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AABBSSTTRRAACCTT  

his dissertation aims to describe work carried out at the Fraunhofer Institute for Com-
puter Architecture and Software Technology (FhG-FIRST), in particular at the research 
group for Intelligent Data Analysis (IDA), within the project “Brain-Computer Inter-

face” (BCI). The goal of that project is to design and develop a hardware and software system 
that is capable of transforming, in real-time, electroencephalographic (EEG) signals (signals 
retrieved in a non-invasive way from surface electrodes placed over the user’s head) into 
specific commands such that the user gains reliable control over a computer application or a 
device. 

In this dissertation, control over a computer application will be represented with “Brain-
Gaming”, i.e. simple computer games like Ping-Pong, Pacman or Tetris. To this end, substan-
tial considerations were made on the design and realization of a communication interface and 
its corresponding protocol. A further important component of every control operation is its 
strategy and the control alphabet, i.e. the command set. For this purpose, several control 
strategies were developed, implemented and proved experimentally in different scenarios. The 
most important aspect of the design and development of these interfaces turned out to be their 
flexibility. Control over a device could include the steering and moving of a wheel-chair for 
paralyzed patients or the gaining of control over an arm or foot prosthesis for patients with 
amputated limbs. The latter was realized here as a computer-based simulation of a virtual limb 
(e.g. arm), such that it can be tested in future experiments on patients with amputated limbs. 

In contrast to the “Brain-Gaming” experiments, where the player was equipped with an 
additional communication channel (one that exists independently of normal communication 
channels of the human neuromuscular system), the experiments with patients did not require an 
ultra-fast recognition of the intended movement; i.e. the command signal for a simulated 
movement can be recognized after the phantom movement is initialized and performed. In 
experiments with feedback scenarios, which can be resembled as competitive games, several 
aspects of ultra-fast movement detection could be investigated with reaction tests. This opens 
new perspectives for the execution of preventive actions in time-critical applications. 

This dissertation, and the development and implementation of the prototype, is based on 
well-founded insights into human neurophysiology; one chapter will deal exclusively with 
these insights. 

Moreover, a special chapter of this dissertation will also describe the development and 
implementation of an online prototype of the BBCI system (Berlin Brain-Computer Interface) 
from the software engineering viewpoint. A number of bio-feedback modules, for gaming and 
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for rehabilitation purposes, were developed within this work and will be presented in detail. 
Special attention was paid to the influence of the online bio-feedback on the user’s behavior. 

 



ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  

ie vorliegende Dissertation beschreibt Ergebnisse der Arbeit, durchgeführt am Fraun-
hofer Institut für Rechnerarchitektur und Softwaretechnik (FIRST), insbesondere bei 
der Forschungsgruppe für Intelligente Datenanalyse (IDA), im Rahmen des Projektes 

„Brain-Computer Interface“ (BCI). Das angestrebte Ziel des aktuell laufenden Projektes ist es, 
ein Hardware- und Software-System zu entwerfen und zu entwickeln, das in der Lage ist 
elektroencephalographische (EEG) Signale (gewonnen auf eine nicht-invasive Art, mit Hilfe 
der Oberflächenelektroden, die über dem Kopf des Benutzers angebracht sind), in Echtzeit in 
spezielle Kommandos umzuwandeln, so dass für den Probanden eine verlässliche Steuerung 
einer Computeranwendung, bzw. eines Gerätes ermöglicht wird. 

Die Steuerung einer Computeranwendung soll im Rahmen dieser Arbeit in Form von ein-
fachen Computerspielen (Ping-Pong, Pacman, Tetris) repräsentiert werden – im Weiteren 
bezeichnet als „Brain-Gaming“. Hierzu sind fundierte Überlegungen zum Entwurf und Reali-
sierung einer Kommunikationsschnittstelle und des zugehörigen Protokolls angestellt worden. 
Ein weiterer wichtiger Bestandteil jeder Steuerung ist deren Strategie und der Befehlssatz der 
Anwendung. So wurden mehrere Strategien entwickelt, implementiert und in verschiedenen 
Szenarien experimentell erprobt. Die Flexibilität der Steuerungsschnittstelle stellte sich als 
einer der wichtigsten Aspekte beim Entwurf und der Entwicklung von Rückkopplungsanwen-
dungen. Bei der Steuerung eines Gerätes kann es sich um das Lenken und Bewegen eines 
Rollstuhls, z.B. für querschnittsgelehmte Patienten, oder um das Bewegen einer Arm-, bzw. 
Beinprothese für Patienten mit amputierten Extremitäten handeln. Dies wurde vorerst als 
Simulation einer Extremität (Arm) auf dem Computer-Bildschirm realisiert, so dass es in 
zukünftigen Experimenten an bedürftigen Patienten getestet werden kann. 

Im Gegensatz zu „Brain-Gaming“ Experimenten, bei denen der Spieler mit einem zusätz-
lichen Kommunikationskanal (der unabhängig von anderen normalen Kanälen des menschli-
chen neuromuskulären Systems ist) ausgestattet wird, stellen die Experimente an Patienten 
keine Anforderung an die ultra-schnelle Erkennung der Bewegungsabsicht; So kann das 
Steuersignal zur Ausführung einer simulierten Bewegung auch nach dem Auslösen der eigent-
lichen Phantombewegung, sogar nach deren Ausführung, erkannt werden. In Experimenten mit 
Feedback-Szenarien, die kompetitiven Spielen ähneln, können verschiedene Aspekte der ultra-
schnellen Erkennung einer Bewegungsintension mit Hilfe von Reaktionstests untersucht 
werden. Dieses eröffnet neue Perspektiven bei der Ausführung von Präventivmaßnahmen in 
zeitkritischen Anwendungen. 
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Diese Dissertation, sowie die Entwicklung und Implementierung des Prototyps basiert auf 
fundierten Erkenntnissen der Neurophysiologie; Ein ausgewähltes Kapitel dieser Dissertation 
verschafft deshalb tieferen Einblick in die menschliche Neurophysiologie. 

Ferner, beschreibt ein gesondertes Kapitel dieser Dissertation die Entwicklung und Imp-
lementierung eines online Prototyps – des BBCI-Systems (Berlin Brain-Computer Interface) – 
in dessen Einzelkomponenten und der Gesamtheit aus dem Sichtpunkt der Softwaretechnik. Im 
Rahmen der Arbeit wurden mehrere Rückkopplungsmodule (Bio-Feedback), sowohl spieleri-
schen Charakters, als auch zu Rehabilitationszwecken entwickelt, die hier im Detail vorgestellt 
werden. Mit besonderer Aufmerksamkeit wurde der Einfluss des online Bio-Feedbacks auf den 
Probanden untersucht. 

 



AACCKKNNOOWWLLEEDDGGMMEENNTTSS  

GGaannzz  eelleenndd  iisstt  kkeeiinneerr  ttrroottzz  üübblleenn  SSiieecchhttuummss::  
DDeenn  EEiinneenn  bbeesseelliiggtt  eeiinn  SSoohhnn;;    

DDeenn  ZZwweeiitteenn  ––  VVeerrwwaannddttsscchhaafftt;;    
SSeeiinn  WWoohhllssttaanndd  ––  ddeenn  DDrriitttteenn,,    

DDeenn  VViieerrtteenn  ––  eeiinn  wwüürrddiiggeess  WWeerrkk  
EEddddaa  ((LLiieeddeerrssaammmmlluunngg  99tthh  ––  1122tthh  cceennttuurryy  AA..DD..))  

y first acknowledgment is addressed to Dr. habil. Martin Stetter for his ability to 
inspire me for the topic of Brain-Computer Interfacing. He, for one, presented the 
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on my heart was set on this promising project. I imparted my inspiration with my former 
colleague, Dipl.-Math. Hendrik Purwins, who referred me to some of his friends who were to 
start working on a BCI project. He brought me to the Fraunhofer-FIRST, where, lo and behold, 
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am very grateful to Hendrik for that lead. 

The head of the laboratory for Intelligent Data Analysis (IDA) at the Fraunhofer Institute 
for Computer Architecture and Software Technology (FhG-FIRST), Prof. Dr. Klaus-Robert 
Müller happened to be looking for a computer scientist and software engineer to design and 
realize a prototype of a BCI system and hired me for this position. I am very grateful to him for 
his faith in me and I hope to have fulfilled his expectations. Klaus almost always found the 
time to speak with his colleagues despite having a busy agenda, being simultaneously involved 
in many other projects, as well as being responsible for the overall team and project manage-
ment. I appreciated in particular his many visionary comments, if not to say too optimistic 
fervor. My most special thanks are dedicated to another leading figure of the BBCI project, Dr. 
Benjamin Blankertz, who often met emerging problems with a sense of healthy realism and 
who had an open ear to most suggestions and proposed solutions. 
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n this introductory Chapter I will describe the topics addressed in the thesis and provide 
readers not familiar with Brain-Computer Interfacing an insight into this relatively new 
research field. A brief overview of how this thesis is organized will then follow with 

suggestions for different reading strategies. Section 2 is addressed to “novices” who have never 
been exposed to the research and development in the field of Brain-Computer Interfacing. With 
short descriptions of BCIs proposed by other groups, I will then give a summary of the state-
of-the-art in this field; however, I do not claim or guarantee completeness. Lastly, I will pre-
sent existing definitions of a Brain-Computer Interface and try to explain the motivation behind 
the development of the Berlin Brain-Computer Interface (BBCI) presented in this work. 

1. How this Thesis is Organized 
This thesis is divided into five major parts; each chapter is self-contained and can be read 
separately or in random order. In the beginning will give an overview of the state-of-the-art of 
this field, honoring the pioneer research groups that have been developing Brain-Computer 
Interfaces for several decades. I will then present some of the most prominent systems and 
research groups. Each of these BCI-systems has its drawbacks; I will highlight these and 
compare them with the BBCI system proposed here. Readers already familiar with these topics 
may skip this part. 

I 



— 2 — 

The guiding idea of every Brain-Computer Interface system is based on human neuro-
physiology; I will give an overview of this branch of biology in Chapter II, highlighting in 
particular certain pertinent “built-in” functions of the brain. A discussion on the influence of 
“real-time” and online bio-feedback on the behavior of the test person will conclude Chapter II. 
Please note that Chapter II does not claim to be complete nor detailed enough for deeper 
neurophysiological research; it serves rather as a description of how Brain-Computer Inter-
faces, in particular the BBCI system, operates. Readers familiar with basic principles of human 
neurophysiology may skip Chapter II. Conversely, readers who do not have basic knowledge 
of human neurophysiology are strongly advised to read Chapter II carefully before continuing 
with Chapter III. 

Chapter III specifies and elaborates on the requirements and objectives of the Berlin 
Brain-Computer Interface and its hardware basis. This includes all sub-processes, listed in the 
sequential order of the usual data flow, in which they are carried out during various experimen-
tal setups. This then brings us to the core of this work: the bio-feedback modules. Section 7 of 
Chapter III will document several bio-feedback modules, including detailed descriptions of a 
series of conducted experiments. 

Chapter IV will focus on my main contribution to this thesis, the state-of-the-art software 
engineering, object-oriented design and programming (OOD/OOP) approaches applied for the 
design and development of the BBCI prototype and several feedback modules. This includes, 
moving from the general to the specific, the design and specifications of the implemented 
system prototype. I will here present abstracts of data structures and the class hierarchy of the 
main part of the prototype, followed by the documentation of the major parts from the software 
engineering viewpoint. The chapter concludes with a documentation of the generic data for-
mats. Readers not interested in implementation details may skip this chapter entirely. 

In Chapter V, the last chapter, I will present perspectives and improvement propositions 
for the BBCI. Concluding the thesis is a visionary outlook of the future disposition and signifi-
cance of Brain-Computer Interfaces in our modern information and computer society. 

Some paragraphs of this thesis are highly technical. While of interest to technically-
minded readers, these paragraphs are not central for understanding the thesis as a whole. These 
paragraphs will be designated with the “technical” symbol as illustrated here. 

Some paragraphs provide or assume some knowledge of human neurophysiology; these 
may be skipped by readers who are not interested in these topics. Again, readers will still be 
able to follow the overall thread of the thesis. These specialized paragraphs are included in the 
thesis to provide completeness for the subset of readers that is interested in neurophysiological 
details. Please note that these paragraphs are kept as short and as simple as possible, omitting 
the gallimaufry of medical language. I will mark these paragraphs with the “brain” icon, as 
illustrated here. 

The BBCI project is highly interdisciplinary and involves many researchers. I could there-
fore not even try to aim for completeness without mentioning the work done by my many 
colleagues. I often refer to work done by other team members – work that provides the basis 
for my own research which I then describe later. I will mark work done by other BBCI team 
members with the “team” icon, as illustrated here. 

2. State-of-the-art in BCI 
This section presents various techniques for “reading” information from the brain, followed by 
a summary of major pioneer research groups that have been developing Brain-Computer 
Interfaces for decades. The section’s subdivisions highlight respective paradigms that current 
BCIs incorporate. Finally, I will present an overview of a general-purpose BCI system, the 
BCI 2000. The BCI 2000, designed in an object-oriented and distributed manner similar to the 
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BBCI, is able to handle a variety of neurophysiological paradigms and can be adapted to 
control different bio-feedback applications. 

2.1 Acquisition technology 

All currently available acquisition technologies can be divided into two groups: invasive 
and non-invasive methods. The latter methods allow acquiring data without surgical interven-
tions such that they can be applied to human test persons in ways that do not harm their health. 
These methods acquire data through electrodes placed on the surface of the head. That data is 
generated by the activity of large populations of neurons of the brain’s cortex below the scull 
bone; as a result of the low conductivity properties of the scull bone, the generated data deli-
quesces at the inner side of the scull bone and is thus limited in its spatial resolution. 

There are several non-invasive methods for monitoring brain activity; they include: Posi-
tron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Magne-
toencephalography (MEG) and Electroencephalography (EEG), all of which have their advan-
tages and shortcomings. 

2.1.a Positron Emission Tomography (PET) 
Positron Emission Tomography, or PET, is a procedure that allows a physician to exam-

ine the heart, brain and other organs. PET images show the chemical functioning of an organ or 
tissue, unlike x-rays; which show only body structure. PET imaging can show the region of the 
brain that is causing a patient’s seizures and is useful in evaluating degenerative brain diseases 
such as Alzheimer’s, Huntington’s and Parkinson’s. PET is able to indicate brain regions that 
are “active”, i.e. regions that consume glucose or saccharose and that produce energy in ex-
change. However, it remains unclear to what extent positron irradiance is harmful to the human 
health. Moreover, the equipment and supplies are very costly for an everyday practice. 

[http://www.biomed.org/pet.html] 

2.1.b Near-infrared Spectroscopy (NIRS) 
All of us are exposed to optical (i.e. visible and near-infrared) radiation from the sun and 

other sources throughout our lives. Assuming that our eyes are protected from excessive 
intensity and our skin from the ultraviolet content of the sunlight, we accept this exposure in 
the knowledge that it is perfectly safe. Unlike x-rays, optical photons are insufficiently ener-
getic to produce ionization, and unless light is concentrated to such a high degree that it burns 
the skin, optical radiation offers no significant hazard. The diagnostic potential of optical 
methods has been widely known since Jöbsis [Jöbsis, 1977] first demonstrated that transmit-
tance measurements of near-infrared (NIR) radiation could be used to monitor the degree of 
oxygenation of certain metabolites. This led to the development and increasingly widespread 
use of clinical near-infrared spectroscopy (NIRS), which offers a safe, non-invasive means of 
monitoring cerebral function at the bedside without the use of radioisotopes or other contrast 
agents [Cope and Deply, 1988]. 

Human tissues contain a variety of substances whose absorption spectra at NIR wave-
lengths are well defined and which are present in sufficient quantities to contribute significant 
attenuation to measurements of transmitted light. The concentration of some absorbers, such as 
water, melanin, and bilirubin, remain virtually constant with time. However, some absorbing 
compounds, such as oxygenated hemoglobin (HbO2), deoxyhemoglobin (Hb) and oxidized 
cytochrome oxidize (CtOx), have concentrations in tissue which are strongly linked to tissue 
oxygenation and metabolism. Increasingly dominant absorption by water at longer wavelengths 
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limits spectroscopic studies to less than about 1000 nm. The lower limit on wavelength is 
dictated by the overwhelming absorption of Hb below about 650 nm. However, within the 
650-1000 nm window, it is possible with sensitive instrumentation to detect light that has 
traversed up to 8 cm of tissue. 

[http://www.medphys.ucl.ac.uk/research/borl/research/NIR_top
ics/nirs.htm] 

2.1.c Magnetic Resonance Imaging (MRI) 
Magnetic resonance imaging, or MRI, is an imaging technique used primarily in medical 

settings to produce high quality images of the inside of the human body or brain. MRI applies 
nuclear magnetic resonance (NMR), a spectroscopic technique used by scientists to obtain 
microscopic chemical and physical information about molecules. The human body consists 
primarily of fat and water, both of which contain many hydrogen atoms; as a result, the human 
body consists in great part (approximately 63%) of hydrogen atoms. These atoms are dipoles 
and can be thought of as a small magnetic field; their nuclei will produce an NMR signal. MRI 
of the brain uses a magnetic field, radio waves and a computer to create detailed image slices 
of an area. MRI technology allows physicians to evaluate different types of tissue as well as 
distinguish healthy tissue from diseased tissue. Although MRI is able to provide high spatial 
resolution images, its temporal resolution is quite poor. 

[http://www.cis.rit.edu/htbooks/mri] 

2.1.d Magnetoencephalography (MEG) 
The measurement of magnetic fields generated by electric currents in the brain, close to 

the surface of the head, allows localizing the origin of electric currents and may be used to map 
cortical brain function. MEG is based on the principle that all electric currents generate mag-
netic fields. The main source of the extracranial magnetic fields detected with MEG instru-
ments originate mainly from a current flow in the long apical dendrites of the cortical pyrami-
dal cells. A distal excitatory synapse will induce a dipolar dendritic current towards the soma 
of the pyramidal cell, meaning that the electricity flows in one direction along the entire length 
of the dendrite, which can therefore be considered an electric dipole. Pyramidal neurons 
constitute nearly 70% of neocortical neurons. Their cells, with their long apical dendrites, are 
oriented perpendicular to the brain cortex. There are more than 100.000 of these cells per 
square millimeter. MEG provides millisecond temporal resolution and several millimeters 
spatial resolution of brain function; however, it gives no detailed anatomical information. 
Therefore it is often combined with MRI. The recorded bio-magnetic signals are very similar to 
EEG. Moreover, also similar to EEG, the signals may be either spontaneous or related to a 
stimulus, e.g. audiovisual, tactile, vibratory, or electric. 

[http://www.amershamhealth.com/medcyclopaedia] 

2.1.e Electroencephalography (EEG) 
Electroencephalography (EEG) records the bioelectric activity of the brain by means of 

an array of up to 256 surface electrodes that, applied to the scalp, function based on volume 
conduction analogously to electrocardiograms. The voltage fluctuations registered by the EEG 
are summations of the continually ongoing electrical activity of large populations of cortical 
neurons. On the whole, an EEG record reflects the extracellular currents resulting from postsy-
naptic membrane depolarization and hyperpolarization of cortical pyramidal neurons. Their 
anatomical position (normal orientation to cortical surface, parallel array of dendritic tree, 
laminar distribution) results in the generation of relatively large electrical fields or dipoles. 
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EEG consists of the continuous recording of rhythmic positive/negative voltage fluctuations in 
the microvolt range (1-200 µV). It is state-dependent and reflects ongoing brain activity, thus, 
activity that may change due to age, arousal level, sleep stage, or cerebral dysfunction. It is 
mainly applied in the assessment of cerebral function rather than the detection of structural 
abnormalities. As such, it is applied to assess epilepsy, states of altered consciousness, head 
trauma and coma, anoxia, intoxications, cerebral infections and sleep disorders. Powerful, 
computer-driven analyses of EEG patterns could also be applied in the field of schizophrenia 
research and personality studies. It is important to note that clinical EEG recordings provide no 
information as to personality type and do not “read one’s thoughts”. 

More specifically, EEG merely yields data that is easily recorded with comparatively in-
expensive equipment, is rather well-studied and provides high temporal resolution. Thus 
outperforming other techniques, it is an excellent candidate for BCI. The temporal and spatial 
resolutions of all the above-mentioned acquisition techniques are summarized in Table 1. 

Table 1: Temporal and spatial resolutions of the above-mentioned acquisition techniques 

Acquisition technique Temporal resolution Spatial resolution 

PET ~ 30 sec 4-6 mm 
NIRS ~ 10 ms 20 mm 
MRI 3-5 sec ~ 1.5 mm 

MEG ~ 1 ms ~ 3-10 mm 
EEG < 0.5 ms 5-10 mm 

 
EEG-based BCI systems can be subdivided into several groups according to the electro-

physiological signals and paradigms they use. 

2.2 Visual Evoked Potentials (VEP) 

Visual Evoked Potentials (VEP) constitutes a dependent BCI, i.e. they depend on oculo-
motor control of gaze direction, such that activity in the normal information pathways (e.g. 
peripheral nerves and muscles) is needed to generate the brain activity. VEPs evaluate the 
visual nervous system from the eye to the brain. Sutter [Sutter, 1992] described a Brain Re-
sponse Interface (BRI) by applying it as a keyboard interface: volunteer test persons selected 
one symbol from a set of 64 that were arranged in an 8×8 matrix; focusing on the selected 
symbol, they were then able to type 10-12 words/min. Symbols changed their color or flashed 
with a certain frequency, which induced a distinct spatiotemporal pattern in the visual cortex of 
the user’s brain. However, this method requires stable control over the oculomotor muscles that 
are needed for focusing on a letter. 

A dependent BCI is essentially an alternative method for detecting messages carried out 
in the brain’s normal output pathways. However, it does not give the user a new communica-
tion channel that is independent of conventional channels. Visual Evoked Potentials are used to 
evaluate optic neuritis, optic tumors, retinal disorders and demyelineating diseases such as 
multiple sclerosis. 
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2.3 P300-based BCIs 

BCI systems are by definition independent if they do not rely on any muscular activity, if 
the message is not carried by peripheral nerves and muscles, and, furthermore, if activation in 
these pathways is not required to generate the activity in the brain (as measured by an EEG) 
that carries the message. Independent BCIs attract more theoretical and practical interest than 
dependent BCIs because, offering the brain completely new output pathways, they are likely to 
be more useful for people with most severe neuromuscular disabilities. 

For example, a user of a P300-based BCI may anticipate that a rare or infrequent auditory, 
visual, or somatosensory stimulus occur in the midst of standard or routine stimuli; at about 
300 ms (P300) after the appearance of the awaited stimulus; a positive peak will occur over the 
parietal cortex. Donchin and Smith [Donchin and Smith, 1970] presented a P300-based BCI 
used for typing about 5 letters (or about one word) per minute. While the user faces a 6×6 
matrix of symbols, its rows or columns flash alternatively every 125 ms in random order. The 
user then selects a symbol by counting how many times the row or column containing the 
desired selection flashes. Speaking in general terms, the user should pay attention to flash 
events of the desired symbol. In patients with visual impairments, auditory or tactile stimuli 
might be used [Glover et al., 1986]. 

P300-based BCIs have the clear advantage that they require no preliminary user training, 
as P300 is one of the brain’s “built-in” functions. However, such techniques remained limited 
to letter or symbol selection paradigms, similar to the one described in the previous subsection. 
Moreover, long-term studies by Ravden and Polich [Ravden and Polich, 1999] have shown that 
P300 might habituate, with the effect that BCI performance decreases. An online adaptation of 
this learning machine will therefore likely become important for this kind of BCI. 

2.4 Oscillatory features 

Physiologically meaningful signal features can be extracted from various frequency bands 
of recorded EEG. For example, primary sensory or motor cortical areas often display 8-13 Hz 
activity (called µ-rhythm) when test persons are not engaged in processing sensory input or 
producing motor output (a similar fluctuation over the visual cortex is called α-rhythm). The µ-
rhythms are usually associated with 18-25 Hz upper β-rhythms, largely known to be, to some 
extent, independent EEG features. Table 2 summarizes frequency bands (marginal frequency 
values are highly subject-specific) and the neurophysiological features they are assumed to 
encode. 

Table 2: Frequency bands and associated brain functions 

Band Frequency [Hz] Occur while / Indicate 

δ 0.5 – 3.5 Movement preparation 

θ 3.5 – 8 Memory 

α (µ) 8 – 13 Relaxation (sensory idling) 

β 13 – 25 Motor idling 

γ 25 – 40 Feature binding 
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Pfurtscheller [Pfurtscheller, 1999] reports that µ- and/or β-rhythm amplitudes serve as ef-
fective input for a BCI. Movement preparation, followed by execution (or merely motor 
imagination) is usually accompanied by a power decrease in certain frequency bands; this 
power decrease is referred to as Event-Related Desynchronization (ERD). In contrast, their 
increase after a movement indicates relaxation and is due to the synchronization in firing rates 
of large populations of cortical neurons (ERS). 

2.4.a BCIs based on Event-Related (De-) Synchroniza-
tion (ERD/ERS) and on motor imagery 

In Albany, New York, Jonathan Wolpaw directs the development of a BCI system that 
lets the user steer a cursor by oscillatory brain activity into one of two or four possible targets 
[Barkley, 1981]. People with or without motor disabilities learn to control their µ- or β-rhythm 
amplitude; an increase is associated with the cursor’s movement to the target on top of the 
screen, while a decrease directs the cursor to the bottom. Users learn in 40-minute sessions that 
take place 2 to 3 times per week; most acquire significant control after 2 to 3 weeks of training. 
In the first training sessions, most subjects engage in some kind of motor imagery (e.g. imagin-
ing hand or feet movements, entire body activities, or even relaxed states). During further 
feedback sessions, these are then replaced by adapted strategies. Well-trained users are re-
ported to achieve hit rates of over 90% in the two-target setup; however, each selection typi-
cally takes 4 to 5 seconds. 

Gert Pfurtscheller’s laboratory in Graz is developing a BCI system that is based on event-
related modulations of the µ- and/or central β-rhythm of sensorimotor cortices. For a control 
paradigm, the focus is on motor preparation and imagination of simple actions, such as right-
hand, left-hand or foot movements. Feature vectors, calculated from spontaneous EEG signals 
by adaptive auto-regressive modeling, are used to train a linear (LDA) or non-linear (LVQ) 
classifier or a neural network. In subsequent sessions the user is provided with online bio-
feedback on the computer screen. This has allowed, for example, a quadriplegic test-person to 
simulate grasping movements of the hand by electrically stimulating its muscles. However, 
these movements could have been executed according to an externally synchronized communi-
cation protocol and sequence. In a ternary classification task, which was conducted in an 
offline manner by Peters et al. [Peters et al., 2001], users imagined the execution of a series of 
trials, each lasting over 8 seconds. About 90% of test persons could be able to seize significant 
control over the system, which was indicated by their classification accuracies of over 96%. 
Additionally, development of a remote control is addressed, allowing a BCI to operate in a 
user’s home environment while the processing and classification is done in the laboratory. 

2.5 Slow Cortical Potentials (SCP) 

Slow Cortical Potentials (SCPs) are voltage shifts that are generated in the cortex and that 
last over 0.5-10 seconds. Slow negativation is usually associated with cortical activation (e.g. 
evoked by the implementation of a movement or by the accomplishment of a mental task), 
whereas positive shifts indicate cortical relaxation [Birbaumer, 1997]. Further studies showed 
that it is possible to learn SCP control. Consequently, it was used to control movements of an 
object on a computer screen in a BCI referred to as Thought Translation Device (TTD) 
[Birbaumer et al., 1999]. During the first 2 seconds, the system measures the user’s initial 
voltage, followed by an action period of another 2 seconds where the user tries to increase or 
decrease her/his SCP by selecting one of the two targets; the result is then indicated on the 
computer screen as bio-feedback. After repeated training sessions that span several months, 
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patients achieve accuracies of over 75%. The patients are then switched to a letter support 
program, which allows a selection of up to 3 letters per minute. 

A new predictive algorithm has been developed that performs a statistical analysis of the 
user’s input. It calculates occurrence probabilities of single letters or entire words, e.g. more 
frequently used words obtain higher values. When the user types in the first letters of a word, 
the algorithm will then suggest an entire word, which is most probable according to the statis-
tics. The algorithm is based on a lexicon, which is simultaneously updated to the user’s vo-
cabulary with each action. This increases the usability of such systems and exploits the com-
paratively low communication bit-rates. It is a conceivable future application to provide Inter-
net access for disabled users [Birbaumer et al., 2000]. 

2.6 Invasive BCIs 

Already in the 1960s, Evarts [Evarts, 1996] reported implanting microelectrodes into the 
cerebral cortices of awake animals; the microelectrodes then recorded the action potential of 
single neurons during the execution of movements. Further studies explored the capacity of 
animals to learn to control neural firing rates, such that the expectation that human could 
develop similar control capabilities for using them to communicate with their environment or 
to operate a neuro-prosthesis becomes evident. 

Using information recorded invasively from an animal brain, Nicolelis and Chapin 
[Nicolelis and Chapin, 2002] discuss a BCI able to control a robot. Four arrays of fine micro-
wires penetrated the animal’s scull and connected to different regions inside the motor cortex. 
A robotic arm remotely connected over the Internet implemented roughly the same trajectory 
as the owl monkey grasping for food. Although this technique could be applied to humans in 
the near future, it still remains an unattractive method as it requires surgical intervention to 
implant the electrodes. Nevertheless, for patients with very severe neurophysiological disor-
ders, it could well be an option to consider. 

This invasive technology allows for the extraction of signals at extremely fine spatial and 
temporal resolutions; each microelectrode integrates firing rates of only a few dozen, or even 
single, neurons. Nevertheless, to make a BCI attractive for broad, everyday usage, it needs to 
be non-invasive, quickly mountable, in addition to leaving no bodily marks. In short, it should 
be as simple and harmless as putting on a baseball cap. 

2.7 BCI 2000 – a general purpose BCI model 

Because BCI development and application is a complex and multi-disciplinary endeavor, 
there is need for a system that readily adapts to a variety of brain signals, e.g. EEG signals or 
voltages or cortical neural activity, signal processing methods, translation algorithms and 
output modalities. Schalk et al. [Schalk et al., 2004] developed a generic and distributed system 
called BCI 2000 that can describe a wide variety of present-day and future BCI systems. It 
consists of four processes that interact through a defined interface: EEG acquisition, signal 
processing and translation, a user or feedback application, and an operator interface (see 
Figure 1). The modules communicate through a network protocol based on TCP/IP. The 
Source module passes current blocks of signal samples and event markers to the Signal Proc-
essing module. The Signal Processing converts this input into control signals and passes them 
and the state vector to the User Application. The User Application is controlled by these 
signals providing the user with the appropriate feedback and sends the state vector back to the 
Source. Because the state vector includes all relevant system events (e.g. device states, artifact 
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occurrence, etc.), its inclusion into the data file allows for full reconstruction of the experiment 
session and for comprehensive data analyses. The Operator module provides an interface to the 
experiment conductor to allow for system configuration and for the definition of onset and 
offset operation. 

control signal
state vector

Source

Storage

User

Application

Signal

Processing

brain signal
state vector

state vector

Operator

setup                visualization

 

Figure 1: Design of the BCI 2000 system. Four modules are employed communicating via 
TCP/IP based protocols: Operator, Source, Signal Processing and User Application. The 

information (signals, parameters, event markers, i.e. the state vector) is communicated from 
Source to Signal Processing to User Application and back to Source. From [Schalk et al., 2004] 

The BCI 2000 maximized the interchangeability and independence of the modules, since 
it is implemented with current techniques of Object-Oriented Software Design (OOSD). The 
communication between modules uses a generic protocol that can transmit all information 
required for operation. None of the four modules place any constraints on the number of 
channels or the sampling rate, the number of system parameters or event markers, the complex-
ity of the signal processing, the timing of operation or the number of signals that control the 
output device. Thus, these factors are limited only by the capacities of the hardware used. 

The first tests of the BCI 2000 were studies in which users could control cursor move-
ment with one or a combination of several different EEG features. 

3. Requirements and Drawbacks of 
Current BCIs 

In the seven decades since Berger’s original publication [Berger, 1929], electroencepha-
lograms (EEGs) were used mainly to evaluate neurological disorders and to investigate brain 
function. In addition, researchers have been speculating that EEGs could be applied to decipher 
thoughts or intentions. If applied for this function, a person will be able to control devices 
directly by her/his brain activity, bypassing the normal channels of peripheral nerves and 
muscles. However, this speculation became technologically feasible only in the past decade, as 
the deciphering of thoughts or intentions required that a vast amount of data be analyzed in a 
limited time. A surge then ensued, promoted also by the rapid development in computer 
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hardware and software that enabled the distribution of complex system tasks among different 
computers that communicate with each other and that process acquired data in a parallel and 
real-time manner. 

3.1 BCIs rely on brain activity 

Recent research in digital signal processing (DSP) and data analysis offer the possibility 
to develop intelligent and automatically adapting systems. These systems do not rely on prior 
knowledge about the user; instead, they begin to setup the user model with the first contact 
with the user, adjusting it interactively during further online recording sessions. Obviously, the 
interaction of a test person and a computer application will induce certain spatio-temporal 
patterns in the cortices of the person’s brain. In this sense, processing visual or auditory infor-
mation provided by the monitor screen or loudspeakers produces specific EEG patterns in the 
primary visual or auditory somatosensory cortices. These patterns can be easily observed 
through EEG that is recorded over the respective sensory cortex and consequently classified in 
an automatic manner. Further cognitive processing of this information is then widely distrib-
uted across the cortex. Disentangling these contributions coming from different cortical proc-
essing modules poses a difficult challenge for non-invasive recording techniques. The inten-
tions to control the system by performing motor (i.e. muscle) activity originate inside the 
brain’s high-level decision centers – a core that cannot be reached by EEG. They then work 
their way through to the primary motor cortices such that rising neural activity can be recorded 
with EEG surface electrodes placed over the respective brain regions. Fortunately, these 
surface regions have a consistent somatotopic arrangement that represents the body in an 
orderly topography. This topography is often referred to as “Homunculus” and can be visual-
ized as in Figure 2. 

 

Figure 2: “Homunculus”. A schematic distribution of human body parts according to the brain 
regions, which are responsible for their control (motor cortex on the left) or process informa-

tion from them (somatic sensory cortex on the right). 
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The distinction of nearby located cortical areas still remains a difficult problem due to, for 
one, physical limits in the spatial resolution of surface EEG, and secondly, because each single 
electrode acquires superposed data from within a certain radius in which many different signals 
interfere. 

3.2 The role of Human-Computer Interaction 
for BCI 

Currently, modern Human-Computer Interaction (HCI) and multimedia technologies ad-
dress only a subset of the I/O channels humans use to interact with computer applications or 
devices. Those require mainly motor (keyboard, joystick, pedal, etc.), visual (graphics, anima-
tion, etc.) and acoustic (sound, music, speech synthesis and analysis) senses. Recent research 
also tries to incorporate olfaction [Harel et al., 2003], tactile sensation 
[MacIntyre and Feiner, 1986], [Hardwick et al., 1996], interpretation of facial emotions provid-
ing additional information during communication [Pantic and Rothkrantz, 2000] and recogni-
tion of gestures [Pentland, 1995], [Quek et al., 2002]. Since all these information streams pass 
through their own interface (e.g. hands or skin, muscles, eyes, ears or nose) yet indirectly 
converge or emerge in the brain, the investigation of a direct communication channel between 
the application and the human brain should be of high interest to HCI and multimedia re-
searchers [Ebrahimi et al., 2003]. 

Furthermore, Steriadis and Constantinou [Steriadis and Constantinou, 2003] state that de-
velopment of human-computer interfaces for people with severe disabilities (e.g. quadriplegic 
due to amyotrophic lateral sclerosis (ALS) or spinal cord injury, or brainstem stroke patients) is 
highly important as it integrates them into our present-day information society. Their normal 
communication paths (e.g. peripheral nerves and muscles) required for interacting with com-
puters or other devices having been damaged; however, information on intention of movement 
execution can be extracted from their last remained intact communication stage. Green et al. 
[Green et al., 1999] have shown that motor and sensory cortices of patients with amputated 
extremities (e.g. arms or legs) remain intact and produce normal spatio-temporal patterns 
similar to those of healthy people in regard to their intentions to move the absent part of the 
body. This implies that a technique for recognizing and deciphering those patterns and translat-
ing them into device control commands might serve as the basis for a wide variety of applica-
tions in the field of HCI. Ultimately, it will provide handicapped people with the ability to 
communicate with their environment or to control various devices. 

A special role must be assigned to the instinctiveness of bio-feedback. 
Ramachandran et al. report in their work [Ramachandran et al., 1999] that after a lateral hemi-
sphere stroke patients display an indifference to objects and events in the contralateral side of 
the world (neglect). Looking into a mirror while imagining moving the absent arm – a reflec-
tion of the other intact arm – helps to alleviate the phantom pain and to accelerate the recovery 
from neglect. Producing natural feedback on a computer screen with actions that are correlated 
to the patient’s intentions might have similar positive consequences for the convalescence. 

3.3 BCI for monitoring user states 

However, the field of Brain-Computer Interfacing will in the future reach well beyond 
clinical and rehabilitative applications. Integrated into the headsets of pilots, train drivers or 
even astronauts, it may be able to provide users with an additional virtual hand for switching 
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various auxiliary devices on or off. For time-critical operations, such as emergency breaking of 
fast trains, these systems may extract the driver’s intention a trickle of a second before the 
actual execution. Important, life-saving preparative operations (e.g. gritting sand on the rails) 
can then be commanded immediately. 

Finally, the vast consumer community of gaming applications may soon be able to ex-
perience a completely new sentiment of incorporating own “thoughts” for virtual controlling of 
objects in games. A variety of, to date incredible, gaming scenarios will be developed in which 
individual users can train their own brain features or in which several BCI users can put their 
“brain-forces” to the test in round-robin-like games with competitive scenarios. These kinds of 
applications have already been used for therapeutic purposes. For example, children suffering 
from Attention Deficit Disorder (hyperactivity) have been playing a virtual version of the well-
known “tug-of-war” game by training of relaxation mechanisms, which in turn increased their 
idling α- and β-rhythms [Barkley, 1981]. This method has also been widely applied since the 
late 1970s to treat stress and migraines and to help manage pain. Voelker et al. 
[Voelker et al., 1989], for their part, applied the method on students whose verbal and perform-
ance scores of the WAIS IQ test differed by more than 10 points. Training the less-performing 
cortical hemisphere of these students improved their performance significantly. Students with 
low verbal scores who were given stimulation with primarily β-frequencies over the left 
hemisphere, showed significantly improved scores after only several 30-minute training ses-
sions. 

In conclusion, Brain-Computer Interface systems can be effectively employed in clinical 
rehabilitation and convalescent therapies, as well as an assistance tool in time-critical applica-
tions, in innovative human-computer interfaces, in gaming scenarios for entertainment, or for 
training brain efficiency. 

3.4 Requirements for developing a BCI system 

A BCI system must be designed such that it can be comfortably carried out without any 
disadvantages for a person’s health. Some further most important features for such a system 
include: 

 For a BCI-system to be attractive for an everyday user it must be non-invasive, i.e. it 
must acquire information by placing surface electrodes on the scalp. Epidural and sub-
dural techniques may be appropriate for most severely disabled patients; however, they 
should not be imposed on ordinary users. 

 It should be quickly and easily mountable and removable – like taking a baseball cap 
on and off. Current technology still requires so-called “wet” electrodes to be filled with 
electrolyte gel before the experiment start; this is time-consuming in addition to making 
the procedure slightly uncomfortable and lasting. 

 Functioning in real-time and online is important since bio-feedbacks make sense 
only when correlated with the user’s actual actions. A system must thus be able to process 
the acquired data sufficiently fast. It has been shown in several feedback studies that de-
layed feedback or one, which is not correlated with the user’s intentions leads to the dete-
rioration of the performance (see Chapter II, Section 2 for detailed explanation). 

 A BCI system should rely on independent brain features to provide even a healthy 
user with an additional information channel that can carry control messages independ-
ently from other existing communication channels, whether undamaged or damaged, ac-
tive or resting. BCI systems based on brain features dependent to other communication 
paths provide its user with an appealing feeling of control, but not with an additional 
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communication channel. However, severely disabled patients are not able to receive any 
advantage from this kind of BCIs at all. 

 It must require no or only minimal user training. Therefore it must rely on the hu-
man brain’s “built-in” functions such that any person can use it after only a brief instruc-
tion by an advisor regarding the control strategy. This means that the user does not have 
to learn to produce certain spatio-temporal patterns in her/his brain’s cortex, a process re-
quired by many of today’s BCI-systems and which can last over several months. 

 It must incorporate inexpensive and feasible technology, such as electroencephalo-
graphy (EEG), in order to compete with other acquisition methods and to ultimately be-
come less expensive for the end-user. My belief is that cheap BCI modules will be inte-
grated into gaming consoles in the nearest future. Furthermore, BCI technology can be 
successfully employed for user monitoring purposes, such as tiredness of truck drivers; 
however, for being installed into trucks it must be of a reasonable cost-performance ratio. 

 It must be reliable with respect to decision errors. This means that the computer sys-
tem must be flexible enough to detect the spatio-temporal patterns a user generates when 
performing a task, and to automatically update its knowledge such as to better suit the 
user’s brain properties. For this purpose, an error detection mechanism can be incorpo-
rated which monitors bio-feedback sessions and controls the knowledge update each time 
a feedback error takes place. User performance is reported to vary during long experiment 
sessions, as well as users are expected to change their control strategies if becoming tired. 
For this reason continuous re-learning strategies can be employed to adjust the present 
user model. 

 Last but not least, the “fun-factor” for healthy operators of these types of interfaces 
(e.g. dexterity games or other interactive applications) should not be underestimated. The 
large machinery of the Computer Gaming industry offers the opportunity for BCI systems 
of being used by a wide society of customers. This may result in fundamental funding of 
further BCI research and development. 

4. Motivation for the Berlin-BCI 
The first valuable definition of a Brain-Computer Interface was given as early as 1973 by 

J. J. Vidal. In his pioneering work [Vidal, 1973], a BCI-system was defined as any computer-
based system that monitors human brain activity and that is able to decode that activity in a 
manner suitable for the control of any application. Since that time – more than three decades of 
intensive research – the definition of a BCI-system changed repeatedly according to the techni-
cal potentials and possibilities provided by the rapid development in computer science and 
newly consolidated neurophysiological findings. A more recent review on Brain-Computer 
Interfaces defines a BCI as a system for controlling a device (e.g. a computer, wheelchair or 
neuroprosthesis) by human intentions, which does not depend on the brain’s normal output 
pathways or peripheral nerves and muscles [Wolpaw et al., 2002]. 

There is a strong incentive to develop a BCI system, that (i) matches the latest definition 
given by the research community, (ii) overcomes the limitations of the other, above-mentioned 
current BCI-systems and (iii) meets the challenging requirements set up to warrant its attrac-
tiveness for the everyday user. 

The acknowledgment that BCI system development, despite its impressive expansion in 
recent years, is largely deprived of proper real-time support was an important motivational 
factor for my scientific investigation that culminated in this dissertation. Another determinant 
factor for this dissertation was the applicability of Brain-Computer Interfaces to significantly 
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improve the quality of life for a large number of patients suffering from severe impairments, 
including amyotrophic lateral sclerosis (ALS) or spinal cord injuries. With BCI systems, these 
patients will in future be able to control their wheelchairs directly through their thoughts, write 
texts in order to communicate with their environment, or even control computer applications, 
such as Web browsers or computer games. It is important to provide these capabilities to all 
people irrespective of their impairments for participating in our current day computer and 
Internet society. 

4.1 Aims of this work 

Many researchers with different background knowledge work on the development of the 
BBCI system. In recent years computer science emerged as a meta-discipline that combines 
these several disciplines to an union aiming at producing valuable results; it helps instantiating 
scientific investigation and implementing research ideas, e.g. resulting in an end-user product, 
a feasibility study or a computer based simulation. This dissertation ranges in the computer 
science domain; thus my job was to acquire the results of earlier research and to unify it in an 
inventive way. The purpose of this endeavor is to bring the BCI technology and in particular 
the applications based on it nearer to the community of potential users. 

The goals of this doctoral thesis, i.e. my own part within the scope of the BBCI project, 
can be summarized as follows: 

 To investigating the feasibility of real-time approaches for being applied to the BCI 
model. This aims at selecting of the most adequate real-time approach for the design of an 
online architecture for the BBCI system. 

 To design, develop and implement the prototype – a general-purpose BCI system – 
that can be used to further research powerful digital signal processing (DSP) procedures 
and statistical classification methods. These can, in turn, be incorporated into future BCI 
applications. 

 To investigate the wide range of various feedback applications with respect to their 
suitability for being controlled by a BCI system. It is of major importance to setup the 
constraints for the design and development of feedback applications, which should be 
controlled by a BCI system. 

 To design and validate various control strategies for feedback applications. Most 
current-day applications are designed for the control by common interface devices. A BCI 
provides the user with a different information type, such that appropriate control strate-
gies should be investigated for transmitting this information to an application or a device. 

 To analyze the user’s behavior during the BBCI experiments. Most important is the 
confrontation of the user with the real-time and online feedback animation that provides 
the user with instant control of its objects. In particular, the presentation of the user’s in-
tention a trickle of a second before the intrinsic execution, i.e. the confrontation of the 
user with its own future act is worth to be investigated. 
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DDeerr  MMeennsscchh  iisstt  ddaass  MMooddeellll  ddeerr  WWeelltt  
LLeeoonnaarrddoo  ddaa  VViinnccii  ((11445522  --  11551199  AA..DD..))  

efore delving into the complexities of BCI research, we need to understand the main 
processes that take place in the human brain. It is for this reason that I included this 
chapter which aims to familiarize the reader with the most prominent features of human 

neurophysiology. It will introduce basic neurophysiological terminology, which will then be 
used in further explanations; however, it does not claim to be complete. The chapter is divided 
in two parts. The first describes a variety of brain functions and paradigms that can be observed 
from EEG data. This data is classified as either phase-locked (i.e. “plain”) and phase-unlocked 
(i.e. oscillatory). The second part discusses the main information pathways in humans and the 
problems and conditions related to their usage. Reading this chapter should, furthermore, help 
to better understand the issues described in Section 2 of the previous chapter. 

1. “Built-In” Functions of the Brain 
Granted, this section’s title is highly debatable as most or to some extent all functions of 

the human brain are “built-in”. However, I will focus on those functions that are most promi-

B 
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nently observable through EEG signals; these do not require long training sessions yet are 
present in “normally behaving” subjects. 

Basically, all signals can be divided in two groups depending on the acquisition domain 
under consideration. For example, slow amplitude shifts, among other potentials, are visible in 
raw EEG data within the time domain. Oscillatory features for their part, i.e. the amplitude 
within certain frequency regions (e.g. band power of oscillations), can be easily extracted from 
the frequency domain. These two signal properties are known to be induced from different 
mechanisms and are therefore believed to be independent. Section 1.3 will present special 
features of both paradigms that encourage the interaction of the user’s act of imagining with 
the online bio-feedback. In section 2 the emphasis is then given to the influence of the real-
time interaction with the feedback application on the user’s behavior. 

1.1 Slow Cortical Potentials (SCP) 

Electroencephalography is a method to investigate human brain functions including ways 
of determining the reaction of the brain to a variety of stimuli. The great majority of these 
reactions remain hardly detectable in the EEG and only very few are easily visualized. The 
research field dedicated to the detection, quantification and physiological analysis of those 
slight EEG changes, each of which is related to a particular event, has been of growing interest 
in recent years. These EEG changes are referred to as “Event-Related Potentials” (ERPs) 
[Lopes da Silva, 1999]. 

ERPs are usually defined in the time-domain as the brain electrical activity that is trig-
gered by the occurrence of particular events or stimuli. The basic analytical challenge is detect-
ing ERP activity within the often much larger ongoing or background activity, i.e. the activity 
not related to the stimulus [Dawson, 1951]. Dawson [Dawson, 1954] attempted to solve this 
problem by the photographic superposition of a number of time-locked responses. This method 
has the advantage of enhancing response in contrast to the ongoing activity while, at the same 
time, providing an indication of response variability. It is, however, difficult to quantify the 
results in this way. 

According to the most widely accepted model, ERPs are signals generated by neural 
populations that are activated time-locked to the stimulus; these signals are summed to the 
ongoing EEG activity. From another point of view, ERPs are assumed to result from the 
reorganization of part of the ongoing activity (see Section 1.2 for a more detailed description); 
however, this viewpoint needs further investigations. 

The analysis begins with two basic assumptions: that (i) the electrical response evoked 
from the brain is invariably delayed relative to the stimulus and (ii) the ongoing activity is a 
stationary noise, the samples of which may or may not be correlated. In this case, the ERP can 
be considered as a signal s(t) corrupted by additive white noise η(t). Consequently, the re-
corded signal x(t) is given as a sum of two terms: x(t) = s(t) + η(t), with the zero-mean stochas-
tic noise. The expected value of the average of x(t) over a number N of realizations, i.e. trials, 
is given as 
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since ( ) 0tη = . Therefore, the signal-to-noise-ratio (SNR) in terms of amplitude improves 

with the order of ( )O N . For a comprehensive study of ERP, multivariate analysis methods 

may be used [Streeter and Raviv, 1965], [John, et al., 1964], [Ruchkin et al., 1964] and 
[Donchin, 1966]. 
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In detecting ERPs, the main concern is, of course, to increase the SNR so that the EEG 
background activity will not contaminate the ERP. The ratio between the variance of the 
averaged signal and the variance of the noise is 1/N. This holds for the case where the noise 
samples are uncorrelated. Often, however, this is not the case, as for instance in the presence of 
a strong rhythmic background such as α-rhythm. In such a case, subsequent samples of η(t) are 
not independent; their degree of dependency is given by the result of the autocorrelation 
function of the background activity. The detection of single-trial ERP is important for two 
reasons: (i) to remove the effect of latency variations between single-trial ERP, which leads to 
a deterioration of the ensemble average and (ii) to classify single-trial ERP 
[Lopes da Silva, 1999]. 

1.1.a P300 potentials 
The most prominent specification of the ERP is its so-called P300 component, indicated 

by a strong positivation of cortical voltage at about 300 ms after the stimulus. Even though 
much progress has been made since the P300 potential was discovered (for extensive review 
see [Sutton et al., 1965], [Bashore and van der Molen, 1991] and many others), the primary 
question remains: What cognitive events are reflected by the P300 component? The answer is 
not yet clear, but current investigations of P300 are based on (i) neurophysiological investiga-
tions of the brain mechanisms that underlie its generation, (ii) evidence from experimental 
studies that manipulate psychological variables, and (iii) results obtained from neurophysi-
ological reports that examine the associations between P300 and behavioral test data. Addi-
tional reviews and perspectives are available elsewhere [Donchin et al., 1986], 
[Johnson, 1988], [Oken, 1989], [Picton, 1992]. 

An important consideration of P300 generation stems from the observation that intrusive 
or novel stimuli (e.g. dog barking, abstract color forms) can produce an early positive-going 
component (the P3a), with a subsequent peak (the P3b) that is considered as the canonical 
P300 [Squires et al., 1975]. The P3a is generally larger in amplitude over the frontal and 
central electrode sites compared to the P3b and is thought to reflect an alerting process that 
originates in the frontal cortex [Courchesne et al., 1975]. However, recent evidence suggests 
that the P3a can be elicited with ordinary stimuli by using a three-stimulus oddball task. In the 
auditory version of this paradigm, simple tone pitches can be employed (e.g. low, medium and 
high tones) such that a rare target, a frequent standard, and an infrequent non-target are pre-
sented in a random order to the subject responding only to the target. When the discrimination 
between the target and standard stimulus is made difficult (e.g. by approaching their pitch 
frequencies), so that focused attention is engaged, the infrequent non-target stimulus will 
produce a P3a component that is larger in amplitude and earlier in latency than the P3b com-
ponent produced by the target stimulus. Similar results have been obtained for typical auditory 
and visual stimuli [Comerchero and Polich, 1999]. These findings suggest that the P3a reflects 
the interruption of strong attentional engagement of the frontal lobe and is observable when 
infrequently presented stimuli interrupt primary task processing [Knight, 1996]. 

Figure 3 illustrates typical ERP curves, obtained from the classic oddball paradigm ex-
periment (left column) where the user was visually provided with frequent non-target and rare 
target stimuli. The user was supposed to acknowledge the target stimuli only. In the novelty 
oddball paradigm experiments (right column), the user was additionally provided with an 
unexpected novel stimulus. A strong positivation (please note a flip of the ordinate axis) – the 
P300 peak – can be seen in all plots at about 330-350 ms after the stimulus presentation, with 
maximum positivation at centro-parietal electrodes. 
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Figure 3: Typical ERP curves acquired from the classic oddball (left column) and novelty 
oddball (right column) paradigm experiments. Data is averaged with the stimulus (0 ms) as 

trigger and illustrats the P300 potential. From [Spencer et al., 1999] 

1.1.b Error-Related Potentials (ERP) 
Falkenstein et al. described the negative (Ne) and a later positive (Pe) deflection in the 

event-related brain potentials of incorrect choice reactions [Falkenstein et al., 1990] and 
[Falkenstein et al., 1991]. Originally, they assumed the Ne to represent a correlate of error 
detection, i.e. a mismatch signal when representations of the actual response and the required 
response are compared. This hypothesis was corroborated by the results of a variety of experi-
ments and also by [Gehring et al., 1993], [Bernstein et al., 1995], and [Scheffers et al., 1996]. 
However, Ne was also observed after correct responses. Since the above-mentioned process is 
also required after correct responses, it is conceivable that Ne reflects this comparison process 
itself rather than its outcome. As for Pe, it is believed to be a further error-specific component, 
which is independent of the Ne, and is hence associated with an advanced stage of error proc-
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essing or post-error processing. However, to specify the functional significance of Pe, further 
research is necessary [Falkenstein et al., 2000]. 

 

Figure 4: Typical ERP curves from experiments with visual and auditory stimuli selected from 
frontal, central, parietal and occipital electrode positions. Data is averaged with the response 
(0 ms) as trigger separately for mismatched and correct trials and indicates the error-related 

potentials. From [Falkenstein et al., 2000a] 

Figure 4 illustrates typical ERP curves which have been acquired in a 2-class-response 
experiments, where the user was displayed the letters ‘F’ or ‘J’ on a computer screen for the 
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visual case, or provided with two different types of tones via headphones for the auditory case. 
The user had to react as fast as possible by hitting a key on a computer keyboard with either the 
left or right-hand index finger, i.e. the letter keys ‘F’ or ‘J’. After performing several sessions, 
all trials were averaged in two groups, the correct user responses composing one group, and the 
incorrect user responses the other. To distinguish the groups, time windows were aligned at the 
response event marker that appeared at the time point of the key press. 

Error negativity (Ne) is seen as a sharp negative deflection with a central maximum peak 
at about 80 ms after the incorrect key press. Error positivity (Pe) is seen as the late parietal 
positivation, with Cz peaking maximally at about 300 ms after the incorrect key press. On 
correct trials, a positive complex with Pz maximum is seen. 

Regarding error positivity (Pe), Falkenstein et al. [Falkenstein et al., 2000a] performed a 
large variety of experiments with different paradigms and concluded that this component 
reflects additional processing after errors, which is functionally different from error detection 
or response checking (as probably reflected in the Ne). This additional processing is reflected 
in the P3-like wave, which is elicited by the error event. Such additional processes could also 
reflect the subjective or emotional assessment of errors; this means that each individual user 
accords their own significance to errors.  

1.1.c Readiness Potentials (Bereitschaftspotential) 
Ever since we have had evidence of the Supplementary Motor Area (SMA), which is as-

sociated with voluntary movements [Deeke and Kronhuber, 1978], different methods of func-
tional brain imaging have shown that medial-wall motor areas and the primary motor cortex 
(MI) are activated when healthy subjects perform repetitive, voluntary finger movements. 
Further evidence comes from electrophysiology in non-human primates, showing that neuronal 
activity in the above-mentioned areas and the Lateral pre-Motor Cortex (LMC) precedes the 
initiation of self-initiated movements [Tanji, 1994], [Razzolatti et al., 1996]. The main argu-
ment that neuronal activities in the fronto-central mesial cortex are not epiphenomena comes 
from observations in patients with lesions of that part of the brain. In the acute state, lesions of 
the fronto-central mesial cortex cause akinesia, defined as a lack of internally mediated volun-
tary movements of the contra-lateral part of the body [Förster, 1936]. 

A main controversy is whether the medial-wall motor areas and the lateral motor areas 
form a functional network that together sub-serves the organization of a voluntary movement, 
or, whether there is a functional specificity and hierarchy. One hypothesis concerning that 
controversy is that the activity of the medial-wall motor areas precedes that of the primary 
motor cortex. This hypothesis implies that there is a temporal sequence in the brain processing 
that underlies the transduction of an intention to act into overt behavior [Deeke et al., 1976]. 

The brain potential that precedes the initiation of a voluntary movement is called readi-
ness potential or Bereitschaftspotential (BP). It starts at about 1.5 s before movement onset in 
electrodes located over the medial-wall motor areas and is of negative polarity when using a 
far-away reference [Cui et al., 1999]. It has been suggested that the BP at its onset results from 
a radial current sink which is caused in the medial-wall motor areas [Deeke et al., 1976], 
[Lang et al., 1990]. EEG has the advantage of being sensitive not only to tangential currents, as 
is MEG, but also to radial currents. BP topography changes about 750 to 500 ms before move-
ment onset, which is characterized by an increasing lateralization of the BP with larger 
amplitudes above the contralateral primary motor cortex (MI) as compared to amplitudes above 
the ipsilateral MI [Deeke et al., 1976]. 

Figure 5 shows typical BP curves, which were acquired from self-initiated movement ex-
periments [Kukleta and Lamarche, 2001] where the user was instructed to perform brisk finger 
movements. All single-trials have been averaged at the user response (0 ms) as trigger. 
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Figure 5: Typical ERP curves at positions of Fz, Cz, C3, C4 and Pz electrodes. Data is aver-
aged at the user response (0 ms) as trigger and illustrates the readiness potentials. EMG is 

shown for control reasons. Dashed lines at -1.5, -0.75, -0.25 sec indicate changes in the varia-
tion of the BP slope. From [Kukleta and Lamarche, 2001] 

1.2 Event-Related (De-)Synchronization 
(ERD/ERS) 

An internally or externally paced event results in a change of the ongoing EEG in the 
form of an Event-related Desynchronization (ERD) or Event-related Synchronization (ERS). 
This response on the brain’s neuronal structures is not phase-locked to the event and is highly 
frequency-band specific, whereby either the same or different locations on the scalp can dis-
play ERD and ERS simultaneously [Pfurtscheller and Lopes da Silva, 1999]. 

Several kinds of events, most notably sensory stimuli, can induce time-locked changes in 
the activity of neuronal populations; these changes are generally called event-related potentials 
(ERPs) (see Section 1.1.). In order to detect such ERPs, averaging techniques are commonly 
used. The basic assumption is that the evoked activity, or signal of interest, has a more or less 
fixed time-delay in regard to the stimulus, while the ongoing EEG activity behaves as additive 
noise. The averaging procedure will enhance the signal-to-noise ratio. However, this simple 
and widely used model is just an approximation of the real situation. Indeed, evoked potentials 
(EPs) are considered to result from a reorganization of the phases of the ongoing EEG signals 
[Sayers et al., 1974]. In addition it was also shown that visual stimuli can reduce the ongoing 
EEG amplitude [Vijn et al., 1991], thus invalidating the general model assuming that an ERP 
can be represented by a signal added to uncorrelated noise. Furthermore, it has been known 
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since Berger’s findings [Berger, 1930] that certain events can block or desynchronize the 
ongoing alpha activity. These types of changes are time-locked to the event but not phase-
locked, and thus cannot be extracted by a simple linear method, such as averaging, but may be 
detected by frequency analysis. This means that these event-related phenomena represent 
frequency-specific changes of the ongoing EEG activity and may consist, in general terms, of 
either decreases or increases of power in given frequency bands. This may be considered to be 
caused by a decrease or an increase in synchrony of the underlying neuronal populations, 
respectively. The former case is called Event-related Desynchronization or ERD 
[Pfurtscheller, 1977], [Pfurtscheller and Aranibar, 1977] and the latter is called Event-related 
Synchronization (ERS) [Pfurtscheller, 1992]. Of course, ERD and ERS phenomena are not 
only found with EEG but also with MEG recordings. 

In general, the frequency of brain oscillations is negatively correlated with their ampli-
tude, which means that the amplitude of fluctuations decreases with increasing frequency. For 
example, the Rolandic µ-rhythm with a frequency between 8 and 13 Hz has a larger amplitude 
than the central beta rhythm with frequencies around 20 Hz. The beta rhythm, in turn, has a 
larger amplitude than oscillations around 40 Hz. Because the amplitude of oscillations is 
proportional to the number of synchronously active neural elements [Elul, 1972], slowly 
oscillating cell assemblies comprise more neurons than fast oscillating cells [Singer, 1993]. 
This is valid not only when comparing oscillations around 10, 20 and 40 Hz, but also for 
components within the individual frequency bands. 

One of the basic features of ERD/ERS measurements is that the EEG power within identi-
fied frequency bands is displayed (as a percentage) relative to the power of the same EEG 
derivations recorded during the reference or baseline period a few seconds prior to the event. 
Because event-related changes in ongoing EEG need time to develop and recover, especially 
when alpha band rhythms are involved, the interval between two consecutive events should last 
at least a few seconds. In the case of voluntary limb movement studies, an inter-event-interval 
of approximately 10 seconds is recommended; in the case of a fore-period reaction time task, 
the interval should be even longer. The classical method to compute the time course of ERD 
includes the following steps: 

 Step 1: Band-pass filtering of all event-related trials; 

 Step 2: Squaring of the amplitude samples to obtain power samples; 

 Step 3: Averaging of power samples across all trials; 

 Step 4: Averaging over time samples to smooth the data and reduce variability. 

This procedure results in a time course of band power values, including also phase-locked 
and non phase-locked power changes. To distinguish the two types of power changes, the 
above-mentioned procedure should be complemented with another one where the step of 
squaring the filtered amplitudes is omitted; its steps are as follows: 

 Step 1: Band-pass filtering of all event-related trials; 

 Step 2: Calculation of the point-to-point inter-trial variance; 

 Step 3: Averaging over time. 

The difference between both ERD/ERS calculating procedures is described by Kal-
cher and Pfurtscheller [Kalcher and Pfurtscheller, 1995]. It was found that in the case of lower 
frequency components (lower α and θ bands) a phase-locked power increase due to the ERP 
can mask the non-phase-locked power decrease (ERD) when the classical band-power method 
is used. 

To obtain percentage values for ERD/ERS, the power within the frequency band of inter-
est in the period after the event is given by A, whereas that of the preceding baseline or refer-
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ence period is given by R. ERD or ERS is defined as the percentage of power decrease or 
increase, respectively, according to the expression ERD% = (A – R)/R × 100%. For the display 
of the time course of ERD/ERS, a scale displaying either power changes with 0% in the refer-
ence period or relative power with 100% in the reference period is recommended. The total 
procedure of ERD/ERS calculation is displayed in Figure 6 from 
[Pfurtscheller and Lopes da Silva, 1999], with one example of dominant ERD in the α band on 
the left side and one example with dominant ERS in the β band on the right side. Further 
details can be found elsewhere [Pfurtscheller, 1999a]. 

 

Figure 6: Principle processing scheme of ERD (left column) indicated by a decrease of power 
in the α band and ERS (right column) with an increase of power in the β band. From 

[Pfurtscheller and Lopes da Silva, 1999] 
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1.3 Imagery 

Internal Simulation of Movements (ISM) has gained increasing attention since the pio-
neering work of Decety et al. [Decety et al., 1988], [Decety, 1993]. Several previous experi-
ments investigated neurophysiological processes underlying ISM [Ingvar and Philipson, 1977], 
[Goldenberg et al., 1986]. A theory was put forth, arguing that similar brain regions that are 
concerned with the actual execution of a movement are also activated during the mental idea-
tion of that movement [Decety and Ingvar, 1990].  

This hypothesis gained further evidence from neurophysiological observations of normal 
subjects [Decety et al., 1989] as well as of patients with lesions affecting different levels of the 
motor system [Dominey et al., 1995]. In these experiments, the performance times of the actual 
execution and the mental imagination for the same type of movement were very closely re-
lated. However, the studies yielded contradictory results as to differences in the topographical 
patterns of cerebral activation between mental ideation and the actual execution of a move-
ment. This pertains especially to the question of a joint activation of the supplementary motor 
area (SMA) and the primary motor cortex (MI). Whereas some studies described a lack of 
activation of MI during ISM, it was recently shown with PET, DC-potentials, MEG, fMRI and 
transcranial magnetic stimulation, that MSI does imply an activation of MI [Höllinger et al., 
1999]. 

Another topic in imagery research concerns hemispheric specialization for the different 
steps underlying the imagination of visual objects [Farah, 1984] and movements 
[Goldenberg et al., 1986]. In a previous study [Beisteiner et al., 1995] performance-related 
slow brain potentials were significantly larger in the left hemisphere compared with corre-
sponding recordings from the right hemisphere. Moreover, left hemisphere dominance was 
significantly larger with internal simulations than with the execution of bimanual finger 
movements (yet not with movements of one hand separately). It was speculated that this 
difference might be due to larger demands on spatial coordination during ISM of bimanual 
than of unilateral movements [Höllinger et al., 1999]. 

The following subsections will briefly describe some of the most prominent types of im-
agery paradigms; this will include their underlying neurological processes as well as the 
electroencephalographic effect we expect there from. 

1.3.a Motor imagery 
Motor imagery can be defined as the imagined rehearsal of a motor act without any overt 

movement. Internally we realize the ability to simulate a movement within its temporal and 
spatial sequencing and, by doing so we produce images of sensation which would arise during 
execution [Beisteiner et al., 1995]. A current point of interest is the functional similarity 
between imagined and executed movements. A close functional relationship has been sug-
gested on the basis of several observations. Imagined and executed movements have similar 
durations and similar consequences on vegetative parameters. When subjects imagine perform-
ing a movement on their own accord, specific muscles corresponding to the simulated motor 
act are activated. Yet, while motor imagery is similar to the execution of a motor skill, the 
returned feedback results cannot be perceived and processed [Mendoza and Wichman, 1978]. 

Current discussions of the physiology and anatomical organization of motor imagery 
should not overlook past observations on the human EEG which frequently noted that the mere 
thought about a movement blocks the µ-rhythm [Chatrian et al., 1959]. Blocking even occurred 
when persons with amputated limbs imagined moving the phantom limb 
[Klass and Bickford, 1957]. The central µ-rhythm, which has already been described above, is 
blocked prior and during hand movements in a small and distinct scalp area located above the 
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hand area of the sensorimotor cortex [Pfurtscheller and Aranibar, 1978]. The µ-rhythm is 
clearly related to a strictly localized β activity over the human motor cortex  

1.3.b Mental imagery 
Mental imagery is supposed to be a basic phenomenon of all conscious mental operations, 

which is carried out in any sensory modality. It is considered to be an important component of 
conscious experience and of substantial functions in the mental process like associative learn-
ing and memory. Kosslyn described [Kosslyn, 1988] mental imagery as consisting of brain 
states like those during perception, yet arising without an appropriate sensory input; based on 
neurophysiological studies, Freeman [Freeman, 1983] came to similar conclusions. Most 
people would agree with the statement that mental imagery usually has a lower intensity 
compared to real perception and that it can be evoked and manipulated voluntarily. Further-
more, it is likely that certain psychopathological phenomena (e.g. hallucinations in schizo-
phrenic patients) are based on the same neurophysiological mechanisms as mental imagery 
[Hoffman, 1986]. The investigation of mental imagery appears, therefore, to be of paramount 
interest for understanding physiological and pathological cognitive brain functions 
[Fallinger et al., 1997]. 

One ingenious and well-known experiment is the mental rotation task, which clarified 
some fundamental aspects of mental imagery [Shepard and Metzler, 1971] including localized 
changes in brain electrical activity. Paivio’s dual-coding theory [Paivio, 1969] has also found 
support from studies which correlated its two cognitive modalities with biological measures. It 
has been shown that brain electrical activation patterns during visual imagery differ from those 
during abstract thoughts. Petsche et al. investigated the coherence of five EEG frequency bands 
during the visualization of an abstract concept as well as during the interpretation of a painting 
[Petche et al., 1992]. They found that thinking with language was related to left frontal activity, 
whereas thinking with images involved the activation of right frontal regions. Visual imagery 
has been mostly attributed to the occipital lobe including primary and secondary visual cortical 
areas. From a psychophysiological approach, Segal and Fusella showed that visual perception 
interfered with visual but not with auditory perception [Segal and Fusella, 1970]. This was 
interpreted as evidence for the competing utilization of cortical resources during imagery and 
perception. 

1.3.c Auditory imagery and inner speech 
A recent MEG study [Numminen et al., 1998] showed that short, self-vocalized vowels 

transiently activated the speaker’s auditory cortex around 100 ms after speech onset. Remarka-
bly, these responses were delayed by 11 ms in the speech-dominant left hemisphere than they 
did in the right hemisphere. In contrast, when the subjects were merely listening to a tape 
replay of their own vowels, the latencies of the responses were symmetric. Thus, speaking 
aloud primes the human auditory cortex at a millisecond time scale by delaying reactions to 
self-pronounced, i.e. expected, speech sounds mainly in the speech-dominant hemisphere. Such 
motor-to-sensory priming of early auditory cortex responses during voicing may constitute one 
element of speech monitoring that is essential during speech acquisition 
[Numminen and Curio, 1999]. 

Through our lifetime we are exposed to “What You Hear is What You Said” 
(WYHWYS) events, meaning that the voice we most often hear is our own. A proper interac-
tion between speaking and hearing is thus essential for both acquisition and performance of the 
spoken language. This repeated input can imprint our auditory system so as to optimally 
process our own utterances. In this respect, single unit recordings in the primary auditory 
cortex have identified specific response patterns related to replayed phonemes 
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[Steinschneider et al., 1994]. Distributed audio-vocal interactions have been implicated in 
aphasia, stuttering and schizophrenic voice hallucinations; however, paradigms for a non-
invasive assessment of self-monitored speech and its possible dysfunctions are still rare 
[Curio et al., 2000]. 

2. On the Influence of Real-time 
Bio-feedback 

Feedback about performance is increasingly said to play an essential role in skill devel-
opment. Without feedback, the subject could not determine which internal states moved the 
cursor or produced an animation effect. Feedback provides the information that allows the 
subject to acquire control over the EEG signal and thus over the animation. At the same time, 
however, feedback could have other effects, good or bad, on performance. The multiple possi-
ble effects of feedback have been addressed in a variety of studies [Black, 1973], 
[Salmoni et al., 1984]. Some effects are lasting, which is to say that they affect learning. Others 
are transient in that they only affect performance. It is not clear whether feedback is needed or 
desirable in all phases of performance. Salmoni et al. suggested that excessive guidance can 
sometimes actually decrease learning. However, it seems evident that feedback should be as 
rapid as possible since delayed feedback degrades performance. Smith and Smith 
[Smith and Smith, 1987] suggest that an ideal human-machine system should provide instanta-
neous feedback. This theoretical ideal is not possible for EEG control since data processing 
procedures require certain finite number of EEG data samples (e.g. 100-200 ms) and additional 
time for computation and screen display (e.g. 10-30 ms). 

McFarland et al. state that the short-term role of feedback did not significantly affect the 
overall performance of the subject population [McFarland et al., 1998]. Nevertheless, some 
subjects were affected by the removal of feedback; this was shown by the fact that performance 
no longer significantly correlated with performance during previous sessions in which feed-
back was present. This suggests that, depending on the individual subject, feedback can have 
positive or negative short-term effects on performance. A more accurate analysis of the results 
provided in the above-mentioned work indicates, however, that subjects who performed well if 
not best in the feedback training sessions became confused in later sessions with reduced or no 
feedback. In contrast, for those who performed poorly, even to extent that almost no control 
could be gained in training sessions, the effect of “free flight” (i.e. non-guided by any instruct-
ing feedback animation) was shown to slightly improve their performance. 

Our experiments brought forth several longer periods where users seemed to gain signifi-
cant or to some extent “complete” control over the cursor or animation. This was, in turn, 
promoted by the feedback animation correlated with the user’s intentions. Several BBCI-users 
reported that it seems to take only a moderate effort to reach this “good” performance level. 
This level then remains quite stable, since it is supported by the correct feedback, which is 
successive. Most users were able to find this “point of entry” simply by relaxing and not 
paying any attention to the current feedback state or to the game score. This disinterest put 
users into a state resembling the one from the training session, consequently allowing the 
learning machine to recognize the single-trials with better performance. In cases where the 
feedback animation was, for whatever reason, not correlated with user’s intentions, the user 
was instinctively trying to push herself/himself to perform differently (i.e. by straining their 
own intentions), which is the exact opposite position of the recognizing machinery. Conse-
quently, this leads to an even worse performance of the classifier. The obvious suggestion on 
this matter is that the user needs to achieve the same relaxed state of being during the feedback 
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session as she/he had during the training sessions, and, to pay as little attention as possible to 
the results of the feedback animation. 

Alternatively, or in addition, the feedback might produce EEG responses that interfere 
with the EEG control required for accurate control. For example, cursor movement in a wrong 
direction can elicit frustration, a response likely to be associated with generalized EEG desyn-
chronization. Conversely, cursor movement in the proper direction might lead the subject to 
anticipate hitting the target, e.g. in the “Brain-Pong” feedback scenario. 

Feedback animation should be composed of a few and simple objects that preferably 
avoid brisk movements, high-contrast blinking and unexpected conditions. A BCI user who 
pays too much attention to the details of the animation might become distracted. The wasted 
attention will then prevent the concentration on internal states such as relaxation or control 
command emission. Furthermore, feedback animations of BCI systems that analyze oscillatory 
EEG feature components as visual stimuli might affect the visual α-rhythm, which is similar in 
frequency to the motor µ-rhythm, and which in turn is detected at the central scalp locations. 
Such responses would introduce noise into the EEG signal used to control the animation. In 
some cases it would be helpful to reduce the sizes of the controlled objects or to display their 
movement only partially. A smooth animation rather than brisk and unmotivated fidgeting has 
proven to be more convenient in the experiments conducted in the scope of the BBCI project. 

In summary, feedback animation is essential and clearly necessary for learning EEG con-
trol. However, a feedback application designer should carefully choose the type of feedback 
the user will rely on. Any other redundant animation will introduce more noise to the EEG 
data, such that the resulting benefit deteriorates. Finally, the finding that subjects perform well 
(in some cases even better) without seeing any feedback indicates that, for the short term at 
least, extensive visual stimulation of the animation is not essential to maintain performance 
[McFarland et al., 1998]. 

 





CChhaapptteerr  IIIIII  ——    

TTHHEE  BBEERRLLIINN  BBRRAAIINN--CCOOMMPPUUTTEERR  

IINNTTEERRFFAACCEE  ((BBBBCCII))  

DDiiee  ÜÜbbeerrzzeeuugguunngg,,  ddaassss  mmaann  ddeemm,,  wwaass  mmaann  nniicchhtt  wweeiißß,,  
nnaacchhffoorrsscchheenn  mmüüssssee,,  mmaacchhtt  uunnss  bbeesssseerr  uunndd  ttaappffeerreerr  uunndd  wweenniiggeerr  

ttrrääggee,,  aallss  ddiiee  MMeeiinnuunngg,,  eess  sseeii  nniicchhtt  mmöögglliicchh,,  ddaass  zzuu  ffiinnddeenn,,  wwaass  wwiirr  
nniicchhtt  wwiisssseenn,,  uunndd  mmaann  ssoollllttee  ddeesshhaallbb  aauucchh  nniicchhtt  eerrsstt  ssuucchheenn  

PPllaattoo  ((442277  ––  334477  BB..CC..))  

his chapter is the main part of the thesis and describes the overall design of the Berlin 
Brain-Computer Interface (BBCI). A description of the equipment used to assemble the 
BBCI will introduce the chapter, followed by important issues regarding data acquisi-

tion, assumptions on communication protocols, their main premises and features and the proper 
nomenclature for electrode positioning and naming. The experimental setup will be presented 
in detail before discussing the preprocessing procedures, classification methods and supple-
mentary modules employed to extract as much relevant information as possible from the user’s 
brain. 

The concluding section discusses several feedback applications, which, at first glance, 
could be subdivided based on the control of one, two or more classes decoded from the data; 
or, which could also be divided into overlapping groups based on the control strategies the BCI 
system assumes for decoding the commands from the user’s brain. I will try to cover all feed-
back applications that have been developed within the framework of the BBCI project comply-
ing with the classification practice of the BCI community, which divides feedback applications 
into the following three parts: 

T 
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 User-instructive applications should be used in the first feedback-based BCI ses-
sions. These applications provide the user with a feeling about the quality of signals ex-
tracted from the data and that. 

 Brain-gaming applications can be employed in further feedback-based BCI sessions 
by users who have reached a significant level of intuitiveness in controlling a BCI; in 
turn, they can be employed in a BCI system once it has satisfactorily “learned” to assign 
classification results of the user data to command classes. These applications provide only 
very little, if any, instructive signal information; however, which abound with control rea-
soning and signification that allows the user to concentrate more on the aim of the game, 
namely achieving more credits. This kind of feedback applications can also be used in pe-
diatric therapies. 

 Convalescence and assistance applications can be used by advanced BCI users or 
patients who gained significant control over the BCI system. The user no longer has the 
possibility to assess the quality of the signal classification or the strength of the signal. 
She/he is expected to identify the feedback application by itself or certain objects affected 
by the control strategy as a part of the own imagination or as an absent body part. In spite 
of the finished development process for two of these applications presented in this thesis, 
exhaustive experiments are still to be conducted. Future research will investigate the apti-
tude of these applications to attain at least two objectives: (i) to restore control over a 
missing body part (e.g. after the amputation of a limb), albeit the control is only virtual, 
i.e. it actually remains separated by a robotic interface; (ii) to alleviate or eliminate phan-
tom pain that resides in the sensory brain centers responsible for the absent body part. 

Figure 7 depicts the abstract overview structure of any BCI system and the BBCI system 
in particular; a structure on which the setup of this chapter is based. Please note the coloring of 
the different modules; this coloring scheme will be reused in all successive figures of this 
thesis. 

neurophysiologic
Paradigm

EEG-Signals

Control Signal

Pre-Processing Classification

Feedback

Acquisition Combination

Brain-Function

Task

Feature Vectors Class Affiliations

BCIBCI

Device

 

Figure 7: The abstract overview of any BCI system and the BBCI system in particular. A BCI 
system relys on a neurophysiological paradigm, processes acquired data through several stages 

and constructs a command to control a device or application. The user finally observs the 
results of this control perceiving the feedback information. 
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As it is common in most computer applications, the center of interest is the user who is 
given a task to perform. The neurophysiological paradigm of the given task will then induce a 
brain function; thus, it is not the user, directly, who induces or influences the brain function. 
The EEG signals are then acquired with the help of hardware elements such as electrodes, 
wires or amplifiers. The pre-processing procedure transforms samples selected from this 
continuous data and generates high-dimensional feature vectors that highlight the most impor-
tant characteristics of the corresponding neurophysiological paradigm. Feature vectors are then 
classified by a machine-learning approach. Several similar or different pre-processors and 
classifiers may be employed that can make the system more powerful. For this purpose, a 
combiner is employed to merge the results of all classifiers and to produce a control signal that 
is then transmitted to an arbitrary device. This could be a wheelchair, a neuroprosthesis or, 
more abstractly, a computer simulation of such a device that provides the user with the feed-
back or bio-feedback information. This, finally, closes the loop to the user. The system we 
refer to as a Brain-Computer Interface is enclosed in the dotted area. However, the design of 
appropriate tasks, the investigation of new neurophysiological paradigms and corresponding 
brain functions, as well as the development of convenient feedback devices and their simula-
tions and beneficial control strategies – all these satellite issues are paramount for BCI research 
and development and the future integration of such systems into the potential user environ-
ment. 

I will start this chapter’s sections from the hardware angle and follow the main flow of an 
information unit through to the BBCI system – correspondingly shown in the above figure – 
until the information loop is closed with the feedback application acting on user perception 
devices. Please note that a general-purpose BCI system – and the BBCI is one – does not 
depend on a single specific, either neurophysiological or any other, paradigm and should 
therefore be regarded as an abstract human-computer interface. 

1. Hardware 
Less than a decade ago, when patients needed an electroencephalogram (EEG), they were 

hooked up to a big cabinet-like machine normally set up in a separate chamber next to the 
consulting room. This machine amplified some few channels of weak signals acquired from the 
surface of the patient’s head and then recorded these onto a sheet of endless paper. A subse-
quent series of EEG recorders were equipped with large rolling tables (see Figure 8); yet these 
also recorded the curves on paper. Printed paper graphs had the drawback that they could only 
be evaluated through a mere visual reading on the part of the physician; thus, their entire data 
could not be fully exploited. 

The above-mentioned techniques were renamed as “analog EEG” once the more powerful 
and practical “digital EEG” techniques evolved; these quickly gained predominance not only in 
the clinical setting but also in research. This fortunate transformation of EEG acquisition 
hardware was, of course, due to the rapid development in computer architecture and software 
technology. 
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Figure 8: Historical electroencephalographs: Grass 1 (left) amplified 6 channels of EEG. 
Grass 2 (right) able to process up to 10 channels and to perform a simultaneous frequency 

analysis. From the Web site of the manufacturer 

1.1 Electrodes 

As outlined above, the BBCI technology for data acquisition – electroencephalography – 
employs surface electrodes placed over determined regions of the user’s head. These electrodes 
are attached onto a Brain Cap at certain positions (see Section 2.1f.) and consist of an upper 
and lower electrode cap made of isolating plastic. The lower electrode cap contains the heart of 
each electrode – the electrode plate (Ø is 7.5 mm), an alloy of Ag and AgCl. A centered 
circular through aperture of about 2.5 mm in diameter allows the experiment conductor to fill 
in electrolyte gel using a syringe. This serves to establish a good electrolytic conductivity 
between the epidermis of the user’s head and the electrode plate. Finally, a low-impedance 
connecting wire is soldered on the upper side of the electrode plate; this wire can carry ex-
tremely low currents to the head-boxes. Its isolation and shielding reduces its sensitivity to 
interfering noise currents from the surrounding environment. The assembly of a typical EEG 
electrode is illustrated schematically in Figure 9. 

Other “contactless”, dry electrodes, based on capacitive measurement techniques, are cur-
rently the state-of-the-art in electrical engineering [Harland et al., 2002] and promise valuable 
results for future BCI systems. This means that electrolyte gel will no longer be necessary, 
meaning also that users will no longer need to wash their head after each experiment. In addi-
tion, it will no longer be required to fill each of the 128 electrodes with electrolyte gel before 
each experiment; this will save considerable time. 

The 128 connecting wires are bound into four flat cables and connected to two head-
boxes. Certain electrodes can then be assigned to corresponding data transmission channels, 
which are then consecutively numbered. Four flat cables connect each of the head-boxes with a 
corresponding amplifier. 
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Figure 9: Schematic assembly of an electrode. The Brain Cap’s fabric is enclosed between the 
upper and the lower plastic caps. In the latter an electrode plate with a connecting wire is 

mounted. Electrolyte gel is filled into the electrode through the aperture to assure low imped-
ance between the epidermis and the electrode plate. 

1.2 Amplifiers 

The BBCI project employs four BrainVision© BrainAmp™ or BrainAmpDC™ EEG 
amplifiers obtained from the Brain Products® GmbH, Munich, Germany 
[www.brainproducts.com]. These amplifiers are employed in a variety of neurophysi-
ological signal recording methods, including EEG, EMG, EOG, ERP, and SEP. A relatively 
high sampling rate of 5000 samples per second allows for the reliable acquisition of signals 
with a limiting frequency of 1 kHz. The amplification is done with a signal-to-noise-ratio 
(SNR) of 90 dB, a resolution of 100 nV, and within a range of ±3.2 mV. The amplified result is 
then digitized with an accuracy of 16 bits per sample by a built-in A/D-converter and trans-
ferred to the recorder PC. To minimize environmental and interference noise, an opto-coupled 
twin fiber-optic cable is used for the data transfer to a PCI interface card built-in to the recorder 
PC. Finally, each amplifier capable of processing 32 channels is contained in a 15 × 15 × 6 cm 
box (w × d × h), which weighs 1.2 kg. Figure 10 presents an amplifier as incorporated in our 
experiments. 
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Figure 10: BrainVision© BrainAmpDC™ amplifier employed for the amplification and digi-
talization of the EEG voltage of 32 channels simultaneously. From the Web site of the manu-

facturer 

1.3 Recorder PC and the acquisition software 

The recorder PC is a common Intel® Pentium™ 4 machine with 1.3 GHz and 1 GB of 
RAM and runs Microsoft® Windows™ 2000 Professional Edition. It contains two built-in PCI 
interface cards, each capable of acquiring signals from two different amplifiers. The installed 
software for data acquisition (BrainVision© Recorder™) was provided by the manufacturer of 
the amplifiers. 

The acquisition software is capable of recording and visualizing up to 256 channels of 
continuous EEG, EMG or ECG data together with event markers (e.g. stimulus or response). 
Online averaging and segmentation in combination with online artifact rejection and baseline 
correction can be performed automatically during data acquisition. Moreover, several useful 
parameters (e.g. sample rate, gain, various filter characteristics, scaling and polarity) can be 
configured individually for each channel. A built-in online access to the currently acquired data 
via a well-defined TCP/IP-based communication interface allows for implementation of bio-
feedback paradigms like those addressed in this study. The communication protocol and the 
data format will be described in more detail later in Section 2.3. 

2. Data Acquisition 
This section gives an overview of the BBCI data acquisition approach. We will begin 

with the Brain Cap’s and with other physical electrodes and their conversion into logical 
channels according to their positions and application domain. We will then discuss the com-
munication protocol used in real-time online data acquisition and briefly illustrate its benefits 
for minimizing data loss and for decoupling the data processing system to comply with the 
assumed asynchronization of the system.  
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2.1 The Brain Cap 

A Brain Cap is somewhat like a bathing cap, yet made of elastic fabric, and is furnished 
with 128 electrodes (see Section 1.1.). It is important that the Brain Cap encloses the user’s 
head tight enough to prevent the desistance of single electrodes, while avoiding squeezing the 
user’s head to the extent that she/he experiences discomfort. Several sizes of Brain Caps exist. 

Additional electromyographic (EMG) electrodes are attached to the users’ forearms (and, 
depending on the type of experiment, to the legs) over the corresponding actor muscle that is 
used to perform finger (or leg) movements in order to strike a key (or a pedal). An EMG is 
recorded in a bipolar way by attaching two electrodes along the actor muscle. The actual 
potential is then calculated by subtracting their individual potentials, canceling out the potential 
of the “Reference” electrode (Ref). This data is then used in later analyses as a reference to 
ensure the evidence of our classification approach. By performing similar calculations based on 
EMG activity, it can be shown that results are not due to muscle mobilization, neither in well-
behaving nor in healthy users. 

Further electrooculographic (EOG) electrodes are attached around the user’s eyes and ac-
quire the EMG activity of the muscles that control the position of the eyeball (needed for 
focusing a target on a computer screen or for controlling the user’s gaze direction). Since EOG 
is a special type of EMG, it is recorded in a similar, bipolar manner. Two electrodes are at-
tached on the temporal lobes so as to record horizontal eye movements, e.g. when the user is 
following a target moving aside. Further two electrodes are positioned above and below one of 
the eyes, so as to record vertical EOG and eye blinks. This data may be used in later analyses 
to clean up the EEG from interfering artifacts as well as to assure that the classification results 
from experiments with well-behaving and healthy users are not due to eye movements. EOG 
data is used also to recognize and prevent possible involuntary cheating, e.g. producing eye 
movements correlated with the task. 

2.2 Electrode positions and nomenclature 

Electrode positions are designated in the Brain Cap according to the extended interna-
tional 10-20 system [Sharbrough et al., 1991]. It should be mentioned that the standard 10-20 
system was developed over a decade ago, when recordings of no more that a dozen of elec-
trodes have been sufficient; the standard system handles only 32 electrode positions. Later, it 
was extended to handle up to 64 electrode positions by introducing additional electrodes 
between the previously existing in the standard system. Modern BCI systems use up to 128 
electrodes and are no longer a rarity. From its beginning, the BBCI project made a point of 
using as many electrodes as were available in order to achieve the highest possible spatial 
resolution. Additional electrodes were introduced to the extended 10-20 system by placing 
them between those of the extended 10-20 system; they were also named according to the 
10-20 nomenclature by combining the labels of the neighboring once. 
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Figure 11: Standard international 10-20 system of electrode positions 
and the naming nomenclature. The system handles up to 32 electrode positions; a subset of 21 

most important are shown. From [Sharbrough et al., 1991] 

In order to optimize the fitting of the electrode cap, the user’s head is measured. For this, 
the distance between the Nasion and the Inion is taken as one complete unit (100%). Half the 
distance between these two points then designates where the central electrode of the Brain Cap 
(Cz) should be placed over the vertex (see Figure 11). The other electrode positions are subse-
quently mapped onto the cap by drawing the main sagittal (anterior-posterior) lines (F and P) 
at a 20% distance, of the complete unit, in front of and behind the vertex, respectively compris-
ing the frontal and parietal electrodes. Finally, the main, bottom electrode line is plotted a 
further 20% of the unit distance in front of the F-line and behind the P-line, which is exactly 
10% above the Nasion and the Inion. Electrodes on the main bottom line are redistributed 
according to the same 10-20 scheme; the unit distance is determined by the length of the curve 
between the Nasion and the Inion (see top view of the scalp on the right of Figure 11). Scalp 
topographies, maps or electrode placement in medicine commonly depict the user’s head 
viewed from above, with the nose at the top. 

The labels of the electrodes are composed of capital letters and a number. Letters refer to 
anatomical structures, like Anterior (A), Frontal (F), Parietal (P), Occipital (O), Temporal (T) 
lobes or the Central (C) sulcus, while numbers denote sagittal (anterior-posterior) lines. Odd 
numbers correspond to electrodes on the left hemisphere and even numbers to electrodes on the 
right hemisphere. The numbers rise in proportion to the distance of the electrode from the 
central sagittal line. Electrodes located on the central sagittal line are marked by a small ‘z’ 
concluding their label, rather than being indexed by 0. Labels with one or two capital letters 
correspond to the 64 electrodes of the extended international 10-20 system 
[Sharbrough et al., 1991]. Labels with three capital letters were composed from the neighbor-
ing electrode labels and denote additional channels in a 128-channel setup. All EEG activity is 
measured against the Reference electrode, Ref, which is mounted on the Nasion; it is also 
common to mount the Reference electrode on the earlap. In both cases, the reference electrode 
should be mounted on areas that are void of EEG activity yet that are sufficiently close to other 
electrodes carrying EEG data. Some experimental setups require the reference electrode to be 
mounted at the position of Cz; in these cases, the Cz channel becomes void. The ground 
electrode, denoted as Gnd, is mounted on the forehead on the position of the AFz electrode. 
However, varying placements of the ground electrode does not affect significant changes in 
data accuracy. The positions of the electrodes and the labels of corresponding EEG channels 
are illustrated in Figure 12. 
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Figure 12: Positions of electrodes in BBCI experiments and naming nomenclature of the 
corresponding EEG-channels according to the international 10-20 system. Selected electrodes 
have been removed to be used for the acquisition of EOG or EMG. The Reference electrode is 

mounted on the Nasion; the Ground electrode is placed at the position AFz. 

Some electrodes, like F9, F10 and Fp2, because of their positions, are suitable for ac-
quiring EOG activity such that the horizontal occulogram (EOGh) can be calculated directly 
during the acquisition from the difference between channels F9 and F10. The vertical EOG 
employs an electrode positioned under the right eye and can be calculated by subtracting its 
value from the value acquired at the EEG channel Fp2. 

Some EEG electrodes that are not taken to yield relevant information (e.g. at the occipital 
lobe or near the Inion) and therefore have been removed from the Brain Cap but are attached to 
the forearms (or the acting leg, depending on the type of experiment) over the actor muscle to 
record the EMG activity. This means that up to seven electrodes of the Brain Cap are not used 
for the acquisition of EEG but rather for various auxiliary control signals. At the BBCI project, 
most experiments were performed with about 120 EEG channels. 
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The voltage measured by the electrodes is very low and fluctuates rapidly within a range 
of about ±50 µV around a certain baseline. Electromagnetic noise from the surrounding envi-
ronment (mainly 50 Hz or 60 Hz power outlet frequency) interferes with the data via connect-
ing wires that act as small “antennas”. To assure low impedances between the electrodes and 
the scalp (ideally below 5 kΩ), each electrode is filled with electrode gel before experiments 
start. 

2.3 Communication protocol 

For the recorder software to achieve uninterruptible data acquisition, it needs to run in 
privileged mode and not be disturbed by other applications. Therefore, the implementation of 
this software is performed as efficient as possible such that the average processor load during 
the data acquisition process does not exceed 15%. Nevertheless, the system has its limits; if 
complex signal processing is carried out simultaneously to an additional privileged process on 
the same computer, all online activity may fail to function in real-time. This means that the 
data acquisition module will not be able to perform its task in time, resulting in late and irregu-
lar presentation of data blocks. This in turn affects the internal synchronization of the recorder 
software and could lead to a loss of data blocks and event markers. To avoid this risk, it is of 
fundamental importance to design the BBCI as a distributed system. A more detailed descrip-
tion of the software technology, distributedness and parallelism aspects is provided in Chap-
ter IV. 

The recorder software allows transmitting EEG data to other computers on Local or Wide 
Area Network (LAN/WAN) during the acquisition process. I refer to this feature in further 
explanations as Remote Data Access (RDA). It is based on a standard client/server architecture 
that transfers data according to the TCP/IP protocol. The recorder PC here acts as a server, 
allowing up to ten client PCs to be connected to it and registered for the reception of the 
currently acquired data blocks. In this way, a client program can be implemented in any pro-
gramming language that supports socket-based Internet communication and that can be run 
under any of the mainstream operating system such as Windows, Linux, UNIX or MacOS. 

3. Training Procedure 

““LLeett  tthhee  mmaacchhiinneess  lleeaarrnn!!””  
GGuuiiddiinngg  mmoottttoo  ooff  tthhee  BBBBCCII  ((22000011--pprreesseenntt))  

The leitmotif throughout the BBCI project is: “Let the machines learn!” Thus, the user 
should need only minimal training for operating it. And therefore, the training procedure, as 
described in this section, applies more to the training of the computer-based system than to 
teaching the subject, who has taken a cold-start in using the BBCI system. Nevertheless, the 
user is instructed by the experiment conductor about the task to be performed during the 
training session. These tasks could include real finger or body part movements, imagining 
these movements, imagining tactile sensation of a body part, performing a non-trivial arith-
metical calculation or a 3D-figure rotation, spelling a non-trivial word, or listening to a mel-
ody. Depending on the experiment, the task may be performed on demand, i.e. queried by the 
system, or self-paced by the user. In system-queried experiments, the task module places an 
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event marker into the data or, more generally, transfers this information to the BBCI system. In 
self-paced experiments, the user performs an action that can be monitored and which therefore 
prompts the system to place an event marker in the acquired data. 

Figure 13 illustrates a simple BCI training approach with two actors: a user generating 
brain signals (left), and the BBCI system (right) receiving these signals through the acquisition 
machine (top). The BBCI system is able to adjust its signal recognition parameters based on 
the event markers received either from the task module or stored together with the acquired 
data. 
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Figure 13: Machine training session of the BBCI system. The user (left) is performing the task 
either queried or self-paced and generates certain spatio-temporal pattern of EEG, which are 
acquired by the recorder PC (top) and transmitted to the BBCI system (tight) for training its 

signal recognition module. 

3.1 Experimental setup 

The experimental setup of all BBCI experiments is composed of two sessions: the ma-
chine training and the application (as it is exemplarily illustrated in Figure 14). The illustrated 
setup can be easily adopted for other experimental paradigms by applying only a few small 
changes. 

In the first session, the machine training session, the user is instructed to sit comfortably 
and, as far as possible, to avoid any muscular artifacts (e.g. biting, swallowing, yawning, or 
moving the head, arms, legs or the entire body) as these would induce electromyographic 
(EMG) noise. This noise would interfere with EEG signals and significantly decrease the 
signal-to-noise ratio (SNR). The user receives a detailed explanation of the task and is given 
some time to adjust to the constraints. The system then acquires example EEG from the user 
while she/he performs a given task during the training procedure. The single-trial differential 
potential distributions of the Bereitschaftspotential (BP) (also known as Readiness Potentials) 
that preceded the voluntary movement over the corresponding contralateral primary motor 
cortex are analyzed using the multi-channel scalp EEG recordings. This results in an appropri-
ate user model comprised of three parts: 

 The pre-processing model. This model can be based on a parametric approach, e.g. a 
spatio-temporal matrix calculated from the data samples. This acts as an optimal filter for 
mapping the raw data to a feature space in which a classification can then be more easily 
performed. A calculation of the auto-regressive (AR) model parameters or rules used for 
calculating adaptive autoregressive (AAR) model parameters can serve as an example of 



— 40 — 

a parametric pre-processing model. However, we employed a non-parametric pre-
processing model in most of our experiments (see Section 4). [Blankertz et al., 2003] 

 The classification model. This model is usually based on a parametric approach of 
linear classification, yet can also include a kernel-based or a non-linear classifier. A ma-
trix of weights is calculated from the preprocessed data. This matrix maps the data from 
its feature space to a set of one-dimensional spaces of fuzzy values that indicate the cer-
tainty of the classifier’s decisions regarding the affiliations with the one or the other class 
of interest. The BBCI employs a linear classifier – the Regularized Fisher’s Discriminant 
(RFD) (see Section 5) [Blankertz et al., 2002], [Krepki et al., 2004]. 

 The combination model. This model is limited to a set of logical rules that combine 
the fuzzy values of affiliations produced by the classifier model to a control command 
that is conform to the communication protocol of the feedback module. This command 
will then be used to control the animation of the feedback application. The BBCI employs 
a simple Winner-Takes-All (WTA) combiner module in most of its experiments 
[Waterhouse and Robinson, 1994]. 
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Figure 14: Exemplary experimental setup of a BBCI experiment. During the training session 
(left) the user performs a task and the learning machine setups the user model. During the 
application session (right) this model is applied to the generated EEG pattern aiming their 

recognition and transformation into command for controlling a feedback application. 
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In experiments that incorporate brain signals of healthy subjects executing real move-
ments, a paradigm has to be able to predict the laterality of imminent hand movements prior to 
any EMG activity. This is necessary in order to rule out a possible confound with afferent 
feedback from muscles and joint receptors contingent upon an executed movement. 

The BBCI is based on Lateralized Readiness Potentials (LRPs), which are a form of Slow 
Cortical Potentials (SCPs) and which appear during movement preparation. Interestingly, the 
intrinsic movement execution is not essential since LRP variants can also be observed for 
imagined movements in healthy test persons [Beisteiner et al., 1995]. However, the reader 
should note that a person’s intention to move her/his amputated arm (phantom movement) is 
not identical with imagined arm movements of a healthy person. This is because in the latter 
case an additional “no-go” or “veto” signal is required to prevent the actual motor perform-
ance. BBCI is capable of recognizing both paradigms: imagined and executed movements, as 
described in further sections and validated by appropriate experiments. A more detailed neuro-
physiological description of paradigms can be found in Chapter II. 

When the appropriate user model is set up, the experiment conductor can proceed with the 
second session: the application of the obtained model to the user’s data (as illustrated in the 
right part of Figure 14). During this session, the communication loop is closed by providing the 
user with the visual, auditory or tactile feedback from the application. This feedback applica-
tion can be run on a separate computer and is controlled with commands emitted from the 
BBCI signal recognition module. The user’s task changes now from the “blind” execution or 
imagination of actions to the more complex but psychologically intuitive task of gaining 
control over the application. The system does not provide any additional stimuli for synchro-
nizing the user’s actions, nor does it require any intrinsic responses from the user – these 
functions have been shifted to the feedback application that is fine-tuned to the user’s profi-
ciency level. 
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Figure 15: Application session of the BBCI system in a feedback-based experiment. The user 
performs a task (controlling the objects of the feedback applictaion) and generates certain EEG 
patterns that are acquired by the recorder PC and transmitted to the BBCI’s signal resognition 

module. The BBCI sytem in turn emits control command to the feedback application. 
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As indicated in Figure 15, during the application session, the task is given the role of a 
logical interface between the user and the feedback application. The user’s “signal generation 
module” – the brain, as a plastic entity – and the control strategy employed by the user can now 
be updated and enhanced by the information provided from the feedback application. There-
fore, the BBCI’s signal recognition module – the user model – remains unchanged throughout 
the complete session. Nevertheless, it is conceivable to integrate innovative techniques of 
active learning, allowing for minor updates of the user model [Castillo and Wrobel, 2002]. 
Such techniques would advance BCI systems as a whole by turning them into bilateral learning 
systems, which would then consist of two flexible entities adapting to each other. 

 The user can update her/his signal generation policy and vary the control strategy to 
improve control over the feedback application. This in turn induces permanent changes in 
the brain signals presented to the acquisition machine. 

 The BBCI can continuously update its signal recognition module – the user model – 
to better fit the control strategy currently employed by the user, which aims providing the 
user with a higher quality of feedback control. 

For this purpose, an additional communication channel is needed to transfer a reinforce-
ment signal to the BCI system. This will be discussed together with error signal detection in 
Section 6.3 and with the dedicated feedback application in Section 7.5. 

The task to be performed by the user during the training session could be, among others, a 
self-paced real finger movement or a machine-queried imagined finger movement. They will 
be described in the following.  

3.1.a Self-paced real finger movements 
This kind of experiment can be performed with healthy users who have motor control of 

their extremities, e.g. fingers. The users are instructed to place their hands on the computer 
keyboard (German layout) in the initial 10-finger-typing position. Their left and right index 
fingers should then be placed over letters ‘F’ and ‘J’ respectively and their left and right pinky 
fingers correspondingly over letter ‘A’ and ‘Ö’. Their arms, hands and fingers should be as 
relaxed as possible and they should not move forwards, backwards or sideways. 

Typing on a computer keyboard using the left or right index or pinky fingers must be per-
formed with a certain frequency, e.g. about 0.5, 1 or 2 Hz, as it is specified by the experiment 
conductor yet self-paced regarding tact and sidedness. The experiment conductor can adjust the 
user’s actions with short and precise commands, enforcing a faster or slower tact in order to 
retain the inter-tap interval as constant as possible. The conductor can also increase or decrease 
right or left repetitions or alternations in order to keep the transition matrix well-balanced. An 
unbalanced distribution matrix (e.g. containing a lot more left-trials than right trials or vice 
versa, or indicating a lot more repetitions of the same movement than alternations or vice 
versa) may invalidate the classifier training efforts. This is because in the training procedure it 
could become evident that a classification based on the post-trial data of the previous trial is 
useful for predicting the class of the future trial. The reader should note here that trial intervals 
are selected from the continuous data as causal windows, i.e. they only contain data points 
from the past. The experiment conductor must ensure a well-balanced transition matrix such 
that information from the previous trials does not contribute to the training procedure. 

3.1.b Machine-queried imagined finger movements 
Experiments with machine-queried imagined finger movements can be performed with 

neurologically diseased users as well as with healthy users (as described in Section 3.1.a). 
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However, the experiment requires some user training to prepare the movement and to emit the 
movement command without executing it intrinsically. A subsequently emitted “no-go” or 
“veto” command is needed for this purpose. Machine-queried imagined finger movements are 
also commonly employed in experiments with people suffering from severe neurological 
disorders, for example, persons paralyzed by spastic paraplegia, brain stem injury or amyotro-
phic lateral sclerosis (ALS), or those who lost extremities due to amputations. In these cases, 
users perform the “phantom movement” with their damaged or absent arm, hand or fingers. 
The brain signals of healthy users differ from those performing phantom movements. How-
ever, because the corresponding motor area of the cortex is still intact and because the underly-
ing paradigm is identical for all humans, these signals are detectable by our signal processing 
approach. 

Imagined or phantom typing has to be queried externally because we cannot gather in-
formation about the oncoming of the action or about its laterality. Two types of queries are 
introduced to the user: 

 Early visual determination of the laterality of the upcoming action. This is indicated 
on the computer screen facing the user during the training session with big bold letters ‘L’ 
or ‘R’ or with arrows pointing to the left or right in the center of the screen. 

 Auditory beat with a constant frequency, e.g. 0.5 Hz. This is produced by a digital 
metronome and indicates when the action determined by the foregoing visual query is to 
be initiated.  

A more sophisticated query technique based on auditory stimuli only is conceivable and 
could be appropriate for unilaterally paralyzed users. It would be constructed on the basis of 
two different types of metronome beats, e.g. “tick” and “tack”, alternating sequentially. When 
hearing “tick”, the user is instructed to pay attention to it, but not to initiate any movements. 
When hearing “tack”, she/he is to either (i) execute an action with the intact extremity on the 
computer keyboard, which will place an event marker into the data; or (ii) generate a phantom 
movement, which will obviously leak the expected event marker. 

All visual and auditory stimuli presented to the user during the training session will place 
time-sharp event markers in the data. Through this, training samples can be correctly extracted 
from the data and correctly affiliated to a certain class of interest. 

3.2 Extracting training samples 

The training is performed in 3 to 5 sessions of about 7 minutes each, interrupted by short 
breaks of user-defined duration (see Figure 16). Each training session is introduced by a 
40-second and concluded by a 20-second relaxation period and includes a total of 6 minutes 
during which the user performs the given task repeatedly. A message on the monitor informs 
the user of the current period, i.e. relaxation or action. During the action periods, the user is 
provided with a static, thin fixation cross in the center of the screen; she/he is instructed to 
direct her/his gaze on it and to avoid ocular artifacts as much as possible. 
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Figure 16: The setup of training sessions of the BBCI experiments. Each session lasts over 7 
minutes including 6 minutes of repeatedly task execution. Break of user-defined duration are 

inserted between the sessions. 

Depending on the frequency of the repeated action (defined by the experiment conductor), 
the data of one training session consists of 180-700 trials, namely those announced by the 
event markers. While in experiments investigating real finger movements the corresponding 
event marker, i.e. user response, carries all information about the actual onset of the action as 
well as its laterality coded in the marker label, the onset and the laterality of the action in 
experiments investigating imagined or phantom movements (see 3.1.b) is coded in two con-
secutive markers, i.e. user stimulus. This makes it necessary to combine these to a single one 
according to logical rules before starting sample extraction. Let us define an event marker as: 

{ }( )Marker: : enum | ,  : String,  : UINTType Stimulus Response Label Position= , (2) 
where Type can be Stimulus or Response, the Label carries the description of the marker and 
Position defines its temporal position in the continuous data. A combination rule may then be 
assembled as: 

( )

1 2
1 2

2 1

1 1 2

. .
, , Marker :

. .

                                                           . ,  . ,  .

new

new

m Type m Type Stimulus
m m m

m Position m Position

m m Type m Label m Position

τ
= =⎡ ⎤

∀ ∈ ∧ ⇒⎢ ⎥− <⎣ ⎦
⇒

 (3) 

which will replace markers m1 and m2 with a combined marker mnew, where τ  is a time con-
stant indicating the maximum allowed duration between the two consecutive markers 
(e.g. which may indicate the determination and detection queries). 
Each class of interest covers its own sample selection parameter set defined as: 

( ){ }( ): Marker. ,  Marker. ,  ,  ,  d iSSP Type Label n t t=  (4) 

where a set of Type-Label combinations identifies the affiliation of markers to a certain class 
of interest, n gives the number of training samples to be selected from the data, and td and ti are 
time constants indicating the delay of the initial sample and the inter-sample interval. These 
samples can be figured as temporally overlapping spatio-temporal sub-matrices of the continu-
ous data matrix and indicate time regions where information about task performance is ex-
pected to be coded. Please find these so-called Action samples, denoted as 1a, 2a and 3a, in 
Figure 17, where w denotes the width of the extracted training sample and is fixed for each pre-
processing procedure. 
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Figure 17: Sample selection procedure for 3 Action and 2 Rest training samples. A number of 
samples are selected relative to the event marker specified by the parameters of the SSP. Action 

samples (1a, 2a, 3a) are expected to contain EEG of movement preparation, which in turn 
should be absent in Rest samples (1r, 2r). 

In order to make the classifier invariant to the temporal shifts, it is useful to extract sev-
eral training samples that belong to a single event marker from the continuous EEG data. The 
user may press the button or imagine the movement execution slightly shifted relative to the 
stimulus marker such that it cannot be determined exactly when the most prominent EEG 
sample is located. Several training samples instruct the classifier training procedure to enlarge 
the duration of the action window preceding the movement intension. However, extracting too 
many training samples has the drawback of including those without any neural activity into the 
“action” data set. Consequently, the training procedure will fail to find a satisfying classifier 
model. While the calculation of a satisfying classifier model is most often possible, it is a 
common observation for real-world data, that a perfect classifier is improbable. 

Aside from the classes introducing Action samples, an additional class introducing Rest 
samples can be defined. This is useful if the BCI communication is to be asynchronous, i.e. if 
the user may fire a command at any time during the feedback application session and not only 
when she/he is queried by the feedback machine. In this case, the BCI system must be able to 
distinguish two kinds of processes: (i) the detection of an upcoming action and (ii) the determi-
nation of which action is coming up. For this purpose two parallel processing paths are initi-
ated, both of which can employ different user models as well as different meta-models set up 
individually based on different sets of samples. The meta-model is given by selecting the 
appropriate pre-processing and classification procedures. Please note that the BBCI cannot 
perform the meta-model selection automatically. This means that the meta-models for both 
paths need to be determined by the experiment conductor; yet, the selection is a simple opera-
tion. 

To identify the user model of the “determination” path, only Action samples of each class 
of interest selected from the data are used. The features extracted from these samples are set 
into opposition to each other. For example, in a two-class experiment (e.g. left vs. right finger 
movement), a sample set affiliated with the class of left movements is set into opposition to the 
sample set affiliated with the class of right movements, and vice versa. In multi-class experi-
ments, the opposition structure depends on the meta-model involved such that several possible 
variants become evident and should ideally have been validated for feasibility in preceding 
offline studies. Several oppositions that proved to be useful for a 3-class experiment are sum-
marized in Table 3 (completeness is not guaranteed). 
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Table 3: Opposition techniques that proved to be useful for a 3-class experiment 

Var Oppositions Graphic 
representation Comments 

1 
A ↔ B ∪ C 
B ↔ C ∪ A 
C ↔ A ∪ B 

B C

A

 

This technique should only be used 
when making an error is too costly. 
Regions that may contain errone-
ously classified samples (unfilled) 
are labeled “unknown”. 

2 A ↔ B ∪ C 
B ↔ C 

B C

A

 

This technique is useful if a single 
class (here A) is distinguished by its 
special properties and the two other 
could be viewed as similar. 

3 
A ↔ B 
B ↔ C 
C ↔ A 

B C

A

 

This technique does not assume 
prior knowledge about any of the 
three classes. 

 

Table 4: Appropriate (default) values for the sample selection parameter (SSP) set. 

Action Rest Aspired pace 
frequency n td [ms] ti [ms] n’ td’ [ms] ti’ [ms] 

0.5 Hz 4, 5 -120 -40 3, 4 -800 -200 
1.0 Hz 3, 4 -100 -30 2, 3 -400 -100 
1.5 Hz 3 -90 -25 2, 3 -300 -80 
2.0 Hz 2, 3 -80 -20 2, 3 -250 -60 

 
To identify the user model of the “detection” path, samples of the Rest class are extracted 

from the data; this class’s features are contained in its own SSP set. This procedure generates 
training samples (denoted as 1r and 2r in Figure 17) which are, irrespectively to their marker 
label affiliation, used in opposition to the union set of samples affiliated to all Action classes. 
Special attention must be paid in fast-paced experiments that samples of the Rest class do not 
intersect with samples of the Action class of the preceding event marker, as they should not 
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include any information about action. The conceivable and appropriate values for the SSP, 
summarized in Table 4, may be of interest to the reader interested in technical details. 

4. Preprocessing Procedure 
The main BBCI focus is on control applications, such as “virtual keyboard typing”, that 

can be conceived as potentially resulting from the natural sequence of motor intention, fol-
lowed by preparation and completed by the execution. Accordingly, the neurophysiological 
approach aims to capture EEG indices of the preparation of immediately upcoming motor 
actions. This thesis will present the BBCI’s capacity to exploit the Bereitschaftspotential (BP), 
also called Lateralized Readiness Potential (LRP) in other publications. BP is a special case of 
Slow Cortical Potentials (SCP); they are slow negative EEG shifts that develop over the 
activated motor cortex prior to the actual movement onset for the duration of approximately 
one second. It is assumed to reflect mainly the growing neuronal activation (apical dendritic 
polarization) in a large ensemble of pyramidal cells. Previous studies [Lang et al., 1989], 
[Cui et al., 1999] have shown that in most subjects the spatial scalp distribution of the averaged 
BP correlates consistently with the moving hand, where the focus of brain activity is located 
contralaterally to the performing hand. For more detailed neurophysiological information, 
please refer to Chapter II. 

 

 

Figure 18: Scalp distributions of the Lateralized Readiness Potentials (LRPs) averaged over 
many single-trials of only left-hand finger movements (upper row) and only right-hand finger 
movements (middle row) within the three time periods relative to the movement execution. 

Laplace filtered EEG curves (lower row) averaged for left and right trials separately illustrate 
greated negativation over the motor cortex contraletral to the performing hand. 
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Figure 18 shows the Laplace1 filtered EEGs around the left and the right motor cortices, 
i.e. around electrodes C3 and C4 within a time range of [-450 : 200] ms relative to the key tap, 
averaged selectively for left-hand-only and right-hand-only taps. The grey bar indicates a 
100 ms baseline period during which an average value is calculated and subtracted from all 
data points in order to locate the graph around the abscise. The LRP lateralization is clearly 
specific for left, respectively right-hand finger movements, with right-hand finger movements 
producing a significantly higher negativation on the left hemisphere (near electrode C3, see left 
plot) than left-hand finger movements. Conversely, the negativation on the right hemisphere 
(near electrode C4, see right plot) is higher for left-hand finger movements than for right ones. 
The reader should note that these plots were produced by averaging over many single trials, 
thus summing out uncorrelated noise. However, this noise (e.g. acoustic, haptic, visual or 
olfactory stimuli or mental distraction) from the influence of the surrounding environment on 
the user has much higher amplitude compared to the data and is still present in each single trial; 
it therefore remains difficult to predict the laterality based on a single observation. 

4.1 Feature selection procedure 

BBCI is capable of any pre-processing procedure (i.e. for selecting the most prominent 
features) that matches the communication protocols: (i) it should be able to handle the continu-
ous EEG data of a given format; (ii) it should result in the pre-processed data in a manner 
usable for further classification, i.e. in a special data format. Both interface data formats are 
presented in Chapter IV. In this subsection, I will describe the Feature Selection procedure as 
proposed by Blankertz et al. [Blankertz et al., 2002] [Blankertz et al., 2003] and integrated into 
the BBCI system [Krepki et al., 2003], [Krepki et al., 2004]. 

To extract relevant spatio-temporal features of slow brain potentials, we sub-sample sig-
nals from all or a subset of all available channels and take them as high-dimensional feature 
vectors. In pre-movement trials, extracted from the continuous EEG data as illustrated in 
Figure 17, most information is expected to appear at the end of the given interval; we therefore 
apply a special treatment to all training and test samples. Let us denote the raw data as an array 
D of #D elements acquired at sampling frequency F, and the array d containing elements sub-

sampled to frequency f. Consequently, d consists of : # fw D
F

= ⋅  elements (for both arrays the 

indexing starts at 0). The samples are extracted – exemplarily, each of a length of #D = 1280 
time points and sub-sampled to the frequency f = 100 Hz – from initially acquired data with a 
sampling frequency of F = 1 kHz, by applying the sub-sampling procedure (e.g. simply taking 
every 10th data point). This provides us with epochs of w = 128 data points. This length is a 
fixed parameter for a fixed pre-processing procedure (compare Figure 17). Various sub-
sampling procedures have been implemented and tested; see Table 5 for a summary. However, 
all yielded same or similar results; thus we limited this procedure to the one which incurred the 
least computational costs in terms of time/resource consumption. The following table depicts 
operations to be performed for calculating each data point of d, given D as well as the corre-

                                                           

1  Laplace spatial filter subtracts the mean value of all the neighboring channels from 
each of them separately. This action accentuates local activation in channel data. The calcula-
tion of the mean can be implemented in different ways, e.g. by weighting the neighbor’s values 
with some spatial distribution function, and by certain useful definition of the measure of 
distances between channel positions. In our case this measure is given by the Euclidean dis-
tance between the electrode positions of the Brain Cap montage. 
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sponding computational costs; the operations are listed in the order of the number of arithmetic 
operations necessary. 

 
Table 5: Sub-sampling procedures and the corresponding computational costs 

Procedure Calculation Computational costs 

First 
# 1

0

fD
F

i

Fd i D i
f

⋅ −

=

⎡ ⎤
∀ = ⋅⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
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# 1

0
1 1

fD
F

i

Fd i D i
f

⋅ −

=

⎡ ⎤
∀ = + ⋅ −⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
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# 1

0

2 1
2 2

fD
F

i

F Fi fd i D
f

⋅ −

=
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⎢ ⎥⎣ ⎦⎣ ⎦

 

Random ( )# 1
1 1

0

fD FiF
f

Fi i
f

d i D Rand
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+ ⋅ −

= ⋅

⎡ ⎤
∀ =⎡ ⎤ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
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. (5) 

Consequently, the sub-sampling procedure “Last” is expected to be the most efficient one with 
respect to both: accuracy of classification results and resource consumption. The same extract-
ing and sub-sampling procedure is performed for all or a subset of available EEG channels 
separately. 

To emphasize the late signal content, the data points of the sample window (which exem-
plarily ranges from -1400 ms to -120 ms (td = -120 ms) relative to the timestamp of the 
desired event marker) are multiplied by a one-sided cosine function win[·] defined in its 
discrete form in (6): 
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1
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−

=
, (6) 

as illustrated in Figure 19. 

      

Figure 19: Windowing treatment of the pre-processing procedure Feature Selection. Data of a 
single EEG channel of an arbitrary sample extracted from continuous EEG (left) is multiplied 

by a cosine window (right) to emphasize the late information content. 

A Fast Fourier Transformation (FFT) filtering technique is then applied to the windowed 
signal, producing complex valued Fourier coefficients (like those illustrated in the left part of 
Figure 20). Only the positive half of the frequency spectrum (the first 14 coefficients) is shown 
here as the magnitude value of the complex coefficient. We discard the baseline and all coeffi-
cients above a certain frequency, e.g. 5 Hz or even lower, such that only the δ-rhythm carrying 
the slow wave potential remains in the signal spectrum. 

      

Figure 20: The FFT filtering technique performs low-pass filtering discarding the baseline bin 
(left) and the selection of 3 feature values from the tail of the signal (right), which has been 

transformed back into the time domain by the inverse FFT. 

Transforming the low-pass frequency spectrum back into the time domain generates the 
smoothed signal, exemplarily depicted in the right part of Figure 20. The last 150 ms are then 
sub-sampled again at 20 Hz by calculating the means of consecutive non-overlapping intervals, 
each of five samples. This results in a number of feature components per sample and channel 
(here exemplified as three). Several parameters of the pre-processing procedure must be 
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determined with respect to the resulting classification accuracy in preceding offline or pseudo-
online studies and must be set up before the experiment starts. These parameters are summa-
rized in Table 6, where the reader can also view the appropriate default values, printed in italics 
in the right column. 

Table 6: Appropreate (default) values for the parameters of the pre-processing procedure 
Feature Selection. 

Parameter Notation Default values 

Window width 
[data points] w 32, 64, 128, 256 

Windowing function enumeration 
Cosinus, half-Gauss, 
Linear, None 

Filter enumeration 
Low-Pass, High-Pass, 
Band-Pass, Notch 

Low /High frequencies 
[Hz] (fLow, fHigh) 

(0, 2.5), (0, 3), 
(0.5, 4), (1, 5) 

Trailer length 
[% of window width] tr 7.5-22 (12) 

Feature selection enumeration Equidistant, Linear 
Number of features nF 3, 4, 5, 6 

5. Classification 
All feature values selected from the pre-processing, finally, are enqueued in a fixed man-

ner, forming a high-dimensional feature vector for each training sample. For example, three 
features are selected from each sample and channel employed in a subset of the 40 most 
relevant EEG channels. The feature vector of each training sample may then be constructed 
from EEG acquired over both the left and right primary motor cortices and live in a 120-
dimensional feature space. These vector data are to be classified by a discriminator with 
respect to the class label attached to the sample from which the vector’s elements are extracted 
as features. Several regularized classification techniques have been implemented to be used in 
the BBCI system and tested in offline, pseudo-online and real online experiments. They in-
cluded various linear classification approaches like Linear Programming Machines (LPM), 
linear Perceptron with weight decay, Linear Discriminant Analysis (LDA), linear Support 
Vector Machines (SVM) and Regularized Fisher’s Discriminant [Blankertz et al., 2002]. 
Furthermore, some promising non-linear discriminative approaches, like Quadratic Discrimi-
nant Analysis (QDA) or Support Vector Machines (SVM) with Gaussian kernels have been 
applied to these feature vectors. Various non-linear classification methods are undoubtedly 
capable of handling more complex problems since they can adjust additional parameters. Yet, 
precisely due to their sophistication, they are more sensitive to noise which interferes with the 
data. Therefore, when applied to a simple, linear data set, they generally indicate a lower 
training error while producing a corresponding, significantly higher, generalization error. 
Please note also that noise is a principle concern in EEG data. 

The phenomenon is exemplified in Figure 21. Two classes of data (circles and crosses) 
are distributed in Euclidean space with a trickle of positional noise such that a linear separation 
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yields a more general discrimination with respect to unseen data (illustrated in red). However, 
the non-linear curve performs perfectly when based on training data that tries to fit the posi-
tional noise of the data points located near the decision border – thus failing to interpolate the 
test data points. 

y

x x

y

 

Figure 21: Example of linear (left) and non-linear (right) discriminative approaches applied to 
a toy classification problem. The training data set (black circles and crosses) can be separated 
with higher accuracy by the non-linear approach yielding a lower training error. However, it 
performs worse on unseen data (red circles and crosses) yielding a significantly higher test 

error. This phenomenon is also known as overfitting. 

Nonlinear methods have not shown to produce greater classification accuracy, in the 
sense of cross-validation, than the best linear methods and often they performed even worse. 
This is in agreement with experiences collected from several BBCI experiments, in which ERP 
features of different classes of motor trials (e.g. left and right-hand finger movements) were 
distributed according to a simple process. It can be fairly assumed that the resulting data set is 
in essence linearly separable; however, due to the presence of environmental and some process 
noise, the overall data set appeared as being linearly non-separable. An ideal method will be 
able to recognize only those variations induced by the process, and ignore variations caused by 
noise. Yet linear classifiers are thus still the more appropriate as they are less sensitive to noise. 

The pattern recognition theory says that the Fisher’s Discriminant (FD) gives the classi-
fier with minimum probability of misclassification for known normal distributions with equal 
covariance matrices [Vapnik, 1995]. As I will further explain in the following subsection, the 
classes of ERP features can be assumed to obey such distributions. Because the true distribu-
tion parameters are unknown, means and covariance matrices have to be estimated from 
training data. This is prone to errors since we have only a limited amount of training data at our 
disposal. To overcome this problem, it is common to regularize the estimation of the covari-
ance matrix. In the mathematical programming approach of Mika et al. [Mika et al., 2001], the 
following quadratic optimization has to be solved in order to calculate the Regularized Fisher’s 
Discriminant (RFD) w from data xk and labels yk ∈ {-1, 1} and the data sample index k 
(k = 1, … K): 

2

2

2

2,, 2
1min ξ

ξ K
Cw

bw
+  subject to: ( ) kk

T
k bxwy ξ−=+ 1  (7) 

for k = 1, …, K, where 
2

  ⋅  denotes the 2l -norm for which www T=2

2
 holds and kξ  are slack 

variables. C is a hyper parameter that has to be chosen appropriately, say, by cross-validation 
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strategies. There is a more efficient way to calculate the RFD, but this formulation has the 
advantage that other useful variants can be derived from it [Mika et al., 2001], 
[Müller et al., 2001]. For example, using the 1l -norm in the regularizing term enforces sparse 
discrimination vectors. The major advantage of the RFD-based classifier lies in its lower 
computational costs compared to the other above-mentioned methods; this allows the perform-
ance gain to be maximized. 

5.1 Classifier analysis 

The event-related potential (ERP) features are superpositions of task-related and many 
task-unrelated signal components, e.g. background auditory, visual, receptional, haptic, olfac-
tory noise, or task-unrelated thoughts. The mean of the distribution across trials is the non-
oscillatory task-related component – the ERP – ideally the same for all trials. The covariance 
matrix depends only on task-unrelated components. An analysis of these matrices calculated 
selectively for left-hand and right-hand movements showed that the distribution of the ERP 
features is indeed normal (see Figure 22). 

 

Figure 22: Distributions of the ERP features selected at electrode position C4 for only left and 
only right events separately with a Gaussian curve fitted into the data (upper row) and the 

corresponding normalized covariance matrices (bottom row). 

The covariance matrices are calculated only from a one-time slice of the ERP features, i.e. 
in regard to the SSP set, for n = 1 and for a fixed time point prior to a key stroke at 
td = -110 ms. Along each axis of the matrices, EEG channels are sampled in lines that go from 
the frontal to the occipital scalp, each line going from the left to right hemisphere, thereby 
causing the lattice structure of the covariance matrices. An important observation here is that 
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the covariance matrices of both classes look very similar. The histograms (see upper part of 
Figure 22) show the distribution of ERP features at channel C4 (located over the right motor 
cortex and thus corresponding to the activity of the left hand) at a fixed time point and super-
imposed by a fitted normal distribution. The normalized covariance matrices across channels 
for the two conditions (left vs. right-hand finger movement preparation) have only minor 
differences, most probably induced by noise. These minor differences are ignored by linear 
classification, whereas they are a potential concern for non-linear classifiers. 

5.2 The Fisher’s linear discriminant 

This linear discrimination technique was introduced by Fisher [Fisher, 1936]. As pointed 
out in the beginning of this section, a low number of data points, which are of comparatively 
high dimensionality, confronts us with the “curse of dimensionality”. This means that design-
ing a good classifier quickly becomes more difficult along with the increasing dimensionality 
of the input space. The Fisher’s Discriminant aims for an optimal linear dimensionality reduc-
tion. It is thus not strictly a discriminant by itself but it can be easily used to construct one 
[Bishop, 1995]. 
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Figure 23: Schematic illustration of two classes separated by linear models with and without 
taking into account the within-class covariance matrix Sw . Distributions of the two classes of 
data (red and green) are shown with means and variances if projected onto the two coordinate 
axes. A simple linear discriminant does not yield satisfactory results, but the one optimizing 

the Fisher’s information criterion (12). 

A very simple approach of dimensionality reduction is to use a linear projection of the 
data onto a one-dimensional space. An input vector x

r  will then be projected onto the value 
Ty w x=
r r , where w

r  is a vector of adjustable weight parameters. This gives the projection that 
maximizes the separation, i.e. the distance between the centers of mass of the two classes. For 
example, consider two classes C1 and C2 containing |C1| and |C2| data points respectively. The 
mean vectors of the two classes, i.e. their centers of mass, are then given by: 
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We might define the separation of the classes, when projected onto the weight vector, as being 
the separation of the projected class means. Therefore w

r  must be chosen to maximize 
( )2 1 2 1

Tm m w m m− = −
r r r , where T

k km w m= r r  and k = 1, 2            (9) 
defines the class mean of the projected data from class Ck. The problem is then simply to find a 
weight vector such that 

( )2 1 1Tw w
w m m

=
∝ − r r

r r r . (10) 
However, as illustrated in Figure 23, projecting two classes, well-separable in their original 
two-dimensional space (x1, x2), onto the x1-axis, gives a much higher separation of the pro-
jected class means than does a projection onto the x2 axis. Therefore, the separation as defined 
in (10) is insufficient. 

This difficulty stems from the substantial differences of the within-class spreads along the 
two axis directions. The solution presented by Fisher is to maximize the function that repre-
sents the difference between the projected class means, normalized by a measure of the within-
class scatter along the direction of w

r . The within-class covariance is given by: 
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r r , (11) 

and the total within-class covariance for the entire data set may be simply defined as 2 2
1 2σ σ+ . 

The Fisher criterion could thus be defined as: 
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where SB defines the between-class covariance matrix, and SW is the total within-class covari-
ance matrix. This can be easily deduced from (12) and is given by: 
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The weight vector must be chosen such as to maximize the Fisher criterion. The problem is 
thus reduced to a simple quadratic optimization problem. When differentiating the Fisher 
criterion with respect to w

r , it becomes clear that it is maximized when: 
( ) ( )T T

B W W Bw S w S w w S w S w=
r r r r r r . (14) 

Since BS w
r  is always in the direction of ( )2 1m m−

r r , deduced from (13), and since we do not care 
about the magnitude of w

r  but only about its direction, we may drop all scalar factors, multiply 
both sides by 1

WS −  and obtain, consequently, the weight vector to be calculated as: 
( )1

2 1Ww S m m−∝ −
r r r . (15) 

This is what is ultimately known as the Fisher’s Linear Discriminant. However, strictly speak-
ing it is not a discriminant but rather a specific choice for a direction of the data projection 
down to one dimension. Please note that if the within-class covariance is isotropic, the weight 
vector wr  becomes proportional to the difference of the class means, as discussed above. 
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Additionally, we can choose the bias y0 such that a new point x
r  can be classified as be-

longing to the correct class, i.e. either C1 or C2 according to: 

1 0
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r r
r

r r . (16) 

 
For example, the bias parameter y0 can be chosen as the intersection point of the Gaussian 
distributions; this parameter is estimated from the data points and projected onto the weight 
vector of the discriminant wr . To summarize, the Fisher’s Discriminant searches for a separat-
ing hyperplane that will subdivide the feature space into two classes. Thereby it optimizes its 
model parameters in two ways: (i) it maximizes the distance between the centers of mass of the 
two classes, i.e. the so called between-class variance; and (ii) it minimizes the covariance of the 
data within each class, i.e. the so called within-class covariance. The principal separation 
procedure used by (R)FD and its goals are illustrated in Figure 24. 

 

Figure 24: Principal separation aims of the Regularized Fisher's Discriminant (RFD) 
exemplified on a two-class problem with 2D-data. The RFD is searching for a separating 

hyperplane that maximizes the distance between the means of distributions of the two classes 
and minimizes the variances within each class when the data is projected onto the weight 

vector. 

5.3 Classification results 

As outlined earlier in Section 3, to enable the classifier training, i.e. to calculate the user 
model parameters, the user is instructed to execute or imagine the task accomplishment repeat-
edly, according to the experimental setup and the introduced task. EEG data is continuously 
acquired during the training session, and training samples are then extracted from it (see 
Section 3.2). These samples are pre-processed with a procedure that has been specified by the 
experiment conductor. Pre-processing can also yield the parameters of the pre-processing 
module of the user model (see Figure 14) to be applied to the data in later online sessions. An 
optimal classifier can then be calculated from a ( )1 1 n 100%− ⋅  subset of the available feature 
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vectors. This classifier is then tested on the remaining 1 n 100%⋅  subset which contains data 
that the classifier is not based on, i.e. data unseen by the classifier. The complete procedure is 
then repeated n times for all non-overlapping test sets, resulting in n slightly different classifi-
ers. This n-fold cross-validation (sometimes also mentioned as “X-Validation”) procedure is 
illustrated in Figure 25. 

···

···

··· TestTrain Train Train Train

TestTrain Train Train Train

Test TrainTrain Train Train

··· ······ ··· ···

Classifier #1:

Classifier #2:

Classifier #n:

n  subsets

 

Figure 25: n-fold cross-validation procedure. The entire dataset is divided into n subsets, n-1 of 
which are used always for training but the remaining one for testing yielding n different 

classifiers. Test errors are calculated from the application of each classifier to the remaining 
subset containing only unseen data. The cross-validation error is then obtained as an average 

over all test errors. 

In the m×n-fold Cross-Validation procedure employed for testing the classifier, the data 
set is repeatedly rehashed in random order m times, resulting in m×n training and test errors. 
The cross-validation error is then obtained by averaging over all test errors. This yields a good 
measure for the quality of the classifier model applied to the given data. An averaged test error, 
essentially higher than the averaged training error, would indicate either that the classifier 
model is too complex with respect to the presented data or that the data set is too small. This 
results in a poor interpolation ability of the classifier, due to poor generalization ability and an 
essentially high risk of over-training (which we have also referred to as overfitting). Please 
note that, to produce fair results, the rehashing strategy must be based on the set of events and 
not on the set of single samples, i.e. the rehashing must change the “position” of the events 
within the training data such that samples that have been extracted from the same event marker, 
i.e. belonging together, remain in the same either training or test set after rehashing.  

Notably, the test errors of the cross-validation procedure depend on the choice of the de-
lay time td in the pre-processing procedure. Obviously, the classification is ambiguous for 
large values of td, and increasingly easier as 0dt →  since the amount of information about the 
action grows as the event (executed or imagined movement) approaches. Figure 26 shows the 
cross-validation error obtained by the 10×10-fold Cross-Validation procedure. This error is 
estimated for the classification of single-trials as a function of the delay time td for a single 
subject performing in a self-paced experiment with 30 taps per minute (upper plot, slow pace) 
and 120 taps per minute (lower plot, fast pace). 
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Figure 26: Cross-validation errors of the classification in a slow pace (top) and a fast pace 
(bottom) experiment based on EEG features (blue curves) and EMG activity (red curves) 

estimated by a 10×10-fold cross-validation procedure. The error is plotted as a function of the 
time point of causal classification, i.e. the td parameter of the SSP. 

The right ordinate in both plots enumerates the theoretical information transfer rate, in 
bits per minute (bpm) that can be extracted from the classification results. The amount of 
information I as a function of the accuracy p of the system is defined by Shannon as: 

( ) ( ) ( )2 2 2
1: log log 1 log 1

pI p N p p p N
−= + ⋅ + − − , (17) 

where N denotes the number of classes (here N = 2). The classification based on EMG activity 
(red curve) that reflects muscle exertion in the forearms is performed by analyzing the oscilla-
tory behavior of data in the corresponding channels, i.e. EMGl and EMGr. Since the amplitude 
of the oscillations rises when muscular actions take place, it is sufficient to calculate the 
variance of the data points that appear in the sample window. This analysis yields the features 
plugged into the classifier. However, the EEG-based approach yields significantly superior 
classification results already 120 ms prior to the actual movement execution (indicated in the 
Figure by a vertical cut-off line) and retains this performance level until the time stamp of the 
key tap in the slow movements experiment. From the view of neurophysiology, this is ex-
plained in that the decision to lateralize the movement begins in the brain firstly, followed by 
the preparation of the cortical neurons and the emission of the command down to the spinal 
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cord, the peripheral nerves and the effector muscles; the entire process takes at least 70-
100 ms. 

6. Error-signal Detection 

VVoonn  NNaattuurr  ggiibbtt  eess  wweeddeerr  GGuutteess  nnoocchh  BBöösseess  ——  ddeenn  UUnntteerrsscchhiieedd  hhaatt  
nnuurr  ddiiee  mmeennsscchhlliicchhee  MMeeiinnuunngg  ggeemmaacchhtt..  

SSeexxttuuss  EEmmppiirriiccuuss  ((~~  220000  AA..DD..))  
DDaass  aamm  nnoottwweennddiiggsstteenn  zzuu  eerrlleerrnneenn  sseeii  ddaass  sscchhlleecchhttee  zzuu  vveerrlleerrnneenn..  

DDiiooggeenneess  LLaaeerriittuuss  ((~~  330000  AA..DD....))  

It is a well-known finding in human psychophysics that a subject’s recognition of having 
committed a response error is accompanied by specific EEG variations that can be easily 
observed in averaged ERPs. Similar variations can also be detected in users observing an 
unusual situation, e.g. an unexpected feedback animation. Blankertz et al. 
[Blankertz et al., 2002a] present a pattern recognition approach that allows for a robust single-
trial detection of this error potential from multi-channel EEG signals. An elegant approach to 
overcome the problem of low classification accuracy is to base the response checking mecha-
nism on the subject’s brain signals themselves. In this way, those persons benefit most who can 
otherwise attain only modest BCI control due to a considerable portion of classification errors. 

An essential question concerning error potentials in BCI applications is whether the user 
recognizes the error made by the BCI system’s signal recognition module as a “committed 
response error”. In BBCI feedback-based application sessions, the user is provided with the 
reactions of the system; currently, this is visual or auditory information based on the system’s 
decision about user action or intention. However, as outlined in the previous section, a classifi-
cation is never perfect, such that the user is sometimes given feedback information she/he did 
not expect. The user then develops an annoyance about the mismatch, which in turn generates a 
special type of event related potential (ERP), the so-called error potential. 

An ERP after an error trial is characterized by two components: a negative wave (NE) 
with a fronto-central maximum, and a subsequent positive peak (PE) with a centro-parietal 
maximum. NE seems to reflect some kind of comparison process initiated as it is present in 
most trials (also in correct ones). PE seems to indicate the brain’s reaction to having recognized 
that the subject’s action was erroneous. Figure 27 shows averaged miss-minus-hit EEG traces 
at four selected electrodes along the vertex together with the corresponding scalp topographies. 

The NE peak observed during situation assessment is a special case of the N100 potential, 
while the PE peak is a special case of the P300 potential; both indicate their timing of occur-
rence. For example, N100 reaches its maximum negativation about 100 ms after the user has 
decided to perform the fault action, while P300 reaches its maximum positivation at about 
300 ms, also relative to the timestamp of the decision. However, the curves shown in Figure 27 
illustrate the maximum of the NE peak at about 20 ms and that of the PE peak correspondingly 
at about 230 ms relative to the action timestamp. This is evident due to the setup of the “d2-
test” experiment, which is described briefly in the next subsection. 
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Figure 27: Averaged error potentials (top) illustrate a negativation (Ne) followed by a strong 
positivation (Pe) after user’s erroneous decisions in the d2-test experiment. The corresponding 
scalp topographies (bottom row) illustrate the fronto-central maximum of the error negativity 

(left) and the centro-parietal maximum of the error positivity. 

6.1.a The “d2-test” experimental setup 
The user is provided with a query on the screen; this query can be either a target or a non-

target. The queries resemble each other to the extent that it is difficult for the user to recognize 
at the first glance if she/he is provided with the target or the non-target query. Ascertaining the 
right query requires concentration and time in order to process the visual stimuli. The user has 
to respond as fast as possible to target stimuli by pressing certain keyboard key with the right 
hand, e.g. ‘J’, and to non-targets, by pressing another key with the left hand, e.g. ‘F’. The user 
is provided with the green “OK” or the red “Fault” message right after the key press. The 
combined information about the stimuli presented to the user and the pressed key then yields 
the knowledge about the presence of the error-potential in the user’s EEG during the trial. 

The stimuli consist of a letter, either “b” or “d”, and at most two horizontal bars above 
and two below the letter. Targets are described to the user as containing the letter “d” and 
exactly two bars, no matter where they occur. All remaining symbols are defined as non-
targets, i.e. those containing the letter “b” with an arbitrary number of bars, or the letter ”d” 
with a number of bars differing from two. Figure 28 summarizes all possible target and non-
target symbols. Thus, early error potential can be explained by the effort to initiate an action, 
i.e. the correct key tap, as fast as possible by trying to predict just at the first glance the affilia-
tion of the query to the class of targets or to that of non-targets. In fault trials which were 
performed on that motivation user then recognizes a fault action quite early, because the fault 
comes from the user’s decision, not from feedback. The user is trying to cancel it, but cannot 
stop the emitted “go” signal any more since the “veto” signal is emitted too late and cannot 
catch up with and eliminate the previously and erroneously emitted “go” signal. 
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Figure 28: Targets and non-targets in a "d2-test" experiment. A target stimulus is composed of 
the letter d and exactly two horizontal bars placed above or below it. All remaining symbols 

are non-targets. 

6.2 Additional benefits from errors 

Other work [Schalk et al., 2000] reports the presence of an error related ERP in trials 
where the user is confronted with a mismatched feedback response. If a certain control com-
mand is recognized by the system, then the feedback response (e.g. the animation) can be 
flipped through a binary decision. It then corresponds to the opposite one and thus provides the 
user with an unexpected situation. This procedure employed during the training session pro-
vides the learning machine with fault trials containing the samples with the error-related EEG. 
The generation of an error-related potential by the user during the application session and the 
recognition of such a potential by the system lets the user deriving its benefits, since it is now 
possible to correct the last feedback response. If the user’s decision is not of a binary nature, 
the last animation action can be taken back. 

To evaluate how error detection could potentially improve BCI transmission rates, we as-
sume a BCI system that provides 85% accuracy (p = 0.85) and calculate the amount of infor-
mation that can be gathered from a two-class decision experiment (N = 2) using Shannon’s 
information criterion (17). This yields I(0.85) = 0.39 bits per selection. Please note that this is 
only a theoretical value used to measure BCI performance. Actually achieving this information 
transmission rate would require some specific and efficient coding of the information by the 
BCI user – a task humans may not be able to carry out. However, a system that (i) detects 
errors after each decision, and (ii) analyzes the user reactions to the feedback stimulation, and 
(iii) corrects the feedback animation according to the recognized error potential with 20% of 
false-negatives (FN = 0.2) and 3% of false-positives (FP = 0.03), can improve the information 
transmission rate by more than 75%, attaining 0.69 bits per selection. The accuracy of the 
improved system ˆ( , , )p p FP FN  can then be calculated by: 

( ) ( ) ( )ˆ ( , , ) : 1 1 1p p FP FN p FP p FN= ⋅ − + − ⋅ −  (18) 
resulting in an improved accuracy of 94%. 

The plot in Figure 29 sows the theoretical information rate I in a two-class experiment as 
a function of the accuracy p of the pure BCI system, with and without the error recognition and 
correction procedure, and working with an assumed rate of 20% of false-negatives and 3% of 
false positives. Obviously, the gain diminishes, the higher the accuracy is. Please note also that 
with the assumed parameters, an error correction approach is useful only as long as the pure 
BCI accuracy is below 96%. 
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Figure 29: Improvement of the theoretical information rate I of the BCI system by the error 
correction strategy as a function of the pure BCI accuracy p. This plot assumes an error detec-

tion module working with 20% of false-negatives and 3% of false-positives. 

6.3 Training with errors 

The error detection and a consecutive error correction approach metamorphoses the al-
ready powerful BBCI system into an even more efficient and flexible machine. This constitutes 
its nature as a doubly learning system with an automatic response checking mechanism in the 
second pass. Let us now go back to Figure 13 (page 39), which described a simple training 
session procedure of the BBCI, and extend this training model by the noisy feedback. The aim 
here is to kill two birds with one stone, namely (i) to perform the basic training procedure for 
the user model and (ii) to learn how the user makes mistakes or, more precisely, to learn what 
happens when the BBCI makes errors. The former procedure can be performed in the first 
phase of user training yielding the user model as described previously. In the second pass when 
the user model is present, it is then possible to perform the latter procedure yielding the user 
error model. 

The machine training process of setting up the user model of the BBCI system with an er-
ror detection module is illustrated in Figure 30. The user is given a task which she/he has to 
perform during training; the task may be coupled with the feedback and thus provide the user 
with stimuli. In this case, information about present stimuli is supplied to the BBCI system. 
While repeatedly performing the task, the user generates brain signals that are acquired by the 
main acquisition module running on the recorder PC. This information is then sent to the BBCI 
system, which, in addition, has its signal recognition module running. This module can be set 
up as described earlier during the first training session, i.e. based on the information provided 
by the task markers. When it is set up, it can also make the decision about the user’s intentions. 
Consequently, the feedback module receives a command from the BBCI system and executes 
it. However, sometimes and with a certain probability it will execute the exact opposite (flip-
side) command. This results in the user being confronted with a wrong animation or sound. 
The purpose of this action is to emit errors in a controlled mode, to which the user then gener-
ates an error potential. The marker about a change in the decision is then placed into the data 
such that the BBCI can recognize it and assume that some samples about the user’s frustration, 
produced by the user’s error generation module, are located in the data. The error recognition 
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model is then set up based on these samples. They are set into opposition to those samples that 
were extracted from the data while a correct feedback signal was given to the user; this allows 
recognizing the user’s apperception of being provided a wrong feedback. 
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Figure 30: Machine training session of the BBCI system with automatic error recognition and 
feedback module with controlled noise. During the second pass of the training session the user 
is provided with a mismatched stimulus produced by the “Noisy” feedback module (bottom). 

She/He generates an error signal upon which the BBCI’s error recognition model is setup. 

Please note that during this second pass of training, the user’s signal generation model is 
still adjustable such that the user provided the feedback reacts differently compared to the first 
training session which was not based on real feedback, although it was based on stimulation.  

In the following application session, the BBCI system develops to a doubly learning sys-
tem. Please compare now the Figure 15 (page 41), which describes the standard application 
session of the BBCI. In contrast, Figure 31 illustrates the process of applying the user model 
with an error detection module for controlling the feedback application. 

The task now has the aim of gaining as much control over the feedback application as 
possible while the user is provided with the true feedback stimuli (i.e. to the best of BBCI’s 
ability). The user generates brain signals that, acquired from the acquisition machine, are 
redirected to the BBCI’s signal recognition module. The BBCI decides about the control 
command, and the feedback application provides the user with the corresponding animation or 
sound. After a control command has been sent out to the feedback module, the BBCI falls into 
the error recognition mode, thus monitoring the user reaction to the change in the feedback. If 
the feedback was to provide the user with the correct stimulus, the user would not generate any 
“surprising” activity, which, consequently, will most likely not be recognized as an error signal 
and end up in the confirmation of the last action of the feedback module. If, on the other hand, 
the user is confronted with unanticipated animation or auditory stimuli of the feedback, an 
error pattern will be generated and subsequently classified by the BBCI’s error recognition 
module as an error signal. The BBCI then commands the feedback application to flip the last 
action if a two-class decision was assumed or to cancel the last, probably incorrectly recog-
nized, decision in a multi-class setting. 
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Figure 31: Application session of the BBCI system with automatic error recognition and a 
subsequent correction of the feedback stimulus. The feedback application is controlled accord-
ing to the application of the user model to the data. However, on being provided a mismatched 
feedback stimulus the user generates an error potential that can be recognized by the BBCI’s 

error recognition module. The feedback application then corrects its animation, and the BBCI’s 
signal recognition module can adjust its user model. 

It is also conceivable to incorporate the consequences of an ongoing error detection in or-
der to re-train or to perform a fine-tuning of the BBCI’s signal recognition module; however, 
this cannot be addressed in the scope of this thesis and requires further investigation. 

7. Online Application with Feedback 
In this last section of the chapter, we will discuss the final stage of the BBCI’s informa-

tion cycle. Closing the loop started by user connected to the acquisition machine, data is here 
passed to the trainer or the applier module, leading us to the feedback modules. These feedback 
modules are autonomous and interactive applications that aim to connect the BBCI output to 
the user. They can be run on a separate computer and receive their control command from the 
BBCI applier through the network. Feedback applications are designed to rely on simple 
control strategies which, expressible by a small command set, should provide the user with a 
feeling of being inside the simulation and acting naturally. Moreover, the underlying interac-
tive feedback application should be intuitive and simple to understand. However, at the same 
time, it should avoid rapid animation and high changes in contrast in order to prevent or at least 
minimize the spoiling of data affected by artifacts, e.g. brisk eye, head or body movements. Of 
particular importance for fast-pacing of control commands is a “natural mapping” of the action 
required in the virtual reality or gaming scenario to the “action space” of the human operator, 
e.g. the BBCI user. This action space is obviously coded in egocentric coordinates. To this end, 
the on-screen environmental perspective must continuously represent the viewing direction of 
the human operator, so that, for example, the option to turn right could be selected by the 
intention to move the right hand and vice versa. 
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Most feedback applications, at least those based on command control incorporate a tem-
poral queue of control commands received from the BBCI applier. The temporal queue is 
implemented in a cyclic manner, such that its function is similar to a LIFO stack. However, the 
data becomes overwritten within a certain time period defined by the length of the stack and 
the rate of data arrival. The receiving procedure is occupied exclusively with retrieving the 
command block and with inserting it appropriately into the queue. This procedure then emits a 
local broadcasting message indicating the update of the queue. Instances programmed to 
process this kind of messages can then begin analyzing the semantics of the latter part of the 
control command queue upon receiving such an update message. The Queue Checker is the 
main instance that waits for the update message. It examines a certain number of previously 
acquired control commands in order to determine whether a stable control signal is present for 
at least the period of the Command Activation Term (CAT). The semantics of the signal’s 
stationarity can be determined by implementing the Queue Checker, which can check, for 
example, the concordance of the command affiliation to a particular class of interest. In addi-
tion, it can check if the estimated affiliations (their fuzzy values) are above a certain threshold, 
i.e. the Command Activation Threshold (CATh). If a stationary signal is present, the last 
control command inserted into the queue (the stationary signal’s master command) is emitted 
to the execution instance that controls the on-screen animation of most applications. 

Usually the user’s brain signal remains stable for longer than a single CAT, a situation 
that initiates the repeated emission of several identical control commands. To overcome this 
ambiguity, a control command emitted to perform changes in the animation of the feedback 
application discourages the emission of further control commands for a certain time. This 
interval, called the Command Relaxation Term (CRT), and its function is comparable to firing 
properties of biological neurons that become “tired” after deploying a spike train and need a 
certain relaxation period to restore their firing capabilities. For technical reasons constrained by 
the implementation, the CRT must be at least as long as the CAT. All control commands 
received from the BBCI applier during the CRT continue to be inserted into the temporal 
queue; however, in this case the Queue Checker ignores incoming update messages. As a 
result, the role played by the acquisition procedure is not affected by the command emission, 
but vice versa. 
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Figure 32: Procedure of command emission based on the temporal command queue. Three 
types of command blocks designated with their strength (fuzzy value) are acquired in the 

queue. When a stable signal is present for the CAT duration (here 10 periods) a control com-
mand is emitted. Further investigation of the queue content is then blocked for the CRT dura-

tion (here 14 periods). 
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This procedure is exemplified in Figure 32 for a two-class (left vs. right finger move-
ments) self-paced experiment; a third class of “resting” is introduced in order to encode the 
information for some intermediate state where the user is not planning or intending to emit any 
of the two control commands. The last stage of the BBCI applier (the combiner) yields the 
class index, denoted here by colored bars and a corresponding fuzzy value. This provides a 
measure of certainty for the class label that is indicated by the amplitude of each bar.  

The BBCI applier yields a single command block consisting of a class label and a corre-
sponding fuzzy value each time the processing of a raw EEG data block is completed, i.e. each 
40 ms. Consequently the command blocks are inserted into the queue at a frequency of 25 Hz. 
The fuzzy value is calculated according to the strategy defined by the combiner module of the 
BBCI applier. Most often, the “Winner Takes All” (WTA) strategy, the most probable guess, is 
incorporated ( max max ii Class

P P
∈

=% % , where index i runs over all possible classes of interest). Exempla-

rily, the CAT is set to 10 periods (400 ms), while the CRT is 4 periods longer (560 ms). The 
emission of a command to the animation module of the feedback application is illustrated here 
as a bold arrow that has the color of the class label. The event marker of a real finger move-
ment contained in the data is illustrated as a circle; its fill color also corresponds to class 
information. Notably, the emission of the control command is initiated at some arbitrary, but in 
most cases earlier, time point that is relative to the performance of the action; thus, the “ar-
rows” often precede the “circles”. 

This flexible setup of command emission allows for the individual adjustment of parame-
ters such as CAT and CRT, which strongly rely (i) on the experimental setup, (ii) on the 
individual capabilities of the user and the user’s brain signal properties, and (iii) on the control 
strategy currently selected by the user for gaining control over the feedback application. A 
CAT parameter set to large values helps avoiding false positively emitted commands. Since the 
classification may not be correct for every single command block, a long CAT prevents the 
repetitive emission of many short control commands with ambiguous class labels or even trains 
of these control commands. In contrast, the CAT parameter cannot be set to any arbitrary long 
terms because the duration of a commonly generated stable signal is in most cases limited by 
neurophysiological constraints. The negativation of the signal the classifier is looking for 
cannot continue for an arbitrary long term. In experiments with real movements it has been 
observed that the negativation usually ends once an action takes place. A short CAT would 
allow a fast emission of control commands, i.e. a reasonable term before the real movement is 
executed. An intra-individually adjusted CRT prevents erroneous, and respectively allows 
volitional, successive emissions of the latter command. Exemplarily, if a cursor control task is 
employed as the feedback application that is to move the cursor to a predefined and fixed 
position (target), the user may need to relocate the cursor as fast as possible from position A to 
target B. As this target may be far away, e.g. several steps from A, subsequent command 
emissions will be needed. For example, in the Brain-Pong feedback application, which can also 
employ a command-based control strategy, the operator often has to reposition the racket 
quickly from one side of the window to the other in order to hit the ball that is previously 
bounced off with a large angle. Therefore, in particular for this application, when used in 
conjunction with a command-based control strategy small CRT settings are preferable. 

A practice-oriented reader should, however, notice that these parameters are also highly 
subject-specific. Thus, they should be initially set to values calculated from the results of the 
application of a “trained” classifier to the entire stream of the training data, resulting in several 
periods of a stable signal with different durations. Initially, the CAT0 should be set to the 
median length of the stable signal duration that contains a marker of the identical action class. 
While the initial relaxation term (CRT0) should be set to a value larger than CAT0 by twice the 
amount of the standard deviation of the distribution of stable signals’ durations. These values 
are then to be continuously adjusted according to the user’s demand until they become settled. 
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7.1 Feedback scenario “Jumping Cross” 

In the first BBCI feedback-based experiments, it was of major importance for the user to 
“feel” a direct connection between her/his own intentions and the feedback application con-
trolled by the system. It was originally unclear whether, and if so how much, the operator’s 
brain signals would change from the first training session, which is completely without any 
feedback, to the application session accompanied by the feedback. Aside from the increasing 
visual attention and concentration, the data from feedback-based application sessions might 
become much more affected by artifacts resulting from the user reactions to animation. In 
particular, we expected the system to be able to recognize the user’s intentions of performing 
an action a moment before the execution of the intrinsic action. The system would then be able 
to indicate that recognition to the user via the feedback application. Consequently, the follow-
ing interesting question arises: “How would a subject react when confronted with her/his own 
future action (immediate future, yet future nonetheless)?” 

Therefore, a very simple visual feedback application was implemented to simulate the 
feeling of being confronted with one’s own intentions. The user faces a full-screen window 
with a neutral background color, e.g. light gray. That window contains a thin static fixation 
cross in its center. The user is instructed to steer her/his ocular attention to the center of this 
cross, proceeding as smoothly as possible without following the animation with the eyes (the 
latter to minimize artifacts induced by the electrical dipole “eye” controlled by the tracking 
muscles). Two large, pentagonal target fields are located in the upper corners of the screen – a 
dark red one in the left corner, and a dark green one in the right corner – indicating left and 
right-hand movements respectively. These target fields can change colors, e.g. become high-
lighted or even take on an arbitrary color at certain events. These events can result from re-
sponse markers placed in the data by the user’s action such as tapping on a keyboard, or even 
from the cursor as it moves into the corresponding field. The cursor is displayed here as a small 
bold cross which can be moved by the user’s intentions over the entire screen. The ordinate 
axis of the screen’s coordinate system reflects the normalized decision of the detection classi-
fier. Lower values indicate rest, while higher values indicate the fuzzy value of the detection 
classifier’s certainty about processing an action sample or a sample shortly preceding the 
action. In this way, the cursor, i.e. the cross, “jumps” into the upper part of the screen upon 
upcoming action and remains in the lower part of the screen when the user is relaxing. The 
abscissa guides the natural mapping of the determination classifier result, indicating the later-
alization of the upcoming action. 

The cursor trails a tail of points depicted as small balls (their number and filling color is 
defined in the initialization file). The tail balls are connected by thin lines and become smaller 
the more the corresponding data sample is distant in time. The time interval between history 
balls can also be defined in the initialization file. To do so, the complete history tail of cross 
coordinates must be saved in an array of the length, defined by the product of the number of 
balls and the time interval between subsequent balls, divided by the control command rate. 

Consequently, in the ideal scenario the cross should fidget at the bottom of the screen and 
“jump” to the upper-right or upper-left corners upon oncoming right or left actions respec-
tively. As a result, at the end of each trial the cursor will be located in one of the target fields. 
The entire simulation will then freeze for a certain period of time, indicating the end of a trial. 
For example, a trial is finalized when a key press marker arrives in the data. Please refer to 
Figure 33 for an illustration of the feedback scenario “Jumping Cross”, depicting the relaxing 
state in the upper part (both target fields are dark and the cursor is fidgeting in the lower half of 
the screen). Depending on the user’s intention, the state may change to the one of the two 
action states shown in the bottom row (either the left or right target field contain the cursor and 
are highlighted). 
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Figure 33: Three states of the feedback scenario “Jumping Cross”. The cursor is located in the 
lower part of the screen, when the user rests (top); it “jumps” to the upper-left or upper-right 

target field (bottom row) upon the user’s intention to move the corresponding hand. The target 
field currently containing the cursor becomes highlighted. 

7.1.a Self-paced experiments 
In self-paced experiments actual movements of healthy subjects are investigated. The 

movement laterality as well as the time stamp of the action is therefore provided to the BBCI 
system. The feedback application is consequently able to perceive this information via event 
markers placed into the data by the user, who performs actual key tapping on a computer 
keyboard. The user was given three different specifications of the feedback control in order to 
clearly demonstrate the evidence of the BBCI approach. 

 Self-paced and self-lateralized movement with effect observation. Here the user may 
emit any of the two actions at any time and is able to observe the feedback animation. 
However, in this experiment the user could wait for the cursor to jump into either the left 
or right target field, in order to then quickly press the corresponding key to correctly fi-
nalize the trial by freezing the simulation. Thus, the user could possibly “cheat” in a way 
that cannot be monitored by the experiment. 

 Self-paced and self-lateralized movements without effect observation. Here, the 
feedback monitor is turned away from the user, such that it is still observable to the ex-
periment conductor who is now required to keep a closer eye on the proceedings. The 
conductor is required to closely observe the monitor and the user’s hand movements in 
order to ensure a correct correspondence between hand movements and the position of the 
cursor. The cursor should be located in the target field that correctly corresponds to the 
sidedness of the performing hand movement after the simulation freezes. The majority of 
correctly finalized trials have shown a successful correspondence and confirmed the evi-
dence of our BBCI approach. 

 Self-paced movements with the laterality controlled by the experiment conductor 
and without effect observation. This specification with most strong constraints should fi-
nally lay to rest all doubts of the most skeptic observer over the control of the application. 
The experiment conductor provides the user, in addition to the specifications previously 
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described, with the laterality of the next movement to be executed via an auditory com-
mand. However, the user decides by herself/himself when to act. Moreover, the user is 
neither able to observe the events of the feedback animation on the screen nor does she/he 
have any influence on the order of commands. The majority of trials here have also been 
successfully finalized with immediate as well as with the delayed reaction trials. 

A series of single trials acquired throughout the entire experiment (here 64 left and 64 
right trials) lend themselves to portray a summary plot (see Figure 34). The data is acquired in 
an experiment with self-paced and self-lateralized movements with observation of the feedback 
animation. Here, crosses were replaced for reasons of clarity by bold dots and the history tails 
are illustrated with bold lines for the four most recent periods and with thin lines for another 
four preceding periods (each period is lasting over 40 ms). The abscissa represents the classifi-
cation results of the determination classifier, while the detection classifier’s output value is 
indicated on the ordinate axis. It can be seen at first glance that the majority of trials were 
classified correctly. 

 

Figure 34: Accumulated trials from the “Jumping Cross” feedback scenario. Left trials (red) 
and right trials (green) are finalized with dots trailing history tails. The majority of single-trials 

are finalized in the correct quarter of the coordinate system, spanned by the output values of 
the detection (abscissa) and the determination (ordinate) classifiers. 

Similar, so-called “Spermiogram” plots also result from the two remaining specifications 
of the self-paced experiment. 

7.1.b Externally paced experiments 
In contrast to experiments with intrinsically executed movements, experiments with imag-

ined or phantom movements cannot produce any response event markers. This holds true for, 
at least, experiments with paralyzed patients. To overcome this problem, the user is provided 
with external pacing as well as lateralization from the BBCI system during special training 
sessions. In this way, detection classification becomes superfluous, since the pacing is pre-
defined by the system. A purpose-built feedback application was implemented containing all 
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elements of the previously described feedback scenario for self-paced experiments, but; in this 
application the cursor movement is restricted in two ways: 

 The cursor’s vertical movement is fully pre-defined by a continuous slide from bot-
tom up with a constant speed. This slide starts at the time stamp of the lateralization 
stimulus marker (indicating which action should have been performed next). However, 
this marker information is not displayed to the user in feedback-based application ses-
sions; the user thus selects the laterality on her/his own accord. The cursor speed is calcu-
lated such that it finishes its movement at the upper margin of the screen at the pacing 
stimulus marker, provided by the digital metronome. 

 The cursor’s horizontal movement is bounded by a cone in such a way that its free-
dom is “scrunched” to zero at the beginning of the trial and increases continuously with 
its ordinate position until the full range of horizontal movement is offered at the end of 
each trial. The cursor’s movement can be determined by multiplying the current determi-
nation classifier result with the radius of the cone, the latter of which depends on the cur-
sor’s ordinate position, i.e. the time elapsed since the first stimulus marker. The exact 
form of the cone can be defined by the implementation of the feedback module. 

1s

2s

3s

4s

 

Figure 35: Schematic illustration of the feedback scenario for an externally paced experimental 
setup. The horizontal movement freedom of the cursor (i.e. cross) is restricted by the grey 

areas. The vertical movement is triggered by the event markers; it starts at the bottom with the 
stimulus and slides with a constant speed upwards. The cursor’s deflection can be controlled by 

user’s intentions 

The feedback scenario for externally paced experiments is depicted in Figure 35 with four 
long-term history intervals of approximately 1 second each, corresponding to 25 command 
blocks of 40 ms each. Please note that this is not a screenshot, i.e. it is not presented to the user, 
and serves rather as a diagram that describes the behavior of the cursor. Therefore, neither the 
grey and dashed areas of the cone, nor the dashed time lines are visible to the user. They 
merely indicate the space where the cursor is not able to be located at certain time steps. 

7.2 Feedback scenario “Brain-Pong“ 

Several gaming feedback applications were then investigated, three of which are de-
scribed in the following subsections. The simple idea of one-dimensional control is to steer a 
racket from left to right in the lower part of the screen, with the aim of hitting a ball that 
bounces against the frame of the screen window. The first prototypes were named “Arkanoid”, 
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dedicated to the well-known arcade computer game of the Atari and Commodore computer era. 
However, its name was then changed to the even older game of Tele-Tennis (also known as 
“Pong”, Atari 1972). This ping-pong like brain game can be played by a single player, as 
shown in Figure 36, but also by two players competitively. The user is presented with a full-
screen window of a neutral background color (e.g. light gray) that has a fixation cross in its 
center. A thick horizontal bar, taking up a fraction of the window width – the racket – of some 
contrasting color (e.g. dark gray, black or white) is placed on the bottom of the screen. The 
proportion of the width of the racket to the width of the window can be changed in the initiali-
zation file and defines the complexity of the game. The racket can be moved to the left or right 
by the user’s intention. A yellow ball slides continuously from the current racket position 
upwards, and bounces off the sides and top of the window. The upper-right corner contains the 
game score showing hits in green and misses in red. The aim of the game is to move the racket 
so as to prevent the ball from dropping off the screen for as long as possible. If a ball is missed, 
i.e. it crosses the imaginary lower border, the simulation finishes and a new ball is initialized at 
a random position with a random but upwards velocity vector. 

24 : 9

 

Figure 36: Schematic illustration of the feedback scenario “Brain-Pong”. The ball (yellow 
circle) is sliding over the window being bounced off its borders. The racket can be controlled 
by the user’s intentions to the left or right. The user achieves a bonus point for hitting the ball 

with the racket and is penalized if the ball crosses the dashed bottom line. 

Figure 36 illustrates this feedback scenario; it should be noted that the ball’s trajectory ar-
rows, the lower margin of misses, and the racket’s velocity vectors do not appear in a regular 
user display. The coloring of the racket can be realized in several ways: 

 The three-color system is based on the three classes all samples are affiliated to dur-
ing the classification process. In particular, this can be described by two lines: the filling 
line and the discrimination line. The horizontal filling line is drawn at a certain height of 
the racket. That height is negatively correlated to the fuzzy value of the affiliation cer-
tainty of the currently processed sample to the rest class. Such that, the line will be posi-
tioned higher, the smaller the rest fuzzy value is. The area under the filling line is divided 
by the vertical discrimination line, which is drawn at the position given by the difference 
between the fuzzy values of the class of right movements and left movements. It will 
therefore be positioned further to the left, the higher the fuzzy value of the left class is for 
the current interrogated sample and vice versa. Please note that the crossing point of these 
lines is equivalent, up to a scaling factor, to the coordinate of the cursor in the “Jumping 
Cross” feedback scenario, and that only the colors of its target fields are exchanged in 
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their positions. However, a larger region will be colored red as the line moves to the left, 
indicating a left-movement. The opposite holds true for the green-colored area.  

 The use of color filling for the preferred class is designed similarly to the above-
mentioned filling strategy, although it lacks the discrimination line. The area under the fill 
line is colored either red or green, depending on which fuzzy value is greater. As a result, 
the user is able to recognize the most probable action class, i.e. the one with the larger 
fuzzy value, from the color of the racket. 

 The final coloring strategy employs a smooth change in the filling color. This addi-
tionally lacks the fill line, thus the complete racket area is filled with a single color, con-
tinuously changing its RGB value, for example from red to green. However, this strategy 
may result in intermediate colors that the user is not able to associate with any of the 
classes of interest, which can then be a source of confusion. 

These filling strategies can be incorporated in the feedback animations for users unfamil-
iar with this kind of brain-gaming. The intent here is to provide these users with information 
concerning their intentions: by learning to monitor the coloring, they will be able to select an 
appropriate linkage strategy and gain insight into the signals’ behavior. In further experiments, 
when the user had seized sufficient control over the feedback application, the filling strategy 
proved to be rather disturbing. For this reason, coloring strategies were not employed in ad-
vanced “Brain Gamers”. 

Several subjects who used the BBCI system to play “Brain-Pong” reported several long 
phases with many successive successful trials. This provided them with the feeling that the 
racket was becoming integrated as a part of their own body and that no particular effort was 
required to maintain control. Moreover, it was reported that in successful phases, performance 
improved even more, whereas in careless phases filled with mismatching trials, performance 
dropped drastically. These observations are also evident from the neurophysiological and 
machine-learning point of view. Since the user is not put under pressure during training ses-
sions, she/he generates ordinary brain patterns that are fed into the learning machine. However, 
during application sessions with feedback, the user may become greedy and at some point 
generate different brain patterns induced by an additional effort to re-seize control over the 
feedback. To conclude, the user puts herself/himself in a conflicting situation by applying more 
effort to gain control; the effort induces an immediate change in the brain pattern feature space, 
spanned by the training data and thus recognizable by the classifier, which results in losing 
even more control. “Brain Gamers” further report that when control performance worsens 
significantly (subjectively measured), simply adopting a relaxed state or indifferent attitude to 
the game helps to re-gain control over the game. 

Two different control strategies were implemented and tested with this kind of feedback. 
While both are appropriate for this scenario, other control strategies may be preferable for 
other applications. The following two subsections describe both these control strategies in 
further detail. 

7.2.a Stepwise displacement control strategy 
In the stepwise or staged displacement control strategy, the racket is moved by a fixed 

displacement step. The step length is defined by the percentage of the window or racket width 
the racket is repositioned in the direction indicated by the class label, e.g. left or right, when a 
particular command is recognized as being affiliated to the one or the other class of interest for 
at least the CAT duration. The racket retains its position if a rest-command is detected for at 
least the CAT duration, although in this case the system does not fall into the relax mode. The 
racket also remains stationary when no stable signal is present, i.e. when the combined classi-
fier output indicates more than one class label within a single CAT duration. This control 
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strategy is based on the CAT and CRT parameters and is described in part at the beginning of 
this section on page 51 ff. 

Since the command emission system falls into the relax mode for the CRT duration after 
each emission of a command, the user might expect difficulties repositioning the racket fast 
enough from one side of the screen to the other. The racket could thus “receive” a reposition 
command with a minimal interstep interval given by CRT-CAT+1. Consequently, a CRT set to 
a value only slightly greater than or even equal to CAT will solve this problem. It will there-
fore also generate a greater amount of false-positively emitted commands, making it rather 
difficult to reposition the racket by only a single step to the left or right, since this setting 
prefers longer trains of similar commands. 

Notably, the Lateralized Readiness Potential (LRP) can indicate preparation for one par-
ticular movement. A series of movements and movement repetitions in particular may not 
necessarily be linked with a LRP of the same strength for every single movement. Rather, the 
LRP might index primarily the start of the whole series, invoking subcortico-cortical routines 
for the execution of the repeated actions. This insight points to a potential limitation of the 
stepwise displacement control strategy: as in the task of quickly relocating the racket, the user 
will need to emit a series of identical commands. Identifying the optimal EEG correlates for 
such a hyper command will require further studies. 

7.2.b Graded deflection control strategy 
Another control strategy utilizes, in addition to the class label of the sample (that of the 

most probably assigned class), the fuzzy value of the most probably assigned class in and of 
itself. The latter exploits the strength of the recognized command signal (e.g. a measure of the 
LRP amplitude) and thus allows a graded deflection. From its initial location at the center of 
the screen, the racket can be deflected laterally outwards. However, as it is attached to an 
imaginary spring, it will be returned to its initial point (i.e. inwards) whenever the fuzzy values 
of neither the left nor right classes are significantly high. Accordingly, this control strategy 
employs only a virtual rest class, whose fuzzy value can be calculated by combining the results 
of the left and right class fuzzy values. Thus, the fuzzy value rises following a decrease of both 
the remaining class fuzzy values. It should be noted that this is consistently regarded the terms 
of fuzzy logic, since the fuzzy values are calculated from the outputs of independent classifiers 
and thus do not necessarily sum up to one. 

The outward racket deflections are calculated each time a new result data block is re-
ceived from the classifiers, i.e. at a frequency of 25 Hz. Each deflection is proportional to the 
difference between the momentary graded values of the two action classes, but only where the 
graded value of the virtual rest class is below a certain, usually low, threshold. Otherwise, it is 
set to zero, such that the racket is almost always on the move. The value of the rest class 
threshold controls the trigger sensitivity for the displacement activation and can be adjusted 
together with the proportionality constants for the racket’s outward deflection, depending on 
the user’s experience and preference. Notably, the proportionality constants for the racket 
deflection to the left and right should be adjustable separately. This is reasonable because it is 
simpler to generate movements of the dominant hand; they in turn demand lower amplitude of 
the LRP on the contralateral hemisphere of the brain. Since the classifier tries to balance out 
this discrepancy, subjects often report arbitrary and indeterminate periods of right or left 
overweighting of the output, resulting in the racket seeming to be glued to one edge of the 
screen. 

A large variety of other neurophysiological paradigms besides LRP can be employed to 
control feedback applications that rely on this control strategy in a similar manner. Among 
these are Event Related (De-)Synchronization (ERD/ERS) and numerous variants of the brain 
state paradigms. Most paradigms are capable of extracting not only a discrete value of the class 
label, but also the signal strength as a real numeric value. Incorporating this measure in feed-
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back applications in a direct way, i.e. not post-processed by command emission modules, can 
improve the BCI user’s capability to gain more accurate control over the animation object. 

7.3 Feedback scenario “Brain Pacman” 

After successive experiments with the “Brain-Pong” game as the BBCI feedback applica-
tion, many questions arose concerning user behavior with other kinds of feedback applications. 
The need to further explore various brain-gaming scenarios was thus recognized, which led to 
new experiments with further brain-gaming feedback applications. 

In this the next step, the well-known Pacman video game was adapted to serve as the 
feedback application. The idea here is to creatively combine information from the “Jumping 
Cross” feedback application with a command-based control strategy in a purposeful gaming 
application. A random labyrinth was generated on a full-screen window with a neutral back-
ground color. The rules for maze generation are summarized in the following steps and exem-
plified in Figure 37: 

 Step 1: The space for the labyrinth must be a matrix with odd dimensions. Index 
lines and columns of the maze start with 0. Figure 37 exemplifies the generation of a 
maze on a matrix of 11×7 cells. 

 Step 2: Surround the space of the maze by wall cells, i.e. draw two horizontal walls 
at Y-positions 0 and 6, and draw two vertical walls at X positions 0 and 10. 

 Step 3: Place the entrance door at a random but even Y position and at X position 0; 
place the exit door at a random but even Y position at X position 10. 

 Step 4: Create a sub-labyrinth between the most upper-left and most lower-right po-
sitions, (0; 0) and (10; 6), by performing the following sub-steps where possible. If the 
width or the height of the space for the sub-labyrinth are less than 3, indicate that the 
creation is finished (exit the recursion and continue at Step 5). 

 Sub-step 4a: Calculate the proportion pr of the width and the height of the sub-
labyrinth and choose randomly between vertical or horizontal separation, weighted how-
ever by the proportion pr, such that horizontal separation is preferred for pr<1 and vice 
versa. 

 Sub-step 4b: Draw the selected type of the wall at a random but odd position 
through the complete sub-labyrinth, which will divide this into two sub-labyrinths. 

 Sub-step 4c: Place a door within the wall drawn in sub-step 4b at a random but even 
X or Y position, for horizontal or vertical separating walls respectively. 

 Sub-step 4d and 4e: Consider the two newly created sub-sub-labyrinths emerged 
from the separation of the sub-labyrinth recursively, as described in Step 4, i.e. in two re-
cursive calls. 

 Step 5: Find the exactly one existing shortest path from the entrance to the exit by 
the back-tracking strategy and mark this with step marks. 

 Step 6: Place a certain number of bonus marks, e.g. apples, at random but “free” 
cells of the labyrinth. The number of bonus marks can be specified in the initialization 
file. Finally, place Pacman’s initial position at the entrance of the maze. 
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Figure 37: Steps in labyrinth generation process for the “Brain-Pacman” feedback scenario as 
described above. A binary tree-recursive algorithm is employed that generates a maze with 

exactly one shortest path from the enty (in the left wall) to the exit (in the right wall). The path 
is indicated by stepmarks. Apples picture additional bonus points. 

The player can navigate Pacman any way through the labyrinth. Thus, although the aim of 
the game is to navigate Pacman through the maze from entrance to exit, the player can deviate 
off the path indicated by step marks in order to harvest apples and receive an additional bonus. 
Step marks proved helpful in larger labyrinths. The control strategy here employs the following 
approach: Pacman makes one step with each inter-step interval (defined in the initialization 
file, e.g. every 2 seconds) in the direction its nose is pointing until it faces a wall. There, it 
remains still, waiting for control commands to make a right or left turn. 

Initially Pacman’s head is white and becomes filled with red or green color from the bot-
tom up as the player’s intention to turn rises, i.e. the detection classifier yields action results. A 
vertical line discriminates the two colors and is placed according to the determination classifier 
result. However, other filling strategies can be considered as equally effective, e.g. those 
described for the “Brain-Pong” game on page 71. If the player intends to steer Pacman to the 
right, this should fill Packman’s head green for at least the CAT duration, and vice versa. After 
a turn, Pacman does not accept any further commands for the CRT duration. 

Walking through the maze, the player acquires one bonus point for each move on the step 
mark and loses one point for each unsuccessful move against the wall. Furthermore, she/he can 
acquire bonus points for each apple. The simulation is finished when Pacman reaches the exit 
of the labyrinth. 

A healthy subject will be able to navigate Pacman through the labyrinth presented above 
within 40 seconds (20 steps, each two seconds long) using a conventional keyboard or mouse. 
Using brain control only takes considerably longer, although the “fun-factor” of navigating 
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Pacman solely by the intentions of one’s brain has turned out to be very appealing. Moreover, 
of great interest is that when immersed into the Brain-Game scenario, users sometimes had the 
feeling that Pacman turned in the correct direction although they were not consciously aware of 
having made that decision, sometimes not even ready to make a decision. This observation can 
be explained by the fact that the user generates brain patterns in advance, i.e. before Pacman 
reaches a desired turning point. The corresponding control commands are thus emitted before 
the user anticipates her/his intrinsic command emission. 

7.3.a Turning if reasonable 
A more intelligent control strategy was developed in the later version of the “Brain-

Pacman” feedback scenario. It incorporates early command emission and stores the last turn 
command within Pacman; the pointing direction of Pacman’s nose determines the direction of 
the next turn. However, Pacman continues moving in the current direction until the stored turn 
is sensible, at which point Pacman actually performs the turn. At that point, the most recently 
stored command is deleted by the recognition of the opposite one and Pacman is turned by 
180° when the same command is repeated. 

That control strategy incorporates pre-knowledge about the environment surrounding 
Pacman, i.e. the maze, and provides the user with a control mechanism that more resembles 
her/his natural behavior in certain environments. Consequently, this kind of assistant control 
system can be integrated into a wheelchair, allowing the handicapped person to indicate his/her 
next intended turn by an ongoing or blinking yellow turn signal similar to those used by con-
ventional vehicles. The wheelchair should therefore be furnished with cameras that examine 
the surrounding environment and be connected to a system able to detect turning possibilities. 
[Millán and Mouriño, 2003] 

7.3.b Feedback scenario “Brain-Turnman” – a Pacman-
variation  

The last variation of the “Brain-Pacman” scenario was developed especially for one-class 
experiments, where the subject is able to initiate only a single kind of action, in contrast to 
mere resting or relaxing. This experiment should demonstrate that it is possible to gain control 
over a complex feedback application with a minimum of recognizable classes, although the 
control speed is compromised as a result. 

The user is presented with the above-mentioned graphical setup that differs only in that 
Pacman does not make any move without the recognized control command. Therefore, 
Pacman’s head turns continuously clockwise by 90° with each inter-step interval, e.g. every 
two seconds. The emitted control command prompts Pacman to make a step in the direction of 
its nose, followed by a reset of the inter-step interval counter, such that a rapid repetition of a 
single command would result in a fast run along a corridor. When turning Pacman, the player 
should pause at the intersection and wait until its nose points in the direction of the next move. 

Besides the requirement of a small CRT, this technique is expected to be more stable and 
thus helpful for users whose multi-class paradigms lack satisfying classification results. Classi-
fication results are commonly known to worsen with the increase of classes of interest; this 
may stem from the poor spatial resolution of EEG-based acquisition techniques. 

In conclusion it is recognized that the “Brain-Pacman” feedback application still shows 
difficulties in controlling an object in its own coordinate system. Moreover, the already men-
tioned need to explain brain-gaming scenarios in the user’s coordinates system, not in that of 
the actor, was confirmed. This would allow the user to get inside the animation, where she/he 
could gain control by a “natural mapping” of the action required in the virtual reality or gaming 
scenario to the “action space” of the human operator, which is coded in egocentric coordinates. 
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Thus, a Pacman scenario where the user navigates through a labyrinth, but is provided with an 
animation from Pacman’s point of view, i.e. inside the labyrinth, might be more appropriate 
and yield more satisfying results. However, this is an issue requiring expert knowledge in the 
field of Virtual Reality (VR). 

7.4 Feedback scenario “Brain-Tetris” 

Feedback scenarios suited for multi-class paradigms represent a final series in the collec-
tion of feedback modules. Control over this gaming application is very complex, yet its control 
strategy is very simple, similar to those of other command-based feedback control strategies. 
Tetris is a well-known video game invented by Russian programmers in the mid-eighties. It 
consists of bricks assembled each of four pieces that fall from the top of the screen at a certain 
speed, i.e. the inter-step interval. The aim of the game is to place these bricks, so as to com-
plete the lines at the bottom of the playing field; the completed lines then disappear. While a 
brick is falling, the animation module waits for a control command with one of the following 
class labels: (i) move brick one step to the left, (ii) move brick one step to the right, (iii) rotate 
brick by 90° clockwise, and (iv) drop brick down as far as possible. The player earns different 
credits for every brick put in place and for the number of lines completed. Once a single 
horizontal line or multiple lines are complete with bricks, they are deleted and all bricks above 
them shift down. The aim of the game is to continue for as long as possible; the game finishes 
when it becomes impossible to initiate a new brick on the top of the playing field without it 
covering a previously placed brick. Please refer to Figure 38 for a screenshot of the feedback 
scenario “Brain-Tetris”. 

Next Score

15

 

Figure 38: Screenshot of the feedback scenario “Brain-Tetris”. Bricks that consist of four 
pieces are falling down the play field stepwise. The user can control the brick’s movement 
stepwise to the left or right, its rotation (90° clockwise) or she/he can drop the brick to the 

lowest possible placement. The next brick and the user’s current score are displayed. 
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For purposes of control in this application, four different brain states were adopted, each 
assigned to its own class of interest. With this feature, it becomes second nature to encode the 
left movement of a brick by an imagined movement of the left hand and, accordingly, the right 
movement of the brick by an imagined movement of the right hand. Furthermore, an imagined 
foot movement was employed to encode the drop function, since the player’s “down” intention 
is naturally somewhere in the lower part of the body. To encode the rotation of the brick, it 
seemed most appropriate to have the user imagine a mental rotation of some non-trivial 3D-
figure, since the correlate of visual intention is provided by the user’s desire to see the Tetris 
brick from some other angle. However, this approach was restricted to a simple 2D rotation of 
a Tetris brick. The expectation that this would invoke a strong desynchronization in firing rates 
of large ensembles of cortical neurons over the visual cortex (located in the parietal to occipital 
regions of the brain) was proven true. Since the visual cortex is further back in comparison to 
the sensorimotor cortices of hands and feet (located over the central sulcus), it can be satisfac-
torily discriminated from the other classes. 

To allow for more comfort during the experiments, i.e. to reduce the user’s waiting times 
between sessions and to simplify the experiment conductor’s effort to reset the feedback 
parameters, a remote control unit was employed so that all parameters of the game simulation 
could be reset during the online operation of the game and from a different computer. With one 
click, the experiment conductor can send the parameter package to the application, where it 
takes effect as soon as it becomes possible for the application to commit the changes. The 
entire game scheme can be changed in this remote control application by manipulating parame-
ters such as: 

 Command emission parameters CAT, CRT and the Command Activation Threshold 
(CATh). In addition, the “Brain-Tetris” sends out its states to the parallel port of the feed-
back computer, which can be connected to the recorder PC and store arrived data as cor-
responding event markers. This permits a later analysis of data acquired during the feed-
back sessions, through which entire games may be reconstructed. 

 Game behavior: The countdown begins when the game starts, i.e. before the first 
brick starts to fall, providing the user with a relaxation period that sometimes helps 
her/him prepare for the simulation. The inter-brick interval lets the user revise the com-
pletion of a brick before the next brick is presented. Different timing and design options, 
such as game field dimensions and bitmaps, are used to construct each brick. 

 The capability to switch off certain types of bricks. This, in a sense, controls the dif-
ficulty level of the game. Each brick type can be assigned a separate score; the user then 
gains that score for positioning the brick, in addition to the score for completing a row. 

 Class labels: This adapts the game to the labels sent out by the BBCI system. The 
experiment conductor then no longer needs to adapt the complex BBCI applier, but can 
easily reassign the class labels or simply switch off the recognition of a certain class. 

 Finally, all these parameters can be saved to an initialization file and loaded in later 
experiments. 

Unfortunately, however, this particular game appears too complex to be controlled by 
current BCI systems. In certain game situations (e.g. when the user positioned and rotated a 
brick as if planning to position it on top of other bricks), a drop pattern of the brain is errone-
ously detected as a rotate pattern, resulting in an error with disastrous consequences for the 
entire game. Taking, for example, the game situation shown in Figure 38, a correct recognition 
of the drop pattern would result in a completion of two rows, while a misclassification of the 
brain state as a rotation command would impede the completion of the five lower rows assem-
bled with great care by blocking them from the top. In summary, the rules of the “Brain-Tetris” 
feedback application are not well suited for brain-gaming, although in one experiment a user 
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was able to complete eight rows before becoming stuck. Nevertheless, “Brain-Tetris” continues 
to attract attention from many who are fascinated by the notion of the application. 

7.5 Feedback scenario “Mental Typewriter” 

The last two feedback applications presented in this work are rehabilitative, i.e. employed 
in experiments that are designed especially for handicapped users. These applications allow 
these users to communicate with the surrounding environment and to control computer applica-
tions. To keep matters as general as possible, a spelling application was developed that can be 
controlled through a command-based strategy. 

The user is provided with a full-screen window that is subdivided into three parts: One is 
the full screen width field in the upper half of the window, which contains the spelled message 
from the user. The other two parts are selection fields in the lower part of the window, each 
containing their own parts of the alphabet and control symbols that can be selected by the user 
during the spelling process. Of particular importance is that the alphabet, together with the 
control symbols, was designed as a binary tree to be integrated in the application. Moreover, to 
allow for a fast selection of a letter or symbol, the letters located on the leaves of the tree are 
weighted by their probabilities of occurrence in a certain natural language. In this way, the 
heavier a leaf in comparison to all other leaves, the shorter is the path from the root of the tree 
to that leaf. 

The probabilities of letter occurrences were calculated from the analysis of texts that were 
randomly selected from the Internet. Texts in German, English, French, Spanish, Italian and 
Russian were analyzed and results are presented in Table 7. Similar results for letter occur-
rences can be also found in the literature on military cryptography and cryptanalysis since 
Turing’s time, e.g. [Friedman and Callimahos, 1920] and [Черёмушкин et al., 2001] for 
Russian. The procedure for generation of a binary tree from a table of probabilities is mainly 
guided by the constraint of the optimality mentioned above. However, it must yield a tree 
where the letters retain their position defined by the order of the alphabet, such that a novice 
user is not confused by an obscure order. This constraint will enforce the procedure to yield a 
sub-optimal tree solution only. It thus proved to be more natural for the user to navigate a 
binary tree in an already familiar order, than to chase for information of the order of small bit 
fractions in a coding that is rather difficult for a human operator to retrace. 
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Table 7: Probabilities of letter occurrences in texts of different languages 

Occurrence in the corresponding language [%] Latin 
Letter German English French Spanish Italian Russian

Cyrillic 
Letter 

A 5.52 7.96 7.68 12.90 11.12 0.062 А 

B 1.56 1.60 0.80 1.03 1.07 0.014 Б 

C 2.94 2.84 3.32 4.42 4.11 0.038 В 

D 4.91 4.01 3.60 4.67 3.54 0.013 Г 

E 19.18 12.86 17.76 14.15 11.63 0.025 Д 

F 1.96 2.62 1.06 0.70 1.15 0.072 Е, Ё 

G 3.60 1.99 1.10 1.00 1.73 0.007 Ж 

H 5.02 5.39 0.64 0.91 0.83 0.016 З 

I 8.21 7.77 7.23 7.01 12.04 0.072 И, Й 

J 0.16 0.16 0.19 0.24 < 0.01 0.028 К 

K 1.33 0.41 < 0.01 < 0.01 < 0.01 0.035 Л 

L 3.48 3.51 5.89 5.52 5.95 0.026 М 

M 1.69 2.43 2.72 2.55 2.65 0.053 Н 

N 10.20 7.51 7.61 6.20 7.68 0.09 О 

O 2.14 6.62 5.34 8.84 8.92 0.023 П 

P 0.54 1.81 3.24 3.26 2.66 0.04 Р 

Q 0.01 0.17 1.34 1.55 0.48 0.045 С 

R 7.01 6.83 6.81 6.95 6.56 0.053 Т 

S 7.07 6.62 8.23 7.64 4.81 0.021 У 

T 5.86 9.72 7.30 4.36 7.07 0.002 Ф 

U 4.22 2.48 6.05 4.00 3.09 0.009 Х 

V 0.84 1.15 1.27 0.67 1.67 0.004 Ц 

W 1.38 1.80 < 0.01 < 0.01 < 0.01 0.012 Ч 

X < 0.01 0.17 0.54 0.07 < 0.01 0.009 Ш, Щ 

Y < 0.01 1.52 0.21 1.05 < 0.01 0.014 Ъ, Ь 

Z 1.17 0.05 0.07 0.31 1.24 0.016 Ы 

      0.003 Э 

      0.006 Ю 

      0.018 Я 
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Figure 39: Screenshot of the feedback scenario “Brain-Speller” in an intermediate selection 
processing stage. The two selection fields contain parts of the alphabet. The user selects either 
left or right one that contain the desired letter by imagining or executing the left or right hand 

movement. This allows “traveling” across the binary alphabet tree until a letter is selected; it is 
then appended to the typed text. 

The software engineering approach for tree generation is described in more detail in sec-
tion 3.3.d of the next chapter. Figure 39 shows a screenshot of the feedback scenario “Brain-
Speller” at an intermediate stage. The user is initially presented with an empty message field 
and the alphabet. This alphabet is subdivided into two halves according to the structure of the 
generated binary tree, i.e. based on occurrence probabilities; these halves appear respectively in 
the left and the right selection fields. An animation control command emitted by the Queue 
Checker Module prompts an action either to select the left or right selection field and to per-
form a single step down in the binary alphabet tree. The user screen then changes according to 
the new selection processing stage that is defined by the position in the tree. 

 If the user selects a field containing more than one letter or symbol, it is enlarged in 
a fast animation to fit both selection fields. Both intersection letters are then indicated, 
such that the range of letters is divided once more on the both selection fields. After the 
CRT period, concluding the selection trial, the user is able to perform further steps until 
only one letter or symbol is contained in one or both selection fields. 

 If the user selects a field containing only one letter or symbol, i.e. the corresponding 
leaf of the alphabet tree, the corresponding letter is drawn in a fast animation upwards to 
the end of the message field, which shifts all preceding letters one position to the left. 

Selection of the “space” character (‘_’) inserts an underscore symbol into the message. 
Nevertheless, selecting the backspace character (‘<’) erases the most recently selected charac-
ter from the message, thus shifting it one position to the right; note that the placeholder for the 
next selected symbol is always in the center of the screen, as it is common for the mechanical 
typewriter. 
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Several variant selection strategies are conceivable for this operation and could be im-
plemented in a simple manner. For example, the user may feel more comfortable with being 
prompted to confirm the selected the letter, such as “Insert Letter ‘X’ into the Message?” This 
can be displayed in an additional field below the selection fields together with the indication of 
“Yes – Correct” and “No – Error” on the selection fields. In all cases, regardless of the update 
of the message string, the user is presented with the initial screen, again with the complete 
alphabet, and can start selecting the next letter or symbol from the beginning where the selec-
tion stage is positioned at the root of the tree. 

Calculating binary alphabet trees is computationally inexpensive and can thus be per-
formed with every update of the message string, such that an adaptation of the tree to the user’s 
spelling preferences is an optionally built-in function of the speller application. A disadvantage 
of the automatic adaptation is that during long sessions the user may become familiar with 
certain selection sequences of the most frequently used letters, which will then change until the 
system settles. Of interest in further studies is the analysis of letter co-occurrences, which is 
obviously also language-specific. The system can provide the user with the most frequent 
letters in a modified binary tree, which is subject to the letter previously selected by the user. In 
some cases a word completion function may be useful for the real-world application of the 
system. This function can also keep record of the occurrences and co-occurrences of letters 
preferred by the user. In addition it can store, as a dictionary, the most frequently spelled 
words, and propose these to the user for completion. 

7.5.a Built-in error detection 
Since the emitted control command may in some cases be erroneous, there is an evident 

need to equip an application such as “Brain-Speller”, where it is difficult to make a back step, 
with an optional error detection and correction paradigm. Section 6 described error signal 
detection directly from the user’s brain signals in terms of the benefit that can be additionally 
gained from this paradigm. The “Brain-Speller” feedback scenario, employing a binary alpha-
bet tree, allows for even more possibilities than simply canceling the most recently emitted 
command, in the sense that it can then correct the user’s operation in an intelligent manner. 
This saves time, since the user does not need to repeat the erroneously recognized operation. 

When the classifier erroneously detects and emits a certain command, the feedback mod-
ule processes it and thus confronts the user with an unanticipated state. The user is then not 
able to identify herself/himself with the present situation and assumes the recognition module 
having produced an erroneous decision, i.e. the user becomes displeased and annoyed with the 
most recently performed action. This reaction is monitored after every emitted command for a 
certain time period, e.g. 500 ms, such that the brain signals are checked for error potentials as 
described in section 6. If no error potential is recognized within a given time, the action is 
confirmed and no change in the feedback animation is required. The confirmation is then 
communicated to the recognition module, which then switches to recognizing further control 
commands. In the opposite scenario, i.e. when the user’s reaction contains an error potential, 
the feedback animation may react in one of two ways: (i) by canceling the most recently 
performed operation and returning to the previous state, known as good. In the current “Brain-
Speller” application, this is one step upwards in the binary tree. (ii) The last operation can be 
reversed, although that option is only conceivable in binary decision applications such as the 
“Brain-Speller” feedback scenario with only two selection fields. In order to decide what the 
appropriate feedback reaction should be, the data forming the basis of the action decision (of a 
particular past period) should be reanalyzed by applying a special treatment. 

As mentioned above, one feedback module’s decision about the emission of a command 
is integrated throughout the CAT duration of classifier’s decisions, each of which can be 
categorized as a detection and a determination classifier decision. To emit a control command 
to the animation, the detection classifier must indicate a positive result, while the determination 
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classifier must provide a result that differs from zero significantly; both indications must last 
for at least the CAT duration. If the user, in turn, indicates that the last decision was erroneous, 
the detection classifier’s results are reanalyzed under certain, somewhat more difficult, condi-
tions to clarify whether a command should have been emitted. These conditions, for example, 
could distinguish themselves by greater thresholds and/or longer CAT periods. If the data fails 
the reanalysis, the most recently emitted command is simply canceled, and the feedback 
animation is redrawn according to the current, i.e. re-updated, state of the system. However, the 
reanalysis results of the detection classification may substantiate the correct emission of the 
control command; in this case the most recently performed action should be reversed, followed 
again by a redraw procedure of the feedback animation. 
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Correct

Wrong

α

1 - α

Error

Error

Confirm

Confirm

Good Trial: P · (1 - α)

Bad Trial: P · α

β

1 - β Good Trial: (1 - P) · (1 - β)
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Signal Recognition Error Detection Result Probabilities
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Figure 40: Signal and error detection procedure for a BCI system alone performing with the 
accuracy P, and the error detection module performing with α false positives and β false 

negatives. 

Besides the probability P of the main data recognition module making correct decisions – 
aimed to be as high as possible, though without ever reaching the ideal 1.0 value – the error 
detection module is further contaminated by two kinds of errors: (i) the false-positive rate α, 
and (ii) the false negative rate β, which can be viewed in the same context as probabilities of 
incorrectness of error detection. The procedure of signal and error detection, together with the 
resulting probabilities following all good and bad classified trials, is illustrated in Figure 40. 

Consequently, the probability of a good trial after error detection can be expressed as: 

( ) ( ) ( ) ( )1 1 1 1P P Pα β β α β⋅ − + − ⋅ − = + ⋅ − −  (19) 
Thus, the error detection mechanism increases the performance of the BCI system if α and β 
are selected such that the inequality (20) holds: 

1
1

P β
β α

−<
− −

. (20) 

It is obviously possible to derive the corresponding inequality for the case of endless error 
detection, i.e. if the user reaction is repeatedly monitored after correcting the feedback anima-
tion. However, as this is of theoretical value only, it is omitted from further discussion here. 
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7.6 Feedback scenario “Virtual Arm” 

The final application to be presented in this thesis, the “Virtual Arm” feedback scenario, 
represents a feedback application par excellence. It could be employed within the scope of 
future research and experiments for use with patients in their final BBCI qualification stage, 
i.e. after they have learned about their own intentions, emission of control commands and have 
developed a certain own control strategy for high level operations, as well as know how to deal 
with the feedback animation. The “Virtual Arm” feedback scenario is based on Virtual Reality 
(VR), since the user is instructed to control a part of the body that may be absent and that is 
displayed on a computer screen. Readers with a scientific or technical background will know 
that rehabilitation engineering represents a vast scientific field that overlaps with medicine, 
prosthesis engineering, human psychology and many other important disciplines. It is to be 
noted that none of the assumptions made in this thesis should be taken as axioms. To minimize 
possible misreadings, I will limit descriptions to already completed research and to experi-
ments concerning bio-feedback applications carried out within the scope of the BBCI project. 
The “Virtual Arm” feedback application described here still remains an open research field that 
requires prior solving of many neurological, technical and fundamental research problems, as 
well as design and conduction of further exhaustive experiments with patients. 

During the training session the user is instructed to perform imagined movements of the 
arm, e.g. bending it at the proximal (shoulder or elbow) and distal (hand or fingers) joints, 
which are triggered by an external query. After the extraction of training samples, the data is 
preprocessed and fed into the learning machine. During the application session the user is 
presented with a black full-screen window containing an image of a human arm; the experi-
mental setup defines the laterality of the extremity, i.e. left or right arm. The user’s monitor is 
positioned such as to maximize the impression in the user that the arm is her/his own, as 
indicated in the two photos taken from one of the experiments, in Figure 41. 

 

Figure 41: User and monitor position in experiments with the “Virtual Arm” feedback 
scenario. Monitor is placed and rotated such that the user’s imagination of observing the own 

arm while looking on the screen is maximized. 

Here, the user was instructed to press a key on a computer keyboard with her/his right 
hand and to press on the desktop with her/his left hand according to auditory queries. The data 
was acquired in the following manner. When the digital metronome inserts a stimulus marker 
in the data, the keyboard correspondingly inserts a response marker. A sample extracted from 
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the continuous data, preceding a single stimulus marker, is thus denoted as a training sample 
for the phantom movement of the left hand, while the sample preceding the combination of the 
stimulus and the response markers, located in the data within a certain, short duration 
(50-100 ms), is denoted as the real executed movement of the right hand. The most accurate 
positions among these extracted samples of phantom movements can be ascertained from the 
shifts between the stimulus and the corresponding response marker, since once the user has 
found a right tact she/he tends to retain it throughout the entire experiment. Consequently, the 
phases should be approximately the same for all trials, irrespective of their lateralization. 

The VR platform used to handle and manage the 3D objects of the virtual arm was kindly 
provided by the Visualization Systems, Technology and Applications (ViSTA) group at our 
institute and is based on a Demonstrator Software for the project X-Rooms 
[http://www.xrooms.de]. The control protocol for the arm movements was defined and 
kindly provided by Dipl.-Inform. Karsten Isacovic, director of the X-Rooms project. However, 
the control protocol proved incompatible with the communication protocol of the feedback 
interface of the BBCI system; an additional interface application was thus implemented to 
solve this problem. 

 

Figure 42: Screenshot of the “Virtual Arm” interface GUI. A variety of parameters can be set 
up in the upper part of the window, class labels and transformations can be defined for each 

joint separately. The canvas in the lower part of the window indicates control commands 
received from the BBCI system as colored bars and transformation commands emitted to the 

VR environment as thick colored lines; the colors denote class labels. 

This interface needs to be as flexible as possible to ensure greater suitability for a variety 
of future, yet to be defined, experimental setups and allow as much “degrees of freedom” 
(DOF) as possible for arm bending and moving. The human arm consists of eight parts: shoul-
der, elbow, wrist and five fingers, each capable of two to three DOF. This means that the entire 
arm is capable of about 22 mostly independent DOF. The arm model in the VR environment is 
capable of even more DOF, although some of these are impossible in terms of human physiol-
ogy; it was therefore necessary to reduce the number of DOF to a minimum that is based on 
our neurophysiological approach. It is appropriate to allow no more than one DOF for each 
joint so that the interface application can distinguish between the three main joints of the arm 
and the five fingers, assigning to each of them a class label. The start and stop angle together 
with the transformation time allow to create an animation of the corresponding joint of the 
virtual arm bending in a VR environment. The return type specifies whether the reverse anima-
tion is initiated: automatically upon completion, upon the emission of the rest command, upon 
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repeated emission of the same control command, or if at all. Besides the usual control com-
mand emission parameters such as CAT, CRT and CATh, it is notable that the “Virtual Arm” 
interface application can run on separate computer. It does not have to run on the VR-
application or BBCI applier system and communicates via a Local Area Network (LAN) that 
relies on the UDP/IP protocol. Figure 42 illustrates the screenshot of the Graphical User 
Interface (GUI) of the “Virtual-Arm” interface application. Please note the additional summary 
of the incoming command blocks (colored according to their class labels) on the upper half of 
the canvas, and the emitted animation commands (with bold lines in the color of the to-be-
updated current joint) in the lower part. This graphical display can be switched off to save 
computational resources and processing time, for example, when the interface is running on the 
same computer as the BBCI applier. 

7.6.a Controlling grasping and arm bending 
Let us assume that a BBCI user is capable of producing two different spatio-temporal 

brain patterns that concern distal and proximal joint flexions of a limb. At the current stage of 
research, it is only of marginal interest whether the user is intrinsically capable of controlling 
this limb or not, i.e. the limb could be actually paralyzed by a neurological disease or amyotro-
phic sclerosis, or even be absent due to amputation. Neurophysiology has proven that certain 
parts of the human body are represented in a topographic order on the surface of the primary 
sensorimotor and pre-motor cortices, the representation of which is also known as a “Homun-
culus” (see Figure 2). Building on these findings, the BBCI should be capable of recognizing 
these two spatio-temporal brain patterns as belonging to two different classes. Let us say the 
proximal joint flexion action, denoted as class #1, is implemented by the up and down or 
left and right movement of the entire arm, i.e. by bending it in the shoulder or elbow joint. The 
distal joint flexion action then, denoted as class #2, is implemented by the hand closure and 
opening movement, i.e. by finger movements. 

The joint-to-class assignments of the V-Arm interface are set up such that if the 
class #1 or class #2 control signal is recognized by the BBCI system, an animation of 
the virtual arm flexion in the shoulder, elbow or the five finger joints is performed within the 
next 500-750 ms; that animation is then reversed upon repeated recognition of the same control 
signal class. In this setup, the user will be able to quickly adapt to the V-Arm feedback applica-
tion, since it executes animated movements in a manner that is largely familiar to the user. A 
future vision is that a patient not capable of controlling her/his own limb (in this case an arm) 
could then gain control over a virtual limb in a natural way. As a result, if the patient’s Central 
Nervous System (CNS) is still intact and capable of generating the appropriate control com-
mands for bending and grasping, and if she/he is still able to feel or imagine an amputated 
limb, the BBCI system would serve as a bridge between the command emission unit and the 
executing extremity, bypassing all the intermediate interfacing elements such as spinal cord, 
peripheral nerves and muscles. 

At least two kinds of assistance systems exist that can help in the final stage of signal 
processing and perform executive functions of the limbs. 

 For users with absent limbs, prostheses can be replaced by intelligent robotic 
mechanisms that can be controlled by the user’s brain signals encoded as emitted com-
mands. 

 Orthosis can be employed for users whose limbs are present, yet who have no con-
trol of these limbs due to a neuromuscular disease. In this case, if the executive muscles 
of the limb are still intact and usable to implement movements, an electro-stimulator 
sleeve (e.g. an arm or wrist band) is employed to process the user’s brain signals encoded 
as control commands. The sleeve transforms control signals from the V-Arm interface 



— 87 — 

into an electrical stimulation of limb muscles, such that the imagination of a certain 
movement yields the execution of the desired movement in the limb. 

The underlying intent of this thesis was to investigate a virtual version of such prosthesis 
and to define the control procedure for the orthosis. The technical realization of such a proto-
type remains very problematic; however, these challenges are expected to be met by experts in 
the field of robotics and prosthesis development and research. Please note, that in spite of 
finished development process of this feedback application, it has only been tested in few 
experiments with healthy users (mainly for the reason of verification of technical functioning). 
Experiments with patients are still to be conducted within the scope of future research. 

 





CChhaapptteerr  IIVV  ——    

SSOOFFTTWWAARREE  EENNGGIINNEEEERRIINNGG  

OOuurr  cciivviilliizzaattiioonn  rruunnss  oonn  SSooffttwwaarree  
BBjjaarrnnee  SSttrroouussttrruupp..  

  
GGeettttiinngg  ssttaarrtteedd  iiss  tthhee  mmoosstt  ddiiffffiiccuulltt  ppaarrtt  ooff  aannyy  nneeww  pprroocceessss..  IInn  

SSooffttwwaarree  EEnnggiinneeeerriinngg,,  tthhee  ffiirrsstt  tthhiinngg  yyoouu  nneeeedd  ttoo  ddoo  iiss  uunnddeerrssttaanndd  
wwhhaatt  yyoouu  aarree  ggooiinngg  ttoo  mmooddeell  aanndd  uullttiimmaatteellyy  ddeevveelloopp  

GGrraaddyy  BBoooocchh,,  JJaammeess  RRuummbbaauugghh,,  aanndd  IIvvaarr  JJaaccoobbssoonn..  

his chapter will investigate the technical side of the BBCI’s realization together with all 
of the small and large satellite applications accompanying it. It comprises a complex 
system of several components that need to communicate with each other and work in a 

synchronous way within an asynchronous system. As a result, various software engineering 
and modeling approaches proved invaluable during the design phase of the software develop-
ment. A Machine Learning scientist or even a neurophysiologist would probably consider this 
chapter too technical or even boring, while a computer scientist or a software engineer, after 
laboring through the previous chapters (presented from a rather abstract point of view in terms 
of the realization and implementation of the concrete software system), would probably look 
forward to this chapter with enthusiasm. Nonetheless, not every single stage of the modeling 
process is presented and several C/C++ tricks are not disclosed, respecting the author’s simul-
taneous role as a programmer. Extremely accurate readers are asked to forgive the omission of 
these highly technical details.   

Firstly, the overall design of the BBCI system is discussed together with how it could be 
separated into self-contained modules. This is followed by basic pillars of every software 
engineering approach – classes of the BBCI system, their hierarchical organization and de-
pendencies together with the main processing and interfacing objects. In section 3 (the main 
section of this chapter), the modules of the BBCI system are described in more detail with the 

T 
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assistance of UML diagrams. An essential part of that section will address the design of feed-
back modules. These modules are independent software units and were developed largely in an 
inductive manner. In some cases they required up to a dozen development cycles that included 
the implementing, testing and discussing of results with neurophysiologists. Chapter IV then 
will then complete with a description of generic data formats of several types of files used to 
set up the entire system configuration so as to match the experimental requirements. 

1. The Overall Design 

CCoonnccoorrddiiaa  ppaarrvvaaee  ccrreessccuunntt  ——  
——  ddiissccoorrddiiaa  mmaaxxiimmaaee  ddiillaabbuunnttuurr..  

GGaaiiuuss  SSaalllluussttiiuuss  CCrriissppiiuuss  ((8866  ––  3344  BB..CC..))  

The overall design of the entire BBCI system can be viewed in a more abstract manner 
from two levels of “magnification”. Viewed from the “far away” level, the architecture resem-
bles a conveyor belt in that the processing steps are distributed over several computers that 
receive a single block of source data, process it, and then pass it on to the next processing 
stage. This procedure will be described in the first subsection. Viewed from the “narrow” level, 
we magnify the main processing module of the BBCI system and recognize the parallelized 
processing of the acquired source data, subdivided according to the classification task into 
either the detection path or the determination path. Each of these paths, in turn, functions in a 
conveyor belt manner, which is to say, imperative. These aspects and their potential advantages 
and difficulties are described in the second subsection. 

1.1 Distribution over several computers 

The enormous amount of data to be processed in a limited time clearly requires that the 
tasks of the entire BBCI system are distributed over several computers that communicate via 
Client-Server Interfaces (CSI). Moreover, this distributed concept allows for advantageous 
replacement of single modules that comply with the particular communication protocols. 

Figure 43 illustrates the distributed design of the BBCI system. We start egocentrically, 
with the volunteer user  facing her/his own computer monitor. The visual or auditory query 
can be presented to the user during training sessions, or, a feedback application can be run on 
that computer, providing the user with the feedback animation during the application sessions. 
Triggered by input, or self-initiated, the user’s brain generates certain spatio-temporal patterns 
that are sensed by the electrodes mounted into the Brain-Cap . The EEG information (at this 
stage analogous voltage changes) of all 128, or a subset, of all available channels are trans-
ferred via up to four flat cables (each with 32 wires) to the four BrainProducts® BrainVision™ 
amplifiers . These perform an A/D-conversion and transmit the acquired EEG data at a 
sampling rate of 5 kHz and an accuracy of 16 bits via a fiber optic cable (to avoid electromag-
netic interferences) to the recorder PC . The recorder PC runs the BrainVision™ Recorder© 
software and after receiving a certain amount of data, i.e. each 40 ms, performs predefined 
preprocessing operations (e.g. subsampling to 1 kHz, optional high-pass, low-pass, band-pass 
or notch filtering) and stores the data in raw format into the data base  for later offline 
analysis. Additionally, it acts as a Remote Data Access (RDA) server which allows up to ten 
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client connections and serves one data block of acquired EEG together with all the auxiliary 
information (e.g. control signals or event markers) every 40 ms. A second computer  runs a 
corresponding client, a part of both the BBCI trainer and the BBCI applier systems. Following 
the data acquisition, this performs preprocessing steps for feature selection, providing the 
classifiers with high-dimensional feature vectors. Finally, it creates a control command from 
the classifier’s outputs, which is then emitted over the LAN to the feedback running computer. 
The BBCI processing module  acts as a “talker” for various feedback clients  which are 
implemented to play the role of a quiet “listener” via the UDP/IP protocol and a specific 
communication port. 
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Figure 43: Distributed design of the BBCI system. The user, facing the feedback monitor, 
carries the Brain Cap connected to the amplifiers. The signals are transferred into the Recorder 

and stored in the data base. The signal packages can be transmitted over the network to the 
Processing PC, which transforms them ionto control commands. These commands are 
employed to control the feedback application that provides the user with the animation. 

The feedback application now closes the loop in two ways: (i) indirectly, by providing the 
user with the animation or sound effects in order to generate certain spatiotemporal patterns in 
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the primary cortices of the user’s brain; (ii) by submitting information about attaining a desired 
state of the animation or the performance of any animation transitions or auditory actions to the 
recorder PC. The latter is done by emitting coded information over the parallel port of the 
feedback PC. That feedback PC can, in turn, be connected to the parallel port of the recorder 
PC via the LPT cable. In this way, it can transmit the feedback codes to the acquired data, 
where the stimuli are then inserted as additional event markers, allowing the data acquired 
during feedback sessions to be analyzed at a later point in time in an offline or pseudo-online 
way. Furthermore, the complete feedback application session can then be reconstructed, i.e. the 
feedback animation can be replayed. 

There are two main communication interfaces of the BBCI signal processing system (see 
Figure 43); that of the data acquisition from the recorder PC, and that of the control command 
emission to the feedback PC. While the first one is greatly constrained by the manufacturer of 
the recording system and employs the TCP/IP protocol, the latter has been developed within 
the scope of this work and employs the simpler User Datagram Internet Protocol (UDP/IP) 
communication protocol. Both protocols have advantages and shortcomings, which are sum-
marized in Table 8. 

Table 8: Comparison of TCP/IP and UDP/IP based communication protocols. 

Transmission Control Protocol 
(TCP/IP) 

User Datagram Protocol 
(UDP/IP) 

Connection-Oriented Package-Oriented 

IP can distinguish between several clients and 
several servers connected to each other. 

Establishes a “port”, which allows IP to 
distinguish among processes running on the 

same host. 

 Good control over all connected 
clients due to a regulated registration 
procedure. 

 Reliable, even in large and com-
plex networks, due to a well-engineered 
flow-control and check-sum verifica-
tion. 

 Full-Duplex capability 

 No bothersome registration proce-
dures needed for clients connecting to 
the servers. 

 Very simple and fast implemented, 
although supposedly not as reliable in 
large and complex networks; No replies 
or reception acknowledgement. 

 Easily tapped and therefore not se-
cure. 

Suitability for applications 

Require well-controlled and reliable 
communication in complex structured 
networks or WANs. 

Often Connects/disconnects or reconnects, 
but allow transferring data insecurely. 
“Quick’n’Durty” implementation, e.g. 
prototypes. 

 

1.1.a Communication protocol of data acquisition 
The communication port number of the RDA Server is hard-coded by the manufacturer at 

0xC822. It is stored together with the TCP/IP address of the recorder PC that hosts the RDA 
server in the socket created to enable the communication. After establishing a TCP/IP connec-
tion, along the commonly known standard procedure, the client awaits the transmission of the 
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data. Each data block sent to the client conforms to the nomenclature of the RDA communica-
tion objects. Thus it is either an RDA_MessageStart, RDA_MessageStop or 
RDA_MessageData, all of which are derived from and thus contain the 
RDA_MessageHeader. This by and large defines the message type as 1, 2 or 3 respectively. 
A diagram of the RDA communication objects in UML notation is illustrated in Figure 44. 

The RDA_MessageStart is sent once each time a new client establishes the communi-
cation or each time the server starts monitoring. It contains the basic information about future 
data blocks, such as the number of channels and the sampling interval for identifying the 
dimension of the data matrix. In addition, dResolution helps to convert the values of the 
data matrix to physical values measured in µV, while sChNames[] is an array of textual 
zero-terminated strings that contain the labels of the channels transmitted (see Figure 44, left). 
If a connection is lost or the server stops monitoring, the RDA_MessageStop, which con-
tains no own members but only those inherited from the RDA_MessageHeader, is sent to 
the client. 

RDA_Marker

int nPosition;
int nDuration;
UINT nChannel;
String TypeDescr;

RDA_MessageHeader

GUID guid;
UINT nSize;
UINT nType;

RDA_MessageStart

UINT nChannels;
double dSmpInterv;
double dResolut[];
String sChNames[];

RDA_MessageData

UINT nBlock;
UINT nPoints;
UINT nMarkers;
short nData[][];
RDA_Marker Markers[];

RDA_MessageStop

nMarkers

 

Figure 44: Class diagram of RDA communication objects. The three main classes (bottom line) 
are transmitted to the RDA client indicating the starting and ending point of monitoring or 

containing the data. They are derived from the abstract header class. The data class can also 
contain a set of event markers (top-right). 

The acquired EEG information is transmitted in blocks of type RDA_MessageData 
containing exactly 40 ms of data each. It should be noted that in order to reconstruct a continu-
ous data stream on the client side, it is important to provide each block with a unique identifier, 
for example numbering all transmitted blocks within its contents. This Block-ID is also useful 
for checking if data is lost; this may occur as a result of high processor load on the client side. 
nPoints reflects a value of the number of data points actually transmitted; it is redundant in 
most cases, since it can be calculated from the sampling interval member of 
RDA_MessageStart. It also defines the first dimension of the nData data array of short 
values, while its second dimension (the number of channels) is constant during the entire 
acquisition session as defined in RDA_MessageStart. Finally, the recorder software is 
capable of acquiring additional information, e.g. event markers or user-defined annotations that 
are stored in the RDA_MessageData as an array of RDA_Markers. Each marker is defined 
by: (i) its relative position, upon the event, within the current 40 ms data block, (ii) the number 
of data points to which it is relevant (usually 1), (iii) the channel affiliation it refers to (usually 
0, referring to all channels), and (iv) a textual string containing its type and description as zero-
terminated strings. 
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Figure 45: Timeline diagram of the data acquisition process. The BBCI system does not per-
form the data acquisition by itself, but its communication thread. The latter works in an endless 
loop waiting for, getting and storing the data package in the temporal queue; finally it emits a 
broadcast message. The queue can then be analyzed by other instances of the BBCI system. 

The complete data acquisition process is illustrated in Figure 45 as a timeline diagram. It 
is important to note that the actual communication with the RDA server is performed employ-
ing a parallel thread, which renders the data processing and data acquisition as independent as 
possible. The BBCI data acquisition process is synchronized by its own time clock, while the 
synchronization of the communication thread is provided by the RDA server of the recorder 
PC. When an RDA_MessageData is received by the communication thread, its parts are 
queued into the continuous data stream. This is followed by a message indicating that a new 
processing step can be carried out, while all the new upcoming data blocks are awaited. How-
ever, BBCI data processing decides autonomously, i.e. on the basis of its own timing and other 
parameters, when to take care about the latest data. Usually, one data processing step is per-
formed each time the continuous data stream is updated by the communication thread. How-
ever, after several updates, it may be possible to execute more time-consuming processing 
procedures. This flexible, decoupled and asynchronous design maximizes faultless data acqui-
sition for an uninterrupted data processing. 

1.1.b Communication protocol of the control command 
emission. 

The BBCI system initiates four non-blocking threads to manage data processing, initiated 
by the process message of the data acquisition thread. However, before the processing starts, 
these threads must be initialized, i.e. filled with the appropriate semantics of the processing 
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procedures; this action is performed from the main BBCI thread. The data processing by itself 
is initiated at an appropriate point of time within the BBCI main processing thread. Data to be 
pre-processed is simultaneously transferred to both pre-processing threads responsible for 
detecting the upcoming action and determining the laterality of actions. After the two pre-
processing threads indicate their readiness, the data, stored at a defined place, is passed to the 
two classification threads, again responsible for classifying the detection of the upcoming 
action and for determining the class label of the detected action’s class. The main processing 
thread then waits once again for the ready signals of both classification threads, upon receipt of 
which it combines the classification results of the two classifiers, which generates a control 
command. This control command is then passed to a previously prepared generic feedback. 
The generic feedback is realized as an additional non-blocking thread, which only has the duty 
of communicating with the feedback application that runs on a separate computer. Thus, 
additional non-blocking thread serves as a network interface between the BBCI signal process-
ing system and the feedback application. Figure 46 illustrates the data processing structure as a 
UML timeline diagram. 
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BBCI Data
Acquisition
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Figure 46: Timeline diagram of the signal processing and control command emission 
procedure. This diagram continues that in Figure 45. The data block acquired from the 

Recorder is analyzed by four non-blocking threads (two for the pre-processing and two for the 
classification). An optional synchronization step can be employed in the main thread. 
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The feedback communication thread carries the information concerning the host of the 
feedback application and the communicating port. It acts as a “talker” within a “talker-listener” 
constellation. The feedback application, therefore, can be realized in various ways. The sim-
plest way consists of an infinite loop of listening to the control commands and performing the 
animation specified in the received control command. The feedback animation may addition-
ally, if specified in the initialization file, indicate its actions (e.g. the reception of a particular 
control command) by setting a specific code onto the parallel port of its local computer. Using 
a parallel port connection (Line of Parallel Transmission (LPT)), it can be connected to the 
recorder PC and instantly place an event marker into the EEG data. 

UDP_Message

int BlockID;
int ClassIndex;
double ImpactFactor
union
  double History[40]
  char auxData[320];

 

Figure 47: Class diagram of the feedback communication object that is transmitted from the 
BBCI system to the feedback applications. Auxiliary information about the control of the 

animation can be encoded within the 320 appended bytes or 40 floating point values. 

A feedback communication object is defined as illustrated in Figure 47. The BlockID is 
a continuously incremented value that helps to recognize block loss. The feedback application 
can announce the loss without disturbing the user too much, e.g. by emitting a short beep 
message. The classIndex carries the information concerning the label of the most probable 
class of interest, and the ImpactFactor carries the corresponding fuzzy value. Additionally, 
each block includes information depending on the kind of the feedback application. Such 
information may include the values of the detection and the determination classifiers employed 
for positioning the cursor in the “Jumping Cross” feedback application, or, information on the 
error detection procedure employed for confirming or rejecting the last action performed in the 
“Brain Speller” feedback application. The semantics of the additional information space is 
defined in the initialization file of the generic feedback and correspondingly in the feedback 
application. 

1.2 Partial parallelization of the classifier 

As already outlined in the previous subsection, data processing of the BBCI system is per-
formed in four non-blocking threads. These can be assigned to any individual processor; 
however, only the two pre-processing threads and the two classification threads can be parallel-
ized, since the classification procedure depends on the results of pre-processing. An operating 
system capable of parallel data processing and running on a computer with two processing 
units may be instructed to assign the two detection threads to the first processing unit and the 
two determination threads to the second processing unit. Please note that the main processing 
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thread is in the sleep mode while the pre-processing or classification threads are at work. 
Figure 48 illustrates this approach. 
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Figure 48: Parallel data processing. If the BBCI system runs on a computer with more than a 
single processing unit, its task can be parallelized by executing the detection and determination 
threads on different processors. Synchronization steps are optionally. The storage of data can 

be performed at all stages of the processing. 

Please note also that colors denote stages of data processing, i.e. acquisition, pre-
processing, classification, combination and command emission (see Figure 7, page 30). Addi-
tionally, storage of all intermediate data is possible at every processing stage. However, it is 
recommended that data is stored only if essential since repeated access to the hard disk drive is 
expensive and takes time away from the processing procedures, possibly even interrupting the 
synchronization or resulting in data block loss. 

2. Data Abstraction 

AAnn  AAbbssttrraacctt  DDaattaa  TTyyppee  iiss  aa  ddaattaa  ttyyppee,,  ii..ee..  aa  sseett  ooff  vvaalluueess  aanndd  aa  
ccoolllleeccttiioonn  ooff  ooppeerraattiioonnss  oonn  tthhoossee  vvaalluueess  tthhaatt  iiss  aacccceesssseedd  oonnllyy  

tthhrroouugghh  aann  iinntteerrffaaccee..  AA  pprrooggrraamm  tthhaatt  uusseess  aann  AADDTT  iiss  aa  cclliieenntt,,  aanndd  
aa  pprrooggrraamm  tthhaatt  ssppeecciiffiieess  tthhee  ddaattaa  ttyyppee  iiss  iittss  iimmpplleemmeennttaattiioonn..  

RRoobbeerrtt  SSeeddggeewwiicckk,,  AAllggoorriitthhmmss  iinn  CC//CC++++  

“The discussion of data abstraction is essentially a simultaneous discussion of two things 
that are highly interconnected with each other; the navigation through levels of abstraction, 
which all computer systems are based on, and Abstract Data Types (ADT), which in turn allow 
us to build programs that use different levels of abstraction, ranging from low and intermediate 
to high” [Sedgewick, 1998]. The following will define the main classes employed in the BBCI 
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system. Three types of classes are differentiated; thus, the BBCI system operates with the three 
types of objects1. 

 The highest level of abstraction is composed of several Graphical User Interface 
(GUI) objects, as is common in Microsoft Foundation Classes (MFC) based programs. 
These classes build the interface with the operator, govern many of the data types and 
manage the operation of these data types. At the very least they also serve to keep the user 
informed of the current state of the entire system and the processing stages of data opera-
tion. 

 The operation objects make up the intermediate level of abstraction. They are de-
fined by the specifications the operator supplied via the corresponding GUI objects. They 
also process data objects of the lower abstraction level. 

 The data objects comprise the lower level of abstraction. Many go unnoticed by the 
users, who literally do not have a direct access to them. However, some selected objects 
also have a direct relation to the GUI objects in order to provide the operator with infor-
mation about the internal state of the system. This should have been allowed only in pro-
totype-like implementations, e.g. for result verification purposes in intermediate stages of 
the data processing. 

prep clas comb
prep

Pre-Processing

comb

Combination

clas

Classification

Raw EEG Data
Samples

Processing
Object Identifiers

Interface Data Object Identifiers

Control
Command

Pre-Processed Data Class Affiliations

Constructing the
Feature Vectors

Collecting all
Classifier Results

Data
Acquisition

Command
Emission

B B C I  O v e r h e a d  M a n a g e m e n t

 

Figure 49: Modular plug-in design of the BBCI system. The BBCI Overhead Management 
governs the data transmission between different stages og the entire processing procedure and 

the synchronization inbetween. Three plug-in modules (pre-processing, classification and 
combination) allow for advantageous replacement and thus support fast prototyping. the data 

acquisition and sample selection procedures are build-in. The command emission can be 
realized as an additional pseudo-feedback plug-in module. 

                                                           

1 Obviously there is an additional, lowest level of abstraction which, composed of stan-
dard data types or even single bits encoding information, is assumed to be trivial and a given. 
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Let us now discuss the role of these object types within the BBCI system. A universal 
BCI system must be able to employ several kinds of pre-processing, classification and combi-
nation procedures that comply with the respective communication protocols. Let us therefore 
encapsulate these three procedures and prescind from their modules. The remaining shell’s 
function is then reduced to managing operations on the underlying data and processing objects. 
It must seek to synchronize the communication between the processing modules and verify the 
validity of their results. Please refer to the illustration of the modular plug-in design of the 
BBCI (Figure 49), where colors denote the stages of the data processing, as was defined in the 
previous figures. 

It should be noted that the BBCI system was developed to acquire EEG data from only 
one type of hardware, namely BrainProducts© BrainVision™ Recorder®. This data acquisi-
tion mechanism is thus built into the BBCI system and is hard-coded. For the present proto-
type, that evidently constitutes a drawback that will need to be rectified, at the latest during the 
commercialization of the product. Yet within the scope of this project, it was not feasible to 
work with hardware other than the BrainProducts’s© equipment and software. The same holds 
true for the sample selection procedure, which, while hard-coded into the BBCI overhead 
management module, was realized in as flexible a manner as possible so that its adaptation for 
most procedures still remains feasible. Finally, the control command emission is realized as a 
pseudo-feedback module that, equipped with the control command constructed by the com-
biner, communicates via a certain protocol over the network. It should be acknowledged that 
the BBCI system could have been illustrated as containing four plug-in modules (with an 
additional pseudo-feedback module). In fact, the pseudo-feedback version was the most flexi-
ble one from all feedback modules implemented. However, it would limit the BBCI to the 
usage of only this single feedback module; although, arguably, any other application commu-
nicating its control command through the network can be adopted to serve as the feedback 
application that is mastered by the pseudo-feedback module of the BBCI system. It should be 
mentioned that the BBCI system is able to proceed without any network-based feedback. 
Therefore, it can control a particular feedback application by itself, such that the command 
emission module is optionally included in the BBCI management overhead. Finally, the sym-
bolic nomenclature of the above figure introduces two kinds of object identifiers. 

 Processing object identifiers. These are responsible for checking that the appropriate 
processing steps are plugged in and executed in the correct order, i.e. that the pre-
processing procedure precedes the classification, which is finalized by the combination of 
the classifier results, which are then passed to the feedback, if required, or to the pseudo-
feedback module for control command emission. This checking mechanism is realized by 
a simple comparison of the identifiers of the initialization files, which are configured by 
the user to identify the procedures and their parameters. 

 Interface data object identifiers. These are responsible for checking that (i) the se-
lected procedures are capable of certain communication protocols, i.e. that the preprocess-
ing module is able to receive the data samples selected from the raw continuous EEG en-
coded in a particular manner, and that (ii) its result (the pre-processed data) is encoded in 
another predefined structure so that it can be read and understood by the BBCI overhead 
management module. These preprocessed data structures will be acquired during the 
training session and, after accumulation, passed in one go to the classifier for training 
purposes. Nevertheless, single pre-processed data feature vectors will be passed to the 
classifier for classification purposes during the application session. The classifier results 
are then passed, in a structure containing a set of fuzzy values, to the combiner, which is 
capable of handling its semantics and producing an interface data object containing the 
control command to be emitted to the feedback application. 

The following subsection describes this hierarchy of the data processing and the interac-
tion of processing and interface data objects. 
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2.1 Class hierarchy 

In order to understand the hierarchical class model at the core of the BBCI system, we re-
call its informal representation in Figure 49 and its UML notation in Figure 50. The highest 
level of the class hierarchy is constructed from a single object – the BBCI Overhead Manage-
ment – which is a GUI type. This object contains and manages all the other processing and data 
interface objects that are directly or indirectly nested in it. Two kinds of objects are repre-
sented, according to the definition at the beginning of section 2. While the processing objects 
are illustrated as unicolored boxes indicating the processing stage, as defined above, the inter-
face data objects govern the communication between two subsequent processing stages, i.e. 
between two processing objects, and are filled with two colors corresponding to the processing 
stages. The four main processing objects are defined as abstract classes such that they can serve 
as platforms for derivations of specific classes, although there are no instances of such objects. 
Several specific pre-processing objects, e.g. the BBCI_FS or Matlab_PrePro, are derived 
from the PreProcessing abstract class, as is done analogously with other processing 
objects. 

Special attention must be given to the Matlab-based pre-processing and classification 
classes. These serve as an interface between the BBCI system and the Matlab processing 
engines. Constructors of these objects launch a Matlab application window and store the 
pointer to its top-level object, the Engine, into its eEngine member element, so that (i) the 
data to-be-processed can be put from the C++ arrays into the correct place of the corresponding 
Matlab environment, that (ii) the processing command can be called and (iii) the resulting data 
can be passed back to the appropriately prepared C++ arrays. These objects do not perform any 
processing by themselves and merely advise Matlab to do so in a way specified by their do-
PreProcess(), doTrain() and the doApply() member functions. The first member 
function executes the sPreProCmd string to perform the pre-processing operation with 
parameters that are previously set as specified in the sParameterString. The remaining 
two member functions execute the sTrainCmd string for initiating the training process to 
obtain a classifier, and the sApplyCmd string for the classifier application to a single selected 
data sample. 

Let us now trace the signal’s path through the BBCI system. Starting with the EEGData 
object, the selectSamples() member function of the BBCI_Overhead_Management 
extracts the training samples according to the markers (defined in the data as the mrk[] array 
of BVMarkers during the training sessions) or simply takes the latest epoch from the data 
(during the application session), resulting in an array of, or a single, EEGSample. This/These 
is/are forwarded to the abstract PreProcessing class; its virtual doPreProcess() 
member function is called. One of the specific objects of the PreProcessing class, which is 
derived from the abstract one, redefines this member function, and the correct pre-processing 
procedure is executed. The results of this pre-processing procedure are finally copied into the 
PreProData object defined within the BBCI_Overhead_Management class. Finally, the 
completion message of the pre-processing procedure is emitted. 
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Figure 50: Hierarchical design of the data processing mechanism and the interaction between 
processing and interface data objects in the common UML notation for class diagrams. Unicol-
ored classes denote processing objects, while bicolored classes denote data objects communi-
cated through processing stages. The main BBCI Overhead Management class governing all 

other and the synchronization between them is pictured as while-dotted. 
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When both the detection and the determination pre-processing threads are completed, the 
PreProData object is transmitted to the abstract Classifier class; one of its virtual 
member functions is called. This can be either doTrain() or doApply() for the training 
session or the application session respectively. The feature vector(s) is/are passed to the re-
implementations of these virtual member functions within the object of the specific class 
derived from the abstract Classifier class. This calls the correct classifying procedure. The 
classifier fills the object of the class ClassFuzzy previously created by the 
BBCI_Overhead_Management. After the object is filled with data, each of the classifiers 
emits a completion message. When both messages arrive, indicating that the classifier’s fuzzy 
values are collected in their entirety, the resulting structure is fed into the combiner object. This 
triggers the virtual doCombine() member function of the abstract Combiner class. The 
procedure is then performed in the same manner as was described for the pre-processing and 
the classification procedures. Finally, the combination member function of a specific class, 
which is derived from the abstract one, joins the classification fuzzy values and creates the 
control command. The latter is passed to the abstract Feedback class and subsequently 
emitted to the object of a specific class derived from the abstract class Feedback. 

Looking at the overall picture, we can trace the data being passed from one instance to the 
other. A zigzag line thus is drawn for several periods between the more abstract classes, con-
cerned with data processing and synchronization of steps and the more specific classes that 
perform the mathematical calculations. Once the control command is generated from the data 
and passed to the feedback’s communication thread, the entire system is ready to acquire new 
data. The hardest constraint is that each processing cycle must stay below 40 ms in duration, 
since otherwise data blocks may be lost, resulting in a feedback animation that is less corre-
lated with the user’s intentions. 

3. Processing Modules and the GUI 
This section discusses the processing modules of the BBCI system. On the whole, these 

modules might be seen as the GUI or overhead management modules. The entire BBCI system 
consists of several modules, which help the experiment conductor to acquire, load, process and 
restructure the EEG data, to extract the information from it, and to use this information for the 
control in a series of applications. These modules are subdivided into three categories: the main 
processing module, various auxiliary restructuring modules and finally, the feedback modules. 

3.1 Main processing module 

The main processing module consists of two large parts: the Trainer module and the Ap-
plier module. Both are capable of working in offline and online modes, although the offline 
mode is in effect set up to be pseudo-online, i.e. as if online. Consequently, both are capable of 
loading the EEG data files, which were previously saved on the hard disk or another storage 
media. The experimental setup required these two main processing modules to be implemented 
as independent entities. However, they must share the same objects for the user model, i.e. the 
parameters of the pre-processing procedures, the classifiers, and the identification of the 
combiner. 
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3.1.a “Trainer” module 
The main window of the Trainer module is presented in Figure 51. Its task is to calculate 

the user model from the EEG data acquired directly from the user or loaded from a previously 
saved file. To achieve this it is subdivided into tree main parts: (i) data acquisition, (ii) feature 
selection and (iii) data processing, including pre-processing, classification and combination. 
There is a general “Setup” part, which is for administrative use, and an “Apply” button to 
switch into and operate the applier part of the main processing module. 

 

Figure 51: Main dialog GUI of the Trainer module divided into tree major parts (from top 
down): (i) data sources and acquisition, (ii) sample selection and preprocessing and 

(iii) classification and combination. An administrative setup part allows the experiment con-
ductor for handling the experimental setups. The Apply button switches to the BBCI Applier 

module. 
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When starting the training session, the experiment conductor decides whether the data 
upon which the model will be based is already present or must be acquired. In the first case, i.e. 
if its label indicates “FILE”, the widgets for selecting the header file name are switched on. 
Alternatively, if its label indicates “RDA”, the host serving the packages can be defined, 
followed by the RDA-Setup, which establishes the connection and registers the BBCI Trainer 
as the client application. Since the EEG data of the BrainVision Recorder is stored in three 
interlinked files, only the filename for the header needs to be supplied; the remaining files are 
then recognized automatically by the links to the marker file and the data file, which are 
included in it. However, an option is provided to ignore those links and to issue user-defined 
markers and data files separately. 

Often data is stored at a high sampling frequency, e.g. at 1 kHz. However, this is unneces-
sary for our purposes and provides too much data to be processed in real-time, which means 
that acquired data must be sub-sampled at a lower frequency, e.g. 100 Hz or even lower, as 
soon as possible. This procedure is performed automatically during data loading or acquisition, 
provided the value for the target frequency is selected. The Overhead Management module 
calculates the sub-sampling factor according to the actual data sampling rate. Several methods 
can be employed to sub-sample data: (i) calculating the mean, (ii) selecting the median, 
(iii-vi) selecting the last, first, middle or a random sample from the range of the consecutive, 
non-overlapping windows. The EEG data is then stored internally at the updated (usually 
lower) sampling frequency. 

 

Figure 52: Inspection window of the EEG raw data. Header information is displayed statically. 
A subset of all available channels can be selected for display at the time point of an event 

marker or at an arbitrary time point. Additional scales allow magnifying the data in time and 
signal amplitude separately. 
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The loaded EEG data or the acquired and sub-sampled data can be saved back to the disk 
by selecting the three file names for the header, the event markers and the raw data. An impor-
tant feature is the inspection of the data together with the event markers, provided in a separate 
window (see Figure 52). Aside from the statically displayed header information, several 
channels of interest can be selected and their data can be inspected. The inspection can be 
performed at certain points of time defined by the event markers, although an arbitrary time 
point can also be set by the time-slider. The amplification and temporal zoom factors can be 
controlled by the corresponding sliders. 

Once the data is loaded into the system, all included channels are presented, in groups up 
to eight, in the upper combo-box of the pre-processing section. The experiment conductor is 
then prompted to select those whose data is to be used for the user model generation. It is 
common practice to select the same channels for the determination and the detection parts of 
the model. Therefore, initially only the determination part is active; the detection part is as-
sumed to be identical, unless explicitly selected to be individual. In order to speed up the 
channel selection procedure, a tri-state check-button selects either all, none or only those 
whose label does not contain strings EOG and EMG. Nevertheless, it will always be possible to 
refine one’s selection after it has been made using the check-button. 

In the next step, the operator is prompted to define the number of classes of interest and to 
specify the parameters of the sample selection procedure for each class of interest. We distin-
guish here between action classes, whose samples are supposed to contain the data of the task 
execution, and void classes, which must only be specified if the task execution detection, in 
addition to the determination, is to be recognized by the user module, i.e. for asynchronous task 
execution experiments. The determination model will be set up based onto data samples 
selected from the action classes only, with each class set in opposition to all the remaining 
ones. The detection model will be set up based onto all data samples selected from the void 
classes, which are then set in opposition to both the data samples selected for each action class 
and to the sum of all data samples selected for all action classes. The class specification in-
cludes the (i) event marker labels, (ii) so-called stimuli (response marker labels entered as 
negative values) separated by a space, comma or semicolon characters, (iii) the time stamp td 
of the last data point (which should have been included in the sample), (iv) the inter-sample 
interval ti (both in milliseconds) and (iv) the number of samples n to be extracted from the 
data for the current event marker. Please refer to the definition of the sample selection parame-
ter set in equation (4) and Table 4 for appropriate values. 

For complex structured data, the built-in Marker-Combiner tool will run through all the 
event markers and substitute combinations of two subsequent event markers (specified by 
certain stimuli or response values within a certain time interval) with other stimuli or response 
event markers. These are placed into the data at the position of the first or the second event 
marker’s time stamp, in the center or at a random position between these two timestamps. A 
complex data structure exists if the intervals of tasks are given by several event markers, as is 
common for experiments with imagined or phantom, i.e. queried, movements, or if the syn-
chronization is provided by external sources such as a digital metronome, while the lateraliza-
tion is displayed at a prior time. (See Figure 53, left part). 

The selection of the pre-processing procedure concludes the pre-processing section. 
Please note that you must select at least one channel before loading the pre-processing initiali-
zation file. The data format of the pre-processing initialization file is described in more detail 
in subsection 0. Of particular importance is the synchronous mode switch, which will launch a 
small dialog when in operation, asking for the synchronizing stimuli event marker labels and 
the time constants to switch the detection on and off relatively to the time stamp of the desired 
event marker (see Figure 53, right part). Please note also that a detection model is not required 
if the system is switched into synchronous mode, since the action’s decision is performed 
according to the synchronizing stimuli marker. The detection part of the pre-processing and the 
classification sections are therefore deactivated. 
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Figure 53: Dialog window of the Marker Combiner (left) and the Synchronous Mode (right) 
tools of the Trainer module. 

When specifications for the pre-processing steps have been carried out correctly, the sam-
ple selection procedure can be run on the stored data, which will allocate enough memory for 
the training samples. By clicking on the “Pre-Process” button, all these training samples will be 
transformed to feature vectors, which can then be optionally stored as plain-text for further 
offline analysis. If a parametric pre-processing procedure is employed for the user model setup, 
the execution of two different commands is required. One command is needed to set up the 
pre-processing model in the training session and another command to apply the pre-processing 
procedure in the application session. For this purpose, the checkbox to use a different pre-
processing procedure during the online session should be selected, although both pre-
processing procedures share the same parameters of the user model. 

The next step is the selection of the classifier user model by loading its initialization file. 
The file format for the classification model is described in more detail in subsection 4.3.b. The 
training procedure can then be started by clicking on the “Train” button in the classification 
section. The classifier’s parameters will then be set up and the training errors for its detection 
and determination parts displayed, indicating the completeness of the classifier. However, it is 
common practice not to rely solely on training errors, which reflect the performance of the 
classifier on the known data. A more reliable measure of the classifier performance can be 
obtained by setting up the model on a subset of all the available data, e.g. 90%, and applying 
this model to the remaining subset, e.g. 10%. This procedure, known as cross validation, is 
then performed a number of times by repeatedly selecting all possible subsets as test data. 
Please see section 5.3 of the previous chapter and Figure 25 on page 57. 

Finally, the combiner must be selected by loading its initialization file. However, since a 
combiner remains almost constant for most data sets and experimental setups, a default com-
biner is set up automatically. The entire data processing procedure can then be run to obtain the 
“combined” training error. The combined values are tested by applying the pre-processing, the 
classification and the combination procedures to data samples that were extracted from the 
training data. For each sample, the result of the combiner is then compared with its label. 

An additional administrative “Setup” section is helpful for preparing and saving the ex-
perimental setups before the experiment starts; it can be loaded after data acquisition. A setup 
initialization file covers all the information that must be entered into the Trainer module’s GUI. 
This considerably reduces the user’s waiting time between the two sessions, especially for the 
channel selection procedure. Moreover, a setup initialization file may instruct the GUI to start 
the preprocessing and classifier training procedures automatically, reducing the user module 
setup to no more than a couple of clicks. 

All parts of the user model can be replaced by other compatible parts for which appropri-
ate initialization files exist and which can be reset based on updated parameters. However, 
please note that after a reset, all successive stages of the data processing procedure require re-
setting. For example, changing the parameters of the sample extraction procedure will induce 
different training samples, which may affect the pre-processing results, and therefore produce a 
different classification model. 
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3.1.b Online “Applier” module 
If the user model is set up correctly and the experiment conductor is satisfied with the 

model setup, clicking the “Apply” button will switch to the online Applier module. The com-
plete user model is transformed from the Trainer to the Applier module. This includes all 
sample selection parameters, the pre-processing specification and its parameters, if any, the 
classifiers, and the combiner specification. The main window of the Applier module is pre-
sented in Figure 54. 

 

Figure 54: Main dialog GUI of the Applier module is divided into four major parts: (i) data 
source and acquisition, (ii) raw EEG display, (iii) results display of the determination, the 
detection paths of the classification and of the combined fuzzy values, and (iv) feedback 

selection. 

The upper part of the main window of the Applier module is, in this case, almost identical 
with the corresponding region of the main windows of the Trainer module; it is common to 
switch into the RDA mode at that point. A valid host must be identified, which, runs the 
BrainVision Recorder switched into the server mode (RDA). The large “RDA Setup” button 
will establish the connection to the server and register the BBCI Applier as a client, indicating 
the operation’s success by the activation of the “Start” button. It is then possible to start the 
acquisition by clicking on this button. One step to the right are fields displaying acquisition 
timing properties for current data, the number of event markers currently acquired and a list 
box of all data channels available for display. 
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The remaining space is subdivided into three graphic display fields: (i) the presentation of 
the data currently acquired from the selected channels, (ii) the classification results for the 
determination and the detection classifier shown separately and (iii) the results of the combina-
tion. To speed up the system performance, the user may prefer to hide all graphic information, 
so that no data channels have to be selected, and to switch off the view showing the outputs of 
the fuzzy values and the combination results. The latter can be done by deselecting the on/off 
switches located on the left side of the corresponding display regions. The classifier outputs are 
given by the scaled fuzzy values of the classification results. The combiner results are dis-
played as histograms consisting of colored bars; their amplitudes are indicated by the value of 
the impact of the currently recognized class and the filling color specified for each of the 
classes of interest. Colors are set to default RGB values, although they can be changed using 
widgets to the right of the corresponding fields. Event markers are drawn as thin vertical lines 
at time stamps where they appear in the data. 

The upper-right section lets one specify which feedback application the control com-
mands will be sent to. If no selection is made, the data will not be sent to any application. The 
specification of the feedback application is realized by loading the initialization file, followed 
by clicking the “Show” button, which initializes the application. The initialization procedure is 
unique for each application. For example, for graphical feedback applications, it opens a 
window, and for pseudo-feedback applications such as the UDP-based feedback interface, it 
establishes the appropriate network connection. The file format for the specification of the 
feedback application is described in more detail in subsection 4.3.d. 

3.2 Additional and auxiliary modules 

A variety of auxiliary modules is implemented. While most of these need not be discussed 
in detail, two of them are briefly presented here: a simple management system for event mark-
ers and the UDP Package Manager. 

3.2.a Event marker organizer 

 

Figure 55: Main dialog window of the Event Marker Management tool. This is capable, after 
reading a marker file, of transforming them according to the operators demand; a new marker 

file is then saved, updating the old one. 
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As already outlined in Figure 53, there is a need to combine sequential event markers into 
a single one. For this purpose, a built-in marker combiner can be employed during the sample 
selection procedure. Because this operation needs performing every time the data is loaded, it 
proved useful to perform a one-time marker combination before loading the data. The event 
marker organizer works independently from the header and the data files, similarly to the event 
marker combiner tool built into the Trainer module. It then replaces the event marker file with 
an updated one so that the experiment conductor is no longer required to type in these values 
each time a new user model is set up. 

3.2.b Network UDP/IP package manager 
For many feedback testing purposes it proves useful not to have to set up the user module 

every time a new UDP-based feedback application is tested. An alternative is to set up the user 
module once and to perform a pseudo-online application of this model on EEG data. The 
pseudo-online application will then emit a series of UDP packages, which will be acquired not 
by the feedback application directly, but by a managing application that allows these to be 
stored in a particular file format. Consequently, this allows the application, after loading this 
file, to act as a UDP server for a wide variety of feedback applications. Figure 56 demonstrates 
the main dialog window of the UDP Network Package Management Tool after loading the data 
in “local” mode. This tool will write the currently acquired data stream into a file, provided it is 
switched to “sending” and “local” mode. It is capable of two file formats: (i) an editable plain-
text format based on the Windows INI-file format, and (ii) the compressed binary format, 
suitable especially for large data streams that do not require hand editing. 

 

Figure 56: Main dialog window of the UDP Network Package Management tool while loading 
a package archive file. This tool is capable of receiving and sending a UDP package stream 

that can be saved or loaded in ASCII or compressed binary notation. Particular changes of the 
currently processed packages can be modifyied via the tool’s GUI. 

The tool is also capable of changing parts of the UDP stream through its GUI. As a result, 
after selecting a certain block, it’s ID, class index and impact power can be changed. The 
remaining space is represented here as twenty floating point values for determination and 
detection, which can also be changed individually. 
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Figure 57: UDP Package Management tool while sending the data. 

 

 

Figure 58: UDP Package Management Tool while receiving data 
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In the “remote” mode, the tool will send or receive the UDP packages on the communica-
tion port 0x30C9, specifically defined for the feedback communication of the BBCI system. 
Figure 57 illustrates the sending procedure. The start button opens an additional dialog window 
that allows the sending properties to be specified; among these properties are the timing of the 
package emission and the automatic rewind and restart of the stream, i.e. the cyclic mode. 
After further confirmation, this module starts to “talk” over the network, indicating the pro-
gress by certain widgets on the bottom part of the window. 

The reception of these data blocks must be initiated before starting the “talk” procedure in 
order to avoid data loss. For this purpose, the start button creates an additional tool window 
that allows setting the initial buffer size for data acquisition, i.e. how much data is expected to 
be acquired. The buffer will be extended automatically if the receiving procedure is not 
stopped before the overflow. 

The confirmation click on the “Start Receiving” button will initiate a “listener” on the lo-
cal machine at a specific communication port. All the data blocks are shown immediately after 
acquisition in the appropriate list box below. All acquired blocks will be transferred into the 
main tool window GUI after the acquisition is stopped. 

3.3 Bio-feedback modules 

Initial feedback applications have been developed as a part of the online applier, although 
the rising consumption of computational resources (e.g. time needed for repainting animated 
screens) has prompted the development of a simple pseudo-feedback application that allows 
the pre-processing and classification to consume as much computational power as required. A 
further issue that arises is the independence of resource consumption of the applier module’s 
processing parts from the feedback application it controls. Moreover, in future use of the BBCI 
system, the Overhead Management module should remain unchanged as far as is possible. 
Only the plug-in mathematical modules of the pre-processing, the classification and the combi-
nation should be changed. Nor should new feedback applications affect the integrity of the 
implementation of the Overhead Management module. These factors explain why all feedback 
applications are now based on remote control with a pseudo-feedback plug-in module. The 
Pseudo-feedback module acts as a network “talker” and is integrated into the BBCI system 
analogously to the pre-processing, classification and combination Plug-In modules. A com-
plementary network “listener” is built into each autonomous feedback application, allowing 
them to run on a separate computer. 

This section will briefly describe the software development process and present solutions 
to problems that occurred while designing and developing some of the most important feed-
back application modules. 

3.3.a Feedback scenario “Jumping Cross” 
The simplest feedback application has recently been re-implemented such as to be inde-

pendent from the online applier module. This encompasses two different control strategies: 
(i) the classifier’s fuzzy values, omitting the combiner, are used directly to calculate the coor-
dinates of the cross, and (ii) the combiner-based information concerning the recognized class, 
which can be employed for highlighting the target fields. 

The experimental setup of this feedback application employs two classifiers in the deter-
mination part and three classifiers in the detection part. The determination classifiers are 
trained to distinguish between “left” actions and “right” actions. Therefore, they are identical 
up to the result signs, yielding the fuzzy values Determ

leftP%  and Determ Determ
right leftP P= −% % respectively. The 
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detection classifiers are trained on: “rest” vs. “left”, “rest” vs. “right”, and “rest” vs. the union 
of “left” and “right” samples. They yield the fuzzy values Detect

leftP% , Detect
rightP%  and Detect

voidP% . All these 
values, in addition to the class label and the impact factor determined by the combiner, must be 
stored in the extra space of the UDP message package. The coordinates of the cross can be 
calculated as follows: 

( )max ,

Determ Determ
right left

Detect Detect Detect
void left right

P Px
y P P P

⎛ ⎞−⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

% %%

% % %%
. (21)  

After scaling, with parameters of the maximum deflection values for x and y separately that are 
provided by the initialization file, the cross can be positioned on the screen. 

This feedback application includes a cyclic shaped queue, i.e. a FIFO-stack, of coordinate 
values for painting the tail. The length of this queue is determined by the product of the num-
ber of tail knobs and the time interval of each knob. All intermediate coordinate values can be 
stored in this queue. 

The “Brain-Pong” feedback scenario works in the same manner, but does not include the 
detection part of the classifiers, such that the racket is always on the move. 

3.3.b Feedback scenario “Brain-Pacman” and variations 
Most gaming feedback applications require, apart from a game scenario and a high-end 

graphical representation, more complex behavior. This can be expressed in an activity diagram 
in the common UML style. The Brain Pacman application incorporates a temporal command 
queue that is realized in a cyclic manner. The feedback application’s command acquisition 
thread works in a non-blocking manner and captures the incoming control commands, storing 
these in the queue; it overwrites the least recent commands on buffer overflow. The queue 
administration provides access to the last stored control command, which is then used by the 
application’s scenario. 

The activity of the Brain Pacman feedback application is illustrated in Figure 59. It runs 
in an endless loop, checking the maze and performing several actions according to the result of 
Pacman’s position. 

With each step that Pacman “hits the wall”, the user is penalized. The procedure of check-
ing the command queue is executed in parallel to it and steers Pacman’s head to the right or left 
according to the extracted control command. The “Check for new commands” action state 
evaluates the interpretation of several subsequent control commands. If a free space, step mark 
or apple tile lies in front of Pacman and it is instructed to “run a step”, the field’s value is 
recalled and Pacman’s head is moved one step forward in a small animation, accompanied 
optionally by a stepping sound. The user’s reward is then calculated based on the field’s value, 
and the command queue is checked in parallel for new control commands. If Pacman reaches 
the maze exit, the simulation ends and the final reward is displayed to the user. 

A variation of the Pacman gaming scenario (the so called Turnman) works in a different 
manner, allowing control by a single action class. Here, the Pacman object incorporates an 
additional timer that emits a turn command to itself at each period. Each reception of the 
“move forward” command resets the timer, which allows for fast movement of the object 
through long corridors of the maze by emitting long trains of identical control commands. A 
control command can reset the timer to a negative value, which allows longer reaction periods 
when walking in the same direction. Subsequent rotations will then be executed faster to 
minimize waiting periods at crossings. 
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Figure 59: Activity diagram of the Pacman feedback application that can be controlled by two 
types of recognizable commands. Pacman runs a step if possible, while it is repeatedly check-

ing for “turn” control commands that recently arrived on the temporal queue. In the 
Run a Step state the reward for the last step is calculated, while the command queue 

checker is calling Pacman’s member functions that prompt it to turn. 

3.3.c Feedback scenario “Brain-Tetris” 
The Brain-Tetris feedback scenario works in a similar manner, with the actual brick tak-

ing the role of Pacman. Each brick contains the timer that emits the command to descend each 
inter-step interval. In a separate non-blocking thread, the command recognition logic runs, 
which analyzes the last stored control commands in the temporal queue. This analyzer emits 
one of the defined commands to the brick, which optionally resets the brick’s internal timer. 
The command recognition logic requires a more complex implementation than that for the 
Pacman or Turnman scenarios, since it must be capable of emitting of up to four different 
command types: move one step left, move one step right, turn the brick by 90°, and drop the 
brick to the lowest possible row. Of note here is the Brain-Tetris scenario’s capability to 
recognize further control commands for a single inter-step interval after dropping the brick. 
This enables the user to play faster and act with greater accuracy on intentions to position the 
brick under or within the construction made of previous bricks. 
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3.3.d Feedback scenario “Brain-Speller” 
The Brain-Speller application consists of three parts. (i) The communication thread, 

which works independently from all other parts and which is responsible for lossless acquisi-
tion of the control command packages filled into the temporal cyclic queue. (ii) The admini-
stration of the screen picture, which is responsible for handling the current position within the 
alphabet tree, given by the current state of the BitString, and for appropriately adopting the 
screen picture. (iii) The command processing logic, which updates the BitString according 
to the control command read out from the queue. This part communicates with the temporal 
queue via the procedure that reads the control commands. It is also responsible for making 
preventive changes on the screen, awaiting the user reaction and conformably updating the 
BitString. 
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Figure 60: Activity diagram of the Brain-Speller feedback application with an automatic error 
detection mechanism. The processing logic waits for a new command in the queue and, after 
examined it, updates the user screen preventively. It waits then for the error signal and, after 

examined it confirms or rejects the last bit of the BitString. After passing it back it is 
examined for correspondence to a letter code followed by an appropriate update of the screen. 

A new issue raised in this feedback scenario is its automatic error detection and correction 
capability. The performance mechanism of the Brain-Speller feedback application is illustrated 
as an activity diagram in the common UML notation in Figure 60. After initializing the screen, 
it falls into an endless loop and waits for control commands, i.e. for the signal from the UDP 
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package receiving thread that a new command has been acquired. After investigating the 
command’s semantics, which detects the change in state of the animation, the command is 
passed to the processing logic, which updates the screen preventively to judge the user reac-
tion. It then falls into an accept/reject cycle, when no further control commands can be ac-
quired, until the most recent has been approved. After receiving the package containing infor-
mation about the error potential, the processing logic must change the last symbol of the 
BitString (in case the user has indicated his most recent decision as an error), and transmit 
the updated BitString back to the screen administration. The BitString is cleared when 
the decision chain, reflected in the BitString, corresponds to the bit code of a letter. That 
letter is inserted into the typed string. In all cases, the screen is repainted according to the 
actual decision chain; an empty decision chain indicates that the application’s state is currently 
located at the root of the alphabetic tree. 

Of importance with this feedback application is user-friendliness; e.g. it must be comfort-
able for the user and the adaptation time must be kept as short as possible. For this purpose, it 
is sufficient to construct the binary alphabetic tree such that (i) all the letters, if the tree is being 
read from left to right, remain in their alphabetic order, and (ii) the most frequently used letters 
can be reached within the shortest path from the tree’s root, i.e. the user will need to make 
fewer decisions if the letter is common and vise versa. Although these two constraints are in 
some sense contradictory, there is a consensual solution to this problem. 

 Step 1: Let us assume a Letter-Object containing the symbol and its occurrence 
probability. Let us then collect all letters in the array a in the desired alphabetic order ac-
cording to their symbols. 

o Step 1a: If a contains only a single element, then finish. 

 Step 2: Find the most prominent segmentation of a in two halves (left and right sub-
arrays l and r), so that the difference between their summed occurrence probabilities is 
minimized by: 

o Step 2a: Copy all letters from a to r and initialize l as an empty array. 

o Step 2b: Copy r[0] to the end of l and remove it from r. 

o Step 2c: Calculate the total occurrence probabilities of both sub-arrays 
( )P lΣ  and ( )P rΣ . 

o GO TO Step 2b until ( ) ( )P l P rΣ Σ< . 

o 1Step 2d: IF ( ) ( ) ( )( ) ( )( )P l P r P front l P last l rΣ Σ Σ Σ− > − + , THEN 

undo the last action performed by Step 2b. 

 Step 3: Re-call procedure in Step 2 with parameter l as a in a recursive manner. 

 Step 4: Re-call procedure in Step 2 with parameter r as a in a recursive manner. 

                                                           
1  ( ) ( ):l front l last l= ⊕ , where last : Array  Letter selects the last element from 

the array, and front : Array  Array yields the array containing all remaining letters, except 
the last one. ⊕  : Array × Letter  Array is a concatenation operator appending the 
Letter to the end of Array. 
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For the English language (see probabilities of occurrences in Table 7, this algorithm will 
transform the alphabetically sorted array of letters into the following binary tree (see 
Figure 61). 
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Figure 61: Alphabetic binary tree composed by the above algorithm, based on occurrence 
probabilities for English. The first division is made between letters ‘L’ and ‘M’, i.e. ‘A-L’ and 

‘M-Z’ will be displayed on the left and right selection fields initially. For example, after 
choosing then the right selection field, the contents of both would change to ‘M-R’ and ‘S-Z’ 

respectively. Letters on grey background are leaves of the tree. Numbers below boxed 
enumerate occurrence probabilities of single letters of alphabet parts. 

Here the two bordering letters of the most optimal division in the tree nodes are indicated, 
e.g. the first division is performed between letter ’L’ and ‘M’, and so on. Branches are labeled 
with the percentage of occurrence probabilities of sub-arrays. Letters on gray backgrounds 
indicate leaves of the tree, i.e. finalized selection paths. For example, to select letter ‘E’ the 
user has to perform the following selection sequence: “left-left-right”. ‘E’ is the most 
prominent letter of the English language and can thus be selected within only three decisions. 
‘Z’, on the other hand, is the least prominent letter; thus, the user will require seven selection 
steps to select it. Please note that since all letters must retain their alphabetic order, not all 
paths are necessarily ordered according to the probability of the letter’s occurrence. Conse-
quently, letter ‘Y’ is more prominent than ‘Q’, but it can be selected in six steps, thus longer 
than the five steps needed to select ‘Q’. For each constructed alphabet tree, an optimality 
criterion can be calculated that provides the average path length needed to attain the letters and 
according to which each decision is performed by a single bit of information required to reach 
the current state of the tree. The summed components (paths to letters) are weighted according 
to the occurrence probabilities of the letters. This optimality criterion reflects a theoretical 
measure of the number of bits required for the selection of a single letter. For the alphabetical 
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tree presented here, the user will need to submit 4.352 bits of control information to select a 
single letter. Although that value is not the global minimum, which is achievable without 
retaining the alphabetical order of all letters within the tree, it is still acceptable. 

Given the occurrence probabilities, the tree calculation can be performed very fast, i.e. in 
logarithmic time, so that it is conceivable that the tree can be re-computed after each update of 
the occurrence probabilities according to the user’s vocabulary. 

3.3.e Feedback scenario “Virtual Arm” 
The Virtual Arm feedback application, the purpose of which is described in section 7.6 of 

the previous chapter, employs an autonomous interface application to maintain the control 
commands and to remove discrepancies between the communication protocols of the BBCI 
online applier and the Distributed Rendering System (DRS) that manages the animation of the 
virtual arm. 

newAvail

newCmd
Avail

Acquisition
Thread

Feedback-
Comm.-Thread

Data Acquisition
Trhread

Brain-Vision
Recorder

BBCI Online-
Applier

V-Arm
Interface

DRS
(V-Arm)

GetEEG

RecvBlock putEEG

Doing Data
Processing

⋅⋅⋅

Control
Cmd.

EmitCtrlCmd putCmd

Command
Processing

⋅⋅⋅

AnimationStarted (LPT1)

w
aiting for further

com
m

ands?

InitAnimation

AnimStarted

Performing
Animation

⋅⋅⋅

AnimFinished

AnimationFinished (LPT1)

Load File
Arm.wrl

Initialize

Ready
SetStartingPos

Performing
Animation

 

Figure 62: Control procedure of the Virtual Arm feedback application illustrated as the UML 
timeline diagram, building on diagrams from Figure 45 and Figure 46. In addition, the feed-

back communication thread emits a control command that is acquired by the V-Arm Interface’s 
acquisition thread. After being examined, the appropriate animation is prompted to the previ-

ously initialized DRS system that can reply the animation start and finish times. 
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This feedback application can be controlled by the BBCI-Online Applier module in two 
ways: (i) directly via a built-in DRS pseudo-feedback, or (ii) via the universal UDP-based 
network pseudo-feedback. Since the former option is mostly trivial and straightforward (as 
discussed in section 1.1.b) the reader’s attention will be drawn to the latter option, which 
additionally serves as a more general procedure. The BBCI-Online Applier module does not 
require reprogramming if the animation or the object handled by the DRS system changes. 
Only a small application serving and managing its control requires reprogramming. Figure 62 
illustrates the control procedure of the Virtual Arm application via the Interface application as 
a UML timeline diagram (compare this with Figure 46, page 95). The role of the feedback 
application is assumed here by the V-Arm interface application, which, after establishing the 
network connection to the DRS system, initializes its animation picture by supplying the 
appropriate wrl file that contains the VR model to be animated. This also puts the arm into an 
initial position if needed, e.g. the V-Arm’s initial and relaxing position might be slightly bent 
rather than fully sprawled out. The application then falls into an endless loop of waiting for a 
control command, analyzing its semantics and emitting the animation advice. 

The communication process employed here is similar to that of the BBCI-Online Applier 
for receiving the raw EEG data packages. An independent and non-blocking thread is initiated, 
which looks for a control command message block on a certain network communication port. 
This communication is based on the UDP protocol. After a control command has been re-
ceived, it is placed into the processing queue, also shared by the main thread, and a message is 
emitted indicating that new control commands are in the queue. The control command’s 
semantics, i.e. its affiliation to one or several joint actions, is investigated and one or several 
animations are initiated with the appropriate animation implementation parameters. These 
animations require only a one-time initiating and are performed together. This does not occur 
immediately but over a duration within which the whole animation is to be performed, there-
fore generally dictating the speed of animation. Several such animations can be initiated at the 
same time. Upon being initiated, all animations, whether initiated jointly or individually, are 
stored in the DRS system and erased after completion. The performance of all the animations is 
then handled by the DRS system automatically. Moreover, the system indicates the starting and 
finishing point of the animation performance by responding messages to the calling procedure, 
i.e. the V-Arm Interface application. 

For later offline analysis of data collected from feedback sessions, it may be of interest to 
know exactly when the presentation of the animation to the user started and finished. For 
example, it may prove useful to investigate this data in future reaction time experiments. For 
this purpose, a stimulus marker can be placed into the raw EEG data at the animation on/off 
time points. This is performed by the V-Arm interface application, by placing some values to 
the Line of Parallel Transmission (LPT) port of the hosting PC. If the host of the V-Arm 
Interface application and that of the BrainVision Recorder are coupled by a parallel line cable, 
it results in a stimulus marker. 

The Virtual Arm feedback application was implemented and properly tested for its tech-
nical correctness in several real experiments with healthy subjects. However, there remains a 
need to employ the application in more challenging experiments, in order to learn from situa-
tions where the BBCI user is confronted with a complex feedback environment. This will form 
a central point of focus for further, wide-ranging psychological investigations. 

4. Generic Data Formats 
The BBCI system presented here uses a variety of file formats for storing and reading the 

data and meta-model parameters. These data formats are described in further detail in the 
following subsections. 
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4.1 Windows INI-files 

Most of the data formats are based on the Windows initialization file format, which is de-
fined in a canonical order. The Windows initialization file format consists of a certain identifi-
cation string, which ensures that stored parameters belong to the correct semantics. Additional 
information may be stored in the file as a comment that must start with ‘;’ in its line; a com-
ment is finished by the EOL (End-Of-Line) character. In the following, the file is divided into 
sections, each of which is headed by its own title. These titles are enclosed in brackets, e.g. 
[Section Title], and placed on a separate line. Each section may include several keys, 
headed by the key name. Several types of keys are allowed: 

 Binary (existence). This key allows checking whether or not a desired key is present 
in the file. Example: ShowFixationCross 

 Numeral (integer or floating point valued). The key is followed by the ‘=’ character 
and the number assigned to this key. Example: CommandActivationTerm=6 

 Textual (any arbitrary string). The key name is followed by the ‘=’ character and the 
string, which must not contain spaces, punctuation or special characters. Example: 
LeftTargetActiveColor=FF8080 

The Windows Software Development Kit (SDK) and the Microsoft Foundation Classes 
(MFC) provide appropriate functions and parsers for maintaining these initialization files, such 
as {Get|Write}PrivateProfile{Int|String}(…). 

4.2 BrainVision’s data format 

The data acquired by the BrainVision Recorder software is stored in three types of files: 
acquisition headers (*.vhdr), event markers (*.vmrk) and raw EEG data (*.eeg). 

The header line of the BrainVision data header file must consist of the following: 
“Brain Vision Data Exchange Header File Version 1.0”. All section and 
corresponding key names that can be included in the header file are provided in Table 9. 

The header line of the BrainVision marker file must consist of the following: “Brain 
Vision Data Exchange Marker File, Version 1.0”. The file format for the 
marker file is summarized in Table 10. 

The format of the data file, which contains the raw EEG data, is set up in the header file. 
However, the most common format is the binary multiplexed version of the time domain data 
values, each coded as a 16-bit integer. Consequently, the raw data file contains a long array of 
short typed integer values, where all channel values of the first data point are stored, fol-
lowed by all channel values of the next data points. This large matrix can be easily read into 
the 2D array in one step using the standard C function fread(). 
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Table 9: File format of the BrainVision header file (*.vhdr). 

[Section Name] 
KeyName 

Description Values (default) 

[Common Infos] 
DataFile 

The name of the EEG data file, contain-
ing raw data that matches the current 
acquisition header. 

None is to be provided. 
Relative or absolute 
path to the file. 

MarkerFile Optional event marker file name. (“$b.vmrk”), 
Relative or absolute 

DataFormat Format of the EEG data file. ASCII, (BINARY) 

DataOrientation 
Storage type of the data matrix, indicat-
ing whether the storage is channel-wise 
or time-point-wise. 

(MULTIPLEXED), 
VECTORIZED 

DataType 
Type of data stored in the EEG file, 
indicating temporal data or frequency 
amplitudes. 

(TIMEDOMAIN), 
FREQUENCYDOMAIN 

NumberOfChannels Number of available data channels. Integer must be pro-
vided. 

SamplingInterval 
Sampling Interval, in µs for time 
domain data, in Hz for frequency 
domain data. 

Integer must be pro-
vided. 

DataPoints 
Number of data points available in the 
data. 0 indicates all available in the 
data file. 

(0) 

[ASCII Infos] 
DecimalSymbol 

Only necessary if DataFormat == 
ASCII. 
Symbol of the decimal division for 
floating point values in the data file. 

(‘.’),’,’ 

SkipLines 
Number of lines in the data file to be 
skipped while reading. (0) 

SkipColumns 
Number of columns in the data file to 
be skipped while reading. (0) 

[Binary Infos] 
BinaryFormat 

The binary format of values. Only 
necessary if DataFormat is 
BINARY. 

IEEE_FLOAT_32, 
(INT_16), UINT_16 

UseBigEndianOr-
der 

Indicates the use of the BigEndian 
binary order of the integer format data 
values. Only necessary if Binary-
Format is not IEEE_FLOAT_32. 

(NO), YES 

[Channel Infos] 
Ch<X> 
X enumerates the num-
ber of the channel, 
starting at 1 

The list of all available channels. 
The values are composed of a comma-
separated list: <Channel 
Name>,<Reference Channel 
Name>,<Resolution> 

For example: 
Ch1=C3,Ref,0.1 
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Table 10: File format of the BrainVision marker file (*.vmrk). 

[Section Name] 
KeyName 

Description Values 

[Common Infos] 
DataFile 

The name of the EEG data file, 
containing raw data that matches 
the current event marker file. 

optional (“$b.eeg”) 

[Marker Infos] 
Mk<X> 
X enumerates the 
number of the 
marker, starting at 1 

The list of all event markers, where 
all marker features are comma-
separated: 
<type>,<description>, 
<position>,<duration>, 
<channel nr> 
[,<date/time>] 

For example: 
Mk1=Time_0,,0,1,0 
Mk2=Stimulus,S2,24,1,0
Mk3=Response,R2,38,1,0 

 

4.3  “Trainer” setup 

The Trainer module of the BBCI system allows the experiment conductor to save the GUI 
settings required to reproduce the experiments. Consequently, it is possible to prepare the 
experiments beforehand and to load all setup parameters when required in a single step. This 
will reduce the user’s waiting time after the training data has been acquired and before the 
training procedure can start. The processing steps of the training procedure can also be initiated 
automatically, as all the necessary parameterization becomes available during the load process 
of the trainer setup initialization file. 

The header line of the trainer initialization setup file must consist of the following: 
“FhG-FIRST IDA Experimental Setup Definition File Version 1.0”. 
All section and corresponding key names that can be included in the setup initialization file are 
provided in Table 11. 

Please note that it is possible to load the trainer setup file in any state of the Trainer mod-
ule, although the preprocessing procedure will not be executed if no training data has been 
loaded or previously acquired. Furthermore, training of the classifiers will not be initiated 
automatically if the pre-processing procedure has not been completed beforehand. If no file-
name was given, a default combiner will be loaded automatically. In addition, loading an 
updated setup file does not affect the training data and the pre-processed data currently stored 
in the local memory of the system. The setup loading procedure aborts with an error message if 
invalid filenames are given for the pre-processing, classification or combination initializations. 
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Table 11: File format of the BBCI Trainer setup file (*.set). 

[Section Name] 
KeyName 

Description Values (default) 

[Channel Usage] 
Determination 

A comma-separated list of channel 
names, whose data must be involved 
in the pre-processing and training 
procedures of the determination path. 

(All) | NoArte | 
<Ch1>[[,<Ch2>]…] 
Example: 
C3,C4,CP3,CP4,Cz 

Detection 
See above, except for the detection 
path. 

See above, but in addi-
tion, (Same) reproduces 
the same channel list as 
that for the determina-
tion path. 

[Class Definition]
NrAction 

Number of action classes assumed 
for the experiment. 

Integer value must be 
provided. 

NrVoid 
Number of void classes assumed for 
the experiment. 

Integer value must be 
provided. 

Class<X> 
X enumerates the number 
of the class, starting at 0 

Parameters of the sample selection 
parameter set (SSP), see equation 
(4). 
<td>,<ti>,<n>,<Marker.Label>[,…
] 

For example: 
Class0=80,40,3,6
5 

[PreProcessing] 
Determination 

Localization of the pre-processing 
initialization file to be loaded for the 
determination path. 

Absolute path to a 
*.bpp file must be 
provided. 

Detection 
See above, except for the detection 
path. See above. 

Process 
Execute the pre-processing proce-
dure automatically after setup. (No), Yes 

[Classification] 
Determination 

Localization of the classifier initiali-
zation file to be loaded for the 
determination path. 

Absolute path to a 
*.bcl file must be 
provided. 

Detection 
See above, except for the detection 
path. See above. 

Train 
Execute the training procedure 
automatically after setup. (No), Yes 

Combiner 
Localization of the combiner initiali-
zation file to be loaded. 

Absolute path to a 
*.bco file must be 
provided, or empty. 
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4.3.a Preprocessing 
The pre-processing initialization file determines which kind of pre-processing procedure 

will be executed on the data samples extracted from the loaded or acquired data. Furthermore, 
it defines the parameters of the desired pre-processing procedure. The header line of the pre-
processing initialization file must consist of the following: “FhG-FIRST IDA Preproc-
essing Definition File Version 1.0”. All section and corresponding key names 
possible that can be included in the pre-processing initialization file are provided in Table 12. 

Table 12: File format of the BBCI pre-processing initialization file (*.bpp). 

[Section Name] 
KeyName 

Description Values (default) 

[Common Infos] 
PPProcedure 

Name of the pre-processing 
procedure to be executed. 
Parameters of the desired pre-
processing procedure will then 
be read from the section which 
is identically named. 

BBFeatureSelec-
tion, MatlabPP 

Features 

Number of features to be ex-
tracted from each data sample. 
Only if FeaturesPerChan-
nel key is not provided. 

Integer value must be 
provided or see Fea-
turesPerChannel 
key. 

FeaturesPerChannel 

Number of features to be ex-
tracted from each data sample 
and each channel. 
Only if Features key is not 
provided. 

Integer value must be 
provided or see descrip-
tion of the Features 
key. 

[BBFeatureSelec-
tion] 
WindowWidth 

Number of data points con-
tained in the window, which is 
passed to the pre-processing 
procedure. 

Integer value must be 
provided. 
(e.g. 128) 

WindowFunction 

Windowing function to be used 
for emphasizing the most 
probable occurrence of the 
information within the data 
sample. 

(Cos), HalfGauss, 
Linear, None 

Filter 
Filter kind to be applied during 
the pre-processing procedure. 

Notch, LowPass, 
HighPass, (Band-
Pass) 

LowFreq Low frequency of filtering. 0.0 [Hz] 

HighFreq 
High frequency of filtering. 
Only if Filter = Band-
Pass or Filter = Notch 

0.0 [Hz] 
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Trailer 
Percentage of the data sample at 
the end, from which the feature 
components will be selected. 

Integer value must be 
provided. 

FeatureSelection 
Type of feature selection proce-
dure. 

(Equidistant), Lin-
ear 

[MatlabPP] 
WindowWidth 

See above: 
[BBFeatureSelection] 
WindowWidth 

Integer value must be 
provided (e.g. 128). 

ParameterFileName 

Matlab script file name, which 
will be executed before the pre-
processing procedure starts. 
This should set the parameters 
needed during preprocessing to 
appropriate values. 

Absolute or relative path 
to a Matlab Script file 
(*.m). 

ScriptFileName 
Matlab script file name, which 
contains the code of the pre-
processing procedure. 

Absolute or relative path 
to a Matlab Script file 
(*.m). 

 
It is notable that in the case of a Matlab-based pre-processing procedure, a Matlab engine 

is created while loading the pre-processing initialization file, which evokes a new Matlab 
window on the desktop, which then appears minimized on the Windows taskbar. For the 
experiments where the pre-processing determination and detection procedures are to be exe-
cuted in a parallel manner, it is not possible to stipulate that the detection path of the pre-
processing procedure is based on Matlab, since it does not support inter-thread communication 
(the pre-processing procedure for the determination path is always executed within the main 
thread). 

4.3.b Classification 
The classifier initialization file determines which kind of classification procedure will be 

executed on the pre-processed data. The header line of the classifier initialization file must 
consist of the following: “FhG-FIRST IDA Classifier Definition File Ver-
sion 1.0”. All section and corresponding key names that can be included in the classifier 
initialization file are provided in Table 13. 

The dimensionality of the input and output spaces must be provided in the classifier ini-
tialization file only if a classifier is loaded from a file, e.g. a previously trained version. These 
values instruct the reading procedure to parse the binary saved data correctly. If a new classi-
fier is created and trained using the pre-processed data, these values will be automatically set to 
the appropriate values. The *.bclp file is a binary file containing a dump of the weight 
matrix followed by the threshold (bias value) of the linear Perceptron. The file format of the 
Matlab classifier parameter files is determined by the Matlab specifications and does not form 
part of the BBCI system.  

Please note furthermore, that similarly to the issue described at the end of the previous 
subsection, detection classifiers cannot be based on Matlab. 
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Table 13: File format of the BBCI classifier initialization file (*.bcl). 

[Section Name] 
KeyName 

Description Values (default) 

[Common Infos] 
ClassificationProce-
dure 

Name of the classification 
procedure to be executed. 
Parameters of the desired 
classification procedure will 
then be read from the section 
which is identically named. 

LinearPerceptron, 
MatlabClassifier 

Inputs 

Number of dimensionality of 
the input space. If omitted, 
the number of features of the 
corresponding pre-
processing procedure is 
copied. 

(0), or provide an integer 
value greater or equal to 
the number of features of 
the corresponding pre-
processing specification. 

Classes 

Number of dimensionality of 
the output space, i.e. the 
number of action classes for 
the determination path and 
total number of classes for 
the detection path. 

(0), or specify an appro-
priate integer value. 

[LinearPerceptron] 
ParameterFile 

Filename containing the 
weights and thresholds of 
the linear Perceptron. 

Absolute path to a binary 
Perceptron weights file 
(*.bclp). 

[MatlabClassifier] 
TrainCommand 

The Matlab command or 
script, which will be exe-
cuted to initiate the training 
procedure of the classifier. 

An appropriate string 
value must be provided. 
For example: 
train_LDA 

ApplyCommand 

The Matlab command or 
script, which will be exe-
cuted to apply the data to a 
trained classifier. 

An appropriate string 
value must be provided. 
For example: 
apply_separating-
Hyperplane 

ParameterFileName 

The Matlab script, which 
must be executed to initial-
ize the Matlab engine before 
creating the classifier. 

An appropriate string 
value must be provided 
(*.m), or omitted if not 
required. 

WeightsFile 

The Matlab data file, which 
contains the Matlab structure 
of a classifier, together with 
its weights. 

Absolute or relative 
filename must be pro-
vided (*.m). 
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4.3.c Combiner 
The combiner initialization file determines which kind of combination procedure will be 

executed on the classification fuzzy values to obtain the control command. The header line of 
the combiner initialization file must consist of the following: “FhG-FIRST IDA Combiner 
Definition File Version 1.0”. All section and corresponding key names that can be 
included in the combiner initialization file are provided in Table 14. 

Table 14: File format of the BBCI combiner initialization file (*.bco). 

[Section Name] 
KeyName 

Description Values (default) 

[Common Infos] 
CombinationProcedure 

Name of the combination 
procedure to be executed. 

defaultCombiner, 
DetectDetermWTA 

ActionClasses 
Number of action classes 
involved in the combination 
procedure. 

An integer value must be 
provided. (0) will deter-
mine the appropriate 
value automatically. 

VoidClasses 
Number of void classes 
involved in the combination 
procedure. 

An integer value must be 
provided. (0) will deter-
mine the appropriate 
value automatically. 

 
It is notable that the definition of the ActionClasses and VoidClasses properties 

of the combiner definition is obsolete for the defaultCombiner, since it can be detected 
from the experimental setup automatically. Furthermore, if no combiner initialization file is 
specified by the experiment conductor, the defaultCombiner with appropriate properties 
is assumed. 

4.3.d Bio-feedback 
The feedback initialization file determines which kind of feedback application will be 

used. Furthermore, it specifies the parameters of the desired feedback application. The header 
line of the feedback initialization file must consist of the following: “FhG-FIRST IDA 
FeedBack Definition File Version 1.0”. All section and corresponding key 
names that can be included in the feedback initialization file are provided in Table 15. 

Please note also that the BBCI system is capable of controlling certain “built-in” feedback 
applications on its own. The network-based pseudo-feedback application RemoteUDP proved 
a very general purpose feedback application, and is therefore used mostly in the final stages of 
the development process. When a RemoteUDP feedback is applied, the application itself is 
responsible for the animation properties. For example, most developed stand-alone applications 
read out locally from their own initialization file and rely on their own file format. As the 
details of this file format are too complex, they will not be covered in this dissertation. 
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Table 15: File format of the BBCI feedback application initialization file (*.bfb). 

[Section Name] 
KeyName 

Description Values (default) 

[Common Infos] 
Procedure 

Name of the application to be 
employed for the feedback. 

No-Feedback 
LR-Selfpaced, 
VirtualArmFeed-
back 
RemoteUDP 

[LR-SelfPaced] | 
[Visualization] 
CrossSize 

Percentage of the current 
screen height and width the 
cursor cross will span. 

(20) An integer value. 

CrossLineWidth 
Number of pixels of the line 
width for the cursor cross. (5), an integer value. 

ChangeCross 
Value to be set if the cursor, 
i.e. the cross, changes color 
when becoming locked. 

Yes, (No) 

MaxDetectionOutput 

The maximum output value of 
the detection classifier; to be 
assumed at the upper part of 
the screen. 

(3.0) 

MaxDeterminationOut-
put 

The maximum output value of 
the determination classifier; to 
be assumed at the right border 
of the screen. 

(4.0) 

Show{Axes|Patches} 
Values to be set if the static 
fixation cross or target fields 
are visible to the user. 

(Yes), No 
(Yes), No 

{Background| 
  Cross}Color 

Colors of the background and 
the cursor cross in common 
RGB notation (usage of 
decimal numbers is preferred). 

(C8C8C8) 
(0000FF) 

{Left|Right}Patch 
 {Low|High} 

Colors of the left/right 
patches, if they do not contain 
the cursor cross and vice 
versa, in the common RGB 
notation (usage of decimal 
numbers is preferred). 

Colors must be provided. 

History{Length| 
 Step| 
 Color} 

Properties of the history tail: 
its length in number of steps, 
the duration of each step in 
number of blocks, and its 
color in the common RGB 
notation. 

(6) 
(2) 
(00FF00) 

[VirtualArmFeedback] 
Hostname 

The network name of the 
computer hosting the DRS 
System and the V-Arm 

(localhost) 
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animation. 

LeftArm 
Yes to be selected to animate 
left arm; otherwise right arm 
will be shown. 

(No), Yes 

CAT, CRT, CATh 

Command Activation Term, 
Command Relaxation Term 
and the Command Activation 
Threshold for the commands 
based control. 

(6), 
(12), 
(0.0) 

TransformationSpeed 
Floating point value in sec-
onds, indicating the duration 
of the animation performance. 

1.0 

{Shoulder| 
  Elbow| 
  Wrist| 
  Thumb| 
  Index| 
  Middle| 
  Ring| 
  Pinky| 
  Rest}Class 

Class indexes for each joint 
segment. These values are to 
be set to appropriate numbers 
corresponding to the class 
labels, occurring in the control 
commands. 

(100) for all joint seg-
ments. 

{Shoulder| 
  Elbow| 
  Wrist| 
  Thumb| 
  Index| 
  Middle| 
  Ring| 
  Pinky| 
  Rest}Angles 

Two values of the angles for 
each joint segment indicating 
joint’s rest and flexed posi-
tion.  
Initially, all joints are set to 
the rest angles. 

(0.0, 80.0) for all joint 
segments. 

[RemoteUDP] 
HostName 

The network name of the 
computer hosting the feed-
back application, i.e. the client 
or a listener. All the remaining 
animation and control pa-
rameters are then read from 
the applications initialization 
file. 

(localhost) 

Lock 

Value to be set if the feedback 
application freezes upon 
reception of event markers. 
The server or talker will stop 
sending blocks for a certain 
time. 

Yes, (No) 
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CCOONNCCLLUUSSIIOONN  AANNDD  DDIISSCCUUSSSSIIOONN  

AAnnggeenneehhmm  iisstt  aamm  GGeeggeennwwäärrttiiggeenn  ddiiee  TTäättiiggkkeeiitt,,    
aamm  KKüünnffttiiggeenn  ddiiee  HHooffffnnuunngg  uunndd  

aamm  VVeerrggaannggeenneenn  ddiiee  EErriinnnneerruunngg..  
AArriissttootteelleess  ((338844--332222  BB..CC..))  

his chapter aims to summarize the results presented in this dissertation. It is commonly 
known that meeting one challenge raises additional, sometimes even more vexing 
challenges. The BBCI project is still “in progress” and is possibly, by nature, never truly 

exhausted. While the BBCI team has successfully solved several problems, it is of fundamental 
importance that it remains eager to recognize and meet new challenges. Among these chal-
lenges is the further improvement of the BBCI system, to be discussed in the first section of 
this chapter. Finding solutions to some of these problems could prove difficult or even impos-
sible at present and will require greater investigation. On the whole, the BBCI project, as a 
testing ground for scientific and technical boundaries, offers the opportunity to develop a 
diversity of fascinating applications. 

In the second section, I will speculate on the future research and application of Brain-
Computer Interfaces at large. The last section will briefly conclude this work by reiterating and 
summarizing its aims and objectives. 

T 
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1. Perspectives and Further Improve-
ment of BBCI 

Brain-Computer Interfaces have traditionally been conceived and used in assistance sys-
tems for the disabled. See [Wolpaw et al., 1991], [Wolpaw et al., 2002], 
[Birbaumer et al., 1999] and many more. The BBCI system has demonstrated that Brain-
Computer Interfaces also have an enormous potential for “fun”, interactive applications, 
exemplified here as “Brain-Gaming”. This admittedly requires further and deeper investigation. 
The field of Human-Computer Interaction (HCI) research is expanding to encompass brain 
signal based communication and interaction. That trend had its onset when, among other 
factors, the BBCI and other BCI systems introduced a new technique for reliably decoding 
brain signals and converting these into control commands. Currently, the two most prominent 
and promising paths of BBCI application are rehabilitation and gaming, although further 
application fields are conceivable, such as the monitoring of the mental state of a patient or 
vehicle driver. These paths must also be investigated for the BBCI system. The particular focus 
of this dissertation is to introduce several bio-feedback signals. These may or may not prove 
appropriate, but should allow a user who has taken a “cold-start” to explore and improve 
her/his individual possibilities in using the BBCI communication channel. 

While most powerful BCI systems (except VEP or P300) require extensive user training, 
possibly lasting several months, it is a distinctive feature of the BBCI system to employ ad-
vanced digital signal processing and machine learning technology to train the computer, rather 
than the human subject. This means that the user can start communicating without extensive 
prior training. It is important that novel signal processing techniques are explored that will be 
capable of extracting even more relevant information from the acquired signals. Since the 
BBCI approach is to use the brain’s built-in functions, present in the normal behavior of users 
rather than functions only gained with training, the adaptation procedure for the learning 
machine can be executed once in a session. Further analysis of user profiles (i.e. pre-
processing, classification and combination parameters) across different users and sessions 
could help to develop a unique user profile, suitable for a wide variety of users and tasks. This 
finding would further minimize the required training and provide the BBCI system with an 
additional bonus. State-of-the-art machine learning offers many techniques of classification 
and regression, all of which can possibly be employed in the BBCI-system. However, it is still 
largely unclear why certain techniques are more appropriate for certain tasks or users than 
others. 

Turning to the problem of so-called “unclassifiable” single trials, it is important to realize 
that it still remains unclear why these are present in the data and on which basis, neurological 
or physical, they lie. The development of a robust outlier analysis and removal algorithm is 
required for improving the classification performance and will significantly increase communi-
cation speed. 

In addition, classification accuracy can be improved at the application level by employing 
the second information transmission loop, i.e. when an action is performed and its conse-
quences are presented to the user. In that case the system waits for the user reaction and a 
possible error potential signal. However, the user reaction to the rapid changes in the feedback 
animation may have unforeseen consequences on her/his behavior. A considerable amount of 
theoretical research has recently been carried out in the field of online bio-feedback, although 
practical implications are still rare. Moreover, we can only speculate about the user’s behavior 
when confronted with rapid error correction bio-feedback. Consequently, further practical 
experiments on a number of users are required in order to investigate these user reactions in 
detail and to ascertain to what degree this could be of help in the global scenario. 
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Several aspects of the BBCI system need further improvement: so far the system has em-
ployed a paradigm where the user intrinsically implements or imagines the accomplished 
movement, i.e. typing with the left or right index or little fingers. In ongoing research, this 
issue will be expanded to real assistance systems for disabled persons who have movement 
intensions and the respective neural correlates, but who have no means of producing an actual 
movement. While this kind of experiment is already underway, comprehensive results still 
remain insufficient. 

In general, the question surrounding an ideal bio-feedback signal for BBCI will find dif-
ferent answers appropriate for each new application. This dissertation, however, has clearly 
shown that bio-feedback in a gaming scenario, such as Pacman, or in a virtual reality environ-
ment, such as the Virtual Arm, can be realized very naturally and successfully. Eventually such 
bio-feedback can enable the user to adapt to the classification engine and vice versa; the 
classification engine might find it easier to classify correctly in the course of mutual adapta-
tion. One important issue concerns also the training procedure during feedback sessions, i.e. 
acquiring EEG data in an environment “contaminated” with the feedback animation and 
providing the learning machine with user data that closer resembles that from the real feedback 
application sessions. 

It might prove useful to perform an initial training session without feedback and to inte-
grate feedback control in an intermediate session. Consequently, it would then be the interme-
diate session that would provide the EEG data required for further fine-tuning of the model 
parameters. Several intermediate sessions may be carried out in order to achieve even greater 
classification accuracy, until no further significant improvement is observable. Finally, in a 
“real” feedback control session, the user model should be adapted as much as possible to the 
user’s current behavior. 

Another issue with pioneering appeal is also the thrilling possibility that since the BBCI 
bypasses the conduction delays from brain to muscles it could speed up the initiation of actions 
in competitive dual-player scenarios. However, the experimental design of this kind of applica-
tion must differ to some extent from those performed previously and presented within the 
scope of this dissertation. The conceptual scheme, design and implementation of such competi-
tive scenarios as a feedback application will require considerable innovation. 

The global architecture of the BBCI system is currently designed to be quite static regard-
ing the online adaptation to the user’s current behavior, rendering it is actually difficult to 
adapt the user model during the application session. This drawback is due to the fact that 
certain online learning procedures of state-of-the-art machine learning technology failed or 
under-performed their static analogues in the design phase. However, it still remains possible 
to redesign the BBCI’s architecture in a manner enabling it to repeatedly accept updated user 
models from another learning machine; for example, every couple minutes. This would imply 
the use of an additional computer, monitoring the current user actions and acquiring the corre-
sponding EEG data. That computer would then calculate the user model parameters based on 
the user’s current behavior and would, from time to time, submit these parameters to the data 
processing machine via an additional communication channel. This procedure could solve the 
problem of non-stationarity in long-term experiments, but would require the development of a 
procedure to merge the current and updated user model. This is a non-trivial process since most 
automatic learning procedures based on neural information processing methods result in 
“black-boxes”. The problem of “looking inside the black box” is still unsolved and forms the 
basis of research currently underway at many scientific institutions. 

Let us finally turn to the discussion of how much information we can expect to transmit in 
this type of new BCI channel. While various invasive technologies can admittedly achieve bit-
rates that are high enough for online 3D robot control [Nicolelis and Chapin, 2002], such 
techniques require hundreds of microelectrodes implanted into the brain’s cortex. This there-
fore presents an inappropriate method for dealing with healthy subjects and would only suit 
itself for severely injured patients who have no hope of developing alternative communication 
channels. Furthermore, surgery is invariably associated with a high risk of causing inflamma-
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tion of brain matter or of damaging healthy organs. As for non-invasive techniques, earlier 
studies of my colleagues have shown that in a pseudo-online idealization evaluation (i.e. data is 
recorded and analyzed later as if online), record bit-rates of up to 50 bits per minute are achiev-
able [Blankertz et al., 2003]. In spelling tasks that are truly online with bio-feedback, single 
subjects can reach up to 2-3 letters per minute [Wolpaw et al., 1991], 
[Pfurtscheller et al., 1993]. A combination of the present BBCI approach with the “Brain-
Speller” application would significantly increase this rate to 8-10 letters per minute. At first 
sight, this might still appear rather slow for a communication device, compared with other 
devices; for example, a computer mouse can achieve 300-350 bits of non-redundant informa-
tion per minute [MacKenzie, 1991]. However, one should realize that a BCI communication 
channel is largely independent of other channels and offers a unique feature of ultra-fast action 
emissions for each single emission trial. 

Finally, I would like to speculate on the direction that BBCI research and development 
will take in the immediate future. I estimate that it will seek to develop new and more natural 
feedback modi and feedback applications rather than re-developing well-known feedback 
applications; the reason being that the latter were designed to rely on other communication and 
control strategies. Moreover, the field of Human-Computer Interaction will be increasingly in 
demand and will be called on, in particular, to provide new techniques and communication 
protocols that can serve as a basis for BCI-based communication. 

2. Future Visions of Brain-Computer 
Interfaces 

Throughout the world, Brain-Computer Interfaces are the subject of rapidly developing 
research in Human-Computer Interaction and Machine Learning. Both fields will have a 
fundamental contribution to make regarding Brain-Computer Interfaces, a technological 
innovation that has its origins in human neurophysiology and rehabilitation engineering. There 
are several directions which BCI research could take in the immediate future: 

 Design and development of intelligent and adaptive user interfaces for disabled per-
sons, to provide them with standard communication possibilities, bypassing damaged 
communication channels. For example, the Brain-Speller and the Cursor Control applica-
tion, both described in this dissertation. 

 Design and development of user monitoring systems and control interfaces for per-
sons employed as “controllers” of a variety of machines, e.g. drivers, pilots. 

 Design and development of interfaces for controlling gaming applications for 
healthy subjects. This type of interaction still requires further experiments regarding the 
reaction times. In the unfortunate event that the reaction time of a BCI user is signifi-
cantly higher than that of a user provided with a classical interface, the monitoring pur-
pose of BCI systems will still be able to contribute an additional information channel to 
the classic human I/O modalities. This channel could transmit measurements of stress or 
workload or engagement of certain brain regions into task solving. This approach was re-
ferred to in this dissertation with gaming feedback applications like Brain-Pong, Pacman 
or Tetris. 

 Design and development of intelligent control strategies in the field of prosthesis 
engineering. Prosthesis control is here designed and evaluated in a virtual reality envi-
ronment, before the manufacturing of the actual prosthesis. It would allows the patient 
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(the future owner of the prosthesis) to develop a suitable control strategy for her/his pros-
thesis beforehand. This approach was referred to in this dissertation with the Virtual Arm 
application. 

There are clearly many other uses that BCI technology could be applied to and that can 
hardly be summarized in the scope of this dissertation. It suffices to recognize, perhaps, that 
BCI’s enormous potential for innovation will bring about considerable changes in many areas 
of research. In turn, BCI research itself will profit greatly from this, receiving interdisciplinary 
input from fields such as Human-Computer Interaction (HCI), user interface design, signal 
processing and machine learning, and virtual and augmentative reality. Consequently, it will 
need to prepare itself for these developments. 

Invasive methods, still able to provide cleaner and more localized data, are thus expected 
to retain the upper hand over non-invasive techniques, at least in terms of ultimate result 
accuracy. It is also unclear whether and how invasive BCI systems will be used in brain-
gaming applications, i.e. for healthy people. Hence, the current consensus is that non-invasive 
BCI technology will be employed mainly in the gaming industry, whereas invasive techniques 
will ultimately be the preferred technology for control systems that require precise control of 
actions. 

3. Epilogue 
The aim of this dissertation was to provide my personal point of view on Brain-Computer 

Interfaces in general and the BBCI system in particular. I would like to emphasize that neither 
the development of a new signal processing technique (i.e. the pre-processing technique), nor 
the machine learning based classifier optimization procedure, constituted the core of this work. 
Furthermore, my main contribution was to apply state-of-the-art software engineering tech-
niques, such as UML, OOD/OOP, for the design of the architecture and the development of the 
prototype of the BBCI system. 

The BBCI system presented here was designed to be distributed in order to adapt to the 
“online” constraints. The complex processes of data acquisition, pre-processing and classifica-
tion require a high amount of temporal and spatial resources, i.e. computation time and mem-
ory, which in the present design could be successfully distributed over several computers. A 
“conveyor belt” like method was employed in the design of the BBCI system. A further impor-
tant criterion of the system design was its applicability for research and development purposes. 
This encouraged the development of the modularized plug-in approach for encapsulated data 
processing procedures, which can be implemented in C/C++ or in Matlab. This flexibility 
allows for fast prototyping and high exchangeability of single components, which is of great 
importance during scientific trial-and-error processes where no particular and fixed processing 
procedure can be defined beforehand. 

Moreover, the design of the communication interfaces and protocols for each of these 
components must be addressed. These were developed to be as flexible as possible, so that they 
need not be modified if new paradigms or applications are to be tested. In addition, it was 
designed to be adaptable to suit future requirements. While such demands are as yet unknown, 
adaptation can be achieved by the simple re-assignment and allocation of relevant values, 
which is to say, by defining where each value is to be assigned and what each value signifies. 

Finally, I investigated several application groups, which proved either suitable or not suit-
able for control by a BCI system. These include instructive feedback applications in which 
users adapt to the BBCI system and develop certain control strategies in a bimodal learning 
mode. This means that, on the one hand, the machine learns from the user and updates its 
model parameters according to the current user’s control strategy, but that, on the other hand, 
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the user updates her/his control strategy to produce signals that are more likely to be recog-
nized by the machine. A further group of feedback applications consists of diverse gaming 
scenarios and their corresponding control strategies. The latter prove either suitable or not 
suitable for the selected gaming scenario in question. The final and most complex feedback 
application group is composed of rehabilitation applications. These are seen to be a prototype 
for future, real-world applications of the BBCI system. 

The BBCI project would do well to consider intensifying its research of real-world appli-
cations, such as brain-gaming, Internet browser control, virtual reality and robotics. This would 
complement its current theoretical focus on neurophysiological paradigms and mathematical 
DSP and ML methods. In addition, it can benefit greatly from collaborating with researchers in 
the HCI community. 

 
 
 
 
Nevertheless, I believe in and am fascinated by the potential power behind the idea of 

“reading men’s thoughts”. I have had the opportunity to encounter this “light”, an experience 
that has strengthened my conviction in the extraordinary and successful future of Brain-
Computer Interfacing. 
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GGLLOOSSSSAARRYY  

A/D — Analog/Digital 

ADT — Abstract Data Type 

ALS — Amyotrophic Lateral Sclerosis 

BBCI — Berlin Brain-Computer Interface 

BCI — Brain-Computer Interface 

BP — Bereitschaftspotential (see also: LRP) 

bpm — Bits per Minute 

BRI — Brain-Response Interface 

CAT / CRT — Command Activation / Relaxation Term 

CATh — Command Activation Threshold 

CHI / HCI — Computer-Human / Human-Computer Interaction 

CNS — Central Nervous System 

CSI — Client-Server-Interface 

DOF — Degree of Freedom 

DRS — Distributed Rendering System. 

DSP — Digital Signal Processing 

EEG — Electroencephalography 

EMG / EOG — Electromyogram / Electrooculogram 

ERD / ERS — Event-Related Desynchronization / Synchronization 

ERP — Event-Related Potentials 

FFT / FT — (Fast) Fourier Transformation 
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fMRI — functional Magnetic Resonance Imaging 

FP / FN — False Positive / False Negative 

GUI — Graphical User Interface 

HCI — Human-Computer Interaction 

ISM — Internal Simulation of Movements 

LAN/WAN — Local Area Network / Wide Area Network 

LDA / QDA — Linear / Quadratic Discriminant Analysis 

LMC — Lateral (pre-)Motor Cortex 

LPM — Linear Programming Machine 

LRP — Lateralized Readiness Potential (see also: BP) 

MI — Primary Motor Cortex 

MEG — Magnetoencephalography 

MFC — Microsoft Foundation Classes 

N100 / P300 — Negativation / Positivation at about 100 ms / 300 ms after 

stimulus, respectively 

OOD / OOP — Object Oriented Design / Programming 

PET — Positron Emission Tomography 

RFD / FD — (Regularized) Fisher Discriminant 

RDA — Remote Data Access 

RGB — Red-Green-Blue; a common color coding standard 

SCP — Slow Cortical Potential 

SNR — Signal-to-Noise Ratio 

SMA — Supplementary Motor Area 

SVM — Support Vector Machine 

TCP/IP — Transmission Control Protocol / Internet Protocol 

TTD — Thought Translation Device 

UDP — User Datagram Protocol 

UML — Unified Modeling Language 

VEP — Visual Evoked Potential 

VR — Virtual Reality 

WTA — Winner Takes All 

 



 


