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ABSTRACT

We address the question how a correspondence between the particle like excitations in
the one dimensional Hubbard model (i.e. “holons” and “spinons”) and the free fermionic
picture can be estabilished in the limit of vanishing interaction by studying the finite size
spectrum in the framework of the Bethe Ansatz. Special attention has to be paid to the
case of a vanishing magnetic field where the two bands of excitations in either description
are degenerate. The interaction lifts this degeneracy.
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The Hubbard model is one of the most studied models for interacting electrons on a one-dimensional
lattice. Following Lieb and Wu'sif1] Bethe Ansatz (BA) solution many exact results have been ob-
tained. These provide detailed understanding of the thermodynatnics [2], excitation spectrum [3]-[5],
finite size corrections [6, 7] and asymptotics of correlation functigns [8, 9] which are believed to show
the generic behaviour of systems of interacting electrons in one spatial dimension.

The Hamiltonian is given in terms of standard fermionic creation resp. annihilation opelféggomd
U, , of electrons with spimr at sitej and the corresponding occupation numbers = \If}vg\lfjvg
h

N
H= Z[ > (Whro Wi+ U U5 o) + dungng | + p(ngg +nyy) — 5 (g —ngp)| (1)
=1 Lo=1.1

whereu is the strength of the on-site Coulomb repulsipthe chemical potential andan additional
external magnetic field. In the following we consider the repulsive ease) with 2 > 0.

For vanishing coupling constant= 0 the model simply describes two independent generations of
free fermions. This fact allows, of course, to extract the physical properties of the system in a much
simpler way than through the BA. Nevertheless, there have been studies of the BA solution in the
u — 0 limit, mainly motivated by the desire to have a reliable test for perturbative schemes expanding
around the free fermionic limit. These studies have mainly concentrated endbpendence of the
ground state energy for the half-filled band, finding that the ground state energy can be expanded in
an asymptotic series imwhich is reproduced correctly by standard perturbation theoty [10]-[12].

In this letter we extend the study of the— 0 limit to include the behaviour of the low-lying exci-
tations. In particular, we address the question how a correspondence between the particle like excita-
tions of the interacting system (i.e. “holons” and “spinons”) as obtained from the BA and those present
in the free fermion spectrum can be established in this limit. It turns out that in a finite magnetic field
there is a one to one correspondence between the excitations in either description. In absence of a
magnetic field the single particle energiesofinteracting spint and spini electrons are identical.

This is reproduced by the BA solutions where the Fermi velocities of spin- and charge excitations are
degenerate in the limit — 0. As a consequendaoth pictures lead to a correct description of the
spectrum of (at least low-lying) excitations, charge an spin degrees of freedom can be assigned to the
two degenerate bands of excitations in an almost arbitrary way. For finite valudhisfdegeneracy

is lifted. We investigate how the difference between the two velocities develops as a function of the
interaction strength for zero magnetic field.

We recall that the density of charge and spin waves in the thermodynamic limit is given in terms of
an inhomogeneous integral equation
p=p"+Kxp 2
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wherep andp® are column vectors with entries

-8) (8

and K is a2 x 2 matrix whose elements are integral operators, namely

+Xo
0 cosk [ dNKi(sink —\)x
. -
K= i . 4)
+ko +Xo
A KO —sink)x  — [ dNKs(A — X)x
—ko o

The renormalized energies of the corresponding excitations read

e:e(o)+KT*e (5)
with ,
_ (k) ’ (0 _ (3 2cos k ' (6)
€s(M) h
The integral operator matrik  is the transpose dk, namely
+Xo
0 [ AN K;(sink — X)
~T —Xo
= - (7)
+ko +Xo
[ dk cosk'Ki(A —sink)x  — [ dNKy(A— XN)x
—ko —Xo
In these equations the kernéls and K, are given by
1 2u 1 4qu
Ki(z)= — ——— Kylz) = — ——— | 8
1(1’) om U2+I’2 ) 2(1’) om 4U2+I’2 ( )

For a comparison to the free fermionic description the finite size corrections of the BA spectrum as
calculated in [i7] are particularly useful. The energies and momenta of the low lying excitations are

given by
E—E, = %” EANT(Z‘l)TVZ_lAN +D'zvZ"D
+ - + - 1
+/UC(NC +Nc)+US(Ns +Ns )}4—0 N ) (9)
2
P-P = NW(ANTD+NC’L—NC_+N:’—N;)
+2Dckpy + 2(D. + Dy)kr . (10)

Here V' denotes the diagonal matriX = diag(v., vs) of the Fermi velocities of charge and spin
waves
€. (ko) &)

ve = ), S0 11
2o (ho) 272 (00) ()



The matrix .
ch ch cc k sc k
Zsc Zss Scs()\O) SSS()\O)
is given in terms of the dressed charge magrixhich is defined by the integral equation
~T
E=T1+K x¢ (13)

wherel is the2 x 2 unit matrix. The vectors

AN, D,
AN = <ANS>, D= <DS> (14)

and the positive integei¥* and N* characterize the excited state. Héx&/. = AN; + AN, and

AN, = AN, are related to the change in particle numbers with respect to their ground state values
thus determining charge and spin of the excitated state, respectively. D; andD, = D| — D;

are given by the number of particles moved from the left to right Fermi pointscat, = £mn, (n,

are the total densities of electrons with spin Their values are integers or half integers subject to the
conditionsD. = (AN, + AN;)/2 andD, = AN./2 modulol. The values of\ffg are the quantum

numbers of particle—hole excitations at the right, resp. left Fermi points.

For vanishingu the kernels:(8) become&functions and the solution of Eqgs. (2); (5),1(13) is trivial.
However, to determine the Fermi velocities;(11) and the ma#ifd2) these solutions have to be
taken at the boundarids and),. Forsinky, < )¢ the solutions are discontinuous at these points
and the limitu — 0 has to be performeaffter solving the integral equations.

To see whether this situation can arise we restrict ourselveg ta sin ky first. In this case the
discontinuities are moved away from the boundaries entering (11) and (12) and we find

L if 0 < k| < arcsin \g
pek) =y T . (15)
5= If arcsin Ao < ||
—— L~ if 0<|)\ <sink
p ()\) — 27 cos(arcsin \) | = | > S A (16)
0 if  sinky < ||

(Alternatively one can express the dengifyas a function of quasimomenta= arcsin A rather than
the rapidities\ themselves,: (16) simplifies t@ (k) = 6(ky — |k|)/(27).) From these equations we
obtain for the total densities of the charge and spin excitations corresponding to this state

+k i +A ;
ne= [ pukydi = Roaeindo o T yay = SGIA g0y
—Xo s

—ko T s



which allows for the identification of, and), in terms of the Fermi momenta through = kg
andarcsin Ay = kr . Thus we find that the conditioh, < sink, is satisfied forany~ > 0. The
case of a vanishing magnetic field has to treated separately.

The dressed energies are given by

2u — 4cosk if 0<|k| <arcsin)g
e(k) = . _ ' , (18)
p—5—2cosk if arcsin)g < |k
+h_2cosk if 0<|k|<k
Gk = MRk DO ISR (19)
h if ko < |kl

From Eq. {I1) we find, = 2sin(kr;) andv, = 2sin(kg,). Similarly the result for the dressed

[+1)
Z = . (20)
01

Now comparing the finite size corrections for the excited states (9) with this expression for the matrix

charge matrix gives

Z and the corresponding free fermion result the two are found to agree.

The case of a vanishing magnetic fiélé= 0 needs a special treatment. In this case we hgve oo
and the dressed charge matrix can be expressed in terms of a single quafdtity

¢ ( o ) -
satisfying the integral equation
£(z) =1+ _ K(z — 2)e(2)dz! 22)
with the kernel
K(z) = % I co;::w) cos(wz)duw (23)

andz = sink/u. For largez, = sin ko/u the quantityé(z,) entering {12) can be obtained using a
perturbative scheme based on the Wiener—Hopf method [13]. The result tol grgdeeads 8]

o) =vE(1-5—) (24)

2 20

In the limitu — 0 we find the following dressed charge matrix

z(ﬂ ’ ) 29
R Ne
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One might have expected that the resulf (20)Zdnolds even for a vanishing magnetic field as there

is no dependence dn This is indeed the case. “Holons” and “spinons” are certain combinations of
spin-| and spin4 electrons. For vanishing magnetic field these combinations become arbitrary since
spin-] and spini electrons have equal energies. The Fermi velocities are equaly, = 2sin kg,

and thus the matri¥” is proportional to the unit matrixyy’ = 28in<kp)((1)(1)) . Of physical relevance

are only the combinationsZ~')"V Z~! and ZV Z" which enter expression}(9) for the excited
states. For both choices @f the results coincide.

The degeneracy of the Fermi velocities of charge and spin wave exciations is lifted by the interaction.
Using (11) the Fermi velocities fdr = 0 can be expressed as

1 et

Z

"o [ e f(2)dz

20

_ 1 g(2)
21 f(Z()) ’

Heref(z) andg(z) are are the densify. and the derivative of the dressed enesggs a function of the

Ve Vg (26)

variablez given in terms of the following integral equations (remember that we have sin k < 1)

1 %0 ! ! !
8 = s T, K2
2uz 20 , N
g(z) = Nimy s + - K(z—2")g(Z)dz (27)

with the kernelK” given by Eq. {23). Again, the quantities necessary to compute the Fermi velocities
(28) for smallu, i.e. 2y &~ oo, can be obtained from these equations using the Wiener-Hopf method. A
complication is given by the explicit—-dependence of the driving terms. However, for small densities
(i.e.uzy = sin kg < 1) they can be expanded up to linear ordenin For f this results in Eq.'(22)

for the dressed charge(up to a factor ofl /27). In the equation foy the driving term is replaced by
2uz. For0 < u < sin(kg) < 1 we finally get the following result for the Fermi velocities

2u [zo 1 In(zo) + L In (gﬂ ,

Ve =
T T T
1 1 2 2

vy = 2u [zo — —1In(zp) + —In (—) — —] ) (28)
T T T T

The leading ternRuz, is simply the free fermion resufltsin k. The logarithmic correctionsc

ulnu are probably just a consequence of the expression of the velocities in tespsather than

the electron density,.. To prove this analytically the Wiener-Hopf scheme mentioned above has
to be performed to order,? which raises questions in its quality. However, numerical solution

of the integral equations (27) suggests the absence of logarithmic correctiop@inu). In Fig.

1 we present the Fermi velocities for a fixed valuesofky, = 0.1 which are computed from the
numerical solution of the integral equations;(27) in comparison with Egs. (28). Because of the various
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approximations which were necessary to derive Eds. (28) we expect the results only do be correct up
to the order ofu.

An interesting observation is that, in leading order, the gap between charge and spin wave excitations

is a linear function of the interaction
Ve — Vg = — . (29)
T

Fig. 2 shows the difference of the Fermi velocities as a function of the total density of particles for
various values ofi. As for Fig.:1 the data were computed from numerical solutions of the integral
equations. As long ag, i.e.sin kg, is not to small, we find exactly the behaviour as predicted by
Eq. (29). Forp — 0 at fixedu one has;y — 0 which allows to solve Eqgs: {27) by iteration.

In this letter we have extended previous studies of the ground state properties of the one dimensional
Hubbard model for small interactianto the low-lying excitations. Apart from providing the possi-

bility for a check of perturbative methods our results emphasize the importance of the “spinon-holon”
picture for strongly correlated electrons in particular in the case of a vanishing magnetic field.

This work has been supported in part by the Deutsche Forschungsgemeinschaft under Grant No.
Fr737/2-1.
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Figure 1: Fermi velocities fok = 0 andsin ky = 0.1 as a function of.. Solid lines correspond to
numerical solutions of the integral equations (27), dashed lines to the asymptotic expressions (28).
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Figure 2: Difference of Fermi velocities fér= 0 as a function of the total density computed from
numerical solutions of Egs: (27).



