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x Zusammenfassung

Zusammenfassung

Die Beschreibung von technischen Fragestellungen in Form von Optimalsteuer-
ungsproblemen wird zunehmend zu einem populären Werkzeug. Dabei zeigt sich,
dass die Aufbereitung und Auswertung der gefundenen optimalen Lösung eine Schlüs-
selkompetenz darstellt. Die vorgelegte Arbeit setzt hier an. Mittels post-optimaler
Analyse wird eine zuvor ermittelte optimale Lösung so weiterverarbeitet, dass der
Anwender auf effizientem Wege zusätzliche Daten über Optimalitätsverhalten, Ein-
flussfaktoren und, in weiteren Schritten, über benachbarte Lösungsräume erhält.

Der entwicklte Algorithmus nutzt Verfahren aus der Nichtlinearen Optimierung
zur Transkription des Optimalsteuerungsproblems. Dieser Vorgang ist insofern
generisch gehalten, als verschiedene Parametrisierungsschemata der Kollokation, wie
auch der Mehrzielverfahren implementiert sind. Eine darauf aufbauende parametri-
sierte Sensitivitätsanalyse dient als Grundlage für die eingehende post-optimale
Analyse. Für die Untersuchungen erster und zweiter Ordnung wird zur Effizienz-
steigerung und Erhöhung der Transparenz, soweit möglich, auf bereits vorhandene
Basisdaten zurückgegriffen. Nicht verfügbare Daten, wie etwa Hesse-Matrix, werden
neu berechnet.

Der entwickelte Algorithmus identifiziert Sensitivitäten der Kostenfunktion in-
nerhalb der bestehenden Problembeschreibung und erlaubt darüber hinaus Aussagen
zur Beeinflussung des Lösungsraumes durch die Variation nicht optimierbarer Pa-
rameter bzw. Gleichungs- oder auch Ungleichungsbeschränkungen.
Letztere Fähigkeit schließt die Prädiktion des Einflusses von finiten Variationen auf
die Zusammensetzung des Set der aktiven Beschränkungen ein. Daraus wird dann
unter Einschluß von Optimalitätsaspekten und Angabe über den Vertrauensbereich,
die Lösung benachbarter Entwurfsräume vorhergesagt.
Damit ist die post-optimale Analyse nicht nur zur besseren Bewertung bereits er-
mittelter Lösungen geeignet, sondern bietet auch eine effiziente Alternative zur kon-
sekutiven Optimierung, variierter Problemstellungen.

Um den Nutzen der post-optimalen Analyse für umfassende, moderne Anwen-
dungen zu demonstrieren, wird der neue Algorithmus auf zwei typische Probleme
aus der Raumfahrt angewendet. Es handelt sich um die optimale Wiedereintritts-
bahn des wiederverwendbaren Transportfahrzeuges HOPPER, sowie um optimale
Aufstiegsbahnen einer Ariane 5 bei unterschiedlichen Nutzlast-Konfigurationen.
Dabei werden Robustheit und Güte der bisherigen Entwürfe bewertet und das
Verbesserungspotential quantifiziert. Außerdem wird demonstriert, welchen zusätz-
lichen Nutzen der neu entwickelte Algorithmus zur post-optimalen Analyse im Bere-
ich von Optimalsteurungsproblemen hat.
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Summary

The description of technical problems in the form of optimal control problems is
becoming increasingly popular. And the assessment and evaluation of the obtained
optimal solutions is developing into a key competence. This dissertation departs
from such an optimal solution. By means of post-optimality analysis an earlier ob-
tained result is processed in order to allow a user to efficiently produce information
about optimality criteria, the main factors that influence the solution and, in con-
secutive steps also about neighboring solution spaces.

The developed algorithm exploits methods from the domain of nonlinear op-
timization for the transcription of the optimal control problem. This procedure
is made generic in the sense that different parameterization schemes are incorpo-
rated, ranging from collocation to multiple shooting. The basis of consecutive post-
optimality analysis is a parameterized sensitivity analysis. First and second order
evaluation takes efficiently advantage of data that has already been computed dur-
ing the process of the prior optimization. Data that is not readily available, like the
Hesse matrix, is newly computed.

The developed algorithm identifies sensitivities of the cost function within the
existing problem description, but also permits to investigate the influence of vari-
ations in non-optimizable parameters, equality or inequality constraints on the so-
lution space. The latter includes the prediction of changes in the active set of
constraints due to finite variations. Under full consideration of optimality condi-
tions and the trust radius, the solution of neighboring problems is predicted. Thus,
post-optimality analysis is not only suitable for evaluation of already computed op-
timal solutions. It also provides an efficient alternative to consecutive optimization
of varied problem descriptions.

In order to demonstrate the benefits of post-optimality analysis for modern com-
prehensive problems, the algorithm is applied to two typical aerospace problems.
These are an optimal entry of the reusable launch vehicle HOPPER, and ascent
trajectories of Ariane 5 with several payload configurations. Robustness and cost
quality of the current design is evaluated and potential for improvement quantified.
Further, the added value is demonstrated that the newly developed algorithm for
post-optimality analysis provides in the area of optimal control problems.



Chapter 1

Introduction

He who has knowledge does not predict. He who predicts
does not have knowledge.

Chinese teaching

This statement was supposedly made by ancient Chinese philosopher Lao-Tse
more than two thousand years ago. It is a popular phrase, variously quoted when-
ever people are encouraged to question the professionalism and qualification of self-
promoted leaders and specialists. It essentially distinguishes between knowledge and
prediction and, thus, suggests that there is an either-or. A proper understanding
of cause and effect guarantees knowledge while a lack of this understanding triggers
prediction. The connotation of prediction is undoubtedly negative, since knowledge
is generally considered to be a positive quality.

Today, in research and engineering it becomes more and more important to
combine knowledge and prediction in order to improve model understanding and
accelerate product development.

Post-optimality analysis (POA) is seen as such a hybrid. It is a technique to study
the behavior of an earlier obtained problem solution and helps to gather informa-
tion about its sensitivity. At the same time, it also suggests an interpretation of the
state space around the solution providing stability information. In other words, it
serves to predict the solution of perturbed problems without need for recomputation.

Following, a definition is given for optimal control problems to familiarize the
reader with this particular class of problems, which is in the focus of our efforts

1
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to develop an expertise in post-optimality analysis. The role and importance of
Sensitivity Analysis (SA) is briefly addressed in sec. 1.2 together with a synopsis
of common methods. Then, the basic aspects of post-optimality analysis and prior
contributions by other authors are given.
Considerations on the requirements for post-optimality analysis and applicable meth-
ods conclude the introduction and define the strategy.

1.1 The Optimal Control Problem

Problem formulations of dynamic systems with optimizable parameters and con-
trols have a long lasting tradition in aerospace engineering. This class of Optimal
Control Problems (OCP), has found its entry into flight maneuver optimization
[42], launcher and return vehicle trajectory optimization [35], [2], [16], [63], satellite
transfer [23], [18] and interplanetary travel [24]. The community of practitioners has
also spread into other branches, like the automotive sector [20] and medicine [26],
and has created a growing interest in solution and analysis methods.
Model complexity and the need for efficiency have raised the interest in methods
to compute optimal solutions. They are frequently the only chance to bring about
improvements towards enhanced performance.

To fully immerse into the topic, the proper mathematical formulation of optimal
control problems is given in the following section. Afterwards, the value of their
solution is assessed with regard to practical usefulness.

1.1.1 Mathematical Description

The optimal control problem is detailed in a large number of publications [15], [31],
[8]. In order to provide a concise nomenclature and to allow fundamental under-
standing of the later chapters, a basic description is given here.
The control problem for which an optimal solution shall be computed, is as follows:
minimize the cost functional

min J(x, u, p, t) = Φ(xf , p, tf ) +
∫ tf

t0
L(x, u, p, t)dt. (1.1.1)

The objective function is stated in Bolza format with Φ being the Mayer term
and a Lagrange term with the integrand L. The vector u = u(t) represents the time-
variant control vector and t represents the independent variable. The state vector
of the system is given as x = x(t) and has the dynamics

ẋ = f(x(t), u(t), p, t) (1.1.2)
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It is often convenient to assign time-invariant parameters p, which describe cer-
tain system properties. Commonly, they are design parameters or related qualities
of the model, and mission, respectively. Their value is optimizable, but does not
change over time.

Additional conditions for the system are stated as path constraints. These can
be defined as equality constraints

h(x(t), u(t), p, t) = 0 (1.1.3)

or as inequality constraints

g(x(t), u(t), p, t) ≥ 0. (1.1.4)

The same holds for boundary constraints which can be equality

Ψt = Ψt (x(t), u(t), p, t) = 0 (1.1.5)

or inequality constraints

Ψt = Ψt (x(t), u(t), p, t) ≥ 0 (1.1.6)

under the condition that either t = t0 or t = tf .

The classical way to solve such an optimal control problem are indirect methods.
They are based on the calculus of variations.

The first formulation of first order necessary conditions for optimal control prob-
lems was published by Euler and Lagrange in 1744. The Euler–Lagrange equations
compose the fundament for the solution of this kind of mathematical problem. In
the time since, scientists have refined the formulations and have extended their use.
The introduction of the Hamilton function in 1834/35, for instance, was a major
contribution to improve the analytic structure of the conditions.

The first order necessary conditions for a problem with no path constraints, with
terminal equality constraints and mixed initial constraints can be found in eqs. 1.1.7.
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Hamiltonian: H =L + λT f

Dynamics: ẋ =f(x, u, t) = ∂H
∂λ

Adjoint differential equations: λ̇ =− ∂L
∂x −

(
∂f
∂x

)T
λ = −∂H

∂x

Optimality condition: 0 =∂H
∂u = ∂L

∂u +
(

∂f
∂u

)T
λ

Initial conditions: x(to) given or λ(t0) = 0

Terminal constraints: Ψf=Ψf (x(tf ), tf ) = 0

Transversality conditions: λf =
[

∂Φ
∂x +

(
∂Ψf

∂x

)T
ν
]
t=tf

Transvers. for optimizable tf : Ω =
[

∂Φ
∂t

+ νT ∂Ψf

∂t
+ H

]
t=tf

= 0

(1.1.7)

The Euler–Lagrange equations are only of first order and do not formulate suffi-
cient conditions. Therefore extensive research has been undertaken to complete and
extend them. The Legendre–Clebsch condition, demanding

∂2H

∂u2
≥ 0 (1.1.8)

is an example for a necessary condition of second order.

It was the Russian mathematician Pontryagin in 1954, who extended the optimal
control theory to cases with constrained variables. This was in so far an important
contribution as it enabled the optimization of problems with path constraints, which
are a common element in engineering problems. A detailed discussion of additional
conditions can be found in [15].

Indirect methods have the potential to provide closed solutions for OCPs. They
work with exact analytical terms and solve the problem via an intermediate elimi-
nation of the control and later back-calculation of the optimal control history. This
technique has also been the name giver for the class of indirect methods.
The very attractive features of indirect methods are paid for by enormous mathe-
matical overhead. Application of indirect methods requires a deep understanding
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of the mathematical problem structure and extensive knowledge about its solution
space. The structure of the equations describing the optimality conditions is very
complex. And even small changes in the problem outline can trigger major modifi-
cations of, for instance, the Hamiltonian function.
The same holds for the adjoint, or costate, variables [11]. They do not have physical
meaning which makes their estimation not at all intuitive and overly time consum-
ing. However, an accurate estimate is essential, since the mathematical problem
description is very sensitive to changes in the costate values. And convergence to
an optimal solution requires a qualitatively good initial guess.

An alternative to indirect methods has appeared with the emergence of digital
computers in the mid of the 20th century -the so called direct methods [46], [39], [9].
As the name suggests, they are straightforward techniques to calculate the optimal
solution. The concept is to parameterize the solution space and to solve a con-
strained nonlinear programming problem. The algorithm ensures compliance with
all constraints while in an iterative process closing in on the optimal solution.
The direct methods are numerical and, thus, not as elegant and analytically exact
as indirect methods. But they exhibit a series of advantages, which make them
the first choice more and more often in practical applications. It is the flexibility,
adaptability and robustness that gives these methods a larger convergence radius
and makes them well appropriate for users, who do not have an in-depth knowledge
of optimization theory.

1.1.2 Understanding an Optimal Solution

It is one thing to describe an optimal control problem and obtain a solution. It is
another to fully understand and exploit the found solution. There are numerous
aspects that determine the usefulness of the results that an optimization algorithm
delivers.

First of all, there is the question about the optimality of the solution with re-
spect to a certain criterion. Is the solution strictly optimal, or is the cost function
gradient only gently inclined?
Essentially, optimization algorithms terminate providing an optimal design point
with a certain performance number, but lack a comprehensive survey of the design
point sensitivity.
Unfortunately, the exact solution is purely theoretical in the eyes of practition-
ers, since the problem formulation generally describes a simplified model of reality.
Hence, a transfer of the results is only reasonable when the behavior of the model is
known and understood. Otherwise, reduction of main features of the problem result
in erroneous solutions, from which faulty conclusions are drawn.
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This motivates the assessment of perturbations in auxiliary design parameters,
which could compensate for model short-comings. These parameters typically de-
scribe model properties that are held constant during the optimization, even though
they are naturally not constrained to a particular value.
This leads to the identification of critical components, the evaluation of uncertainty
sources and the question, what effect certain parameters have on the optimal solu-
tion.

The matter can be summarized in the term Sensitivity. The key to enhanced
problem understanding is knowledge about the sensitivity of the optimum solution.

1.2 Sensitivity as a Means of Analysis

Sensitivity analysis has become a main competence for the modeling and analysis
of complex systems in general. Blackwell [12] has congregated its meaning in the
following definition:

Sensitivity analysis is defined as the study how variations in
input parameters of a computational model cause variations in
output. [...] A measure of this sensitivity is termed the sen-
sitivity coefficient and is (mathematically) defined as a partial
derivative of the output variable with respect to the parameter
of interest.

This gives us the mathematical expression

Sij =
∂yi

∂xj

. (1.2.9)

for the sensitivity coefficient Sij. The scalar variable yi represents an output of
the investigated system. It commonly characterizes the objective and contains key
performance properties of the dynamic system.
The scalar variable xj constitutes an input to the system. Most often it is a design
parameter, a model parameter, or a parameter defining a condition.

Another expression which is commonly used for Sij is sensitivity derivative. It
has been introduced by Sobieski [65], [58], [64].

The dependencies illustrated by the sensitivity coefficients provide useful infor-
mation about the behavior and character of the problem under investigation. Hence,
the coefficients are valuable for analysis and can be processed for various tasks. Bose
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et al. [13] performs sensitivity analysis to identify uncertainty risk and categorizes
as follows:

1. Structural Uncertainty
All mathematical models work with assumptions and simplifications to repre-
sent physical phenomena. These pose the risk of not being realistic.

2. Parametric Uncertainty
This type of uncertainty arises for uncertainties in the model parameter esti-
mates. This happens frequently for parameters of dynamic systems which can
not be measured explicitly, but have to be guessed.

3. Stochastic Uncertainty
Natural fluctuations can cause this kind of uncertainty. A common example
are atmospheric anomalies with stochastic behavior.

There is a multitude of scientific applications which go under the title of sensi-
tivity analysis and document the very heterogeneous perception of its usefulness.
Empirical methodologies can be found in environmental model analysis [50], labor
market evaluation [62], or in chemistry [69]. It can be used to compute safety or
probability margins [27] by widening the parameter range or provide gradient infor-
mation for an optimization algorithm [55].

The rising interest in sensitivity computation in recent years has led to the de-
velopment of a number of different methods. In general the selection of the most
suitable method is dominated by the structure of the model and its accessibility.
Therefore model properties and computational interests can be taken to broadly
classify the various analysis methods.

If the model is completely unknown and the model equations are not accessi-
ble or if dependencies shall be scanned for a wide variational range, then sampling
methods promise to show best performance. The relationship between input and
output parameters in the state space is established empirically via model runs at
sets of sampling points [51].
In this context, simulation campaigns are a widely used means for uncertainty and
sensitivity analysis [48]. Telaar [68] has worked with them to identify sensitivities of
a reentry vehicle. And Bose et al. [13] applied the concept to compute sensitivities
in the thermochemical model for a Titan atmospheric entry.
The selection scheme for the sampling sets distinguishes the various sampling meth-
ods from each other and defines the computational expenses. This ranges from
Monte Carlo-like approaches with almost random distribution, to Latin Hypercube
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Sampling [66] with equal probability segments. Also Response Surface methods are
in use. They process the obtained sampling information towards the definition of a
secondary model with reduced parameter number [72]. The surrogate model is con-
venient for trend analysis and allows rapid, but also inaccurate sensitivity derivation.

Other methods are directly focused on producing derivatives. There are the
analytic methods, which rely on the accessibility and differentiability of the model
equations. One such technique compiles the Forward Sensitivity Equations. An-
other is the Reverse Adjoint Equations method. As the name suggests, it analyzes
the origin of an anomaly by means of reverse signal flow [36] and, thus, allows an
identification of perturbation sources. In [55] it is shown, how this method can be
used to provide sensitivity data for aero-structural optimization.

All these analytic methods provide exact gradients, but require an enormous
mathematical overhead. Particularly in engineering applications it is frequently the
case that spreadsheets and switching functions are part of the model and make an-
alytical techniques a prohibitively expensive or even impossible task.
Then, numerical methods become a convenient alternative. Finite differences are
generally the prime choice for numerical differentiation. But Martins et al. [56] has
also successfully tested the method of Complex Steps for sensitivity analysis pur-
poses. The accuracy is superior. However, complex variation of the model requires
a comprehensive complex algebra environment.
In any case, the sensitivity coefficients are computed for a certain reference point
and therefore local.

Another method is Parameterized Sensitivity Analysis (PSA). The fundamental
idea behind this is to reduce the model size by parameterization, while retaining its
complexity. It is often possible to make reasonable assumptions for a model and
establish parametric relationships as a substitute to function dependencies, for in-
stance, through use of polynomial fitting. The infinite number of state propagators
is approximated with a limited number of parameters, which subsequently consti-
tute the parameter space of the new problem description.
The computation of sensitivities is turned into the computation of parameter de-
pendencies. And the chain of such dependencies determines the impact of an input
variation on a specific output. Each parameter which correlates to the input of in-
terest potentially stimulates the output. Fiacco [28] and Sobieski [65] have provided
valuable contributions for the advancement of PSA.




