully by

Dauner & Reinsch (1989) and independently by Fischer et al. (1991) for cubic spline

interpolation and recently was extended to quintic splines by Oberle & Opfer (1995)

where some new phenomena were observed.

In the case of the monotonicity constraint (1.4) considered in this paper, the local problem

is more complicated due to the fact that a boundary subarc may involve more than one

subinterval of the original interpolation grid. Further, the unrestricted spline does not
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necessarily produce slopes x0(tj) > x0min. Therefore, it does not su�ce to consider only

one subinterval for the local problem. However, according to the assumption (1.5), one

does not need to consider more than two subintervals of the original grid. So, in the

following we must investigate the cases of one and two subintervals separately.

For reasons of simplicity, we restrict ourself in the following to the case x0min = 0. This

can be done without loss of generality by the simple transformation

~x(t) := x(t) � x0min � t;

~xi := xi � x0min � ti;

~bi := bi � x0min; i = 1; 2:

(3.1)

3.1 Case of one subinterval

We start with Problem 1.2 for the special case of one subinterval (n = 2).

Problem 3.1. For given data t1; t2; x1; x2; b1; b2 satisfying the assumptions

t1 < t2; x1 < x2; and b1; b2 > 0;

a continuously di�erentiable and piecewise smooth function x is to be determined, which

minimizes the functional J subject to the constraints

x(ti) = xi; x0(ti) = bi (i = 1; 2); x0(t) � 0 (t1 � t � t2):

Problem 3.1 has a unique solution. This is either the cubic Hermite interpolant for the

given interpolation data if it satis�es the monotonicity constraint, or it is a cubic spline

with two additional knots and one (interior) boundary subarc. The details are given in

the following theorem.

Theorem 3.1.

a) The (unrestricted) cubic Hermite interpolation polynomial x0 violates the mono-

tonicity constraint x00(t) � 0, if and only if the following three inequalities are



SIGRID PODEWSKI, HANS JOACHIM OBERLE, GERHARD OPFER 11

(simultaneously) satis�ed:

(i) u := 2 b1 + b2 � 3 x[t1; t2] > 0;

(ii) v := b1 + 2 b2 � 3 x[t1; t2] > 0;

(iii) u2 > b1 (u + v);

(3.2)

where x[t1; t2] := (x2 � x1)=(t2 � t1) denotes the �rst divided di�erence. If one of

the inequalities (3.2) is not satis�ed, x0 is the solution of Problem 3.1.

b) The conditions (3.2) are equivalent to the inequality

z := b1 + b2 � 3 x[t1; t2] >
q
b1 b2: (3.3)

c) If the inequalities (3.2) are satis�ed, the solution to Problem 3.1 is a cubic C2-spline

with two additional knots �1; �2 satisfying t1 < �1 < �2 < t2. The interval [�1; �2]

is a boundary subarc of the monotonicity constraint. The additional knots and the

corresponding interpolation data are given by the following formulae:

�1 = t1 + 3

p
b1q

b31 +
q
b32

(x2 � x1);

�2 = t2 � 3

p
b2q

b31 +
q
b32

(x2 � x1);

x(�1) = x1 +
1

3
b1 (�1 � t1);

x(�2) = x2 � 1

3
b2 (t2 � �2):

(3.4)

Proof: The unrestricted cubic Hermite interpolation polynomial x0 can be written in

the form

x0(t) = x1 + b1 (t� t1) + c (t� t1)
2 + d (t� t1)

3;

where c = (�2 b1 � b2 + 3 x[t1; t2])=(t2 � t1) and d = (b1 + b2 � 2 x[t1; t2])=(t2 � t1)
2.

Now, a simple calculation shows, that condition (3.2) (i) is equivalent to x000(t1) < 0, and

that condition (3.2) (ii) is equivalent to x000(t2) > 0. Both conditions are necessary and

su�cient for x0 possessing a strict global minimum at some point te 2]t1; t2[. Now,

(3.3) (iii) is equivalent to x0(te) < 0. This proves part (a) of the theorem.
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For part (b), one has to prove that the inequalities (3.2) imply z := b1+ b2� 3x[t1; t2] >
p
b1 b2, and vice versa. The assumption (3.2) (iii) yields

b1 (u+ v) < u2 = (b1 + z)2

or by a substitution of u; v; z

3 b21 + 3 b1 b2 � 6 b1 x[t1; t2] < b21 + 2 b1 (b1 + b2 � 3 x[t1; t2]) + z2:

Therefore, z2 > b1 b2, and it remains to prove that z > 0. If we assume z < 0, our

previous result shows �b1 � b2 + 3 x[t1; t2] >
p
b1 b2. Now, property (3.2) (i) yields

2 b1 + b2 > 3 x[t1; t2] > b1 + b2 +
p
b1 b2, and, therefore, b1 > b2. But, in the same

way, property (3.2) (ii) results in b1 + 2 b2 > 3x[t1; t2] > b1 + b2 +
p
b1 b2, i.e. b2 > b1.

Thus, z < 0 contradicts the assumptions (3.2), and z > 0 holds, which proves (3.3).

The other direction of part (b) is straightforward. By the assumption (3.3) one �nds

u = b1 + z > b1 +
p
b1 b2 > 0, and v = b2 + z > b2 +

p
b1 b2 > 0. Further, one has

u2 = (b1 + z)2 > b21 + 2 b1 z + b1 b2 = b1 (u+ v).

If Eqs. (3.2) are satis�ed, Theorem 2.1 shows that the solution of Problem 3.1 is a cubic

C2-spline x with two additional knots and precisely one boundary subarc [�1; �2]. Because

x0min = 0, this is characterized by the conditions

x0j[�1;�2] � 0; x00j[�1;�2] � 0; x000(��1 ) = x000(�+2 ) > 0: (3.5)

Therefore, by cutting o� the boundary subarc, one obtains the transformed spline

~x(t) :=

8>><
>>:

x(t); if t1 � t � �1;

x(t + �2 � �1); if �1 � t � ~t2 := t2 � �2 + �1;

(3.6)

which is one cubic polynomial corresponding to the interpolation data

~x(t1) = x1; ~x0(t1) = b1; ~x(~t2) = x2; ~x0(~t2) = b2:

Further, ~x ful�lls the additional conditions ~x0(�1) = ~x00(�1) = 0; ~x000(�1) > 0. Thus,

the function ~x has a representation of the form ~x(t) = a (t � �1)
3 + ~x(�1); a > 0. By
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substitution of the interpolation conditions and eliminating the parameters a and ~x(�1),

one obtains the following system of equations:

b2 h2 � b1 h1 = 3 (x2 � x1);

b1 h
2
2 � b2 h

2
1 = 0

(3.7)

for the unknowns h1 := t1 � �1 < 0 and h2 := ~t2 � �1 = t2 � �2 > 0. The Eqs. (3.7)

have the following unique solution:

h1 = � 3
p
b1q

b31 +
q
b32

(x2 � x1); h2 =
3
p
b2q

b31 +
q
b32

(x2 � x1):

From this, one obtains �1 = t1 + h1, �2 = t2 � h2 for the junction points �1; �2.

Obviously �1 > t1 and �2 < t2 hold. To complete the proof, we have to show that, under

the assumption (3.1), �1 < �2 also holds. Elementary manipulation gives the length of

the boundary subarc

�2 � �1 = (t2 � t1) �
 
1 � 3 x[t1; t2]

b1 + b2 �
p
b1b2

!
: (3.8)

Thus, �1 < �2 is equivalent to the condition (3.3), which proves part (c) of the Theorem.

Remark. If the assumptions (3.1) (i), (ii) of Theorem 3.1 are satis�ed, whereas in (3.1)

(iii) equality holds, the unrestricted interpolation polynomial solves the problem 3.1 with

a trivial contact point te at the constraint, i.e. x0(te) = 0. The proof of the third part

of Theorem 3.1 remains valid, however, the length of the boundary subarc becomes zero,

i.e. the boundary subarc degenerates to one contact point.

Example 3.1. We choose the following interpolation data:

(t1; x1) = (�1; 0); (t2; x2) = (2; 3); b1 = 1; b2 = 7:

The unrestricted spline and the optimal monotone spline obtained by Theorem 3.1 are

shown in Figure 3.1. In addition, the �rst derivatives of the splines are shown on the right

part of that �gure.
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Figure 3.1.: Unrestricted and monotone splines and their derivatives.

The additional knots, entry- and exit points of the boundary subarc, are found to be

�1 = �0:53894055; �2 = 0:78015135;

and the corresponding interpolation values are x(�1) = x(�2) = 0:15368648.

3.2 Case of two subintervals

Now, we consider Problem 1.2 for n = 3. It turns out, that one can reduce this problem

to one convex polynomial equation of fourth degree, which can easily be solved, say by

Newton's method.

Problem 3.2.

For given data (tj; xj); j = 1; 2; 3 and values b1; b3 satisfying the assumptions

t1 < t2 < t3; x1 < x2 < x3; and b1; b3 > 0;

a continuously di�erentiable and piecewise smooth function x has to be determined,

which minimizes the functional J subject to the interpolation conditions

x(ti) = xi (i = 1; 2; 3); x0(ti) = bi (i = 1; 3); (3.9)

and the monotonicity constraint

x0(t) � 0 (t1 � t � t3): (3.10)



SIGRID PODEWSKI, HANS JOACHIM OBERLE, GERHARD OPFER 15

First, the unrestricted cubic spline x0 corresponding to (3.9) is considered and a criterion

is derived, which tells us whether x0 satis�es the constraint (3.10) or not.

Theorem 3.2. Let x0 be the unrestricted cubic spline satisfying (3.9). We use the

abbreviations hj := tj+1 � tj; x[tj; tj+1] := (xj+1 � xj)=hj (j = 1; 2), and

�1 := 3 x[t1; t2] � b1; �2 := 3 x[t2; t3] � b3: (3.11)

a) The derivative of x0 at the middle knot t2 is given by

b02 := x00(t2) =
�1 h2 + �2 h1
2 (h1 + h2)

: (3.12)

b) The spline x0 violates the constraint (3.10) if and only if one of the following two

conditions are satis�ed

(I) b02 < 0;

(II) b02 � 0; and either

z1 := b02 � �1 >
q
b1 b02; or z2 := b02 � �2 >

q
b02 b3:

(3.13)

c) If b02 > 0 and �1 > �2, the spline x0 satis�es the constraint (3.10) in the left

subinterval [t1; t2].

Proof: The unrestricted cubic spline x0 satisfying (3.9) may have the representation

x0(t) = xj + bj (t� tj) + cj (t� tj)
2 + dj (t� tj)

3; tj < t < tj+1; j = 1; 2;

where cj = (�2 bj � bj + 3 x[tj; tj+1])=hj, dj = (bj + bj+1 � 2 x[tj; tj+1])=h
2
j . In these

formulae b2 = b02 is unknown and can be determined by using the continuity of x000 at

t2. A simple calculation reveals (3.12).

Obviously, x0 violates the monotonicity constraint if x00(t2) = b02 < 0, i.e. (3.13) (I)

holds.

If b02 = 0 holds, the constraint is violated if and only if x000(t2) = 2 �2=h2 6= 0. This

corresponds to (3.13) (II). If �1 = �2 = 0, the unrestricted spline x0 touches the

constraint at the trivial contact point t2.
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In the case b02 > 0, one can apply Theorem 3.1 to each subinterval [t1; t2] and [t2; t3]

which proves the condition (3.13) (II). Note that in this case the constraint (3.10) is

violated in at most one subinterval.

Part (c) of the theorem is a technical statement used later on. From (3.12) one obtains

(2 b02 � �1) h2 = � (2 b02 � �2) h1:

As �1 > �2 holds, the left hand side of this equality must be negative. Therefore,

in Theorem 3.1 the inequality (3.2) (ii) v1 := 2 b02 � �1 > 0 is not satis�ed, i.e. the

monotonicity constraint is not violated in this subinterval.

In the following theorem we classify the structure of the optimal spline with respect to its

dependence on the parameters �1; �2, cf. (3.11). In Theorem 3.2 we already saw that the

monotonicity constraint is inactive if �1 = �2 = 0. This remains true even if �1 = �2 > 0.

This follows directly from (3.12) and (3.13) (II).

Theorem 3.3. We keep the notions introduced in the beginning of Theorem 3.2. In the

case �1 � 0, �2 � 0, and �1 + �2 6= 0, the solution x of Problem 3.2 is a C2-spline

with one boundary subarc [�1; �2]. This boundary subarc includes the middle interpolation

knot t2. Explicitly, one obtains

�1 = t2 + �1 h1=b1; �2 = t2 � �2 h2=b3; x(�1) = x(�2) = x2: (3.14)

Proof: From Theorem 3.2 one �nds that the unrestricted spline violates the constraint

(3.10). Therefore, the solution of Problem 3.2 has a boundary subarc. One can consider the

necessary conditions for each subinterval separately. So for instance in the left subinterval

[t1; t2] we use the representation

x(t) :=

8>><
>>:

x2 + a1 (t� �1)
3; if t1 � t � �1;

x2; if �1 � t � t2:

Then, the interpolation conditions at t1 are satis�ed if and only if

hl := �1 � t1 = 3 [x1; x2] h1=b1 > 0; a1 = b1=(3 h
2
l ):
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Further, one obtains t2 � �1 = h1 � hl = hl=b1 � (b1 � 3 x[t1; t2]) = ��1 h1=b1 which

shows that �1 2 ]t1; t2].

The analogous result holds for the right subinterval and both solutions together establish

a C2-spline with one boundary subarc. Note that the entry- or the exit point of the

boundary subarc coincides with t2, if �1 = 0 or �2 = 0. In the limit case �1 = �2 = 0

the solution coincides with the unrestricted spline.

Example 3.2. We choose the following interpolation data:

(t1; x1) = (�3;�1); (t2; x2) = (�1; 0); (t3; x3) = (2; 3); b1 = 2; b3 = 7:

-3 -2 -1 0 1
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3
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0

2

4
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Figure 3.2.: Unrestricted and monotone splines and their derivatives.

Figure 3.2 shows the unrestricted and the optimal monotone spline of this example ob-

tained by Theorem 3.3. The derivatives of the splines are given in the �gure on the right.

The optimal spline contains one boundary subarc with an interior interpolation knot. The

additional knots, entry- and exit points of the boundary subarc are found to be

�1 = �1:5000000; �2 = 0:71428571:

Now, we consider the more di�cult situation �1 > 0 or �2 > 0.
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Theorem 3.4. We assume (keeping the previous notation) that the unrestricted spline

violates the monotonicity constraint, i.e. the conditions (3.12) and (3.13).

a) In the case �1 > 0 and �1 > �2, the solution x of Problem 3.2 is a C2-spline

with one boundary subarc [�1; �2] which is located fully in the right subinterval, i.e.

t2 < �1 < �2 < t3. More precisely, if u� denotes the (uniquely determined) positive

root of the polynomial

Fr(u) :=
h1
3

u4 + 2 (x3 � x2) u
2 +

h1
3

q
b33 u � �1 (x3 � x2); (3.15)

then the derivative at the middle interpolation knot is given by b2 = x0(t2) = (u�)2

and the additional knots and the corresponding interpolation data can be determined

as in Theorem 3.1

�1 = t2 + 3

p
b2q

b32 +
q
b33

(x3 � x2);

�2 = t3 � 3

p
b3q

b32 +
q
b33

(x3 � x2);

x(�1) = x2 +
1

3
b2 (�1 � t2);

x(�2) = x3 � 1

3
b3 (t3 � �2):

(3.16)

b) The analogous property holds in the case �2 > 0, and �2 > �1. Here, the solution

has one boundary subarc [�1; �2] which is located in the left open subinterval ]t1; t2[.

The derivative b2 = x0(t2) is given as the square of the uniquely determined positive

root of the polynomial

Fl(u) :=
h2
3

u4 + 2 (x2 � x1) u
2 +

h2
3

q
b31 u � �2 (x2 � x1): (3.17)

The additional knots �1; �2 are given as in Theorem 3.1 by the formulae (3.4).

Proof: Due to reasons of symmetry it su�ces to prove part (a) of the Theorem. We

use an ansatz for the restricted spline with one boundary subarc situated in the right

subinterval. Taking into account the junction conditions and Eq. (2.16) we obtain the
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following representation

x(t) :=

8>>>>>>>>>>><
>>>>>>>>>>>:

x1 + b1(t� t1) + c1(t� t1)
2 + d1(t� t1)

3; if t1 � t � t2;

a2 (t� �1)
3 + x(�1); if t2 � t � �1;

x(�1); if �1 � t � �2;

a2 (t� �2)
3 + x(�1); if �2 � t � t3:

With the variables b2 := x0(t2) > 0, hl := t2 � �1 < 0, and hr := t3 � �2 > 0, the

interpolation conditions x(tj) = xj; x
0(tj) = bj; j = 2; 3 and the C2-property of x lead

to the following equations

c1 = (�1 � b1 � b2)=h1;

d1 = (b1 + b2 � 2 [x1; x2])=h
2
1;

hl = b2 h1=(2 b2 � �1);

hr = �
q
b3=b2 hl;

a2 = b2=(3 h
2
l );

x(�1) = x2 � b2 hl=3; and

3(x3 � x2) = �
�
b3
q
b3=b2 + b2

�
hl:

(3.18)

By substitution of hl from the third equation into the last one, it follows that

3 (x3 � x2) (2 b2 � �1) = �
q
b33

q
b2 h1 � b22 h1; (3.19)

and, therefore, with u :=
p
b2 we have

Fr(u) =
h1
3

u4 + 2 (x3 � x2) u
2 +

h1
3

q
b33 u � �1 (x3 � x2) = 0: (3.20)

Now, one �nds F 0

r(u) � h1=3
q
b33 > 0 for all u � 0, and Fr(0) = � �1 (x3 � x2) < 0.

This implies that Eq. (3.20) has a unique positive solution u� > 0.

Further, due to Fr(
q
�1=2) = h1 �

2
1=12 + h1=6

q
2 b33 �1 > 0, we �nd u� <

q
�1=2, and,

with b2 := (u�)2, it follows that 2 b2 < �1. Therefore, Eqs. (3.18) are satis�ed and the

desired sign conditions b2 > 0; hl < 0; hr > 0 are satis�ed.
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It remains to prove, that the junction points �1 = t2� hl, and �2 = t3 � hr are ordered

in the right way, i.e. �1 < �2. By a reformulation of hl; hr from Eqs. (3.18) using

Eq. (3.19), we obtain the representation (3.16) for the additional knots. Therefore, the

spline x restricted to the right subinterval [t2; t3] coincides with the monotone spline

xr on the right subinterval alone, corresponding to the interpolation data xr(tj) = xj,

x0r(tj) = bj for j = 2; 3. For this spline, Theorem 3.1 can be applied, showing that

�1 < �2 holds, provided the inequality (3.3) is satis�ed. Here, this inequality reads

z2 := b2 � �2 >
q
b2 b3: (3.21)

Suppose Eq. (3.21) is not satis�ed, i.e. according to (3.11)

3 x[t2; t3] � b2 + b3 �
q
b2 b3 > 0: (3.22)

We write 3 x[t2; t3] = (1+�) (b2+ b3�
p
b2 b3), where � � 0. From Eq. (3.19) we obtain

�1 � 2 b2
h1

=

p
b2 (

q
b32 +

q
b33)

3 x[t2; t3] h2
=

p
b2 (

p
b2 +

p
b3) (b2 + b3 �

p
b2 b3)

3 x[t2; t3] h2
;

which, by assumption (3.22), yields

�1
h1

=
2 b2
h1

+
b2 +

p
b2 b3

(1 + �) h2
:

From this, the parameter �1 can be eliminated by means of Eq. (3.12). We obtain

2
�
1

h1
+

1

h2

�
b02 =

2 b2
h1

+
b2 +

p
b2 b3

(1 + �) h2
+

�2
h2

:

Now, a simple manipulation of this equation and the separation of the �-terms leads to

0 = 2�
b2 � b02
h1

+ �
�2 � 2 b02

h2
+ 2

b2 � b02
h1

+
b2 � b02
h2

+
�2 � b02 +

p
b2 b3

h2
: (3.23)

We consider the following two cases separately.

If b02 � b2 holds, the �rst four terms in the right-hand side of Eq. (3.23) are non-positive.

For the second term, this follows from �1 > �2 and Eq. (3.12). So, it follows that the

last term of (3.23) is non-negative, i.e. b02 � b2 > 0 and z2 = b02 � �2 �
p
b2 b3 �

q
b02 b3,

cf. Eq. (3.13). By Theorem 3.2 the unrestricted spline x0 satis�es the monotonicity

constraint in the whole interval [t1; t3] which contradicts the assumption of the theorem.
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For the second case, we assume b02 < b2. From Eq. (3.22) we obtain �2 � b2 +
p
b2 b3 =

� (b2 + b3 �
p
b2 b3); � � 0. Substituting this into Eq. (3.23), we obtain

0 = 2�
b2 � b02
h1

+ �
b2 � b02
h2

+ �
3 x[t2; t3]� b02 �

p
b2 b3

h2
+ 2

b2 � b02
h1

+ 2
b2 � b02
h2

:

Therefore, � > 0 and 3 x[t2; t3]�b02�
p
b2 b3 < 0 hold. From the last inequality together

with (3.22), it follows that b2 � b02 + b3 � 2
p
b2 b3 < 0, i.e. b02 > (

p
b3 �

p
b2)

2 � 0 and

thus, q
b3 �

q
b2 <

q
b02 <

q
b2 : (3.24)

Now, we consider the following parabola p(t) := �t2 +p
b3 t + �2. A simple evaluation

shows (cf. (3.22))

p(
q
b3 �

q
b2) = p(

q
b2) = �2 +

q
b2 b3 � b2 � 0:

Therefore, due to Eq. (3.24), p(
q
b02) = �b02+

q
b02 b3+�2 > 0 holds, which shows that also

in this case the unrestricted spline satis�es the monotonicity constraint which contradicts

our assumption. In summary, we have shown that Eq. (3.21) is satis�ed.

Note that by the Theorems 3.2 { 3.4 we have obtained a complete description of the

solution of Problem 3.2. First, by the conditions (3.12), (3.13) of Theorem 3.2, one can

�nd out whether the unrestricted spline already solves the problem. If this is not the case,

then exactly one of the three cases considered in the Theorems 3.3 and 3.4 is valid and

the corresponding restricted spline can be evaluated either directly (Theorem 3.3) or by

the solution of a simple polynomial equation (Theorem 3.4).

Example 3.3. We choose the following interpolation data:

(t1; x1) = (�3;�1); (t2; x2) = (�1; 0); (t3; x3) = (2; 3); b1 = 0:3; b3 = 4:5:

Figure 3.3 shows the unrestricted spline as well as the solution obtained by Theorem 3.4

and its derivatives (�gure on the right). The optimal monotone spline contains one bound-

ary subarc situated in the right subinterval [t2; t3]. The numerical �gures for entry and

exit point are given by

�1 = �0:61915382; �2 = 0:014005307;
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the corresponding interpolation values are found to be x(�1) = x(�2) = 0:021007961.
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Figure 3.3.: Unrestricted and monotone splines and their derivatives.

4. A Numerical Algorithm and Examples

In this section we describe an algorithm for the numerical computation of monotone cubic

splines. The algorithm is based on the necessary conditions developed in Section 2.

It is obvious, that the method can be applied for more general obstacles of the form

x0min � x0(t) � x0max; (4.1)

even if x0min; x
0

max are replaced by step functions where the jumps may occur at the grid

points of the mesh (1.3). So for example, a switching of the constraint from monotone

increasing to monotone decreasing or vice versa, can be treated as well (so{called comono-

tone cases). For simplicity we restrict the description of the algorithm to the monotone

case.

The basic idea of the algorithm is given by cutting o� the boundary subarcs as it is

described in Eq. (3.6). Here, for each boundary subarc [�1; �2] the spline for t � �1

and all interpolation knots tj > �2 are shifted by the length of the boundary subarc

` := �2 � �1 to the left. Thus, one obtains an unrestricted C2-spline ~x with respect
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to the modi�ed grid for which the derivative ~x0 has a minimum at te = �1 with

~x0(te) = 0. Thus, the spline ~x can be computed by any standard algorithm for cubic

spline interpolation, see for example Bulirsch, Rutishauser (1968).

For one boundary subarc situated in the subinterval [tk; tk+1]; k 2 f1; : : : ; n � 1g, the

transformation is given by

~x(t) :=

8>><
>>:

x(t) ; if t1 � t � �1;

x(t + �2 � �1) ; if �1 � t � ~tn;
(4.2)

~tj :=

8>><
>>:

tj ; if j = 1; : : : ; k;

tj � (�2 � �1) ; if j = k + 1; : : : ; n:
(4.3)

Note that for general values of x0min, the ordinates of the interpolation data have to be

transformed by ~xj = xj � x0min � ` (j > k), too, where ` = �2 � �1 denotes the length of

the boundary subarc.

For the numerical computation of the restricted spline one can proceed as follows:

For an estimate of the length ` of the boundary subarc one determines the shifted

grid (~tj); (~xj) according to the above formulae. The corresponding unrestricted spline

is denoted by ~x(t; `). Now, a point te(`) 2 [~tk; ~tk+1] has to be determined, where the

derivative ~x0(t; `) takes its minimum value with respect to this subinterval.

In general, te(`) is situated in the interior of the interpolation interval, but sometimes it

may also be situated at the endpoints ~tk; ~tk+1. This is the case, if the boundary subarc

contains an interior interpolation knot.

The parameter ` has eventually to be determined such that

�(`) := ~x0(te(`); `) = 0: (4.4)

This can be done by means of Newton's method using the given estimate for ` as starting

value.

The same method works, if the restricted spline contains several boundary subarcs. In

this case one has to perform the transformation (4.2), (4.3) for each boundary subarc,
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` becomes a vector which length equals the number of boundary subarcs, say m, and �

becomes a vector-valued function of the form

�(`) :=

0
BBBBB@

~x0(t(1)e (`); `)
...

~x0(t(m)
e (`); `)

1
CCCCCA = 0; (4.5)

where t(k)e denotes the minimum of ~x on those subinterval which contains the k-th

boundary subarc. The Jacobian of � is computed by numerical di�erentiation.

After numerical convergence of the method, the computed spline ~x has to be retrans-

formed in order to obtain the restricted spline for the original problem. To this end, the

additional knots are computed according to

�
(k)
1 = t(k)e (`); �

(k)
2 = �

(k)
1 + `k: (4.6)

We note that the numerical behaviour of the method depends strongly on a suitable

choice of the initial estimates. We have found that favourable initial estimations can be

gained by the local monotone spline described in Section 3. The derivatives necessary

for the computation of the local spline are obtained by the corresponding unrestricted

spline which is determined a priori. In general the number of required Newton steps to

solve the problem is reduced considerably by this choice of the initial data. Further, even

for stringent restrictions, the problem could be solved without applying a homotopy or

continuation method. We demonstrate the behaviour of the algorithm by two examples

from the literature.

Example 4.1. (Fritsch, Carlson (1980))

We choose n = 9 and the following interpolation data which are taken from a radio-

chemical problem, see Table 4.1.

Table 4.1. Given interpolation data.

tj 7:99 8:09 8:19 8:7 9:2 10

xj 0 2:76429 e� 5 4:37498 e� 2 0:169183 0:469428 0:943740
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tj 12 15 20

xj 0:998636 0:999919 0:999994

The data are monotone, however the unrestricted spline is not. The optimal monotone

spline has three boundary subarcs which are situated in the �rst, the sixth, and in the last

subinterval. The entry-point of the �rst and the exit-point of the last boundary subarc

coincides with an interpolation knot.

10 15 20
0

0.2

0.4

0.6

0.8

1

10 15 20

0

0.2

0.4

0.6

Figure 4.1.: Unrestricted and monotone splines and their derivatives.

For this example one observes that the solution structure depends strongly on the restric-

tions. So, for mild restrictions x0min < 0:118, the solution has only one boundary subarc

situated in the subinterval [10; 12]. For more stringent constraints �0:118 < x0min <

�0:00025 a second (very small) boundary subarc in the �rst interval appears, which for

reasons of clarity is not indicated in Figure 4.1. For constraints x0min > �0:00025 a

third boundary subarc exists in the last subinterval [15; 20]. For the monotone case the

boundary subarcs are given in the following Table 4.2.

Table 4.2. Junction points of Example 4.1.

�j 7:9900000 8:0865338 10:549942 11:999650 15:921658 20:000000

x(�j) 0:0000000 0:0000000 0:9986360 0:9986360 0:9999940 0:9999940
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Example 4.2.

We choose n = 8 and the following interpolation data similar to an example of Sp�ath

(1990, page 110, Fig. B53), see Table 4.3.

Table 4.3. Interpolation data.

tj 0 4 6 10 12 14 18 20

xj 3 4 9 10 9 5 4 3

0 5 10 15 20
2

4

6

8

10

0 5 10 15 20
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2

Figure 4.2.: Unrestricted and monotone splines and their derivatives.

The function values are monotone increasing in the interval [0; 10], and monotone de-

creasing in [10; 20]. Therefore, we determine an interpolating spline which preserves these

properties, i.e. we use the restrictions x0(t) � 0 on [0; 10] and x0(t) � 0 on the other

part [10; 20]. The algorithm solves this problem within a few Newton-steps. In Figure 4.2

the unrestricted and the restricted splines are shown as well as their �rst derivatives (the

�gure on the right). The solution has three boundary subarcs. The junction points are

given in the following Table 4.4.

Table 4.4. Junction points of Example 4.2.

�j 0:0000000 2:3229670 7:6770330 10:004756 15:948384 17:354404

x(�j) 3:0000000 3:0000000 10:000000 10:000000 4:0351027 4:0351027
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