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Abstract

Today, more and more simulation tasks with a traditionally non-geometric back-

ground need to be embedded into some geometric context, in order to provide

spatial context to non-spatial data. This holds especially true for graph-based

applications in some location-aware context. As an example, one might think of

a theme park or a large commercial center, where the customers shall be provided

with some navigation and scheduling information such as where to go and when

– either a priori or even in real time via some mobile device. This can be done

by analyzing the pedestrian traffic and waiting time situation by simulating the

pedestrian movement and using the simulation data to optimally navigate and

schedule the tasks that are to be executed by the customer. The main issues

addressed in this thesis are as follows.

Initially, a flexible simulation framework is built to simulate the pedestrian

movement in a 3D scenario, for example, a commercial building. Since the pedes-

trians strongly interact with the environment surrounding them, the geometry

is taken into account. Architectural data such as paths, type and capacity of

the paths, destinations and its properties, etc., is extracted from the CAD-model

and are organized in a graph structure. The movement of the pedestrians and

the waiting queues at the destinations are modeled as queuing systems using the

discrete event simulation technique. These queuing systems are then embedded

into the geometry model. The necessary input modeling parameters are also de-

fined. The resulting scenario, when simulated, gives an overview of congestions

and waiting times across the scenario for different time stages.

Apart from the simulation, the geometry data – or here the graph – is hierar-

chically organized in an octree structure. An octree-based model is chosen since

octrees have the natural property of hierarchically storing 3D data. The octree

data is used to identify the position of the pedestrian within the scenario. The

potential destinations in the neighborhood that can be visited by the customer are

also identified using neighbor search algorithms. Combining the simulation data

with the octree modeling, the customer is navigated to the optimal destination.

Furthermore, when visiting several destinations, combinatorial optimization

methods are used to optimally schedule the set of tasks to be executed by the

customer. The optimization methods take into account the congestion informa-

tion obtained from the simulation data, and the octree structure for navigation.

This approach results in an effective pedestrian navigation system.
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Zusammenfassung

Es besteht heute oftmals die Notwendigkeit, Simulationen ohne geometrischen

Hintergrund in einen geometrischen Kontext zu integrieren, um einen Bezug zwis-

chen räumlichen und nicht-räumlichen Daten herzustellen. Dies gilt insbesondere

für graphenbasierte Anwendungen mit räumlichem Bezug. Wir betrachten hier

ein System, das in einem großen Bürogebäude Kunden Informationen zur Nav-

igation und Zeitplanung zur Verfügung stellt, d.h. wohin sie zu welchem Zeit-

punkt gehen müssen. Diese Informationen können im Voraus oder in Echtzeit

über ein mobiles Gerät zur Verfügung gestellt werden. Dazu wird zunächst

das Fußgängerverhalten und die Wartezeit an Bedienstationen in einem dreidi-

mensionalen Modell (Bürogebäude) analysiert, indem das beschriebene Szenario

simuliert wird. Danach werden die verschiedenen möglichen Anwendungen unter

Verwendung der Simulationsdaten untersucht. Ziel einer solchen Anwendung ist

die Entwicklung eines intelligenten Fußgänger-Navigationssystems – betrachtet

man z.B. einen Kunden, der das Bürogebäude besucht, um bestimmte Aufgaben

durchzuführen, besteht das Problem aus der optimalen Planung, die sowohl In-

formationen über den Weg als auch die Bearbeitungsreihenfolge der Aufgaben

enthält. Dabei werde das aktuelle (Fußgänger-)Verkehrsaufkommen sowie die

Warteschlangensituation im Bürogebäude berücksichtigt. Die notwendigen Daten

erhält man als Ergebnis der Fußgängersimulation.

Problembeschreibung

Modellierung und Simulation des Fußgängerverhaltens – mit typischen Anwen-

dungen z.B. Evakuierungsszenarien, Wartesystem-Modelle und die Abschätzung

und Verfolgung des Besucheraufkommens – ist abhängig von geometrischen Pa-

rametern, die das Fußgängerverhalten beeinflussen. Die meisten Modelle zielen

auf ein sehr spezifisches Szenario wie z.B. die Schätzung der durchschnittlichen

Wartezeit an der Kasse eine Supermarktes – Ist es sinnvoll, zusätzliche Kassen zu

planen? Wenn ja, wie viele? In solchen Anwendungen werden nur grundlegende

geometrische Parameter wie die Länge der Warteschlange und die Kundenka-

pazität betrachtet. Architekturdetails wie z.B. der Abstand zur Wand (Flurka-

pazität), genaue Maße des Raumes (Fläche), Art der Wege (Treppe, Rampen

usw.) und Türen werden in solchen Fällen hingegen ignoriert. In manchen Fällen,

wie bei der Simulation eines Evakuierungsszenarios oder der “Location-Aware”

Fußgängersimulation, ist es jedoch wichtig, nicht nur die Architekturdetails zu

betrachten, sondern auch das Simulationsmodell in den geometrischen Kontext

zu integrieren. Bei der Modellierung eines Evakuierungsszenarios in einem Büro-

gebäude, in dem ein Notfall eintritt, ist hier das Ziel, zu überprüfen, ob die Zeit,
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die für die Räumung benötigt wird, innerhalb der erlaubten Grenze liegt. Falls

die Simulation keine starke Kopplung zwischen den Einheiten und dem Geome-

triemodell vorsieht, kann das System weder eine unerwartete Blockierung (Säulen,

Möbel, usw.) neben dem Ausgang erkennen noch besteht eine Möglichkeit, das

Geometriemodell zu optimieren (Änderung des Architekturdesigns).

Aufgabenstellung

Zielsetzung dieser Arbeit ist die Entwicklung eines Softwarekonzepts für eine Ar-

beitsumgebung zur Integration und Einbettung von Fußgängersimulationen in

eine Geometrieumgebung. Die Aufgabenstellung gliedert sich dabei wie folgt:

• Entwicklung eines effizienten Verfahrens zur Extraktion und Strukturierung

von Wegstrecken, Zielknoten und Architekturdetails aus dem Geometriemo-

dell

• Hierarchische Strukturierung der extrahierten Dateien und Entwicklung

eines Verfahrens für Positionserkennung, Nachbarschaftssuche und Fußgän-

gernavigation

• Entwicklung einer graphen- und wartesystembasierten Fußgängersimula-

tion; Integration und Einbettung des Simulationsmodells in das Geome-

triemodell.

• Organisation und Planung für einen Besucher des Gebäudes mit der Analyse

des Verkehrsaufkommens unter Verwendung der Daten der Simulation.

Geometrische Modellierung

Fußgänger bewegen sich in einem Szenario normalerweise mit einer spezifischen

Absicht. Beim Modellieren des Fußgängerverhaltens wurden zwei verschiedene

Aktivitäten berücksichtigt, nämlich die Bewegung entlang einer Route und das

Verhalten am Ziel. Um diese beiden Aktivitäten zu modellieren, identifizieren wir

zunächst die Wege, auf denen sich die Fußgänger bewegen und die Zielknoten,

an denen sie ihre Aufgaben erledigen. Die Liste der Wege und die Liste der

Zielknoten werden durch Analyse des gegebenen CAD-Modells automatisch iden-

tifiziert. Diese Daten werden danach miteinander vernetzt, um eine Graphen-

struktur zu erzeugen. Dabei stellen die Kanten des Graphen die Wege dar und

bestimmte Knoten des Graphen beziehen sich auf die Zielknoten im Szenario.

Einige andere Eigenschaften wie z.B. die Kapazität des Weges, der Abstand zwis-

chen den Wänden und die Länge der Wegstrecke werden ebenfalls identifiziert.
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Der resultierende Graph zusammen mit allen weiteren abgeleiteten Parametern

wird dann benutzt, um den Fußgängerverkehr zu modellieren und zu simulieren.

Hierarchische Strukturierung des Modells

Es besteht die Möglichkeit für weitere Anwendungen des erzeugten Graphen, wie

z.B. Pfadsuche-Algorithmen oder Navigationssysteme. Dafür wird das Geome-

triemodell – oder hier der Graph – in einer hierarchischen Struktur (Oktalbäume)

gespeichert. Die Knoten des Graphen werden mit Hilfe eines Oktalbaumes par-

titioniert, bis jedes Blatt des Oktalbaums maximal einen Knoten enthält. Der

Vorteil bei der Verwendung eines Oktalbaums ist, dass er eine natürliche Eigen-

schaft besitzt, dreidimensionale Daten hierarchisch zu speichern. Angenommen,

ein Kunde, ausgerüstet mit einem Navigationsgerät, kommt in ein Einkaufszen-

trum und will eine Apotheke finden. Weiterhin nehmen wir an, dass das Naviga-

tionsgerät die aktuellen Positionskoordinaten des Kunden ermitteln kann. Dann

können die Koordinaten in der Oktalbaumstruktur durchsucht werden, um die

genaue Position im Oktalbaum und damit den nächsten Punkt auf dem Graphen

zu identifizieren. Der Vorteil bei der Verwendung einer solchen Methode ist die

Steigerung der Effizienz bei der Positionssuche. In Vergleich zur Linearsuche

(Abstand zwischen aktueller Position und allen Knoten berechnen und dadurch

die Nachbarknoten erkennen) mit einer Komplexität von O(n) ist die hierar-

chische Suche mit der Komplexität O(log n) wesentlich günstiger, insbesondere

für große Graphen (z.B. die Darstellung einer Stadt). Aufgrund der hierarchis-

chen Struktur, wird die enorme Größe des CAD-Modells auf einen einfachen

Graphen und eine Oktalbaumstruktur reduziert. Auf die gleiche Weise wurden

Nachbarschaftssuche-Algorithmen auf Oktalbäume angewendet, um eine Liste

der Zielknoten in der unmittelbaren Nähe des Fußgängers zu identifizieren, die

Wege auf dem Graphen zu kennzeichnen und den Fußgänger zum gewünschten

Zielknoten zu führen.

Fußgängerverkehrssimulation

Um Fußgängerbewegungen und -verhalten zu modellieren und zu simulieren,

konzentrieren wir uns auf die Methode der ereignisdiskreten Simulation. Die

Modellierung des Fußgängerverhaltens ist aufwändig: Typische Aktionen, wie das

plötzliche Stoppen, das Überholen anderer Fußgänger, die Änderung des Kurses

(Richtung), die schnelle Änderung der Geschwindigkeit und Beschleunigung, das

Treffen spontaner Entscheidungen, die Interaktion mit anderen Fußgängern und

das Vermeiden von Zusammenstößen, sind - verglichen etwa mit der Simulation

von Fahrzeugen - häufig schwierig zu modellieren. Diese Parameter beeinflussen
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auch andere Fußgänger in der Umgebung. In den meisten Fällen jedoch basiert

das Modell auf den Parametern Geschwindigkeit, Dichte und Fluss. In dem ver-

wendeten Ansatz wird beabsichtigt, ein mikroskopisches Fußgängermodell ent-

lang des Weges und den Zielknoten zu simulieren. D.h, jeder Weg wurde so

extrahiert, dass man sich in beide Richtungen geradlinig bewegen kann und die

o.g. Parameter, wie die Geschweindigkeitsänderung und das plötzlich Stoppen,

bleiben entlang des Wegs konzistent. Deshalb können diese Parameter ignori-

ert werden. Sowohl die Bewegung entlang der Route als auch das Verhalten am

Bestimmungsort wurden als Wartesystem modelliert. Im Falle einer Bewegung

entlang der Route kommen die Fußgänger an einem Wegstück an, warten, wenn

der Weg blockiert ist, und beginnen den Weg entlang zu gehen, wenn sich die

Menge bewegt. Die Laufgeschwindigkeit wird durch den Status des Weges (z.B.

Dichte, Bewegungsrichtung, Kapazität) berechnet. Wenn die Fußgänger am Ziel

angekommen sind, erreichen sie die Warteschlange, warten so lange, bis eine Be-

dieneinheit frei geworden ist, und erledigen dann ihre Aufgabe. Das Wartesystem

wird in jeden Weg (Kante) und jeden Zielknoten (Knoten) im Szenario eingebet-

tet, um ein Wartenetz zu bilden.

Die Modellierung der Eingangsdaten ist ein wichtiges Konzept bei der Er-

eignisdiskreten Simulation. Da jeder Fußgänger unterschiedliche Eigenschaften

und Zielsetzungen hat, wurden einige Profile definiert und in einer Datenbank

verwaltet. Diese Profile werden verwendet, um die Eingangsdaten für die Fuß-

gängersimulation zu erzeugen, die mittels stochastischer Funktionen als Ein-

gangsgrößen des Wartesystems ausgewählt werden. Die Simulation des resul-

tierenden Modells gibt einen Überblick über das Verkehrsaufkommen und den

Status der Warteschlangen, die im Szenario während der unterschiedlichen Zeit-

punkte auftreten.

Das Simulationsframework wurde so flexibel entworfen, dass es generische

CAD-Modelle importieren und die nötigen Parameter extrahieren kann. Außer-

dem ist die Modellierung der Eingangsdaten so entworfen, dass beliebig viele

Kundenprofile definieren werden können. Dadurch ist es möglich, eine Vielzahl

verschiedener Szenarien zu simulieren.

Routenplannung

Auf Basis dieser Simulation wird untersucht, welche Möglichkeiten bestehen, die

statistischen Daten aus dem Fußgängersimulationsmodell zu verwenden. Be-

trachten wir wieder das Szenario, bei dem ein Kunde in ein Kaufhaus kommt

und nach einer Apotheke sucht. Seine Position im Gebäude und eine Liste der

Apotheken in der Umgebung seien bereits identifiziert. Nutzt man die Sim-
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ulationsdaten, kann man die Apotheke mit der geringsten Wartezeit und den

Weg dorthin mit dem geringsten Verkehrsaufkommen ermitteln. Falls der Kunde

mehrere Aufgaben erledigen möchte, kann man die Simulationsdaten dazu ver-

wenden, um den Status aller Zielknoten zu identifizieren. Dadurch kann eine

optimale Routenplanung zur Durchführung der Aufgaben und zur Navigation

zwischen jeder Aufgabe vorbereitet werden. Das Problem enthält das kom-

binierte Finden des optimalen Weges und der optimalen Reihenfolge. Die kon-

tinuierliche Änderung der Simulationsdaten über die Zeit muss für die Routen-

planung und Navigation ebenfalls betrachtet werden. Einige kombinatorische

Methoden und Heuristiken wie “Brute-Force search”, stochastische Optimierung,

Greedy-Heuristiken, Nachbarschaftssuche (nearest-neighbor) und die Nutzung

einiger Vorbedingungen und Einschränkungen wurden im Rahmen dieser Arbeit

verwendet, um einen optimalen Routenplan für den Kunden zu erzeugen. Die im

Rahmen dieses Auskunftssystems gewonnenen Informationen über die Einheiten,

die das System nutzen, werden in die Simulation einbezogen, um die Simulations-

daten ständig aktuell zu halten.

Aussicht

Durch das Zusammenführen der oben beschriebenen Methoden ist es möglich, das

ganze Szenario in ein intelligentes Fußgängernavigationssystem zu konvertieren.

Der Schlüssel zu einem solchen System ist die Koppelung des Simulationsmod-

ells in der Geometrie des Szenarios. Dieser Ansatz eröffnet auch einige weit-

erführende Fragestellungen, wie z.B. Gebäudeplanoptimierung (Passen die tä-

glichen Szenarien zur Architektur? Sollte der Hauptweg breiter sein?), Evaku-

ierungsszenarien (Blockiert die Säule die Evakuierung? Können die Fußgänger

schneller evakuieren werden, falls die Säule entfernt wird?), Entscheidung über

die Örtlichkeiten innerhalb der Gebäude (Wo werden mehr Besucher erwartet?

Ist es besser, die Gaststätte an einen anderen Ort zu verschieben?). Ein anderes

Thema, das in dieser Arbeit diskutiert wird, ist das Skalierbarkeit des gesamten

Systems. Wenn das Fußgängerverhalten z.B. in einem großen Vergnügungspark

simuliert wird, könnte der Graph aus sehr vielen Knoten bestehen und die Simu-

lation könnte sehr viele Kunden enthalten. Obwohl die Simulation im Frame-

work skalierbar ist, benötigt jeder Knoten und jedes Kundenbedürfnisse eine

gewisse Rechnerzeit und ein normaler PC wäre für so ein großes Modell nicht leis-

tungsfähig genug. Daher müssen in solchen Fällen parallele und verteilte Meth-

oden verwendet werden. Mit diesem Ansatz wird nicht nur Rechnerkapazität

gespart, sondern auch Rechenzeit, falls mehrere Iterationen simulieren werden.

Wenn man z.B. bei einer Gebäudeplanoptimierung unterschiedliche voneinander

unabhängige Szenarien simulieren will, kann man diese parallel simulieren und
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die Enddaten später gemeinsam analysieren.

Obwohl die Simulation einen guten Überblick über das Verkehrsaufkommen

und den Status der Warteschlangen gibt, können bestimmte spontane Änderun-

gen (wie Unfälle, der Ausfall einiger Bedieneinheiten oder Situationen wie eine

unerwartete Blockierung, die durch eine Gruppe von sich langsam bewegende

Menschen verursacht wird), nicht exakt simuliert werden. Abhilfe können hier

Sensoren schaffen, die mit mobilen Geräten und Kommunikationsservern kom-

munizieren. Solche Sensoren übertragen den aktuellen Status, in der sie sich

befinden; durch das Verwenden von Echtzeitdaten solcher Sensoren, können die

Simulationsparameter ständig aktualisiert und die Genauigkeit der Simulation

verbessert werden. Diese Schnittstelle ist in weiten Teilen noch offen.



Contents

Abstract iii

Zusammenfassung v

1 Introduction 1

1.1 Topic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Current Research and New Challenges . . . . . . . . . . . . . . . 3

1.3 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Underlying Concepts and Nomenclature 9

2.1 Algorithms and Data Structures . . . . . . . . . . . . . . . . . . . 9

2.2 Scalability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Discrete Event Simulation . . . . . . . . . . . . . . . . . . . . . . 19

3 Geometric Modeling 23

3.1 Geometry Representation . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Geometry Parameters for Pedestrian Simulation . . . . . . . . . . 26

3.2.1 Extraction of Paths and Destinations . . . . . . . . . . . . 27

3.2.2 Graph Representation . . . . . . . . . . . . . . . . . . . . 33

3.3 Pedestrian Navigation . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Hierarchical Modeling . . . . . . . . . . . . . . . . . . . . 34

xi



xii CONTENTS

3.3.2 Path-Search Algorithms and Navigation . . . . . . . . . . 43

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Discrete Event Pedestrian Simulation 47

4.1 Pedestrian Simulation Methods . . . . . . . . . . . . . . . . . . . 49

4.1.1 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Agent-Based Simulation . . . . . . . . . . . . . . . . . . . 50

4.1.3 Cellular Automata Model . . . . . . . . . . . . . . . . . . 50

4.1.4 Queue-Based Simulation . . . . . . . . . . . . . . . . . . . 51

4.2 Discrete Event Simulation of Pedestrians . . . . . . . . . . . . . . 52

4.2.1 Queue Model . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Input Modeling and Random Functions . . . . . . . . . . . 64

4.2.3 Analysis of Pedestrian Characteristics . . . . . . . . . . . . 68

4.2.4 Profile and Parameter Modeling . . . . . . . . . . . . . . . 71

4.2.5 Geometry Embedding of Queuing Systems . . . . . . . . . 74

4.2.6 Analysis of Pedestrian Simulation . . . . . . . . . . . . . . 79

4.3 A Pedestrian Simulation Framework . . . . . . . . . . . . . . . . . 80

4.3.1 Framework Components . . . . . . . . . . . . . . . . . . . 81

4.3.2 Pedestrian Simulation Framework Extensions . . . . . . . 89

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Pedestrian Task Scheduling and Routing 93

5.1 Task Scheduling and Routing . . . . . . . . . . . . . . . . . . . . 94

5.2 Pedestrian Visit Planning . . . . . . . . . . . . . . . . . . . . . . 99

5.2.1 Pedestrian Routing . . . . . . . . . . . . . . . . . . . . . . 100

5.2.2 Pedestrian Task Scheduling: Task Sequencing . . . . . . . 102

5.2.3 Constraints and Preconditions . . . . . . . . . . . . . . . . 107

5.2.4 Nearest Neighbor Search . . . . . . . . . . . . . . . . . . . 108

5.3 Analysis of Scheduling and Routing Methods . . . . . . . . . . . . 110

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Support for Intelligent Pedestrian Navigation 117



CONTENTS xiii

6.1 Geometry Model and Parameters . . . . . . . . . . . . . . . . . . 118

6.2 Pedestrian simulation . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Input Modeling . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.2 Simulation Parameters . . . . . . . . . . . . . . . . . . . . 125

6.2.3 Output Data and Analysis . . . . . . . . . . . . . . . . . . 125

6.3 Pedestrian Visit Planning . . . . . . . . . . . . . . . . . . . . . . 129

6.4 Octree Modeling for Pedestrian Navigation . . . . . . . . . . . . . 129

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion and Outlook 135

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 136

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Discrete Event Simulation Library 143

Bibliography 162





List of Figures

1.1 Structure of the Dissertation. . . . . . . . . . . . . . . . . . . . . 5

2.1 Array and linked-list representation . . . . . . . . . . . . . . . . . 11

2.2 Quadtree partition and representation . . . . . . . . . . . . . . . 13

2.3 Quadtree position codes and representation . . . . . . . . . . . . . 15

2.4 Illustration of the Morton index sequencing in an octree. . . . . . 16

3.1 Triangulation representation of the reference model . . . . . . . . 26

3.2 FIFI Infoterminal . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Automatic graph extraction with Pathscan . . . . . . . . . . . . . 29

3.4 Extensive graph vs. reduced graph . . . . . . . . . . . . . . . . . 30

3.5 Snapshot of the reduced graph . . . . . . . . . . . . . . . . . . . . 31

3.6 Graph of the reference model . . . . . . . . . . . . . . . . . . . . 34

3.7 Octree with co-ordinates of each vertex in the range [−1, 1]. . . . 36

3.8 Quadtree and the tree structure consisting of P set of points. . . . 36

3.9 Tree search for case 1 . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Tree search for case 2 . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11 Nearest neighbor search in a quadtree . . . . . . . . . . . . . . . . 43

3.12 A VRML model for navigation in the reference model . . . . . . . 45

4.1 Multi-processor queuing system . . . . . . . . . . . . . . . . . . . 53

4.2 The ABC approach for event scheduling. . . . . . . . . . . . . . . 57

xv



xvi LIST OF FIGURES

4.3 Tertiary tree structure . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 The arrival pattern before and after a stationary process. . . . . . 61

4.5 State transition diagram of a Homogeneous Markovian Process. . 62

4.6 Homogeneous Markovian Process with transition probabilities pi,j. 63

4.7 Homogeneous Markovian Process with transition rates λi,j. . . . . 63

4.8 Histogram of the visit probabilities . . . . . . . . . . . . . . . . . 67

4.9 Pedestrian profile manager . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Visualization using Observer . . . . . . . . . . . . . . . . . . . . . 87

4.11 Microscopic traffic simulator . . . . . . . . . . . . . . . . . . . . . 90

5.1 Set of tasks to be executed by a pedestrian. . . . . . . . . . . . . 100

5.2 Plot of visitor count in a sample restaurant . . . . . . . . . . . . . 109

5.3 Result comparison of scheduling methods . . . . . . . . . . . . . . 111

5.4 Computing speed of the greedy methods . . . . . . . . . . . . . . 112

5.5 Computing speed of brute-force vs. simulated annealing . . . . . . 112

5.6 Computing speed of greedy method vs. simulated annealing . . . 113

6.1 VRML model of the reference model . . . . . . . . . . . . . . . . 119

6.2 The DTD listing of the XML file that stores the graph structure. 120

6.3 The DTD listing of the XML file that stores the room data. . . . 121

6.4 Plot of the density factor . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 The DTD listing of the XML file that stores the pedestrian profile. 124

6.6 Average path transition times . . . . . . . . . . . . . . . . . . . . 127

6.7 Average waiting times . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 Octree structure for the reference model . . . . . . . . . . . . . . 130

6.9 Location and the destinations in the octree . . . . . . . . . . . . . 131



Chapter 1

Introduction

I think that in the discussion

of natural problems we ought

to begin not with the Scriptures,

but with experiments, and demonstrations.

– Galileo Galilei

Due to the rapid growth in technology and lifestyle, transportation has become

increasingly important. Commuters using the public transportation to get to the

work place, traffic on the highway due to cars and other vehicles, transportation

of packets from one place to another, tourists traveling to different cities: all

these concepts show that mobility is one of the most common activities seen in

day to day life. As the number of entities participating in the transportation

world increases, a bottleneck in the flow of the entities often occurs. Also, the

infrastructure of the environment plays a significant role in keeping the traffic flow

in motion. All these gives rise to the concept of mobility modeling. Modeling of

mobility is the process of analysis of the behavior of the different participating

entities in the mobile world. Mobility modeling is performed with an aim to

improve the existing infrastructure as well as provide additional services such

that mobility is made easier.

Mobility modeling of people can be broadly classified into vehicle traffic and

pedestrian traffic. Modeling of both vehicle as well as pedestrian traffic is per-

formed at various instances. The typical aim of modeling vehicle traffic is to

analyze the congestion on roads, study of microscopic behavior of individual ve-

hicles participating in the traffic, urban and town planning. On the other hand,

pedestrian traffic modeling is seen in evacuation scenarios, improvement of pedes-

trian infrastructures in towns and cities, study of pedestrian dynamics, etc.

1
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In case of a pedestrian modeling, the typical methods used are agent-based

pedestrian simulation, cellular automata model, flow-based numerical simulation,

and also queue models in simple cases, for the purpose of evacuation planning, es-

timation or tracking the visitors, or analyzing the flow density during peak hours.

In all the situations, a strong integration with the geometry of the environment

is seldom considered. However, in many cases, it is important to embed the sim-

ulations with traditionally non-geometric background into a geometry context.

This is especially true for applications that require spatial data to model the sce-

nario. The embedding into the geometry environment provides spatial context to

non-spatial data.

1.1 Topic Description

In the different pedestrian simulation models analyzed so far, the concept of

embedding the simulation into a geometry context was missing and it was also

found that such an integration is important.

Consider for example a scenario where a pedestrian arrives in a commercial

building or a similar environment to execute a certain list of tasks. The objective

of the pedestrian is to determine an optimal sequence of the tasks to execute de-

pending on the waiting time to execute each task, and an optimal path through

the building considering the possible traffic congestions in the building. The cus-

tomer therefore requires an effective navigation system that would prepare such

a schedule and also suggest an optimal route through the building. Such a route

planning is either made in advance considering the possible traffic congestions

during the given time of the day or in real time once the customer is inside the

building with some kind of mobile navigation device.

To schedule the tasks optimally, exact information about the waiting times

at each service center is required. These service centers are modeled as queuing

systems. These queuing systems, when simulated, give an overview of the waiting

times at each service center. The results are used to schedule the tasks. Simi-

larly, to prepare an optimal route, information about the traffic congestions in

the building is as well required for which, the paths along the building are also

modeled also as queuing systems. The results provide information on possible

congestions inside the building at any given point of time.

Apart from this, the geometrical model of the building is taken into account

which provides spatial information such as the capacity of waiting rooms, capacity

of paths in the building and so on. The geometry embedding gives a spatial

context to non-spatial scenarios. Location awareness is another key area, which
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provides the co-ordinates of the entity and also identify the happenings in the

neighborhood. These informations are necessary for dynamic scheduling and

routing of the tasks.

In this thesis, a generic framework is built, where the pedestrian behavior in

a building is modeled and simulated, and the simulation is in turn integrated

strongly within the geometry of the building. Possibilities of providing an ef-

fective navigation system to the customers are then analyzed by considering the

simulation data.

1.2 Current Research and New Challenges

Pedestrian navigation services are often seen in the field of ubiquitous and perva-

sive computing systems that apply to location- and context-aware applications.

Several researches has been done in providing improved context-aware services

based on the location [BCMS06, BBR01, SAW94, ST93]. Due to the availability

of affordable mobile hardware devices, location- and context-aware computing

gained increasing popularity. Some of the typical uses include, forwarding the

telephone call to the nearest telephone booth, guiding and navigating a visitor

in a new environment, identifying the location of the nearby public transport

service and determining the timetable to a destination (the destination may be

derived from the diary planner in a PDA – Personal Digital Assistant), etc. These

applications are not just restricted to navigation services (path identification in a

new environment) but are made to exploit locally available information such that

improved services can be provided to the user. An overview of such applications

and the challenges in realizing them can be seen in [Sat01].

The Nexus1 project (Spatial World Models for Mobile Context-Aware Ap-

plications), funded by the German Research Foundation under the title “SFB

627”, currently an active project at the Universität Stuttgart, enhances mobil-

ity by inducing spatial-aware applications [HKL+99]. The Nexus project targets

technologies in the definition and realization of spatial world models, which in-

clude communication and information management, model representation, use

of sensor data, etc. Applications in relation to the pedestrian navigation system

mentioned in this thesis are used to validate the spatial world models built within

the framework of the Nexus project.

Even though the pedestrian simulation and navigation framework presented in

this thesis has some similarities with the Nexus project, both these approaches run

on a different track and the ends do not currently meet. The pedestrian simulation

1http://www.nexus.uni-stuttgart.de/

http://www.nexus.uni-stuttgart.de/
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framework relies on statistical data to model and simulate the pedestrian behavior

using stochastic functions. The usage of sensor information as in the Nexus

project to obtain current status of the scenario can enhance the performance

of the pedestrian simulation. This interface is however still an open avenue of

research.

1.3 Goals and Contributions

The objective of this thesis is to build a flexible framework for embedding the

pedestrian simulation in a geometry context and thereby investigate the possi-

bility of building an intelligent pedestrian navigation system using the data from

the pedestrian simulation. The goals of the thesis are listed as follows.

• Development of an efficient method to extract and structure the list of

paths, list of destinations and the various architectural parameters from a

given geometric model.

• Structuring of the extracted data hierarchically and development of a po-

sition identification system by using the hierarchical data. Also the imple-

mentation of efficient neighbor search methods and a method for a pedes-

trian navigation system.

• Development of a graph- and a queuing system-based pedestrian simulation

framework and embedding the simulation model into the geometry model.

• Usage of a framework to organize and plan a visit by the pedestrian in the

given scenario. Efficient generation of an itinerary or a visit schedule by

considering the pedestrian congestion and waiting queues obtained from the

simulation data.

1.4 Thesis Outline

Reference Scenario and Model

Throughout this thesis, we imagine a generalized hypothetical scenario and de-

velop each component needed to realize this scenario. We assume a generic sce-

nario, where a pedestrian arrives at a building with an intention to execute a set

of tasks in the building. The pedestrian wishes to complete these tasks within

the allotted time limit. This scenario will henceforth be termed as reference sce-

nario and the building to be visited by the pedestrian will henceforth be termed

as reference model. In order to realize this scenario, the first step is to model
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and simulate the pedestrian behavior in the given geometry environment. This

means the geometry of the reference model must be taken into account and the

simulation must be embedded within the geometry. The next step is to use the

simulation data from the simulation to plan an optimal schedule and routing

information such that the pedestrian executes the tasks in the given time. Sev-

eral components and background information are needed to build such a system.

They will be explained step by step throughout the thesis.

Thesis Structure

Figure 1.1 shows the structure of the thesis and the chapters, where the various

components are realized. The chapters of this thesis are structured as follows.

Discrete Event Simulation,

Queuing Network

(Chapter 4)

Geometric Modeling,

Graph extraction

(Chapter 3)

Octree Modeling

(Chapter 3)

Geometry Embedding of

Queuing Systems

(Chapter 4)

Position Identification

Nearest Neighbor Search

(Chapter 3)

Discrete Event

Pedestrian Simulation

(Chapter 4)

Pedestrian task

Scheduling

and Optimization

(Chapter 5)

Intelligent Pedestrian Navigation

(Chapter 6)

Figure 1.1: Structure of the Dissertation.

Chapter 2 provides an overview of some fundamental concepts that are

needed to understand this thesis. The concepts of algorithms and data struc-

tures necessary for the implementation of the reference scenario are discussed
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here. Also the frequently used hierarchical data structures – octrees – in struc-

turing the reference model are also discussed here. Since the pedestrian behavior

is modeled and simulated using the discrete event simulation methodology, a short

introduction to the components in a discrete event simulation is given. The con-

cepts of location and geometry awareness, scalability issues, etc., are also briefly

discussed.

Chapter 3 introduces the concept of geometric modeling and describes a

method to provide pedestrian navigation. In the reference scenario, the pedes-

trian arrives at the reference model to execute a certain list of tasks. Due the

strong interaction of the pedestrian with the geometry of the building the CAD

model of the reference model is parsed in chapter 3 to extract the geometric and

architectural properties of the building. The method to extract the geometry

parameters and the structuring of the geometry data in form of a graph is pre-

sented. Then, using the graph, an environment to support pedestrian navigation

through position identification, neighbor search methods and path-search algo-

rithms is developed. For test cases, the model of the computer science building

at the Universität Stuttgart will be used.

Chapter 4 models and simulates the pedestrian behavior within the given

reference model. In the reference scenario, the schedule for the pedestrian visit is

planned based on the actual congestion and waiting time situations that exist in

the reference model. In order to identify such congestions and queue sizes, the dis-

crete event simulation methodology is used to model and simulate the pedestrian

behavior. The movement of the pedestrians, as well as the behavior in a queue is

modeled using a queuing system. Chapter 4 presents a flexible framework, where

a specific pedestrian scenario can be built (number of pedestrians, type of pedes-

trians, the activities executed by a pedestrian, etc.) and the resulting scenario

is used as input parameters to model the pedestrian behavior. The simulation is

then embedded into the geometry of the reference model and the entire system,

when simulated, gives us an overview of possible congestions and waiting times

that occur at different points in the reference model during the simulation time

period. The status of each path and destination is periodically collected during

the simulation and the simulation data is used to schedule the set of tasks for a

new visitor.

Chapter 5 analyzes different optimization methods to plan and schedule the

tasks to be executed by the pedestrian. In the reference scenario, the pedestrian

arrives with an intention to execute a number of tasks in the shortest possible

time. Chapter 5 uses different combinatorial optimization methods and heuristics

such as brute-force search, greedy approaches, simulated annealing methods, etc.,

to optimally sequence the list of tasks to execute as well as find an optimal
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path between two tasks located in different points of the building. An analysis

of the different methods is made by mentioning the worst, best and average

case performances of the optimization methods for different types of pedestrian

scenarios.

Chapter 6 integrates the components developed in chapters 3,4 and 5 within

a single pedestrian simulation framework and presents some numerical examples

for each phase of the simulation by defining a hypothetical scenario. Once the

scenario is modeled and simulated, the simulation data regarding the congestions

and waiting times are collected. The tasks of the pedestrian in the reference

scenario are optimally scheduled by using the optimization methods presented in

chapter 5.

Chapter 7 summarizes the concepts developed in this thesis and lists out the

targets reached. An outlook into the usage of the pedestrian simulation frame-

work for other possible applications such as evacuation simulation, mobile com-

puting, building plan optimization, etc., as well as extensions to the components

developed throughout the thesis is made.





Chapter 2

Underlying Concepts and

Nomenclature

Education is what remains after one has

forgotten everything he learned in school.

– Albert Einstein

This chapter introduces certain fundamental background concepts that are

related to this thesis work. Initially, an overview of the concepts of algorithms and

data structures is made. In this part, the hierarchical data structures and graph

theory that are often used in this thesis are also discussed. Certain other geometry

concepts such as location awareness, navigation systems, etc., and also the issues

on scalability and parallelization are discussed next. Finally, an overview of the

various components of a discrete event simulation and its internal working is then

presented.

2.1 Algorithms and Data Structures

When solving a problem or writing a program, the foremost study is actually

the method that is used to solve the problem. In computer science, the term

algorithm describes the methods to solve a problem, which can be translated to a

computer program. There may exist more than one algorithm to solve a problem.

Algorithms mostly involve methods to organize and structure the data that is used

for computation. Such objects created to store, handle and manipulate such data

are the data structures. Algorithms and data structures are well explained in

[AHU87, Sed98].

9
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Algorithm and Abstraction

Formally, an algorithm is a finite sequence of well defined instructions to solve a

specific task, where

• each instruction is clearly defined,

• the instructions can be executed with a finite amount of effort,

• the instructions may or may not require input data,

• each instruction exits after a finite amount of time (not entering an endless

loop), and

• the algorithm produces a finite (correct) output.

Algorithms are generally not defined for a very specific purpose, but are rather

general. When solving a problem, generally existing methods are studied and

a solution is then built upon by using the existing methods. Therefore, the

method of abstraction, i.e. reduction and factoring of the concepts such that the

concepts can be focused on separately, is used. An object-oriented programming

language such as C++ [Str01] (also the programming language used in this thesis)

uses objects that consist of data and operations to be performed on this data.

Therefore, the use of abstract data types (ADT) is seen here. A class describes

an object such that many numbers of same objects can be created and different

data can be processed in each object. The classes can be represented graphically

with the use of UML (Unified Modeling Languages).

The concept of an algorithm was formalized through the Turing machine

[Tur36]. The Church-Turing thesis stresses that Turing machine indeed

demonstrates the method in logic and mathematics, and states that any com-

putable problem can be performed an algorithm by running on the computer.

Complexity Analysis

For practical applications, efficiency of the algorithm plays an important role.

Two parameters analyzed are:

• Space Complexity: The amount of memory needed for computation

• Time Complexity: Depending on the problem size, the amount of time

or the number of steps needed for computation
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To analyze the performance of the algorithm, we study the computational com-

plexity of the algorithm. The algorithm is analyzed by calculating the cost with

the increasing problem size of n. The Big-O notation is used to represent the

computational complexity. To differentiate between the behavior of the algorithm

for different data sets, situations such as

• best case that requires the least effort (e.g., searching n numbers, where the

required result is located first in the list),

• average case that requires the normal effort (e.g., searching n numbers,

where the required result is located somewhere in the middle or the list),

• worst case that requires the most effort (e.g., searching n numbers, where

the required result is located at the end of the list),

is used.

Design of the algorithm is often a trade-off between the cost and effort. There-

fore, algorithms that are used often and require a lot of memory and computing

capacity are optimized to the maximum extent possible, whereas negligible algo-

rithms are implemented without much optimization.

Elementary and Hierarchical Data Structures

Apart from the data types used to represent data (integer for representing inte-

ger number or float for representing real numbers), handling of a large amount

of data is done with the use of data structures. One of the most elementary

methods to represent a set of data is a linked list (where individual variables are

connected through pointers and pointers denote the sequence of the data) or an

array (where the list of data are accessed through an index). In a linked list, the

n

A[0] A[2] .... A[N]A[1]

L L L L1 2 3

Figure 2.1: Representation of a linked-list (top) and an array (bottom).

memory is allocated dynamically and each variable points to the next variable,

whereas in an array, the required amount of memory must be reserved in ad-

vance as a block (see Figure 2.1). Apart from memory issues, the efficiency of the
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operations that are performed on the data structures also counts. For example,

when searching for a specific data, the entire list (or array) must be searched,

which results in a computational complexity of O(n). If the list is already sorted,

a binary search can be performed on an array. In a binary search, the middle

element in an array is searched and if there is no match, the array is partitioned

and either the lower or the higher block is searched. Due to the partitioning, the

search is logarithmic. Therefore, the computational complexity in case of using

an array is O(log n). Other data structures such as stacks, queues, etc., can be

built upon by using a linked list or an array. A decision on choosing the data

structure is made by considering the overall cost of the algorithm (time and space

complexity). The objective is to minimize the overall cost.

The concept of hierarchy is often seen in computing, where an algorithm or

a program is split up into several modules and each module are in turn nested

with more modules. In a computer, the components are composed of modules

and are organized hierarchically (board, microprocessor, chip, transistor). In

data organization (file system or a database), the data (or files and directories)

are structured hierarchically. In an object-oriented programming, classes are

organized hierarchically and the classes are related through inheritance.

The typical data structure used to organize the data hierarchically is the tree

structure. A tree – originally said to have originated from graph theory – is a

collection of elements called nodes, and one of the nodes is defined as a root of

the tree from which the remaining nodes are structured hierarchically. The nodes

share a “parent-child” relationship. The bottom most node is called the leaf node

of the tree. Each node, except the leaf nodes, shall have one or more child nodes

and each node, except the root node, shall have one parent. If the tree contains

only one element, the root node is same as the leaf node. The (maximum) number

of children N for each parent node denotes the type of the tree – N -ary Tree (for

N = 2, the tree is called a binary tree).

The concept of recursion is strongly coupled with the term hierarchy. A

recursion is a function that calls itself. Once the steps are complete and the

result is achieved, the recursion terminates. Computation of a factorial (n! =

n × (n − 1) × · · · × 1) can be done efficiently using a recursion function. The

factorial function F (n!) = n × F ((n − 1)!) is therefore performed by recursively

calling the factorial function as follows

int factorial(int N)
{
if (N==0) return 1;
return N*factorial(N-1);

}
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Many algorithms work on the basis of the “divide-and-conquer” rule, i.e. in each

recursion, the problem is partitioned and the sub-problems are then solved. The

individual solutions are then combined to determine the final solution of the prob-

lem. The binary search technique is an example of divide-and-conquer recursion.

Both the concepts of hierarchy and recursion are used frequently in this thesis.

Octrees

Octrees, like any other tree structure, are hierarchical data structures that are

used to store data hierarchically. As the name implies, each parent in an octree

can have a maximum of upto 8 children. Octrees are often used to represent

3-dimensional geometry data and its analog – Quadtree – is used to represent 2-

dimensional geometry. For the given geometry, an octree is built as follows. First,

the geometry object is bounded by a cube that just covers the entire geometry.

The cube is then partitioned in all 3 dimensions along the x, y and z axis to

form 8 cubes or octants. The octree is partitioned recursively until the object

lies completely inside or outside an octant. This results in 3 cell types, namely

geometry in the cell, geometry out of the cell and geometry on the cell. The

geometry that lie on the cell needs recursive partitioning as long as they are either

in or out. Certain curves sometimes may not lie completely inside or outside an

octant even after several partitions. Therefore, the maximum depth or level of

partition is generally defined to avoid endless partition. The octree is then stored

as a tree structure and the leaves of the octree are used to identify the geometry

structure. The inner nodes can be omitted. If the geometry is partitioned using

equidistant cells with n cells in each direction, the computational complexity of

the cell structure is O(n3). Octrees on the other hand has a complexity of O(n2)

for the same geometry and the same amount of detail. Figure 2.2 illustrates the

partitioning of a 2-dimensional geometry using a quadtree structure.

Figure 2.2: Quadtree partition of an ellipse (left) and the tree structure repre-

sentation (right).

The hierarchical data structure quadtree was first named by R. Finkel and

J.L. Bentley [FB74] in 1974. Ever since the introduction of such hierarchical
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structures to structure spatial data, quadtrees and octrees have been widely used

for various applications. One of the foremost applications was in the area of

computer graphics: image representation, view frustum culling of terrain data,

etc. In geo-spatial applications, octrees are used for spatial operations due to

its efficient boolean operation. Octrees are also commonly used as interfaces to

applications in the field of simulation and visualization.

Even though the complexity of generating an octree is lower, the computing

time for such recursive algorithms increases exponentially when generating octrees

for geometries of higher resolution. This is critical especially if octrees need to

be generated frequently. This is because, a floating-point decision on whether

or not to refine the structure has to be taken for each cell and each recursion.

[MBR+03] proposes an efficient method to generate octrees in real time and also

on-the-fly large recursion levels (even > 12). In [MBR+03], face of the surface-

oriented model is treated as a plane that divides the space in two half spaces (in

and out). A volume-oriented model is built from intersecting all in attributes of

the half spaces. The octree is then generated by comparing the corresponding

plane that intersects the octree and encoding the result as a binary sequence.

The octree generation is therefore free of redundant calculations and the overall

memory requirements are reduced due to the use of stacks.

Octrees with a large depth will increase the number of voxels exponentially.

The data resulting such octrees will be enormous. Therefore, efficient traversing

and coding structures are needed to organize the octree data. Apart from orga-

nizing the octree in a classical tree structure, each node of the tree is identified by

an unique identifier. The Morton index is used to identify the nodes. By naming

each of the 8 nodes (of the root node), from ’0’ to ’7’ in a specific and consistent

sequence, the Morton index of a cell can be calculated by accumulating all the

numbers of the nodes by traversing from the root node till the desired node. This

index-based method is termed as position coding. The pre-order tree traversing

is used to parse the tree and process the individual nodes. Figure 2.3 shows a

quadtree with position codes and the order of tree traversing.

Octrees are typically sequenced in the Lebesgue curve fashion.1 Figure 2.4

shows an octree with Morton index in the sequence of a Lebesgue curve.

The algorithm 1 shows the method to generate an octree. The algorithm must

then take care that the cells resulting from the octree are inserted into the tree

1Space filling curves (SFC) are a continuous function whose ranges contain the entire 2-

dimensional unit square (or the 3-dimensional unit cube). In a discretized region, the curve

passes through all the regions and each node of the curve occupy the entire cell. Several schemes

to design such curves exist and the notable ones include Hilbert curve, Peano curve, Serpiński

curve and Lebesgue curve. Additional information on space filling curves can be found in

[Sag94].
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Figure 2.3: Position Codes in a quadtree (left) and the order of parsing in a

tree structure (right).

in the order of Morton index. The binary sequence encoding is parsed to identify

the position from the bit and thereby insert it into the corresponding child node

of the octree.

Algorithm 1 Method to generate octrees.

Require: set model to half-space

1: Func: refine()

2: get cell-type from model

3: if (¬ max-depth) then

4: if cell-type = on then

5: mark on

6: call refine()

7: else

8: if cell-type = in then

9: mark in

10: else

11: mark out

12: end if

13: end if

14: end if

Graph Theory

Many combinatorial optimization problems can be formulated as problems in a

graph2. A graph G = (V,E) consists of a finite set of nodes V and a finite set of

2Graph theory is considered to have first originated when a Swiss mathematician Leonhard

Euler proved that there exists no route such that all the 7 bridges in Königsberg can be crossed

exactly once – the “Königsberg Bridge Problem”
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Figure 2.4: Illustration of the Morton index sequencing in an octree.

edges E. Each edge e of the graph consists of two end nodes u and v and is denoted

as uv (or e = {u, v}). The edges of the graph may or may not denote a direction.

For example, a graph of a street network using directed graph to indicate One-

Way streets. In an undirected graph, there exists no difference between uv and

vu, whereas in a directed graph both uv and vu are distinguished separately based

on their existence. If the vertices uv ∈ e, then u and v are said to be adjacent

vertices. The neighborhood of a vertex v, denoted by N(v), is the set of vertices

adjacent to v: N(v) = {x ∈ V |vx ∈ E}. The degree of v, denoted by deg(v), is

the number of edges incident with v. A graph G′ = (V ′, E ′) is called a subgraph

of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. When performing some search operation

in a (large) graph and the region of search is known, a subgraph of the region is

extracted before the search is performed. In that way, the computational effort

decreases. An edge set P = v1v2, v2v3, . . . , vk−1vk is called a walk (or a [v1, vk]

walk). If vi 6= vj ∀ i 6= j then P is called a path or [vi, vk] path. The length of

a walk or path is the number of its edges and is denoted by |P |. If in a walk

v1 = vk, then the path is a closed path as in a traveling salesman problem, where

the salesman returns to the starting point after visiting all the cities.
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Shortest Path Algorithm

The shortest path problem involves the search of a path between two vertices of

the graph such that the sum of the weights of its constituent edges is minimized.

With the use of a single-source shortest path (SSSP) problem, it is possible to

define a start node and identify the shortest path to all other nodes in the graph.

The commonly used algorithm to determine the shortest path between two points

was proposed by E.W.Dijkstra in 1959 [Dij59]. Given a weighted graph G =

(V,E), real-valued weight function f : E → R and one vertex s ∈ V , the single

source shortest path problem identifies the shortest path from source s to all

other vertices in V . The algorithm 2 shows the implementation of the Dijkstra’s

shortest path algorithm. The Dijkstra’s algorithm determines the shortest path

for positive weighted edges. The algorithm assume 2 sets of vertices namely S

and Q, where S is the set of vertices whose distance is already calculated (begins

as an empty set) and Q is the set of vertices whose distance is not yet calculated

(begins with all vertices).

Algorithm 2 Dijkstra’s algorithm to determine the shortest path from source s

to all other vertices in V .
1: set source = s

2: S = φ

3: Q = V

4: while Q ¬ empty do

5: u = min(Q)

6: S = S ∪ {u}
7: for each edge (u, v) from u do

8: if distance(u)+weight(u, v)<distance(v) then

9: distance(v)= distance(u)+weight(u, v)

10: value[v] = u

11: end if

12: end for

13: end while

{To identify the shortest path between source s and a vertex t}
14: S = φ

15: u = t

16: while value[v] do

17: Insert u to S

18: u = value[u]

19: end while

The storage of the shortest path using simple arrays or linked list will cause
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the Dijkstra’s algorithm to have a computational complexity of O(n2). For sparse

graphs, Dijkstra’s algorithm can be implemented more efficiently by storing the

graph in the form of adjacency lists and using a binary heap or Fibonacci heap

as a priority queue. The best results are achieved with a Fibonacci heap and has

a complexity of O(m + n log n)

Geometry Awareness

The integration of simulation into the geometry context requires a better un-

derstanding of the geometry scenario. Issues such as location awareness and

geometry parameters must be incorporated into the simulation system. During

the simulation, a constant necessity for geometry data arises. Therefore, the

geometry parameters must be efficiently structured. The graph and the data

structures explained above are used to efficiently store the necessary architec-

tural data. The octree-based modeling explained above uses the graph data to

build a location-aware system where neighbor search methods are employed to

identify the happenings in the neighborhood. The concept of geometry awareness

is explained in detail in chapter 3.

2.2 Scalability Issues

Scalability is a common issue when modeling systems that has the capability to

grow larger. Scalability indicates the ability of the system to handle growing

amounts of data with an insignificant loss in performance. That is, the system

must be able to enlarge readily. In the pedestrian simulation framework described

here, scalability issues come in the form of larger regions and larger number of

pedestrians. Handling of such growth is possible by splitting the problems into

smaller tasks and solving them separately. Finally the results must be integrated

together without loss of any information.

These sub-tasks are generally performed in parallel on different computing

machines. Often, there is a necessity to communicate between the sub-tasks dur-

ing its execution. Parallel architectures and the use of parallel and distributed

programming can support such operations. The major difference between a nor-

mal serial execution and a parallel execution is that the sub-tasks are executed

in parallel with a hope of improving the speed and performance of computing.

Unfortunately, it is not always possible to implement the tasks to function inde-

pendently and efficiently in parallel. This is because certain tasks require infor-

mation from other sub-tasks, which make the tasks to occur in a serial fashion.

Amdahl’s law suggests that there exists a certain amount of serial code in most
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tasks and the speed up of the system depends on the amount of serial and parallel

code available in the task. Amdahl’s law is given as

Sp :=
1

α + 1−α
p

where α is the fraction of serial code, which cannot be parallelized and p repre-

sents the number of processes. As the number of processors increase, the speed

up does not necessarily increase proportionally. However, the Gustafson’s law

identified that the size of the problem is important when considering the amount

of parallelization.

In a very large simulation scenario containing many buildings and pedestrians,

the computing and performance issues can be improved by decomposing the sim-

ulation problem into smaller regions (e.g., simulating each building separately)

and simulating them separately. Care must be taken that the partition is per-

formed efficiently such that the communication between the tasks, thereby the

amount of serial process is minimized. Efficient graph partitioning techniques

may be used to decompose the simulation problem [KL70, SKK00, BGOM03].

2.3 Discrete Event Simulation

Even though the technology advances at an enormous rate, modeling complex

systems remains to be a major challenge. For example, systems such as manu-

facturing systems or business process modeling require efficient organization of

the structure to optimize the throughput or production, traffic control systems

needs to handle the flow of a large number of vehicles and a cargo department in

a large airport must make sure that the system carries the right baggage to the

right aircraft. Modeling of such systems can be achieved by using a number of

methods and tools, one among them is simulation. A simulation is a technique,

where models that resemble the original or the proposed system is built and the

behavior or the performance of the model is studied.

A discrete event simulation is one such method to model a system to study a

time-based or an event-based behavior of a system. Like in any other simulation

method, a discrete event simulation involves collecting of data, modeling the

system to the desired level of detail, validate the model, make initial test runs, run

experiments for the required input parameters and analyze the results generated.

A discrete event simulation typically progresses as and when the events occur.

For example, in a post office, some of the events include arrival at a specific

queue, departing the queue and entering the service counter, activity at the service

counter, joining another queue, etc. A typical queuing system consists of a queue
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of certain or infinite length and one or more service counters. Customers or

entities arrive in the queuing system, wait in the queue until the previous entities

are served and a service counter is available, execute the task at the service

counter and depart from the queuing system. Such a system can be modeled

using a discrete event simulation method.

Entity Management

The term entity is used to designate a unit of traffic (a transaction). Entities

change their state by responding to events. An event is a happening that changes

the state of a model (or system). There are two types of entities, namely external

entities (which are created explicitly by the modeler) and internal entities (which

are created and manipulated implicitly by the simulation software itself). A re-

source denotes a system element that provides a service to the entities. Resources

often have a limitation with their capacity and the entities must therefore wait if

the resource is occupied by other entities. The movement of the entity through

the system is carried out by an operation. A process-oriented or a transaction-

oriented approach simulates the system by focusing on the operations performed

on each entity. During a simulation run, the entity takes different states. Some of

the states are active state (the state of the currently moving entity), ready state

(entities waiting to enter the active state), time delayed state (if it is not possible

to perform an operation on the entity and the operation is postponed to a later

time) and the conditional delayed state (if there are certain conditions bound to

occur before the operation can be performed).

Clock

The simulation clock is an important component to control the simulation run.

The clock (is not a wall-clock) is directly associated with the simulation run. The

clock keeps track of the passage of the simulated time. The clock advances in

discrete steps (fixed time slices or always the next event). Once all activities are

executed at a given simulation time, the clock is advanced to the time of the next

earliest event to execute all the activities at that time.

Input Modeling

The input modeling function provides the input data for the simulation. In a

simulation, the behavior of an existing model is imitated and the resulting system

is simulated. Therefore, input data, as good as the realistic behavior is needed to



Discrete Event Simulation 21

simulate the system. Statistics from an existing (real) system are collected and

these statistics are translated to mathematical functions that produce random

numbers, whose pattern resembles that of the real system. Different distribution

functions are used to model the input data and these distributions transform a

uniformly distributed random number to a specific distribution.

Execution

Once the parameters are initiated within the model, the system is simulated or

executed. The execution function is responsible for the advance of the time,

generate the events, schedule the events and execute the events as the simulation

clock advances. Execution is probably the most complex part in a discrete event

simulation. The key of the execution lies in the efficient structuring of the list of

entities and events, as well as the scheduling of the events. Different event lists

are created and all new events generated are inserted into the event list in the

chronological order of their occurrence. As the simulation clock advances, the

events from the event list, which are bound to occur at the time of the clock, are

executed. The execution terminates once all the events are complete or once the

termination condition has reached.

Analysis

The purpose of simulation is to analyze the behavior of the system for a given set

of parameters. Therefore, during the simulation run, the states of the system are

constantly saved as output data. The behavior of the system can be determined

by analyzing the output data. For example, in a queuing system, properties such

as the average waiting time, average throughput of the system, average service

time, etc., are analyzed by performing fitness tests, acceptance-rejection tests,

etc., on the data obtained from the output of the simulation.

In this thesis, the pedestrian behavior is simulated using the SIM simulation

software library. The appendix A presents an implementation of an elementary

M |M |1 queuing system using the SIM simulation library.





Chapter 3

Geometric Modeling: A Foundation

for Pedestrian Simulation

Where there is matter, there is geometry

– Johannes Kepler

(Ubi materia, ibi geometria.)

Right from stunning special effects in movies or computer games in the field of

entertainment to realistic scientific simulations such as performance of an aircraft

structure or interaction of molecules, the study of objects in terms of its geometry

structure is inevitable. Geometric modeling is often linked with graphical repre-

sentation of 3D objects. Geometric modeling is also the study of computational

structures that capture the spatial aspects of the objects, which are of interest to

an application. Computational geometry or in other words CAGD (Computer-

Aided Geometric Design) deals with the study of classical geometric algorithms

and uses computational and mathematical methods to solve them. CAGD primar-

ily deals with the construction and representation of free-form curves, surfaces,

or volumes. Beginning from the renaissance artists, geometric modeling has come

a long way.

Huge difficulties existed in efficiently plotting and drawing curves. Several

mechanical methods and even French curves1 were commonly used to draw curves.

One of the foremost applications was the design and construction of automobiles.

The development of Bézier curves and surfaces and the de Casteljau algorithm

independently by P. Bézier at Rénault [Béz74, Béz76] and P. de Casteljau

at Citroën [dC63] respectively, were a major breakthrough in the representation

1A French curve is a template made out of plastic, metal or wood and composed of many

different curves. It is used in manual drafting to get smooth curve of varying radii.

23
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of polynomial curves and surfaces [Far02b, Far02a]. The significance of geometric

modeling can today be attributed to the growth in the field of computer graphics.

Tremendous improvements have been made in the field of graphic hardware

and the complexity of modern 3D graphics hardware has today far exceeded

the capabilities of a general purpose processor. 3D models are today generated

using computer graphic tools, mathematical equations or even with the use of

a 3D scanner to reproduce realistic objects. The so-called 3D-engines translate

the model into an image that can be displayed on a monitor. Realistic images

are also generated by using textures and lighting effects (ray-tracing method).

In spite of such an advance, graphical modeling is still time consuming when it

comes to producing high quality images. For example, the animated feature film

“Cars” produced by Pixar Animation studios required 17 hours to compute a

single frame of the movie. With a sophisticated network of 3000 computers and

with a 4× computing power as used for its predecessor movie “Incredibles”, it took

many days to render a single second of finished film. Continuous advancement

in computer graphics are regularly presented at the ACM’s SIGGRAPH annual

conference.

Geometric modeling is virtually seen in every scientific and engineering appli-

cation such as Geographic Information Systems (GIS), medical imaging, scientific

simulation and visualization, architectural and structural design.

In the reference model used in this thesis, the geometry parameters that are

necessary for the pedestrian simulation must first be formulated and structured.

The geometric modeling plays a vital role in supporting the pedestrian simulation

model. Traditional simulation models with a non-geometric background now-a-

days sometimes need to be integrated into a geometry context, which in turn

provides spatial context for non-spatial data. For applications that require spatial

context, it becomes more and more important to extensively model the geometry

data as well as integrate the simulation model into the geometry context. The

geometric modeling is used to derive the necessary architectural details such as

location of the rooms in the building, staircases, distance between two walls, etc.,

from the building used in our reference scenario. The architectural parameters

are also necessary to establish a communication between the pedestrian model

and the surrounding environment, where the simulation takes place.

This chapter deals with the geometric models, which support the pedestrian

simulation, as well as the associated algorithms and methods that are used for

constructing and querying the models. This chapter begins with an overview of

geometry representation and the technical concepts that lie underneath. Then,

the chapter focuses on various methods and data structures needed to extract

the geometry data for the pedestrian simulation. This includes the concepts
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of representation of the geometry model in terms of a graph structure, path-

search algorithm performed on the graph, partitioning the geometry using octrees,

hierarchical storage methods and finally the communication with the pedestrian

simulation. The octree model is used as a base for a pedestrian navigation system.

Therefore, the concepts of position identification, neighbor search, etc., are also

presented.

3.1 Geometry Representation

In order to visualize a realistic scene, the scene must be efficiently represented

in terms of geometry model. One direct approach is to represent the scene is

a 3D raster format, where the entire scene is partitioned into small cells. Each

cell contains the information if the cell actually belongs to the body of the scene

or not. The quality of the output model depends on the level of discretization

and with the increase of the number of cells, the memory requirements increase

exponentially. Another method to represent solid bodies is the use of octrees,

where each cell is partitioned further into 8 smaller cubes only (as shown earlier

in 2.1) if the approximation level has to be reduced. Use of octrees reduces the

memory requirements.

It is also possible to combine elementary or existing volume models to build

new models. Boolean set operations such as union, difference, and intersection

can be used to combine solid bodies to produce new models. These operations

are 3D equivalent of a 2D boolean operation. Applying an ordinary boolean set

operation to two solid objects does not necessarily yield a solid object. There-

fore, regularized boolean set operations can be used to yield new solid model by

combining existing solids. Regularized boolean set operations are described in

[Req77].

Since volume models capture the entire geometry of the solid, volume are often

used in modeling physical processes such as collision detection of objects, finite

element method, fluid dynamics, etc. However, due to the enormous amount of

memory needed, volume models are seldom used for visualizing realistic scenes.

Alternatively, a surface model is used. In a surface model, the visible parts of the

scene are represented using free form surfaces such as Bézier, NURBS surfaces

or polygon meshes such as triangulation. Curved surfaces can be discretized,

represented in the form of triangles, and are rendered to produce curved surfaces.

For a smooth curve, it is important to use as many triangles as possible. Detailed

information on geometry representation can be found in [BGZ04].

The reference model, from which the geometry parameters are extracted, is



26 CHAPTER 3: Geometric Modeling

represented as a surface model. Since we are interested in the dimensions of the

paths and rooms (or in other words the dimensions of the space available) and

not in the solid model such as thickness of the walls or roof, a volume-oriented

model is not used here. The reference model is represented as a triangle mesh

and each triangle is then rendered to produce the scene of the reference model.

Figure 3.1 shows the reference model with smooth surfaces and the triangular

mesh lying under it.

Figure 3.1: Surface model (left) and the triangulation representation (right) of

the reference model.

3.2 Geometry Parameters for Pedestrian Simula-

tion

In general, pedestrians do not move arbitrarily, but they typically have a moti-

vation: to execute a task at the destination (working, shopping, relaxing, etc.)

[Wer96]. This process involves movement within the building, execute the task

and also wait at the destination when it is not possible to execute the task. A

task here defined as any activity that does not involve a movement along the

path. A task can virtually be any activity: relax on a bench or watch the notice

board or wait in the queue to pay at the cash counter. Therefore, there are two

pedestrian activities modeled in the reference scenario, namely movement along

the paths and execution of a task at the destination. During these activities, the

pedestrians interact not only with other pedestrians participating in the scenario

but also with the geometry of the environment. The geometry parameters such

as the paths, location of the destinations, type of the paths, etc., are therefore

needed to model the pedestrian behavior. From the CAD data of the reference

model, we extract the necessary geometric parameters and the architectural de-

tails, and use the data to model the pedestrian behavior in the given scenario.

Architectural parameters such as the thickness of the walls, pipelines, position of
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the windows, etc., are however irrelevant for the pedestrian simulation here and

are hence ignored.

The geometric parameters, once extracted need to be structurally well orga-

nized such that the pedestrian simulation is performed efficiently. The geometry

data are interlinked together into a graph consisting of edges and nodes, where

edges represent the paths and certain nodes represent the destinations. The graph

data is itself a nested linked list structure, where each edge is linked to the nodes

on both ends of the edge and each node is linked to the set of edges that connect

to this node. The graph data is then relational. That is, if given a node, it is

possible to identify all the edges connecting it and vice versa. The remaining

geometric parameters extracted such as the capacities, types of paths or rooms,

etc., are also embedded within this graph. All pedestrian algorithms implemented

here refer to this single graph structure to access any parameter concerned with

the geometry of the scenario. In this section, the algorithms and data structures

that are used to extract, manipulate and access the graph are introduced and the

various algorithms implemented are discussed.

3.2.1 Extraction of Paths and Destinations

A pedestrian visit planning involves finding a path between two points and ex-

ecuting the task at the end point. Therefore, the destinations and the paths

that lead to the destination must first be identified from the scenario. Typical

use of such data can be found in a building guidance system – for example, the

FIFI2 (Fakultätsinformationssystem für Infoterminals) at the Computer Science

building of the Universität Stuttgart [GSG04] – where routing information to the

destination is provided to visitors. Such systems are typically built for a specific

scenario. In the case of FIFI, a graph connecting all rooms is built manually such

that the path between the Infoterminal and the destination can be calculated us-

ing a path-search algorithm. The web-interface then displays the path graphically

(see Figure 3.2).

The graph of such an Infoterminal is not sufficient since the graph is scenario

specific and the architectural details (path width, stairs or ramp, room capacity,

etc.) are missing. Therefore, the graph, along with the required architectural

parameters, must be extracted automatically from any generic CAD model of a

building.

The Pathscan [Dre03] tool, developed in our group, is one such tool that can be

used to automatically extract a graph from the given CAD model. Pathscan tool

uses the graphic hardware to identify the depth buffer from a surface-oriented

2 http://infoterminals.informatik.uni-stuttgart.de

http://infoterminals.informatik.uni-stuttgart.de
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Figure 3.2: Room search using the FIFI Infoterminal.

model to build the graph (the vertical faces are not visible to the user). The

model is projected along the x-z-plane and the model is parsed in the y (upright)

direction from top to bottom and slices of the model are made. The complexity

of the method depends on the number of raster points along the x-z-plane (not

every point is considered but the size is decided based on practical use, e.g., Door

width of 80 cm) and the number of slices s (a slice is made as soon as a surface is

detected along the x-z-plane since a pedestrian movement is possible only on top

of a surface, e.g., stairs, floors). The angle of inclination of the polygons along

the y axis is to be considered when making slices (e.g., walls are placed at 90◦

and can be ignored, but a ramp with an inclination of 5◦ cannot be ignored). The

complexity therefore is O(nx nz ns).

By using the distance transform method to skeletonize3 the slices, closed rooms

3Skeletonization is a process of reducing foreground regions in a binary image to a skeletal

remnant that largely preserves the extent and connectivity of the original region while throwing

away most of the original foreground pixels. Skletonization can be done in two ways. First,

the boundary pixels are eroded by preserving the end points of the line segment until no more

eroding is possible. What is left over approximates to a skeleton. Another approach is the use

of distance transformation method. In a distance transformation method, the binary image

is transformed to a gray scale image except that the gray level intensities of points inside the

foreground regions are changed to show the distance to the closest boundary from each point.

The skeleton then lies on the singularities in the distance transform.
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and thereby, the possible nodes are identified. The graph is then built using these

nodes. It is important to check if the node can accommodate a pedestrian (height

dimensions) and a transition to the adjacent node is possible (height difference,

blockage between 2 nodes and the minimum distance to the wall). The Pathscan

tool was originally developed as an intelligent path-search system for a given

architectural model. It therefore identifies all walking paths from the given CAD

model. The graph is then used to navigate a pedestrian (a virtual tour) to the

desired destination.

Figure 3.3: Snapshot of the Pathscan tool with the graph extracted automati-

cally.

As seen from Figure 3.3, the graph extracted from the Pathscan tool is very

extensive and irregular. This is because the tool identifies all possible paths,

where a pedestrian movement exists and interconnects every adjacent node. Using

such a graph to model the pedestrian behavior is complex and computationally

intense. Therefore, the graph is reduced by merging certain edges together such

that the properties of the graph suitable for the pedestrian simulation are still

preserved. In a reduced graph, all edges that occur within a confined region

are merged into a single edge and this edge contains the properties of the other

merged edges.4. An edge will have a closed boundary around itself such that

the pedestrian movement, anywhere in the path surrounding the edge, can be

4Two main properties are the type of the path and capacity. The path type is unique for all

edges since they lie within the same region. The path capacity is calculated from the available

area by considering the distance to the wall
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modeled using the parameters of the edge. Now, each edge will now support only

uni-directional or bi-directional pedestrian movement. For example, consider a

wide long corridor, which has doors on either end of the path (see Figure 3.4).

The graph extracted from the Pathscan tool consists of many paths between the

two doors such that the entire area of the path is included in the graph. The

reduced graph contains a single edge that passes through the center of the corridor

with edges to the doors along the paths. The properties (path dimensions and

path types) of all edges along the path are merged into this single edge.

Figure 3.4: Extensive graph from the Pathscan tool (left) and the reduced

graph for the pedestrian simulation (right).

From the geometric specifications of the path, the tool can identify the type

of the path ramp, stairs, etc., (is the path suitable for a wheel chair?). However,

difficulties exist in identifying escalators or elevators. The CAD model generally

does not differentiate the path types (private path, emergency exits) or provide

room details. The tool is therefore built to be flexible such that it is possible to

• modify the graph (adding or removing of new nodes and edges),

• define room numbers,

• define edge properties (path type), and
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• export the graph and model in other formats (XML, VRML, etc.).

Figure 3.5: Snapshot of the Pathscan tool with the reduced graph.

The final graph, as shown in Figure 3.5, contains a set of edges and nodes spread

across a 3-dimensional space and each node therefore contains the co-ordinates

of its location in the CAD model. Since the Pathscan tool also exports the

extracted graph into an universal XML (Extensible Markup Language) format,

the XML version of the graph can easily be read and manipulated5 to generate the

reduced graph. For the pedestrian simulation, it is important to include several

properties to the graph such as type of the path (stairs, ramp, private path, etc.),

capacities of each path, the distance between the walls, the exact description of

the destinations, capacities of the destinations, etc. The properties of paths and

destinations used for pedestrian simulation are described in the next part.

3.2.1.1 Path Properties

The path properties needed for modeling pedestrian behavior are listed as follows

1. Length: The length of the path is necessary to calculate the time it takes for

a pedestrian to walk along the path. The length of the path is automatically

5The Libxml2 library – the XML parser and toolkit of gnome – is used to parse and manip-

ulate the XML data (http://xmlsoft.org/)

http://xmlsoft.org/
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calculated using the co-ordinates of the two nodes, (x1, y1, z1) and (x2, y2, z2)

to which the edge is connected. The path length

l =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

2. Type: There are two different requirements necessary for the type of the

path, namely the geometrical layout of the path and path restrictions for

certain pedestrians. The geometrical layout of the path means architectural

properties such as staircase, ramps, pathways, narrow path through a door,

etc. These properties are automatically identified during the graph extrac-

tion. Path restrictions are derived from properties of the scenario, where

the pedestrians are modeled. Properties such as private paths (restricted to

certain group of pedestrians), emergency exits (not in normal use), paths

inside rooms, restricted areas or ducts, etc., are not defined in the CAD

model. Therefore, these restrictions are configured separately and are then

included in the graph.

3. Capacity: The capacity is fundamentally driven by the area of the path.

The area is calculated by using the length of the path and the distance

between the walls throughout the path. Generally, the capacity of the path

denotes the maximum number of pedestrians that can possibly fit in the

given path (at 0.5m2/ped [Gip87]. The capacity is necessary to model the

pedestrian behavior, which shall be discussed in chapter 4.

4. Speed: The walking speed of the pedestrian along the path is influenced

by the characteristics of the pedestrian himself. Various statistical and

experimental methods used to determine the walking speed of the pedestrian

along the path will be discussed in chapter 4. However, the geometrical

aspects of path also play a significant role in influencing the walking speed

of the pedestrians. Physical experiments were made to measure the average

walking speed along different path types in the reference model used here.

For example, it was found that the walking speed along the ramps and

flat pathways were more or less consistent whereas the walking speed along

the staircase is roughly half the speed of walking along a pathway. Such

parameters are also taken into account for pedestrian simulation.

3.2.1.2 Destination Properties

The destination properties needed for modeling pedestrian behavior are listed as

follows

1. Type: The type of the destination here denotes the purpose of the destina-

tion (e.g., WC, shop, restaurant, etc.). The type does not have any relation
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to the geometry of the data. However, the type information is necessary

for a pedestrian to decide whether or not he has to visit the destination.

The type also gives the pedestrian model an idea how long it would take

to execute the task (the service time is calculated using the type value).

Each node, which is a destination, is associated with a unique ID (or the

room number). There can be more destinations associated with the same

type. The handling of such destinations is dealt with in chapter 4. The type

of destination cannot be automatically derived and they must therefore be

defined manually using the Pathscan tool.

2. Capacity: Unlike the capacity of the path, the capacity of the destination

does not denote the physical capacity, but instead the number of customers

who can be served in parallel. Again, such information is dependent on the

destination and therefore cannot be automatically generated. The capacity

of the destination must therefore be defined manually using the Pathscan

tool.

The path and the destination properties are embedded within the XML data of

the graph and rooms respectively. The layout of the XML data that contains the

graph and room data are presented along with some examples in chapter 6.

3.2.2 Graph Representation

For the reference model, we use a graph structure to represent the paths and

destinations of a CAD model. The properties associated with each path and

destination and path are also embedded into the graph. Pedestrian simulation

and other applications such as path-search algorithms, navigation systems, etc.,

are performed using this graph. Figure 3.6 shows a snapshot of the graph of the

reference model used here.

3.3 Pedestrian Navigation

So far, the necessary parameters required for modeling and simulating pedestrian

behavior in the reference scenario were collected. In the reference scenario, the

pedestrian is also navigated through a series of destinations. The geometry and

the graph data can be used to build a pedestrian routing and navigation system.

A pedestrian navigation system – using the geometry and graph data – is built

in the following steps.

• Initially, the graph data is hierarchically structured in an octree.



34 CHAPTER 3: Geometric Modeling

Figure 3.6: Snapshot of the graph of the reference model used here. The paths

in the scenario are connected using the edges of the graph.

• The current position of the pedestrian, as well as the destination is then

identified from the octree structure.

• Finally, by considering the pedestrian priorities, efficient path-search meth-

ods are used to determine the optimal path (or a route) to the destination.

In this section, we discuss each of the above listed steps in detail.

3.3.1 Hierarchical Modeling

The hierarchical modeling of a geometry structure (or space partitioning) is the

process of partitioning the geometry objects into two or more disjoint subsets.

The partition is done such that the geometry is partitioned into non-overlapping

regions. Any point in the geometry shall then lie exactly in one of the parti-

tioned geometry. The partition is done based on hierarchy and recursion. Some

examples of such partitioning include BSP-Trees, Quadtrees, Octrees, kd-trees,
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triangulations, etc. In general cases, a tree structure is used to represent the

partitioned structure. The data is then organized in the leaves of the tree. Such

hierarchical geometry structures facilitate certain geometric queries such as col-

lision detection of objects, neighbor search, etc. [Sam84] surveys the hierarchical

data structures, specially quadtrees and their related structures.

Here, octrees are used to partition and structure the geometric model hierar-

chically. The tree structure is then used to identify the position of the pedestrian

and navigate him to the destination.

3.3.1.1 Octrees

In section 2.1, the octree structure used to represent geometry data was presented.

Here, we build a point-based octree of the graph by representing the nodes of the

graph in an octree. The method to build the octree from a graph is explained as

follows.

Octrees can be used to represent point data or set of elements that is spread

across a 3-dimensional space P ⊂ R
3. The points are inserted into the octree

and for each point inserted, the octree is built recursively until each cell in an

octree consists of utmost 1 element. During this process, octrees might contain

empty cells. [Mun06] proposes an efficient method to insert the point data into

the octree structure and [NRMB05] uses this method to structure the p-version

of finite elements hierarchically using the octree.

The set of points P is structured in the octree using the Lebesgue curve

sequence. The octant, where a single point p ∈ P should lie is determined using

a simple arithmetic operation. The algorithm uses binary form to identify the

octant to which the point p belongs. Three bits (b1, b2, b3) are used to represent

the Morton index from ’0’ to ’7’ in the form of binary numbers (000, 001, ..., 111).

Figure 3.7 shows an octree of level 1 in the range of [−1, 1].

The signs of the co-ordinates are used to determine the octant to which they

point. For this purpose, the points in the point set are normalized such that the

entire set of points can be represented in a cube space f : R
3 → [−1, 1]3. Now,

the co-ordinates of each point (±x,±y,±z) lie either on the positive octant or

the negative octant. The bits are set based on the sign of each of the co-ordinates

(see algorithm 3)

Therefore, each point is then inserted into the corresponding (node-number)

node of the tree. If the leaf node already contains a point, then an octree is built

recursively within that node and both the points (old as well as new) are shifted

to their corresponding octants. Figure 3.8 shows an example of a quadtree for P

set of points.
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Figure 3.7: Octree with co-ordinates of each vertex in the range [−1, 1].

The graph of the reference model used here is structured similarly in an oc-

tree structure. For this purpose, the nodes of the graph are parsed and the

co-ordinates, along with the NODE ID are extracted from the graph structure.

These node points are then inserted into the octree structure. The octree is then

used to identify the position of the pedestrian as well as search the neighboring

nodes for possible destinations, which shall be discussed in the following section.

The geometric model used in the reference scenario consists of about 540 node

points. The algorithm takes 0.024 seconds to build an octree with a depth of 5

for the graph of the geometric model.

11

13

Nodes

2

0

12

3

103102

100 101

Figure 3.8: Quadtree and the tree structure consisting of P set of points.
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Algorithm 3 Method to determine the octant of a point with co-ordinates

(x, y, z).

1: if x ≥ 1 then

2: set b3 = 1

3: end if

4: if y ≥ 1 then

5: set b2 = 1

6: end if

7: if z < 0 then

8: set b1 = 1

9: end if

10: convert (b1, b2, b3)2 → (node number)10

3.3.1.2 Position Identification and Neighbor Search

Typical simulations that use octrees or similar structures will have their model

partitioned into several parts. To handle these sub-models separately, it is impor-

tant to efficiently identify the desired model in the structure. The term Location

Awareness refers to the ability of identifying individual model components. In

the reference model, the pedestrian arrives in the scenario with some mobile navi-

gation device in hand. The position of the pedestrian must therefore be identified

and translated to the graph data. Since the pedestrian can arrive in any of the

octant of an octree, the neighbor cells must also be searched efficiently to identify

graph nodes that are situated nearby.

Identification of neighboring cells in an octree is possible with the use of

neighbor-cell matrix [Fra00]. Table 3.1 shows the neighbor-cells in a matrix for a

quadtree in all directions.

S

0 1

32
W

N

E

0 1 2 3

W - 0 - 2

E 1 - 3 -

S - - 0 1

N 2 3 - -

Table 3.1: Neighbor cell coding (left) and neighbor cell matrix (right).

For example, the position code of the cell north of the cell with Morton index

1 is always a 3. In Figure 3.11, the position code of the cell north of 031 can be

found using the table as 033. However, to determine a cell east of 031, we get

031
E27→−
−→ 03

E17→−
−→ 0

E07→1
−→ 1. This means that the identification of the position
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of the node belonging to the same level is not possible. Therefore a complete

neighbor cell matrix is required such that the position code of the neighbor cell

can be identified even if the neighbor cell is outside the 4 quadrants [Ber02]. Table

3.2 shows the complete neighbor cells such that cells outside the quadrants can

also be identified.

2

0 1

32

S

W

N

0

2 3

1

0 1

32

1

3

0

2

3

10
E 0 1 2 3

W 1←↩ 0 X 3←↩ 2X

E 1X 0←↩ 3X 2←↩

S 2←↩ 3←↩ 0X 1X

N 2X 3X 0←↩ 1←↩

Table 3.2: Complete neighbor cell coding (left) and neighbor cell matrix (right).

The X shows that the neighbor cell code is definite and ←↩ shows that the

neighbor cell code belongs to a different quadrant and it may or may not exist.

Now, we determine the cell east of 031 we get 031
E27→0←↩
−→ 030

E17→2←↩
−→ 020

E07→1X
−→

120. Thus the complete neighbor cell matrix can be used to determine the position

of the neighbor cell belonging to the same level. Similar approaches for neighbor

search in an octree can be seen in [Bha01, FP02, YB06].

We use an octree-based system to identify the exact position of the pedestrian.

Position identification or Location Awareness is increasingly becoming common

with the cheap availability of location-sensing devices. In the field of ubiquitous

computing, location awareness opens the possibility of improved services: Where

is the next bus stop? how to find the next restaurant and also reserve a table?

how to find my way home and how long will it take to drive? Several electronic

devices exist that can determine the current geographic location, both indoors

(RFID, WLAN, sensors) and outdoors (GPS6 systems). There are three different

techniques used in sensing the location [HB01a].

6GPS or Global Positioning Systems consists of a set of about 2 dozen satellite navigation

systems orbiting around the earth. Initially launched for military purposes, GPS is now com-

monly used by civilians for a wide variety of applications. GPS consists of an atomic clock and

a simple computer to synchronize and transmit its current position. A GPS receiver receives

the GPS signal from at least 3 satellites to calculate its position using the triangulation method.

Availability of a 4th satellite signal will be useful to compute the altitude as well. Modern GPS

devices can have an accuracy of up to 1-2 meters by using differential GPS.
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• Triangulation uses the geometric properties of triangles to compute object

locations

• Proximity measures nearness to a known set of points

• Scene Analysis examines a view from a particular vantage point

A survey of different location systems is made in [HB01b]. In the reference model,

we assume that a pedestrian arrives with some mobile navigation device in hand

and we further assume that the location devices can deliver the co-ordinates of

its current position p(x,y,z) in the scenario. We then use this data to identify the

exact location within the graph using the octree.7

The octree containing the list of nodes of the graph is already generated. Now,

the exact location of p(x,y,z) within the octree is identified and the position code

of the octant to which it belongs to is identified. The search is made as follows.

Let p(x,y,z) be a point p ∈ P . We now insert this point in the existing octree.

Therefore, the new point is normalized within [−1, 1] and by using the algorithm

described above, the octant in which the new node is to be inserted is identified

and the program terminates just before the insertion. We now have the position

code of the octant to which p(x,y,z) belongs to. The node that already exists in the

octant is then identified. There are two possible cases of identifying the existing

nodes.

Case 1: If p(x,y,z) belongs to an octant, where a node already exists, the current

node is returned. This implies that p(x,y,z) lies in the voxel of the node that

is returned (Figure 3.9).

Case 2: If p(x,y,z) belongs to an octant, where no node exists, the neighboring

octants in the same level must be searched. Therefore, the parent of the

current node is searched and the children containing a node are returned

(Figure 3.10). The resulting nodes are compared with p(x,y,z) to determine

the closest node.

7It must be noted that there may often be errors in identifying the exact position using

position identification devices. A WLAN-based position system for example uses the triangu-

lation method to identify the current position of the device. The location of the access points

within the scenario is known and the WLAN receiver measures the signal strength to identify

the distance to the access point. The signal strength and noise depends on many factors such as

wall thickness, construction materials used, other interferences, etc. Sufficient tolerance levels

have to be built to improve the precision of the devices. [EFS03] surveys the available position

identification devices and compares their performance and accuracy.
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Figure 3.9: Tree search when p(x,y,z) lies in a quadrant, where a node exists.

However, it must be noted that the nodes stored in the octree structure are

not necessarily positioned in the center of the voxel. This means that the position

p(x,y,z) and the node determined from the above explained steps are not necessarily

the closest neighbors. It is therefore necessary to parse the neighboring octants,

determine the nodes on those octants and find the node closest to position p(x,y,z).

The objective is to determine if there are other nodes closer than the identified

node. To determine the boundary condition for searching the octree, a sphere

is drawn with p(x,y,z) as origin and the radius is set to be the distance between

p(x,y,z) and the closest node obtained so far. Since the octree structure resembles a

cube, the resulting sphere is bounded by a cube since a search algorithm is much

easier to implement when the search boundary resembles a cube. The octree is

then traversed through recursively to determine the octants that lie within the

search boundary. The nodes that lie in each of these octants are then extracted.

The closest neighbor is then determined by comparing the distances between

p(x,y,z) and the nodes within the search boundary. The position of the pedestrian

p(x,y,z) will now be mapped to the closest node identified with this method. The

algorithm 4 (also illustrated in Figure 3.11) shows the steps involved in identifying

the nodes within the search boundary.

In the example (Figure 3.11), a quadtree containing certain number of nodes

is generated. On searching the position of p(x,y,z), the octant with Morton index

(122) is identified. In order to find the nodes that are located closer than the

identified node, a circle with p(x,y,z) as center and r (distance between p(x,y,z)
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Figure 3.10: Tree search when p(x,y,z) lies in a quadrant, where a node does

not exist. Therefore, the neighboring nodes of the same level are searched.

and the identified node) as radius is drawn. An enclosing square is set as the

boundary box. Now, on parsing the quadtree to determine the octants and their

respective nodes (if a node exist), the octants with Morton indices (033, 120,

122, 1230, 1232, 2, 300) are identified that lie partially or fully inside the square.

Octants with Morton indices (031, 121, 301) are omitted since they do not contain

any node. By comparing the distances between p(x,y,z) and each of the 7 derived

nodes, the closest node is found in the octant with Morton index (2).

In comparison to a linear search (comparing the geometric distance of all

existing nodes with p(x,y,z) and determining the closest node – computational

complexity of O(n)), the complexity of the node search using hierarchical data

structures such as the octrees is O(log(n)). Since the neighboring nodes are

also searched, the search is repeated until the nearest neighbor is found. The

complexity therefore is O(m ∗ log(n)), where m lies in the interval [1, n]. In the

best case, the complexity turns out to be O(log(n)) and in the worst case, the

complexity is O(n ∗ log(n)) which is worse than a linear search. In normal cases,

especially for large numbers of n as in our scenario, the complexity tends to be

logarithmic.

Now that we have identified the position of the pedestrian, the pedestrian

now wishes to execute his tasks. Let the next task be Tj, where j represents the

type of tasks and there exists many destinations di|{i = 1, 2, . . . , n}, where the
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Algorithm 4 Method to determine the octants within the search boundary.
1: get p(x,y,z)

2: determine node n(p(x,y,z)) {closest node identified so far}
3: set closest distance = distance(p(x,y,z),n(p(x,y,z))

4: set bounding cube (of sphere) with end co-ordinates (x1, y1, z1), (x2, y2, z2)

5: Func: nearest node(node)

6: start tree search

7: if (child node 6= φ) then

8: if (node inside cube boundary) then

9: call nearest node(child node)

10: end if

11: end if

12: end Func

13: get nodes of all identified octants

14: while there exists nodes to compare do

15: get distance(p(x,y,z),current node)

16: if (distance<closest distance) then

17: set distance=closest distance

18: end if

19: end while

tasks j can be executed. Thus the destination d that is closest to p(x,y,z) is to be

identified. The identification of such a destination is again done using neighbor

search in an octree. We first identify the set of destinations dk|{k = 1, 2, . . . ,m}
such that dk ⊂ di. For this, we define a search radius from the current position

p(x,y,z) and obtain all nodes dk that belong to the type di. The destination d ⊂ dk

is chosen and the pedestrian is directed to d. This process will be explained in

3.3.2.

The performance and complexity of determining dk is same as the algorithm

to determine the closest neighbor. A larger search radius as compared to posi-

tion identification method however increases the domain of search and therefore

requires more time to determine dk. Certain heuristics are however used to define

the search radius such that the search complexity is reduced. One such heuristic

is the search of destinations in the same floor. For this, the search radius is de-

fined such that only the nodes along the x − z plane is searched and the search

along the y axis is restricted.

So far, the position of the pedestrian in the reference scenario (position on

the graph) is identified. Also the list of destinations in the neighborhood is also

identified. Now, the pedestrian needs to be navigated to his chosen destination.

It must be noted that the closest geometrical destination need not necessarily be
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Figure 3.11: Method to determine the closest neighbor of p(x,y,z) in a quadtree

example.

the closest destination to reach (a room located one floor above will be a couple

of meters away from the current position but the path may be much longer).

Therefore the destinations must be sorted according to the path length such that

the pedestrian can choose the closest located destination to the current position.

The path length can be determined from the path-search algorithm described in

the next section.

3.3.2 Path-Search Algorithms and Navigation

A path-search algorithm (or the shortest-path problem) is used to determine the

path between two points such that the overall cost (distance, congestion, toll

roads) of the path is minimum. Path-search algorithms are widely used in street

routing and navigation systems using a GPS device. Path-search algorithms are

also used in logistics and transportation to calculate the time and cost of the
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service offered. With the use of a single-source shortest path (SSSP) method,

all possible paths that leave the starting node is identified and the path with

the lowest graph weight is the shortest path. The weights of the graph can be

changed (set weight of toll-roads = ∞ such that toll-roads are avoided) such

that the desired type of path is obtained. Furthermore, services such as a radar

trap or real-time traffic messaging service (TMC) are offered such that alternate

(cheaper) routes can be calculated using these services [Mei04].

The most commonly used method to determine the shortest path between two

points is the Dijkstra’s shortest path algorithm [Dij59]. The algorithm calculates

the shortest path from the start node to all other nodes. As soon as the end node

is reached, the algorithm terminates and the shortest path is determined. The

algorithm uses a greedy search heuristic. During the search, every node of the

graph is associated with the attribute – if the shortest path to it is determined

or not. The algorithm works with the principle that the shortest path is the

sum of shortest sub-paths leading to the end node (for implementation details,

refer to chapter 2). With the graph of n nodes and m edges, the algorithm has

a computational complexity of O(m + n · log n) when efficient data structures

are used to store the intermediate nodes. Other algorithms that can be used to

calculate the shortest path include Bellman-Ford algorithm (solves single source

problem even for negative weighted edges), A* search algorithm (solves for single

source shortest paths using heuristics to try to speed up the search) and Floyd-

Warshall algorithm (solves all pairs shortest paths).

From the previous section, we have obtained a list of destination dk from which

a pedestrian may choose a destination d to execute the task Tj. The geometric

distance between p(x,y,z) and each nodes of dk may not necessarily identify the

closest node to p(x,y,z) since the path distance and the geometric distance are

different. Therefore, the single-source shortest path is used to determine the

shortest path to each of dk and the list dk is sorted according to the increasing

distance from the source. The list of possible destinations and the distance to it

are presented to the pedestrian such that the pedestrian can choose his destination

d (often the closest node). The path-search can also be improved by considering

the priorities of the pedestrian. For example, wheel chair users cannot use the

stairs and must therefore routed through the elevator. Since the graph extracted

also contains the type of the paths, the edges that represent stairs can be searched

and set to ∞. The path-search algorithm therefore avoids the stairs since they

will never be a part of the shortest path. Numerical examples of destinations and

path-search methods will be presented in chapter 6.

Once a path is chosen, the pedestrian can be interactively navigated to the

destination. They can be done either in advance through some visualization envi-
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ronment or in real-time with the use of interactive navigation devices. A VRML

(Virtual Reality Modeling Language) model or the visualizer tool developed for

visualizing the pedestrian simulation (see chapter 4) can be used to view a virtual

flight from the current position to the destination. Figure 3.12 shows a snapshot

of VRML application for the shortest path-search performed in the reference

model used here [GSG04].

Figure 3.12: A snapshot of a VRML model for calculating the shortest path

and guiding to the destination in the reference model (Computer Science building

at the Universität Stuttgart)

3.4 Summary

In this chapter, the concepts of geometric modeling and representation as well as

the extraction of the necessary geometry and architectural details are explained.

The reference model and the parameters necessary for the pedestrian simulation

in the reference scenario is also presented. Also, a method to support pedestrian

navigation using the graph data is developed. In this method, the graph is parti-

tioned into an octree, which again is used for position identification and location

awareness.

For supporting a pedestrian navigation system, we assume that the pedes-

trians arrive with some kind of mobile navigation devices in hand, which can

already identify the co-ordinates of its location within the building. We use the

graph to transform the available co-ordinates to the position within the graph.
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The major drawback with the system is that the octree model depends on the

available co-ordinates of the position identification device. It assumes that the

co-ordinates transmitted to the octree server is accurate. However, such devices

have a certain degree of error and therefore, a certain level of fault tolerance must

be built within the octree for an exact position identification.

Typical indoor position identification devices include the use of WLAN sig-

nals, sensors, RFIDs, BlueTooth, etc. In the case of sensors or RFIDs, the sensor

devices are already coded with their corresponding location within the building.

Therefore, the information from the sensors directly transmits the current loca-

tion (room number or location in the graph) within the building to the pedestrian.

Position identification using WLAN works on the principle of triangulation. The

co-ordinates of the WLAN access points are known. Therefore, a client measures

the signal strength to the available access points in the neighborhood and calcu-

lates its current co-ordinates. Generally, WLAN position identification devices

use a cell-based approach to determine the exact location (e.g., room number) in

the building. In a cell-based approach, several 3-dimensional cells are calibrated

within the building and each cell receives an ID. The signal strength range within

the given cell is known and whenever a position identification device is brought

within this cell, the device automatically identifies the corresponding ID.

All the above-mentioned methods to identify the position suffer from a ma-

jor drawback. That is, to calibrate a cell, a physical presence in the scenario is

required and the WLAN access points and the receiver must be calibrated man-

ually. This drawback can be overcome by the use of the octree model since it is

only necessary to have a CAD model in order to build a location-aware system.

Also, the octree model offers a more efficient search mechanism, especially for

larger models.



Chapter 4

Discrete Event Pedestrian

Simulation

Anyone who considers arithmetic

methods for producing random digits is,

of course, in a state of sin.

– John von Neumann

In the previous chapter, we identified the set of paths and the geometric pa-

rameters required to model and simulate pedestrian traffic, from the reference

model. A method to identify the locations for a new pedestrian, as well as nav-

igating the pedestrian to the destination has been described. Now, we need to

analyze the pedestrian behavior in the reference model. Therefore, we build a

framework, which allows us to model and simulate the pedestrian behavior using

queuing systems and integrate the simulation within the geometry of the reference

model.

Pedestrian movement is one of the most commonly seen activities in day to day

life. Airports, shopping malls, football stadiums, exhibitions or any other similar

facilities today attract more and more pedestrians. Since there is a continuous

growth in the amount of pedestrian activity, modeling pedestrian behavior turns

out to be complex and important. Recently, pedestrian simulation has received

more attention, especially in safety design and evacuation process. Concerns in

the environmental degradation and awareness of physical fitness1 also causes an

increase in the pedestrian activities, which in turn brings a necessity to improve

1This also lead to the concept of car free days. The world carfree day (September 22 of

each year), launched by the world carfree network is once such initiative to encourage the use

of public transport and pedestrian facilities by avoiding the use of a car.

47
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pedestrian facilities. A sensible improvement of pedestrian facilities can be made

possible only through pedestrian studies. Therefore, pedestrian modeling and

simulation plays a significant role in increasing the standards of the pedestrian

infrastructure.

Pedestrians are undoubtedly one of the most complex beings to model. Un-

like vehicular traffic simulation (cars, trucks, etc.), pedestrian behavior is not

disciplined. The pedestrian behavior pattern is very inconsistent among each

other. Pedestrians involve themselves in a wide range of activities. Starting from

daily commuters who rush to their destination to tourists who walk leisurely from

shop to shop, pedestrians exhibit a wide range of behavior. [Tek02] shows that

pedestrians have the maximum fluctuations in speed, acceleration, change of di-

rection, spontaneous decisions, etc. A typical commuter during business hours

would intend to get to the train as fast as possible. He would take the shortest

path to the train and would rarely change directions. On the other hand, tourists

tend to stop often for a window-shopping and to rest. Furthermore, architectural

hindrances such as fountains or benches also tend to slow down the journey.

This chapter deals with modeling pedestrian behavior in buildings, specifically

in a 3-dimensional scenario. The pedestrian movement is virtually 2-dimensional

and the pedestrian movement in a (3-dimensional) building can be mapped to a

2-dimensional graph. However, the geometry of the building plays a significant

role in the pedestrian simulation. For example, in chapter 3, it was shown that the

geometry data is used to measure the height difference between 2 planes along the

depth buffer to determine if a pedestrian movement can exist there. The pedes-

trian behavior is therefore modeled in a 3-dimensional scenario. The geometric

modeling explained in chapter 3 provides the necessary geometric parameters

for the pedestrian model. This chapter begins by explaining the various possible

methods to model pedestrian behavior. The concepts of discrete event simulation

and stochastic processes required to model and simulate the pedestrian behavior

are then presented. An analysis of the pedestrian behavior and characteristics are

then made. The input modeling and the stochastic functions used to translate

the statistics of pedestrian behavior into input data for the pedestrian simulation

are then presented together with the analysis of the pedestrian characteristics.

The implementation and analysis of the simulation model within the available

geometric scenario is then discussed. Finally, the components developed within

the pedestrian simulation framework are summarized.
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4.1 Pedestrian Simulation Methods

[May89] shows that pedestrian traffic simulation can be broadly classified as

macroscopic and microscopic simulations, the former being commonly used where-

as the latter is more complicated. Pedestrian simulation is often used to analyze

issues such as evacuation scenario [Cas05], study of pedestrian dynamics [HBD02],

urban planning, safety and security issues (crash simulation, collision with the

car front, etc.), pedestrian surveillance analysis, etc. There exist several methods

and strategies to model and simulate pedestrian activities. Following are some of

the methods generally used to model and simulate pedestrian behavior.

4.1.1 Numerical Simulation

In a pedestrian simulation using numerical methods, flow- or particle-based sim-

ulation methods are used. Pedestrian behavior modeling using a numerical ap-

proach is proposed in [Hel90, Hen74]. A resemblance of the self-organization

effects or the lane-forming effects in the pedestrian crowd as compared to gases

or fluids was proposed by Henderson in [Hen71, Hen74]. Generally, a macro-

scopic simulation is performed to evaluate the density or throughput. Due to

the non-constant acceleration, difference equations, instead of numerical integra-

tions are used. A realistic fluid-dynamic theory for pedestrians must contain

corrections due to their interactions (avoid collision, rapid acceleration and de-

celeration). Although such theory can be formulated [Hel92b, Hel92a, HB01c],

such methods are unsuitable for microscopic pedestrian simulation in practical

cases [HFMV02]. [Thi01] proposes the possibility of using Navier Stokes equa-

tions to visualize pedestrian flow as incompressible fluids, thereby simulate the

flow movement of pedestrians.

In a social force model first proposed by Helbing [HM95], the pedestrian

reacts to the social forces that motivates him. Pedestrians typically walk to their

destinations comfortably by taking the shortest path and avoiding any collisions

(walls, benches) on the way. The pedestrians also maintain a distance with other

pedestrians to avoid collisions. Pedestrians also sometimes interact with other

pedestrians along the way (friends, salesman). The effects of the motion of the

pedestrians α shall be determined from these parameters. The velocity of the

pedestrian is therefore calculated by the summation of the force model of the

above mentioned characteristics dvα

dt
= Fα(t)+ fluctuations (random variations of

the behavior).
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4.1.2 Agent-Based Simulation

An agent-based approach to simulated pedestrian behavior is commonly used

to study social behavior of the pedestrians. Agent-based simulation is a special

form of microsimulation, where each pedestrian is treated as an entity or an agent

with distinct state or behavior. In a multi-agent system, agents are active entities

moving in an environment, where the environment for an agent consists of other

agents and explicit environmental entities such as resources. The interactions

among the agents are the central point of focus. Therefore, in an agent-based

simulation, the individual behavior of the pedestrian (or the social aspects) are

modeled and simulated with an intention to study the overall behavior of the

pedestrians. Agent-based approaches to simulated pedestrian behavior are seen

in [HW04, KHW01].

Agent-Based approach is also seen in simulation of pedestrian evacuation

[TBdS06]. The advantage of an agent-based approach is that properties such

as prior knowledge regarding the building layout (commuters vs. tourists), dif-

ferent mobility speeds (children, adults, elderly people), etc., can be defined to

each entity. Therefore, the social behavior in a panic situation can be analyzed

precisely.

Agent-Based simulation is also used in optimization of building layouts (for

example, the usage of swarm-moves simulation to increase sales in supermarkets

[UM06]), where the typical characteristics of the pedestrians are modeled within

the entity and the impact of the model in the given environment can be studied.

A computer model also allows the model to be re-run several times by altering

the parameters to evaluate different situations [HFV00].

4.1.3 Cellular Automata Model

The cellular automata model was typically used in vehicular traffic simulation as

proposed in [NS92]. Pedestrian simulation based on cellular automata was pro-

posed in [GM85]. In a cellular automata method, the simulation of pedestrians is

performed as entities in cells. The walkway is modeled as grid cells and a pedes-

trian, if present in the cell, occupies the cell. The occupancy depends on localized

neighborhood rules, which are updated constantly. Pedestrians can change lanes

or hop cells. In each time step, the cell can take two states (occupied, free). When

a pedestrian changes the lane, the adjacent cells in the column are adjusted such

that the gap between other pedestrians moving in the column is maintained. This

is done by adjusting the speed in parallel to the cell change activity. However, the

pedestrian behavior does not resemble a traffic movement and seems unsuitable

to use cellular automata simulation for pedestrians. Nevertheless [Ba98] suggests
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a good idea of validating the cellular automata microscopic model.

A benefit cost cellular model, similar to the cellular automata method, is

proposed in [Gip87]. It simulates the pedestrian as a particle in a cell. The

walkway is divided into square grids and each cell can be occupied by utmost 1

pedestrian. A scoring system is used to each cell based on the proximity of the

pedestrians. The score represents the repulsive effect of the nearby pedestrians (9

cells including the pedestrian himself) and has to be balanced as the pedestrian

moves toward his destination. Benefit cost cellular model uses arbitrary scoring

and the system makes the model difficult to calibrate in a real world scenario.

4.1.4 Queue-Based Simulation

A queue-based simulation is often developed for simulating evacuation scenarios

[Lov94, OM93]. A queue model is built using a discrete event Monte Carlo sim-

ulation. Several nodes (rooms, intersections, etc.) and links between them exist

in the evacuation scenario. A queuing system is built for each link between the

nodes. Each pedestrian enters the queue through the node, wait in the queue

and reach the end node of the queue. Each pedestrian shares the common goal

of evacuating the building, i.e. reach the nearest exit door as fast as possible.

The queuing systems are interconnected to form a queuing network. Each pedes-

trian, once he arrives at a node, selects his queue from n possible nodes using a

weighted-random choice. The weight function is determined by the current pop-

ulation density in the queue. If the desired queue cannot be used, the pedestrian

decides on a different queue. The initial time (t = 0) is the time the pedestrian

arrives at the node. The pedestrian first experiences a delay in choosing the right

queue and begins to wait at the source of the queue model at ∆t. The total

waiting time in the queue W is the time it takes for the pedestrian to reach the

sink of the queue model. After that, he will stop the movement process. These

steps are repeated until the pedestrian reaches his destination (the exit door).

A Queue is a natural process that occurs at destinations if the number of

arrivals exceeds the throughput of the system. Such destinations can be modeled

and simulated as a queue model. Since the movement of pedestrian resembles a

queue (pedestrians arrive at a path, wait if the path is congested and walk once

the path is free), a queue model can also be used to represent the behavior of

pedestrians walking along the path. Therefore, we use a queue model to describe

both movements of pedestrians as well as the behavior of the pedestrians at the

queue. In the following section, we discuss in detail the implementation of a

queue model and its usage for pedestrian simulation.



52 CHAPTER 4: Discrete Event Pedestrian Simulation

4.2 Discrete Event Simulation of Pedestrians

So far, various methods to model and simulate pedestrian behavior were pre-

sented. We have decided that a queue-based simulation shall be used to simu-

late the pedestrian traffic in the reference scenario. We therefore simulate the

pedestrian behavior as a queuing system model, both along the paths and the

destinations. It is possible to determine the overall system parameters such as

the average waiting time in the queue, average queue length, throughput of the

system, etc, from the queuing system. Since queuing systems can best be modeled

and simulated using the discrete event simulation methodology, we use discrete

event system simulation to simulate the pedestrian behavior.

In a discrete event simulation, the state variable changes only at discrete

points in time. The system state changes on the occurrence of a new event.

So it is sufficient that the system advances its state directly to the next state

when the event would occur. One of the most common usages of a discrete-event

simulation for pedestrian system is a pedestrian queue. For example, consider

the situation of a pedestrian visiting a post-office counter to execute a certain

task. The post-office queue contains 3 events, namely arrival event, service event

and departure event. On the occurrence of any one of these events, the system

state is changed, the system variables are updated and the next set of tasks are

triggered. When many such queues exist at various locations, the location of the

queue that correspond the post-office as well as the path to it are identified using

the geometry model presented in the previous chapter.

The discrete event simulation for simulating pedestrian traffic has been sug-

gested by many other researchers. For example, [JH94] proposes the use of dis-

crete event simulation for traffic analysis in quick service restaurants. This ap-

proach combines the movement of pedestrians and vehicles (drive-in or take away

counters) within the surrounding layout of the fast-food center. Also the use of

discrete event simulation to model pedestrian evacuation can be seen in [BS06].

4.2.1 Queue Model

A queue model is one of the fundamental blocks used to model and simulate

pedestrian traffic here. A queue model can be used to model many systems such

as traffic, network flow, business processes, logistics, etc. A queuing system, as

in a discrete event simulation, is driven by events. The events of a queue model

are termed as processes. In our example, the processes of a queue model include,

arrival and service processes. In modeling processes, the arrival time or the service

is generated using existing values or random functions. In an arrival process, the
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random function generates the inter-arrival time between 2 consecutive arrivals.

In a service process, the random function generates the time it takes to serve

an entity. The arrival and service processes have normally no connection with

each other. There are three broad classes of processes, namely deterministic (D)

process (arrivals occur at a constant rate), Markovian (M) process (arrivals occur

at a negative exponentially distributed time intervals with an arrival rate of λ) and

general (G) process (arrivals occur at an arbitrarily distributed time intervals).

Each event changes the system state and triggers the next event connected with

the current event. Another component that plays an important role in a queue

model is the entity e (here a pedestrian). An entity is a component or an object

in the system, which requires explicit representation of the model (e.g., server,

customer, machine). Each entity is associated with some attributes or properties

such as priority in the queue, ability to choose a certain queue, behavior, etc.

Several entities participate in the queue model. Therefore, there exists a logical

structuring of the entities in the queue model (waiting line in the queue, FIFO,

LIFO, etc.).

4.2.1.1 Components of a Queue Model

At first, to implement a queuing system, certain data structures are necessary to

organize the entities and events i.e., to maintain the list of events and to logically

organize the entities. A tertiary tree structure can be used to store both list of

events and entities. In this tertiary tree, each parent node contains a left and a

right child node. The middle node is connected to a doubly linked list (DLL),

also represented using a tertiary tree (tree structure explained later in 4.2.1.3).

A queue model consists of the following components (see Figure 4.1)

Unit 1
Postponed task

New task Limited capacity

Unit 2

Unit m

......
Tasks Completed

Queue, Priority queue

Service units

Figure 4.1: A queuing system with m service units and a (priority-based) queue.

• A queue Q, which may be a normal FIFO queue or priority queue or may

even support preemptive service. A queue may have a limited capacity

Qmax.
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• One or more service units, where one entity per service unit is processed at

a time. The state of the service unit is either busy or idle SU ∈ {busy, idle}.

In a queue, entities wait before they are served. Whenever an entity arrives in the

queuing system, the entity is appended (or prepended2 depending on the priority)

in the queue, even if the queue is empty. If a service unit SU = idle, the entity

leaves the queue and joins the service unit. Each queue is modeled using the

tertiary tree structure. The left and right nodes of the root node are set to null

and the doubly linked list is used to sequence the entities. Inserting an entity

to or removing from the DLL is straightforward. The behavior of an entity in

the queue may however be different. Following are some of the queue behaviors

modeled.

Queue Swapping: If more than one queue exist, an entity may decide to join

another queue. Swapping of an event E from queue Q1 to queue Q2 can be

modeled as

if(condition) {remove(E,Q1); add(E,Q2); }

Balking: If the queue Q is too long, it avoids further addition of events E to the

queue.

if(size(Q) < max) {add(E,Q); }

Reneging: Abrupt termination of an entity e from the queue Q. This situation

normally happens if the alloted time exceeds or the entity waits too long. In that

case, the event E is canceled.

if(Twait > Tmax) {search(Q, e); remove(Q, e); cancel(e, E); }

Service Preemption: Preemption occurs if an entity with a high priority inter-

rupts a service. The new entity is served and the service event E for the entity

with a lower priority is canceled and postponed to a later time T .

if(epriority) {cancel(e, E); postpone(e, T ); serve(epriority, E); }

The n number of service units are represented as resources. As long as a resource

is available, the next waiting entity is removed from the queue and served. During

service, the resource is set to be occupied (SUi = busy). When the entity leaves

the service unit, the resource is again freed (SUi = idle). At any point during the

simulation, it is possible to determine the number of resources that are available or

occupied. The occupied resources denote the population p of the functional unit.

The throughput µ is the rate at which the tasks are finished and the maximum

throughput µmax is the maximum possible throughput of the functional unit.

2Prepend operation is made in case of a LIFO queue
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Therefore, the system utilization ρ = µ

µmax

.

Time Dependency: It is normal that the arrival rate varies as time progresses.

For example, the arrival rate is high (the inter-arrival time is less) during peak

hours and the arrival rate gradually decreases as time progresses. The time

dependencies can be modeled by defining discrete time frames and specifying the

arrival pattern for each time frame.

if(Ti < CLOCK ≤ Ti+1) {arrival(λi); }

4.2.1.2 Event List

In an event-driven simulation, an event E that occurs at time t changes the system

state at that time. Therefore, the events must be organized in a chronological

order in an event list EL(t). The time is controlled and monitored by a clock

function in a discrete event simulation. This time has no connection with the real

world time. As seen before, there are different types of event (arrival, service,

departure). Since one event is correlated with the other event, the events must be

managed in the same list. Therefore, an event E is represented as E = (Ea, Et),

where Ea is the type of the event and Et is the time at which the event occurs.

Every time there is a new event, the event is inserted into the event list and

every time the event is executed, the event is removed from the list. An event

is typically controlled by a task T . The tasks that enter and leave the queue

are normally numbered in increasing order (T1, T2, T3, . . . ). Each task has some

attributes attached with it such as arrival time Ti,at, departure time Ti,dt, service

time Ti,st and waiting time Ti,wt. When a task triggers an event, the task is

scheduled in the event list.

4.2.1.3 Event Scheduling

Scheduling of the events is one of the most complicated parts in a discrete event

simulation. Event scheduling involves scheduling the events in the chronological

order and updating the event list as the events are executed along the time

progress. The events must be sorted in the increasing order of their occurrences.

In some cases, the occurrence of certain events is dependent on its preceding event.

For example, a pedestrian shall be served only after he arrives in the queue. If

the resources are blocked and if there are new arrivals, the service event cannot

be scheduled immediately. Such events are called conditional events. To simplify

the scheduling of the conditional events, the “ABC” method or the “three phase”

method is used to schedule the events in the event list [Tys99]. Whenever the

events are executed, this approach always scans the conditional list and schedule
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them if there are no barriers. The control structure of the ABC approach consists

of the following three phases:

• A: the simulation time Advance phase,

• B: execution of event routines associated with all the Bound (or certain to

happen) events that have the same earliest activation time,

• C: scanning of the Conditions that trigger successive conditional events.

Figure 4.2 describes the scheduling of events using a 3-phase approach. In the

tertiary tree used for scheduling events, the left and right nodes are used to store

the next event and the center node, connected to the doubly linked list, is used

to store the conditional events. In short, the event list is represented as a sorted

binary tree (BST) and any events that cannot be executed or scheduled is then

stored in the doubly linked list. The conditional event list is a ring of entity

records, all of which have the same activation time. As time progresses, the

events from the binary sorted tree are first executed. Then, the node is checked

for any conditional events that need to be executed. We use the tertiary tree

structure to store both the conditional list and the event list, i.e. we use the

tertiary tree to also represent a doubly linked list (see Figure 4.3). The right

pointer is used for adding new entities that have a later activation time. Since

the events with equal activation time are doubly linked, additions to both the

beginning and end can be made efficiently (also seen in queues when using the

tertiary tree as a doubly linked list). If the conditional events cannot be executed

together with the parent event, the conditional event is moved to an event with

the next activation time.

4.2.1.4 Queuing Notation

D.G.Kendall proposed a notational system for parallel server systems in 1953.

Kendall’s notation for classification of a queuing system has the format

A|S|s|c|p|D,

where

A represents the arrival process or the inter-arrival time distribution (e.g.,

Markovian or general process)

S represents the service process or the service time distribution

s represents the number of service units ({SU ≥ 1|SU ∈ Z})
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C Phase

Start

Add Initial Events

Any Events?

Select next events

Advance clock

Execute events

Execute C events

Running?

Can any C
events run?

Print results

Stop

No

Yes

No

Yes

No

Yes

A Phase

B Phase

Figure 4.2: The ABC approach for event scheduling.
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Figure 4.3: Tertiary tree structure with middle pointer pointing to a doubly

linked list (also represented using a tertiary tree).

c (optional) represents the system capacity (by default ∞)

p (optional) represents the calling population or the maximum number of

tasks that can arrive in the queue (by default ∞)

D (optional) represents the queue discipline (default FIFO)

The simplest queuing system that can be analyzed is the M |M |1 queue, where the

arrival and service processes are Markovian and the system has a single service

unit. The missing optional parameters would take the default value. In case the

service process is an arbitrary process, the queuing system is denoted as a M |G|1
queue.

4.2.1.5 Stochastic Process and Random Variables

During the simulation of pedestrian traffic, the outcome of a process is generally

not known in advance. This means that the process is a non-deterministic or
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a stochastic process. In a stochastic process, the set of outcomes of a random

occurrence in a process is parameterized with time [Nel95]. The use of random

variables describes the state or the condition of the stochastic process in a specific

time. The state space S is a set of all possible states of a stochastic process. The

stochastic models are typically represented using random variables, for example,

pedestrian tasks waiting in the queue, the time the server is operational, etc.

Random variables are functions that map a real value to every random output of

the state space. Random variables, whose possible values are finite (or countably

infinite) is called a discrete random variable (e.g., number of pedestrians arriving

per hour is X : S → {1, 2, 3, 4, 5, . . . }, where X is a random variable). Often,

random variables, for a pedestrian arrival process (arrival time during the day),

produce a continuous stream of random numbers in which case, it is called a

continuous random variable (X : S → R).

There are two functions that characterize a random variable X, namely the

probability density function (PDF) f(x) and the cumulative distribution function

(CDF) F (x). F (x) is non-decreasing such that F (−∞) = 0 and F (∞) = 1. If

X is a continuous variable, then f(x) is non-negative and
∫

∞

−∞
f(x)dx = 1. If X

is a discrete variable, then f(x) is non-negative and
∑

∞

x=−∞ f(x) = 1. If X is

discrete (or continuous), the both its PDF f(x) and CDF F (X) are also discrete

(or continuous).

Another important concept in a probability theory is the expectation of a ran-

dom variable. The expectation of a continuous random variable X is defined as

E[X] =
∫

∞

−∞
x · f(x)dx provided the integral converges absolutely. The expecta-

tion of a discrete random variable X is defined as E[X] =
∑

all i xi · p(xi). The

expected value E(X) of random variable X is also referred to as the mean µ or

the first moment of X.the quantity of E(Xn), n ≥ 1 is called the nth moment of

X.

Other metrics that are often used in performance analysis are the standard

deviation σ and variation coefficient c (or relative dispersion). They are used to

quantify the variability of a random variable X. The variance of a population σ2

is defined as the expected value of the square of the difference between x and the

population mean µ, i.e.

σ2 = E[(x− µ)2] =

∫

∞

−∞

(x− µ)2 · f(x)dx.

The standard deviation is the square root of variance, i.e σ =
√

E[X2]− E[X]2.

The variation coefficient is defined as c(X) = σ
E[X]

[LK00].

Frequency distributions are useful means of indicating the type of theoreti-

cal distribution that best suit the statistical properties of the population under
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consideration. A careful study of the nature of physical situation from which

the data are obtained will indicate the type of distribution followed by the data.

Frequency distributions are classified into discrete or continuous distribution.

Poisson Distribution

The Poisson distribution, introduced by S.D.Poisson in 1837 [Poi37], describes

many random processes. The selection of samples is often performed and related

to a given time interval. Poisson Experiments yield numerical values of a random

variable X during a specified interval or region. The Poisson distribution is

described as

f(x) = p(X = i) =
e−λ · λi

i!
, λ > 0, i ∈ N.

One of the important properties of the Poisson distribution is that the mean and

variance are both equal to λ or E(X) = σ2 = λ. The Poisson distribution is used

to describe situations that are concerned with counting the number of times that

a certain type of event occurs within a specified frame (e.g., number of pedestrian

arrivals in one hour). Such an occurrence of events is termed as a Poisson process.

Exponential Distribution

One of the most studied continuous distributions is the exponential distribution.

The density function of an exponential distribution is given as

f(x) = λe−λx, x ≥ 0

and the distribution function is given as F (x) = 1 − e−λx, x ≥ 0. An important

property of the exponential distribution is the memoryless property. This prop-

erty plays an important role in system modeling since the value of an exponential

random variable in a given moment of time t does not depend on its past values.

Therefore, it allows us to analyze the system without keeping track of all past

events. Thus

P{X > s + t|x > t} = P{X > s}, ∀s, t ≥ 0.

The exponential distribution has been used to model inter-arrival times when

arrivals are completely random and to model service times, which are highly

variable. In these instances, the rate is λ: arrivals per hour or services per

minute, which is a Poisson process. The times between arrivals T1, T2, . . . are

independent exponential random variables with mean

1/λ : P{T1 > t} = P{N(t) = 0} = e−λt, P{T2 > t|t1 = s} = e−λt,

where N(t) represents the total number of events that have occurred in the time

frame.

Stochastic Processes

In a stationary process, the distribution is independent of time. Therefore,

E[X(t)] = E[X(t + s)] = E[X].
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For example, in a lecture hall, where the pedestrians arrive just before the lecture

begins, and once the lecture has started, there are no further arrival or departure

processes. The distribution at the lecture hall stays constant until the process

is complete. Generally, the time shortly before and after a stationary process

experiences a rapid fluctuation at the source of the queue and the paths that

lead to it. The inter-arrival times decreases rapidly just before the start of the

lecture. Similar fluctuation is seen once the lecture is complete (see Figure 4.4).

So during the start and end of the lecture, one can expect congestions near the

lecture hall.

Occupation level

Occupation
Arrival Process

timestart end

Arrival Process/

Figure 4.4: The arrival pattern before and after a stationary process.

In an independent process, there exists no dependence of the events with earlier

results (e.g., pedestrian arrivals). Therefore

p(X(tn) ≤ xn|X(tn−1 = xn−1) = p(X(tn) ≤ xn).

Markov Process

Markov Process is a random process whose future probabilities are determined

by its most recent values and it follows the Markov property. Markov chains –

named after Andrey Markov (1856-1922), a Russian mathematician who made

contributions on the theory or stochastic processes – are classified as discrete or

continuous [Mar]. A Markov chain describes the states of a system in successive

times. A stochastic process x(t) is called a Markov process if for every n and

t1 < t2 < · · · < tn, we have

P (x(tn) ≤ xn|x(tn−1), . . . , x(t1)) = P (x(tn) ≤ xn|x(tn−1)).
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This is equivalent to

P (x(tn) ≤ xn|x(t), ∀t ≤ tn−1) = P (x(tn) ≤ xn|x(tn−1))

[Pap84]. If the value of the next event depends on current value but not the pre-

vious values, the process is called a Semi-Markov Process (e.g., state transition

diagrams). Therefore, the previous values cannot be used for making a future

prediction. If in a Semi-Markov process, the predecessor dependence is constant,

the process is called a homogeneous Markov process. Markov chains with repeti-

tive structure occur when queue models are analyzed via their embedded Markov

chains. The simplest queuing system is the M |M |1 queue. According to the

Kendal’s notation in an M |M |1 queue, both arrival and service processes are

Markovian. Since there is no restriction on the system population and queue

capacity, the state space of the embedded continuous time Markov chains is in-

finite. The population process however is a homogeneous Markov process. The

state transition diagram is illustrated in Figure 4.5.

0 1 2 3 4

λ λ λ

µ µ µ

λ

µ

Figure 4.5: State transition diagram of a Homogeneous Markovian Process.

Generally, an M |M |1 queue is known as a birth-death process – semi-Markov

chains, which increases or decreases only by 1. A homogeneous Markov process

in discrete time is

pi,j = p(X(tn) = j)|X(tn−1 = i)

(see Figure 4.6) and in continuous time is

pi,j(∆t) = p(X(t + ∆t) = j|X(t) = i), λi,j = lim
∆t→0

pi,j(∆t)

∆t

(see Figure 4.7).

In the transition diagram (Figure 4.5), each state of the system is distinguished

by the number of jobs (population) in the system. The state space of the process

is S = {0, 1, 2, . . . }. The mean arrival rate is λ and the mean service time is µ.
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i i + 1

pi,i+1

pi+1,i

........

Figure 4.6: Homogeneous Markovian Process with transition probabilities pi,j .

i i + 1

λi,i+1

λi+1,i

........

Figure 4.7: Homogeneous Markovian Process with transition rates λi,j .

The status of the population is represented as

p0 · λ = p1 · µ

p1 · λ = p2 · µ

p2 · λ = p3 · µ

. . .

Therefore

pi

(

λ

µ

)i

· p0

∑

pi=1
=⇒ p0 = 1−

λ

µ
= 1− ρ, where (λ < µ).

Therefore, in a M |M |1 queue, the mean population is ρ

1−ρ
, mean throughput is

λ, mean service time is 1/µ, mean sojourn time due to Little3 is 1/µ(1− ρ) and

the long term average waiting time is λ
λ(µ−λ).

.

4.2.1.6 Queuing Network

A single queuing system is clearly an elementary system to be used in general

systems. The complex pedestrian model involves several queuing systems con-

nected together as a graph. The edges represent the paths of tasks traveling

3The Little’s theorem or the conservation equation [Lit61] states that the average population

is same as the average sojourn times the average throughput
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through the system and the nodes represent the queuing systems. A typical task

involves traversing through several queuing systems. The entire network contains

many processes that occur in parallel, each with a different set of tasks. The

process typically contains a stream of tasks with precedence relation, i.e. when

Ti ≺ Tj then Ti must be completed before Tj. The sequence can be stochastic

or deterministic or both. Queuing networks can be classified into two different

classes namely closed network, where the population is constant i.e. entities from

within the queuing network move from one queue to another internally, and open

network, where the population is variable i.e., new entities may enter the queuing

network and old entities may depart the queuing network. Jackson networks,

proposed by J.P.Jackson in 1957, is an example of an open network. Consider

a queuing network with J ≥ 1 queues, where pedestrians arrive from outside as

independent Poisson processes, with the rate λl into queue l (where 1 ≤ l ≤ J).

The pedestrians require independent service times at each visit to the queues

(similar to the reference scenario used here). The service times in queue l are

exponentially distributed with rate µl. Also the service times are independent

of the arrival processes. Upon leaving queue l, each customer is sent to queue

m with probability plm for 1 ≤ m ≤ J and leaves the network otherwise. The

routing decision is independent of the past evolution of the network (or otherwise

termed as Markov routing) since the probability of a routing decision depends

only on the current position of the customer. Gordon-Newell networks, proposed

by W.J.Gordon and G.F.Newell in 1957, are an analog to Jackson networks

except that a Gordon-Newell network is a closed network.

Other methods to represent waiting nets include Petri nets [Pet62] and Baye-

sian network [Jen96]. Petri nets can be used for synchronizing (stationary)

processes (e.g., Arrival of pedestrians to an elevator, where the elevator shall

move only when the pedestrians enter the elevator).

4.2.2 Input Modeling and Random Functions

Input data provide the driving force for a simulation model. Random functions

are used to generate input data for a simulation model. Algorithmically gener-

ated random numbers must be uniform and independent. A random variable X

that generates a uniformly distributed random number in the range [0, 1] is the

fundamental building block of random variate functions. The Linear Congruen-

tial Pseudo Random Number Generator (LCPNG) proposed by D.Lehmer in

1948 used to generate uniformly distributed random numbers in the range [0, 1].

[L’E90] gives an overview of random numbers to be used in simulations. Often in

practical situations, the input data is not uniformly distributed. Processes such

as inter-arrival times, arrival rates, service times, etc., follow a specific pattern.
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In principle, such distributions can be obtained by transforming uniform random

numbers by using the inverse transform method. In many cases, finding an inverse

function is difficult. Therefore several methods such as convolution, acceptance-

rejection methods, etc., can be used to derive the random function. One type

of non-uniform distribution often used for the input modeling in the reference

scenario is the use of different probabilities among k group of alternatives. For

example, a pedestrian decides to visit one among k different destinations in the

scenario. Each destination has a different priority of visits. Therefore, the prob-

ability of choosing one among k alternatives is p1, p2, . . . , pk. Then, the selection

process would consist of generating a random variable R uniformly distributed

between 0 and 1, followed by the comparisons of X against various values of

probabilities such that

X =























1, if 0 ≤ R < p1,

2, if p1 ≤ R < p1 + p2,

...

k, if p1 + p2 + · · ·+ pk−1 ≤ R < 1.

In this case, the probabilities must be adjusted such that
∑k

i=1 pi = 1. This

method can be replaced with a simple and fast general technique known as alias

method [Wal77].

In a queuing system, the inter-arrival time is negative exponentially distrib-

uted, if the arrival process is a Markovian process. The negative exponential

distribution can be determined by the inverse transform method. In an inverse

transform method, if R is a random variable uniformly distributed between 0 and

1 and F (x) is a strictly increasing distribution function, then the random variable

X = F−1(R) has the cumulative distribution of F (x), where F−1 represents the

inverse function corresponding to F . In a negative exponential distribution, the

function F (x) = 1− e−λx. The inverse of

F (x) is u = 1− e−λx ⇐⇒ x = −
1

λ
ln(1− u),

where u is uniformly distributed between 0 and 1.

Another commonly used distribution (sometimes used to generate service

times for the pedestrian) is the Gaussian or the normal distribution. The Box-

Müller [BM58] method is used to generate normally distributed random numbers.

Let N(µ, σ) be normally distributed with mean µ and standard deviation σ. Then,

x1 = µ +
√

−2σ ln(u1) · cos(2π · u2) and

x2 = µ +
√

−2σ ln(u1) · sin(2π · u2),
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where u1 and u2 are two random variables that are uniformly distributed between

0 and 1. In a Box-Müller method, one iteration results in 2 normally distributed

numbers.

In the simulation of a queuing system, typical input data are the distribu-

tions of time between arrivals and service times. Such data mostly originate from

real world systems (e.g., camera and sensors to detect the number of pedestrians

entering the supermarket). These statistical data are then converted to mathe-

matical functions that generate input data for the simulation, whose pattern is

similar to that of the data collected from the real world system. Input modeling

process is done in different stages.

• Statistical data collection from a real system.

• Identification of a probability distribution that best suits the real system.

• Parameter definition for the distribution function.

• Validation and evaluation of the distribution function with fitness tests.

The data collection, even though straightforward, is a tedious process. Sometimes

it is not possible to collect the exact required data in which case expert opinion is

sought to identify the function that best describes the system. Once the data is

available, a distribution function must be chosen from the family of distributions.

One method to do this is the use of histograms. In a histogram, the input data

is ordered according to the frequency of occurrence to identify the shape of the

distribution. For example, the probability of a visit to a specific destination varies

during the simulation. Discrete time periods (1 hour) are taken and the number

of visits for each hour is sorted as probabilities during the day. Figure 4.8 shows

the probability distribution of visit probabilities to a restaurant during different

times of the day.

Once the histogram is available, a suitable distribution is chosen that fits the

histogram (or in other words the curve that fits the shape of the histogram).

Literally hundreds of probability distributions have been created, many targeted

for some specific physical process. Some distributions include:

Binomial Models the number of successes in n trials, when the trials are inde-

pendent with common success probability p.

Poisson Models the number of independent events that occur in a fixed amount

of time (e.g., number of pedestrian arrivals in an hour)

Normal Models the distribution of a process, which is more or less consistent

(e.g., time required to execute the same task by different entities)
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Figure 4.8: Histogram of the visit probabilities to a restaurant during different

times of the day.

Exponential Models the time between independent events, or a process time

with is memoryless (e.g., inter-arrival times of pedestrians)

Empirical Resamples from the actual data collected that is often used when

no theoretical distribution is appropriate (e.g., decision of one among k

destinations, each independent and with different probabilities)

However, it is not always possible to match the shape of the curve to an

existing distribution function. The curve of the histogram in Figure 4.8 for ex-

ample does not match any of the listed distributions. Therefore, curve-fitting

functions are used to determine an appropriate probability distribution function

for the histogram. The curve in the figure partially resembles a sinusoidal curve.

Therefore, the resulting function can contain a combination of sin and cos func-

tions. The curve function of the of the curve in the figure is determined to be

0.002 · sin(x)− 0.060 · cos(x) + 0.5254.

Several commercial tools such as Mathworks Curve Fitting Toolbox, CurveFit,

etc., can take in values from data collection and give out appropriate functions to

generate random numbers that best suit the situation. Finally, once a distribution

is chosen, it must be validated. This means that the random numbers generated

from the distribution function must be similar to the collected data and they

must lie within the tolerant range. Goodness-of-fit tests are used to validate the

distribution function.

4An on-line curve fitting function generator to translate histogram data to numerical func-

tions is available at http://www.softintegration.com/

http://www.softintegration.com/
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To model and simulate pedestrian behavior, different functions that gener-

ate appropriate random numbers were written. For the input modeling, several

statistics regarding pedestrian behavior were collected and the random function

was implemented by using the input modeling functions. The following section

discusses the pedestrian parameters collected and the random number genera-

tors used to translate the pedestrian statistics to an input for the pedestrian

simulation.

4.2.3 Analysis of Pedestrian Characteristics

In a typical pedestrian model, the scenario consists of several types of pedestri-

ans, each with different characteristics and motives. Since the pedestrian behavior

creates a significant impact on the model, a background analysis of the pedes-

trian behavior in a given scenario is necessary. Such an analysis shall provide

us with the statistics and parameters necessary for modeling the input data for

the simulation. The amount of required pedestrian behavior details depends on

the actual situation of the model. For example, when modeling a cash counter

in a supermarket, parameters such as the average number of customers in the

queue (to measure queue length) and the average number of goods purchased

by the customer (to measure the service time) are required. Other parameters

such as the average time it takes for a customer to collect his goods, his walking

speed, etc., are not directly related to the cash counter and can hence be ignored.

In the past, several studies on microscopic pedestrian characteristics have been

made and many statistics on pedestrian behavior have been published. For exam-

ple, the Highway Capacity Manual and the journal of Transportation Research

Record published by the transportation research board5 are a good source of sta-

tistics of pedestrian characteristics and behavior. [Boa85, OM81] also gives us the

necessary information on pedestrian characteristics. For the reference scenario,

we choose some of the already available statistics that are best suited for the

pedestrian simulation and use these data for the input modeling function. The

parameters required for modeling pedestrian behavior as well as the statistics

obtained from the respective sources are listed later in this section.

Apart from pedestrian analysis, pedestrian simulation also involves pedestrian

data collection. Typically, pedestrian data collection is done manually (counting

or use of cameras) or automatically (video surveillance and image processing).

With the technological advance, use of computer methods and video devices have

been increasingly common over the past decade. To facilitate design improve-

ment of pedestrian facilities, surveys are often carried out at intersections, long

5http://www.trb.org/

http://www.trb.org/
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pathways, waiting areas, crossings, etc. Many methods such as manual counting,

photo beam, video processing, video surveillance, etc., [oTE94, LTP+90, TSKT95]

have been developed to automatically collect macroscopic flow characteristic data.

Image processing methods6 are used to recognize moving human beings. The

tracked data is used to calculate the object position, path of movement, velocity

and acceleration of the pedestrians.

In contrast to a vehicular traffic movement, pedestrians generally do not fol-

low lane discipline7. Activities such as abrupt stopping, rapid acceleration and

deceleration, unexpected change in direction, etc., make modeling a pedestrian

behavior complicated. However, the graph used to model such a scenario is ex-

tracted in such a way that each path has a closed region around itself and only

bi-directional movement is possible. We are concerned with basic properties such

as flow, density and speed, and we shall ignore the other details. The fundamental

characteristics of pedestrian traffic – flow, density and speed – can be analyzed

at macroscopic (group of pedestrians) or at microscopic (each individual) level.

In a macroscopic level, the flow rate Q (or the volume) is denoted by the number

of pedestrians that pass through a horizontal line across the path for a specific

period of time. The walking speed along a pathway was found to be Gaussian

distributed [Hen71, HL72]. The average speed v can be computed either at the

horizontal cross section line (called the time mean speed) or by calculating the av-

erage walking time for a specific length of the path (called the space mean speed).

The density k ped/m2 of the pedestrians along the path influence the pedestrian

speed and flow. The fundamental traffic flow is denoted by Q = v · k. The US

Highway Capacity manual [Boa85] shows the relation of space, average speed and

flow rate for different levels of service8 (see Table 4.1).

Also, [Fru71a, Fru71b] suggests that pedestrians are able to walk at their

characteristic speed if the density is below 0.5 ped/m2. [O’F97] summarized the

6Movement can be tracked using the walking rhythm (spatial and temporal frequency of

the foot movement to differentiate between pedestrians and other moving objects) of the ob-

ject. Fourier transforms are then applied on the time series binary data. The components are

then matched with the rhythm of the walking. For more information, see [YM94]. Similarly,

making snapshots for frequent time interval can be used to identify the position displacement

by calculating the difference between the images and performing edge detection on them (see

[SRS+95]).
7In crowded situations, the pedestrian movement resemble a swarm movement. An auto-

matic lane formation can be seen in crowded pedestrian movements. However, in contrast

with a 1-dimensional vehicular traffic movement, pedestrian lane formation is a 2-dimensional

phenomena
8The levels of service, indicated with A,B,C,. . . , classifies the pedestrian activities based

upon the area of occupation (or the density of the pedestrians). The levels of service does not

mention anything about pedestrian mobility or safety. For more explanation to the levels of

service, see http://www.walksf.org/pedestrianLOS.html

http://www.walksf.org/pedestrianLOS.html


70 CHAPTER 4: Discrete Event Pedestrian Simulation

Level of space Average speed Flow rate

service (m2/ped) (m/s) (ped/s/m)

A ≥ 12.077 ≥ 1.321 ≤ 0.196

B ≥ 3.716 ≥ 1.270 ≤ 0.383

C ≥ 2.230 ≥ 1.291 ≤ 0.547

D ≥ 1.394 ≥ 1.143 ≤ 0.820

E ≥ 0.557 ≥ 0.762 ≤ 1.367

F < 0.557 < 0.762 variable

Table 4.1: Pedestrian Level of Service on Walkway (source [Boa85]).

walking speed along a wide pathway and has indicated that the average speed

value lies in the range of 1.2 m/s to 1.35 m/s with a mix of pedestrian age

groups. However, if the crossings are free of congestions, the average walking

speed approximates to a free-flow walking speed of 1.6 m/s. For disabled and

elderly pedestrians, the walking speed is found to be 0.5 m/s.

The pedestrian characteristics listed so far show that the behavior is different

in different situations (fast movement when crossing the road to slow walking

pace when doing window shopping). Certain physical experiments such as mea-

surement of walking time along pathways, stairs, long walks, etc., were also made

in the geometric scenario used here (in the computer science building) and the

outcome were used to calibrate the available data and also to implement func-

tions, where the existing data cannot be used. For example, it was found that

the walking speed along the staircase is roughly 50% of the walking speed along

the corridor.

The objective is to analyze the congestions caused by the pedestrians along

the path and the waiting lines at the destination nodes. The following parameters

are therefore necessary to model the pedestrian behavior.

1. Walking speed: The pedestrian walking speed is derived from the above

listed statistics. The walking speed is the only parameter used in the ref-

erence scenario that is derived from external statistics. The pedestrian

walking speed and acceleration plays a major role in causing congestions

along the paths of the scenario. Walking speed is greatly influenced by the

density of the pedestrians along the path, the type (age) of the pedestri-

ans and the bi-directional movement along a given path. Since the path is

extracted such that there is a closed geometry around it, the movement of

the pedestrians is either uni-directional or bi-directional, i.e. only along the

path.
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[Tek02] suggests that the average walking speed of a pedestrian is normally

distributed with µ = 1.38 m/s and σ = 0.37 m/s. The acceleration is nor-

mally distributed with an average of 0.68 m/s2. From the above-mentioned

statistics, [Tek02] also proposes that the density dependent speed is linear in

case of a uni-directional movement and logarithmic in case of bi-directional

movement. Furthermore, it was found that more than a few pedestrians

of older age in the path already tend to reduce the walking speed of all

pedestrians in that path.

In the reference scenario, we generate the walking speed of the pedestrian

using a Gaussian distribution N(1.38, 0.37) and induce a speed factor to it.

The speed factor is determined by calculating the density along the path

(for both directions), age and mobility factor of the pedestrian, and also

the pedestrian characteristics, along with the above listed statistics.

2. Arrival of the visitors: The arrival of pedestrians is a Poisson process.

The inter-arrival times are negative exponentially distributed. The arrival

rate of the pedestrians may dependent on the time. Therefore, time depen-

dency model, as explained in 4.2.1.1, was implemented with different arrival

rates for different time frames.

3. Type and number of visitors: As mentioned earlier, in any given sce-

nario, different types of pedestrians can be generally expected. Apart from

that, each type of pedestrian will have restrictions such as where to go

and where not. A flexible database that can store an arbitrary number of

pedestrian profiles along with the necessary properties is developed. The

pedestrian profile definition is addressed in the next section. The num-

ber of visitors depends on the scenario to be modeled and simulated. The

parameter for the number of visitors, sorted according to their types, is

made flexible such that any scenario can be simulated. Furthermore, the

distribution of the different types of pedestrians can also be specified.

4.2.4 Profile and Parameter Modeling

When modeling the input data for the pedestrian simulation, it is also neces-

sary to consider the objectives of each pedestrian in the scenario apart from

his characteristics. Therefore, we define many classes of pedestrian profiles that

suit different pedestrian characteristics. When defining the profile for use in the

pedestrian simulation, the following parameters are taken into account.

• An unique ID to identify the pedestrian: To define and track the pedestrian

movement throughout the simulation.
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• Average duration of stay in the scenario: To differentiate short term and

long term visitors (e.g., an employee tends to stay throughout the day

whereas a visitor would stay for a shorter time).

• Age (speed) factor: To determine the average walking speed of the pedes-

trian.

• Restrictions imposed: A pedestrian may not be allowed to visit every des-

tination or walk along every path.

• Tasks to execute: Each pedestrian intends to execute a certain number of

tasks in the scenario. Therefore, the profile includes the destinations, which

a pedestrian will visit, repetitions to the destination and the probability of

visit during different times of the day. Certain tasks may be time dependent

(stationary process). Therefore, such tasks are indicated with the time

range the task should be executed as well as the service time of the task.

• Distribution of pedestrian types: Once a pool of profiles is available, the

total number of visitors is set along with the distribution of the chosen

profiles.

A pedestrian profile management interface was developed to define and store an

arbitrary number of pedestrian profiles. With an exhaustive list of pedestrian

profiles, it is possible to choose from the set of profiles and build the require

scenario. Table 4.2 shows a hypothetical pedestrian profile distribution in an

office building. Furthermore, additions or changes to the profile database are also

possible.

Profile type Distribution

Employee 1 10%

Employee 2 30%

. . . . . .

Visitor 1 12%

Total 100%

Table 4.2: Hypothetical profile distribution in an office building simulation.

The pedestrian profile manager has a graphical interface for defining pedes-

trian profiles. Every time a new profile is created, the objective of the pedestrian

(destinations to visit or the tasks to execute) are also defined together with the

profile. An ID is automatically defined and is associated with the profile. Then

parameters such as the average duration of the stay and the speed factor (rep-

resenting the age) are also defined. The list of tasks executed by the pedestrian
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is determined stochastically from the profile. For this purpose, the probabilities

of visit to each destination are also defined. The graph extracted from the CAD

model, shown in chapter 3 contains the list of destinations and its types. Each

destination was classified in one of the destination types listed. In the profile, for

each destination type, the probability of visit during different times of the day

is defined. By defining a probability of 0.0, it implies that the pedestrian will

not visit the destination. The definition of the probabilities can be done using a

graphical interface. Discrete values (in this case the average probability for each

hour) are set and a histogram of the visit probability is obtained. Furthermore,

the average number of repetitions for each destination type is also set. Figure

4.9 shows a snapshot of the pedestrian profile manager and the interface to set

probability histogram for the destination. Similarly, several such profiles can be

created and stored in the database.

Figure 4.9: A snapshot of the pedestrian profile management interface used to

define, modify and create profiles for simulation.

Once a pool of profiles is available, the interface also allows us to define a

specific scenario for simulation. In this interface, selected profiles that suit the
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necessary scenario are chosen and their distributions are also specified (similar to

Table 4.2). The pedestrian management interface provides an option to specify

the distributions of the chosen profile. By default, the distribution of each profile

is set to 0%. The user then interactively defines the distribution of each of the

profile such that the final profile distribution is adjusted to 100%. The final

scenario for input modeling is then exported as XML data that can be easily

parsed to produce the necessary input for the pedestrian simulation.

Another parameter necessary for pedestrian simulation is the service time at

the destination. The service time at the destination is already embedded into the

graph data (contained in the room properties) during the graph extraction.

During the initialization of the simulation, the XML data of the scenario is

first parsed and the properties of each profile are identified. Every time a new

pedestrian arrives, the type of pedestrian is chosen stochastically from the his-

togram model of the distribution listed in the profile data. This process is done

during the simulation. Once a specific type of profile is chosen, the list of des-

tinations and the repetitions are calculated immediately. During the simulation,

when the pedestrian has to execute a task, the choice of destination is chosen

stochastically based on the actual simulation time and the visit probabilities. As

soon as a destination is chosen, the destination list attached with the pedestrian

profile is updated.

4.2.5 Geometry Embedding of Queuing Systems

With the input data available so far, we model the pedestrian behavior using

queuing systems and embed the model in the geometry context. As discussed

earlier in 3.2, we model two pedestrian activities, namely the movement of the

pedestrians along the paths, and the pedestrian behavior at the destination nodes.

Each edge of the graph and destination identified from the CAD model is replaced

with a queuing system.

4.2.5.1 Queuing System for Paths

The pedestrian movement along the path can be thought as a queue, where the

pedestrians arrive at a path, wait if the path is congested and then move once

the congestion reduces. The following parameters are therefore needed to model

the queuing system.

Arrival: The initial arrival time to the scenario is negative exponentially dis-

tributed. The subsequent arrival time to each path is the time when the

pedestrian leaves the previous path.
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Service: We define service to be the actual movement along the path. Therefore,

the service time is calculated using walking speed and distance of the path.

The number of service units SU or resources is determined from the capacity

of the path. As mentioned earlier, the walking speed is dependent on the

density and the direction of movement along the path. Before scheduling

the service event, the current status of the allocated resources is identified

to calculate the walking speed. The acceleration parameters and also the

characteristics of the pedestrians who are already present in the path are

also considered for service time.

Queue: Since the number of service units is same as the capacity of the path, the

queue size is theoretically zero. A pedestrian can only arrive if a resource

is available. However, for modeling purposes, the queue capacity is set to

be infinite Qmax := ∞ and new arrivals are appended in the queue only if

SU = idle. Once appended, the pedestrians are served immediately. If the

number of pedestrians exceeds the path capacity, a backlog is automatically

formed until the starting node.

4.2.5.2 Queuing System for Destinations

The pedestrian behavior at the destination is straightforward. The pedestrians

arrive at the destination, wait if all the service units are occupied and then execute

the task once a service unit is free. Following parameters are therefore needed to

model the queuing system.

Arrival: The arrival time is the time when the pedestrian departs from the path

just before the destination. Once the pedestrian arrives, he is immediately

appended into the queue.

Service: The service time is generated stochastically based on the type of the

destination (see chapter 3 and section 3.2.1.2). The service time is indepen-

dent of the status of the resources as well as the queue. In case of stationary

processes, the time of departure from the destination is taken into account

to determine the service time. That is, if the pedestrian arrives earlier than

the intended start of the activity and the queue is empty, then there is an

additional service time until the start of the activity (waiting at the service

counter).

Queue: The queue capacity is set to be infinite Qmax :=∞. However, priorities

and queue behavior are decided from the pedestrian profiles. But such

behavior takes effect only when the pedestrian arrives at the queue.
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Queue Behavior: Parameters such as balking, reneging and service preemption

are decided from the customer profiles. In some cases, the type of desti-

nation is also used to influence the queue behavior. For example, if the

waiting line at a restaurant is long, the pedestrian may consider returning

at a later point of time.

4.2.5.3 Queuing Network

Once each path and node is represented using a queuing system, they are inter-

connected – using the graph – to form a queuing network. Whenever a pedestrian

chooses his path, he transits through all the queuing systems along the path be-

fore reaching the destination. The customer profile generated from the pedestrian

profile manager is used for the simulation. Once the pedestrian profile is initi-

ated, the simulation starts with the arrival of the pedestrian. The destination

to visit is determined at random by considering the probability distribution in

the pedestrian profile. The pedestrian then chooses the path to the destination

and walk through all edges (or wait at the corresponding queuing systems) until

he reaches the destination. Once the task at the destination is complete, the

next destination to visit is generated. This process is repeated until all tasks are

executed or the departure time (terminating condition) has been reached.

4.2.5.4 Pedestrian Simulation

The pedestrian simulation begins with the initialization phase in the following

stages.

• Parsing of the geometry parameters: The graph and room data are

parsed from the XML data and a queue is initialized for each room (node

that has a room defined to it ) and the edge (path). In case of an edge, 2

queues for each direction are initialized. Since the direction is only counted

for calculating the walking speed (service time for a path), the pedestrians

in both directions pass through a single queuing system.

• Pedestrian data: Arrival of new pedestrians are not fixed in advance, but

are generated dynamically during the simulation. Each time a new pedes-

trian is initialized, the type of the pedestrian (from the pedestrian profile)

is decided and a list of destinations along with the probability distributions

is attached with the object. The departure time is also fixed and the pedes-

trian leaves the scenario when the departure time has arrived or when there

are no more tasks to execute, whichever is earlier.
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Once the initialization phase is complete, the simulation starts with the arrival

of the first pedestrian and the arrival event is scheduled at the time of arrival.

For each arrival, a service event is bound to occur. Since the status of the ser-

vice units is not known at the moment, the service event is set to hold. Just

before the arrival, the first destination to visit is (stochastically) decided and the

pedestrian is appended in the corresponding queue of the network. During the

simulation, the current location of the pedestrian is continuously tracked such

that the pedestrian is appended to the right queuing system – can be a path

or a destination. After every visit, the pedestrian object, which contains the

probability distribution and the list of destinations, is updated.

Arrival Event: In case of an arrival to a path, the pedestrian is appended in

the path queue: append(e,Qpi
). In case of an arrival to the destination, the

pedestrian is appended to the destination queue: append(e, Ti). To keep the

simulation running, the next arrival is already scheduled each time an arrival

event occurs. Algorithm 5 shows the implementation of the arrival event.

Algorithm 5 Arrival Class

1: if arrival type path then

2: identify path queue Qp
i

3: identify direction D

4: append(e,Qp
i , D)

5: set Qi visited

6: else if arrival type destination then

7: reset path list

8: set current position (node)

9: append(e,Qd
i ) {append to destination queue}

10: end if

11: while new customers exist do

12: schedule(arrival,e, Tat)

13: end while

Service Event: In case of a service process, the availability of resources (path

density and service units at the destination for a service event in a path and

destination respectively) is first verified. As soon as a service unit is available,

the entity is removed from the queue and served. The service unit is then set

to be busy. A departure event is then scheduled at tcurrent + St. If no resource

is available, the event continues to be in hold state9. The algorithm 6 shows the

implementation of the service event.

9A hold state takes a passive or active event and adds it to the conditional list. This event

the fires after each activated event
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Algorithm 6 Service Class

1: if path then

2: while Qp
i¬empty ∧ SUp,i = free do

3: remove(Qp
i , e)

4: SUp,i = busy

5: schedule(departure,e, Sp,t) {St calculated using walking speed}
6: end while

7: end if

8: if destination then

9: while Qd
i¬empty ∧ SUd,i = free do

10: remove(Qd
i , e)

11: SUd,i = busy

12: schedule(departure,e, Sd,t) {St calculated using destination properties}
13: end while

14: end if

Departure Event: In a departure event, the service is complete and therefore,

the resource is reset to available. If the departure occurs in a path, the next task is

identified and scheduled. This may be the next path (schedule pedestrian arrival

into the path) or the destination (append the pedestrian into the service unit)

or the exit (remove the pedestrian). If the departure unit occurs at the service

unit, the next destination and the path to it is determined, and the pedestrian

is scheduled in the path. The algorithm 7 shows the implementation of the

departure event.

As one can see, each event automatically triggers a new event. The cycle is

complete only when the pedestrian leaves the scenario after executing his tasks.

Since new arrivals are also scheduled at the start, the simulation executes the

complete chain of events. A simulation, once started has a termination condition

(e.g., terminate after 480 time steps (simulate(480)), where 480 time steps

assume 1 minute per time step or 8 hours of real time). The simulation also

terminates if there are no more events to execute. Throughout the simulation,

output data concerning the queue size and congestions are collected. Once the

simulation terminates, the output data gives us an overview of congestions and

waiting times for each path and destination throughout the simulation period.

A flexible simulation framework is therefore built, with which one can define

the necessary simulation profile, model and simulate the pedestrian behavior

within the graph of the CAD model, and finally obtain the congestion and waiting

status of the scenario for the simulation duration.
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Algorithm 7 Departure Class

1: if path then

2: release SUp,i

3: if next=path then

4: schedule(arrival,e,Qp
i )

5: else if next=destination then

6: schedule(arrival,e,Qd
i )

7: else

8: terminate(e)

9: end if

10: end if

11: if destination then

12: release SUd,i

13: identify next destination dnext

14: calculate path p to dnext

15: schedule(arrival,e,Qp
i )

16: end if

4.2.6 Analysis of Pedestrian Simulation

The major computational part in a discrete event pedestrian simulation is the

event scheduling part. As mentioned earlier in section 4.2.1.3, events (also the

conditional events) are inserted in a tertiary tree and the scheduling is done

in chronological order. The insertion operation has an average complexity of

O(log(n)) and a worst case complexity of O(n). For the conditional events stored

in tertiary tree in the form of a doubly linked list, the insertion or removal of an

event can be performed in constant time O(1). To schedule (and execute) the

events, both the event list and the conditional event list is searched. Since the

tertiary tree or the event list is represented as a sorted binary tree, the complexity

of searching an event is O(h) where h is the height of the tree. However, if all

previously occurred events are deleted from the list, the next event will always

be located at the root of the tree. Therefore, the search for the next event in

this case is performed in constant time. The run time efficiency of a discrete

event pedestrian simulation depends mainly on the performance of the scheduler.

The scheduler simply inserts the events in the tree and lists them out in the

increasing order. Therefore, the discrete event methodology is fast and efficient.

For example, consider a pedestrian simulation scenario with 2000 pedestrians

visiting the scenario, with a maximum of 300 pedestrians present in the scenario,

and with a graph of 600 edges and 540 nodes. The simulation took 61 seconds

to execute the events and generate profiler data, without including the time to
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write out the simulation data. About 364,500 events were created. From the

profiling data on the run time statistics of the simulation, it was found that the

discrete event simulation consumes only 17% of the total computing time. An

astounding 67% of the computing time was required to perform graph operations

such as extraction of architectural data, path-search algorithm (consumed the

most amount of time), etc. The remaining amount of computing time was utilized

by the initialization phase where the XML data is parsed and the initial structures

for the pedestrian simulation are defined.

Simulation for different problem sizes were performed and the memory require-

ment, as well as the computing time (only the simulation time) of the simulation,

performed on a Intel Pentium 4 processor with 3 GHz processor speed and 2GB

main memory, are listed in Table 4.3.

Maximum capacity Total number of Computing time Memory required

of the model pedestrians

100 359 7 s

1000 2917 48 s

10000 21437 230 s 200 MB approx.

100000 113052 31 min < 2 GB

Table 4.3: Analysis of the computing time and memory requirements for a

pedestrian simulation performed for different number of pedestrians.

4.3 A Pedestrian Simulation Framework

The concepts and components explained so far are integrated within a single

pedestrian simulation framework such that a given scenario can be modeled and

simulated to obtain an overview of possible congestions and waiting times across

the scenario. The framework is designed to be as flexible as possible such that the

user shall be able to define any generic scenario, define the input and environmen-

tal parameters, simulate the scenario and analyze the results from the simulation.

In this section, the various components that are built within the framework as

well as certain extensions to the framework are discussed. An outlook into simi-

lar pedestrian simulation environments existing elsewhere and a comparison with

them is made.
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4.3.1 Framework Components

The components integrated into the framework as well as its performance and

functionalities are listed as follows.

4.3.1.1 Pedestrian Profile

The pedestrian management interface explained in 4.2.4 is generally used to define

the pedestrian profile. The interface uses an XML parser to read from and transfer

to the profile database. The profile manager manages a master database, where

several pedestrian profiles are stored. New additions or changes to the existing

profiles are done using the interface. When defining a specific pedestrian profile

scenario for the simulation, selected profiles are chosen from the profile database

and are exported separately. Along with the profile list, a profile distribution

data, similar to Table 4.2 is also generated. The pedestrian simulation code then

has access only to a subset of the master profile list. This process minimizes the

read/write activities performed from within the simulation and thereby speeds

up the simulation process.

4.3.1.2 Graph Profile

Another functionality added together with the pedestrian profile manager is a

similar profile manager to edit and manipulate graph data. Since the graph

alone is used for simulation, minor geometrical changes to the scenario can be

made using this interface. The graph extracted from the CAD model does not

contain information regarding room capacity, number of service counters, path

restrictions etc. Since these data are additionally defined and stored into the

graph, different scenarios can be simulated by simply adjusting the values from

the graph. This method is particularly useful when optimizing a building plan

structure. Interchange of two rooms can be easily done by just exchanging the

room properties. Therefore, the layout and the capacities of the building can be

quickly altered using the graph and room profile manager.

When optimizing the architectural layout of the building (before the con-

struction of the building), the scenario can be simulated iteratively to detect

bottlenecks along the paths determine an optimal path capacity for the given

scenario. Even though the path capacities – based on the distance to the wall –

are automatically extracted from the CAD model, changes can be made to the

graph through the graph management interface by altering the path capacities.

The optimized layout is then used to redesign the architectural model such that

it suits the given scenario in that building.
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However, changes in architectural design means changing the structure of the

building. The structural engineering mechanism must also be considered when

making such changes, which is currently not considered within this framework.

One option is to use a common geometric modeling database for distributed ap-

plications such that each application has access to the same model. The geometry

model is then modified in such a way that it is suitable for all applications that

requires the geometry model [MB04].

The pedestrian and the graph profile manager together can be used to build

and alter a generic pedestrian simulation scenario.

4.3.1.3 Pedestrian Simulation

The SIM: a C++ library for discrete event simulation [BE95] was partially used

(event scheduler and the tertiary tree structure for queues and event list) to

model and simulate the pedestrian behavior for reference scenario. The 3-phase

approach shown in Figure 4.2 was implemented in C in the CSIM discrete event

simulation library [Wat93]. Apparently, [BE95] implemented a C++ version of

the CSIM library by integrating the HUSH graphics library [Eli95] such that graph-

ical analysis of the simulation can be made. Appendix A demonstrates the method

to build and simulate elementary queuing system (a single server queue, where

pedestrians arrive, wait and execute their task) using the SIM library.

The individual queuing systems and thereby the queuing network is built au-

tomatically within the framework during initialization phase of the simulation.

The parameters such as number of queuing systems, properties, etc., are de-

termined from the graph data. Therefore, the implementation of the queuing

network model is basically the same for any scenario that is simulated within the

framework. When building the queuing systems, the program allocates the re-

quired amount of memory for the scheduler and the event list (tertiary tree). An

event-based approach10 is used to model and simulate the pedestrian behavior.

The queuing network follows a Markov chain process where each pedestrian

makes a decision on the next destination and the decision is a Poisson process de-

pending on the probability distribution of the pedestrian profile. Other stochastic

processes such as stationary process can be implemented within this framework.

Such processes are performed based on the definitions and information available

10In an event-based approach, we first identify the events (arrival, departure, service) in

the model. The behavior of an event is implemented by deriving it from the class event and

overriding the function operator of this class. On the other hand, in a process-oriented approach,

the components of the model consists of entities, which represent the existence of some object in

the system (pedestrians). An entity receives a user-defined phase that determines the behavior

of the entity



A Pedestrian Simulation Framework 83

from the pedestrian profiles.

The entire simulation is driven by the pedestrian profile that is used for simu-

lation. The profile management interface shown in section 4.2.4 is used to define

the pedestrian profile for the scenario. The profile interface is at the moment

a separate component and is not integrated within the simulation framework.

Even though the choice of pedestrian type, the decision of visiting a particular

destination, etc., are determined stochastically within the simulation framework,

the parameters to make such decision lie with the pedestrian profile. Properties

such as queue priorities, visit priorities, queue behavior (reneging, balking), are

available within the simulation framework and can therefore be activated when

necessary. However, the profile management interface does not currently support

such properties to be defined within the profile and must therefore be defined

separately in addition to the profile, if such decisions have to be made by the

pedestrians.

The reference scenario simulated within this framework assumes that each

pedestrian will determine a list of tasks to execute and the task is executed in

the order of occurrence Ti ≺ Ti+1 (each task is generated dynamically, i.e. the

next task is decided once the current task is executed). For tasks that must

be executed at a specific time for a certain period of time Ti(tstart, tend) (e.g.,

stationary process), a time parameter is set additionally such that the pedestrian

interrupts the current task to execute the new task.

set(tstart); if(tcurr > tstart)then {interrupt(Ti); execute(Ti+1); }

In such situation, the time taken to reach the destination is also considered when

performing set(tstart).

It is assumed that every pedestrian who visits the scenario arrives with an

intention to execute a certain set of tasks. However, in reality, certain pedestri-

ans wander within the scenario aimlessly. Such pedestrians also create conges-

tions within the scenario. Such statistics are not directly incorporated within the

framework. Instead, these characteristics can be integrated within the pedestrian

profile by defining extra spots where such pedestrians may gather. Such aimless

wandering can therefore be mapped to a pedestrian profile of an existing format

and these pedestrians can be simulated along with the system. In this framework,

the example of occasional smoking activity on the outside areas of the reference

model was considered in the pedestrian profile.

Other parameters that can be controlled within the simulation framework

include the (time-dependent) arrival rate, maximum amount of arrivals during

the simulation and the maximum number of pedestrians that can be simulated

simultaneously (denotes the maximum capacity of the building itself).
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As mentioned in chapter 3, an XML parser library (LibXML2) is used to parse

and manipulate the profile data stored in XML format. During the initialization

phase, following operations are done.

Graph Data: The graph data consists of nodes (also co-ordinates, rooms), and

edges (also type, length, capacity). The node and the edge data from the

XML are parsed and stored separately in a linked list structure. The two

lists are then interlinked such that the nodes point to the corresponding

edges and vice-versa. Once the list is created, the XML contents are re-

moved from the main memory. The graph list is retained until the simula-

tion terminates and all graph operations are performed on this list. Typi-

cally, the graph is stored only once in the memory and the graph stays until

the simulation terminates. Even though the memory requirements are not

high (just the required memory to store the graph), it can be seen in sec-

tion 4.2.6 that the operations performed on the graph such as path-search,

destination decision, geometry parameter extraction, etc., consume a lot of

computing power.

Room Data: The room data is organized similar to the graph data. Two in-

dividual lists are created for rooms (ID, capacity) and room types (type

of the destination and typical service times). Once the list is created, the

XML contents are removed from the main memory.

Customer Data: The customer class manages one customer at a time. For each

instance, the object parses the customer profile designed for the simulation,

chooses a specific customer type based on the type distribution and collects

the properties of the chosen customer type. All other remaining data are

unnecessary and are therefore deleted. Once a customer is chosen, a list of

tasks to execute, along with the probability of time of occurrence during

the simulation, is also generated and stored along with the object. As and

when a task is executed, the task list in the customer object is updated.

Compared to the graph and room data, the memory requirements for the

customer is higher. This is because, for each new customer, the customer

profile has to be parsed fully and a decision on a specific customer type is

chosen. The customer record stays in the memory as long as the customer

stays in the scenario. The memory requirements of a customer data increase

linearly with the maximum allowed capacity of the geometric model.

4.3.1.4 Data Collection and Analysis

Output data is to be collected from the pedestrian simulation regarding the be-

havior of the pedestrian and their impact in the scenario. The framework offers
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the following possibilities to collect results from the simulation

• Path congestion: During the simulation, the congestion that occurs along

the path is continuously monitored. Snapshot at discrete time stamps11 are

made and the congestion data is collected (e.g., for a simulation time of 8

hours, 480 observations are made). The congestions can be measured in

terms of time (time it takes to walk along the entire path) and congestion

(pedestrian density at a path).

• Destination Congestion: The destination congestions are monitored sim-

ilar to that of the path congestion data. The congestions are measured in

terms of time (time it takes to execute a task, including waiting time) and

queue size (the average length of the queue). Both the path and destina-

tion data gives an overview of the congestions that occur in the scenario

throughout the simulation.

• Customer Data: For each customer initiated, there is a trace file attached

to the customer object that keeps track of each activity of the customer

(movement, task execution, node visits) along with the time stamp of each

event. The customer data is used for the visualization tool described later

in this section.

Examples and analysis of the simulation data collection are presented in chapter

6

4.3.1.5 Pedestrian Data Visualization

A visualization environment named Observer was developed to observe and val-

idate the pedestrian movement within the simulation scenario [Wu06]. The ref-

erence model used here was created using Maya software from Alias (now owned

by Autodesk) [GSG04]. The model was then exported to the OBJ format12 sup-

ported by Alias Wavefront. The GLM [Rob] – an OBJ file loader developed with

the GLUT (OpenGL Utility Toolkit) library – is used to parse and visualize the

geometric model and the pedestrian simulation. The visualizer is written using

OpenGL and Trolltech’s Qt. The Observer tool offers the following functionalities

11In this framework, values are measured for the time interval of 1 minute and a mean is

calculated. This time frame is valid for both path congestions and destination waiting times.

The time interval can be flexibly changed within the framework.
12Object files define the geometry and other properties for objects in Wavefront’s Advanced

Visualizer. Object files can also be used to transfer geometric data back and forth between the

Advanced Visualizer and other applications. Object files can be in ASCII or binary format.

The OBJ file supports both polygonal and freeform objects.
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• Model Display: The OBJ formatted geometric model is parsed using the

GLM library and is displayed within the Qt window. The textures and

the colors are retained with the model. The transparency level can also be

activated such that the simulation across the entire scenario as well as the

model is visible. Transparency is adjusted by activating the blending level

and the alpha component is used to blend the colors to give a transparent

effect.

• Navigation: Functions such as rotate and zoom have been activated such

that the viewpoint camera can be controlled interactively.

• Simulation Visualizer: The customer data collected from the simulation

is used to visualize the pedestrians. Each pedestrian is represented as a

sphere and the sphere moves along the edges of the graph as defined from the

customer data collected from the simulation. The customer data include the

motion of the pedestrian along every single path as long as the pedestrian

is present in the building and the speed of movement (represented using

color values).

• Congestions: By activating the graph, the graph is displayed and the

edge color represents the pedestrian density. Similarly, the current status

of queue size and occupation is also displayed.

All the above components can be activated or deactivated through the graphi-

cal user interface. A real time interactive visualization of the reference model

(geometry model with about 156,000 triangles and a customer data consisting

of 1000 customers) was possible on a PC with 3D Graphics Card (ATI Radeon

X800) having 128MB RAM. However, larger models consisting of many such

buildings may not be possible to visualize. Therefore, an option of transferring

the visualization into a video file is also built such that an off-line visualization

and analysis is possible. A virtual flight is also possible by pre-defining the de-

sired path over which a flight has to be made. All the components listed so far

can be combined or activated individually. The Figure 4.10 shows a snapshot of

the Observer visualization tool used to visualize the pedestrian movement in the

reference model.

4.3.1.6 Parallel and Distributed Simulation

When scaling the reference scenario and the reference model, where the scenario

consists of a number of buildings spread across a large region, several times more

number of pedestrians can be expected in the scenario. Even though the simu-

lation framework theoretically allows such scalability, each pedestrian entity and
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Figure 4.10: A snapshot of the visualization of the pedestrian movement (rep-

resented using colored balls where the color denotes the walking speed of the

pedestrian) in the reference model shown as a translucent object.

the graph data require an enormous amount of memory (see analysis in 4.2.6).

Therefore, parallel and distributed simulation methods must be used to tackle

the computing restrictions.

Research has been done in the past to parallelize discrete event simulation

[Fuj00, Fuj90, NF94]. Parallel Discrete Event Simulation (or PDES) broadly fall

into two categories: conservative simulation [Mis86] and optimistic simulation

[Jef85]. A conservative approach executes an event only if it is possible to avoid a

causality error, i.e. the event should not be dependent on any future events. An

optimistic approach on the other hand uses detection and recovery approach, i.e.

the events are first performed and if a causality error is detected, the simulation

is rolled back to its initial state or to the state where a causality error is detected

such that the errors are corrected. Therefore, each state of the simulation must

be saved and the amount of intermediate storage for an optimistic approach is

very high. In both cases, the complexity of the methods are very high and for

small improvement in performances, huge amount of efforts are needed. This

is because, in a discrete event simulation, the events are scheduled in the event

list in a chronological order and the events must be executed in the increasing

order of the time. Some events that are already available in the future event list

and are bound to certain conditions. Such events, even though available to be

executed, cannot be executed since the status of the event depends on some other
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event that is not yet scheduled (or completed). Therefore, the amount of parallel

executions in a PDES reduces drastically and the performance improvement is

low and hence not used to implement queuing systems within this framework.

Alternatively, it is possible to partition larger graphs into smaller sub-graphs

and simulated in parallel. For example, in a campus network of many buildings,

each building can be stored in a separate sub-graph and each building is simulated

separately. Since communication between the sub-graphs exists for pedestrians

wishing to move from one building to another, the graph must be partitioned

such that the connection between the sub-graphs is minimal.

Also, independent simulations such as a building plan optimization (simu-

lation of several different scenarios within the same given CAD model) can be

executed in parallel such that independent scenarios can be simulated on a parallel

computer. Initial attempts were made within this framework to perform parallel

independent simulations. A parallel code using MPI (Message Passing Interface)

library was written to perform such parallel simulations. In the program, simula-

tion specific parameters and the input data for independent simulations are stored

separately. Since the simulation program is the same, the parallel code sends the

input data for each simulation separately to different available processors. Once

the simulation is complete, the results are collected and the simulation is termi-

nated. This process is repeated until all the scenarios have been simulated. The

parallel program schedules a new simulation scenario as soon as a processor is

available and the data is collected.

4.3.1.7 Geometric Modeling and Navigation

The component for the extraction of the graph from the CAD model as explained

in chapter 3 is not included within the pedestrian simulation framework and is

performed separately. However, the octree-based navigation system uses the data

from the simulation to choose an optimal destination and navigate the pedestrian

to that destination. In chapter 3, a list of destinations in the neighborhood is

searched and the closest destination is chosen. However, the closest destination

may not necessarily be the optimal destination. The congestion data obtained

from the simulation can be used to sort the identified list of destinations based on

the congestions along the path and the actual waiting times at the destination.

The pedestrian can then choose an optimal destination that can be reached easily

and also has the least waiting time. Numerical examples of such navigation

systems that use the simulation data will be presented in chapter 6.
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4.3.2 Pedestrian Simulation Framework Extensions

The simulation framework discussed here performs a pedestrian simulation for

the defined scenario in the given geometric model. Different applications and

connectivities are possible with this framework. In the reference scenario, we

choose the application of a pedestrian navigation system to schedule the list of

tasks for a new visitor. The simulation framework may also be used to simulate

an evacuation scenario: normal evacuation once the closing time has reached

(discussed with an example in chapter 6) or an emergency evacuation scenario,

building plan optimization: optimize the architectural model by simulating the

expected pedestrian scenario in the building, pedestrian visit estimate: where to

expect more pedestrians visits and how to optimize the distribution of rooms in

the model to optimize pedestrian movement, etc.

Apart from the different applications, the pedestrian simulation framework

can also be integrated with the traditional traffic simulation such that the pedes-

trian movement (or a passenger in a vehicle) can be simulated over a larger region

such as a city. Several approaches for simulating vehicular traffic movement have

been proposed in the past. Of all the methods developed so far, microscopic

traffic simulation using the cellular automata proposed in [NS92] is used widely.

This model allows the simulation of a simple one-lane traffic. Several extensions

have then been made to this model (e.g., multi-lane traffic simulation as seen

in the real world). However, these models do not consider public transportation

and heterogeneous traffic such as trucks, bicycles, cars, etc. Therefore, an envi-

ronment for simulating multi-modal traffic on a microscopic scale was proposed

and built within our group [MB06]. A simulator to simulate and visualize the

traffic was also built with the option of later parallelization [WK06] (see Figure

4.11). The simulator is also connected to the timetables of public transporta-

tion. Therefore, the movement of a pedestrian or a passenger who uses any of

the transportation modes can be simulated. The simulator tool also offers an

interface to connect to the pedestrian simulation framework. In order to perform

a full-fledged pedestrian and traffic simulation, the pedestrian simulation frame-

work and microscopic traffic simulator must be integrated. The interface between

the traffic and the pedestrian simulation involves transfer of pedestrians or pas-

sengers. The passenger, once arrives at a building through some transportation

mode, carries an ID along with the profile and a list of tasks to execute. The

current time of arrival is also noted. Based on the profile and the list of tasks to

execute, the passenger is included with the existing pedestrians in the building

and is simulated. Once the passenger completes his task, he is transferred back

to the traffic simulator along with the ID and the time of task completion.
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Figure 4.11: A snapshot of the microscopic traffic simulator.

4.4 Summary

In this chapter, a generic flexible framework for performing a pedestrian simula-

tion was presented. The framework models the pedestrian behavior (paths and

destinations) as queuing systems and embeds the queuing system into the geom-

etry of the reference model. The framework also offers an option to define several

pedestrian profiles and simulation parameters such that a generic pedestrian sce-

nario can be modeled and simulated within this framework.

Different commercial pedestrian modeling environments are also available to

model and simulate pedestrian behavior. For instance, the commercial software

Simwalk, developed by Savannah Simulations, offers an environment to simulate

pedestrian behavior, evacuation scenarios, urban planning, etc. The Shopsim,

also from Savannah Simulations offers an environment for simulating a shopping

complex layout by defining pedestrian data and interchanging the locations of

the shops within the layout. All such environments were not found to be suitable

for embedding the simulation into the geometry context and providing an option

for an intelligent pedestrian navigation. Therefore, the pedestrian simulation

framework shown here was built from the scratch.

Different applications such as evacuation planning, building plan optimiza-

tion, visit estimation, coupling with traditional traffic simulation, etc., can be
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performed using this framework. In the reference scenario, we choose to use this

pedestrian simulation framework to build an intelligent pedestrian navigation sys-

tem by optimally scheduling the list of tasks to be executed by a new visitor. In

the next chapter, different methods to optimally plan and schedule a pedestrian

visit that uses the data from the pedestrian simulation is discussed.





Chapter 5

Optimized Pedestrian Task

Scheduling and Routing

We should forget about small efficiencies,

say about 97% of the time:

premature optimization is the root of all evil.

– Donald E. Knuth

So far, the reference scenario has been modeled and simulated and an overview

of possible congestions and waiting times across the scenario has been collected.

Now, it is possible to estimate the time it takes to move from the current location

to a specific destination, the waiting time at that destination and the service time

of the task to be executed. In our reference scenario, the pedestrian arrives with

the intention of executing n different tasks as quickly as possible. In this chapter,

we study the possibility of using the simulation data obtained from chapter 4 to

schedule and route the pedestrian such that the tasks are executed in the shortest

possible time (or within the given time-frame).

Scheduling and routing problems are often seen in transportation networks

and logistics1: routing of shipments (packet pick-up and delivery), service rout-

ing (providing on-site technical services), passenger routing. Due to increasing

availability of GPS and communication devices, dynamic routing has received a

lot of attention. Whatever may be the situation, the goal of routing and schedul-

1Logistics is the technique of managing the flow of products, services, etc., from source to

destination through the supply chain network. Supply chain management is the process of

controlling such a supply chain. To quote an example of efficient supply chain management:

The Tiffin Carriers in Mumbai, India (see http://www.mydabbawala.com/) are known to

deliver and pick up lunch packets around the city with an efficiency of 99.9999% (1 error in

16,000,000 transactions) and achieve a six-sigma [HS00] performance virtually.

93
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ing algorithms will be to minimize the cost and maximize the throughput (least

traveling distance, least waiting times, maximum amount of task executions,. . . ).

However, when planning a schedule, parameters such as capacity of the system,

fixed timings, pre-specified schedules, etc., must be taken into account.

Automated scheduling process is used in wide range of applications such as

production scheduling: concerns the scheduling of jobs and control of their flow

through a production process, space allocation: optimizing the allocation of phys-

ical space or capacities, timetable scheduling: planning and scheduling of airlines,

events, university lectures, etc., personnel scheduling: scheduling of man power

to optimally complete the set of tasks, and so on.

This chapter is structured as follows. The next section gives an overview of

existing scheduling and routing methods. Then, the components of pedestrian

task scheduling in the reference scenario are presented and various combinatorial

optimization methods and heuristics are used to schedule the list of tasks, as

well as route the pedestrian between the tasks. An analysis is then made on the

performance of different methods. Based on the analysis, a decision on is made

on choosing the appropriate optimization method that can be used to schedule

the pedestrian tasks in the reference scenario. Finally, an outlook is made into

other possible scenarios (apart from the reference scenario), where the scheduling

methods can be used.

5.1 Task Scheduling and Routing

The problem of scheduling and routing involves planning a timetable wherein

each process occupies some resource for a certain period of time. The scheduling

problem or otherwise referred to as a job-shop scheduling, in its usual form,

consists of m machines Mj|j = 1, 2, . . . ,m and n jobs Ji|i = 1, 2, . . . , n such

that each job is alloted one or more time intervals to one or more machines. A

job Ji consist of a number ni of operations Oi1, Oi2, . . . , Oin and each operation

Oij is associated with a processing time. There are several classes of scheduling

problem and they are specified in terms of a three-field classification α|β|γ, where

α specifies the machine environment, β specifies the job characteristics and γ

denotes the optimality criteria [GG75].

The job characteristics are defined with the set β consisting of the following

elements.

• Preemption: It indicates whether the job may be interrupted and resumed

at a later point of time.
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• Precedence Relation: Sometimes there may be a specific order in which

the jobs can be executed and if such an order exists, it is defined by a

precedence relation.

• Release Date: A tentative time when the job shall be completed is defined.

The release dates may or may not be defined.

• Processing time: Certain jobs may have restrictions with the processing

times or restriction with the number of operations each job contains.

• Deadline: If there exists a deadline to finish the job, the job may not be

finished later than the specified deadline.

The following criteria must be considered when optimizing a schedule.

• Throughput: The schedule must be prepared such that maximum pos-

sible jobs are completed within the least amount of time. Most methods

improve the throughput by increasing the efficiency of the job execution.

The resources are utilized to the maximum possible extent such that the

throughput is higher.

• Fairness: It is important that each resource is fairly allocated. Situations,

where a particular job blocks a resource forever such that other processes

continuously wait for the resources must be avoided.

• Deadlines: If the jobs must be completed within the allocated time, the

schedule is planned such that the deadlines are met.

Apart from the above-mentioned criteria, several other constraints may be spec-

ified and these constraints must be considered when scheduling the jobs. For

example, the schedule must be planned such that the make span is minimized or

the maximum tardiness is minimized. More information on scheduling algorithms

can be found in [Bru04].

In our reference scenario, an optimal schedule must be planned such that

the pedestrian executes all his tasks within the allotted amount of time. The

scheduling must take into consideration the congestions and waiting times that

occur in a system. Execution of each task involves a transition time (the time

required to physically reach the destination). Therefore, the pedestrians have

to be routed to each task. So with each task, there is also a routing operation

performed.
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Dynamic Shortest Path Problem

A routing operation in this case refers to the transition between two different

destinations. Therefore, routing involves movement of the pedestrian from one

destination along the path to another destination. The objective of routing is to

determine the optimal path between the two destinations. The term “optimal”

can denote the shortest-path, fastest-path, path with the least amount of con-

gestions, path based on some constraints (no stairs when using a wheel chair)

or path with the least cost. Of all the listed types of paths, the shortest-path is

the only path that takes a static value (distance is always the same). The other

types of paths are often dynamic, i.e. the value changes over time. A majority

of the published research on shortest path algorithms has dealt with static net-

works that have a fixed topology and fixed costs. This was due to the enormous

amount of computing power needed to perform a path-search in the early days.

[EJ90] in 1990 for example reports several hours to calculate an all-to-all shortest

path for just 250 nodes of static network and several days for a 16,000 nodes of

a large-scale network. Therefore the early attempts made by [CH66, Dre69] to

compute the shortest path for dynamic networks were not successful.

One way of dealing with dynamic networks is splitting continuous time into

discrete time intervals with fixed travel costs, as noted by [Cha97]. Building on the

research from path finding algorithms in static networks, [Cha97] suggests that

a time-space expanded graph network of the discrete dynamic data can be used

to calculate the dynamic optimal path between two points. Hence, depending

on how time is considered, dynamic shortest path problems can be subdivided

into two types, namely discrete and continuous. In the discrete case, if using

a 1-minute time interval for a period of 8 hours, the time-expanded graph will

contain m × 480 time discretizations, where m is the number of edges in the

graph.

[Cha98] lists the following types of dynamic shortest path problems depending

on

• fastest vs. minimum cost (or shortest) path problems

• discrete vs. continuous time representation

• FIFO vs. non-FIFO network (a pedestrian departing later may arrive earlier

than other pedestrians)

• waiting vs. no waiting at nodes

• one-to-all for a given departure time or all departure times, and all-to-one

for all departure times



Task Scheduling and Routing 97

• integer vs. real valued link travel costs

[PPR+03] investigates the possibility of solving a dynamic and stochastic

shortest path problem by modeling link travel times as a continuous-time sto-

chastic process. The aim is to estimate travel time for a particular path over a

given time period. A survey on dynamic shortest path problems can be found in

[Hud00].

Scheduling and Optimization Methods

Apart from performing a routing operation (a path-search operation), the tasks

must be scheduled in a specific sequence such that the time taken to complete

all the tasks, including the transition between the tasks, is minimized. A typical

scheduling problem (or a job-shop scheduling problem), which involves schedul-

ing i number of jobs in j number of machines, where each job may have multiple

operations to be performed on different machines, is one of the most difficult clas-

sical scheduling problem. In most cases, a shop scheduling problem is classified

as NP-complete and very simple special cases of shop scheduling problems are

already classified as NP-hard. For instance, a 10 × 10 job scheduling problem

(10 jobs on 10 different machines), has been an open problem since 1963 [MT63]

and was solved 25 years later [CP89] using the branch and bound method. Shop

scheduling problems are classified into several types such as a single machine

scheduling problem, parallel machine scheduling problem, special cases such as

open shop, flow shop or mixed shop problems, etc. A shop scheduling problem is

represented using a disjunctive graph model. A disjunctive graph G = (V,C,D)

where V is the set of nodes representing the operations of all jobs, C is the set

of directed conjunctive arcs (reflect the precedence relations between the opera-

tions) and D is the set of undirected disjunctive arcs (for operations that must

be performed on a same machine). Different combinatorial optimization methods

and heuristics are used to solve a job-shop scheduling problem. Mixed integer lin-

ear programming, branch and bound method, approximation methods such as a

local search, bottleneck-based heuristics, etc., are used to optimize the scheduling

problem. Due to the complexity of the scheduling problem, it is often sufficient

to find a feasible solution such that the schedule is complete within a given time.

Much research has been done in optimizing such scheduling problems. For in-

stance, [SS99] proposes an optimal stochastic scheduling method to schedule tasks

in multi-class parallel queues. [Hoo06] combines mixed integer linear program-

ming together with constraint programming to minimize the maximum tardiness

in planning and scheduling problems through a Benders scheme [Ben62].

Different heuristics are also used for dynamic job scheduling problems. For ex-
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ample, [MRea02], uses genetic algorithms and evolutionary methods to optimize

dynamic scheduling problems. Also the use of tabu search method for dynamic

job shop scheduling problem can be seen in [WBHW03].

Traveling Salesman Problem

In the reference scenario, the pedestrian must visit n of destinations and complete

the task in each destination in the shortest possible time. The problem resembles

a traveling salesman problem. The major difference between a traveling salesman

problem and the problem in the reference scenario is that the elementary traveling

salesman problem is static. That is, the distance between any two given cities is

constant and it is assumed that the time taken to travel between two cities is also

constant regardless of the time of travel. Also, the traveling salesman problem

does not consider the dynamic time it takes for the salesman to execute a task at

each city. Research has been made in solving dynamic time dependent traveling

salesman problem. Before, we discuss the solution to the dynamic problem, let

us have a short look into solving a regular traveling salesman problem.

In a traveling salesman problem, a salesman visits n of cities spread across

a 2-dimensional space. The objective of the salesman is to minimize the total

traveling distance. That is, determine the visit sequence such that the distance

covered is minimum. The solution for a traveling salesman problem is found to be

NP-hard and the decision problem (if there exists a route r′ that is cheaper than

the existing route r) is found to be NP-complete. Several heuristic approaches

have been proposed to solve a traveling salesman problem. Determination of an

exact solution however is difficult and requires a lot of computing power. For ex-

ample, in March 2005, the traveling salesman problem of visiting all 33,810 points

in a circuit board was solved using CONCORDE:2 a tour of length 66,048,945

units was found and it was shown that no shorter tour exists. The computation

took approximately 15.7 CPU years. For more information on computational

methods to solve the traveling salesman problem, refer to [Rei94].

In a dynamic traveling salesman problem however, the values change over

time. Different proposals are made to optimize a dynamic time dependent trav-

eling salesman problem. For example, [BBO+01] optimizes the time dependent

traveling salesman problem using Monte Carlo methods. The paper attempts to

optimize a “real” traveling salesman problem by considering the rush hours or

traffic jams during traveling. The simulated annealing method is used to optimize

the route of the traveling salesman problem and a time-distance matrix is used

to represent the changes in the time it takes to travel. The paper uses specific

2http://www.tsp.gatech.edu/concorde/index.html

http://www.tsp.gatech.edu/concorde/index.html
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traffic information together with the TSPLIB953 to locally optimize the traveling

salesman problem. Similarly, [SCM06] compares several formulations of a pro-

duction scheduling problem with sequence-dependent and time-dependent setup

times on a single machine. The problem is viewed as a time dependent traveling

salesman problem, where the travel time between two nodes is a function of the

departure time from the first node. Linear programming with lower bounds, as

well as branch-and-cut algorithms are used to solve instances with up to 20 jobs

within reasonable amount of time.

5.2 Pedestrian Visit Planning

The pedestrian simulation of the reference scenario in chapter 3 so far gives us

an overview of the congestion status of each path and destination at different

simulation time stamps. Now, in the reference scenario, a new pedestrian arrives

in the scenario and visits a sequence of n destinations before leaving the scenario.

The entire visit involves n + 1 transitions to each destination (n transitions from

the starting point to each successive destination and (n + 1)th transition back to

the exit) as well as an activity (execution of the task T ) at the destination. The

overview obtained from the simulation enables us to estimate the time it takes

for a pedestrian to move from the current location to a specific destination at a

given time t and also estimate the waiting time at the destination at time t+t(Pi)

(where t(Pi) denotes the time it takes to walk along the ith path)4. The waiting

time in a queue and the actual service time at the service counter i are denoted

by t(WQi) and t(STi). The time necessary to execute a task is therefore denoted

as t(Ti) = t(Pi + WQi + STi). A task can denote any arbitrary activity that

a pedestrian would perform in a scenario (shopping, working, relaxing). Using

the statistical data obtained from the pedestrian simulation, we investigate the

possibilities to schedule and navigate the tasks to be executed by a pedestrian.

In the reference scenario, a pedestrian arrives with an intention of execut-

ing n tasks optimally. For experimental purposes, we consider that the visit

must be completed in the shortest possible time such that the schedule S =

min{
∑n

i=1 t(Ti)} or within the given deadline such that tS ≤ tmax (for example,

before closing time). The simulation data obtained from the previous chapter

gives us the time it takes to walk across each path and the waiting time at each

destination during different times of the day, which makes the data dynamic.

3http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
4The index i is used to represent the ith task Ti out of n tasks. Since each task involves the

transition to the task, waiting before the task and service of the task, the index i shall be used

to also represent the path, queue and service station of the respective task.

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/


100 CHAPTER 5: Pedestrian Task Scheduling and Routing

Therefore, a task Ti executed at times t1 and t2 require different amount of time.

Let list of tasks5 be T {Ti|i = 1, 2, . . . , n}. The visitor starts his visit at source,

visits n destinations and traverses to the sink. Therefore, the set of paths, de-

noted as P{Pi|i = 1, 2, . . . , n, n + 1}, consists of n paths to each destination and

the last path to the sink (see Figure 5.1).

sink

T1 T2 TnT3

t(P2) t(P3) t(Pn) t(Pn+1)t(P1)

t(WQ1 + ST1) t(WQ2 + ST2) t(WQ3 + ST3) t(WQn + STn)

source

Figure 5.1: Set of tasks to be executed by a pedestrian.

The pedestrian visit planning problem consists of two components, namely

scheduling the tasks and path finding between each task. In the reference scenario

considered here, the pedestrian would wish to obtain a feasible schedule either in

advance, e.g., through a web-based interface, or dynamically via some hand-held

devices. In either case, it is important compute a feasible itinerary within a short

span of time. In this section, the various techniques that were used to solve these

two components are presented.

5.2.1 Pedestrian Routing: Fastest Path Problem

The task scheduling problem involves both sequencing of the tasks and movement

of the pedestrian between the tasks. To reach a destination node, the pedestrian

must find his way from his current position to the destination node. A path must

be found such that the pedestrian is able to walk easily without congestions and

reach his destination in the shortest possible time. The path-search algorithm

makes use of the congestion data obtained from the pedestrian simulation. Even

though the edge value is dynamic, the pedestrian simulation records the edge

data as discrete and not as continuous values. A generalized static version of

the Dijkstra’s algorithm can be used to calculate the fastest path between two

points in a discrete dynamic graph [Cha98, Dea99]. This algorithm works in the

same way as the static algorithm and has a complexity of O(m + n · log(n)).

However, in reality, the computational needs and the running time for a discrete

dynamic shortest-path algorithm is high. This is because of the construction

and use of a time-expanded network (the edges of the graph should contain all

discrete data). Also in a one-to-all shortest path problem, such data network is

5To differentiate between a single task and a set of tasks the calligraphic font is used to

denote a set of tasks. The same applies to the set of paths (P) and set of sequences (S).
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necessary even though the actual number of destinations is much lesser than the

actual number of nodes present in the model (30% in our reference model). Also

due to the stochastic nature of the simulation, the edge values are an estimate

of the path congestions and not exact values determined from physical sensors.

Therefore, computational efforts needed to build a time-expanded graph network

for determining the fastest path are unnecessary and must be avoided.

Alternatively, we use a much simpler algorithm to approximate the fastest-

path without a time-expanded network by carefully manipulating the graph with

certain stochastic parameters. The fastest path is determined as follows. Initially,

the weights of the edges of the graph are replaced with the time it takes to

cross the path (depending on the average walking speed, type of the path and

the length of the path). The walking time along the edge ei is determined by

t(ei) = dei
/(v ∗ speed factor), where dei

is the length of the edge and v is the

static average walking speed (1.38 m/s). The speed factor is determined based

on the type of the path as explained in 4.2.3 (for stairs 0.5 ·v, for downslope ramp

1.2 · v). With the time weighted graph, the shortest-path algorithm now gives us

the fastest path between two points.

Now, these edge values must be replaced by the actual time it takes to walk

across the path when there is a congestion. This is because the congestions that

occur along the path will reduce the total time needed to reach the destination.

For this, we use the edge data obtained from the pedestrian simulation. Phys-

ical experiments have been made within the reference model and it was found

that the maximum amount of time to transit between two farthest points in the

graph (longest walk) takes no more than 10 minutes. It was also found that the

congestions along the path generally remain consistent or change only gradually.

Therefore, the mean value of actual transit times (obtained from the simulation)

is computed for the next 10 minutes for each edge of the graph. This process

has a complexity of O(n). The mean value is then compared with the exist-

ing static value of the edge and the greater value is retained ∀ E in G(V,E),

ei = max{t(ei)static, t(ei)mean}. Now, the static shortest path algorithm shall

yield the fastest path from v1 to v2.
6

The manipulation of the graph by stochastic means may not work in all cases.

In certain cases, for example before and after a stationary process, rapid changes

6Since only the longest walk takes 10 minutes, most other paths will take much lesser time.

Moreover, the approach mentioned here is specific for the reference model. A generalized

solution will therefore be to first find the shortest path from v1 to v2, compute the time (k

minutes) it takes to traverse this path, use the value of k to identify the mean value, and

recompute the shortest path. In that case, the shortest path is calculated twice, first to find k

and second to find the actual shortest path. We do not use the generalized method here since

it is faster to use the experimental data rather than to calculate the shortest path twice.



102 CHAPTER 5: Pedestrian Task Scheduling and Routing

in the congestion are seen along the paths that lead to the destination of a station-

ary process. These fluctuations will be ignored when computing the stochastic

mean of the weights of the graph edges and a pedestrian might end up in a blocked

path due to the fluctuations in the congestion. Therefore, the stochastic graph

manipulation method is used only after ensuring that there are no rapid changes

in the edge weights for the next 10 minutes.

5.2.2 Pedestrian Task Scheduling: Task Sequencing

We now have a generalized path-search method that identifies an optimal path

between two nodes. The next stage involves finding a schedule (sequencing the

tasks) such that the total time taken to complete the visit is within the allotted

time limit. The schedule S involves sequencing of set of tasks T and we assume

that the time taken to complete each task Ti includes the t(Pi), t(WQi) and

t(STi).

5.2.2.1 Brute-Force Search

Theoretically, the only accurate solution will be to use a brute-force search. A

brute-force approach identifies the optimal sequence of tasks by determining the

time taken by all possible sequences S{Si|i = 1, 2, . . . , n!} and identifying the

sequence which takes the least time.

A brute-force search is a trivial but a very general problem solving technique,

where each possible solution is evaluated to determine if the solution suits the

problem statement. For example, to solve the traveling salesman problem, i.e. to

determine a route through n cities such that the distance covered is minimum, it

is necessary to identify every possible route through n cities to identify the route

that covers the shortest distance. The brute-force approach is straightforward

and guarantees the correct solution. However, a major drawback of brute-force

search is the computation effort, especially when n is big.

The brute-force approach for scheduling the tasks have a computational com-

plexity of O(n!). Even for small n (e.g., n = 10 or n! = 3, 628, 800 comparisons),

modern computer requires many hours of computation. However, for very small

problems (e.g., n = 4 takes just about 0.2 s), brute-force search can be used,

especially when a large scenario can be decomposed into smaller domains. Since

a pedestrian requests for a schedule on-the-fly, brute-force search is inappropriate

for pedestrian task scheduling if n is big.

Due to the stochastic nature of the simulation data, there also is no guarantee

that the schedule determined from a brute-force search is indeed the fastest and
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the most optimal schedule. This is because, the simulation attempts to capture

the congestions and waiting time situations in a macroscopic level and a precise

behavior modeling of each pedestrian is therefore not possible.

It is not possible to predict the occurrence of a slow moving group at

a specific time and path that would decrease the walking speed.

Also, if considering such negligible details, a small change could create an impact

to the final schedule. That is, if it is assumed that the pedestrian would start at

time t, arrive at the destination at t+∆1t, start the task execution at t+∆1t+∆1t2
(where ∆1t represents the transition time and ∆2t represents the waiting time),

an unexpected change in the ∆ value will then render the schedule invalid and

require a new computation.

5.2.2.2 Greedy Heuristic

A greedy heuristic is a very commonly used method for finding feasible solutions

of combinatorial optimization problems. In a greedy heuristic, the algorithm

follows the problem solving meta-heuristic of making the locally optimum choice

at each stage with a hope of finding the global optimum. For instance, applying

the greedy strategy to the TSP yields the following algorithm. “At each stage,

visit the unvisited city nearest to the current city”. Similarly, a greedy heuristic

can be used for scheduling the tasks for a pedestrian visit.. There are three ways

to perform a greedy algorithm for generating an itinerary and they are listed as

follows.

Greedy path-search :

In the first approach, the algorithm always looks for the task that can be reached

fastest. The generic path-search algorithm is used to measure the time it takes

to walk between the starting point and all destinations. The destination that can

be reached fastest is chosen. Let Tj be a task j such that Tj ∈ T . The next

task Tj = min{t(Pi)} ∀i. The greedy path-search algorithm has a complexity

of O(n) for the first time and O(n − 1),O(n − 2), . . . and so on for consecutive

searches. The major disadvantage with this method is that there exists no control

in choosing the destinations. Therefore, the pedestrian might choose a destination

that is most crowded currently.

Greedy Sequencing :

In contrast to the greedy path-search method, the next approach chooses the next

task that can be executed the fastest. The algorithm identifies the current waiting

time at each destination, and chooses the task, which requires the least waiting

time. Let Tj be a task j such that Tj ∈ T . The next task Tj = min{t(WQi)} ∀i.
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Note that the service time STi is not considered for scheduling since service time

of a task Tj is generally consistent at any point of time. On the other hand,

when including the service time to compute the schedule, the tasks that take

longer to execute will be postponed. The computational complexity is same as

the greedy path-search method. In a greedy sequencing algorithm, the location

of the destination (distance from the current position) is ignored. Therefore, a

pedestrian might have to walk long distances between each task.

Greedy Routing and Scheduling :

This approach essentially combines both greedy path-search and greedy sequenc-

ing methods to choose the appropriate destination by counting the length of the

path as well as the waiting time at the destination. In this method, the sum of

waiting time and walking time t(Pi +WQi) is calculated for each destination and

the destination with the least walking and waiting time is chosen. Let Tj be a

task j such that Tj ∈ T . The next task Tj = min{t(Pi + WQi)} ∀i.

It is interesting to note that for different simulation data, each of the above

mentioned greedy methods perform differently. Different test scenarios were sim-

ulated and greedy search heuristic were performed on the simulation data. The

results were compared with the sequence obtained from the brute-force search.

It was found that, the greedy sequencing approach often produces a sequence

whose time of completion is longer than the original sequence generated without

any optimization. This was because the greedy sequencing chooses the desti-

nation with the least waiting time and it does not differentiate marginal dif-

ferences in the waiting time (e.g., if a and b are two destinations and even if

0 < t(WQa)− t(WQb) < x for very small values of x such as 1 minute, the desti-

nation a is chosen immaterial of its location). Therefore, the pedestrian ends up

spending a lot of time in transition. On the other hand, the greedy path-search

approach often – if not always – produced the sequence same as that of the brute-

force search, when the waiting times are low. This is because the waiting times

were generally the same at different points of time and due to the architectural

structure, the fastest reachable neighbor often results in the fastest path through

all the destinations. Therefore, for the reference model, where the waiting times

are generally low (or constant) throughout the given time, greedy path-search

approach may be used. Of all the greedy search approaches, the greedy routing

and scheduling method yielded the most stable results. More analysis will be

presented in 5.3 and numerical examples will be presented in chapter 6. Since the

future states of the destinations are not taken into account and since the data is

dynamic and not static, the greedy approach does not always guarantee us the

optimal solution. For example, the time of a task t(Tj) may be at its minimum

at time t. But the task may be postponed since t(Tj) is not the minimum among

all other tasks in T .
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5.2.2.3 Stochastic Optimization

The greedy search mentioned above is a local search technique. The drawback of

a greedy search can be avoided by iteratively determining a schedule and checking

if the new schedule is faster. However, a greedy search always chooses the fastest

task and any number of iterations will result in the same schedule. Therefore,

a probabilistic approach is made to determine if a faster schedule exists. The

method of simulated annealing [KGV83] is used to determine the fastest schedule.

Simulated annealing originates from theoretical physics, where Monte-Carlo

methods are employed to simulate phenomena in statistical mechanics. The term

annealing involves a technique of heating and controlled cooling of a material to

increase the size of its crystals and reduce their defects. The process of heating

causes the atoms to become loose from their initial positions (a local minimum of

the internal energy) and wander randomly through states of higher energy. The

slow cooling gives the atom the possibility of finding configurations with lower

internal energy than the initial one. Each time the annealing is performed, the

states are chosen randomly and this value depends upon the previous temperature

value.

In a simulated annealing method, several iterations are made to determine

the optimal solution. At each step, the simulated annealing method considers

some neighbor state s′ of the current state s and decides on choosing s or s′ as

the solution base on probabilistic methods. The probabilities are chosen such

that the system automatically finally tends to move to a lower state of energy.

Generally, the process is iterated until the solution seems to be optimized (with

a termination condition).

Simulated annealing method can be used to determine the optimal schedule

for the pedestrian visit. Initially, the pedestrian arrives with a set of n tasks

to execute. The total time taken to execute the tasks in the order of listing is

computed and is set as the initial solution. The algorithm tries to identify a new

sequence S ′ at random and S ′ is accepted as optimal if it is faster than the original

sequence. This process is iterated as long as an optimized solution is obtained.

The algorithm 8 shows the implementation of using simulated annealing method

to optimize the schedule

The algorithm 8 is a general approach of simulated annealing. In the algo-

rithm, the sequence S ′ is chosen completely at random. That is, two tasks T1

and T2 are identified at random such that T1 ≺ T2. S ′ is derived by removing T2

from the sequence list and inserting it immediately after T1. Alternatively, it is

possible to minimize the number of iterations by improving the efficiency of the

random function. This can be done as follows. The pedestrian profile used for
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Algorithm 8 Simulated Annealing method for Pedestrian Scheduling.

1: determine initial schedule S, set initial temperature ϑ > 0, set decrement

factor r

2: while stopping criteria not reached do

3: for r times do

4: perform some random change of sequence and obtain sequence S ′

5: determine ∆ = t(S ′)− t(S)

6: generate random number x, 0 ≤ x ≤ 1

7: if ∆ < 0 ∨ x < exp(−∆/ϑ) then

8: set S = S ′

9: end if

10: update ϑ and r

11: end for

12: end while

13: decide on S

the pedestrian simulation consists of the distribution of the profile types (x% of

Profile 1, y% of Profile 2, etc.), as well as the probability distribution of the time-

based destination visit of each profile (for destination type 1, the visit probability

between 9 and 10 am is z%). In the schedule S, each task is associated with a

destination type. Therefore, it is possible to extract the probability distribution

of the congestions that occur during the given time period. Now, the random

function identifies one task at random, identifies the time when the destination

shall expect the least crowd, identifies another task in the schedule which lies

at this time period, and swap with the new task. The algorithm 9 shows the

implementation of the random function used to determine the new schedule S ′.

Algorithm 9 Procedure to determine S ′ in a Simulated Annealing method.

1: while S ′ not identified do

2: randomly identify Tj ∈ S

3: identify from distribution time t when Tj can expect least queue

4: identify if there is a task Tk ∈ S at time t

5: swap(Tj, Tk)

6: end while

During the initial iterations, S ′ is determined often. As the number of itera-

tions increase, this algorithm may require more and more repetitions to compute

S ′. This is because the tasks are already swapped to suit a better execution time.

Therefore, a breaking condition is set and as long as this condition is reached, S ′

is determined at with probabilistic methods using the profile data. After that S ′

is determined at random as explained in algorithm 8.
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Compared to greedy search heuristic, simulated annealing method produced

a very stable task sequence. Although the solution obtained from simulated

annealing was never the same as the optimal solution obtained from brute-force

search, the results were close to optimal schedule and they were consistent in

all cases. Additional analysis will be discussed in 5.3 and sample results are

presented in chapter 6.

5.2.3 Constraints and Preconditions

In typical shop scheduling problems, the job characteristics β are considered for

scheduling. Similarly, the pedestrians arriving at a scenario may have different

priorities and preferences (referred to as constraints) such as precedence relation

for tasks Ti ≺ Tj, path preferences (avoid stairs or escalators), queue priorities

(preemptive service, queue balking and reneging), and a specific time of execution

(execute task Ti at time δ). Such constraints are defined within the pedestrian

profiles and are incorporated when scheduling the tasks.

Apart from pedestrian constraints, a careful analysis of the pedestrian sim-

ulation data can give us specific situations such as times when certain paths

are heavily congested or times when certain destination nodes are free of any

activities. Such preconditions can be used together with the scheduling meth-

ods discussed above. In general cases, the congestions in a path or destination

changes continuously and gradually. Rapid fluctuations are seldom seen along

these paths. However, due to stationary processes, such fluctuations along the

paths or nodes are possible. A stationary process is a stochastic process whose

probability distribution at a fixed time or position is the same for all times or po-

sitions. As a result, parameters such as the mean and variance also do not change

over time or position. However, the time before and after a stationary process

experiences a rapid fluctuation near the geographical location of the process. A

classical example of a stationary process is a lecture hall. In case of a lecture hall,

the probability distribution between the between the start and end of the process

(a lecture) remains constant. Therefore, pedestrians arrive shortly before the

start of the process and the inter-arrival times reduces rapidly before the process.

This process causes congestions along the paths in the vicinity of the destination

(lecture hall). Similar fluctuation is seen once the process is complete. From the

simulation data, it is possible to identify stationary processes and thereby identify

the congested paths at a given point of time.

Similarly, long waiting times that occur in the scenario can be detected from

the simulation data. These observations can be used to ensure that the task

is scheduled such that lengthy waiting queues are avoided. In one of the test
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scenarios that was simulated, the following parameters were considered.

• About 3000 customers visit the building, each with a specific list of tasks

to execute (derived from the customer profile).

• Utmost 1000 customers are present in the building at any given point of

time.

• A restaurant, with a capacity for 40 people is chosen for analysis, and

simulations are run to study its occupation during different times of the

day.

• The probability of the time of visit is determined from the customer profile.

In general, the probability of visit is high during noon.

• It is assumed that the entities wait in the queue as long as they are served.

Also, it does not deter further additions (queue reneging and balking are

deactivated).

• The simulation is run for a period of 8 hours (9am to 5pm).

The plot in Figure 5.2 shows the number of customers (entities in the queue and

the entities being served) during different times of the day. From the plot, it

can be seen that the restaurant is overloaded shortly after noon and takes more

than an hour to fall below the threshold line (less than the maximum capacity).

Such information can be used as a precondition when planning a schedule. For

instance, if the schedule includes a visit to a restaurant, the visit can be fixed

shortly before noon.

A tabu list that contains preconditions similar to that listed above as well as

a list of constraints to from the pedestrian profile is generated. The tabu list is

then used by the different scheduling methods to schedule the task. Each time a

task (or the sequence) to be executed is identified, the tabu list is used to accept

or reject the decision made by the scheduling algorithms.

5.2.4 Nearest Neighbor Search

The nearest neighbor search attempts to find the next closest destination (in

terms of distance) to visit. Nearest neighbor search is similar to greedy path-

search method excepting that the nearest neighbor search is a static algorithm.

In practical situations, it can be observed that the customer tends to stay in the

region and finish the tasks located within the region before moving to the next

region. The classical example is a theme park, where the attractions are grouped
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Figure 5.2: Number of visitors for a sample restaurant (capacity=40) recorded

during the simulation.

and sorted according to the theme and a visitor normally makes a tour from

the first area to the next closest and so on. The nearest neighbor search makes

an attempt to localize the search for optimal path by splitting the graph into

several subgraphs (regions), optimizing the plan for each subgraph and finding the

shortest connection between each subgraph. The scheduling methods explained

earlier are used to schedule the tasks optimally within the subgraph.

Due to the geometric background of the scenario, the nodes are spread over

a 3D space. These nodes are decomposed into smaller regions and each region is

interlinked with a specific sequence. Some of the decomposition methods include

space filling curves, graph partitioning methods (octrees, Kd-Trees), Voronoi dia-

gram, Delaunay decompositions, convex hull, etc. For the position identification

of the pedestrian in the graph, octrees were used to partition the graph nodes

and to identify the position of the customer. By varying the level of hierar-

chy, octrees can be used to decompose the graph into smaller domains such that

these domains are optimized locally. For more information on graph partitioning

techniques, refer to [AL97, BG95, CGT96].
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5.3 Analysis of Scheduling and Routing Methods

Several hypothetical scenarios were simulated and data regarding the path con-

gestions and queue waiting times were collected throughout the simulation period.

In the reference scenario, the pedestrian arrives with an intention to execute n

tasks. Initially, we list out the tasks and compute the time it takes to complete

the set of tasks. For this purpose, a random list of tasks were generated and

with the congestion data, the time it takes to complete all the tasks in the order

of the random generator were estimated. Let the task sequence from the ran-

dom generator be denoted as Sinit. Now, we optimize Sinit using the above listed

optimization methods such that t(S) is minimum.

In one of the hypothetical scenarios simulated, the scenario consisted of a

total of 5000 visitors with a maximum of 500 visitors present in the reference

model at any given time. Each visitor executed an average of 10 tasks and the

average service times were in the range of 5-20 minutes per task. The scenario

was simulated for a period of 8 hours (9am to 5pm) and the simulation took 117

seconds to complete on a Pentium 4 processor with 3GHz speed and 1 GB main

memory. The data obtained from the simulation was found to contain generally

low waiting times due to the availability of several destinations and short service

times.

For the new pedestrian entering the scenario, about 10 destinations, where a

task can be executed, were generated at random. Different problem sizes were

chosen (the first 4,6,8 and 10 tasks) and the scheduling methods were imple-

mented for each problem set. Let the task sequences obtained from the schedul-

ing methods be denoted as Sbrute (sequence obtained due to brute-force search),

Sgpath (sequence obtained due to greedy path-search method), Sgwait (sequence ob-

tained due to greedy sequencing method), Sgtask (sequence obtained due to greedy

scheduling and routing method), and Sstoch (sequence obtained due to simulated

annealing method). Let the time taken to execute the tasks be denoted as t(Sinit),

t(Sbrute), t(Sgpath), t(Sgwait), t(Sgtask), and t(Sstoch) respectively. Figure 5.3 shows

a comparison of the results (the time taken to execute the tasks).

It can be seen that in certain cases t(Sgwait) > t(Sinit). This is because the

greedy sequencing approach did not differentiate with marginal differences in

waiting times. Therefore, greedy sequencing method is found to be inappropriate

in pedestrian task scheduling. The results from the greedy path-search method

was often close to the best result t(Sgpath) = t(Sbrute). However, there existed

inconsistencies in several other experiments performed t(Sgpath) > t(Sinit). Of

all the greedy search methods, the method that combined the path-search and

waiting time Sgtask, performed most consistently. But, for large problem sizes,
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Figure 5.3: A comparison of the time taken to execute varying number of tasks

{4, 6, 8 and 10} with and without the optimization methods to schedule the task.

The bar graph shows a comparison of the quality of the output sequence obtained

due to the use of the scheduling methods.

inconsistencies were noticed. The simulated annealing method produced very

consistent results for different scenarios and problem sizes. The results were close

to the optimal solution but never the same as the optimal solution t(Sinit) >

t(Sstoch) > t(Sbrute).

The computing times were measured for each method and different problem

sizes. The greedy search had the least complexity and therefore took the least

amount of time. The computing time for all greedy search methods were linear

in the order speed(Sgpath) < speed(Sgwait) < speed(Sgtask) with respect to the

problem size (see Figure 5.4). Due the search mechanism, the greedy approach

takes the least time.

The brute-force search always yields the optimal solution but there is a fac-

torial increase in the running time (see in Figure 5.5). For a problem size of

n = 10, the brute-force search lasted about 18.5 hours in comparison with just

0.2 seconds for n = 4. The computing time of the simulated annealing method

depends on the number of iterations performed. In this example, between 100

and 230 iterations were performed for different problem sizes. The computing

time for simulated annealing method increased linearly.

From the analysis, it was found that the greedy search approach is often

unstable whereas the stochastic optimization using simulated annealing method
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Figure 5.6: Computing speed comparison of (average) greedy search and sim-

ulated annealing. Even though, the greedy search is much faster than the sim-

ulated annealing method, considering the quality of the output, it can be seen

that the simulated annealing computes the schedule still in a reasonable amount

of time.

to the simulated annealing method, the brute-force search requires a very long

time to compute. However, when the number of tasks n ≤ 5, the schedule is deter-

mined faster using the brute-force search is computed faster. Reasonable amount

of time is taken by the brute-force search to determine the optimal schedule for

n = 6. Considering the superiority of the simulated annealing method over the

greedy search method and considering the computing times of the brute-force

search and simulated annealing method, it has been decided to use brute-force

search for n ≤ 6 and simulated annealing method for n > 6 tasks to schedule the

list of tasks for the pedestrian in the reference scenario. Numerical examples for

task scheduling in the reference scenario will be presented in chapter 6.

Finally, when providing itineraries for several new pedestrians, these pedes-

trians must in turn be inserted in the existing congestions and waiting queues

such that the simulation data is constantly updated. Any new schedule com-

puted would therefore consider the congestions caused new pedestrians who have

entered the system. However, re-simulating the entire scenario to update a single

pedestrian data requires lot of computing time, especially when repeating the

simulation for several pedestrians. This cumbersome procedure can be avoided

by directly inserting the new schedule in the available simulation database. That
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is, use the existing simulation data as the initial condition and simulate the task

execution of a single pedestrian. The output data will then automatically contain

the movement of the new pedestrian.

5.4 Summary

So far, various optimization methods have been proposed to schedule a pedestrian

visit. It was found that the visit planning involves both optimal task sequenc-

ing and optimal path-search method. For finding the optimal path, a generic

Dijkstra’s algorithm shall be used (static version) with a time weighted graph.

An average value of the weights is calculated if path congestions are consistent

(or change only gradually) over time. If not, the time-expanded graph network

is used. For sequencing the list of tasks optimally, a brute-force search shall be

used if n ≤ 6 and a stochastic optimization using simulated annealing shall be

used if n > 6. The greedy search methods were found to be too inconsistent and

hence not used to sequence the tasks. Since the task sequencing automatically

includes the optimal path-search method, the path-search algorithm need not be

performed separately. In the next chapter, the components built so far will be in-

tegrated to realize the reference scenario using these optimization methods along

with some numerical examples.

The aim of these methods is not to impose a control on pedestrians such

that each pedestrian chooses the suggested optimal path, but rather to provide

a service to the pedestrian by planning the visit – either in advance before the

visit or in real-time through mobile navigation devices. The methods addressed

here are based on the data produced from the pedestrian simulation. Since, a

human behavior is extremely complex to model, minor situations such as abrupt

stopping, slow moving pedestrians, etc., which last for a short duration are not

possible to model. In most cases, such situations hardly make an impact in the

total time taken to execute the tasks. Therefore, such situations are neglected.

Such scheduling methods can be useful in many other situations. Some ex-

amples include: visit to a theme park, where a visitor would like to visit as many

attractions as possible within the day, navigation of disabled people can be im-

proved based on the congestions that occur along the path (difficulties with wheel

chair if the path is congested), planning a schedule in a large clinic or hospital,

where a patient must be routed through several departments such as blood test

lab, X-ray lab, registration, OP, ward, etc.

Spontaneous changes such as emergency situations, accidents, breakdown,

etc., are not computed through this simulation since the real time data is not
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available to the simulation. However, such situations can make an impact to

the overall pedestrian schedule. Research in the field of context aware applica-

tions that use the pervasive7 or ubiquitous8 computing methods is being made

to exploit information about a users environment to provide improved services

[HKL+99]. The use of sensors to identify the local information as well as situa-

tions such as emergency situations, accidents, breakdowns, etc., is widespread in

pervasive and ubiquitous computing. These sensors transmit the data using com-

munication systems to a central server such that the context aware applications

make use of these data to provide services accordingly. Coupling the pedestrian

model together with such servers can help update the status of the geometry

model and thereby make necessary changes to the simulation database such that

the scheduling algorithm considers these parameters for visit planning. At the

moment, this interface however still remains open.

7Pervasive Computing is a term for the strongly emerging trend toward numerous, casually

accessible, often invisible computing devices that are frequently mobile or embedded in the

environment and connected to an increasingly ubiquitous network structure.
8Ubiquitous computing enhances computer use by making several computers available

throughout a physical location, while having them effectively invisible to the user.





Chapter 6

Support for Intelligent Pedestrian

Navigation

Any sufficient advanced technology

is indistinguishable from magic.

– Arthur C. Clarke

So far, we have discussed various methods to model and simulate pedestrian be-

havior, integrate the simulation in a geometric scenario, optimally schedule a

visit and navigate the pedestrians within the reference model. In this chapter, we

realize the reference scenario mentioned in chapter 1 with some hypothetical pa-

rameters by developing an environment for an intelligent pedestrian navigation.

This is done by connecting all the components available so far within the pedes-

trian simulation framework such that the scenario can be modeled and simulated

and by using the simulation data, the pedestrian can be optimally guided within

the scenario to execute his tasks.

Over the last decade, the use of mobile navigation devices is becoming in-

creasingly common. This is due to the cheap availability of GPS receivers and

portable low-power computers. Navigation devices are not just restricted to cars

plying on the streets but are also commonly used by pedestrians both indoors

(e.g., guided navigation through a museum) and outdoors (e.g., hiking trials with

3D topography information). Apart from guided navigation system, many service

providers offer additional dynamic data for navigation such as traffic information,

radar traps, deviations and construction sites, cheap restaurants and shopping

possibilities, parking situations, etc. Research has been done to establish a clear

communication and information interchange between the hardware devices and

service data such that the customer benefits to the maximum extent possible.

117
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This chapter is structured as follows. Initially, the specifications of the ref-

erence model as well as the details regarding the graph and architectural data

extracted from the reference model are presented. Then, the parameters con-

cerning the simulation such as pedestrian profiles, speed parameters, simulation

settings, etc., are discussed. Simulations on hypothetical scenarios and the various

parameter settings are performed and the simulation data is collected. Then, the

reference scenario, where a pedestrian wishes to execute many tasks, is realized

using the data from the simulation. Finally, a possibility of providing pedestrian

navigation using the graph and the simulation data is investigated.

6.1 Geometry Model and Parameters

As mentioned earlier, the new computer science building at the Universität Stutt-

gart (see Figure 6.1) is used as a reference model in this thesis. The CAD model

of the computer science building [GSG04] was built using the Maya software from

Alias (now owned by Autodesk). The final CAD data consisted of about 156,000

triangles and the data including textures and colors consumes about 36 MB of

memory. The dimensions of the building measure approximately 67m×79m×16m

(l×b×h) including basement and the building consists of a total of four floors. As

explained in chapter 3, the Pathscan tool is used to extract and modify the graph

from the CAD model as well as identify the destinations, where a pedestrian can

visit. The initial graph extracted from Pathscan consisted of 2920 edges and 2277

nodes. The reduced graph however consisted of 600 edges and 544 nodes. In the

reference model, the customer has a choice of about 250 destinations to visit. The

path capacities are determined from the surface area available for each path. The

room capacities however depend on the type of the room and not based on area.

The path types such as stairs or ramps are partially identified automatically.

Path types such as emergency exits, private paths, etc., were defined manually

using the Pathscan tool. For test cases, certain paths where defined with specific

types hypothetically. Each room receives a ROOM ID and the ID is used for

communication with the room and pedestrian profiles. The complete graph data

is collected in an XML data, which is then used by the simulation to simulate

the pedestrian behavior.

The graph data extracted contains the set of edges and set of nodes. Each

node data is identified by its co-ordinates (x, y, z), the ROOM ID if the node lies

in the room and the ID of the edges to which the node is connected. Similarly,

each edge is identified by the nodes (NODE1 and NODE2), length of the edge,

the capacity of the edge, specifications (private, stairs, etc.). Figure 6.2 shows
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Figure 6.1: Snapshot of the VRML model of the new computer science building

at the Universität Stuttgart.

the DTD (Document Type Definition)1 representation of the XML file used to

structure the graph data. A specific coding is defined to specify the path types

and the codes, together with the specifications are listed separately.

Similarly, the room data extracted consists of a list of possible rooms together

with the capacity, type of the destination (properties are defined such that the

destinations resemble different types such as restaurant, lecture hall, etc.) and

the service time. The service time is defined with a specific time period (minimum

and maximum) and the type of distribution is also specified. The distribution

value instructs the input modeling function to choose the appropriate distribution

to determine the service time. Figure 6.3 shows the DTD representation of the

XML file used to structure the room data. About 10 different room types were

created and each of the 250 rooms within the reference model are classified among

the 10 room types.

The room and graph data are parsed within the simulation program and the

data are stored within a nested linked-list structure. From the DTD specification,

it can be seen that each component is referred to each other (nodes⇔ edges, nodes

⇒ rooms, and rooms ⇐ room type). So using any of the ID, it is possible to

extract the necessary geometry details.

1A DTD is one of the several SGML (Standard Generalized Markup Language) and XML

schema languages. A DTD is used to express a schema through a set of declarations that

conform to a particular markup syntax. DTD describe a class or type of SGML or XML in

terms of the structure of the document
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<?xml version="1.0" encoding="utf-8"?>

<!ELEMENT GRAPH ((NODE|EDGE)*)>

<!ELEMENT NODE (EMPTY)>
<!ATTLIST NODE

ID ID #REQUIRED
X CDATA #REQUIRED
Y CDATA #REQUIRED
Z CDATA #REQUIRED
ROOM IDREF ""
EDGES IDREFS ""

>

<!ELEMENT EDGE (EMPTY)>
<!ATTLIST EDGE

ID ID #REQUIRED
NODE1 IDREF #REQUIRED
NODE2 IDREF #REQUIRED
DIST CDATA #REQUIRED
CAPACITY CDATA #REQUIRED
SPEC CDATA #REQUIRED

>

Figure 6.2: The DTD listing of the XML file that stores the graph structure.

6.2 Pedestrian simulation

The next step involves modeling and simulating the pedestrian behavior within

the geometric scenario and collecting the output data from the simulation. Sev-

eral input parameters such as pedestrian data, pedestrian profiles, arrival rate

and the number of pedestrians, pedestrian characteristics, etc., are required for

modeling the queuing network and by using the geometric parameters obtained

from the previous section, the queuing system is integrated within the graph of

the reference model. This section lists out all the parameters needed to model

the reference scenario, simulates the scenario and collects the data required to

perform task scheduling for a new visitor.
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<?xml version="1.0" encoding="utf-8"?>

<!ELEMENT ROOMDATA ((ROOMTYPE|ROOMLIST)*)>

<!ELEMENT ROOMTYPE (EMPTY)>
<!ATTLIST ROOMTYPE

ID ID #REQUIRED
TYPE CDATA #REQUIRED
MINTIME CDATA #REQUIRED
MAXTIME CDATA #REQUIRED
DISTRIBUTION CDATA #REQUIRED

>

<!ATTLIST ROOMLIST
ID ID #REQUIRED
CAPACITY CDATA #REQUIRED
RTYPE IDREF ""

>

Figure 6.3: The DTD listing of the XML file that stores the room data.

6.2.1 Input Modeling

In 4.2.3 we listed out the different pedestrian characteristics that are necessary for

modeling the pedestrian behavior. In 4.2.4 we built a pedestrian profile manage-

ment interface to create pedestrian profiles necessary for the simulation. We also

specified that the pedestrian walking speed would be computed based on existing

statistics of pedestrian behavior. We now build a function that can translate

these profiles and statistical data into input data for the simulation.

6.2.1.1 Pedestrian Walking Speed

The walking speed of the pedestrian is necessary to determine the time it takes

for a pedestrian to walk across an edge or a path. The walking speed is influenced

by three parameters, which are

• pedestrian characteristics: active pedestrian, elderly or disabled pedestrian,

tourists, commuters, etc.

• path situation: the density in both the directions of movement
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• path type: stairs, wide ramps, pathways with slopes, etc.

At each queuing system representing a graph edge, the service time of the pedes-

trian in the queue is determined based on the length of the edge and the walking

speed. While the length of the path remains constant, the walking speed varies

based on the above listed parameters. The walking speed is determined as

v = N(1.38, 0.37) ∗ density factor ∗ path factor ∗ speed factor,

where N is a normally distributed function and v represents the pedestrian walk-

ing speed.

The speed factor represents the ratio of the speed (as compared to a the

normal walking speed of an adult), which is based on pedestrian characteristics as

explained in 4.2.3. The speed factor is defined within the pedestrian profile. The

path factor represents the ratio of the walking speed (as compared to the walking

speed on a wide ramp), which is based on path type. Each edge of the graph also

contains the type of the edge and certain types have a different path speed factor

(e.g., stairs=0.5*wide ramp). The density factor represents the value of the speed

based on the density and the direction of movement on the edge. It was found that

the speed decreases linearly with increasing density for uni-directional pedestrian

movement and logarithmically for bi-directional pedestrian movement (see Figure

6.4). The density factor is determined by the following formulas [Tek02].

density factor =
−1.7x + 62.7

60
for uni-directional movement

density factor =
−13 ln(x) + 62

60
for bi-directional movement

where x is the pedestrian density for the given path. During the simulation, it

is possible to determine the actual status of the path and thereby determine the

pedestrian density along the path. Therefore, before serving each pedestrian,

the current path density is used to determine the density factor and thereby the

actual pedestrian service time.

6.2.1.2 Pedestrian Profile

The pedestrian profile is specified using the pedestrian management interface. A

single pedestrian profile consists of the following parameters.

• speed factor: to specify speed based on pedestrian characteristics (e.g., 0.4

or 40% for elderly pedestrians)
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Figure 6.4: Density factor depending on the density and direction of movement.

• length of stay: specifies the average time until when the pedestrian remains

in the scenario (e.g., 100 minutes)

• visit probability: the probability of visit to each destination type based on

the time of the day (e.g., for type restaurant, probability of visit between

12pm and 1 pm is 0.83)

• repetition factor: average number of repeated visit for each destination type

(e.g., repetition value of 2 for type cafeteria)

For both repetition factor and length of stay, stochastic functions are used to

determine the exact values for each new visitor. Also if the pedestrian does not

(or is not allowed to) visit a certain destination type, the repetition factor, as well

as the visit probability for the destination type is set to 0. The pedestrian profile is

represented using the XML format and Figure 6.5 shows the DTD representation

of the pedestrian profile.

Several such profiles are created using the pedestrian management interface

and are structured in an XML format. In order to simulate the given pedestrian

scenario, certain profile types that fit the scenario are chosen from the master

profile set. Using the pedestrian management interface, the selected profiles are

exported separately together with their distribution. For test purposes, the fol-

lowing profile distribution was chosen (see Table 6.1).
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<?xml version="1.0" encoding="utf-8"?>
<!ELEMENT CUSTOMERPROFILE (CUSTPROFILE*)>

<!ELEMENT CUSTOMER (EMPTY)>
<!ATTLIST CUSTOMER

ID ID #REQUIRED
SPEED CDATA #REQUIRED
STAY DURATION CDATA #REQUIRED

>

<!ELEMENT PROFILE (EMPTY)>
<!ATTLIST CUSTOMER

DEST TYPE CDATA #REQUIRED
REPETETION CDATA #REQUIRED
PROB DISTRIBUTION CDATA #REQUIRED

>

Figure 6.5: The DTD listing of the XML file that stores the pedestrian profile.

Profile type Stay duration Distribution

Employee1 400 15%

Employee2 400 15%

Visitor1 200 30%

Visitor2 200 30%

Elderly Visitor1 100 5%

Elderly Visitor2 100 5%

Table 6.1: Hypothetical test profile distribution chosen from the available profile

set.
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The different profile types (Employee1, Visitor1) vary only by visit probability

distributions, visit restrictions and of course, speed factor. Finally, some of the

destination types are time dependent and have a fixed service time (stationary

processes). The queue priorities and the pedestrian behavior in the queue is not

defined within the profile. Therefore, such parameters are activated during the

initialization of a new pedestrian during the simulation.

6.2.2 Simulation Parameters

Apart from the pedestrian profiles, certain general parameters are used to initial-

ize the pedestrian simulation. These parameters include

• average number of visitors for the entire simulation period

• maximum capacity of the geometric model (maximum number of pedestri-

ans present in the scenario at any given point of time)

• time dependent arrival rate of the pedestrians

• pedestrian constraints (queue behavior and restrictions with path type)

• terminating conditions

All the above listed parameters are initial settings made before the start of the

simulation. The actual number of visitors is variable and are dependent upon the

allowed capacity of the geometric model and the arrival rate of the pedestrians.

The pedestrian arrival rate depends on the actual time of the day. The arrival

rate is negative exponentially distributed and the parameter λ is assumed to take

values between 1 and 3.5 arrivals per minute for different times of the day. As a

terminating condition, we perform the simulation for an actual period of 8 hours

(or 9am to 5pm). We monitor the simulation time steps in terms of minutes

and therefore, we execute the command simulate(480). The simulation au-

tomatically terminates once the simulation clock reaches 480 or if there are no

more events left over to execute (the maximum number of expected visitors has

reached). For test purposes, we set consider different values for the expected

number of visitors and the maximum capacity such that a comparison of the

performance and the simulation data can be made.

6.2.3 Output Data and Analysis

During the simulation, the status of all the queuing systems, i.e the congestion

along the paths and the waiting time situation at each destination is observed.
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Apart from that, the movement of each pedestrian is also tracked during the

simulation. The framework offers different possibilities to capture the congestion

status for paths and destinations, namely

• path: transit time, actual number of pedestrians present, density level, and

• destination: queue size, waiting time, time taken to complete the task.

We shall now analyze a sample path and destination by simulating a hypothetical

scenario with the above mentioned simulation parameters. For test purposes, we

take the sample path to be the main pathway (north-south entrance/exit) and

analyze the time taken to cross the entire path. The sample destination is chosen

to be the one that resembles a library whose capacity is 80. The service time

lies in the range of 10-30 minutes and the visit probability is such that more

guests are expected around noon, followed by the morning hours. We perform

two simulations with different problem sizes for a period of 8 hours (9am to 5pm).

The scenario ’A’ consisted of a maximum of 1500 visitors during the simula-

tion period, where utmost 300 pedestrians can be accommodated in the building

at any given time. The simulation and the data collection took 155 seconds to

complete. Scenario ’B’ consisted of a maximum of 5000 visitors during the simula-

tion period, where utmost 800 pedestrians can be accommodated in the building

at any given time. The simulation and data collection of scenario ’B’ took 292

seconds to complete. Figure 6.6 shows the average path transition time during

the simulations.

From Figure 6.6, it can be seen that the congestions along the path remain

more or less consistent. During the simulation, a certain closing time was assumed

for the hypothetical scenario. Once the closing time was reached, no new visitors

were allowed into the reference model. All existing tasks were interrupted and

the pedestrians were evacuated from the building (a non-panic evacuation). Due

to the higher number of pedestrians in scenario ’B’, it can be seen that the

congestions along the path increase rapidly in scenario ’B’ during the closing

hours. Similarly, rapid congestion increase is also seen immediately after the

start of the simulation. In a sample scenario where about 500 pedestrians were

present in the building, it was found that a complete (non-panic) evacuation of

all the pedestrians took about 17 minutes.

Figure 6.7 shows the average waiting times observed in the library during the

simulations.

From Figure 6.7, it can be seen that the congestions increase very rapidly for

higher number of visitors in scenario ’B’. Since queue balking or reneging was not

activated, the pedestrians wait as long as they are served. The waiting times are



Pedestrian simulation 127

Transition time along main Pathway

1

1,5

2

2,5

3

3,5

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00             17:00

Time of the day

T
ra

n
si

ti
o

n
 t

im
e 

(m
in

)

Transition time along main Pathway

1

1,5

2

2,5

3

3,5

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00             17:00

Time of the day

T
ra

n
si

ti
o

n
 t

im
e 

(m
in

)

Figure 6.6: Average path transition time for scenario ’A’ (top) and scenario

’B’ (bottom).
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Figure 6.7: Average waiting times at a destination in scenario ’A’ (top) and

scenario ’B’ (bottom).
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estimated based on average service time and not the actual service time of each

pedestrian. It can be seen that the waiting time increases to 900 minutes during

noon but then drops very rapidly. This is either because of shorter service times

of each pedestrian or the departure time for a pedestrian has been reached.

Similar data for all paths and destinations for various simulation scenarios

were generated and the congestion data were stored in a simulation database.

Using this database, a visit by a new pedestrian is planned and scheduled.

6.3 Pedestrian Visit Planning

So far, a database containing the waiting times at each destination and the transit

times for each path has been created for each simulation time stamp. In chapter

5, various methods to determine an optimal schedule was presented and it was

decided that for a task set with n ≤ 6, the brute-force search will be used and for

n > 6 the simulated annealing approach will be used. In the reference scenario,

a pedestrian arrives with an intention of executing n number of tasks. Let us

assume that the list of destinations and their corresponding ROOM ID is known.

We shall take two examples of such an hypothetical list and compare the results

with and without the use of optimization methods. For test purposes, we generate

a set of 10 tasks at random. We assume that the pedestrian arrives in either one

of the scenarios mentioned in the previous section and executes the first 5 or all 10

tasks. Table 6.2 shows the amount of time it takes (in minutes) for a pedestrian to

execute different sets of tasks. It can be seen from that table that for generally low

congestions, the time difference between the optimized schedule and the default

schedule chosen by the pedestrian is low. That is, the default schedule chosen by

the pedestrian is as fast as an optimized sequence. However, when the scenario is

crowded, it can be seen that the use of optimization methods improves the task

sequence. It can also be seen that the time difference between a schedule with

and without optimization methods increases for increase in problem size (more

number of tasks).

6.4 Octree Modeling for Pedestrian Navigation

So far, the reference scenario has been realized and the pedestrian simulation

framework is able to identify an optimal sequence and path between the tasks for

a new pedestrian. However, the sequencing information must be transformed to a

navigation service such that the pedestrian can guided through the various tasks.

With the use of such service, dynamic changes to the sequence such as adding
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5 Tasks

Without Optimization Brute-Force Sim. Annealing

Scenario ’A’ 13.708 9.889 11.488

Scenario ’B’ 14.187 10.234 11.818

10 Tasks

Without Optimization Sim. Annealing

Scenario ’A’ 24.854 19.653

Scenario ’B’ 42.174 18.627

Table 6.2: Time taken (in minutes) to execute the tasks with or without opti-

mization methods both in scenario ’A’ and ’B’.

a new task or canceling an existing task from the list can be made. Dynamic

changes are possible only if the location and the neighborhood of the pedestrian

is known. For this purpose, the octree model to identify the position and search

the neighborhood (as presented in chapter 3, section 3.3) is used. An example of

the position identification of the pedestrian, as well as searching the neighborhood

for an optimal destination is presented as follows.

Initially, the nodes of the graph are hierarchically structured in an octree.

Figure 6.8 shows the octree structure for the CAD model of the reference building

architecture used here.

Figure 6.8: Octree structure (left) for the nodes of the graph and the actual

CAD model (right).
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By using the neighbor search methods, the given co-ordinates are transformed

to the position on the graph. For example, the co-ordinates (x = 36.42, y =

4.12, z = 32.05) translates to the node with an ID 153 (as seen in Figure 6.9)

Now, once the position of the pedestrian within the graph is identified, it is

possible to route the pedestrian to the choice of destination. Let us assume that

the pedestrian would now wish to visit a destination whose type is y. Initially,

the octree is rebuilt containing only the destinations whose type matches y. In

other words, all nodes of the graph, which is associated with a ROOM ID and the

room type y, is extracted and structured in the graph. The current position of the

pedestrian is also known. Therefore, with the use of neighbor search algorithm, a

list of destinations in the neighborhood is identified. For simplicity reasons, the

search was restricted to 2-dimensional space, i.e within the same floor. Figure 6.9

shows an example of the position identified by the octree and the list of possible

destinations in the neighborhood.

1

2
3

4

possible destinations

1

2
3

4

current position

Figure 6.9: List of possible destinations positioned in the octree (left) and the

graph (right).

There are now two possible ways for the pedestrian to make the choice of a

destination. They are

1. static path: based purely on the distance to the destinations from the cur-

rent location

2. dynamic path: based on the time it takes to reach a destination and the

actual waiting time at that destination

For the static path, path-search algorithm is performed and the distance to

each destination is identified. The list of destinations are then sorted according
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Destination Distance

1 7.37 m

2 12.13 m

3 14.76 m

4 17.49 m

Destination Time until

service

1 1.453 min

4 1.462 min

2 11.427 min

3 16.105 min

Table 6.3: List of destinations sorted according to distance (left) and time taken

until served (right).

to the distance from the current location. For the dynamic path, the time it takes

to reach each destination as well as the current waiting time at each destination

is computed and the list of destinations are sorted according to the time it takes

until the task can be executed. Table 6.3 shows a comparison of the list of

destinations sorted according to distance and time. For the dynamic destination

search, the scenario had about 200 visitors present in the building at the time

the search was performed.

Similarly, a path-search algorithm can be performed also on a pre-decided

schedule from the optimization methods and the path, together with the direc-

tions to the destination can be listed to the pedestrian for him to make a choice.

6.5 Summary

In this chapter, the possibility of integrating the components presented so far to

realize the reference scenario and facilitate an intelligent pedestrian navigation

system. With the sufficient availability of statistical information and the geometry

data, it is therefore possible to prepare a system to provide navigation services to

the visitors. The major advantage of such a system is that a physical presence in

the scenario or a physical existence of the building is not necessary to prepare such

a data. This is mainly due to the embedding of simulation within the geometry

context. In fact, it is possible to build such an environment even before the

construction of such a building. This also gives us an opportunity to optimize

any of the parameters before the model and the scenario is realized in reality.

The system also suffers some minor drawbacks and they are listed as follows.

First of all, the performance quality of the system depends on the quality of

input data. Care has been taken to prepare the simulation framework as flexible

as possible such that minor details can also be included into the simulation.

But the collection of high quality statistical data from a real system is often a
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complex task. Secondly, due to the stochastic nature of the simulation framework,

the calculations such as waiting time until served, path transition time, etc., are

mere estimates. Even though the parameters can be fine tuned such that the

estimates are as accurate as possible, the system can offer no guarantee that the

time taken to complete the schedule will be exactly same as the calculated value.

Finally, spontaneous changes such as elevator breakdown, accidents, emergency

situations or other rare events, are not simulated within this framework. However,

these problems can be tackled by the usage of sensors and communication devices

to obtain such information and update the simulation accordingly. In the next

chapter, a recap of all the components presented so far as well as an outlook into

possible improvements and extensions are discussed.





Chapter 7

Conclusion and Outlook

Science is always wrong.

It never solves a problem without creating ten more.

– George Bernard Shaw

It is interesting to note that the embedding of the simulation (or the queuing

system) into the geometry context of the scenario results in a totally new ap-

proach of simulating a system1. Due to the geometry coupling, the environmental

(architectural) parameters for the simulation are naturally transferred from the

geometry model to the simulation. So far, we have modeled and simulated the

pedestrian behavior by embedding the queuing system into the geometry context.

This opens up several possible applications that use the pedestrian model. The

application discussed in this thesis was to provide an intelligent navigation ser-

vice by considering the congestions and waiting times across the geometric model.

Such a navigation services can find its use in a commercial center: a pedestrian

wishing to visit many shops and offices within the allotted time, a theme park: a

visitor wishing to visit as many attractions as possible until the closing time, or

a large clinic complex: a patient is routed through the various formalities such

as registration, X-ray labs or other labs, medical clinics, ward, etc. The pedes-

trian model can be used even for evacuation simulation to identify the bottleneck

that lies in the geometric model: does a pillar block the evacuation process? The

framework that was built provides a possibility to model and simulate the given

scenario and use the outcome of the simulation to provide a navigation service –

either in advance through some web-interface or in real-time with the use of some

navigation device.

1In mobile communications, mobility of mobile agents within the geometry such as cells,

cities, buildings, etc., was modeled and simulated. However, the approach described in this

thesis integrates the simulation into a microscopic geometry model.

135
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7.1 Summary of Contributions

This section summarizes the targets achieved and the contributions made by this

thesis. The objectives of this thesis are realized in three main parts, namely the

geometric modeling, discrete event pedestrian simulation, and pedestrian task

scheduling and optimization. Throughout the thesis, a reference scenario, where

a pedestrian arrives in a commercial building or a similar model to execute n set

of tasks as early is possible, is used and the components needed to realize the

reference scenario is built within the three concepts listed below.

Geometric Modeling

In chapter 3, the concept of geometric modeling, for the purpose of pedestrian

simulation, was introduced. In the reference scenario mentioned throughout this

thesis, the pedestrian simulation is strongly coupled with the geometry of the

scenario, or in other words, the reference model. Due to the strong pedestrian

interaction with the geometry of the scenario, several geometry and architectural

parameters are extracted from the geometric model. There are two components

modeled in a pedestrian simulation, namely movement of the pedestrians along

the path and waiting of the pedestrians in the queue. Therefore, the paths where

a pedestrian moves and the destinations where pedestrians wait are extracted and

interconnected to form a graph. Properties such as type of the path, capacity of

the path, architectural dimensions, location of the destinations, capacity of the

destinations, destination purpose, etc., are specified within the graph.

Apart from preparing the geometric model for the pedestrian simulation, the

geometric model is also used to develop a method to guide the pedestrians through

different destinations in order to execute the tasks. For such a system, the graph

extracted from the CAD model is hierarchically stored in an octree structure.

An octree is chosen here because octrees have the natural property of storing 3-

dimensional data hierarchically. Also the efficiency of location awareness (identify

the position of the given co-ordinates in the graph) and neighbor search algorithms

is found to be better than a linear search algorithm. Using hierarchical data

structures, it is possible for a pedestrian to search the neighborhood efficiently

and identify the best choice of destinations to visit.

Discrete Event Pedestrian Simulation

The pedestrian behavior in chapter 4 – movement along the paths and behavior at

the destination – is modeled using the discrete event simulation methodology. The

pedestrian behavior at the queue is clearly a queuing system model. Similarly, the

pedestrian behavior along the path can be modeled as a queuing system, where

the pedestrian arrives at the path, wait if there are any congestions and walk along

the path once the necessary space is available. A queuing system is best modeled
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with the use of discrete event simulation. Therefore, one queuing system for each

path and destination is modeled and the resulting queuing systems are integrated

into the graph to form a queuing network that spans across the reference model.

The input data necessary for the pedestrian simulation was also modeled. In

a queuing system embedded into the path, the event of walking along the path is

determined using the walking speed of pedestrians. Certain existing statistics on

pedestrian walking speed, along with the experimental data obtained from the

reference model, were used to compute the service time of the pedestrians along

the path. The pedestrian walking speed computed also based upon many other

factors such as path density, characteristics of the pedestrian himself, type of the

path, uni-directional and bi-directional movement along the paths, etc. Other

parameters such as the set of tasks a pedestrian executes, typical pedestrian

profiles, arrival rate, etc., are also defined in the simulation. Finally, the scenario

is simulated and an overview of congestions and waiting times along the paths and

destinations are obtained respectively. In this work, a flexible framework is built

that can define and simulate the scenario by embedding the queuing systems into

the graph derived from the CAD model, and generate the congestion information

in the scenario.

Pedestrian Task Scheduling and Optimization

The reference scenario mentioned often in this thesis consists of a pedestrian

arriving at a commercial center or a similar infrastructure with an intention to

execute n number of tasks in the shortest possible time. Since the congestions and

waiting times across the scenario can be estimated with the use of the simulation

data, chapter 5 makes an attempt to use certain heuristics and combinatorial op-

timization methods to plan such a pedestrian visit efficiently. The visit planning

consists of two parts, namely optimal path-search between two destinations and

identification of a proper sequence of tasks such that the time taken to execute

the tasks is minimum and the conditions of the pedestrians are also met.

The path-search algorithm uses the standard Dijkstra’s shortest path algo-

rithm to determine the shortest or the fastest path between two points. However,

due to the dynamic nature of the congestion situation, a time expanded graph

network is used with the Dijkstra’s algorithm to function as a discrete dynamic

shortest path algorithm. For each task execution, the transition to the destination

is also taken into account. Therefore, the sequencing of the tasks automatically

implements the path-search algorithm between the tasks.

In order to determine the optimal sequence of the tasks, different optimization

methods and heuristics such as brute-force search, greedy heuristic and simulated

annealing were used. It was found the simulated annealing yielded most stable

results. However, it was also found that the brute force method could be used
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for sequencing the tasks if the number of tasks n ≤ 6.

7.2 Outlook

Even though many methods and techniques regarding pedestrian simulation and

its applications were studied, several more extensions and alternative methods

are always possible. This section lists out such possible extensions during each

phase of the realization of the reference scenario and further possible directions

of research.

Geometric Modeling

It was shown that the Pathscan tool produced an extensive graph, which further

needed to be reduced. Also, several architectural parameters such as the capacity

of the destination, path restrictions, etc., were later defined manually. A possible

extension in the geometric modeling to extract the graph will be to automatize

the entire graph extraction as much as possible such that fine details, which were

manually defined, are automatically included in the resulting graph.

Pedestrian Simulation

Even though the pedestrian simulation was performed at a microscopic level (sim-

ulation of each entity or pedestrian), the pedestrian movement was restricted to

a bi-directional movement. The reduced graph was suitable for a building com-

plex but a bi-directional pedestrian movement will not exist in open areas such as

fields. Therefore, a more detailed implementation of the pedestrian simulation by

considering the collision of pedestrians, a 2-dimensional pedestrian movement and

implementation of additional pedestrian characteristics such as maintenance of a

distance with other pedestrians, spontaneous changes, etc., can be implemented

such that more generic scenarios may be simulated within this framework.

The pedestrian profiles used for input modeling consists of the probability

distribution of visiting certain destination types during different times of the day.

At the moment, discrete values for each hour during the day are considered and

the resulting curve is translated into a numerical function, which in turn is used

for the pedestrian simulation. Availability of better data collection methods such

as video image processing or sensors and a finer discretization of the sampling

data would increase the quality of the input data. Also, pedestrian properties

such as queue behavior, task restrictions or priorities can also be included within

the pedestrian profile.

Scenarios that cover a very large region (e.g., city) can also be simulated

within this framework. However, each queuing system requires a certain amount

of memory and processing power, and a simulation of a large graph is practically
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not possible in a normal PC. Therefore, parallel and distributed programming

methods can be used to enhance the performance of the simulation and make

the simulation framework scalable. It was shown that parallelization of the dis-

crete event simulation does not yield promising results due to the complexity of

parallelizing the event scheduler. However, attempts were made to execute inde-

pendent simulations in parallel such that different scenarios can be simulated in

parallel and the output data can be analyzed together. For very large graphs, ef-

ficient graph partitioning methods can be used such that independent sub-graphs

are obtained and the communication required between two sub-graphs is mini-

mum. For example, consider a campus with several buildings, each connected

with some pedestrian paths. Generally, the pedestrian movement in building A

is independent from building B. The only relationship between building A and

B is the movement of pedestrians between these two buildings. But for a well-

partitioned graph, the connecting edges between the two sub-graphs are low.

Scheduling and Routing of Pedestrians

The scheduling and routing of pedestrian tasks are performed using the data

produced by the simulation. Even though the simulation tends to imitate the real

system as accurate as possible, many events may not be simulated. Events such

as unexpected increase in the number of visitors, failure of certain destinations,

etc., make an impact with the schedule of the customers. Use of sensors or real-

time local information (information from other pedestrians) is a good possibility

to improve the quality of planning and scheduling pedestrian tasks.

Also, the use of additional optimization methods such as branch and bound

technique, genetic algorithms, etc., may produce a good schedule in some cases.

The problem of scalability was also discussed here. If a pedestrian needs to exe-

cute many tasks that are spread across a very large region, domain decomposition

methods can be used to partition the large graphs into smaller sub-graphs and

the schedule can be optimized locally.

Location- and Context-Aware Computing

In this thesis, a pedestrian navigation environment, which uses the congestions

and waiting times obtained from the simulation, is built. In the octree-based

position identification system, the position in the graph is identified using the

co-ordinates given by a navigation device. Also, the use of sensors and commu-

nication devices to transmit the current status of the scenario such that spon-

taneous events (elevator breakdown, emergency situations) can be dynamically

simulated and the service information can be updated. In order to transform

the pedestrian navigation system into a full-fledged project, it must be strongly

coupled with location- and context-aware computing systems. Several ongoing

research projects including the Nexus project (Spatial World Models for Mobile



140 CHAPTER 7: Conclusion and Outlook

Context-Aware Applications) [HKL+99] at the Universität Stuttgart offer such

information and services required by the simulation framework. Different possible

applications can be built if such an interface is available.

First, the use of position identification devices to identify the exact location

of the pedestrian in the scenario. Position identification and navigation devices

are commonly used both indoors and outdoors. Typically, the usage of GPS

is often combined with other position identification methods such as sensors,

RFID, WLAN, etc., such that these systems can be used whenever available or

whenever the GPS signal is not available. The octree-based navigation system

assumes that the exact co-ordinates are available from such position identification

systems. But, as discussed in 3, certain tolerance level is necessary for the system

to function. Combining the octree-based position identification system with the

existing navigation systems, errors in the exact location identification can be

reduced and the efficiency of the system can be improved due to the hierarchical

storage offered by octrees.

Secondly, discussions were also made on using location- and context-aware

computing systems to provide dynamic information on spontaneous changes and

the actual status of the scenario. By including such information, the simulation

database can be constantly updated and the task scheduling can be performed

more effectively by considering these system changes.

Third, the pedestrian simulation framework can be coupled together with per-

vasive computing applications. For example, consider a scenario where a pedes-

trian, equipped with a PDA and a navigation device, walks to the railway station

to catch the train to his destination. In his PDA, the pedestrian has mentioned

that he would wish to buy a pair of shoes. The application running on his PDA

senses that the pedestrian still has a lot of time to get to the railway station,

and the navigation device also senses that a shoe store few meters away currently

offers good deals on shoes. The PDA application advises the pedestrian to go to

the shoe store to look for a pair of shoes. However, the PDA application so far

lacks the capability to estimate the congestions to the shoe store and the waiting

time at the cash counter. Therefore, an interface with the pedestrian simula-

tion framework can enhance the capabilities of the location- and context-aware

applications.

Another issue to be discussed is the topic of privacy and security of such

systems. For example: In the fictional novel of the Harry Potter series (the third

novel – Harry Potter and the Prisoner of Azkaban [Row00]), Harry Potter receives

a map of the Hogwart’s school of witchcraft and wizardry called Marauder’s Map.

The map shows the movement of all witches and wizards present in the school

campus with their exact location. Apparently, the MIT (Massachusetts Institute
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of Technology) liked the idea and implemented a similar map of the campus

to display the Wi-Fi users accessing the MIT network. With these maps, it is

possible to see the users logged on to the network along with their user names and

the exact location in the campus. Such system is a classical violation of privacy

and security. Of course, the MIT offers the user to be registered into this map

system if the user wants himself to be displayed in the map. Similarly, in the

framework discussed here, a pedestrian avails the service of the system to plan a

visit. Thereby, the system virtually keeps track of the pedestrian as to where the

pedestrian actually is located in at any given point of time. Privacy and security

issues are to be considered strongly when transforming such a framework into

real system.

Similar Applications using the Framework

In this thesis, we use the simulation framework to model and simulate the pedes-

trian behavior in a given geometric scenario and thereby use the simulation data

to provide an intelligent navigation service to a pedestrian wishing to visit cer-

tain number of destinations within the building. Several other applications can

be implemented using this framework.

Pedestrian evacuation simulation is one such application that can be simulated

within this framework. Due to the strong coupling of the geometry model, the

evacuation scenario can be simulated by considering all architectural parameters.

Any architectural hindrances or bottlenecks can be detected by such a simulation.

This provides an option to change the architectural layout of the building even

before constructing the building such that the safety aspects are fully considered.

[MBG05] made a similar attempt to detect bottlenecks in architectural models

by integrating evacuation scenario into a geometric model.

Before the actual construction of the building, the expected scenario in such

a building can be modeled and simulated in advance. During such simulation,

possible bottlenecks and congestions are identified. The architectural plan can be

optimized as often as necessary to suit a specific scenario such that the maximum

throughput can be achieved. Initial attempts were made in this thesis to paral-

lelize such a process (see chapter 4). Also, the internal planning of the building

such as space allocation for different owners of the building can be optimized

using the simulation. From the simulation, it is possible to define a specific vis-

itor scenario and testing on different layouts, congestions levels can be observed

and the layout can be optimized. The commercial software ShopSim developed

by Savannah Simulations uses a similar method to optimize a shopping complex

layout.

Finally, with the integration of the pedestrian simulation framework and a

traditional traffic simulation, it is possible to simulate the movement of pedestri-
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ans (or persons in a car) across a large region. Such simulations are especially

useful around a large sport complex or a theme park complex where the streets

are closely connected to the complex. During a special event, extra congestions

can be expected on the streets around this region. Such information can be more

precisely obtained from simulations and these data can in turn be used to navi-

gate vehicles or pedestrians, who do not intend to visit this complex, by making

alternative route suggestions to avoid this region.



Appendix A

Discrete Event Simulation Library

The SIM library [BE95] was partially used to perform the discrete event simu-

lation of the pedestrian behavior. The event scheduling strategy, as well as the

data structures to store and manage queues and event list were used from the

SIM library. In this appendix, an implementation of a simple M|M|1 queuing

system is presented.

In [Wat93] a general purpose discrete event simulation library programmed

in C called CSIM is presented. CSIM uses a 3-phase approach to schedule events

and a tertiary tree structure to store and manage event list, conditional event list,

and queues. Several other functionalities such as probability distributions, his-

togram classes and the analysis routines are also available. SIM is a C++ [BE95]

adaptation of the CSIM library, developed at the Virje Universiteit, Amsterdam,

in order to provide object-oriented capabilities. SIM provides such a functionality

that the resulting language is similar to simula, which is presented in [Poo87].

The SIM library is integrated together with the HUSH graphics library [BE95]

such that graphical analysis of the simulation, as well as the results can be made.

The SIM library can be compiled both as ASCII version as well as the graphical

version. SIM library supports both process-oriented and event-oriented approach

to write simulation programs.

A typical simulation program, using the SIM library, creates and runs an

application derived from the session class. The main function then contains the

creation of a simulation object, which makes it possible to use the simulation

primitives. It creates the participating events and entities, which are derived

from the corresponding abstract classes and which are given the functionality

in their function operators. Apart from that, the required resources and queues

are also created. The resources represent passive objects used by events while

queues are used by events waiting on a resource to become free. Histogram and
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analysis objects can be created to gather and analyze results. Before running the

actual simulation, initial events and entities must be set up, which depends on

the simulation.

Following is the event-oriented implementation of an elementary queuing sys-

tem with Markovian arrival and service processes, and a single service unit. Ini-

tially, the events of a queuing system – arrival, departure and service – are created.

Also the declaration of the simulation object, the resources, random number gen-

erators, queue, etc., are also made.

#include "sim.h"

simulation* sim;
generator* g;
resource* servicepoint;
queue* q;
double meanarrival, meanservice;

class arrival : public event
{

public :
arrival();
virtual int operator()();

};

class departure : public event
{

public :
departure();
virtual int operator()();

};

class service : public event
{

public :
service();
virtual int operator()();

};

Initially, as a new customer arrives, the arrival event is triggered and the
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customer is appended into the queue. In every arrival event, the next arrival

is also generated and scheduled at the time of arrival. The inter-arrival time is

exponentially distributed and the λ parameter is decided based on meanarrival.

On the completion of arrival event, the service event is automatically activated.

The service operator checks for any event available in the queue and executes

it as long as a free service unit is available. In the service event, the service

time is also exponentially distributed and the λ parameter is decided based on

meanservice. A departure event is scheduled once the service is complete. In the

departure event, the occupied resource is freed and the customer is removed from

the queuing system.

arrival::arrival() : event()
{
}

// arrival event.
int arrival::operator()()
{
arrival* arr = new arrival();

// schedule next arrival
sim -> schedule(arr,(g -> exponential(meanarrival)));

// append
q -> append(this);
return OK;

}

departure::departure() : event()
{
}

// departure event.
int departure::operator()()
{
// release servicepoint and leave it
servicepoint -> release();
sim -> terminate(this);
return OK;

}
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service::service() : event()
{
}

// service event.
int service::operator()()
{

while ((!(q->empty()))&&(servicepoint->available()))
{
sim -> terminate(q -> removefront());

// acquire servicepoint and schedule departure
servicepoint -> acquire();
departure* d = new departure();
sim -> schedule(d,(g -> exponential(meanservice)));

}
return OK;

}

The events are structured in such a way that once a new arrival process is

initiated and a service event bound to the arrival process is put on hold, the

simulation automatically triggers the successive events as long as the terminating

condition is reached. Now that the event objects are declared, the simulation

application is implemented. After the declarations, the first arrival is scheduled

and a service unit is put on hold. Once the simulation begins, further events are

scheduled in the event list.

int main(int argc, char ** argv)
{

cout << "mean time between two arrival
events (minutes)" << endl;

cin >> meanarrival;

cout << "mean service time (minutes)" << endl;
cin >> meanservice;

sim = new simulation();
g = new generator();
q = new queue();
servicepoint = new resource(1);
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// initially a customer arrives
and the server is conditional

arrival* arr = new arrival();
sim -> schedule(arr,0.0);

service* sr = new service();
sim -> hold(sr);

// run for 8 hours or 480 minutes
sim -> run(480.0);

delete q;
delete sim;
return 0;

}

The above shown example is a skeletonized example of an elementary queuing

system and does not include any histogram or analysis classes. Use of such classes

can help us to analyze properties such as average size of the queue or average

waiting times of a customer.
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