
'

&

$

%

Bottom-Up Query Evaluation in

Extended Deductive Databases

Dem Fachbereich Mathematik
der Universität Hannover

zur Erlangung der Lehrbefugnis (venia legendi)

für das Fachgebiet Informatik

vorgelegte Habilitationsschrift

von

Stefan Brass

1996

ii

My current address is:

Universität Hannover, Institut für Informatik,
Lange Laube 22, D-30159 Hannover, Germany,
sb@informatik.uni-hannover.de

This document was last updated on: June 12, 1996.

Contents

1 Introduction 1

2 Horn-Clause Datalog 27

2.1 Logic and Databases . 27

2.2 Syntax and Semantics of Datalog . 38

2.3 Bottom-Up Query Evaluation . 52

3 Goal-Directed Bottom-Up Evaluation 67

3.1 The “Magic Set” Transformation . 71

3.2 An Improved Magic Set Technique . 83

4 Negation as Failure 101

4.1 Datalog with Negations . 106

4.2 A Framework for Studying Semantics 122

4.3 Bottom-Up Query Evaluation . 149

5 Reasoning with Disjunctions 167

5.1 Extended Bottom-Up Query Evaluation 169

5.2 Application: Computation of Stable Models 180

6 Conclusions 187

Bibliography 189

Index 203

iii

iv ACKNOWLEDGEMENTS

Acknowledgements

First of all, I would like to thank my doctor father Udo Lipeck for giving me
the opportunity to perform the research presented here and for numerous helpful
comments. I believe that his influence can be seen in every chapter. For instance,
there are notions from term rewriting used in Section 4.2, and he always recommended
using meta-interpreters (which I did in Sections 3.2 and 5.1). Also Section 5.1 is based
on joint research, and Section 5.2 is influenced by an earlier joint paper.

It is a pleasure for me to thank Jürgen Dix for two years of joint research, which
has led to the results presented in Chapter 4 (and more). I really enjoyed working
together with Jürgen, and our cooperation has been very fruitful.

I would also like to thank the students in my courses on deductive databases and
logic programming. I learnt a lot by giving these lectures. Dirk Hillbrecht and
Michael Salzenberg have implemented query evaluation based on the residual
program and hyperresolution.

My brother Peter found a number of typing errors and made other valuable
suggestions. Last but not least, many thanks to my parents for all kinds of support
and finally getting me to this point (which was not always easy).

Chapter 1

Introduction

The goal of this work is to develop query evaluation algorithms for deductive databases
extended by nonmonotonic negation and disjunctions. This topic lies in between the
three fields of automated theorem proving, nonmonotonic reasoning, and databases.
There are three specific questions treated here:

• First, even in the standard case of Horn clauses without negation, bottom-up
query evaluation has not reached the efficiency of top-down query evaluation
in practice [SSW94]. What are the reasons for this, and can the situation be
improved?

• Second, there is a large number of proposed semantics for nonmonotonic nega-
tion. How different do query evaluation algorithms for them have to be, and
are there any connections between semantical properties and possible ways to
compute them?

• Third, reasoning with disjunctive rules is currently far less efficient than reason-
ing with Horn clauses. In fact, it seems that the communities studying the two
topics are nearly disjoint. So, how far is it possible to use standard techniques
known for Horn clauses in more general query evaluation algorithms?

Some Bits of History

The field of mathematical logic has strongly influenced many branches of computer
science, for instance the early results on formal languages and computability were
developed by logicians (after all, there was no computer science by that time).

One of the main goals of mathematical logic is to represent knowlege in some
formal way, suitable for algorithmic treatment. In computer science, databases were
developed to store information. At the beginning, databases did not have much theory
and were only a collection of subprograms to access files. It was a major step forward
when Codd proposed 1970 the relational datamodel [Cod70], where a database state
is nothing else than a first order interpretation (without function symbols) known
in logic for a long time. This data model was first only theoretically defined, and
was critized for being un-implementable. However, a decade later first commercial
relational database systems appeared, and two decades later they are the state of the
art.

1

2 CHAPTER 1. INTRODUCTION

In the programming language community, logic lead to the development of Prolog
(“PROgramming in LOGic”) by Colmerauer, Roussel and others in the early
1970s. Kowalski theoretically explained the possibility to use predicate logic as a
programming language [Kow74, vEK76].

Now the idea of deductive databases is to integrate the possibilities of relational
databases and Prolog:

Logic

�������

HHHHHHj

PPPPPPPPPPPPPq

Relational Databases Prolog Artificial Intelligence

HHHHHHj

�������

Deductive Databases

�
�

�
�

?

�
�

�
�

�
�

�
�

�
�

�
��+

Object-Orientation
PPPPPPPPPq

“Knowledge Bases”

So a deductive database consists of

• a relational database, which defines a number of relations (or predicates) “ex-
tensionally”, by enumerating the tuples contained in the relation, and

• a logic program, which defines a number of relations/predicates “intensionally”,
by giving a set of defining rules (formulas of a restricted kind).

Of course, there are also alternative possibilities to describe deductive databases:

• One can say that a deductive database is simply a relational database with a
new query language (Datalog instead of SQL), and with the view mechanism
extended to allow recursive definitions.

• Or one can say that a deductive database is nothing else than a logic program
with a large number of facts (corresponding to the tuples in the database),
possibly treated in some special way in the implementation.

• Finally, a deductive database can be seen as an automated theorem prover, which
allows only special kinds of formulas, but very many of them.

Of course it is difficult to single out one point in history, where the field of deductive
databases “has started”. Maybe we should mention the following events:

• A milestone in the development of automated theorem proving was the inven-
tion of the resolution method by Robinson 1963 [Rob92]. Subsequently, so
called “question-answering systems” were developed (by Green [Gre69] and
others [Min88b]), which tried to extract useful information (bindings of vari-
ables) from proofs. They can be seen as predecessors of deductive databases.

• Van Emden and Kowalski introduced 1976 the minimal model of a set of defi-
nite Horn clauses [vEK76]. In logic programming it was superseded by Clark’s

3

?

1963 u Resolution-Method for Automated Theorem Proving

1969 u Question Answering Systems
1970 u Relational Datamodel

1973 u Prolog

1976 u Minimal Model / Immediate Consequence Operator
1977 u Conference “Logic and Databases”

1979 u Relational Algebra with Fixpoint Operator

1982 u Fifth Generation Project

1986 u “Magic Set” Method / Perfect Model / Systems

1989 u Textbooks on Deductive Databases

Figure 1.1: How the Field of Deductive Databases has Started

completion, but it revived later as the standard semantics of deductive databases
and was generalized in various ways to handle negation. In [vEK76] also the im-
mediate consequence operator and the fixpoint semantics were introduced, which
are the foundation of bottom-up evaluation. As noted in [vEK76], the immedi-
ate consequence operator is nothing else than a special case of hyperresolution,
which was introduced 1965 by Robinson.

• In 1977 Gallaire, Minker, and Nicolas organized a workshop on “Logic
and Databases” in Toulouse and published subsequently a book with contribu-
tions from that workshop [GM78]. Among other important contributions, also
two formalizations of nonmonotonic negation were presented at this conference:
The completed database by Clark [Cla78] and the closed world assumption
by Reiter [Rei78].

• In 1979, a paper by Aho and Ullman on relational algebra with a fixpoint
operator appeared [AU79]. They also proved that the transitive closure cannot

4 CHAPTER 1. INTRODUCTION

be expressed in standard relational algebra. Although this paper itself did not
examine the relation to logical rules, it was certainly one of the origins of bottom-
up query evaluation.

It is difficult to say when naive bottom-up evaluation of Datalog was exactly
introduced. As we already mentioned, it dates back to 1965, and there have
been a lot of papers using some form of bottom-up evaluation. Naive bottom-up
query evaluation as we know it today (based on relational algebra with fixpoint
evaluation) seems to be first described in [CGL86].

• In 1982 the Fifth Generation Project started in Japan [Fur92]. It gave an im-
portant impetus to the development of logic programming, not only in Japan,
but throughout the world.

• The Prolog-dialect for deductive databases is nowadays usually called “Datalog”.
It is not easy to find out who invented that name. In [CGT90] it is said:

The term “Datalog” was invented by a group of researchers from Oregon
Graduate Center, MCC, and Stanford University.

In [AHV95], the following is said:

It is difficult to attribute datalog to particular researchers because it is a
restriction or extension of many previously proposed languages; some of
the early history is discussed in [MW88]. The name datalog was coined
(to our knowledge) by David Maier.

I have found no papers before 1986 which use the name “Datalog”, and 1986 it
was used in [BMSU86], which refer to an unpublished memorandum of the Ore-
gon Graduate Center 1985 (probably a predecessor of [MW88]). Also [MUVG86]
contains the name “Datalog”.

• In or before 1986 the work on three major implementations of deductive database
technology was started: The LDL system at MCC [TZ86, Zan88, NT89], the
NAIL! system at Stanford University [MUVG86], and the Smart Data System
(SDS) at a commercial offspring of the Technical University of Munich [KSSD94].

• In 1986, Bancilhon, Maier, Sagiv, and Ullman developed the “Magic
Set”-method [BMSU86], and Rohmer, Lescoeur, and Kerisit developed the
closely related “Alexander”-method [RLK86]. These methods allow to combine
the advantages of top-down and bottom-up query evaluation (see below). At
that time many query evaluation algorithms for recursive rules had been pro-
posed [BR86], and this was probably the true starting point where the field got
its own methods and results. Today, deductive database systems usually use
the Magic Set/Alexander technique, or variants of SLD-resolution with memo-
ing, of which [TS86, Vie87a, Die87] were early developments. A similar method,
which also integrates top-down and bottom-up evaluation, is the query-subquery
approach [Vie87b, Nej87].

• In 1986, Minker organized another conference on deductive databases [Min88a],
which was important for the development of the notion of stratified databases
and their perfect model [VG86, ABW88, Prz88a, Naq89]. The treatment of

5

negation according to the perfect model, which became standard in deductive
databases, is again a difference to logic programming, where Clark’s completion
and similar approaches were dominant.

• From 1988 to 1990 a first generation of textbooks on deductive databases ap-
peared. They were written by Ullman [Ull88, Ull89b], Naqvi and Tsur [NT89]
and Ceri, Gottlob, and Tanca [CGT90]. Furthermore, in the 5th edition of
his best-selling textbook on databases, Date added a chapter on deductive
databases [Dat90].

With the event of a number of dedicated textbooks, it can be really said that the field
is well established. Of course, many important things have been achieved since 1989.
However it is still a little difficult to put them into historical perspective, since the
distance is missing.

Why Deductive Databases?

A typical database application (see Figure 1.2) consists of three parts, which are
usually coded in three different languages:

• At the top is the user interface, which manages the dialog between the user and
the program. It defines menues, buttons, dialog boxes, and so on. Usually, it
is either written in a special language like Tcl/Tk or HTML, or is constructed
with a special editor (“resource construction set”, “interface builder”).

• Below that, there is a layer of code which performs data format changes, com-
bines and aggregates data, and ensures that the integrity of the database is not
violated. This code is often written in an imperative language like “C”.

• Finally, at the bottom are the database accesses, written in SQL. The database
has built-in algorithms for searching and sorting, it ensures the persistence of
the data and manages concurrent accesses by different users.

Besides the problems for the user to know three different languages and to interact
with three different compilers, it is well-known that between each two layers there
is an “impedance mismatch problem”. For instance, the database returns a set of
answers to a query, but in the programming language it is necessary to write a loop
which fetches every single tuple.

Deductive databases solve this problem because they are both, a programming
language and a database, and they are usually so tightly coupled that it is not clear
where one thing stops and the other starts.

This wish to integrate a database with programming facilities also led to the
development of object-oriented databases. However, in deductive databases the set-
oriented paradigm was extended to the programming part, while in object-oriented
databases the tuple-oriented approach of the programming-language has “won”.

Even commercial relational databases nowadays allow to store procedures within
the database. This is a logical development, because one important goal of databases
is the integration of different applications within some company. Before there were
databases, every application program more or less had its own data files. Then
databases allowed to share the data and avoid redundancy (and thus errors), but still

6 CHAPTER 1. INTRODUCTION

User Interface

(e.g. Tcl/Tk, HTML)

Menues
User Dialog
Online-Help

Computation

(e.g. C)

Combination of Data
Data Format Changes
Integrity Control

Database

(e.g. SQL)

Searching and Sorting
Persistence/Recovery
Concurrent Access

Figure 1.2: A Typical Database Application

the application programs were separate. There might have been some library pro-
cedures, just as some files were shared between some applications before databases
were developed. But it was necessary to explicitly relink the application programs
when a library procedure was changed. There was no controlled way of sharing code.
This is what deductive databases as well as object-oriented databases and procedural
extensions of relational databases aim at.

An additional advantage is that all the functionality of the database, such as per-
sistency, data dictionary, access rights, etc., apply to the procedures as well, because
they are stored within the database. Furthermore, the query optimization mechanisms
of the database can now make some use of their knowledge of the procedural code.
Before, no “global” query optimization was possible, because the database could not
know at all how the sequence of queries executed by one program would look like.

Since deductive databases are a symbiosis of Prolog and relational databases, it is
natural to ask what we gain with respect to each of the partners. If we compare
a deductive database with a relational one, we have also the following advantages
besides the above mentioned better integration with procedures:

• The queries which can formulated in SQL are restricted. For instance the tran-
sitive closure cannot be computed by a single query in standard SQL. Of course,

7

since this problem is practically relevant and often cited, some commercial ver-
sions of SQL now have a special clause for computing the transitive closure. But
this is only a patch on the design of the SQL language: It complicates the lan-
guage and solves one specific symptom, but not the deeper cause, namely that
recursion is not available in SQL. This also means that recursive data structures
such as trees or already lists cannot be manipulated adequately in SQL.

It might be argued that in practice recursion is always bounded, and for
instance paths of length 3 or 4 can theoretically be computed in SQL. However,
such queries are ugly to write in SQL and their size grows so fast (quadratically)
that one soon reaches the limitations of the system. In combination with an
application program in “C” or some other computationally complete language,
every kind of query can be evaluated, but then we again have the above men-
tioned “impedance mismatch” problems.

• The notion of a view is not fully integrated in the relational model. Quite a
number of systems restrict the queries which can be posed to views. One of
the reasons for this is that views are often implemented by rewriting the query
(so that it refers only to base relations), but SQL is not orthogonal, so the
result is not necessarily a valid SQL query. However, in deductive databases,
views are “first class citizens”: The notion of a derived predicate is so essential
that any restriction in their definition and usage would be totally unacceptable.
Furthermore, corresponding to their greater importance in deductive databases,
the implemention of views is usually more efficient there.

• The relational model is unsuitable for highly regular data. For instance a bus
schedule can be better represented by rules than by facts. In a relational
database such a bus schedule would probably be stored “extensionally” by enu-
merating the departure times. Maybe somebody even writes a “C” program
to generate all these facts. But again the database has no knowledge of this
program, while it could make good usage of the rules: For instance, the rules
occupy much less memory than the facts, and thus can be more quickly loaded
from external storage.

In comparison with Prolog, we should mention the following differences:

• Deductive databases are “more logical” and have less control, so they are closer
to a theoretically ideal logic programming language. For instance, the order of
rules or body literals does not matter in a deductive database, while it is es-
sential in Prolog. The deeper reason for this is that deductive databases and
Prolog programs are used very differently: A Prolog program usually is executed
by calling one main predicate, so the programmer knows in advance which ar-
guments of a predicate are bound or free, and therefore he/she can order the
rules and body literals in an optimal way. In deductive databases this is not
possible, because the user might query any predicate with any binding pattern
for the arguments (more or less). It is therefore the responsibility of the system
to determine a good execution order. This matches the tradition of the database
community that a database should have a powerful query optimizer. Of course,
such optimizers work well only for sets of relatively simple rules — they cannot

8 CHAPTER 1. INTRODUCTION

optimize all Prolog programs.

• Due to the bottom-up evaluation, the termination behaviour is much better than
that of Prolog. In general, we would expect that termination can be guaranteed
for query evaluation, while this certainly is not possible for arbitrary programs.
Modern deductive database systems allow more or less every Prolog program, so
termination cannot be guaranteed in general. But termination is a major issue
in databases, and large subsets of queries/programs have been defined for which
termination can be guaranteed.

• Prolog has insufficient support for external memory. Naturally, Prolog was not
intended to work with large sets of facts, and many Prolog implementations will
become at least very inefficient if the main memory is too small. An important
property of external memory is its block-orientation: In order to get a single tuple
of a few bytes we must read a complete block of several kilobytes. Therefore,
set-oriented computations as done in deductive databases can make much better
use of external storage than the standard tuple-oriented evaluation of Prolog.
Of course, also other essential database features, like support for multiple users
and recovery after a system crash, are missing in Prolog.

Let us conclude this section by looking at a number of typical applications of deductive
databases [KG90, Tsu90, Tsu91a, Ram95]:

• Expert systems: Usually the expert knowledge is formalized by means of
rules (not necessarily logic programming rules). Furthermore, there are often
large sets of facts needed (even an expert has to look into a book from time
to time). Thus, a deductive database seems to be a good tool for developing
an expert system. Of course, an expert system shell usually has better support
for creating a user interface and defining a structured user dialog, and better
explanation facilities. But all this would be helpful in a deductive database as
well.

In [HR95], an expert system for querying a flights database is described.
Since a user has several conflicting criteria for the best flight (cheap, not too
early in the morning, not too much wait time on transit, not an obscure airline,
etc.), this is a quite complex task. In [KSSD94] an expert system for the public
transportation system of the Munich area is mentioned.

• Decision Support Systems: The task of these systems is to aggregate infor-
mation form large data sets, or to find interesting cases in them. Often, the
temporal development of the data should be displayed. Also, the system should
be flexible and allow ad-hoc queries. Furthermore, it should have the ability to
reason about future plans [RH94]. All this can be well supported by deductive
databases.

In [KSSD94] the following is said on the marketing strategy of the deductive
database system SDS:

One main selling point of this technology is its strategic decision mak-
ing capability. Database technology, enhanced by deductive rule-based
capabilities, can assist enormously in condensing information to make

9

good decisions (a major key in achieving a competitive advantage). In
many corporate decisions, relevant information is spread over heteroge-
neous databases, and such an environment has to be addressed.

In [RRS95] a system for stock market analysis is described, which is based on
the deductive database system CORAL [RSSS94]. The main advantage of using
a deductive database system is the easy extensibility. It is also noted that

The recursive query capabilities of CORAL are necessary for expressing
many natural concepts (e.g. “bull market”, “consecutive peaks”) in this
domain.

Finally, we would like to mention the following applications, which lie on the
border to expert systems [RH94]:

Medical analysis and monitoring can generate large amounts of data,
and an error can have disastrous consequences. A tool to carefully mon-
itor a patient’s condition or to retrive relevant cases during diagnosis
reduces the risk of error in such circumstances. Deductive database
technology allows the analysis of these data to be performed more effi-
ciently and with lower chance of error than by ad hoc methods. Such
an intelligent tool allows the human experts to concentrate on the main
problems, rather than being distracted by details. A similar example
may be found in mineral exploration; a large amount of data may be
generated, which can then be analyzed for clues suggesting the presence
of the desired mineral.

• Hierarchical Design: Computer aided design of hierarchically structured ob-
jects is a good application area for deductive databases, because of their spe-
cial support for hierarchies (through the computation of transitive closures).
Of course, currently the performance of deductive databases is a problem, and
therefore object-oriented databases are preferred. However, it is a nontrivial
task to write a “C++”-program which checks whether a given object directly or
indirectly needs some specific part, while this is possible in three short lines of
Datalog.

The “bill of materials”-problem has been used as an example in [CGT90,
KG90], in [BK92] economists have discussed the problem and the usefulness of
Datalog.

• Complex Integrity Constraints: In many design tasks complex integrity
constraints have to be enforced. Since these integrity constraints are typically
defined in logic, it is natural to use a deductive database to check them. Of
course, there are again special additions to standard databases which allow the
incremental checking of integrity constraints and thus make the process more
efficient. But all this fits well into the framework of deductive databases while
in other systems one can write only procedures or triggers which perform some
checks and it is a difficult task to verify that these procedures really enforce a
given set of constraints.

10 CHAPTER 1. INTRODUCTION

For instance, in [FSS+92] an application is mentioned, where the deduc-
tive database system LOLA is used for checking integrity constraints in the
parts database of a car manufacturer. The deductive database systems EKS-
V1 [VBK+92] and VALIDITY [FGVLV95] have special support for integrity
checking.

• Graph-Structured Data: In general, applications of graphs (as known from
combinatorics), are also good applications for deductive databases, because they
often need to find paths. Some developers of deductive databases have tried to
build good algorithms known from graph theory into their system (selectable
with specific control statements for the optimizer). However, the graphs stored
in deductive databases can be so big that they do not fit completely into main
memory, so that “locality of access” is an issue here, which is usually not con-
sidered in graph theory.

• Integration of Heterogeneous Databases: Here the powerful view concept
of deductive databases is very helpful. Currently many companies still have
multiple databases and are not able to completely integrate them into a single
system, but want at least a common view on all their data. As mentioned above,
the deductive database system SDS [KSSD94] was specifically designed to work
in such a heterogeneous database environment.

• Parsing: There is a strong relation between logical rules and grammar rules
— in fact, Prolog was mainly invented for natural language analysis. But if we
want to analyse natural language, then there are obviously large amounts of data
(e.g. a lexicon), so we need database support. Definite clause grammars (DCGs)
are standard material in any Prolog textbook. However, Prolog implementations
of DCGs do not allow left-recursive rules, and backtracking involves the duplicate
construction of syntactical structures. This is improved by using bottom-up
evaluation, as done in deductive databases.

In [FSS+92, SF95] a system for the morpho-syntactical analysis of Old He-
brew texts is described, which was implemented in the deductive database system
LOLA and was used to analyse the grammar of the complete old testament (an
obviously quite large set of data). Also the flexibility and support for incre-
mental design of deductive databases was helpful in this application, since the
grammar had to be refined via experiments with the data.

In summary, there is a large potential of applications which could profit from deduc-
tive databases. And, vice versa, these applications might suggest some important
extensions of deductive databases.

Top-Down vs. Bottom-Up Evaluation

We will now give a first impression how a deductive database might work. The
main task of a database system is of course to answer queries. Quite different query
evaluation algorithms have been developed, all with their own features and problems.

Probably the first “deductive databases” were Prolog-interpreters or later compil-
ers. Of course, they had no specific database support, one had to load all tuples (facts)

11

into main memory at the beginning of the Prolog session. This severely restricts the
size of the “database”, but otherwise a Prolog system can be seen as an implementa-
tion of Datalog. Prolog uses a theorem-proving method called SLD-resolution: Given
a query A ∧ · · ·, it searches for matching rules of the form A ← B1 ∧ · · · ∧ Bn, and
then recursively tries to prove B1 ∧ · · · ∧ Bn ∧ · · · as a subquery. Of course, if A is
given as a fact, it can be simply deleted. Furthermore, variables can be instantiated
by means of “unification”. So the rules are used from head to body, and the process
is goal-directed: Only rules are touched which are useful for proving the given query.
This form of query evaluation is called “top-down”, because one usually thinks of the
query being at the top, and the given facts at the bottom. The advantage of top-down
evaluation is that if it works well, then it is really fast. However, it might fail badly.
First, it might not terminate, for instance in case of a rule like

p(X)← p(X).

Of course, nobody would write such a strange rule (except perhaps a logician), but
the following program for transitive closure is really standard:

path(X ,Y) ← edge(X ,Y).
path(X ,Y) ← edge(X ,Z) ∧ path(Z ,Y).

It assumes that a directed graph is stored in the database relation edge, and computes
pairs of nodes (vertices), which are connected by a path. Now this program runs into
an infinite loop if the graph contains cycles. Of course, if the programmer knows this
before, he/she can write a more complicated Prolog-program which detects cycles.
But this is extra work and makes the rules less understandable. Furthermore, even
if there are no cycles, and Prolog terminates, it might use exponential running time,
for instance in case of the following graph:

u -
�

�
�

�
�

��

u -

@
@

@
@

@
@R u -

�
�

�
�

�
��

u -

@
@

@
@

@
@R u

u

· · ·

u -
�

�
�

�
�

��

u -

@
@

@
@

@
@R u -

�
�

�
�

�
��

u -

@
@

@
@

@
@R u

u

There are exponentially many paths in this graph, and Prolog follows them all. But
the number of connected node pairs is quadratic.

This is the advantage of the bottom-up query evaluation: It guarantees termina-
tion and a polynomial behaviour for any pure Datalog program (like the transitive
closure above). Bottom-up evaluation works by applying the rules to the given facts,
thereby deriving new facts, and repeating this process with the new facts until no
more facts are derivable. The query is considered only at the end, when the facts
matching the query are selected. Of course, it is very inefficient to compute a large
number of facts which are irrelevant for the given query. In contrast, top-down eval-
uation performs only “relevant work”, but might perform the same work again and

12 CHAPTER 1. INTRODUCTION

again — maybe infinitely often. So the result is that in many practical examples,
top-down query evaluation runs much faster than “naive” bottom-up evaluation, but
bottom-up evaluation is safer because of its guaranteed polynomial behaviour.

Naturally, people have tried to combine bottom-up and top-down query evaluation
in order to have both advantages: being goal-directed and avoiding duplicate work.
The standard method, used in many deductive database systems, is called the “magic
set” transformation [BMSU86, RLK86, Bry90b]. It introduces new predicates which
encode the queries occurring during top-down evaluation, and rewrites the rules in
such a way that they are only applicable if the head literal is needed in order to answer
the query (a formal definition is given in Chapter 3).

For instance, let us consider the following logic program which computes the
Fibonacci numbers:

fib(0, 0).
fib(1, 1).
fib(N, F) ← N > 1 ∧

N1 = N − 1 ∧ fib(N1, F1) ∧
N2 = N − 2 ∧ fib(N2, F2) ∧
F = F1 + F2.

Here, fib(N, F) means that F is the N -th Fibonnaci number. Let us assume that the
query is for instance fib(10, X) (“What is the tenth Fibonacci number?”).

Because this program contains arithmetic predicates, it is not a pure Datalog
program. And in this case bottom-up evaluation does not work: It computes more
and more Fibonacci numbers and does not terminate because the facts matching the
query are selected only at the end. Top-down evaluation terminates, but it is also very
inefficient: For instance to compute the tenth Fibonacci number, it evaluates 177 calls
to fib, because it does not remember which numbers it has computed already. In
general, the time top-down evaluation needs to compute the N -th Fibonacci number
grows exponentially, while there is a simple linear time algorithm.

Now the magic set transformation introduces a predicate m fibbf, which contains
the arguments, for which the Fibonacci function has to be evaluated. Then the rules
are only applicable if the resulting Fibonnaci-number is really needed:

fib(0, 0) ← m fibbf(0).
fib(1, 1) ← m fibbf(1).
fib(N, F) ← m fibbf(N) ∧N > 1 ∧

N1 = N − 1 ∧ fib(N1, F1) ∧
N2 = N − 2 ∧ fib(N2, F2) ∧
F = F1 + F2.

Of course, the predicate m fibbf(0) has to be defined in such a way that it contains
those arguments to the Fibonacci function which occur during the computation:

m fibbf(10).
m fibbf(N1) ← m fibbf(N) ∧N > 1 ∧N1 = N − 1.
m fibbf(N2) ← m fibbf(N) ∧N > 1 ∧N2 = N − 2.

13

If this “transformed” program is evaluated bottom-up, it computes only Fibonacci
numbers needed for the query, and it computes every Fibonacci number only once.
The goal-direction is inherited from top-down evaluation, while the memoing of al-
ready computed facts is from bottom-up evaluation. By the way, it is a standard
technique in functional programming to create a list of previous calls to a function
and to search in this list before really executing the function.

It is by now folklore that bottom-up evaluation after the “magic set” transforma-
tion is at least “as efficient as” top-down evaluation. This is for instance what the
title “Bottom-Up beats Top-Down for Datalog” of Ullman’s paper [Ull89a] suggests.
The result was very important because top-down evaluation was well-known in logic
programming, and had been successfully used in many practical applications. With
this result it seemed that deductive databases could be equally successful — or even
more, because of the additional functionality. Of course, the implementation tech-
niques of logic programming were better developed, and databases might introduce
some overhead, but the result caused much optimism. It seemed achievable that good
implementations of deductive databases will eventually beat Prolog systems.

However, Ullman in fact has not used the top-down algorithm of Prolog as a
measure for comparison, instead he used an algorithm called QRGT-resolution (de-
veloped by himself). And in fact it is easy to see that the same result does not hold
for Prolog’s SLD-resolution. It is already wrong for the standard transitive closure
program (see above), applied to a graph which is a simple straight line:

u - u - · · · - u - u

Here, the running time of Prolog’s SLD-resolution is O
(
n ∗ log(n)

)
, while magic sets

need more than O(n2). To be fair, already Ullman noted in a footnote of [Ull89a]:

“However, Prolog implementations usually use a form of tail recursion op-
timization that, for certain examples, such as the right-linear version of
transitive closure, will avoid rippling answer tuples up the rule/goal tree,
and thus can be faster than QRGT.”

Although it is true that Prolog implementations have a tail recursion optimization,
the main goal of this optimization is to save memory; the improvement of the running
time is only a side effect. And in fact, the difference in performance can already be
understood on the abstract level of SLD-trees, we do not have to look at the internal
data structures of a Prolog system. We will investigate this example more formally in
Chapter 3, and show that the problem indeed occurs only in tail-recursive programs,
and that the only reason is the “materialization of lemmas” during bottom-up eval-
uation of the magically rewritten program. These questions have been investigated
several times in the literature, but we believe that our formalizations and proofs (given
in Chapter 3) are especially useful, simple, and clear. Furthermore, we will show that
by using Bry’s idea of deriving magic sets from a metainterpreter [Bry90b], we can
get (at least for tail-recursive programs) a rewriting technique which directly mimicks
SLD-resolution.

14 CHAPTER 1. INTRODUCTION

The Need for Nonmonotonic Negation

Above, we said that a deductive database system can also be seen as an automated
theorem prover for some simple subset of logic. However, there is one important
difference: Negation is usually not treated as the negation of classical logic, but as
some form of “negation as failure to prove”. In this way deductive databases violate
the principle of monotonicity, which is fundamental to classical logic: If we add further
facts to the database, it might happen that previous answers become invalid. Such a
behaviour is impossible in classical logic.

Naturally, if one changes the logic in such a way, one should have good reasons
for this. In order to see the need for nonmonotonic negation, let us first consider a
simple example. Suppose that we want to create a small database with information
about the computers of our institute. In the tabular representation usually used in
relational databases, this would look as follows:

Name Type Bench Date Price

wega SPARCserver 330 89 11/89 84 425
pollux SPARCstation 1 113 11/89 28 860
sirius SPARCstation ELC 72 11/91 9 967
regulus SPARCstation 10 Mod . 30 33 12/92 26 443
spica SPARCstation 10 Mod . 20 42 12/92 18 126
polaris SPARCstation 10 Mod . 20 36 12/92 18 126
krypton IBM RS/6000 Mod . 220 110 12/92 15 972
prokyon SPARCclassic 88 8/94 8 973
capella Linux 486/66 42 11/94 4 500
deneb SPARCstation 5 Mod . 110 32 10/95 17 478
antares Linux Pentium /100 16 10/95 6 900

(The value in column Bench shows the number of seconds needed to format (with
LATEX) this thesis, so lower values mean higher performance.)

Usually, such a table is represented in logic as a set of facts:

computer(wega, ’SPARCserver 330 ’, 89, 11/89, 84 425).
. . .
computer(antares, ’Linux Pentium/100 ’, 16, 10/95, 6 900).

Now if we ask the query, “Does the institute have a computer called atair?”,

computer(atair , , , , ,),

we expect of course the answer “no”. But this answer is not logically correct: Given
only the above set of facts, the system must logically answer “I don’t know”. The rea-
son is that we have specified explicitly only what is true about the relation computer ,
and not what is false.

The nonmonotonic logic used in deductive databases automatically assumes that
everything else is false, so we get the intended answer. However, it might seem at first

15

that changing the logic is much too drastic. So, how can we specify this in standard
first order logic? Obviously, it is impossible to explicitly enumerate all false facts like

¬computer(atair , ’SPARCstation IPC ’, 74, 8/91, 12000).

(By the way, even if there were only finitely many constants, we would need a “domain
closure axiom” in addition in order to conclude that the above answer is “no”.) A
much better solution seems to be an explicit definition of the predicate “computer”
by means of a completion-formula [Cla78] like

∀ N, T, B, D, P :
computer(N, T, B, D, P)
↔ (N = wega ∧ T = ’SPARCserver 330 ’ ∧ B = 89 ∧D = 11/89 ∧ P = 84 425)
∨ . . .
∨ (N = antares ∧ T = ’Linux Pentium/100 ’ ∧B = 16 ∧D = 10/95 ∧ P = 6 900).

However, even with this prerequisite, the answer “no” is not justified, because it is
not clear to a purely logical reasoner that atair and for instance wega are really two
different objects — it might be only different names for the same object, such as “the
butler” and “the murderer” in some thrillers. What we need are the “unique name
axioms”, such as “atair 6= wega”. Of course, if we have infinitely many constants,
these axioms cannot be written down explicitly. And even if there are only finitely
many constants, the set of UNA-axioms grows quadratically, so it is very impractical
to work with them.

Of course, it might be possible to construct a theorem proving algorithm which
uses the unique name axioms implicitly. However, this is in fact already a change of
the logic. But it is not such a big change as we propose, because the logic remains
monotonic. This solution would suffice for relational databases, but it does not suffice
for recursive rules. For instance, the transitive closure has no explicit definition like
the one given for computer above. In (nonmonotonic) Datalog, pairs of connected
nodes in a graph can be defined as follows:

path(X ,Y) ← edge(X ,Y).
path(X ,Y) ← edge(X ,Z) ∧ path(Z ,Y).

Again, the intention is that path contains only those tuples which are derivable by
these rules. It might seem at first that the following axiom would constrain path in
the correct way:

∀ X ,Y : path(X ,Y) ↔ edge(X ,Y)
∨ ∃ Z :

(
edge(X ,Z) ∧ path(Z ,Y)

)
.

However, this does not work for cyclic relations edge, i.e. it does not enforce that path
is only the transitive closure. For instance, if edge consists of the single tuple (a, a),
also the following relation would be a model of the above formula:

path :=
{

(a, a), (a, b)
}
.

16 CHAPTER 1. INTRODUCTION

In fact, it can be proven that no set of first order formulas works if edge can be any
finite relation, because the transitive closure is not first order definable (this is also
the deeper reason why it is not expressible in SQL).

At this point, we could still solve our problems by simply translating the “I don’t
know”-answer of the first order theorem prover into “no”. However, this works only
as long as we do not use negation explicitly. For instance, suppose that the comput-
ers pollux and capella got faulty. We represent this in another relation:

faulty

pollux
capella

It is now natural to ask, “Which computers are currently available?”. Of course,
we could first query all computers, write the result down, and then query all faulty
computers and take the set-difference. But a fundamental principle of query language
design is that such simple combinations of queries should again be a valid query. For
instance, in Datalog we get the available computers by means of the following query:

computer(X , , , ,) ∧ not faulty(X).

Note that here “not” does not denote the negation of first order logic, but “it is not
provable that”. Of course, it is also possible to define a derived relation (a “view” in
database terms), which contains the available computers:

available(X)← computer(X , . . .) ∧ not faulty(X).

This is not as simple as it seems at first, because now the theorem prover has to reason
about something not being provable while it is performing a proof. For instance, a
typical paradoxy is

p ← not p.

Cases like this have lead to quite a number of semantics for nonmonotonic negation,
we will consider this in greater detail in Chapter 4.

Returning from this technical discussion, it is also important to note that human
beings reason nonmonotonically in such a way. For instance, it is much simpler for
us to write down the positive facts than to create correct ↔-definitions (if at all
possible). Since deductive databases are intended to be used not only by logicians, it
is important to find a formalism which is similar to the way people think. For instance,
it happens quite often that we say “if”, when we really mean “if and only if”. We like
to concentrate on the important things and leave the rest to be understood without
saying.

The field of artificial intelligence is investigating how to formalize “common sense”.
For instance, John McCarthy has considered in [McC80] the well-known puzzle of
missionaries and cannibals:

Three missionaries and three cannibals come to a river. A rowboat that
seats two is available. If the cannibals ever outnumber the missionaries on
either bank of the river, the missionaries will be eaten. How shall they cross
the river?

17

Of course, in order to find a solution algorithmically, one usually describes the prob-
lem space as a set of states with the allowed transitions between them. But, as
McCarthy argues, it is really a big step from the above problem description in
natural language to the proper formalization:

The second reason why we can’t deduce the propriety of Amarel’s
representation is deeper. Imagine giving someone the problem, and after he
puzzles for a while, he suggests going upstream half a mile and crossing on a
bridge. “What bridge,” you say. “No bridge is mentioned in the statement
of the problem.” And this dunce replies, “Well, they don’t say there isn’t a
bridge.” You look at the English and even at the translation of the English
into first order logic, and you must admit that “they don’t say” there is no
bridge. So you modify the problem to exclude bridges and pose it again, and
the dunce proposes a helicopter, and after you exclude that, he proposes a
winged horse or that the others hang onto the outside of the boat while two
row.

You now see that while a dunce, he is an inventive dunce. Despairing
of getting him to accept the problem in the puzzler’s spirit, you tell him
the solution. To your further annoyance, he attacks your solution on the
grounds that the boat might have a leak or lack oars. After you rectify that
omission from the statement of the problem, he suggests that a sea monster
may swim up the river and may swallow the boat. Again you are frustrated,
and you look for a mode of reasoning that will settle this hash once and for
all.

We see that the problem is again one of implicit negation: First, there are no other
means of transportation besides the one mentioned in the puzzle, and second, there
are no other problems, besides that the cannibals might eat the missionars.

Applications of Disjunctive Information

The above kind of deductive databases with some form of nonmonotonic negation is
more or less standard now (although the allowable uses of negation are quite restricted,
we will investigate this further in Chapter 4).

In this thesis, we go one step further and also allow to represent disjunctive
information in the database.

Usually, a deductive database has only one intended model corresponding to the
completely known state of the real world. However, there are many applications where
we do not know exactly which of some possible states is the correct one. Examples
are:

• Null values: For instance, an age “around 30” can be 28, 29, 30, 31, or 32.

• Legal rules: The judge always has some freedom for his decision, otherwise
he/she would not be needed. So laws cannot have a unique model.

• Diagnosis: Only at the end of a fault diagnosis we know exactly which part of
some machine was faulty. But as long as we are searching, there are different
possibilities.

18 CHAPTER 1. INTRODUCTION

• Biological inheritance: E.g. if the parents have blood groups A and 0, the child
must also have one of these two blood groups (example from [Lip79]).

• Natural language understanding: There are many possibilities for ambiguity
here, and this is represented most natural in multiple intended models.

• Conflicts in multiple inheritance: If we want to keep as much information as
possible, we would assume the disjunction of the inherited values [BL93].

• Reasoning about conflicts in concurrent updates: If we do not know in which
sequence two processes are executed, we can assume only the disjunction of the
two values they assign to some variable.

It is often possible to code these situations somehow in Horn clauses, but this is
difficult, indirect, and therefore rather error-prone. At least in the first phases of
database design we should use the most powerful tools available to be as near to the
real world as possible. Later, it might be useful to apply some transformation to
the database in order to increase efficiency. Naturally, it would be very useful if the
same deductive database system could be used in every step of the transformation
and we would have the possibility to stop whenever we have reached a sufficient
degree of efficiency. Our goal is a system which allows gradual transitions between
the disjunctive and the standard Horn case. For instance, if the database is “mostly
Horn”, i.e. there are only a few disjunctive rules which are not used too heavily, then
the efficiency should also be nearly that of a standard deductive database.

However, it must be said at this point that disjunctive databases are really more
powerful than standard deductive databases: A translation from a set of disjunctive
rules into Horn clauses is not always possible, at least not without increasing the
number of objects, for instance by introducing lists. This follows from complexity-
theoretic considerations: For instance, it is known that a satisfiability-test for a set
of propositional clauses is NP-complete. Such a satisfiability-test can easily be done
by a disjunctive deductive database. Clauses with at least one positive atom, such as
p1 ∨ p2 ∨ ¬p3 ∨ ¬p4, are written down in the form

p1 ∨ p2 ← p3 ∧ p4,

while clauses without a positive atom, such as ¬p1 ∨ ¬p2, are represented as

false ← p1 ∧ p2.

Now the set of clauses is unsatisfiable iff false follows from this database. So it is
possible to specify this NP-complete problem in a disjunctive deductive database,
while bottom-up evaluation of a standard Horn database is always polynomial.

So disjunctions really increase the expressive power of a deductive database, and
make it more similar to a general automated theorem prover. However, an important
difference is that we require the clauses to be “range-restricted”, i.e. every variable
must appear in a positive body literal. So a deductive database can reason only about
the objects explicitly known to it, usually not about all integers and so on. Such tasks,
which are required for instance in program verification, need an automated theorem
prover, not a deductive database.

19

If we wanted to relax this restriction, as even some standard deductive databases
do, we would loose a lot of efficiency, because database techniques are no longer
applicable. So we would have to use also the implementation techniques for theorem
provers, and this is a different area, which is not treated here. Maybe, we can say
that a database in contrast to a theorem prover is always able to give specific objects
as answers to queries — not only the information that there is such an object, or that
all objects have this property.

As can be seen from the above discussion, we have now left the realm of standard
deductive databases, and it is quite a big step to disjunctive databases. In fact, some
people believe that disjunctive databases will never reach an acceptable degree of ef-
ficiency, such that they can be used in practice. They say that if already standard
deductive databases have efficiency problems, and are currently seldom used in real
applications, why look at something more general? Well, the answer is that disjunc-
tive databases can really solve problems for which standard deductive databases are
not applicable. Naturally, disjunctive databases will always be used only in more spe-
cialized application domains (maybe niches), and it will need more time until there
are powerful implementations. However, for us it is also interesting to see how tech-
niques developed for the Horn case are really applicable in a more generalized setting.
Furthermore, automated theorem provers, which are even more general, have been
successfully used for solving practical problems. So there is hope that disjunctive
logic programming will also become useful for applications which do not need the full
power of automated theorem proving, but have a fact base of medium size, which
cannot be handeled by standard theorem provers.

For Horn clauses, it is by now generally accepted that top-down and bottom-
up query evaluation techniques both have advantages of their own and that none is
superior to the other for all applications. Furthermore, the cross-fertilization of both
approaches was very successful [Bry90b]. But for disjunctive rules, up to now top-
down approaches were dominant [LMR92]. Although it is known that the bottom-
up immediate consequence operator TP can be directly generalized to disjunctive
rules [MR90], this is usually considered only as a means to define the semantics, not
as something amenable to implementation.

One important reason for this is that TP as defined in [MR90] allows very often
the derivation of exponentially many disjunctive facts (although this is not made
explicit in that paper, see Chapter 5 for an example). Now our contribution is an
optimization of TP which makes the resolvable literal in a disjunctive fact unique. In
many cases, this reduces an exponential behaviour to a polynomial one. We thereby
improve an optimization which is already known for positive hyperresolution [CL73]
(the theorem-proving counterpart of the disjunctive TP) for quite a long time.

By applying these ideas, disjunctive rules can be naturally translated into Horn
clauses with lists. This allows a direct implementation on standard deductive database
systems. Of course, more specialized data structures would be very useful for a re-
ally efficient implementation. However, by the inverse translation, it is also possible
to generalize standard implementation techniques developed for Horn clauses to the
disjunctive case. This is our main point.

20 CHAPTER 1. INTRODUCTION

For instance, one of the very basic things a standard deductive database does
is that it applies the rules in the order of the predicate dependencies and iterates
only (mutually) recursive rules. However, prototype implementations for disjunctive
databases usually iterate all rules until nothing changes. The reason for this is that
a seemingly innocent rule like p(X) ← q(X) needs to be applied two times if there
is e.g. the disjunctive fact q(a) ∨ q(b). The notion of disjunction types developed in
Section 5.1 does allow to determine an evaluation order for disjunctive rules.

In fact, up to now such an analysis was nearly impossible, because there are
so many ways to derive a disjunctive fact. With our optimization, the possibilities
to resolve with a disjunctive fact are drastically reduced. In the case of positive
disjunctive databases, where one is only interested in disjunctions of answer-literals,
the resolvable literal within a disjunction can be made unique. However, even in the
general case (where we need more information in order to evaluate negative body
literals) our technique reduces the the number of different derivations of the same
disjunctive fact.

By now, there is quite a lot of research on disjunctive information, e.g. [Lip79,
RT88, MB88, Dem91, LMR92, SA93, EGM94]. However, there are still very few
actual implementations (e.g. [SA93]), and even less using database techniques. We
believe that disjunctive databases will only get away from the (early?) prototype state
if we can make the best possible use of what is already known for standard deductive
databases. This motivated the work presented in Chapter 5.

The Crisis of Deductive Databases

It seems that at the moment quite a number of deductive database researchers are a
little frustrated: There is a nice theory, and there are some larger prototype imple-
mentations (see Figure 1.3 and [Ram94, RU95]), but deductive databases have not
yet made their way into industry: No software company is currently developing (let
alone selling) a deductive database system, and the available prototype systems are
also used nearly exclusively in the universities themselves.

In fact, there has been a commercial deductive database system, called SDS
[KSSD94], but it did not sell well enough. The development began 1986 and ended
1990. The system was quite ahead of the time, for instance by being especially de-
signed for the integration of heterogeneous systems. At the beginning, it ran only
in a Lisp environment, which might have deterred possible customers. Also, some
companies had just moved to a relational database, and were not ready for another
change. Finally text books on deductive databases were missing at that time, and
application programmers did not know Datalog.

One reason, why deductive databases did not (yet) get their way is also that cur-
rently object-oriented databases are more fashionable. There are a number of com-
panies producing object-oriented database systems, and also quite a lot of industrial
users. However, one of the achievements of relational databases was their declarative
query language, namely to say only what is wanted, and not how to compute it. From
this point of view, object-oriented databases (in their current development state) are
a step backward: It is often necessary to program in C++ to get the desired result.

21

System Start Group References

LDL 1984 MCC [Zan88, NT89]
NAIL! 1985 Stanford University [MUVG86, Ull89b]
SDS 1986 MAD Intelligent Systems [KG90, KSSD94]
ConceptBase 1986 RWTH Aachen [JGJ+94]
Aditi 1988 University of Melbourne [Ram93, VRK+94]
CORAL 1988 U. Wisconsin at Madison [RSS92, RSSS94]
XSB 1989 SUNY at Stony Brook [SSW94]
LOLA 1988 TU München [FSS+92]
EKS-V1 1989 ECRC [VBK+92]
LDL++ 1990 MCC [Zan92, ZAO93]
Glue-NAIL! 1991 Stanford University [PDR91, DMP94]

Figure 1.3: Some Implementations of Deductive Database Technology

The idea of declarative programming is summarized in Kowalski’s equation:
‘Algorithm = Logic + Control”. In standard imperative programming, the control
part is explicit and the logic implicit, while in declarative programming, it is the
other way round. The advantages of declarative programming are:

• Enhanced Productivity: It is not unusual that an equivalent formulation in
Prolog or Datalog is ten times shorter than in C or C++. Since there is also
reason to assume that the time an experienced programmer needs for one line of
code is more or less independent of the language, this can lead to drastic savings
in time and money.

• More Powerful Optimization: Since no fixed execution algorithm has influ-
enced the language design, the space of possible optimizations is much bigger.
On the other hand, optimization is not only possible, but also necessary, since a
naive evaluation algorithm would be to inefficient.

• Simpler Parallelization: Imperative programming languages are often in-
fluenced by classical machine models, and a not very high abstraction of the
machine language. Therefore, programs written in such languages cannot make
full use of new machine architectures. Thus, programs written in declarative
languages will probably live longer.

• One Logic, Many Algorithms: The dream of declarative programming is
that the system automatically selects an optimal algorithm for the specified
problem. Of course, this is impossible. However, it is possible to have an exten-
sible optimizer: If the algorithm used for the general case should be too slow, the
programmer can add annotations to guide the optimizer, or integrate new algo-
rithms. In fact, the optimizer can have a whole library of possible algorithms at
its disposal, similar to the different algorithms for joins and other operations in
relational databases. Another simple example for “one logic, many algorithms”
is the possibility to create or delete indexes in relational databases without hav-

22 CHAPTER 1. INTRODUCTION

ing to change application programs. This gives a good way to adapt to changing
usage profiles.

• Simpler Verification: Since the semantics of the language is simpler and better
formalized, also the verification of programs in this language is simpler. For
instance, there exists a system for proving the termination of nontrivial Prolog
programs, which is able to prove its own termination [Plü90]. I do not know of
an equally powerful system for imperative programming languages.

Of course, object-oriented databases have also certain advantages, for instance
an extensible type system, the clustering of whole objects on external memory, and
a module concept. But all this can also be integrated in deductive databases, and
there is currently a lot of research on deductive and object-oriented databases (DOOD
systems). This is a very promising development for the future, and it seems that also
the development of prototype systems is going this way.

In 1994, it became known that BULL was developing such a deductive object-
oriented database system [RH94, FGVLV95]. However, in 1995 the whole group was
closed down. This management decision is hardly understandable.

It seems to me that more research is needed before deductive database technology
can really redeem its big promises. It is also necessary to look more at the needs of
real applications, and to extend Datalog accordingly without sacrificing its cleanness
and simplicity. Probably still more patience is needed than a company can have.
Some scientists believe that it is no longer a problem of research, but only of having
better implementations. For instance, on ICDE’93 there was a panel discussion “Are
we Polishing a Round Ball?” [Sto93], and the topic of recursive query evaluation got
especially bad marks for the potential of innovative research. Also Ramakrishnan

writes in the preface to [Ram95]:

These limitations can mostly be addressed by more careful implementa-
tions, and are perhaps understandable in research prototypes; it does not
seem that fundamental new techniques are required to resolve them.

I believe that Chapter 3 of this thesis shows that there are essential problems not
adequately treated in the literature. There have been quite a number of prototype
implementations. If there was still no real breakthrough, this is not only a problem
of implementation.

Let us also say some words on efficiency. This is often considered as very important
by industrial users, whether it is really needed for the application at hand or not. It
is a shame that the currently most efficient “deductive database system”, namely
XSB [SSW94], uses mainly Prolog technology, and not the algorithms developed in
the field of deductive databases. Of course, we must say that the comparison is a little
unfair, since XSB (as well as many other prototypes) are main memory systems. And
database technology is intended for the management of large amounts of data, which
can only be kept on external storage. However, we should be able to make efficient use
of available main memory, and it is certainly an interesting and important research
problem to find out why Prolog technology is more efficient here and how we could
improve the techniques of deductive databases to catch up with it. There are also

23

certain very typical operations in deductive databases, such as the computation of
transitive closures, where deductive databases should be as efficient as a hand-crafted
implementation in C. In the preface of [Ram95] it was noted that for an application
in program analysis, an equivalent program in Datalog was much shorter than a C-
program (“about a hundred lines vs. a few thousand lines”), but also 5-10 times
slower when executed on CORAL. Although this already saves money, because the
man power for the additional programming time is much more expensive than buying
a ten times faster computer, we must try to make the efficiency loss smaller.

It is also an interesting question, whether the deductive database researchers
and implementors believe themselves in deductive database technology. In Prolog
implementations it is very common to have a large part implemented in Prolog itself
(e.g., the whole compiler into WAM-code). In current deductive database systems,
this does not seem to happen at all. It is not an acceptable excuse that a deductive
database system is mainly a database system, and cannot be used for programming
tasks. One of the main selling arguments for deductive database technology is that it is
an integrated programming and database environment. For example, since deductive
database systems are especially well-suited to process graph-structured data, this
should also apply the the predicate dependency graph extracted from the rules. If
we have problems to get applications from the outside, we might start by looking
at the deductive databases themselves. In an invited talk at DOOD’93, Rainer

Manthey gave an overview of the possibilities to use deductive databases in their
own implementation [Man93].

Currently, quite a lot of manpower has to be invested into the development of nice
user interfaces. Object-oriented languages have special support for this since a long
time, and it would certainly increase the acceptance of deductive databases if there
would be an easy and powerful way to build user interfaces in Datalog. It seems that
in order to process events triggered by the user, an integration with the concepts of
active databases would be useful. This means that rules can also work as production
rules, not only as deduction rules.

In this thesis, we will clarify and improve the foundations of deductive databases,
since only well-understood concepts can be successfully implemented. We will return
to the roots of deductive databases, namely the relation to logic and automated the-
orem proving, and further develop deductive databases by features which imperative
languages will never have, namely powerful concepts for optimization, nonmonontic
negation, and disjunctions.

What is New in This Thesis?

This thesis is structured by considering different classes of Datalog programs, one in
each chapter.

Chapter 2 is devoted to the standard case of Horn-clause Datalog, but with
built-in predicates (such as <, sum, and so on). Pure Datalog is well known in the
literature, but it seemed necessary to review it to have a basis for later extensions and
comparisons. The inclusion of the standard case makes this work more self-contained
and precise, since the field has not yet reached completely canonical definitions. How-

24 CHAPTER 1. INTRODUCTION

ever, Chapter 2 is not simply a compilation of parts from other textbooks and papers.
I had fun in writing it and believe that some degree of originality was reached.

Chapter 3, “Goal-Directed Bottom-Up Evaluation” also considers the case of
pure Horn-clause programs, but is devoted to the special problem of simulating the
goal-directed SLD-resolution by bottom-up evaluation. This chapter is based on my
paper [Bra95], but contains an important improvement in the proposed method.
In Section 3.1, we compare the efficiency of bottom-up evaluation after the stan-
dard “Magic Set” transformation with the efficiency of SLD-resolution. As shown
by Ross [Ros91], bottom-up query evaluation with magic sets can be much slower
than SLD-resolution for tail-recursive programs. We show that this happens only
for tail-recursive programs, and that the only problem of magic sets is the “materi-
alization of lemmas” (which is also done in variants of SLD-resolution which ensure
termination). In any case, “magic sets” are “as goal-directed as” SLD-resolution. It
is difficult to say how new these results are, certainly they are not very surprising.
There are a number of similar approaches which compare variants of magic sets and/or
variants of SLD-resolution [Ull89a, Sek89, RS91]. We compare the original magic sets
with the real SLD-resolution, and give simple formalizations and proofs, suitable for
classroom usage.

In Section 3.2, we show that it is possible to exactly simulate SLD-resolution
for tail-recursive programs and to combine it with magic sets for other programs.
A variant of magic sets with tail-recursion optimization has already been proposed
by Ross [Ros91], but our goal is not only to solve this problem but to simulate SLD-
resolution by bottom-up evaluation as far as we can. Formally, our method is different
from the method of Ross since we work with lists of literals while he uses only pairs,
and we produce range-restricted Datalog, while his method yields HiLog. However,
the main reason why we believe that we can make an important contribution is that
our method is based on a very simple idea, namely to simulate SLD-resolution by
means of a meta-interpreter in the style of Bry’s approach [Bry90b], but it gives
many optimizations for free:

• If the given program is nonrecursive, then the transformed program is nonre-
cursive, too. For the magic set transformation, this is not necessarily the case,
and this is an important problem. For instance, the magic set transformation
can also be useful in standard relational databases [GM93], where the query
evaluation algorithm is unable to handle recursions.

• Values for anonymous variables never get explicitly represented.

• In contrast to the “magic set” transformation, we need no extra rectification. It
is automatically included in a simulation of SLD-resolution.

• Constants are “pushed downward” as far as possible already during the trans-
formation (at “compile time”).

• Also other constraints, such as X < 100, can be pushed into the called rules in
order to abort inconsistent paths early.

• To some degree, also incomplete bindings can be passed to the called rules.
In contrast, the standard magic set transformation usually assumes that every
argument is either a ground term or a free variable. However, our transformation

25

also needs to “abstract” the binding information over some fixed depth limit.

• Finally, the idea to simulate SLD-resolution allows also a better understanding
of the counting method and its generalizations [GZ92].

Probably Section 3.2 is the most important contribution of this thesis from the prac-
tical viewpoint, and Section 4.2 is the most important contribution from a more
theoretical viewpoint.

In Chapter 4, “Negation as Failure”, we extend the class of Datalog programs
to allow nonmonotonic negation. In Section 4.2, we characterize the two most impor-
tant negation semantics by simply requiring that certain natural elementary program
transformations preserve the semantics of the program. For example, it should be
possible to delete a tautological rule like p(X)← p(X) or to “unfold” a body literal,
i.e. replace it by the bodies of the rules with matching head literal. In Section 4.3,
we present a general framework for the computation of different negation semantics
based on the idea of conditional facts [Bry89, Bry90a, DK89a, DK89b]. We show that
with very weak assumptions on the semantics (namely the possibility to delete tau-
tologies and to perform unfolding), the derivable conditional facts are equivalent to
the original program. Our approach can be described as a source-level transformation
of the program, and therefore is easy to understand and to verify. We believe that
it also helps to understand other proposed query evaluation algorithms for specific
semantics. The results of this chapter are based on my joint work with Jürgen Dix

[BD94b, BD94a, BD95b, BD95a, BD95c]. Here, I specialized the results to the case of
non-disjunctive Datalog, and was able to develop them a little further. The compu-
tation of the residual program and the well-founded and stable model semantics has
been implemented by Dirk Hillbrecht and Michael Salzenberg [HS96] (even
in the disjunctive case).

In Chapter 5, “Reasoning with Disjunctions”, we consider another extension of
pure Datalog, namely Datalog with disjunctions in the heads. We exclude nonmono-
tonic negation here, since the ideas presented in Chapter 4 can easily be extended to
the disjunctive case [BD94b, BD94a, BD95b, BD95a, BD95c] and it seems better to
consider the problems of negation and disjunctions first separately. In Section 5.1,
we propose an optimization of the immediate consequence operator TP which resolves
only with a single literal of every disjunction fact and still is complete for deriving
“answer clauses”. This utilizes an idea known for “positive hyperresolution” (the
theorem-proving counterpart of the disjunctive TP) for a long time [CL73], but we
show that for range-restricted clauses, the optimization can be descisively strength-
ened [Bra94a]. By applying this idea, disjunctive rules can be naturally translated into
Horn clauses with lists. This allows a direct implementation on standard deductive
database systems.

We then introduce the notion of disjunction types, which allow us to generalize
techniques based on the predicate dependency graph (such as determining an evalu-
ation order) to disjunctive rules. By specializing the meta-interpreter for disjunctive
rules with respect to these disjunction types, we get a quite reasonable Horn-clause
implementation of a disjunctive program. By the way, the notion of disjunction types
is very similar to the “node types” used in Section 3.2. This work has not been
previously published.

26 CHAPTER 1. INTRODUCTION

In Section 5.2, we use the reasoning algorithm developed in Section 5.1 for query
evaluation under the stable model semantics. The stable model semantics is inherently
disjunctive, and is often used to express disjunctive knowledge in non-disjunctive logic
programs. So it is quite evident that for computing stable models, we need to be able
to reason with disjunctions.

Bibliographical Notes

I would like to mention a number of textbooks and survey papers relevant to the
topics treated in this thesis. Of course, this thesis is sufficiently self-contained so that
it should not be necessary to consult a textbook. In fact, the first four chapters of this
thesis may themselves be seen as a kind of textbook. However, if the reader should be
interested to look at related material or alternative presentations of common material,
we give the necessary references here.

Textbooks on deductive databases (or having a substantial part on them) are
[Ull88, Ull89b, NT89, CGT90, Gog90, Das92, Nus92, CGH94, AHV95]. Survey papers
on deductive databases are, e.g., [Llo83, GMN84, BR86, Min88b, HPRV89, CGT89,
KG90, Zan90, Con91, Tsu91b, RU95]. There is also a special issue of the VLDB jour-
nal on actually implemented deductive database systems [Ram94], and there is a col-
lection of papers on applications of deductive databases [Ram95]. General textbooks
on databases with a chapter on deductive databases are, e.g., [GV89, Dat90]. For the
history of deductive databases, see, e.g., [Min88b, RU95]. Textbooks on nonmono-
tonic reasoning are, for example, [Rei85, Bes88, Eth88, Luk90, Bre91, MT93, GHR94].
Overview papers on the semantics of nonmonotonic negation are [She88, PP90, AB94,
Prz94, Prz95, Dix95a, Dix95b, Dix95c, DF96]. There is currently only one textbook on
disjunctive logic programming, namely [LMR92]. A textbook on automated theorem
proving is [CL73].

	Contents
	1 Introduction
	2 Horn-Clause Datalog
	2.1 Logic and Databases
	2.2 Syntax and Semantics of Datalog
	2.3 Bottom-Up Query Evaluation

	3 Goal-Directed Bottom-Up
	3.1 The \Magic Set" Transformation
	3.2 An Improved Magic Set Technique

	4 Negation as Failure
	4.1 Datalog with Negations
	4.2 A Framework for Studying Semantics
	4.3 Bottom-Up Query Evaluation

	5 Reasoning with Disjunctions
	5.1 Extended Bottom-Up Query Evaluation
	5.2 Application: Computation of Stable Models

	6 Conclusions
	Bibliography
	Index

