Abschlußbericht

zum

F+E-Vorhaben:

Entwicklung von Verfahrenskombinationen für die Wasser- und Stoffkreislaufführung bei der Verarbeitung pflanzlicher Rohstoffe am Beispiel der Kartoffelstärkeproduktion

Förderkennzeichen: 0339597

Stand: Mai 2000

Autor: Dr. Martin Lotz

Emsland-Stärke GmbH Emslandstr. 58 49824 Emlichheim

Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 0339597 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.

Inhaltsverzeichnis

		Seite
Inhalts	verzeichnis	2
Verzeichnis der Abbildungen und Diagramme		3
Verzei	chnis der Tabellen	4
1	Einleitung	5
2	Zielsetzung	7
3	Material und Methoden	10
4	Ergebnisse	12
4.1	Teilprojekt Enzymaufschluß	12
4.2	Teilprojekt Aufschluß mittels Gefriertechnik	15
4.3	Teilprojekt Aufschluß durch Hochspannungsimpulse (HSI)	17
4.4	Teilprojekt mikrobiologische Untersuchungen	20
4.5	Teilprojekt Verringerung der Sekundärmembranbildung auf	
	Umkehrosmosemembranen	22
4.6	Teilprojekt Verdampfungsversuche	23
5	Diskussion der Ergebnisse, Bewertung und Ausblick	26
5.1	Teilprojekt Enzymaufschluß	26
5.2	Teilprojekt Gefriertechnik	27
5.3	Teilprojekt Hochspannungsimpulstechnik	27
5.4	Teilprojekt mikrobiologische Untersuchungen	29
5.5	Teilprojekt Verringerung der Sekundärmembranbildung	30
5.6	Teilprojekt Verdampfungsversuche	31
5.7	Weiterführende Fragestellungen des Projektes	32
6	Literatur	34

Verzeichnis der Abbildungen und Diagramme

Nummer	Titel	Seite
1	Abscheidegrad von Kartoffelfruchtwasser	13
2	Ergebnis der Technikumsversuche	14
3	Einfluß der Gefriertechnik auf die Wasserausbeute	16
4	Zellaufschluß bei Rechteck- und exponentiellem Impuls	17
5	Vergleich von unbehandeltem und hochspannungsbehandeltem	19
	Reibsel	
6	Mikrobiologische Belastung von ungeschälten und geschälten	21
	Kartoffeln	
7	Pektinabbau im Kartoffelfruchtwasser	22
8	Proteingehalt in Kartoffelfruchtwasser und Prozeßwasser	24
9	Vergleich der in den Verdampfungsversuchen erreichten	24
	Trockensubstanzgehalten	

Verzeichnis der Tabellen

Nummer	Titel	Seite
1	Untersuchte Enzyme zur Behandlung von Reibsel	12
2	Stoffwerte bei Gefrierbehandlung	15
3	Kritische Hochspannungs-Prozeßparameter	17
4	Mikrobiologische Belastung von Teilströmen	21
5	Für Verdampfungsversuche eingesetzte Enzyme	23

1. Einleitung

Von allen heute bedeutenden nachwachsenden Rohstoffen spielt die Stärke bei der Nutzung außerhalb des Nahrungsmittelsektors eine überragende Rolle. Durch ihre polymere Struktur gelingt es, für vielfältige technische Anwendungen interessante Produkte zu entwickeln, die sich sowohl preislich als auch anwendungstechnisch gegen petrochemisch erzeugte Produkte am Markt durchzusetzen können. Dies wird darin deutlich, daß die Papierindustrie, Textilindustrie und die Klebstoffindustrie zu den Hauptabnehmern von Stärke gehören [1].

Im Gegensatz z.B. zur Zuckerindustrie ist der Markt für Stärke nicht einheitlich. 99 % der industriell eingesetzten Stärke stammt aus 3 verschiedenen Rohstoffen, nämlich Mais, Kartoffel, Weizen, Tapioka [1], wobei nur die ersten drei im europäischen Raum eine Rolle spielen.

Durch den außerordentlich hohen Wassergehalt von 75 % im Rohstoff Kartoffel ist im Vergleich zu den Getreidestärken ein aufwendigeres und damit teureres Herstellverfahren notwendig [1, 2]. Dies wird z.B. durch Unterstützungen von der EU, die dem Getreide- und Zuckermarkt angelehnt sind, ausgeglichen.

Der hohe Wassergehalt der Kartoffeln macht es weiterhin seht viel schwieriger, z.T. sogar unmöglich, die sonstigen im Rohstoff enthaltenen Wertstoffe auf eine wirtschaftlich sinnvolle Weise zu gewinnen. Die einzige Ausnahme bildet das mittels Hitze koagulierbare Kartoffeleiweiß, das nach diesem Verfahren allerdings lediglich in einer Qualität zur Verfügung steht, die für den Viehfuttermarkt geeignet ist. Dort ist das Sojaprotein, ein sehr preiswertes Futtermittel, preisbestimmend. Ein Vorteil des Kartoffelproteins gegenüber Soja ist die höhere Wertigkeit bei Menschen und vielen Tieren [2].

Als Beiprodukte aus den Rohstoffen Mais und Weizen seien Maiskeimöl und Gluten (Weizenkleber) genannt, die attraktive Marktsegmente bei der Nahrungsmittelherstellung

bedienen können und die Gesamtausbeute an Wertstoffen aus dem Rohstoff signifikant erhöhen, wodurch geringere Stofffrachten zur Entsorgung anfallen.

Aus umweltpolitischen Gesichtspunkten ist die letztere Tatsache von entscheidender Bedeutung, da die Gesamtausbeute an Wertstoffen aus dem Rohstoff bei Mais und Weizen gleichzeitig weniger Abfall und weniger Abwasser bei der Produktion der Stärken verursacht. Dies gilt sowohl absolut als auch spezifisch auf den Rohstoffeinsatz bezogen [3].

Jeder Ansatz zur Verbesserung des Umweltschutzes bei der Herstellung von Kartoffelstärke verbessert daher auch die Wettbewerbssituation, vorausgesetzt, der Umweltschutz wird prozeßintegriert (PIUS, prozeßintegrierter Umweltschutz) durchgeführt. End of the pipe-Lösungen führen zwar ebenfalls zu verbessertem Umweltschutz vor Ort, benachteiligen aber in aller Regel die Wettbewerbssituation und zeigen in der Ökobilanz deutliche Schwächen.

Um die Wettbewerbsfähigkeit der Kartoffelstärkeindustrie zu verbessern, bietet daher der Ansatz des prozeßintegrierten Umweltschutzes die idealen Voraussetzungen, da intelligente Lösungen zum Umweltschutz immer auch einen effizienteren Umgang mit den Ressourcen Energie und Wasser mit sich bringen. Diese sind neben den Kosten für den Rohstoff bei der Kartoffelstärkeherstellung die mit Abstand wichtigsten Produktionsfaktoren. Da die Preise für Energie und Wasser im wesentlichen fix sind, ist, um preisgünstiger produzieren zu können, der spezifische Verbrauch von Wasser und Energie zu verringern. An diesem Punkt, Ökologie und Ökonomie in Einklang zu bringen, setzt das Projekt an.