

Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaften

Lehrstuhl für Angewandte Geologie

02-WT9546/2

Konstruktion und Optimierung passiver geochemischer Barrieren zur in-situ-Sanierung und Sicherung CKW-kontaminierter Aquifere

Konstruktion und Optimierung passiver geochemischer Barrieren zur in-situ-Sanierung und Sicherung CKWkontaminierter Aquifere

Mai 2000

Projektleiter:

Prof. Dr. Andreas Dahmke

Projektbearbeiter:

Dr. Markus Ebert Dipl.-Geol. Ralf Köber Dr. Dirk Schäfer Dr. Oliver Schlicker Dipl.-Geoökol. Wolfgang Wüst

Projektförderung:

Bundesministerium für Bildung und Forschung

Christian-Albrechts-Universität zu Kiel Institut für Geowissenschaften Lehrstuhl für Angewandte Geologie

> Ohlshausenstr. 40 24118 Kiel

Inhaltsverzeichnis

INHAL	SVERZEICHNIS	1
Abbili	DUNSVERZEICHNIS	4
TABEL	LENVERZEICHNIS	11
1.	EINLEITUNG	13
<u>2.</u>	REAKTIONSWÄNDE	17
2.1	STAND DER ENTWICKLUNG BEI REAKTIONSWÄNDEN	17
2.2	ALLGEMEINE METHODIK	20
2.2.1	BATCHVERSUCHE	20
2.2.2	SÄULENVERSUCHE	21
2.3	EINFÜHRUNG IN DIE THERMODYNAMIK, KINETIK UND DIE REAKTIONSMECHANISMEN DEF	R
	REDOX-PROZESSE IN FE ⁰ -REAKTIONSWÄNDEN	24
2.3.1	THERMODYNAMISCHE GRUNDLAGEN VON REDOXREAKTIONEN	24
2.3.2	DIE KINETIK DER REDUKTIVEN DECHLORIERUNG VON CKW IM H_2O -Fe ⁰ -X-System	28
2.3.2.	1 Reaktionsordnungen	28
2.3.2.	2 Kombination einer Abbaukinetik nullter und erster Ordnung	30
2.3.3	REAKTIONSMECHANISMEN	36
2.3.3.	1 Abiotische reduktive Dehalogenierung organischer Verbindungen	36
2.3.3.	2 Reduktion und Fixierung anorganischer Spezies	40
2.3.4	TEILPROZESSE UND EINFLUßFAKTOREN AUF HETEROGENE ELEKTROCHEMISCHE	
	REAKTIONEN AN EISEN	42
2.3.4.	1 Transportlimitierung	42
2.3.4.	2 Sorption und Bedeckungsgrad	47
2.3.4.	3 Durchtrittsreaktion	48
2.3.4.	4 Wirkung von Fremdelementen und Katalysatoren	50
2.3.4.	5 Bildung und Eigenschaften von Deckschichten in schwach mineralisierten	
	Lösungen	52
2.4	EINFLUBFAKTOREN AUF DIE REDUKTION VON SCHADSTOFFEN	55
2.4.1	Metallspezifische Faktoren	55
2.4.2	Physikalische Faktoren	61
2.4.2.	1 Einfluß der Spezifischen Oberfläche	61
2.4.2.	2 Temperatur	63
2.4.2.	3 Durchflußgeschwindigkeit	64
2.4.2.	4 Konzentration der Kontaminanten	67
2.4.3	HYDROCHEMISCHE FAKTOREN	69
2.4.3.	1 pH-Wert	69
2.4.3.	2 Sauerstoff-Konzentration	71

2.4.3.3	Karbonat-Konzentration	73
2.4.3.4	Sulfat-Konzentration	78
2.4.3.5	Nitrat-Konzentration	86
2.4.3.6	Cr(VI)-Konzentration	90
2.4.3.7	Phosphat-Konzentration	94
2.4.3.8	Chlorid-Konzentration	98
2.4.3.9	Silicium-Konzentration	100
2.4.2.10	Natürliche gelöste organische Substanz	104
2.4.4	KONKURRIERENDE REDOXREAKTIONEN	107
2.4.4.1	Mischkontamination TCE/cis-DCE	107
2.4.4.2	Mischkontamination CrO ₄ ²⁻ /NO ₃ ⁻	112
2.4.5	EINFLUß VON MIKROORGANISMEN	116
2.5 EI	NFLUßFAKTOREN AUF DIE HYDRAULISCHE PERMEABILITÄT	121
2.5.1	GASENTWICKLUNG	121
2.5.2	PRÄZIPITATBILDUNGEN	128
<u>3. K</u>	ONSEQUENZEN FÜR DIE SANIERUNGSPRAXSIS	130
3.1 Тн	ERMODYNAMISCHE MODELLRECHNUNGEN ZUR PROGNOSE DER	
G	RUNDWASSERBESCHAFFENHEIT IM ABSTROM	130
3.2 Di	MENSIONIERUNG EINER REAKTIONSWAND	137
3.2.1	MATHEMATISCH - KONZEPTIONELLES MODELL	137
3.2.1.1	Anforderungen an ein numerisches Modell zur Dimensionierung reaktiver	
	Wände	137
3.2.1.2	Bisherige Modellansätze	138
3.2.1.3	Neuer Modellansatz in TBC	139
3.2.1.4	Numerische Modellierung von Transport und Reaktionen	141
3.3 BE	ISPIELE FÜR FELDANWENDUNGEN	145
3.3.1	PROJEKT RHEINE	145
3.3.1.1	Laborversuche	146
3.3.1.2	Felduntersuchungen	151
3.3.2	PROJEKT BACKNANG	172
3.3.2.1	Abbau der chlorierten Ethene	173
3.3.2.2	Karbonat- und Sulfatkonzentrationen	175
3.3.2.3	Beurteilung der Langzeitreaktivität	177
3.4 AN	ISÄTZE ZUR OPTIMIERUNG DER REAKTIVITÄT VON FE⁰-REAKTIONSWÄNDEN	179
3.4.1	MATERIALAUSWAHL UND VERSUCHSDURCHFÜHRUNG	181
3.4.1.1	Auswahl der Trägermetalle und Schadstoffe	181
3.4.1.2	Beschichtung mit Palladium	181
3.4.1.3	Batchversuche	183
3.4.1.4	Abbau von CKW an palladisiertem Eisen im Säulenversuch	185
3.4.2	CKW-ABBAU IN BATCHVERSUCHEN	185
3.4.2.1	Abbau von 1,4-Dichlorbenzol durch Eisen und Aluminium	185

2

3.4.2.2	Abbau von 1,4-Dichlorbenzol durch palladisiertes Eisen und Aluminium	186
3.4.2.3	Abbau von Trichlorethen durch palladisiertes Eisen und Alumiunium	189
3.4.2.4	Zusammenfassung der Ergebnisse der Batchversuche	191
3.4.3	ABBAU VON CKW AN PALLADISIERTEM EISEN IM SÄULENVERSUCH	193
3.4.3.1	Abbau von 1,4-Dichlorbenzol	193
3.4.3.2	Abbau von Trichlorethen	193
3.4.3.3	TCE-Abbau unter variierenden Bedingungen	194
3.4.4	PALLADIUMELUTION	196
3.4.5	DIMENSIONIERUNGSVERGLEICH: FE BZW. FEPD FÜR EINEN TCE-SCHADENSFALL	196
3.4.6	EINSATZMÖGLICHKEITEN VON BIMETALLEN IN REAKTIONSWÄNDEN	198
<u>4. Z</u>	ZUSAMMENFASSUNG UND FAZIT	<u> 199</u>
4.1 Z	USAMMENFASSUNG	199
4.2 F	AZIT	205
<u>5. l</u>	LITERATURVERZEICHNIS	206
4.1 Z 4.2 F <u>5. L</u>	USAMMENFASSUNG AZIT LITERATURVERZEICHNIS	19 20 <u>2</u> (

<u>6.</u>	ANHANG	221
Алн	ANG A - PUBLIKATIONSVERZEICHNIS	221
Алн	ANG B - VORTRAGSVERZEICHNIS	224
ANH	ANG C - LISTE DER DURCHGEFÜHRTEN UNTERSUCHUNGEN	230

Abbildungsverzeichnis

Abb. 1: Schema zum Ablauf der Batchversuche	20
Abb. 2: Schematische Darstellung einer Versuchssäule	22
Abb. 3: E_{H} -pH-Diagramm des Systems (Fe ⁰ /TCE/H ₂ O) bei Standardbedingungen (25	
°C, 1bar) mit [Fe ²⁺] = [Cl] = 10 ⁻³ M	24
Abb. 4: Reduktionspotentiale ausgewählter CKW [6] und anorganischer	
Grundwasserinhaltstoffe (verändert nach DAHMKE et al., 1996) sowie elementarer	
Metalle (verändert nach KAESCHE, 1990) für $a_{H}^{+} = 10^{-7}$ M, $a_{Cl}^{-} = 10^{-3}$ M, $a_{Me}^{z+} = 10^{-6}$	
Μ	27
Abb. 5: Abhängigkeit der Geschwindigkeitskonstanten pseudo-erster Ordnung von der	
eingesetzten Eisenoberflächenkonzentration.	29
Abb. 6: Normierte Abbaukonstanten pseudo-erster Ordnung von chlorierten Aliphaten	
an verschiedenen Eisensorten (aus TRATNYEK et al., 1997, $k_{SA} \equiv k_{1 \text{ obso}}$)	29
Abb. 7: Gemessene TCE-Konzentrationen (Marker) und Fits des kombinierten Modells	
(Linien) und des Modells pseudo-erster Ordnung (unterbrochene Linien) für den	
Abbau von TCE in 2 Schüttelversuchen (I,II)	34
Abb. 8: Gemessene TCE-Konzentrationen (Marker) und Anpassungen des	
kombinierten Modells (Linien) und des Modells pseudo-nullter Ordnung	
(unterbrochene Linien) für den Abbau von TCE in 2 Schüttelversuchen (I,II)	35
Abb. 9: Schematische Darstellung der Reaktionsmechanismen der Dechlorierung	
einfach ungesättigter chlorierter Kohlenwasserstoffe (verändert nach RIFI &	
Covitz, 1974)	36
Abb. 10: Muster der chlorierten Zwischenprodukte und der vollständig dechlorierten	
Endprodukte (Zusammenfassung der Literaturbefunde, s. Text)	37
Abb. 11: Gemessene Konzentrationen (Marker) und Modellanpassung (Linien) der	
Muttersubstanz TCE und der chlorierten Zwischenprodukte cis-DCE und 1,1-DCE	39
Abb. 12 : Einflußfaktoren und Teilprozesse heterogener Phasengrenzreaktionen	
(INSTITUT FÜR KORROSIONSSCHUTZ DRESDEN, 1996)	43
Abb. 13: Erwartete diffusive Schichtdicken von TCE und H * in Abhängigkeit von der	
Fließgeschwindigkeit für unterschiedliche charakteristische Längen	45
Abb. 14: Diffusive Grenzstromdichte für eine gelöste Konzentration von 10 ⁻⁴ Mol für H ⁺	
bzw. TCE in Abhängigkeit der Fließgeschwindigkeit für verschiedene	
Korndurchmesser (nach [22])	46
Abb. 15: Strom-Spannungsdiagramm zur Wirkung zweier konkurrierender	
Oxidationsmittel an einer Eisenelektrode (Daten aus SCHERER et al., 1997)	50
Abb. 16: Modellvorstellungen zur reduktiven Dechlorierung in Fe ⁰ -permeablen Wänden	
(verändert nach SCHERER et al., in press)	54
Abb. 17: Ratenkoeffizienten 1. Ordnung der reduktiven Dechlorierung von TCE	
(normiert auf die Oberflächenkonzentration) im Batchversuch mit verschiedenen	
Eisensorten.	56

Abb. 18: Abbaukonstanten für die Quantifizierung des TCE-Abbaus als erste bzw. als	
nullte Ordnung mit verschiedenen Eisensorten (a Hartgußstrahlmittel, b Granulat,	
c Schwammeisen)	58
Abb. 19: Abbaukonstanten für die Quantifizierung des TCE-Abbaus als erste bzw. als	
nullte Ordnung mit verschiedenen Eisensorten (a Hartgußstrahlmittel, b Granulat,	
c Schwammeisen) nach Normierung auf die Eisenoberflächenkonzentration	59
Abb. 20: Geschwindigkeitskonstante pseudo-erster Ordnung für den TCE-Abbau in	
Abhängigkeit der Konzentration der Eisenoberfläche zur TCE-Konzentration	
(S): SIVAVEC & HORNEY (1995), (G): GOTPAGAR et al. (1997)	62
Abb. 21: Abbaukinetik von TCE in Abhängigkeit der Fließgeschwindigkeit	64
Abb. 22: Abbau von PCE an Graugußgranulat für Abstandsgeschwindigkeiten von 1.5	
() und 0.5 cm/h () bei Verwendung eines kontaminierten Grundwassers	65
Abb. 23: Abbau von PCE an Schwammeisen für Abstandsgeschwindigkeiten von 1.5	
() und 0.5 cm/h () bei Verwendung eines kontaminierten Grundwassers	66
Abb. 24: Abbaukinetik von TCE in Abhängigkeit der Zustromkonzentration	68
Abb. 25: Instationäres Verhalten eines Fe ⁰ -Reaktors bei Variation der TCE-	
Zustromkonzentration	68
Abb. 26: Beziehung zwischen pH-Wert und der Pseudo-1.Ordnung-Ratenkonstanten	
bei der Dechlorierung von CT durch Fe ⁰ (aus MATHESON & TRATNYEK, 1994)	69
Abb. 27: Zeitliche Entwicklung der Ratenkoeffizienten 1. Ordnung der reduktiven	
Dechlorierung von TCE und des intermediär freigesetzten 1,2 DCE (cis) im	
Referenzsystem bei einer O ₂ -Zulaufkonzentration von ca. 9.5 mg/l	72
Abb. 28: Ratenkoeffizienten 1. Ordnung der reduktiven Dechlorierung von TCE nach	
Zugabe der 2 mM Ca(HCO ₃) ₂ -Lösung (TCE-Zulaufkonzentration ca. 20 mg/l)	74
Abb. 29: Entwicklung der Ratenkoeffizienten 1. Ordnung der reduktiven Dechlorierung	
von TCE nach Zugabe der 2 mM und 5 mM Ca $(HCO_3)_2$ -Lösung (TCE-	
Zulaufkonzentration ca. 20 mg/l).	75
Abb. 30: Typische Konzentrationsverläufe von Fe _{ges} , Mn_{ges} , Ca ²⁺ und TIC (total	
inorganic carbon) im Fe ⁰ -Säulenversuch mit TCE (0.15 mmol/l) und Ca(HCO ₃) ₂ (2	
mmol/l)	75
Abb. 31: Entwicklung der Freisetzung von Fe^{2+} aus der Reduktion von H ₂ O (berechnet	
aus den Stöchiometrien der beteiligten Redox- und Präzipitationsreaktionen)	76
Abb. 32: Zeitliche Entwicklung der Ratenkoeffizienten 1. Ordnung der reduktiven De-	
chlorierung von TCE bei verschiedenen Sulfatkonzentrationen [mg/l] und einer	
TCE-Zulaufkonzentration von ca. 17 mg/l (V/V ₀ : Anzahl der durchgesetzten	
Porenvolumen)	80
Abb. 33: Spezifische elektrische Leitfähigkeit [µS/cm], Sulfatgehalt [mg/l] und	
Summenkurve des Sulfataustrages [mg] am Ablauf der Fe ⁰ -Versuchssäule nach	
einem ausgetauschten Porenvolumen mit sulfatfreier TCE-Lösung (ca. 17 mg/l)	81
Abb. 34: Typische Verläufe der Sulfat- und Sulfidkonzentrationen im Fe ⁰ -	
Säulenversuch (beimpft mit sulfatreduzierenden Mikroorganismen) nach Zugabe	
von 1300 mg/l SO ₄ ²⁻ und ca. 17 mg/l TCE	82

Ausnahme des Systems mit 1000 mg/l Chlorid (35 mg/l TCE)	betrug die TCE-
Zulaufkonzentration ca. 20 mg/l. (V/V ₀ : Anzahl der durchgeset	zten Porenvolumen)99
Abb. 49: Vergleich des TCE-Abbaus ohne Zugabe von Silicium mi	t dem
Abbauverhalten bei Zugabe von 5 und 12 mg/l Silicium	
Abb. 50: Verlauf der Si-Konzentrationen Im Fe ⁰ -Säulenexperiment	bei verschiedenen
Zulaufkonzentrationen	
Abb. 51: Verlauf der Si-Konzentrationen im Fe ⁰ -Säulenexperiment	mit kontaminiertem
Grundwasser	
Abb. 52: Entwicklung des Abbaus von TCE im Referenzzustand un	nd bei einer Zugabe
von 1 bzw. 10 mg/l Huminsäure	
Abb. 53: Verlauf der Huminsäurekonzentration nach einer Zugabe	von ca. 10 mg/l
uminsäure	
Abb. 54: Vergleich der Abbaukinetik der Muttersubstanz TCE und	des
Tochterproduktes 1.1-DCE zwischen Referenzversuch (TCE)	und dem
Konkurrenzexperiment (TCE(K):cis-DCE(K) = 1:1)	
Abb. 55: Vergleich der Abbaukinetik der Muttersubstanz cis-DCE	und des
Tochterproduktes VC zwischen Referenzversuch (cis-DCE) u	nd dem
Konkurrenzexperiment (TCE(K):cis-DCE(K) = 1:1)	
Abb. 56: Vergleich der mittleren Verweilzeiten im Fe ⁰ -Reaktor zum	Erreichen einer
Abstromkonzentration von 10 µg/L (Einzelsubstanz) (nach Gle	eichung [15] für die
Parameter aus den Säulenversuchen mit einer Substanz (S)	und einem 1:1-
Gemisch am Zulauf (1:1))	
Abb. 57: Entwicklung der NO $_{2}^{-}$ -Reduktion im Fe ⁰ -Säulenexperimer	nt mit zunehmender
Versuchsdauer (Passivierungsgeschwindigkeit: 2.06 cm/d)	
Abb. 58: Entwicklung der CrO_4^{2-} -Reduktion im Fe ⁰ -Säulenexperime	ent mit zunehmender
Versuchsdauer (Passivierungsgeschwindigkeit: 0.52 cm/d)	113
Abb. 59: Migration der Konzentrationsfronten für Nitrat (12.5 mg/l)	und Chromat (80
mg/l) im Fe ⁰ -Säulenexperiment mit zunehmender Versuchslau	ıfzeit 113
Abb 60: Beobachtete Migrationsraten für NO_2^{-1} und CrO_2^{-2} -Frontei	n im Fe ⁰ -
Säulenexperiment bezogen auf die eingegebene	
Elektronenäguivalentkonzentration. Die eingetragene Gerade	prognostiziert die
Migrationsrate aufgrund des beschriebenen Konzeptmodells	114
Abb. 61: Zusammenhang zwischen TCE-Abbauraten erster Ordnu	na (k1 (TCE)) und
der einer nullten Ordnung folgenden mikrobiellen Sulfatredukt	$(k0 (SO_4^2))$ 118
Abb. 62 ⁻ Verlauf der Ammoniumkonzentrationen eines Säulenvers	uchs mit CKW-
kontaminiertem Grundwasser, bei Nitratkonzentrationen von (0.65 bis 0.80 mmol/l
des Ausgangswassers	119
Abb 63: Entwicklung der Ammoniumkonzentration nach einer Flie	Rstrecke von 47 cm
im Säulenversuch mit CKW-kontaminiertem Grundwasser, be	i
Nitratkonzentrationen von 0.65 bis 0.80 mmol/l des Ausgangs	wassers 119
Abb 64: Abnahme des k _e Wertes innerhalb der ersten 20 cm einer	mit Fisen (GH-R 1-
1.6 mm) gefüllten Versuchssäule (Länge: 1m. d. 10 cm. Filter	neschwindigkeit 2.5
m/d)	1200 11 10 10 10 10 10 10 10 10 10 10 10 1
тт/чj	

Abb. 65: Berechnete Sättigungszustände von Mineralphasen für verschiedene Wässer	
nach Gleich-gewichtseinstellung zu Fe ⁰	. 132
Abb. 66: Änderung des pH-Wertes (gemessen, modelliert) verschiedener	
Versuchslösungen nach Passage durch einen Fe ⁰ -Reaktor	. 132
Abb. 67: Vergleich zwischen den am Ablauf der Fe ⁰ -Reaktoren gemessenen und den	
modellierten (nach Gleichgewichtseinstellung zu Fe ⁰ /Magnetit bzw. Fe ⁰ /Vivianit)	
Fe _(ges) -Konzentrationen.	.133
Abb. 68: Vergleich zwischen den am Ablauf der Fe ⁰ -Reaktoren (Betrieb mit	
demineralisiertem H ₂ O, bzw. 100 mg/l PO ₄ ³⁻) gemessenen und den modellierten	
(nach Gleichgewichtseinstellung, Fe ⁰ /Magnetit bzw. Fe ⁰ /Vivianit) pH-Werten in	
Abhängigkeit der TCE- Zulaufkonzentration.	134
Abb. 69: Abhängigkeit der Fe _(ges) -Konzentration am Ablauf der Fe ⁰ -Reaktoren (Betrieb	
mit de-mineralisiertem H_2O) von der Zulaufkonzentration von TCE. Die	
modellierten Ferges-Konzentrationen entsprechen dem Gleichgewichtszustand zu	
Fe ⁰ /Magnetit	. 134
Abb. 70: Änderung der chemischen Zusammensetzung (gemessen, modelliert) eines	
Grund-wassers nach Passage durch einen Fe ⁰ -Reaktor. Für die	
Modellberechnung wurde das Grundwasser mit Fe ⁰ und zusätzlich mit den Phasen	
Magnetit, Siderit, Calcit, FeS und Rhodochrosit ins Gleichgewicht gesetzt	. 135
Abb. 71: Konzentrationen von TCE. DCE und VC entlang der Säulenachse bei Zugabe	
von 360 µmol/l DCE (Versuch a))	
Abb. 72: Konzentrationen von TCE. DCE und VC entlang der Säulenachse bei Zugabe	
von 300 µmol/l TCE (Versuch b))	142
Abb. 73: Konzentrationen von TCE. DCE und VC entlang der Säulenachse bei Zugabe	
von 300 µmol/l TCE und 30 µmol/l DCE (Versuch c))	
Abb. 74: Konzentrationen von TCE. DCE und VC entlang der Säulenachse bei Zugabe	
von 300 µmol/l TCE und 280 µmol/l DCE (Versuch d))	143
Abb. 75: A) LCKW-Konzentrationsprofile nach 2 ausgetauschten Porenvolumen.	
aufgetragen ist die Konzentration gegen die Aufenthaltszeit in der Säule. B)	
Abbaukinetik 1. Ordnung für PCE und TCE am Beginn der Säulenversuches	147
Abb. 76: A) LCKW-Konzentrationsprofile nach 40 ausgetauschten Porenvolumen,	
aufgetragen ist die Konzentration gegen die Aufenthaltszeit in der Säule. B) Kinetik	
1. Ordnung im hinteren Abschnitt des Konzentrationsprofiles und C) Kinetik 0.	
Ordnung im vorderen Abschnit der Fließstrecke	
Abb. 77: pH-Werte und die Konzentration von gelöstem anorganischen Kohlenstoff (IC)	
entlang der Fließstrecke zu verschiedenen Versuchsstadien. Die Front des pH-	
Wertes wandert in Richtung des Durchflusses aufgrund der Inhibierung der	
Eisenoberflächen, mit dem pH-Anstieg kommt es zur Fällung von Karbonaten und	
somit zur weiteren Passivierung der reaktiven Oberfläche.	
Abb. 78: Gasentwicklung in verschiedenen Versuchsstadien	
Abb. 79: Ermittelte k _r -Werte	151
Abb. 80: Lageskizze der betrachteten Pegel im Umfeld der Reaktionswand in	
Rheine/Westfalen	. 153

Abb. 81: PCE-Konzentration in den Pegeln PS1 bis PS3 über den Zeitraum Juni 1998	
bis Mai 1999	157
Abb. 82: TCE-Konzentration in den Pegeln PS1 bis PS3 über den Zeitraum Juni 1998	
bis Mai 1999	158
Abb. 83: cis-1,2-DCE-Konzentration in den Pegeln PS1 bis PS3 über den Zeitraum	159
Abb. 94: VC Kenzentretien in den Degeln DS1 bie DS2 über den Zeitreum Juni 1000	150
Abb. 84: VC-Konzentration in den Pegein PST bis PS3 über den Zeitraum Juni 1998	450
	159
Abb. 85: Stickstoffsystem, Verhaltnis und Differenz zwischen Ammonium und Nitrat in	
Pegel PS2 und PS1 (Wand und Anstrom) sowie der potentielle H ₂ -Bedarf bei	
Annahme einer mikrobiellen Nitratreduktion zu N_2 und stationären Bedingungen	
(Vergl. der Wasseranalysen der selben Feldcampgne).	162
Abb. 86: Verhältnis und Differenz zwischen Sulfat in Pegel PS2 und PS1 (Wand und	
Anstrom) sowie der potentielle H_2 -Bedarf bei Annahme einer mikrobiellen	
Sulfatreduktion und stationärer Bedingungen	163
Abb. 87: PCE-Konzentration in den Pegeln PG1 bis PG3 über den Zeitraum Juni 1998	
bis Mai 1999	166
Abb. 88: TCE-Konzentration in den Pegeln PG1 bis PG3 über den Zeitraum Juni 1998	
bis Mai 1999	168
Abb. 89: cis-1,2-DCE-Konzentration in den Pegeln PG1 bis PG3 über den Zeitraum	
Juni 1998 bis Mai 1999	168
Abb. 90: Schematische Anordnung der Grundwassersanierungseinrichtung. Versuchs-	
Fe ⁰ -Säulen-Reaktor (1a) mit einem Längsschnitt und einer Aufsicht der	
Probenahmestellen (1b). (2) Sanierungs-Fe ⁰ -Reaktor. (3) Aktivkohle-Reaktor	172
Abb. 91: Auf die Zulaufkonzentrationen normierter initialer Abbau der chlorierten	
Ethene, der für TCE und VC einer Kinetik erster Ordnung und für PCE, cis-DCE	
und 1.1-DCE einer Kinetik nullter Ordnung folgt.	173
Abb. 92. Verlauf der Ratenkoeffizienten erster Ordnung für TCE und VC	174
Abb. 93: Verlauf der Ratenkoeffizienten nullter Ordnung für PCE, cis-DCE und 1 1-	
	174
Abb. 94: Verlagerung der Karbonatoräzinitation in Abhängigkeit der Versuchsdauer	
(ausgedrückt durch Anzahl ausgetauschter Porenvolumen (P\/))	175
Abb. 05: Vorlagerung der Celeiterözipitetion in Abhöngigkeit der Versusbadeuer	175
Abb. 95. Verlagerung der Calciprazipitation in Abhängigkeit der Versuchsdauer	170
(ausgedruckt durch Anzahl ausgelauschler Porenvolumen (PV))	170
Abb. 96: Charkteristische Sulfatkonzentrationsprofile, welche den einsetzenden	
Ruckgang der Sulfatkonzentration nach 70 durchgesetzten PV anzeigen.	176
Abb. 97: Schematische Darstellung der Beschichtung der Trägermetalle Eisen (Sorte	
a) und Aluminium mit Palladium	182
Abb. 98: Abbau von 1,4-Dichlorbenzol an Eisen (a)	185
Abb. 99: Abbau von von 1,4-Dichlorbenzol an Aluminium	186
Abb. 100: Abbau von 1,4-Dichlorbenzol an Eisen unterschiedlicher Palladisierung	187
Abb. 101: Abbau von 1,4-Dichlorbenzol an Aluminium unterschiedlicher Palladisierung	188

Abb. 102: Abbau von Trichlorethen an Eisen unterschiedlicher Palladisierung (oben)	
und die Entwicklung des chlorierten Zwischenproduktes cis-DCE (unten)	190
Abb. 103: Abbau von Trichlorethen an Aluminium unterschiedlicher Palladisierung	191
Abb. 104: Abbau von 1,4-Dichlorbenzol an palladisiertem Eisen (0.01 % Gew. Pd) im	
Säulenversuch	193
Abb. 105: Abbau von Trichlorethen an palladisiertem Eisen im Säulenversuch	194
Abb. 106: Einfluß der Fließgeschwindigkeit und Zustromkonzentration auf die	
Abbaukinetik von Trichlorethen an palladisiertem Eisen im Säulenversuch (0.01	
Gew. % Pd)	195
Abb. 107: Vergleich der mittleren Verweilzeiten und der Materialkosten für Fe bzw.	
FePd (0.01 Gew. % Pd) in einer reaktiven Wand zur Reduzierung der TCE-	
Zustromkonzentration auf 10 µg/L am Reaktorablauf	197

Tabellenverzeichnis

Tab. 1: Stoffe und ihre Reinigungsmöglichkeiten mit Reaktionswänden (POWELL et al.,
1998)19
Tab. 2: Kinetische Parameter des erweiterten Modells im Vergleich mit den Parametern
pseudo-erster und pseudo-nullter Ordnung33
Tab. 3: Diffusionskoeffizienten ausgewählter CKW und anorganischer Stoffe in Wasser45
Tab. 4: Elementzusammensetzung der verwendeten Eisensorten (n.g.: nicht
gemessen; n.n.: nicht nachgewiesen; k.A.: keine Angabe des Herstellers)57
Tab. 5: Kenndaten und Kosten der ausgewählten Eisensorten. 60
Tab. 6: Abbau von CT, cDCE und tDCE in deionisiertem H ₂ O bei 25° und 55°C;
Anfangsratenkonstante k, berechnete Halbwertszeiten ($t_{1/2}$) und Zeit, die für den
Abbau der ersten 50% der Anfangskonzentration benötigt wird (t_{50}) (aus MILBURN
et al., 1995)63
Tab. 7: Reaktionskinetiken der Nitratreduktion und des TCE-Abbaus im
Schüttelversuch bei variablen Nitratkonzentrationen und einer TCE-
Initialkonzentration von ca. 20 mg/l87
Tab. 8: Zusammenfassung der Verlagerungssgeschwindigkeiten (cm/d) der
Konzentrationsfronten von TCE und Nitrat im Fe ⁰ -Säulenversuch bei
verschiedenen Zulaufkonzentrationen (n.n.: nicht nachweisbar,: System ohne
TCE)
Tab. 9: Zusammenfassung der Verlagerungssgeschwindigkeiten (cm/d) der
Konzentrationsfronten von TCE und Cr(VI) im Fe ⁰ -Säulenversuch bei
verschiedenen Zulaufkonzentrationen (n.n.: nicht nachweisbar,: System ohne
TCE)92
Tab. 10: Vergleich der Passivierungsgeschwindigkeit und der maximalen Reaktionsrate
des Validierungsversuches (Versuch 3) mit den Versuchen, die zur Entwicklung
der Modellvorstellung verwendet wurden (Versuche1+2)
Tab. 11: Durchschnittliche Wasserstoffentwicklungsraten für die Säulenversuche mit
verschiedenen synthetischen Zulauflösungen
Tab. 12: Durchschnittliche Wasserstoffentwicklungsraten für die Säulenversuche mit
CKW-kontaminiertem Standortwasser123
Tab. 13: Vergleich der Wasserstoffentwicklungsraten unter verschiedenen
Versuchsbedingungen nach (a) Normierung auf die Eisenmasse und nach (b)
Normierung auf die Oberfläche für die Eisensorten Hartgußstrahlmittel (HS),
Betonzuschlag (BZ) und Schwammeisen (SE)126
Tab. 14: Assoziationsreaktionen einiger wichtiger Präzipitate und deren
Gleichgewichtskonstanten (logK) (Daten aus ⁽¹⁾ : ВОНNSACK (1984), ⁽²⁾ : BALL &
Nordstrom (1991), ⁽³⁾ : Refait & Génin (1992), ⁽⁴⁾ : Génin et al. (1996), ⁽⁵⁾ :
Parkhurst (1995), ⁽⁶⁾ : Ebert (1997))
Tab. 15: Mittlere Zusammensetzung des verwendeten Versuchswassers vom Standort
Rheine (angaben in mg/l)146
Tab. 16: Untersuchungsverfahren und Parameterumfang. 146

Tab. 17: Kenndaten der Säulenversuche I und II	146
Tab. 18: Grundwassermeßstellen und Proberhythmus	152
Tab. 19: Mittlere Wasserzusammensetzung im Anstrom der Wandhälften	
Eisenschwamm (Pegel PS1) und Graugußeisengranulat (Pegel PG1)	154
Tab. 20: Prozentualer PCE-Abbau im Schwammeisen mit a) Betrachtung als	
stationäres System und b) Berechnung im monatl. Versatz.	156
Tab. 21: Mittlerer prozentualer Abbau der Metabolite TCE, cis-1,2-DCE und VC	157
Tab. 22: Prozentualer PCE-Abbau im Graugußeisengranulat mit a) Betrachtung als	
stationäres System und b) Berechnung im monatl. Versatz.	167
Tab. 23: Übersicht über die durchgeführten Batchversuche zum Abbau von 1,4-	
Dichlorbenzol und TCE an Eisen (Sorte a), Aluminium und den palladisierten	
Metallen	184

1. Einleitung

Aufgabenstellung

Am Ende der Projektlaufzeit wurde nicht nur international, sondern vor allem auch national die Thematik der Reaktiven Wände (v.a. Fe⁰-Barrieren), im breiteren Kreis diskutiert. Zu Beginn des Projektes waren die Anwendungen dieser innovativen Grundwassersanierungstechnologie zur Reinigung CKW-kontaminierter Aquifere erst an wenigen Standorten in Nordamerika in der Erprobungsphase. In diesem Kontext wurden die Ziele des Forschungsvorhabens definiert und die Fragestellung formuliert:

- wie hoch ist die Langzeitstabilität der verwendeten Reaktormaterialien
- wie groß ist die Inhibierungstoleranz der Reaktormaterialien gegenüber hydraulischen und hydrochemischen Veränderungen
- welcher Austrag grundwassergefährdender Abbau- und Umsatzprodukte ist aus den Reaktoren langfristig zu erwarten

Zur Bearbeitung dieser Fragen galt es,

- ein generelles Prozeßverständnis der reduktiven Dehalogenierung von CKW in einem insitu-Reaktor aus elementarem Eisen zu erlangen
- die hydraulischen und geochemischen Randbedingungen, die die Effizienz der reduktiven Dehalogenierung von CKW via Fe⁰-Oxidation kontrollieren, zu erfassen
- Optimierungsstrategien zu entwickeln und zu testen
- und technisches Know-how beim großskaligen Bau und Betrieb von in-situ-Reaktoren zu schaffen.

Um also die Anwendung des Verfahrens in der Praxis kalkulierbar zu machen, sollte in der wissenschaftlichen Bearbeitung eine Überprüfung der Sicherheitsanforderungen an ein prinzipiell vielversprechendes und kosteneffizientes Sanierungskonzept erfolgen. Hierzu sollte der Einfluß bzw. die Inhibitorwirkung gängiger anorganischer und organischer Komponenten im Grundwasser auf die langfristige Reaktivität der Fe⁰-Granulate in Batch-, Säulen- und 3D-Experimenten untersucht werden und soweit möglich ein Modellkonzept entwickelt, geeicht und validiert werden, um die Möglichkeiten und Grenzen des Verfahrens auf der Basis wissenschaftlicher Untersuchungen zu beurteilen.

Voraussetzungen

Die Projektbearbeitung erfolgte zunächst am Institut für Wasserbau der Universität Stuttgart in enger Zusammenarbeit mit VEGAS (Versuchseinrichtung zur Grundwasser und Altlastenuntersuchung). Im Zuge der Wegberufung des Antragstellers im letzten Drittel der Projektlaufzeit wurde die Projektbearbeitung verlagert und am Geowissenschaftlichen Institut, Lehrstuhl für Angewandte Geologie, der Universität Kiel weitergeführt. Am Institut für Wasserbau der Uni Stuttgart waren gute Voraussetzungen für die Durchführung des Projektes gegeben:

- Einbindung in VEGAS
- Nutzung des VEGAS-Laboratoriums zur Analytik
- Erfahrungen und Vorarbeiten im Bereich der Altlastensanierung am Institut
- Bereitstellung eines Gro
 ßbeh
 älters in VEGAS f
 ür den zun
 ächst geplanten gro
 ßskaligen 3D-Versuch
- Räumliche Nähe zu Bearbeitern ähnlicher Thematik (z.B. Universität Tübingen)
- Grundsätzlich positive Einstellung der entsprechenden Landesbehörden gegenüber innovativer Grundwassersanierung

Auch wenn das VEGAS-Laboratorium gut ausgerüstet war, mußten für die Bearbeitung der anfallenden Proben zusätzliche Geräte beschafft werden (z.B. Ionenchromatograf, HPLC). Im Zuge der Verlagerung der Projektbearbeitung nach Kiel konnten die Großgeräte zunächst ausgeliehen werden und darüber hinaus in einer Übergangsphase die analytische Kompetenz des VEGAS Labors weiter genutzt werden, so daß auch am neuen Bearbeitungsstandort ähnlich gute Voraussetzungen für die Projektbearbeitung gegeben waren. Am Lehrstuhl für Angewandte Geologie der Universität Kiel, dem ein eigenes Analytiklabor zugeordnet ist, wurden über Jahre Fragestellungen der Grundwasserchemie bzw. der Transportprozesse im Grundwasser bearbeitet. Da zum Zeitpunkt der Projektverlagerung auf den 3D-Versuch zugunsten von Felduntersuchungen an realen Anwendungen verzichten worden war, konnte die Restbearbeitung am neuen Standort problemlos erfolgen, außer daß es zu einer zeitlichen Verzögerung bedingt durch die Umsiedlung der Arbeitsgruppe kam.

Planung und Ablauf

Entsprechend der Projektplanung wurden zunächst Materialien ausgewählt, die potentiell geeignet für die in-situ-Sanierung von CKW-belasteten Grundwassern waren. Mit Hilfe von Batchversuchen konnte dann eine Entscheidung für die Materialien herbeigeführt werden, mit denen die Projektbearbeitung fortgesetzt werden sollte. In den folgenden Batch- und Säulenversuchen wurde der Einfluß gängiger Grundwasserinhaltstoffe auf das Abbauverhalten untersucht, ein Prozeßverständnis entwickelt, sowie Optimierungsansätze erprobt. Entgegen der ursprünglichen Projektplanung wurde das Untersuchungsprogramm erweitert, um auch den Einfluß von Chlorid und H₄SiO₄ auf den Abbauprozeß zu charakterisieren. Die stärkste Divergenz zwischen Projektplanung und -durchführung ist der Verzicht auf das großskalige Gerinneexperiment. Während der Projektlaufzeit bot sich die Gelegenheit, sich an der Planung, Installation und Überwachung von Fe⁰-Reaktoren zur Sanierung realer Grundwasserschäden zu beteiligen, so daß in Absprache mit dem BMBF auf das Großgerinneexperiment verzichtet werden konnte. In den Felduntersuchungen konnten kostengünstiger und für die Einführung der Sanierungstechnologie am nationalen Markt mit größerer Signalwirkung die gleichen Fragestellungen wissenschaftlich bearbeitet werden.

Wissenschaftlicher und technischer Stand zu Beginn des Projektes

Die Anwendung von Fe⁰ zur in-situ-Sanierung CKW-kontaminierter Aquifere war zu Beginn des Projektes auf wenige Pilotstandorte in Nordamerika beschränkt, wobei allen Anwendungen ein niedriger Mineralisierungsgrad des Grundwassers gemeinsam war. Die größte Erfahrungsdauer lag bei etwa 1.5 Jahren.

Auch wenn die prinzipielle Eignung unedler Metalle zur reduktiven Dehalogenierung chlorierter Pestiziden seit Anfang der 70er bekannt ist, wurde erst etwa 10 Jahre vor Beginn des Projektes die Bedeutung von nullwertigen Eisen für die Grundwassersanierung erkannt, in den folgenden Jahren die Anwendung in geochemischen Barrieren konzeptioniert und durch die kanadischen Firma EnviroMetal Inc. (EMI) patentiert. In Deutschland ist der Lizenzgeber des Verfahrens die Firma I.M.E.S. GmbH, Wangen.

Neben den zum Zeitpunkt der Projektbeantragung kaum geklärten Präzipitatbildungen und deren Einfluß auf die Langzeitreaktivität waren aber selbst, trotz der bereits erfolgten Anwendung in der Praxis, die genauen Prozeßabläufe der reduktiven Dechlorierung von CKW via Fe⁰ sowie die die Kinetik kontrollierenden Parameter noch relativ ungeklärt und standen im Interesse der wissenschaftlichen Forschung (z.B. Chlorierungsgrad, pH-Wert, Oberflächengröße). Auch wenn unbestritten war, daß die reduktive Dehalogenierung ein abiotischer und elektrochemischer Prozeß ist, war die Summengleichung des Prozesses ungeklärt. So war nicht bekannt, ob molekularer Wasserstoff oder auch Fe²⁺ für die Dechlorierung notwendig waren oder ob die Reduktion höherchlorierter Kohlenwasserstoffe über mehrere Stufen verläuft (was als wahrscheinlich galt) oder das Endabbauprodukt direkt gebildet wird.

Die existierenden alternativen Verfahren zur Sanierung bzw. Sicherung von CKW-Schadensfällen, wiesen in der Praxis meist eine Reihe von Problemen auf und waren in der Regel auch recht kostenintensiv. Die wichtigsten Verfahren waren: "pump & treat"-Verfahren, Mikrobieller Abbau oder Kapselung.

Die folgenden Literaturstellen und Konferenzbeiträge geben den Stand der Wissenschaft zum Projektbeginn wider: BORONINA & KLABUNDE (1995), CIRPKA & HELMIG (1994), DAMKE (1995), DVWK (1991), GILLHAM (1995), GILLHAM & BURRIS (1992), GILLHAM ET AL. (1993), GILLHAM & O'HANNESIN (1993), GROPPER & HÖGG (1994), METHESON & TRATNYEK (1994), STARR & CHERRY (1994) UND WEATHERS ET AL. (1995)

Zusammenarbeit mit anderen Stellen

Im Rahmen der Projektbearbeitung gab es Zusammenarbeiten auf verschiedenen Teilgebieten mit folgenden Institutionen und Firmen:

- VEGAS
- Lehrstuhl für Angewandte Geologie der Universität Tübingen
- Umweltforschungszentrum Halle/Leipzig
- Institut f
 ür Umweltschutz, Fachgebiet Umweltmikrobiologie und Technische Hygiene, TU Berlin
- Institut für Geowissenschaften der Universität Kiel (Spurenanalytik)
- I.M.E.S. GmbH, Wangen
- Mull & Partner Ingenieurgesellschaft mbH
- Institut Fresenius, Taunusstein
- Institut für Luft- und Raumfahrt der Universität Stuttgart (Gasanalytik)

Berichte und Publikationen:

Eine Liste der mit diesem Projekt im Zusammenhang stehenden Publikationen, Tagungsbeiträgen, Berichten, Promotionsschriften und Diplomarbeiten findet sich im Anhang. Im Rahmen der Projektbearbeitung konnten zwei Promotionen angefertigt und eine dritte teilweise bearbeitet werden, insgesamt 8 Diplomarbeiten zum Abschluß gebracht, bisher 18 Publikationen in Fachzeitschriften veröffentlicht und auf insgesamt 57 Konferenzbeiträgen die Ergebnisse dem Fachpublikum vorgestellt werden. Darüber hinaus konnte in einzelnen Beratungsgesprächen die Thematik in Behörden und Ämtern sowie bei Altlasteneignern und -sanierern erläutert werden und damit nicht unwesentlich zur heutigen Akzeptanz der Sanierungsmethode in Deutschland beigetragen werden.