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Abstract

For n � 6 we provide a counterexample to the conjecture that every

integral vector of a n-dimensional integral polyhedral pointed cone C can

be written as a nonnegative integral combination of at most n elements of

the Hilbert basis of C. In fact, we show that in general at least b7=6 � nc

elements of the Hilbert basis are needed.
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1 Introduction

Throughout this paper we resort to the following notation. For integral points

z
1
; : : : ; z

k 2 Zn, the set

C = posfz1; : : : ; zkg =

(
kX
i=1

�iz
i : � 2 R

k
�0

)

is called an integral polyhedral cone generated by fz1; : : : ; zkg. It is called pointed

if the origin is a vertex of C and it is called unimodular if the set of generators

fz1; : : : ; zkg of C forms part of a basis of the lattice Zn. By Gordan's lemma

[G1873] the semigroup C \ Zn is �nitely generated for any integral polyhedral

cone C, i.e., there exist �nitely many vectors h1; : : : ; hm such that every z 2

C \ Zn has a representation of the form z =
Pm

i=1mih
i, mi 2 Z�0. It was

pointed out by van der Corput [Cor31] that for a pointed integral polyhedral

cone C there exists a uniquely determined minimal (w.r.t. inclusions) �nite

generating system H(C) of C \Zn which may be characterized as the set of all

irreducible integral vectors contained in C. More precisely,

H(C) =
n
z 2 C \ Z

n
nf0g : z cannot be written as the sum

of two other elements of C \ Z
n
nf0g

o
:

(1.1)

The set H(C) is usually called the Hilbert basis of C. Although Hilbert bases

play a role in various �elds of mathematics, like combinatorial convexity and
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toric varieties (cf. e.g. [DHH98], [Ewa96], [Oda88], [Stu96]), polynomial rings

and ideals (cf. e.g. [BG98], [BGT97]) or in integer programming (cf. e.g. [Gra75],

[GP79], [Sch80], [Seb90],[Wei98]), their structure is not very well understood yet.

A �rst systematic study was given by Seb�o [Seb90]. In particular, the following

three conjectures about the \nice" geometrical structure of Hilbert bases of an

integral pointed polyhedral cone C � R
n are due to him:

(Unimodular Hilbert Partitioning) There exist unimodular cones Ci, i 2 I ,

generated by elements of H(C) such that i) C = [i2ICi and ii) Ci \Cj is a face

both of Ci and Cj , i; j 2 I .

(Unimodular Hilbert Cover) There exist unimodular cones Ci, i 2 I , generated

by elements of H(C) such that C = [i2ICi.

(Integral Carath�eodory Property) Each integral vector z 2 C can be written

as a nonnegative integral combination of at most n elements of H(C).

Let us remark that the question whether n elements of the Hilbert basis are

su�cient to express any integral vector of the cone as a nonnegative integral

combination (and thus having a nice counterpart to Carath�eodory's theorem)

has already been raised by Cook, Fonlupt&Schrijver [CFS86].

Obviously, (UHP) implies (UHC) and (UHC) implies (ICP). Seb�o also ver-

i�ed (UHP) (and thus all three conjectures) in dimensions n � 3 [Seb90]. An

independent proof was given by Aguzzoli&Mundici [AM94] in the context of

desingularization of 3-dimensional toric varieties. However, in dimensions n � 4

(UHP) does not hold anymore as it was shown by Bouvier&Gonzalez-Sprinberg

[BGS92]. In order to attack algorithmically the (UHC)-conjecture Firla&Ziegler

[FZ97] introduced the notation of a binary unimodular Hilbert covering which is

a stronger property than (UHC) but weaker than (UHP) and they falsi�ed this

property in dimensions n � 5.

Recently, Bruns&Gubeladze [BG98] managed to give a counterexample to

the original (UHC)-conjecture in dimensions n � 6. We show in this note that

also the weakest of the three conjectures, the (ICP)-conjecture, does not hold

in dimensions n � 6. To this end we de�ne for a pointed integral polyhedral

cone C � R
n its Carath�eodory rank (as in [BG98]) by

CR(C) = max
z2C\Zn

minfm : z = n1h
1 + � � �+ nmh

m
; ni 2 N; h

i
2 H(C)g;

and moreover, let

h(n) = maxfCR(C) : C � R
n an integral pointed polyhedral coneg

be the maximal Carath�eodory rank in dimension n. With this notation the

(ICP)-conjecture claims CR(C) � n, or equivalent, h(n) = n which holds in

dimensions n � 3. A �rst general upper bound on h(n) was given by Cook,

Fonlupt&Schrijver [CFS86]. They proved h(n) � 2n� 1 and they also veri�ed

the (ICP)-conjecture for certain cones arising from perfect graphs. Another

class of cones satisfying (ICP) is described in [HW97]. The bound 2n � 1 was

improved by Seb�o [Seb90] to h(n) � 2n� 2 which is currently the best known

estimate. Moreover it is known that \almost" every integral vector of a cone

can be written as an integral combination of at most 2n� 3, n � 3, elements of

its Hilbert basis [BG98]. Here we prove the following lower bound
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Theorem 1.1.

h(n) �

�
7

6
n

�
;

where bxc denotes the largest integer not greater than x, x 2 R.

Of course, this result implies that (ICP) is false in dimensions n � 6. More-

over, Theorem 1.1 shows that there is no universal constant c such that any

integral vector can be represented as a nonnegative linear combination of at

most n+ c elements of the Hilbert basis.

The proof of Theorem 1.1 consists basically of a 6-dimensional cone C6 with

CR(C6) = 7. This cone is, up to a di�erent embedding, the same cone already

used by Bruns&Gubeladze for disproving (UHC) and it will be described in

the next section. (Note that (ICP) and the stronger properties mentioned are

invariant under unimodular integral linear transformations.) Using this cone C6

the proof of Theorem 1.1 runs as follows:

Proof. First, we assume n = 6 � p, p 2 N, and we show inductively w.r.t. p that

there exist (6 � p)-dimensional cones C6�p with CR(C6�p) = 7 � p. For p = 1 we

have the cone C6 and therefore, let p > 1. Now we embed the cone C6�(p�1)

and C6 into two pairwise orthogonal lattice subspaces of R6�p and we denote

these embeddings by ~C6�(p�1) and ~C6, respectively. With C6�p = ~C6�(p�1) �

~C6 = posf ~C6�(p�1);
~C6g it is quite easy to see that CR(C6�p) = CR( ~C6�(p�1)) +

CR( ~C6) = CR(C6�(p�1)) + CR(C6) = 7 � p.

For the remaining dimensions n = 6 � (p � 1) + r, p � 1, r 2 f1; : : : ; 5g, we

apply the same construction, but instead of ~C6 we supplement ~C6�(p�1) by an

arbitrary r-dimensional cone.

2 The counterexample C6 to (ICP)

The cone C6 is generated by the following 10 integral vectors z1; : : : ; z10

z
1 = (0; 1; 0; 0; 0; 0)|; z

6 = (1; 0; 2; 1; 1; 2)|;

z
2 = (0; 0; 1; 0; 0; 0)|; z

7 = (1; 2; 0; 2; 1; 1)|;

z
3 = (0; 0; 0; 1; 0; 0)|; z

8 = (1; 1; 2; 0; 2; 1)|;

z
4 = (0; 0; 0; 0; 1; 0)|; z

9 = (1; 1; 1; 2; 0; 2)|;

z
5 = (0; 0; 0; 0; 0; 1)|; z

10 = (1; 2; 1; 1; 2; 0)|:

Observe that all the generators are contained in the hyperplane fx 2 R
6 :

ax = 1g where a = (�5; 1; 1; 1; 1; 1). Moreover, C6 has 27 facets, 22 of them are

simplicial, i.e., generated by �ve vectors. The remaining �ve facets are generated

by six vectors and can be described as cones over 4-dimensional polytopes which

are bipyramids over 3-dimensional simplices.

The �rst important property of C6 is that the set of generators coincides

with the Hilbert basis, i.e.,

H(C6) = fz
1
; : : : ; z

10
g: (2.1)

On account of (1.1), there is a straightforward way to check (2.1) by computing

all integral vectors in the zonotope Z = fx 2 R6 : x =
P10

i=1 �iz
i
; 0 � �i � 1g
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