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1 Introduction

Jet studies are becoming increasingly precise, both as a testing ground for QCD, and as
a background for new physics (e.g. Higgs searches). Increasing precision, among other
things, requires knowledge of the fundamental QCD vertices to higher loops.

The one-loop vertices have been known for quite some time. Celmaster and Gonsalves
presented in 1979 [1] the one-loop result for the three-gluon vertex, for off-shell gluons,
restricted to the symmetric case, p} = p2 = p3, in an arbitrary covariant gauge. The result
of [1] was confirmed by Pascual and Tarrach [2]. Ball and Chiu then in 1980 considered
the general off-shell-case, but restricted to the Feynman gauge [3]. Later, various on-shell
results have also been given, by Brandt and Frenkel [4], restricted to the infrared-singular
parts only (in an arbitrary covariant gauge), and by Nowak, Praszalowicz and Slominiski
[5],“who also gave the finite parts for the case"of two gluons being on-shell (in Feynman
gauge). The most general results, valid for arbitrary-,values of the space-time dimension
and the covariant-gauge parameter, have been preseiited in our previous paper [6]. Some
gsults for the one-loop quark-gluon vertex (or its Abelian part which is related to the
QED vertex) can be found in [7].

The present paper is devoted to a study of two-loop corrections to the three-glpon ver-
tex in the zero-momentum limit. This limit refers to the case when one gluon has vanishing
momentum. The remaining twp momenta must then be equal and opposite, so there is
only one dimensionful scale, pzl'.I In this limit, the renormalized expressions for QCD ver-
tices in the Feynman gauge have been presented by Braaten and Leveille [§]. Information
about Green functions is also required for calculation of certain quantities related to the
renormalization group equations, such as the  function and anomalous dimensions. The
two-loop-order contributions to these quantities were calculated in refs. {9, 10, 11, 12],
whereas the three-loop-order results were obtained in [13, 14]. Moreovér, recently the
four-loop-order expressions became available [15].

When massless quarks are considered, the scalar functions corresponding te the coef-
ficients of different tensor structures are in the zero-momentum limit rather"'sifh'f)lé:'laf)'zﬁ’t
from non-trivial coefficients, they are given by-p* raised to'some power (determined by
the dimension of space-time). Also, the tensorfal structure is considerably simpler than in
the general case. Although the zero-momentum limit has limited physical applications, it
serves as an important reference point, against which more general results can be checked.

With one gluon momentum vanishing, there are two Ward-Slavnov-Taylor (WST)
identities, one corresponding to the vanishing momentum, and one corresponding to the
finite momentum. The identity corresponding to the vanishing momentum turns out to
be a differential identity. In this case, the three-gluon vertex can actually be completely
constructed from the two-point functions and the ghost-gluon vertex, with no additional
transverse term.

In the present paper, we realize two ways to calculate the two-loop three-gluon vertex
in an arbitrary covariant gauge. One of them is a straightforward calculation of all
diagrams contributing to the three-gluon vertex at this order. Another way is based on
using the results for the ghost-gluon vertex and the two-point functions, together with
the corresponding WST identities. The renormalized expressions are also obtained.



2 Preliminaries

The lowest-order gluon propagator is

oz L P P
oz E (g;uuz _5 M;2M2) ’ (21)
where £ = 1 — « is the gauge parameter corresponding to a general covariant gauge,

defined such that £ = 0 (a = 1) is the Feynman gauge. Here and henceforth, a causal
prescription is understood, 1/p* — 1/(p* +i0).
The three-gluon vertex is defined as

sy (P P2y Pa) = =1 g JU 2 s (P1 P2 ps), (2:2)
where #1929 are the totally antisymmetric colour structures corresponding to the adjoint
representation of the gauge group (for example, SU(N) or any other semi-simple gauge
group). In fact, also completely symmetric colour structures d**>** might be considered,
but they do not appear in the perturbative calculation of QCD three-point vertices at the
one- and two-loop level. Since the gluons are bosons, and since the colour structures #1422
are antisymmetric, , ., .. (P1, P2, p3) must also be antisymmetric under any interchange
of a pair of gluon momenta and the corresponding Lorentz indices.

When one of the momenta is zero, the three-gluon vertex contains only two tensor

1

structures”,

Pu P
) 1 M2 (3 (pv —-D 0) = (29M1M2PM3 — GuiusPur — gu2u3pul) Tl(pz) — Pus (gﬂl%ﬂ B %) Tz(pz)-
X (2.3)

In this decomposition, we basically adopt the notation of [8] for the scalar functions T;(p*).
The first tensor structure on the r.h.s. of eq. (2.3) corresponds to the lowest-order vertex.
There is the following correspondence between the functions 7T; and the scalar functions

A and C used in [3] (cf. also in [6]): -

!

Ti(p®) « A(p*, p*;0), Ta(p?) < —2p*C(p*, p*; 0). (2.4)
At the lowest, “zefp-loop” orderithe Yang-Mills term of the QCD Lagrangian yields?

70 =1, 70 = 9. (2.5)

For a quantity X (e.g. any of the scalar functions contributing to the propagatorg or
the vertices), we shall denote the zero-loop-order contribution as X(© (cf. eq. (2.5)),-the
one-loop-order contribution as X", and the two-loop-order contribution as X ). In this
paper, as a rule,

XD = x@8 4y (L) -- (2.6)

where X8 denotes the contribution of gluon and ghost loops in a general covariant
gauge (2.1) (in particular, X7 corresponds to the Feynman gauge, ¢ = 0), while X (%)
represents the contribution of the quark loops.

!This is a corollary of the differential WST identity, see in section 3.
ZWe i:nzzliude the contribution Tl(o) = 1 into the definition of T} (p?), eq. (2.3).
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The ghost-gluon vertex can be represented as

;129 (py, pa; pa) = —ig fUU pr ) s (1, P23 p3), (2.7)
where p; is the out-ghost momentum, p; is the in-ghost momentum, ps and p3 are the
momentum and the Lorentz index of the gluon (all momenta are ingoing). For , ., the
following decomposition was used in [3]:

s (P12 23 93) = Qs (P32 D22 D1) — P3,u02,,6(D3, P2, 1) + P13, (P35 P20 1)
.-il'szplusd(p:aapzapl) + plﬂpluge(}?&pzapl)- (2.8)

At the “zero-loop” level,

) Eﬁt)s = Gupus (2.9)
and therefore all the scalar functions involved in (2.8) vanish at this order, except one,
0 —1
a :
We shall need the results for the ghost-gluon vertex (2.8) for two different configura-
tions: (i) when the gluon momentum, p, is zero and.(ii) when the in-ghost momentum,

[Sp—_—

p2, 1s zero. In the former case, we get

:MMS(_p7p; 0) = guusa?)(pz) + PubPus 63(}72)7 a3(p2) = a(()-;p; _p)v 63(}72) = e(ovpv _p)v
(2.10)

whereas in the latter case we obtain
s s (9205 =) = s 02(P°) + pupus€5(p%),  az(p®) = a(=p,0,p), €5(p*) = €'(=p,0,p),
2

with
6/(}?37}?27}?1) = €(p3,p2,p1) - C(p37p27p1) - d(p:%ap%}?l)- (2-12)
We shall also denote
dy(p*) = d(—p,0,p). (2.13)
We do not need to consider ,~W3 (0,p,—p) (p1 = 0) because it does not enter the WST
identities (see in section 3). Moreover, the proper ghost-gluon vertex (2.7) vanishes in

this limit, for it contains p,".
The gluon polarization operator is defined as

5252 (p) = =67 (P Gso — Puara) (7). (2.14)
while the ghost self energy is®
-1

ﬁalaz(pZ) — Jaia2 p2 {G(pz)} . (215)

In the lowest-order approximl'étion JO =GO =1,

3There was a misprint in eq. (2.8) of [6]: G(p?) should read [G(pz)]_l.



3 WST identity in the zero-momentum limit

In a covariant gauge, the Ward—Slavnov—Taylor (WST) identity [16] for the three-gluon
vertex is of the following form (see e.g. in [17]):

P+ wias (P12 P20 93) = —J(91) G(P2) (9,7 2 = Py 21™) g (P1 P33 12)
+J(p2) G(p3) ﬁqw Py = P2y 1) i (p2opsipn). (3.0)

It is easy to see that the ¢ and e functions from the ghost-gluon vertex (2.8) do not
contribute to this identity.

Consider what follows from (3.1) in the limit when one of the momenta vanishes. We
should distinguish between two different cases: when the vanishing momentum is the one
with which the three-gluon vertex is contracted, and when it is not. In the fortner case,
we obtain a differential identity, whereas in the latter case we get an ordinary identity.

In the differential case, we shotild consider ps =8 — 0, p1 = p, p» = —p — 6. We
do not need the terms of order 6% and higher. In particular, G(§?) = G(0) + O(6?) and,
for massless quarks, G(0) = 1. When we expand the r.h.s. of eq. (3.1) in d, the lowest
(“constant”) term disappears, so only the term linear in § is relevant. Differentiating both
sides with respect to 6** and putting § = 0, we get

#2 (a= 22 | () 000 20 ) ) s S5 0
(3.2)

where the functions ay(p?) and da(p*) are defined in egs. (2.11) and (2.13), respectively.
The function ay(p?) is defined as

0

52(}?2) = D1, % a(ps, —p1 — p3,p1)| 1=~ .= (3.3)

It can be calculated directly at the diagrammatic level (see in section 5).
Considering contraction with a non-zero momentum, we get from eq. (3.1)

P o (=, 0) = = (") G (9 )as(p?) (G P* — PrsPus ) » (3.4)

where as(p?) is defined in eq. (2.10). Contracting eq. (3.2) with p*t we get a different
representation which should be equal to the r.h.s. of eq. (3.4). Therefore, the following
relation should hold:

G(0) |[&l2?) — p*da(p’)| = G(r*lad(p’). (3.5)

Using eq. (3.5), the differential WST identity (3.2) can*Bé re-written in a way which
involves just the a functions from the ghost-gluon vertex:

PuzPus Pui Pus
) M1M2M3(p7 _pv:()')',: - [pul (9#2#3_ Mpzﬂ ) +pu2 (ig%’{us_ Mpzﬂ )] a3(p2)G(p2)‘](p2)

#20 (=222 ) G0 [astr?) 2 (060 =0 2 40,0 3
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For the scalar functions T;(p?), the WST identity gives

Ty(p?) = as(p?) G(p*) J(p*), (3.7)

d dasy(p*)

) = 21,0) = 2600) [aalr) 55 (PI0)) — 2008 S 4 )07 a9

Therefore, the differential WST identity makes it possible to define the whole three-

gluon vertex (not only its longitudinal part) in terms of two-point functions and the

ghost-gluon vertex. Moreover, it can be used as another independent way, in addition to
the direct calculation, to obtain results for the three-gluon vertex.

4 Results for the three-gluon vertex

We shall use dimensional regularization [18], with the space-time dimension n = 4 — 2e.
The results for unrenormalized one-loop contributions to the scalar functions T (p*) and
To(p*) (in arbitrary space-time dimension) can be found in ref. [6], eqs. (4.30), (4.31),
(4.33) and (4.34). Expanding them in ¢ Vi.re.get4

2

. mef1/ 2 3N 35 1. 1,
T ph) = o=l (<) {—<————§)—§+§'§—15

(4m)n72 7371
+e (L;%Jrg— %52)} + O(e?), (4.1)
T = 1 e (L T e o (42)
1900) = e il () (g v g e (FF e ge) 06, 0
() = T(fj)Z/Q (—p*)~ {2 + %5} +0O(£2). (4.4)

In these equations, we use the standard notation C'4 for the eigenvalue of the quadratic
Casimir operator in the adjoint representation,

feed fredt = €4 8" (Cy = N for the SU(N) group). (4.5)

Furthermore,

T = NfTR, TR = é TI’([) = % 5 (46)
where [ is the “unity” in the space of Dirac matrices (we assume that Tr([l) = 4), Ny is
the number of quarks and

0 7’7 ((5__31)) ,(3-12)= % S(Lte)=e (1 - %w%? + 0(53)) - (A7)

“In all unrenormalized expressions given in sections 4-7 and in Appendix A, the bare quantities g* = g%
and & = &p are understood, i.e. the same as those given in the lowest-order functions (2.1)-(2.2). When
the renormalization is discussed, these bare quantities get a subscript “B” (see in section 8).
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Here v ~ 0.57721566... is the Euler constant. The ¢ terms in the expressions (4.1)—(4.4)
are needed when these expressions are multiplied by terms which diverge like 1/e, e.g.,
for the calculation of reducible unrenormalized two-loop-order contributions. The € terms
are also necessary for getting the renormalized two-loop-order results, see sectloﬂ-S o=

The diagrams contributing to the three-gluon vertex at the two- loop level are shown
in Fig. 1°. Each diagram should be considered with two other “rotations”, corresponding
to permutations of the external legs. The grey blob corresponds to a sum of all one-loop
contributions to the gluon polarization operator, including the gluon, ghost and quark
loops insertions®, cf. Fig. 2a of [6]. Note that non-planar graphs do not contribute to the
two-loop- vertex, since their over-all colour factors vanish, due to the Jacobi identity (cf.
Fig. 6 of ref. [20] where this is explained).

When one e,xternal momentum vanishes, technically the problem reduces to the cal-
culation of two'point two-loop Feynman mtegrals To calculate the occurring integrals
with higher pewers of the propagators, the integration-by-parts procedure [21] has been
used. For the-mtegrals with numerators, some other known algorithms [21] (see also in
[22]) were employed. Straightforward calculation of the sum of all these contributions”
yields the following results for the unrenormalized scalar functions: -

:Tf*f)(p?)=0294”2<—p2>-2€{i(ﬁ——f H¢)+s (-5 —5—7‘—95 €

ok Aldm)n e 48
6965 1. 509 155, 13 .\
“o%R ZCS - %5 —§C3 - mf —65 + Ef } +O(e), (4.8)
(2,9) 2y 94772_2—25 i §_ L 9_7_1 -
1000 = car S e {5 (5 -6 + 2 (- 56 5¢)
1675 22
o T 7 -3¢
O () (S - 100 40, (49
(2,8) 2y 294772 22 1 _@__ _2_13
90 = LIRS 7 2 (-5 - et 5 6)
1013

e Gt 36— o 42 — 14 0e), (410

(24)( 2y _ 9%2_2_;g§__ ), 289 133,
10 = O ot {2 (5 - 3+ 5 + 5 - et )
94 0’
+8CFT(47T)n

®To produce the figures, the AXODRAW package [19] was used.

SHere and henceforth, we do not show contributions involving tadpole-like insertions which vanish in
the framework of dimensional regularization [18].

“For this calculation, two independent computer programs written in REDUCE [23] and FORM [24]

were used. Y

(=p*)7* + Oe), (4.11)

- -
I -
-J
1
1



where (3 = ((3) = 2%, j7° ~ 1.2020569... is the value of Riemann’s zeta function; Cp is
the eigenvalue of the quadratic Casimir operator in the fundamental representation. For

the SU(N) group, Cr = (N* — 1)/(2N).

5 Results for the ghost-gluon vertex

In order to check the WST identity, we need results for the ghost-gluon vertex in two
limits corresponding to eqs. (2.10) and (2.11). We shall also need the derivative aq(p*),
eq. (3.3).

The relevant one-loop results (for an arbitrary n) are listed in Appendix A. Expanding
them in & we get ---- r---

1 1 1 1
b - - - ———

I R R UR T e R EHCTEINR Y]
0% = A - g e o 6

A0 = Ca 0 2 (54 56) + je+ 3¢ e (1- e+ 30 o
5.3

P = O 0 e (5 + ek} O EM;
R RS LR R B ENC T N

Two-loop contributions to the ghost-gluon vertex are shown in Fig. 2. As in the case
of the three-gluon vertex (cf. Fig. 1), non-planar graphs do not contribute (cf. ref. [20]).
Straightforward calculation gives the following results:

(2,8, 2y 294772 _2—2si§_z 12 lE_% 22 .
“ (p)_CA(zm)n( P) {52<8 8§+4§)+5<8 16§+16§) Lo
257 1 635 1 23, 3
+@—§C3—%f—§ff3+ﬁf —I_Ef C:a}‘l-o(@)a (5.6)
00 = O () £ 00, (57)
2 08) 2y _ 2 00 avac L5 L. 15\ 65 1o Al 5. 3.,
P t) = LT 2 (G H5E 7€)+ o e igde 1l )
(5.8)
pzegf’q)(pz) = CAT&;;?% (—p*)* {—é — 4} + O(e), (5.9)
(2,8), 2y _ 294772 2\—2¢ i §_l }Q E_%z
") _CA(47T)n (=) (1_5){52 (8 45) T2 (24 NPT 8§)
227 53 13, 1 4
—I_ﬁ_@’—l_mf_ﬁf —Ef }+O(5)7(5-10)
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(27‘1) 2 C g n a2\ 2 1_ 2{_i_£} O 511
R e I RO I e ENCIO MU CH TS
P = L - (2 S de)
2 A (4 ) c\6 6 8
89 5 65 3 13, 1 3}
— 4+ =(G—=— — — — @) 5.12
T3 TR TRt T e Tt Tt O B
4,2
2 /(2#]) 2 _ C Tg n 2\ —2e 1 — Q{L E} O 5 13
The derivative (3.3) has been calculated in the following way. The momenta p; and ps
are considered as independent variables, whereas p; = —p; —p3. Therefore, the momentum

p1 flows from the in-ghost leg to the out-ghost leg. An unambiguous p; path inside the
diagram can be chesen as the one coinciding with the ghost line. This is convenient,
since all we need to-differentiate are just two types of objects: ghost propagators and
ghost-gluon vertices occurring along this path. In this way, we avoid differentiating gluon
propagators and three-gluon vertices. We also avoid getting third powers of propagators.

Technically, this was realized as follows. The list of diagrams contributing to the
ghost-gluon vertex, Fig. 2, was taken. Then, the propagators and vertices along the ghost
path were “marked” by introducing an extra argument (say, z). Of course, the closed
ghost loops should not be marked. Then, the derivative with respect to z was considered,
and the rules for differentiating the ghost-gluon vertex and the ghost propagator (with
subsequent contraction with p;, ) were supplied. It is very important that we do not
really need expressions with different momenta; we just formally differentiate along the
ghost line, and then perform all calculations for py = —p3 = p, p, = 0. Finally, extracting
the coefficient of g,,, gives the following results for the function (3.3):

4 2
~(2,6) 2202977 _2—2s{i<§ 2_22) 1(& 185 iz_l:a)
S A PR TR TR TRl Rl WE A TR RS YAR o
3085 1 1265 7 389 , 13 , --f 4}
el ) e Ry < B @, 5.14
s TI% T Bt Tt Tt T Tty T OE): (G14)

- 2 o L 1172
a0 = T ()] (-

§+%8)

(47)" 22 e\ 1203
239 79T,
B . 1
- %§+9§}+0@) (5.15)

6 Results for the two-point functions

Before presenting the results, let us make some general remarks. According to eq. (2.14),
the gluon polarization operator is proportional to

J(p*) =1+ TV + () + -(6.1)

[



Two-loop contributions to the gluon polarization operator are shown in Fig. 3. The gluon
propagator is proportional to

1 Puy Pus ) Pui Pus
L +(1—¢ . 6.2
J(pg) ( M1 p2 ( ) p2 ( )

Therefore, the transverse part of the propagator is proportional to
] = 1= 0@ = ID0) + O]+ (6.3)

According to eq. (2.15), the ghost propagator is proportional to
G(p*) =1+ GO + GO () + ... (6.4)

The ghost self energy’(which is inverse to the propagator) is proportional to

{G(pz)} - 1_ G(l)(p2) . G(Z)(irred)(p2) + .
= 1 GO — GO + [G(l)(pz)r 4o (6.5)

Note that the one-loop contribution to the ghost self energy gives —G(Y(p?). Two-loop
contributions to the ghost self energy are shown in Fig. 4. They give —G®)lred)(,2),
According to eq. (6.5), the two-loop contribution to the ghost propagator consists of two
parts, the irreducible one and the reducible one,

G(2)(p2) — G(?)(irred)(pQ) + G(?)(red)(p?)7 (66)

! 1
| I

where G2)red)(p?) = {G(l)(pz)r.
One-loop results in arbitrary space-time dimension are available e.g. in [25, 6] (see also
in Appendix A). When we expand them in ¢ and keep the terms up to the order ¢, we get

2

(4m) - y T

te (—% 426 - %g?)} L O, (6.7)
ﬂmw%:T@g%(#ﬂ*&%+%+%%%+0@% (6.8)
GO(?) = O (49;)2/2 (=p?)~* {é (% + ig) Fl42c} 4O, (6.9)

Calculating the sum of one-particle irreducible two-loop diagrams contributing to the
gluon polarization operator (shown in Fig. 3), we have obtained the following unrenor-
malized results:

12 1/ 25 5 1.\ 1/ 58 113 19, 3
J@2O) (2 :ng n _2—25{_<__ 9 _2) _(__ S _3)
)= Tt att e ) o Uttt TS
14311

425 e 9 i4}
D +§s+f%4£+2£@ 72£-+16£-+16£ + O(¢), (6.10)
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sy = e S (5 (-5 1 (g + 5e - 3¢)

(47)" e2\3 3 8
1961 142 22,
+—108 —|-8C3-|-§f—§§ }
4 .2
g n 2y-2¢ [2 95 }
T - R | . 11
ORI (7 D~ 166+ 0) (6.11)

Calculating the sum of the contributions (Fig. 4) to the ghost self energy (with a minus
sign, cf. eq. (6.5)), we obtain

4 .2
irre g 1 —2¢ 1 3 3 1 /67 9
) = G 7 {5 (e - 59) + - (s~ )

503 3. 1, 3. 3. }
37 1% Tl T8 Tl ey Ok (6.12)
4 2
a2y — v 9N _z—zs{_i_l_ﬁ}
G5 (p?) CAT(47T)n( P°) 52 e 3 + O(e). (6.13)

Note that there is no reducible part in G>9. The reducible part of G(3%) is given by the
square of eq. (6.9),

Getrn () = ALty L (L pet 2@) 2 (14 56) 434 €)1 06,
(6.14)

4 2
g n o (1 /5 7 1 1 /83 7
690t = IR 5 (5 556~ 1) - (6 38)

4I7T)” 4 e \16
o P9 3. i3 3 }
toy T e T et TR T ey H Ok (615)

7 WST identity at the two-loop level

Due to the differential WST identity, we get the representations (3.7) and (3.8) for the

—&

functions T;(p*). In the massless case, all one-loop expressions are proportional to (p?)~¢,
whereas two-loop expressions contain (p?)~?°. Thus, the differentiations in (3.8) become
trivial. Expanding in ¢%, we get® - -

I 1 I 1
[ [ Sp—

T (p?) = oM (p?) + GO + TV (p?), (T

I 1
[

1Y) =21V (p?) =2 [(1 =) J V) + (1 +2)al () + @ ()] . (73)

8We take into account that (in the massless case) G(0) = 1.
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T %) = 20 (0%) — 2 [TOHa (%) + TO@?as ()
+(1 = 26)T D (p?) + (1 +22)al (p?) + a7 (p7)] - (7.4)

Substituting the expressions for ghost-gluon vertex and two-point functions, we arrive
at the same results as given in (4.8)—(4.11).

8 Renormalization.

- [Sp—

To begin this section, we would like to explain why the zero-momentum limit of the three-
gluon vertex, as well as the relevant limits of the ghost-gluon vertex, are infrared finite,
i.e. we do not get any 1/¢ poles of infrared (on-shell) origin. The main argument is just
power counting.

Consider a triple vertex Vg (part of a two-loop diagram) to which are attached the
zero-momentum external line, together with two adjacent propagators carrying the same
loop momentum ¢. In the case of a scalar (say, ¢*) theory, one would get 1/(¢?)? in the
integrand, leading to an infrared divergency. However, in QCD the vertex V4 can be either
(i) a three-gluon vertex, (ii) a ghost-gluon vertex, or (iii) a quark-gluon vertex. Effectively,
the power of the gluon or ghost propagator in QCD is 1/(¢*), whereas for the massless
quark propagator we get 1/q. Therefore, the case (iii) is infrared finite, since we get only
1/¢* from the two quark propagators (no ¢-dependent factor from the vertex). In the
cases (i) and (ii), we get 1/(¢*)* from the two gluon (or ghost) propagators. However, we
also get a momentum-dependent factor from the three-gluon (or ghost-gluon) vertex Vg,
which cannot contain any momentum other than ¢ (since the external momentum is zero).
This gives in the numerator a factor which is linear in ¢, so that effectively the infrared
behaviour is just 1/¢”, i.e. we have no infrared divergency. When the zero-momentum
line is attached to the four-gluon vertex like e.g. in diagrams (k) and (2') in Fig. 1, we
may also get two propagators carrying the same momentum ¢. However, a similar power
counting shows that there are no infrared singularities. For example, in diagrams () and
(h') an extra momentum ¢ appears in the numerator from the one-loop self-energy-type
insertion. This explains why all singularities in this limit are of ultraviolet origin, and
therefore should be removed by renormalization.

In this paper we adopt the modification of the renormalization prescription by ‘t Hooft
[27], corresponding to the so-called MS scheme [28]. In this section (and in Appendix B),
the notations £, a, g2, etc. (without subscript) correspond to the renormalized (in the MS
scheme) quantities. In previous sections (and in Appendix A), they should be understood
as.the bare quantities g, ap, g%, etc. ==
-~ The renormalization constants Zr relating the'dimensionally-regularized one-particle-
irreducible Green functions to the renormalized ones,

2 ) 1
, (ren) ({%} 704792) = 11_{)% [ZF <g7a7gz) , ({p?}7OzB7g%7€):| , (81)

look in this scheme like

1

gi’

1 =0
Zi (Zangt) =143 o) (32)

i=1
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where a = 1 — €. In eq. (8.1) p is the renormalization parameter with the dimension of
mass. It is assumed that on the r.h.s. of eq. (8.1) the squared bare charge g% and the
bare gauge parameter ap must be substituted in terms of renormalized ones, multiplied
by appropriate Z factors (cfs eqs. (8.8) and (8.9)).

We use the following definitions for renormalli.zlation factors:

) Etrleigus (p17p27p3) 7 ) ;1M2M3(p17p27p3)7 (8 3)

1 7, 1055 o
7 iren) aiazas (p17p27p3) =7 a1a2a3 (phpz,p?)) (8 5)
H(ren) aias (p?) — Z3 Ha1a2( )7 (8 6)

where II5192 (p) and IS (p?) are the gluon polarization operator and the ghost self en-
ergy, respectively. For the scalar amplitudes, eqs. (8.5)—(8.6) mean that .J(p?) and G(p?)
should be renormalized by means of Z5 and 23_1, respectively. Furthermore, according to
eqs. (8.3)—(8.4) the three-gluon amplitudes (7} and 75) should be renormalized using 7,
whereas for the ghost-gluon functions (as, es, a2 a}qd-leg)l-@r-lle should use Zl.

The WST identity requires that bom b

I Zs _ Zs
Zl Zl ‘
If this condition is satisfied, the WST identity is valid for the renormalized quantities,

(8.7)

too.
Using (8.7), the bare coupling constant g% can be chosen (in the MS scheme) as

2.7\ ¢ N N 2.7\ °¢
i = (55) ¢zz = (52 ¢z (55)

s

9

The gauge parameter o = 1 — ¢ is renormalized as -
ap = Zsa, so that g =1—Zs5(1 = ¢). (8.9)

Below we shall use the following notation:

2 2
_ 49 Qs _ 9
h = (47)? =1 where a = (8.10)

The two-loop-order results for the renormalization factors have been obtained in [10,

11, 12] (see also in ref. [26]). For completeness, we list the corresponding expressions in
Appendix B.
Using eqs. (4.1)-(4.4), (4.8)-(4.11), (8.3) and (B.1), we obtain the renormalized scalay

amphﬁudes appearing in- t.he three-gluon vertex (cf. eq. (2.3)), '

[,

[

ren 35 20
7 '=1xh CAI(—_EI+I—£——§) n ]
FL7 AR 1T 81T 150 443, -
+ht 3 (- @‘1@ St ot + e - e+ )
875 20, 10, 5 g
—|—CAT<72—|—8§3 0, 9§)+CFT<3 16§3>]+(’)(h), (8.11)

9The factor (&7 /(47))¢ = exp [¢(y — In(47))] in eq. (8.8) represents the difference between the MS and
MS schemes (cf. also eq. (4.7)).
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4 1 8 157 37 2
T — o (———2 —2) —T] h20T<——— ——2) 8C,T
2 al—3 f-F4§ +T)+ A 9 185 95 +8CF
641 5 1 287 19 1
i —— — - (- =4 = - h?).(8.12
T ( 3% @ TR T mt Tt s )] o). (8:.12)
Here and henceforth, we put p* = —p? in the renormalized expressions. In Feynman

gauge (¢ = 0), our expressions agree with eq. (B4) from [8]. However, the one-loop part
of the result for Ty in an arbitrary (non-Feynman) gauge disagrees with eq. (A10) from
[8]10.

The renormalized expressions for two-point functions are

!

31 1 20
ot (e fe) 2
L:L{ +h|Cy 9 +¢ 45 + 5
3245 9287 61 3 1
2 2 = = hl 2 = 3 o 4
th CA( 144 G 96§+2§C3+72§ 165 + 16§)
451 10 10 55
+OLT (g + 80+ 6 - Eﬁ) +CpT (? _ 164“3)] + O, (8.13)

997 3 41 3 3 95
(ren) __ 2 2 (7270 9 o 22 2 g2 e 3
G — | hO k2 |02 ( 2l — ek e - 43) AT [+O(H°). (3.14)

In Feynman gauge, eq. (8.13) gives the same as the first of eqs. (B3) in ref. [8]. Taking
into account that

[G_l}(ren) —9_ G(ren) 4 hQCi + O(hS), (8.15)

we have also confirmed the second of egs. (B3) in [8], i.e. the result for theghost self
energy in Feynman gauge.

The renormalized expressions for the scalar functions occurring in the ghost-gluon
vertex are -

ren 1
a§™ =145 h Ca(1—¢)

137 1 299 1 7 3 1
+h? Cfx (@ - §§3 - %f - gff:a + EfQ + Ef%:a) + ZCAT + O(h3)7(8-16)

2 (ren) _ 1 2 z(@ . 5,5 _iz)_§
pes —4hCA(2+£)+h 3 3+8C3 12£+16§C3 165 3CAT

+O(h%),
(8.17)

ren 1
ag™ =14 hCab(l=¢)

167 43 1 1 5
w2 (1-6) [C3 (55 = 6 = 1o = 18 = 18) — 5CaT(1 = )] + 0(#)(8.18)
A = L h O (- 62— ¢)
+h*(1=6)|CF (%-Fg@—%f—%f@—l-%fz + %53) +§CAT(1—§)] + O(h?). (8.19)

10Cf. footnote 19 on p. 4101 of [6]. In our notation, in the hC'4 part of (8.12) the term %52 is missing
in [8].
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We note that these functions are in the following correspondence with the functions

G12(p?) used in [8], eq. (A3):
as + ples & 1+ G, a2+p26'2 o1+ Gy (8.20)

Using this conneqfjion, we have confirmed the two-loop-order results for G; and G in the
Feynman gauge, eq. (B5) of ref. [§], as well as the one-loop-order results for GGy and G
in an arbitrary covariant gauge, eq. (All) of [8].

9 Conclusion L

In the limit when one of the gluon momenta vanishes, we have calculated the two-loop
contributions to the three-gluon vertex, in an arbitrary covariant gauge. In fact, we
needed to calculate two scalar functions, Ty (p?) and T3(p?), associated with different tensor
structures, cf. eq. (2.3). Two independent ways of calculating these scalar functions have
been realized. One of them is based on the straightforward calculation of all diagrams
contributing to the two-loop three-gluon vertex shown in Fig. 1.

Another way of-determining Ti(p*) and Ty(p?) is based on exploiting the differential
WST identity (3.2).~n this way, we obtain representations of the scalar functions Ty(p*)
and Ty(p?), egs. (3.7) and (3.8), in terms of the functions occurring in the ghost-gluon
vertex (Fig. 2), its derivative (3.3), the gluon polarization operator (Fig. 3) and the ghost
propagator (cf.-Fig. 4). We have calculated all these functions and confirmed the result
of the straightfcr\éard calculation.

The constructfat of the"d-rﬁferentlal WST identity is of a certain interest, since in
this limit it completely defined the three- gluon vertex, without leaving any undetected”
transverse contributions.

We have constructed renormalized expressions for all Green functions involved. Note
that in the zero-momentum limit the three-gluon vertex has no infrared (on-shell) singu-
larities, this is a “pure” case for performing the ultraviolet renormalization.

The obtained results can be considered as the first step in constructing expressions
for the QCD vertices in more complicated cases, including on-shell configurations and the
general off-shell case. In principle, the techniques for calculating the corresponding scalar
integrals are already available [29, 30].
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Appendix A: One-loop expressions for arbitrary =

At the zero-loop level, we have

V' =aV =1, V=0 V=0 JO=GO=1, (A.1)
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and the r.h.s. of eq. (3.2) restores the zero-loop result for the three-gluon vertex,

) Ef?@% (pv -p 0) = 29#1#2}7#3 T YuipaPro — GuopaPus - (AQ)

At the one-loop lexel, the expressions obtained in [6] give the following results in the
zero-momentum limit:- -

1 2 ? C 2
SN = G ) (=20 ), (A3)
1 2 : C 2 )
PN = s = 2+ (=3, (A1)
1 2 ? C 2
) = G s ) (= O =3) = (0= 4 (A5)
2 4(1 2 : C 2 2
) = G s ) Rli=6) = (Gn =18+ (=] (A6)
1 2 2 C 2
P =~ R0 - OR - O - 1) (AT)
aV(p?) = (4%2/2% K (p?) {8(n* — 61+ 10) — 26(3n* — 260 + 52) + €(n — 4)(n — 6)}.
(A.8)
In these equations,
/432:— 2 _ 2\(n—4)/2 _ 1 . 2\—¢
(p)— (n_g)(n_4)( p) _5(1_25)( p) . (Ag)
The results for two-point functions are (cf. e.g. in [25, 6]):
1,2 ? K(p? C 2
JO(p*) = (4%;7/2 (n(f i) {—?A [4(3n—2) + 4(n—1)(2n—T)¢ — (n—1)(n—4)¢?]
L +2T(n — 2)}, (A.10)
2 C
GO0 = G 1 ) 2+ (=3, (A11)
Taking into account that
(a2 = p2da) ] = af) = p2d) 4 O, (A.12)
dar\ o Y pdad A0
[(pzdz‘Faz—de—pz)J‘l'pazd—pQ] = pidy) +ay) —p dp? +p dp?
_ pzd(zl) n 6(21) _n= 4@(21) i n— 4J(1)(A.13)

2

we have checked that eq. (3.2) is satisfied at the one-loop level, for an arbitrary n. Fur-
thermore,

a2 (p) = P ) =) + GO0 = s S -0 (A

Therefore, eq. (3.5) (which follows from eq. (3.4)) is satisfied at the one-loop level.
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Appendix B: Renormalization factors

The expressions for the relevant two-loop-order renormalization factors have been pre-
sented in refs. [10, 11, 12] (cf. also in [26]). For completeness, we present the corresponding

expressions herel!

Zi=1+ LC?‘L 3'.--?15) gT] 'hZ{CAT é(g h ) _%] - chT
CAATHE R ¥ I T R o e
Zi=1- 2%@(1 )+ RCA(1— 8 [é (g - ig) + é (—g 4 %g)] L O, (B.2)

h 5 €\ 4 1
Zy=142 SR h2{ T~
3 +5[CA(3+2) 3 ]—I— Cy =

5) 2 5) 2
(g—gf) —%] — 0T

1/ 25
2 —_— —_—
+Ca 52< 12

N S [
ZS—”zCA(Tzf)”{CA

1(23+15
e\8 16

+ %f + iﬁ) + —&— é&z)]} +O(h7), (B.3)
b= de) (B39
h

1 5 3
HOAT (252 B 125)} + Ok, (BA)
where ¢ = (4—n)/2 and h = ¢g*/(47)?. One can check that eqs. (B.1)-(B.4) obey the WST
identity (8.7), so only three of them are independent. Using the results for unrenormalized
Green functions, we have performed an independent check on these Z factors'?.

The results for these renormalization factors (without ferml.omc. contributions, i.e.
for the pure Yang-Mills theory) were first presented in [10] (Feynm'an‘gauge) and [11]
(an arbitrary covariant gauge). The complete results in an arbitrary covariant gauge,
In [12],
the renormalization factors Z5 and Z3 were denoted as 7, .a,nd Zs. There was an 0bV1ou§
misprint in the last term of the expression for 73 where 2 T2 should read C2tN (in et
notation, 7% <+ Cp, Cy < Ca, tN < T). We note that .t-hls misprint Was-popled over
to the review [31] and the textbook [25]. In [25], in the erid of the first linaof eq. (C6)
for 23, the term o%Cp should read CoTrN; (ag is the renormalized gauge parameter,

including the fermionic contributions, were presented in [12] (cf. also in [26‘])

Ce <> C4). Then, in the beginning of the last line of eq. (C.5) for Zs, %CG should
read $CZ. Thepe are several misprififs in ef| (2 30b) of [31]. The term % (i) %
should read JZV (4)% (o is the renormahzed gauge parameter, n < Ny, 3 < T). In

the previous term, % should read NTZ). In the term involving__%, the “factor” ¢ with the

following bracket should be removed. In the one-loop-ordér_ipart, % should read <7,

1 As in section 8, the renormalized quantities &€ = 1 — a, ¢?, etc. are understood.
12Note that the two-loop results for Z factors in the MS scheme are of the same form as in the MS
scheme; the only difference is that ¢® in the definition of h should be understood as the renormalized

squared charge in the MS scheme.
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cf. eq. (2.30a). Finally, in eq. (2.31b) for 71, the one-loop-order contribution should be
multiplied by 1, cf. eq. (2.31a).

49
Using the 1/¢ term of the renormalization factor Zp (cf. eq. (8.2)), one can obtain the
corresponding anomalous dimension r via

[ Sp—

(e 9%) = 926%20%1] (0.?) . o3 (B.5)

We have checked that in the Feynman gauge £ = 0 (a = 1) the results for the anomalous
dimensions 71, v3 and 3 coincide (in the two-loop approximation) with those from [13].
The anomalous dimension 7, is related to the others via vy — v5 = 31 — 3 (this follows

from the WST identity (8.7) and the definition (B.5)). Moreover, since (cf. in [13])

B8(g*) = ¢* 231 (0. %) = s (0. 0*) — 29 (o ?)] . (B:6)

we obtain the same resubt-for the two-loop 3 furrction as those given in [9, 10, 49, 12743
namely

%5 () = [—%OA + %T] b [—%Cﬁ + ?CAT + 4CFT] +O (b} -1 (B

Higher terms of the 3 function are available in refs. [13, 14, 15].
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Figure 1: Two-loop three-gluon vertex diagrams.
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Figure 2: Two-loop ghost-gluon vertex diagrams.
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Figure 3: Two-loop gluon polarization operator diagrams.

Figure 4: Two-loop ghost self-energy diagrams.
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