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ABSTRACT

We address the question how a correspondence between the particle like excitations in

the one dimensional Hubbard model (i.e. “holons” and “spinons”) and the free fermionic

picture can be estabilished in the limit of vanishing interaction by studying the finite size

spectrum in the framework of the Bethe Ansatz. Special attention has to be paid to the

case of a vanishing magnetic field where the two bands of excitations in either description

are degenerate. The interaction lifts this degeneracy.
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The Hubbard model is one of the most studied models for interacting electrons on a one-dimensional

lattice. Following Lieb and Wu’s [1] Bethe Ansatz (BA) solution many exact results have been ob-

tained. These provide detailed understanding of the thermodynamics [2], excitation spectrum [3]–[5],

finite size corrections [6, 7] and asymptotics of correlation functions [8, 9] which are believed to show

the generic behaviour of systems of interacting electrons in one spatial dimension.

The Hamiltonian is given in terms of standard fermionic creation resp. annihilation operatorsΨ†j,σ and

Ψj,σ of electrons with spinσ at sitej and the corresponding occupation numbersnj,σ = Ψ†j,σΨj,σ

H =
N∑
j=1

[ ∑
σ=↑,↓

(
Ψ†j+1,σΨj,σ + Ψ†j,σΨj+1,σ

)
+ 4unj,↑nj,↓ + µ (nj,↑ + nj,↓)−

h

2
(nj,↑ − nj,↓)

]
(1)

whereu is the strength of the on-site Coulomb repulsion,µ the chemical potential andh an additional

external magnetic field. In the following we consider the repulsive caseu ≥ 0 with h ≥ 0 .

For vanishing coupling constantu = 0 the model simply describes two independent generations of

free fermions. This fact allows, of course, to extract the physical properties of the system in a much

simpler way than through the BA. Nevertheless, there have been studies of the BA solution in the

u→ 0 limit, mainly motivated by the desire to have a reliable test for perturbative schemes expanding

around the free fermionic limit. These studies have mainly concentrated on theu-dependence of the

ground state energy for the half-filled band, finding that the ground state energy can be expanded in

an asymptotic series inu which is reproduced correctly by standard perturbation theory [10]–[12].

In this letter we extend the study of theu → 0 limit to include the behaviour of the low-lying exci-

tations. In particular, we address the question how a correspondence between the particle like excita-

tions of the interacting system (i.e. “holons” and “spinons”) as obtained from the BA and those present

in the free fermion spectrum can be established in this limit. It turns out that in a finite magnetic field

there is a one to one correspondence between the excitations in either description. In absence of a

magnetic field the single particle energies ofnoninteracting spin-↑ and spin-↓ electrons are identical.

This is reproduced by the BA solutions where the Fermi velocities of spin- and charge excitations are

degenerate in the limitu → 0 . As a consequencebothpictures lead to a correct description of the

spectrum of (at least low-lying) excitations, charge an spin degrees of freedom can be assigned to the

two degenerate bands of excitations in an almost arbitrary way. For finite values ofu this degeneracy

is lifted. We investigate how the difference between the two velocities develops as a function of the

interaction strengthu for zero magnetic field.

We recall that the density of charge and spin waves in the thermodynamic limit is given in terms of

an inhomogeneous integral equation

ρ = ρ(0) + K̂ ∗ ρ (2)
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whereρ andρ(0) are column vectors with entries

ρ =

(
ρc(k)

ρs(λ)

)
, ρ(0) =

(
1

2π

0

)
(3)

andK̂ is a2× 2 matrix whose elements are integral operators, namely

K̂ =


0 cos k

+λ0∫
−λ0

dλ′K1(sin k − λ′) ∗

+k0∫
−k0

dk′K1(λ− sin k′)∗ −
+λ0∫
−λ0

dλ′K2(λ− λ′)∗

 . (4)

The renormalized energies of the corresponding excitations read

ε = ε(0) + K̂
T ∗ ε (5)

with

ε =

(
εc(k)

εs(λ)

)
, ε(0) =

(
µ− h

2
− 2 cos k

h

)
. (6)

The integral operator matrix̂K
T

is the transpose of̂K, namely

K̂
T

=


0

+λ0∫
−λ0

dλ′K1(sin k − λ′) ∗

+k0∫
−k0

dk′ cos k′K1(λ− sin k′)∗ −
+λ0∫
−λ0

dλ′K2(λ− λ′)∗

 . (7)

In these equations the kernelsK1 andK2 are given by

K1(x) =
1

2π

2u

u2 + x2
, K2(x) =

1

2π

4u

4u2 + x2
. (8)

For a comparison to the free fermionic description the finite size corrections of the BA spectrum as

calculated in [7] are particularly useful. The energies and momenta of the low lying excitations are

given by

E − E0 =
2π

N

[1
4

∆NT (Z−1)TV Z−1∆N +DTZV ZTD

+vc(N
+
c +N−c ) + vs(N

+
s +N−s )

]
+ o

(
1

N

)
, (9)

P − P0 =
2π

N
(∆NTD +N+

c −N−c +N+
s −N−s )

+2DckF,↑ + 2(Dc +Ds)kF,↓ . (10)

HereV denotes the diagonal matrixV = diag(vc, vs) of the Fermi velocities of charge and spin

waves

vc =
ε′c(k0)

2πρc(k0)
, vs =

ε′s(λ0)

2πρs(λ0)
. (11)
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The matrix

Z =

 Zcc Zcs

Zsc Zss

 =

 ξcc(k0) ξsc(k0)

ξcs(λ0) ξss(λ0)


T

(12)

is given in terms of the dressed charge matrixξ which is defined by the integral equation

ξ = I + K̂
T ∗ ξ (13)

whereI is the2× 2 unit matrix. The vectors

∆N =

(
∆Nc

∆Ns

)
, D =

(
Dc

Ds

)
(14)

and the positive integersN±c andN±s characterize the excited state. Here∆Nc = ∆N↑ + ∆N↓ and

∆Ns = ∆N↓ are related to the change in particle numbers with respect to their ground state values

thus determining charge and spin of the excitated state, respectively.Dc = D↑ andDs = D↓ −D↑
are given by the number of particles moved from the left to right Fermi points at±kF,σ = ±πnσ (nσ

are the total densities of electrons with spinσ). Their values are integers or half integers subject to the

conditionsDc ≡ (∆Nc + ∆Ns)/2 andDs ≡ ∆Nc/2 modulo1. The values ofN±c,s are the quantum

numbers of particle–hole excitations at the right, resp. left Fermi points.

For vanishingu the kernels (8) becomeδ-functions and the solution of Eqs. (2), (5), (13) is trivial.

However, to determine the Fermi velocities (11) and the matrixZ (12) these solutions have to be

taken at the boundariesk0 andλ0 . For sin k0 ≤ λ0 the solutions are discontinuous at these points

and the limitu→ 0 has to be performedaftersolving the integral equations.

To see whether this situation can arise we restrict ourselves toλ0 < sin k0 first. In this case the

discontinuities are moved away from the boundaries entering (11) and (12) and we find

ρc(k) =


1
π

if 0 ≤ |k| ≤ arcsinλ0

1
2π

if arcsinλ0 < |k|
, (15)

ρs(λ) =


1

2π cos(arcsinλ)
if 0 ≤ |λ| ≤ sin k0

0 if sin k0 < |λ|
. (16)

(Alternatively one can express the densityρs as a function of quasimomentak = arcsin λ rather than

the rapiditiesλ themselves, (16) simplifies toρs(k) = θ(k0 − |k|)/(2π).) From these equations we

obtain for the total densities of the charge and spin excitations corresponding to this state

nc =
∫ +k0

−k0

ρc(k) dk =
k0

π
+

arcsinλ0

π
, ns =

∫ +λ0

−λ0

ρs(λ) dλ =
arcsinλ0

π
(17)
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which allows for the identification ofk0 andλ0 in terms of the Fermi momenta throughk0 = kF,↑

andarcsin λ0 = kF,↓ . Thus we find that the conditionλ0 < sin k0 is satisfied foranyh > 0. The

case of a vanishing magnetic field has to treated separately.

The dressed energies are given by

εc(k) =

 2µ− 4 cos k if 0 ≤ |k| ≤ arcsinλ0

µ− h
2
− 2 cos k if arcsinλ0 < |k|

, (18)

εs(k) =

 µ+ h
2
− 2 cos k if 0 ≤ |k| ≤ k0

h if k0 < |k|
. (19)

From Eq. (11) we findvc = 2 sin(kF,↑) andvs = 2 sin(kF,↓) . Similarly the result for the dressed

charge matrix gives

Z =

 1 1

0 1

 . (20)

Now comparing the finite size corrections for the excited states (9) with this expression for the matrix

Z and the corresponding free fermion result the two are found to agree.

The case of a vanishing magnetic fieldh = 0 needs a special treatment. In this case we haveλ0 =∞
and the dressed charge matrix can be expressed in terms of a single quantitityξ [7]

ξ =

 ξ(z) 0

1
2
ξ(z) 1√

2

 (21)

satisfying the integral equation

ξ(z) = 1 +
∫ z0

−z0
K(z − z′)ξ(z′)dz′ (22)

with the kernel

K(x) =
1

2π

∫ ∞
0

e−ω

cosh(ω)
cos(ωx)dω (23)

andz = sin k/u . For largez0 = sin k0/u the quantityξ(z0) entering (12) can be obtained using a

perturbative scheme based on the Wiener–Hopf method [13]. The result to order1/z0 reads [8]

ξ(z0) =
√

2
(

1− 1

2πz0

)
. (24)

In the limit u→ 0 we find the following dressed charge matrix

Z =


√

2 0

1
2

√
2 1

2

√
2

 . (25)
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One might have expected that the result (20) forZ holds even for a vanishing magnetic field as there

is no dependence onh. This is indeed the case. “Holons” and “spinons” are certain combinations of

spin-↑ and spin-↓ electrons. For vanishing magnetic field these combinations become arbitrary since

spin-↑ and spin-↓ electrons have equal energies. The Fermi velocities are equal,vc = vs = 2 sin kF ,

and thus the matrixV is proportional to the unit matrix,V = 2 sin(kF )
(

1 0
0 1

)
. Of physical relevance

are only the combinations(Z−1)TV Z−1 andZV ZT which enter expression (9) for the excited

states. For both choices ofZ the results coincide.

The degeneracy of the Fermi velocities of charge and spin wave exciations is lifted by the interaction.

Using (11) the Fermi velocities forh = 0 can be expressed as

vc =
1

2π

g(z0)

f(z0)
, vs =

1

2π

∫ z0
−z0 e

π
2
zg(z)dz∫ z0

−z0 e
π
2
zf(z)dz

. (26)

Heref(z) andg(z) are are the densityρc and the derivative of the dressed energyε′c as a function of the

variablez given in terms of the following integral equations (remember that we haveuz = sin k < 1)

f(z) =
1

2π
√

1− u2z2
+
∫ z0

−z0
K(z − z′)f(z′)dz′ ,

g(z) =
2uz√

1− u2z2
+
∫ z0

−z0
K(z − z′)g(z′)dz′ (27)

with the kernelK given by Eq. (23). Again, the quantities necessary to compute the Fermi velocities

(26) for smallu, i.e.z0 ≈∞ , can be obtained from these equations using the Wiener-Hopf method. A

complication is given by the explicitu–dependence of the driving terms. However, for small densities

(i.e. uz0 = sin k0 � 1) they can be expanded up to linear order inuz. For f this results in Eq. (22)

for the dressed chargeξ (up to a factor of1/2π). In the equation forg the driving term is replaced by

2uz. For0 < u� sin(k0) < 1 we finally get the following result for the Fermi velocities

vc = 2u
[
z0 −

1

π
ln(z0) +

1

π
ln
(

2

π

)]
,

vs = 2u
[
z0 −

1

π
ln(z0) +

1

π
ln
(

2

π

)
− 2

π

]
. (28)

The leading term2uz0 is simply the free fermion result2 sin k0 . The logarithmic corrections∝
u lnu are probably just a consequence of the expression of the velocities in terms ofz0 rather than

the electron densitync . To prove this analytically the Wiener-Hopf scheme mentioned above has

to be performed to orderz−2
0 which raises questions in its quality. However, numerical solution

of the integral equations (27) suggests the absence of logarithmic corrections invα(nc, u). In Fig.

1 we present the Fermi velocities for a fixed value ofsin k0 = 0.1 which are computed from the

numerical solution of the integral equations (27) in comparison with Eqs. (28). Because of the various
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approximations which were necessary to derive Eqs. (28) we expect the results only do be correct up

to the order ofu.

An interesting observation is that, in leading order, the gap between charge and spin wave excitations

is a linear function of the interactionu

vc − vs =
4u

π
. (29)

Fig. 2 shows the difference of the Fermi velocities as a function of the total density of particles for

various values ofu. As for Fig. 1 the data were computed from numerical solutions of the integral

equations. As long asρ, i.e. sin k0 , is not to small, we find exactly the behaviour as predicted by

Eq. (29). Forρ→ 0 at fixedu one hasz0 → 0 which allows to solve Eqs. (27) by iteration.

In this letter we have extended previous studies of the ground state properties of the one dimensional

Hubbard model for small interactionu to the low-lying excitations. Apart from providing the possi-

bility for a check of perturbative methods our results emphasize the importance of the “spinon-holon”

picture for strongly correlated electrons in particular in the case of a vanishing magnetic field.

This work has been supported in part by the Deutsche Forschungsgemeinschaft under Grant No.

Fr 737/2–1.
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Figure 1: Fermi velocities forh = 0 andsin k0 = 0.1 as a function ofu. Solid lines correspond to

numerical solutions of the integral equations (27), dashed lines to the asymptotic expressions (28).
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Figure 2: Difference of Fermi velocities forh = 0 as a function of the total density computed from

numerical solutions of Eqs. (27).
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