Prozessoptimierung der Sulfonierung von vernetzten Copolymeren zur Herstellung von Hochleistungsaktivkohlen

Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik

der Technischen Universität Bergakademie Freiberg

genehmigte

DISSERTATION

zur Erlangung des akademischen Grades Doktor-Ingenieur Dr.-Ing.

vorgelegt von Diplom-Ingenieur Holger Günther geboren am 11.11.1972 in Freiberg

Gutachter: Prof. Dr.-Ing. habil. W. Heschel Prof. Dr. rer. nat. habil. T. Dimmig Prof. Dr. rer. nat. habil. O. Wienhaus

Datum der Verteidigung: 27.11.2001

Inhaltsverzeichnis

	Seite
1. Einleitung und Zielsetzung	1
2. Kenntnisstand zur Herstellung synthetischer Aktivkohlen	3
2.1 Arten von Adsorbentien	3
2.2 Ausgangsstoffe für synthetische Aktivkohlen	3
2.3 Herstellung synthetischer Aktvivkohlen	7
2.4 Fazit	16
3. Theorie der Sulfonierung von Copolymeren	17
3.1 Mechanismus der Sulfonierung	17
3.2 Stöchiometrie der Sulfonierreaktion	22
4. Sulfonierung im Labormaßstab	
4.1 Versuchsaufbau und -durchführung	
4.2 Ergebnisse der Sulfonierung im Labormaßstab	
4.2.1 Sulfonierung	
4.2.2 Pyrolyse der sulfonierten Copolymere	
4.2.3 Aktivierung der Kokse	43
4.3 Bewertung der Einflussgrößen auf die Produktqualität	
5. Entwicklung und Realisierung eines Pilotreaktors zur Durchführung der Sulfonierung	51
5.1 Anforderungen und Lösungsvorschlag	51
5.2 Reaktordimensionierung	
5.2.1 Ähnlichkeitsansätze und Modellberechnungen	
5.2.2 Berechnung der Reaktorgröße	53
5.2.3 Optimierung der Reaktorabmessungen und -größe	55
5.2.4 Uberprüfung der Berechnung an einem Modell	
5.2.5 Berechnung der Reaktormasse und der Reaktorwärmekapazität	
5.2.6 Modellierung des Aufheizverhaltens des Laborsulfonierreaktors	
5.2.7 Das mathematische Modell der Abkühlung des Pilotsulfonierreaktors	62
5.2.8 Berechnungsbeispiele zur Reaktorauslegung	
5.2.9 Auslegung der Rückkühleinheit	67
5.3 Versuchsaufbau und -durchführung	68
6. Optimierung der Reaktorfahrweise und Durchführung von Sulfonierversuchen	75
6.1 Bilanzierung der Pilotsulfonieranlage	75
6.2 Ermittlung der Aufheiz- und Abkühldynamik unter Ausschluss der Reaktion	80
6.3 Versuchsplan und Durchführung der Sulfonierversuche	
6.4 Beschreibung des Sulfonierzyklus	87

7. Prozessanalyse und Eigenschaften des Sulfproduktes	92
7.1 Ergebnisse der Bilanzierung des Sulfonierzyklus	92
7.2 Eigenschaften des Sulfproduktes	100
7.2.1 Einfluss des Masseeinsatzverhältnisses	101
7.2.2 Einfluss der Sulfonierhaltezeit	102
7.2.3 Einfluss weiterer Prozessparameter	104
7.2.4 Lagereigenschaften des Sulfproduktes	105
7.3 Praktisch-technische Kennziffern der Pilotsulfonieranlage	106
7.3.1 Leistung der Anlage im Dauerbetrieb	106
7.3.2 Energiebedarf der Pilotanlage	107
7.3.3 Emissionssituation und Abproduktentsorgung	109
7.3.4 Aufgetretene Störungen	110
7.3.5 Technisch-wirtschaftliche Betrachtung und ökölogische Bewertung des Verfahrens	5-
Vergleich mit alternativen Verfahren zur Herstellung von Kugelaktivkohle	111
8 Auswirkungen der Sulfonierung auf die Koks und Aktivatgualität	11/
8 1 Einfluss der Sulfonierung auf den Pyrolysenrozess und die Eigenschaften des Kokses	114
8 1 1 Koksausbeute	114
8.1.2 Verbleib des Schwefels	116
8.1.3 Kokseigenschaften	
8.2. Einfluss der Sulfonierung auf den Aktivierungsprozess und die Eigenschaften des	
0.2. Elimitus del Sullomerung au dell'Aktivierungsprozess und die Eigenschalten des	120
8.2.1 Aktiviorupggarad (Abbrand) und Aktiviorupggaggebwindigkeit	120
8.2.2 Vorbleib des Schwefels	120
8.2.2 Verbield des Schweiels	121
8.2. Versleich der Bredukte aus Bilet. (BSA) und Lehersulfenierenlage (BVD)	125
8.4 Depreduzierberkeit der Versuche mit der Diletaulfenierenlage	120
Maßschneidern von TACT's durch gesignete Wahl der Prozessbedingungen	122
9. Maisschlieden von TACT's durch geeignete wan der Prozessbedingungen	122
9.1 Valiation del Frozessbedingungen	120
9.2 Eliliuss von Kalaiysaloren	. 139
IV. Zusammeniassung	142
Symbolverzeichnis	146
Literaturverzeichnis	150
Tabellenverzeichnis	156
Bilderverzeichnis	158

1 Einleitung und Zielsetzung

Adsorptionsvorgänge sind ein weit verbreitetes Phänomen und wurden lange Zeit durch den Menschen genutzt, ohne dass man die zugrunde liegenden Vorgänge verstand. In der Heilkunde war poröse Kohle bereits im klassischen Altertum bekannt. Bereits 600 v. Chr. beschrieb Thales von Milet Techniken zur Wasserentsalzung unter Verwendung von Holzkohle. Ende des 18. Jahrhunderts wurde erstmals die Adsorptionswirkung von Holzkohle festgestellt. Die technische Anwendung der Adsorption begann mit der Reinigung von Lebensmitteln [Koc98]. Anfang des 19. Jahrhunderts erfolgte dann in größerem Umfange der Einsatz bei der Entfärbung in der Zuckerindustrie. Diese Entwicklung führte um 1900 zur Entwicklung deutscher und britischer Patente, in denen die Herstellung von Holzkohle mittels Wasserdampf und Kohlendioxid beschrieben ist [HM98, MKJ96]. Bis heute hat sich die Aktivkohle eine Vielzahl unterschiedlichster Anwendungsgebiete erschlossen. Die Palette der Anwendungen ist umfangreich und umfasst die Gasreinigung/Gastrennung (H₂-Gewinnung), die Wasserreinigung, das Entfärben von Lösungen und die Katalyse als hauptsächlichste Anwendungsgebiete, wobei der Umweltschutz mit den Einsatzgebieten Luft- und Wasserreinigung den wohl wichtigsten Bereich darstellt und auch in der Zukunft weiter an Bedeutung gewinnen wird [HD96, KB80, Sle85, Suz90].

Aktivkohlen lassen sich kostengünstig aus einer Vielzahl kohlenstoffhaltiger Rohstoffe herstellen, da sie keine spezifischen, d.h. hochselektiven, Adsorptionseigenschaften aufweisen müssen und als Massenprodukte vermarktet werden. Die Menge der jährlich großtechnisch produzierten Adsorbentien erreicht eine erhebliche Größenordnung [Koc98]. Die Weltproduktion betrug 1997 650 kt/a [Ros98] und ist wie folgt aufgeteilt:

- Asien 45-50 %
- Amerika 35-40 %
- Europa 5-20 %

Auf die Länder USA (33 %), China (15 %) und Japan (15 %) entfallen über 60 % der Weltproduktion an Aktivkohle.

Anders als diese Massenprodukte sind Hochleistungsaktivkohlen in ihren Eigenschaften auf einen speziellen Anwendungsfall zugeschnitten ("maßgeschneidert") und erreichen wesentlich höhere Adsorptionsleistungen. Bedingt durch die aufwendigere Herstellungstechnologie und die höheren Rohstoffeinstandspreise liegen die Produktpreise bei etwa dem 10-fachen üblicher Aktivkohlen. Die höheren Marktpreise lenken damit den Absatz in solche Anwendungsbereiche, bei denen die besonderen Eigenschaften dieser Produkte, wie eine maßgeschneiderte Porenstruktur, Kugelform und hohe Härte, unabdingbar sind.

Als Beispiele sei der Einsatz von Kugelaktivkohlen für die Herstellung von so genannten Dünnschichtfiltern in der Klimatechnik und im Fahrzeugbereich genannt. Von diesen Aktivkohlen fordert man eine hohe volumenspezifische Adsorptionskapazität und Spontanität (Kinetik). Bezüglich ihrer Porenstruktur müssen solche Aktivkohlen an die abzuscheidenden Spurengase optimal angepasst sein (*T*ailored *A*ctivated *C*arbon *T*ypes). Ein wesentlicher Aspekt bei der

Entwicklung von *TACT*-Kugelaktivkohlen ist daher die Frage, inwieweit unter technischen Bedingungen bestimmte Porenstrukturen in einer Kohlenstoffmatrix realisierbar sind [HGM01].

Maßgeschneiderte Aktivkohlen (Tailored Activated Carbon Types) zeichnen sich durch mehrere der folgenden Merkmale aus [HMGN00]:

- Adsorptionsspezifische (adäquate) Porenstruktur
- Hohe Selektivität ("Schlüssel-Schloss"-Prinzip)
- Überdurchschnittlich hohe Adsorptionskapazität und -kinetik
- Maximale Kapazitätsausnutzung im Filtervolumen
- Kombinationseffekte (Composite-Materialien)
- Hohe mechanische Festigkeit.

In dieser Sparte der Hochleistungsadsorbentien sind die Aktivkohlefasern, die Kohlenstoffmolekularsiebe, die Kugelaktivkohlen, imprägnierte Aktivkohlen und speziell für medizinische Anwendungen entwickelte Produkte zu finden. Derzeit am Markt erhältliche Sorten von Kugelaktivkohlen werden vor allem in den USA und in Japan produziert.

Die Herstellung von "maßgeschneiderten" Kugelaktivkohlen (TACT's) erfolgt meist auf Basis synthetischer Polymere, da diese kostengünstig verfügbar sind. Ihre homogene Struktur garantiert eine gleichmäßige Aktivkohlequalität. Der Herstellungsprozess gliedert sich in die Prozessstufen Vorbehandlung, Pyrolyse und Aktivierung. Besonders die Sulfonierung ist als Vorbehandlung synthetischer Rohstoffe weit verbreitet. In der Sulfonierstufe wird durch Einlagerung von Sulfonsäuregruppen in die Polymermatrix das Kohlenstoffgerüst stabilisiert bzw. unschmelzbar gemacht. In der anschließenden Pyrolyse wird daraus ein poröser Koks gewonnen, der je nach Sulfonierungsgrad eine unterschiedliche Porenstruktur besitzt und durch Wahl geeigneter Prozessbedingungen zu einer Kugelaktivkohle gewünschter Qualität aktiviert werden kann.

In diesem Zusammenhang hat die vorgelegte Arbeit folgende Ziele:

- Optimierung der Sulfonierung im Labormaßstab durch erweiterte Variation der Prozessparameter (Masseeinsatzverhältnis, Haltezeit, Aufheizrate, Copolymertyp) und deren Einfluss auf die Produktqualität.
- Übertragung des Sulfonierungsprozesses in den Pilotmaßstab Entwicklung und Realisierung einer Anlage zur Durchführung der Sulfonierung sowie deren Optimierung
- Bilanzierung der Pilotanlage und Beurteilung der Produktqualität
- Maßschneidern von Aktivkohlen (TACT's) durch Variation der Prozessbedingungen während der Sulfonierung, Pyrolyse und Aktivierung
- Einschätzung der Sulfonierung als Hauptprozessstufe einer neuen Verfahrenstechnologie zur Herstellung synthetischer Aktivkohlen

2 Kenntnisstand zur Herstellung synthetischer Aktivkohlen

2.1 Arten von Adsorbentien

Da die Adsorption ein Grenzflächenphänomen ist, werden Feststoffe mit großen inneren Porenoberflächen bevorzugt, welche eine ausreichende Adsorptionskapazität gewährleisten. Als Adsorbentien kommen vielfach hydrophobe Aktivkohle, Aktivkoks oder Kohlenstoffmolekularsiebe zum Einsatz. Sie werden aus Holz. Kohle oder Petrolkoks hergestellt. Hauptunterscheidungsmerkmale technischer Adsorbentien sind neben der chemischen Zusammensetzung das Porenvolumen V_P und die spezifische Oberfläche S_{BET} - Tabelle 2-1.

Adsorbens	Hauptbestandteil	V _P	S _{BET}	Einsatzgebiete
		cm³/g	m²/g	
Aktivkohle	С	0,9	1200	Gas-, Wasserreinigung
Aktivkoks	С	0,5	350	Rauchgasreinigung
Kohlenstoff-	С	0,6	300	Gastrennung
Molekularsieb				
Adsorberpolymere	C, H	1,0	1000	Wasserreinigung
Zeolithe				
- hydrophil	AlO ₄ (SiO ₄)	0,8	900	Gastrocknung, -trennung
- hydrophob	SiO ₄	0,4	700	Gasreinigung
Silicagel	SiO ₂	0,5	600	Gastrocknung
Aktivtonerde	Al ₂ O ₃	0,4	400	Wasserreinigung

Tabelle 2-1: Merkmale und Einsatzgebiete technischer Adsorbentien [Hes00]

Führend auf dem Gebiet der Herstellung von synthetischen Aktivkohlen aus Polymeren ist die amerikanische Rohm & Haas Company [SR90]. Dieses Unternehmen veröffentlichte eine Reihe von Patenten, insbesondere zur Verwendung makroporöser Ionenaustauscherharze für die Produktion von Kugelaktivkohlen. Besonders für die Herstellung hochleistungsfähiger Aktivkohlen eignen sich synthetische Polymere auf Basis Styren-Divinylbenzen (DVB). Durch geeignete Wahl der Prozessparameter ist die Qualität der resultierenden Aktivkohle gezielt steuerbar [Mül00].

2.2 Ausgangsstoffe für synthetische Aktivkohlen

Als Ergebnis eines in [Mül00] durchgeführten Screenings wurde festgestellt, dass für die Herstellung synthetischer Aktivkohlen nur Produkte aus der Palette der Austauscherharze in der H⁺-Form und deren Vorprodukte (Copolymere) mit einem geringen bis mittleren Vernetzungsgrad in Frage kommen.

Diese zeichnen sich aus durch:

- eine Koksausbeute (bezogen auf wasserfreies Einsatzmaterial) von 38 50 %,
- den Erhalt der Kugelform während der Verkokung,
- eine hohe Rohdichte,
- eine günstige Porenstruktur mit einem hohen Anteil Mikroporen und
- eine hohe mechanische Festigkeit.

Aufgrund des hohen Wassergehaltes (40 – 80 Ma-%) und eines Rohstoffpreises von 2,50 bis 4,50 DM/kg [Bay96] ergeben sich für den wasserfreien Rohstoff entsprechend hohe Produktpreise.

Der Einsatz gebrauchter Ionenaustauscher ist aufgrund ihrer ungenügenden Verfügbarkeit und ihrer schwankenden Qualität wirtschaftlich nur in begrenztem Maße sinnvoll. Des weiteren sind sie mit einer Vielzahl unterschiedlicher Substanzen beladen, die die Produktqualität und den Herstellungsprozess (Korrosion, Emission) negativ beeinflussen. In [SR01] wird eine Methode zur Herstellung von Aktivkohle auf Basis gebrauchter Ionenaustauscher beschrieben. Der eingesetzte Ionenaustauscher mit einem Wassergehalt von 50 % und einem Aschegehalt bis zu 30 % wird nach der Trocknung bei Temperaturen von 300 bis 900 °C pyrolysiert (Inertatmosphäre mit 0,2 – 4 Vol-% Sauerstoff) und anschließend bei 700 °C aktiviert (Inertatmosphäre mit 3 – 50 Vol-% Wasserdampf). Bezogen auf den feuchten Einsatzstoff tritt nach Pyrolyse und Aktivierung ein Masseverlust von 60 bis 90 % ein. Besonders nachteilig wirkt sich der Gehalt an mineralischen Komponenten (Metallkationen) aus. Über die Wirtschaftlichkeit dieses Verfahrens wird keine Aussage getroffen.

Besser geeignet sind die Vorprodukte der Ionenaustauscherherstellung. Diese vernetzten Copolymere liegen ebenfalls kugelförmig vor und weisen einen Wassergehalt < 1 % auf. Ebenso sprechen der hohe Kohlenstoffgehalt (> 80 %) und der niedrige Aschegehalt (< 1 %) für den Einsatz dieser Produkte. Besonders geeignet sind Copolymere auf Basis Polystyren und Divinylbenzen (DVB). Aus diesen synthetischen Rohstoffen lassen sich Kugelaktivkohlen hoher Adsorptionskapazität und –kinetik sowie hoher mechanischer Festigkeit herstellen.

Ein Copolymer ist ein Polymer, dass zwei oder mehr Arten monomerer Einheiten in demselben Molekül enthält. Die Herstellung erfolgt durch Polymerisation aus zwei (oder mehr) Monomeren [MB86]. Mit dem Verfahren der Suspensionspolymerisation (Perlpolymerisation) werden Perlen mit einem Durchmesser von 0,2 bis 1 mm erzeugt [SHOR80]. Dabei unterscheidet man gelartige und makroporöse Netzwerkstrukturen. Die Herstellung makroporöser Typen erfolgt in Gegenwart von Lösungsmitteln während der Copolymerisation. Die dabei entstandenen Strukturen mit Poren und Kanälen führen zu einem opaken Aussehen [FPZ92] (Bild 2-3). Bild 2-1 zeigt den strukturellen Aufbau von mikroporösen (gelförmigen) und makroporösen Typen und verdeutlicht die Unterschiede zwischen Maschenweite (0,5 - 1,5 nm) und Makroporen (> 10 nm) [Nau72].

Bild 2-1: Schematische Darstellung der Maschenweite bei gelförmigen und makroporösen Ionenaustauschern [Nau72]

Die Dichte des Netzwerkes wird durch die Vernetzermenge vorgegeben. Mit zunehmendem Vernetzungsgrad wird gleichzeitig die Quellbarkeit herabgesetzt [FPZ92]. Bild 2-2 zeigt den Vernetzungsprozess schematisch.

Bild 2-2: Schematische Darstellung des Vernetzungsprozess von Polystyren [HBP98]

Das Quellvermögen ist jedoch besonders für die nachfolgenden Prozessstufen von großer Bedeutung. Bei der Sulfonierung ist ein schneller Reaktionsverlauf bis zur vollständigen Umvernetzung vorteilhaft, um hohe Koksausbeuten zu realisieren. Bei gelförmigen, hochvernetzten Copolymeren besteht die Gefahr der unvollständigen Sulfonierung bzw. ungenügenden Durchsulfonierung der einzelnen Copolymerpartikel. Das heißt, dass nur der äußere Rand der Partikel sulfoniert wird, der Kern dagegen unsulfoniert bleibt.

Bild 2-3 zeigt zwei Copolymere auf Basis Styren-DVB mit unterschiedlicher Netzwerkstruktur. Auf dem linken Foto ist ein makroporöses Polymer (100 % DVB) in einer Körnung von 0,2 bis 1mm abgebildet. Das rechte Foto zeigt ein gelförmiges Polymer mit einem DVB-Gehalt von 8 Ma-% und einem Kornspektrum von 0,2 bis 0,8 mm.

Bild 2-3: Polymere Ausgangsstoffe der Bayer AG: Lewatit OC1066 (100 % DVB) und Lewapol 8-00 (8 Ma-% DVB)

Eine Auswahl von derzeit erhältlichen Copolymeren mit unterschiedlichem Vernetzungsgrad (DVB-Gehalt) und unterschiedlicher Struktur enthält Tabelle 2-2. Monodisperse Copolymere werden bevorzugt mit einem DVB-Gehalt zwischen 2 und 12 Ma-% für die Herstellung von lonenaustauschern eingesetzt [SR00].

DVB-		Struktur	Bezeichnung	Hersteller
Gehalt				
2 Ma-%	polydispers	gelförmig	Lewapol 2-00	Bayer AG
4 Ma-%	polydispers	gelförmig	Lewapol 4-00	Bayer AG
8 Ma-%	polydispers	gelförmig	Lewapol 8-00	Bayer AG
8 Ma-%	monodispers	gelförmig	Lewapol 8-4-00	Bayer AG
100 Ma-% ¹	polydispers	makroporös	Lewatit VP OC 1066	Bayer AG
2 Ma-%	polydispers	gelförmig	Doshion	Doshi Ion Exchange &
				Chemical Industries LTD.
	polydispers	gelförmig	P-800	Sybron Chemicals Inc.
4 Ma-%	polydispers	gelförmig	Relite Excp 10	Mitsubishi Chemical Cor.
6 Ma-%	polydispers	gelförmig	Relite Excp 11	Mitsubishi Chemical Cor.
6 Ma-%	polydispers	porös	Relite Excp 12	Mitsubishi Chemical Cor.

Tabelle 2-2: Kommerzielle Copolymere auf Basis Styren-DVB (Auswahl)

¹80 % effektives DVB und 20 % EVB (Ethylvinylbenzen)

Das Material der Copolymere auf Basis Styren-DVB geht während der Pyrolyse vollständig in die Gasphase über. Aus diesem Grund ist eine Vorbehandlungsstufe erforderlich, die das Polymer unschmelzbar macht und den Kohlenstoff in der Matrix fixiert.

2.3 Herstellung synthetischer Aktivkohlen

Vorbehandlung

Wie bereits erwähnt, muss das Copolymermolekül bevor es pyrolysiert wird, einer chemischen Vorbehandlung unterzogen werden. Nach Literaturangaben kann das eine milde Oxidation oder eine Sulfonierung sein. Der Sauerstoff spielt bei der Oxidation eine ähnliche Rolle wie die Sulfonsäuregruppen bei der Sulfonierung. Er bildet Brücken und es entstehen reaktionsfähige funktionelle Gruppen bzw. Radikale. Der Anteil der flüchtigen Bestandteile wird reduziert und die Erweichungstemperatur erhöht [Wac97]. Während der Pyrolyse wird der eingeführte Sauerstoff zuerst als CO₂ und später bei höheren Temperaturen hauptsächlich als CO abgespalten [SR95].

In [WSJJ96] wird die Oxidation bei 250 °C mit Luft an einem Styren-DVB-Copolymer mit einem Vernetzungsgrad von 50 % beschrieben. Durch Variation der Oxidationsdauer bis zu 4 Stunden konnte die Ausbeute nach der Pyrolyse bei 950 °C auf 41,1 % erhöht werden, wobei während der Oxidation ein Masseverlust von 5 % beobachtet wurde. Durch Aktivierung mit CO₂ bei 800 °C wurde bei einem Aktivierungsgrad (Abbrand) von 50 % eine maximale BET-Oberfläche von 1250 m²/g erzielt.

Auch lonenaustauscher können durch langsames Aufheizen in Gegenwart von Luft unschmelzbar gemacht werden. Die nach Pyrolyse (Masseverlust = 40 %) und Aktivierung erhaltene Ausbeute an Aktivkohle betrug 35 % bezogen auf wasserfreies Einsatzmaterial. Die kugelförmige Aktivkohle wies eine BET-Oberfläche von 1150 m²/g auf [SR98b]. In [SR98c] werden Kügelchen, geformt aus Polystyrenabfällen, Steinkohlenteerpech und Diphenylmethan-Polyisocyanate, unter 250 °C in Inertgasatmosphäre mit 10 % Luft 60 min lang oxidiert und auf diese Weise unschmelzbar gemacht. Nach anschließender Pyrolyse bei 700 °C und Aktivierung bei 850 °C wurde eine Ausbeute von 41 % erhalten. Die BET-Oberfläche wurde mit 1250 m²/g angegeben [SR98c]. WACHE erzielte durch Oxidation eines gelförmigen Styren-DVB-Copolymers (8 Ma-% DVB) bei 280 °C lediglich eine Koksausbeute von 7,7 %. Die maximale Koksausbeute stellte sich bei 10% Sauerstoff und nach einer Behandlungszeit von 10 h ein [Wac97]. Die erhaltene Koksausbeute ist für eine Aktivkohleherstellung jedoch nicht wirtschaftlich. BLÜCHER [SR95] setzte Ionenaustauscher vor der Pyrolyse einer sauerstoffhaltigen Atmosphäre aus, wobei die Temperaturen bis zu 400 °C betrugen. Vor der Oxidation erfolgte eine Trocknung mit Luft, wobei der Sauerstoffgehalt mit steigender Temperatur progressiv reduziert wurde, so dass bei 300 °C noch 1 bis 5 % vorlagen. Die Dauer der Oxidation betrug je nach Reaktortyp (Wirbelschicht oder Drehrohr) 20 Minuten bis 6 Stunden. Die Ausbeute nach Pyrolyse und Aktivierung wurde mit 25 bis 30 % und die BET-Oberfläche des Aktivates mit 800 m²/g angegeben [SR95]. Ein Einfluss der Oxidation auf die Porenstruktur wurde nicht beschrieben.

In [Wac98] wurden Versuche zur Oxidation eines gelförmigen Styren-DVB-Copolymers (8 Ma-% DVB) in der Flüssigphase beschrieben. Gewählt wurde das Verfahren der UV-Oxidation gekoppelt mit Zugabe von Ozon und Wasserstoffperoxid bzw. dem Fenton Prozess. Letzterer wurde durch Einbringen von UV-Strahlung zusätzlich in abgewandelter Form eingesetzt. In Tabelle 2-3 sind die Versuchsparameter aufgeführt.

Nach der Pyrolyse des oxidierten Styren-DVB-Copolymers verblieb kein Rückstand. Die Pyrolyse erfolgte bei 750 °C unter Inertgasatmosphäre mit einer Aufheizrate von 10 K/min und einer Ausstehzeit von 5 min. Aus der vollständigen Zersetzung des Polymers wird der Schluss gezogen, dass die angewandte Flüssigphasenoxidation nicht zur thermischen Stabilisierung des Rohstoffs geeignet ist [Wac98].

Konstante Parameter	veränderliche Parameter
Styren-DVB-Copolymer	H ₂ O ₂
(8 Ma-% DVB)	FeSO₄ Masse-/Molverhältnis
	O ₃
	UV-Licht Wellenbereich
	O ₂ -Eintrag
	Resonanzenergie
	Aktivierungsenergie

Tabelle 2-3: Gewählte Parameter der Flüssigphasenoxidation [Wac98]

Die verbreitetste Methode zur Vernetzung von polymeren Ketten ist die Sulfonierung [WSJJ96], wie sie auch bei der Herstellung des Adsorbens "Ambersorb" der Fa. Rohm & Haas eingesetzt wird [SR77b]. Im Ergebnis der Untersuchungen von MÜLLER [HM96, Mül00] stellt die Sulfonierung von Styren–DVB-Copolymeren eine geeignete Vorbehandlungsstufe zur Herstellung synthetischer Aktivkohlen dar. Die Sulfonierung ist eine elektrophile Substitution und kann mittels konzentrierter Schwefelsäure, Oleum oder Chlorsulfonsäure durchgeführt werden [Gil77, Dor70]. Im vorliegenden Fall wurde auf konzentrierte Schwefelsäure (96 %-ig) als Sulfonierungsmittel zurück gegriffen, da diese leicht zu handhaben ist und als Massenprodukt preisgünstig verfügbar ist. Der Reaktionsablauf wird in Kapitel 3 beschrieben.

Hinweise aus der Literatur [SR77, SR77b, SR78, Nee81, SR98, SR89] zur Sulfonierung von Benzen besagen, dass eine Polysulfonierung, d.h. die Substitution von mehr als einer Sulfonsäuregruppe, nur bei Schwefelsäureüberschuss und höheren Temperaturen (ca. 200 °C) zu erzielen ist. Die Bildung von Sulfonen (Sulfonylbrücken zwischen zwei Aromatenringen) tritt bei höheren Temperaturen nur ein, wenn Schwefelsäureüberschuss vermieden wird. Hierbei agieren die Sulfonsäuregruppen selbst als Sulfonierreagenz. Ebenfalls bei erhöhter Temperatur tritt ein oxidativer Abbau durch direkten Angriff der konzentrierten Schwefelsäure unter Freisetzung von SO₂ und CO ein.

In den Patenten US 5,585,408 [SR96] wird die Vernetzung von Copolymeren bis hin zur Herstellung von Ionenaustauschern beschrieben. Die Durchführung erfolgt in emaillierten Rührkesseln [Nau72]. Der Prozess der Sulfonierung von niedrigvernetzten Polystyrenen wird in dem Patent US 5,280,082 [SR94] formuliert. Es beschreibt verschiedene Sulfonierverfahren mit unterschiedlichen Sulfonierreagenzien.

Das o.g. genannte Patent ist eine Erweiterung der US-Patente 3,072,618; 3,128,257; 3,133,030; 3,158,583; 3,205,285; 3,870,841; 4,209,592 und 4,448,935. Ihm liegen folgende internationale Patente zu Grunde:

* US 3,072,618 Sulfonierung von nichtvernetzten Polystyrenen

* Greek 86.0636 Sulfonierung von vernetzten Polystyren mit Schwefelsäure

* US 4,209,592 Sulfonierung von Ionenaustauscherharzen durch Substitution der SO₃H – Gruppe

* US 4,448,935 gleichzeitige Vernetzung der Struktur und Sulfonierung von Polystyren. In diesem Patent wird die Vernetzung von vinylaromatischen Polymeren bei verschiedenen Drücken und Temperaturen beschrieben. Es werden gequollene, vernetzte, vinylaromatische Polymere in einem Gemisch aus Trialkylphosphaten und Schwefeltrioxid sulfoniert.

Als typische Bedingungen für die Sulfonierung werden in den US-Patenten 3,266,007; 2,500,149; 2,631,127; 2,664,801 und 2,764,564 ein Masseeinsatzverhältnis von Sulfonierungsmittel zu Polymer von 2:1 bis 16:1 und eine Sulfoniertemperatur bis 150 °C angeben. Als Quellmittel für gelförmige Copolymere können Methylenchlorid, Ethylenchlorid oder Schwefeldioxid eingesetzt werden [SR96].

Die Verwendung von makroporösen Styren-DVB-Copoylmeren beschreibt das US Patent 5,094,754 [SR92] der Rohm & Haas Company. Die Sulfonierung erfolgt mit einem Masseeinsatzverhältnis von 6:1 über einen Zeitraum von 3 h bei einer Sulfoniertemperatur von 100 °C. Um eine Polysulfonierung zu erreichen, wird der Ionenaustauscher 16 h lang bei einer Temperatur von 120 °C mit Oleum behandelt.

Einfluss der Sulfonierung auf die Koks- und Aktivatqualität

Besonders für die Herstellung maßgeschneiderter Aktivkohlen ist die Frage wichtig, wie über die Sulfonierung Einfluss auf die Produkteigenschaften ausgeübt werden kann. In [HMGN00] werden folgende Einflussgrößen des Sulfonierprozesses genannt:

- Masseeinsatzverhältnis von Schwefelsäure zu Copolymer (MEV),
- Aufheizrate der Reaktionsmischung,
- Reaktionstemperatur und
- Reaktionsdauer.

In [HMGN00] wird jedoch nur der Einfluss des Masseeinsatzverhältnisses (MEV) auf die Porenstruktur der Kokse und der Aktivate betrachtet. Der Sulfonierungsgrad wird im wesentlichen durch das Masseeinsatzverhältnis bestimmt. Von diesem abhängig ist die Kohlenstoffausbeute im Pyrolysekoks. Sie sollte aus wirtschaftlichen Gründen möglichst dem theoretischen Wert, der für ein sulfoniertes Styren-DVB-Copolymer (8 Ma-% DVB) bei 92,3 Ma-% liegt, nahe kommen. Durch Variation des MEV kann die Entwicklung der Porenstruktur des Kokses gesteuert werden [HMGN00]. So nimmt die Koksporosität mit fallendem MEV beträchtlich zu. Entsprechend verringert sich die Kohlenstoffausbeute. Im Bereich mit Säureüberschuss werden dagegen Kokse mit wenig Meso- und Makroporen gebildet, wobei die Makroporenbildung ganz unterdrückt werden kann. Da sich die groben Koksporen im Aktivat wiederfinden, kann über das MEV die Porenstruktur

der Aktivkohle gesteuert werden. Der Mikroporenanteil kann unabhängig vom MEV über den Abbrand eingestellt werden. Neben dem MEV spielt auch die Sulfoniertemperatur für die Porenbildung eine Rolle. In [Mül00] wurde festgestellt, dass sich aus dem bei 150 °C sulfonierten Copolymer (8 Ma-% DVB) unter sonst gleichen Bedingungen generell höhere Porenvolumina der Aktivate ergaben als aus dem Produkt bei 200 °C Reaktionstemperatur.

Pyrolyse

Die Pyrolyse umfasst alle physikalischen und chemischen Prozesse, die bei Wärmeeinwirkung oberhalb einer bestimmten Grenztemperatur (bei Ionenaustauschern oberhalb 100 °C) ablaufen. Sie ist mit der Beschränkung auf reine Wärmeeinwirkung von der Vergasung und der Verbrennung abgegrenzt, wo Reaktionen mit gasförmigen Reaktionspartnern stattfinden. Die Übergänge sind allerdings fließend, weil Reaktionen zwischen den bei der Pyrolyse entstehenden gasförmigen Produkten untereinander bzw. mit dem festen Kohlenstoff ablaufen [KT86].

Bei der Pyrolyse werden große komplexe oder vernetzte Moleküle in wasserstoffreiche Molekülbruchstücke und wasserstoffärmere feste Rückstände überführt. Die Produkte fallen als Koks, Teer, Zersetzungsgas und Zersetzungswasser an und können zur chemischen Nutzung oder Energieerzeugung genutzt werden [HM96b]. Menge und Art der Pyrolyseprodukte sind abhängig vom eingesetzten Rohstoff sowie den Prozessparametern Temperatur, Aufheizgeschwindigkeit, Gasatmosphäre und Ausstehzeit.

Von MATSUDA und FUNABASHI [MF87] wurde der Einfluss der Sulfonsäuregruppe auf das Pyrolyseverhalten eines sulfonierten Styren–Divinylbenzen–Copolymers (sulfoniertes ST-DVB) untersucht. Es wies folgende Eigenschaften auf:

- * mittlere Korngröße: 0,5 mm
- * Ionenaustauschkapazität: 4,2 meq/g Copolymer
- * DVB-Gehalt: 8 Ma-%

Zum Vergleich wurde auch das unsulfonierte Copolymer untersucht. Die Kurven für den Masseverlust zeigt Bild 2-4 [MF87]. Danach zersetzt sich das Copolymer zu 90 Ma-% im

Temperaturbereich von 300 – 400 °C, während sich das sulfonierte Copolymer bereits ab 200 °C zersetzt, jedoch bis 600 °C lediglich 50 % seiner Masse abspaltet. Dieses Ergebnis verdeutlicht den signifikanten Einfluss der Sulfonierung auf die thermische Stabilität von Styren-DVB-Copolymeren und die Kohlenstoffeinbindung in den festen Pyrolyserückstand.

Bild 2-4: Masseverlust von ST-DVB (8 Ma-% DVB) und sulfoniertem ST-DVB in Abhängigkeit von der Temperatur (Haltezeit: 2h, Atmosphäre: N₂) [MF87]

Die Pyrolyse von Polystyren ergibt keinen Koksrückstand. Durch Zugabe eines Vernetzungsmittels (DVB) wird eine geringe thermische Stabilität im Polymer erzeugt [ZK96].

In [PP98] wurden Styren-DVB-Copolymere pyrolysiert, die Stickstoff bzw. Phosphor enthielten. Die Koksausbeute wurde mit ca. 50 % angegeben. Die stärkste Masseabnahme trat zwischen 400 und 500 °C (Maximum bei 450 °C) ein. Oberhalb 500 °C ist der Masseverlust nur noch gering.

Wie aus Bild 2-5 hervorgeht, zersetzt sich die Sulfonsäuregruppe (-SO₃H) ab einer Temperatur von 200 °C zu SO₂ und H₂O. Schwefel- und Sauerstoffgehalt des Copolymers nehmen ab. Ab 400°C bilden sich geringe Mengen (2–9 Ma-%) flüchtiger Kohlenwasserstoffe. Der überwiegende Anteil des Kohlenstoffs und etwa ein Drittel des Schwefels verbleiben im festen Rückstand (Koks).

Bild 2-5: Pyrolyseprodukte des sulfonierten ST – DVB – Copolymers [MF87]

Nach MATSUDA und FUNABASHI [MF87] kommt dem Schwefel in der Sulfonsäuregruppe eine Schlüsselrolle zu, um die thermische Stabilität des sulfonierten Styren–DVB–Copolymers verstehen und erklären zu können.

Die Änderung der chemischen Struktur von sulfoniertem Styren-DVB ab 300 °C kann man mit nachfolgender Gleichung (Gl. 2.1) beschreiben. Aus der Sulfonsäuregruppe bildet sich eine Sulfonyl–Brücke (-SO₂-) im Copolymer aus, die von einer Dehydrationspolymerisation begleitet wird. Durch eine Deoxidationsreaktion bilden sich aus den Sulfonyl – Brücken die Schwefel – Brücken [BT75].

Die XPS (**X**-ray **P**hotoelectron **S**pectroscopy) Analyse (Bild 2-6) ergab für die Bindungsenergie des Schwefels (*2p*–Niveau) die folgenden Werte [MF87]:

Probe	Bindungsenergie	äquivalente Verbindungen
ST-DVB	168,8 eV	Benzensulfonsäure (168,8 eV)
		C_6H_5 -SO ₃ H (Sulfonsäuregruppe)
300 °C-Koks	168,0 eV	Diphenylsulfon (167,9 eV)
		$(C_6H_5)_2SO_2$ (Sulfonyl–Brücke)
400 °C-Koks	164,2 eV	Phenylsulfidpolymer (164,0 eV)
		$(C_6H_5S)_n$ (Schwefelbrücke)

Durch Erhöhung der Pyrolysetemperatur von 300 auf 400 °C verschwindet der Peak bei 168 eV, wobei lediglich ein Peak bei 164,2 eV zu beobachten ist. Der Verlauf der Kurve (400 °C) zeigt,

dass sich die meisten Sulfonyl–Brücken bei Temperaturen zwischen 300 und 400 °C in Schwefel– Brücken umgewandelt haben.

Bild 2-6: Änderung im XPS – Spektrum von Schwefel 2*p* während der Pyrolyse von sulfoniertem ST–DVB–Copolymer (8 Ma-% DVB) [MF87]

Nach MATSUDA und FUNABASHI zersetzen sich im Temperaturbereich von 200 bis 300 °C 65 % der SO₃H–Gruppen unter Bildung von SO₂ und H₂O. Die verbleibenden 35 Ma-% wandeln sich wie dargelegt in Sulfonyl–Gruppen und Schwefelbrücken um. Die thermischen Zersetzungsprozesse sind in Bild 2-7 schematisch dargestellt [MF87].

Bild 2-7: Strukturelle Veränderungen von sulfoniertem ST-DVB zwischen 200 und 400 °C [MF87]

Von NEELY wurden die in Bild 2-8 und Bild 2-9 veranschaulichten strukturellen Veränderungen im Temperaturbereich zwischen 300 und 500 °C bzw. 500 und 800 °C postuliert. Sie basieren auf den gemessenen Masseverlusten und Elementarzusammensetzungen und spiegeln die zunehmende Herausbildung eines polykondensierten Kohlenstoffskeletts wider.

Zwischen 300 und 500 °C gehen 65 % des enthaltenen Schwefels in die Gasphase über, vornehmlich als SO₂. Vom Kohlenstoff gehen 28 % in Form von gasförmigen Kohlenwasserstoffen (Toluen, Styren) verloren. Die entstehende aromatische Struktur enthält hauptsächlich Sulfonsäure- und Sulfonyl-Gruppen [Nee81].

Bild 2-8: Strukturelle Veränderung während der Pyrolyse eines sulfonierten ST-DVB-Copolymers im Temperaturbereich von 300 bis 500 °C [Nee81]

Bei Temperaturen oberhalb 500 °C wird hauptsächlich Wasserstoff freigesetzt. Die Kondensationsreaktionen führen zu Kohlenstoff-Kohlenstoff-Bindungen, die höher aromatisierte Strukturen ergeben und die Porenstruktur verändern. Bei Erhöhung der Pyrolysetemperatur von 500 auf 1200 °C sinkt dadurch die BET-Oberfläche des Kokses von 430 auf 100 m²/g [Nee81]

Bild 2-9: Strukturelle Veränderung während der Pyrolyse eines sulfonierten ST-DVB-Copolymers im Temperaturbereich von 500 bis 800 °C [Nee81]

Nach MÜLLER [Mül00] wirken sich hohe Aufheizraten während der Pyrolyse günstig auf die entstehende Koksporosität aus, wobei die Steigerung der Aufheizrate zu einer Erhöhung der Koksporosität führt. Es bilden sich vermehrt Makro- und Mikroporen. Das Mesoporenvolumen bleibt unverändert. Mit steigender Aufheizrate wurde zudem eine Abnahme des Sintergrades der Kokspartikel festgestellt.

GIERAK beobachtete, dass Aufheizraten über 3-5 K/min Sinterkörper entstehen lassen. Er schlägt für die Pyrolyse von sulfonierten Copolymeren daher eine konstante Aufheizrate von 3 K/min bis zu einer Endtemperatur von 800 °C vor. Vom gleichen Autor wurde der Einfluss des SO₃H–Anteils in einem Bereich von 0,2 bis 1,7 µmol_{SO3H}/g_{CP} untersucht. Lediglich der Wert von 1,1 µmol_{SO3H}/g_{CP} führte zu regelmäßig geformten und glatten Partikeln, die sich für die Aktivierung sehr gut verwenden ließen [Gie95].

WACHE untersuchte das Verhalten von sulfonierten Copolymeren mit Masseeinsatzverhältnissen von 1:1 und 1,4:1 bei Pyrolysetemperaturen von 400 – 800 °C und Aufheizgeschwindigkeiten von 10 – 35 K/min. Die Partikel sintern bei Temperaturen größer 500 °C und Aufheizraten größer 10 K/min zusammen. Während bei niedrigen MEV das Koksporenvolumen mit ca. 200 mm³/g unabhängig von der Temperatur und Aufheizrate konstant bleibt, ergab sich bei dem höheren MEV eine stetige Zunahme von ca. 40 mm³/g bei 450 °C bis auf 200 mm³/g bei 850 °C. Bei Koksen des mit einem MEV von 1:1 sulfonierten Copolymers wurden Hohlräume festgestellt, die eine ungleichmäßige Sulfonierung vermuten lassen [Wac00].

Aktivierung

Der Prozess der Aktivierung ist die thermische Behandlung kohlenstoffhaltiger Materialien unter bestimmten Bedingungen, deren Ergebnis unzählige Poren, Risse und Spalten sind [JSC91].Der Aktivierungsschritt ist der entscheidende porenbildende Prozess bei der Aktivkohleherstellung. Bei der Aktivierung wird der Pyrolysekoks in ein Adsorbens mit hoher Porosität und stark entwickelter spezifischer Oberfläche umgewandelt.

Die auf die Masseneinheit bezogene Oberfläche nimmt dadurch erheblich zu. Bei der technischen Aktivierung unterscheidet man zwischen der chemischen Aktivierung und der Gasaktivierung.

Die chemische Aktivierung ist für Polymere nicht geeignet. Nur lignocellulosehaltige Produkte, wie z.B. Sägemehl oder Torf, die mit dehydratisierenden Chemikalien, wie Phosphorsäure oder Zinkchlorid zwischen 400 und 800 °C verkokt werden, liefern nach Auswaschen des Aktivierungsmittels hochporöse Produkte [Pat95].

Als Rohstoffe für die Gasaktivierung werden Kokse aus Naturprodukten, wie z. B. Holz [Wie84], Torf oder Steinkohlen und Braunkohlen eingesetzt. Neben dem Gehalt an Flüchtigen üben auch die vorhandenen Makroporen im Rohstoff einen starken Einfluss auf die Aktivierbarkeit aus. Wasserdampf, Kohlendioxid und Sauerstoff (Luft) sind übliche Aktivierungsgase. Sauerstoff wird jedoch weniger verwendet, weil die Gefahr besteht, dass die Einwirkung an der äußeren Oberfläche des Kokskorns stattfindet. Dieser Vorgang wird als äußerer Abbrand bezeichnet und bedeutet eine Kohlenstoffvergasung ohne Vergrößerung der Porosität [Pat95].

Deshalb wird üblicherweise ein Gasgemisch von Kohlendioxid und Wasserdampf eingesetzt. Folgende Reaktionen finden statt [KT85]:

Wasserdampfaktivierung:

	-		-				
С	+	H_2O	\leftrightarrow	СО	+	H ₂	∆H = + 117 kJ/mol
Kohlen	dioxidak	tivierung	g:				
С	+	CO_2	\leftrightarrow	2CO			ΔH = + 159 kJ/mol
СО	+	H ₂ O	\leftrightarrow	CO ₂	+	H ₂	∆H = - 42,3 kJ/mol
Sauers	toffaktiv	ierung:					
С	+	½O2	\leftrightarrow	CO			ΔH = - 123,0 kJ/mol

Wasserdampf wird bevorzugt als Aktivierungsgas eingesetzt, weil die Wassermoleküle kleiner sind als die des Kohlendioxids. Folglich führt die Verwendung von Dampf zu

• einer schnelleren Diffusion in die Poren und

• einer verstärkten Mikroporenbildung [GLM87, Wig89].

Um eine technisch ausreichend hohe Reaktionsgeschwindigkeit zu erzielen, sind Temperaturen von 700 - 1100 °C notwendig. Die Wahl der Temperatur richtet sich nach Größe, Reaktivität und Porosität der Kokspartikel, nach der Zusammensetzung des Aktivierungsgases sowie dem Reaktortyp [Hes90]. Dieser Prozess wird in geeigneten Öfen, wie z. B. Schachtöfen, Drehrohren, Etagenöfen, Fließbettreaktoren, durchgeführt. Die Auswahl des Reaktors ist stark von den Eigenschaften des zu aktivierenden Materials abhängig [KB80; Pat95].

Eine Beeinflussung der Porenstruktur der Aktivkohle ist mit jedem Prozessparameter möglich. Der Aktivierungsgrad übt den stärksten Einfluss aus. Darunter versteht man den auf die Masse des Kokses bezogenen Stoffverlust (auch als Abbrand bezeichnet) [WSJJ96]. Mit Erhöhung der der Aufheizrate bei Pyrolyse von sulfonierten Copolymeren steigt auch die Aktivierungsgeschwindigkeit. Als Ursache wird die bei der Pyrolyse geschaffene Makroporosität angesehen [Mül00]. Darüber hinaus konnte MÜLLER eine Abhängigkeit der Porenstruktur vom Schwefelumsatz feststellen. Besonders BET-Oberfläche und Mikroporenvolumen steigen stark mit der umgesetzten Schwefelmenge an. Meso- und Makroporenvolumen nehmen nur geringfügig zu. Die BET-Oberfläche Gesamtporenvolumen und das steigen bis zu hohen Aktivierungsgradbereichen stetig an, so dass sich Aktivkohlen mit über 2500 m²/g herstellen lassen [Mül00]. WACHE konnte ebenfalls eine lineare Abhängigkeit des Gesamtporenvolumens sowie der BET-Oberfläche vom Aktivierungsgrad beobachten [Wac00].

GIERAK erzielte bei der Aktivierung eines sulfonierten Copolymers (1,1 µmol_{SO3H}/g_{CP}, N₂, 800 °C, 3 K/min) eine maximale BET-Oberfläche von 1000 m²/g bei einem Aktivierungsgrad von 40 Ma-%. Das maximale Gesamtporenvolumen stellte sich bei einem Aktivierungsgrad von 50 Ma-% ein [Gie95]. Weitere Prozessparameter, durch deren Variation die Struktur des Produktes beeinflusst werden kann, sind der Druck und die Temperatur sowie das Aktivierungsmittel [Gro94]. Weitere Angaben sind in den entsprechenden Patenten zu finden [SR77, SR78, SR89, SR95, SR98, SR98b, SR99].

2.4 Fazit

Die Herstellung von Adsorbentien aus synthetischen polymeren Ausgangstoffen ist bereits technisch realisiert. Das Produkt "Ambersorb" der Firma Rohm & Haas ist ein Vertreter dieser Adsorbentienklasse. Zum Einsatz kommen dabei hauptsächlich sulfonsaure Ionenaustauscher auf Basis Styren-Divinylbenzen und deren Vorprodukte (Copolymere ohne funktionelle Gruppe). Die Herstellung von Adsorbentien aus synthetischen Polymeren erfolgt generell über die Prozessstufen Vorbehandlung (z.B. Sulfonierung), Pyrolyse und Aktivierung. Die Vorbehandlung dient der Vernetzung und thermischen Stabilisierung des Copolymers. Die Sulfonierung ist die häufigste Form zur Vorbehandlung der Rohstoffe. Als Einflussparameter zur Steuerung der Produkteigenschaften, insbesondere der Porenstruktur, sind Angaben zum Masseeinsatzverhältnis und zur Sulfoniertemperatur zu finden. Durch Änderung des Masseeinsatzverhältnisses in der Sulfonierstufe kann besonders die Meso- und Makroporenbildung gezielt beeinflusst werden. Die Informationen zum Einfluss des Masseeinsatzverhältnisses sollen in der vorliegenden Arbeit vertieft werden. Außerdem lässt sich das Porenvolumen über die Sulfoniertemperatur verändern. Wissenslücken bestehen zum Einfluss der Reaktionsdauer, der Aufheizrate und des Druckes auf die Produktqualität. Die Literaturangaben zur Sulfonierung von Copolymeren entstammen hauptsächlich Versuchen im Labormaßstab. Zur Herstellung von Aktivkohlen auf Basis synthetischer Copolymere im technischen Maßstab gibt es über die Patentliteratur hinaus derzeit keine weiteren Informationen. Zu den Prozessstufen Pyrolyse und Aktivierung liegen Aussagen zum Einfluss der Pyrolysetemperatur und -aufheizrate, des Schwefelumsatzes und des Aktivierungsgrades auf die Aktivatqualität vor [Mül00].

3 Theorie der Sulfonierung von Copolymeren

3.1 Mechanismus der Sulfonierung

Die schematische Darstellung der Reaktion und der resultierenden Produkte wird formal durch folgende Gleichung beschrieben (Bild 3-1) [PR95].

Bild 3-1: Schematische Darstellung der Sulfonierreaktion [PR95]

Im Folgenden soll der Reaktionsmechanismus am Beispiel der Sulfonierung von Aromaten dargestellt werden. Sulfonieren lassen sich nur die Ringe, indem ein H – Atom durch eine Sulfonsäuregruppe (- SO_3H) substituiert wird.

ArH + SO₃
$$\stackrel{(1)}{\underset{k_{-1}}{\overset{k_{1}}{\longrightarrow}}} \stackrel{\oplus}{\operatorname{Ar}} \stackrel{H}{\underset{SO_{3}^{\ominus}}{\overset{(2)}{\longrightarrow}}} \operatorname{ArSO_{3}^{\ominus}} + H^{\oplus} \quad k_{2} \approx k_{-1}$$

Bei der Sulfonierung handelt es sich um eine reversible Reaktion. Reversibilität bedeutet, dass das Carbenium-Ion II unter Bildung des Kohlenwasserstoffs das SO₃ wieder abgeben kann. Reaktion (2) ist in diesem Fall nicht viel schneller als die Umkehrung von Reaktion (1). In [MB86] wird davon ausgegangen, dass die Energiebarrieren für beide Reaktionen gleich hoch sind (Bild 3-2) [MB86]. Um das Reaktionsgleichgewicht nach rechts zu verlagern wird in [Gil77] die Entfernung des Reaktionswassers empfohlen.

Reaktionskoordinate --->

Bild 3-2: Potentialkurve der Sulfonierung (reversible elektrophile Substitutionsreaktion) [MB86]

Eine Monosulfonierung ist dann erreicht, wenn je Benzenring eine Sulfonsäuregruppe angelagert wird. Ist die Anzahl der Sulfonsäuregruppen je Ring größer als 1 wird dies als Polysulfonierung bezeichnet. Die SO₃-Gruppen stehen wahrscheinlich vorwiegend in para-Stellung, wobei aus sterischen Gründen eine Doppelsulfonierung fast ausgeschlossen ist [Dor70].

Nach Reaktion (2) wird das Copolymer funktionell zu einem Ionenaustauscher, d.h. es ist befähigt das Proton der Sulfonsäuregruppe gegen ein einwertiges Kation auszutauschen. Die Funktionalisierung von vernetzten Styren-DVB-Coplymeren ist das Ziel bei der technischen Herstellung von sulfonsauren Ionenaustauschern. Hierzu wird in emaillierten Autoklaven das Copolymer in einer Suspension mit konzentrierter Schwefelsäure bei Temperaturen bis maximal 150 °C und bis zu 50 Stunden behandelt [Nau72].

Die praktische Durchführung der Sulfonierung ist nicht einfach. Infolge des Angriffs des Sulfonierungsmittels und der damit verbundenen Reaktionswärme und Quellung entstehen starke Spannungen innerhalb des Korns, denen das Harzgerüst nicht immer gewachsen ist. Um Verluste durch Zerspringen der Kugeln zu vermeiden, lässt man das Harz vor der Sulfonierung in Lösungsmitteln wie Toluen, Nitrobenzen, Methylenchlorid oder Trichlorethylen quellen [Hel59].

Durch die Sulfonierung wird das Copolymer gleichzeitig unschmelzbar. Das bedeutet, dass die sulfonierten Copolymerkügelchen (<1 mm) bei Temperaturerhöhung zwar teilweise zersetzt werden (unter Bildung eines porösen Verkokungsrückstandes), aber ihre Kugelform behalten. Diese Eigenschaft erst ermöglicht die Herstellung einer Aktivkohle mit definierter Partikelform. Die Sulfonierung der aromatischen Ringe des Copolymers ist ein komplexer Vorgang. Entsprechende Versuchsbedingungen wurden in [SR99] offenbart.

Am Beispiel der Benzensulfonierung soll das im Folgenden erläutert werden. Aromatische Ringe sind durch die locker gebundenen π -Elektronen elekrophilen Reagenzien oder Säuren leicht zugänglich (Bild 3-3). Ebenso wie für die Alkene elektrophile Additionen charakteristisch sind, sind für den Benzenring die elektrophilen Substitutionen kennzeichnend. Die Reaktionen sind nicht nur für Benzen selbst charakteristisch, sondern auch für den Benzenring, wo immer er vorkommt [MB86].

Bild 3-3: Die π – Elektronenwolke des Benzenrings bildet eine Elektronenquelle [MB86]

Die Reaktion von Benzen und seinen Homologen mit Schwefelsäure führt zur Bildung von Arensulfonsäuren. Durch elektrophile Substitution wird ein Wasserstoffatom durch eine Sulfonsäuregruppe ersetzt:

Die elektrophile aromatische Substitution läuft nach einem ionischen Mechanismus ab ([Bec99], [Hau88], [Mar92]):

1. Bildung eines Elektrophils:

Die Art des Elektrophils ist abhängig vom verwendeten Reagenz. Beim Einsatz wässriger Schwefelsäure ist das Elektrophil HSO_3^+ :

$$3H_2SO_4 \leftrightarrow HSO_3^+ + H_3O^+ + 2HSO_4^-$$
 (GI. 3.2)

Bei kinetischen Betrachtungen wird bei Einsatz von weniger als 85 %-iger Schwefelsäure $H_3SO_4^+$ (Kombination von SO_3 und H_3O^+) als das angreifende Elektrophil betrachtet, bei höheren Konzentrationen dagegen $H_2S_2O_7$ (Kombination aus H_2SO_4 und SO_3). Bei der Verwendung rauchender Schwefelsäure tritt unterhalb einer Konzentration von 104 % als

Elektrophil $H_3S_2O_7^+$ (protoniertes $H_2S_2O_7$) auf und darüber $H_2S_4O_7$ ($H_2SO_4+SO_3$). Bei der Sulfonierung mit Schwefeltrioxid ist SO₃ selbst das Elektrophil. Die Reaktivität der Elektrophile nimmt mit der Schwefelsäurekonzentration zu. Die höchste Reaktivität besitzt freies SO₃.

2. Bildung eines π -Komplexes:

Im zweiten Reaktionsschritt wird eine Donor-Akzeptorverbindung zwischen dem aromatischen Ring und dem angreifenden Elektrophil gebildet:

$$+ HSO_3^+ + HSO_3^+$$
(Gl. 3.3)

Der aromatische Ring als Elektronendonator überträgt dabei lediglich Ladung an das Elektrophil (Elektronenakzeptor), zwischen beiden besteht jedoch keine kovalente Bindung.

3. Bildung eines σ -Komplexes:

In diesem Schritt wird eine Einfachbindung zwischen dem Ring und Elektrophil ausgebildet. Das so entstandene Carbeniumion wird resonanzstabilisiert:

4. Abspaltung eines Protons:

Durch die Abspaltung eines Protons (Wasserstoff) entsteht erneut ein aromatischer Ring.

 Bildung eines π-Komplexes ("Retro - π- Komplex")
Das sich ablösende Proton Wasserstoff ist nur noch über Ladungskräfte an den aromatischen Ring gekoppelt.

6. Bildung von Sulfonsäure:

Sulfonsäuren sind sehr starke Säuren und deshalb weitgehend dissoziiert:

$$HSO_{3} + H_{2}O + H_{3}O^{+}$$
(Gl. 3.8)

Im Gegensatz zu anderen elektrophilen aromatischen Substitutionen ist bei der Sulfonierung neben der Bildung des Carbeniumions (Schritt 3) auch die Protonenabspaltung (Schritt 4) geschwindigkeitsbestimmend. Deshalb ist eine Desulfonierung durch den elektrophilen Angriff von Protonen unter Abspaltung der Sulfonsäuregruppe möglich.

$$HSO_{3} + H^{+} \rightarrow O + HSO_{3}^{+}$$
(Gl. 3.9)

Gemäß dem Prinzip der mikroskopischen Reversibilität muss der Mechanismus der Abspaltung der Sulfonsäuregruppe die genaue Umkehrung des Sulfonierungs-Mechanismus' sein. Für die Bildung sulfonierter aromatischer Verbindungen ist deshalb eine hohe Schwefelsäurekonzentration Voraussetzung. Die Rückreaktion wird durch eine geringe Säurekonzentration (weniger als 80 % H_2SO_4) bei Siedetemperatur (T = 100 – 170 °C) begünstigt.

Die Sulfonierreaktion ist exotherm. Durch die freiwerdende Reaktionswärme kommt es bei Temperaturen oberhalb etwa 150 °C zur Verdampfung des Reaktionswassers. Dies ermöglicht die interne Kühlung der Reaktionsmischung.

Hohe Schwefelsäurekonzentrationen und gesteigerte Reaktionstemperaturen führen zu mehrfach sulfonierten Aromaten:

Allerdings übt die Sulfonsäuregruppe einen stark deaktivierenden Einfluss auf den aromatischen Ring aus, so dass eine Mehrfachsulfonierung nur mit SO₃ als Elektrophil erfolgreich ist. Darüber hinaus bewirkt die hohe Acidität sulfonierter Aromaten in geringem Umfang die Bildung von sehr stabilen Diarylsulfonen:

$$HSO_{3} + H_{2}O$$
(Gl. 3.11)

Diese Nebenreaktion wird durch hohe Schwefelsäurekonzentrationen zurückgedrängt und durch hohe Temperaturen begünstigt.

Schwefelsäure wirkt vor allem bei hohen Temperaturen auf organische Verbindungen oxidierend und zersetzend. Mit der Zersetzung (Verkokung) ist die Bildung von SO₂ verbunden.

3.2 Stöchiometrie der Sulfonierreaktion

Wie bereits erwähnt, bestehen die vernetzten Styren-DVB-Copolymere aus unterschiedlichen Anteilen Divinylbenzen (DVB), wobei auch Ethylvinylbenzen (EVB) enthalten sein kann. Für die nachfolgenden Betrachtungen zur Stöchiometrie wird vereinfachend nur von DVB als Vernetzer ausgegangen.

Die Molekülbausteine für Styren sowie DVB sind aus Bild 3-1 ersichtlich. Daraus leiten sich die in Tabelle 3-1 aufgeführte Summenformel, Molmasse und Elementarzusammensetzung ab.

Tabelle	3-1:	Summenformel	und	daraus	berechnete	Werte	des	Polystyren-	und	DVB-
Molekül	s (Mo	lekülbaustein)								

	Polystyren	Divinylbenzen (DVB)	
Formel	[C ₈ H ₈] _x	[C ₁₀ H ₁₀] _x	
Molmasse je Baustein	104	130	
C in (Ma%) gesamt	92,3	92,3	
davon aromatisch	69,2	55,4	
aliphatisch	23,1	36,9	
H in (Ma%) gesamt	7,7	7,7	
davon aromatisch	4,8	3,1	
aliphatisch	2,9	4,6	

Tabelle 3-2 enthält entsprechende Werte für Copolymere mit unterschiedlichem Vernetzungsgrad.

Anteil DVB in Ma%	2	4	7,5	8	80
Kohlenstoffgehalte [Ma%]					
gesamt	92,3	92,3	92,3	92,3	92,3
aliphatisch gebunden	23,4	23,7	24,1	24,2	34,1
aromatisch gebunden	68,9	68,6	68,2	68,1	58,2
Wasserstoffgehalte [Ma%]					
gesamt	7,7	7,7	7,7	7,7	7,7
aliphatisch gebunden	2,9	3,0	3,0	3,0	4,3
aromatisch gebunden	4,8	4,7	4,7	4,7	3,4
Molmasse (N _{Ar} =1)	104,4	104,8	105,5	105,7	124,8
x _{PS} [mol/mol]	0,984	0,967	0,942	0,935	0,240
x _{DVB} [mol/mol]	0,016	0,033	0,058	0,065	0,768
Formel	$C_{8,03}H_{8,03}$	$C_{8,07}H_{8,07}$	$C_{8,12}H_{8,12}$	$C_{8,13}H_{8,13}$	$C_{9,6}H_{9,6}$
(für N _{Ar} =1)					
Formel	C ₈₀₃ H ₈₀₃	C ₈₀₇ H ₈₀₇	C ₈₁₂ H ₈₁₂	C ₈₁₃ H ₈₁₃	C ₉₆₀ H ₉₆₀
(für N _{Ar} =100)					

Tabelle 3-2: Summenformel und daraus berechnete Zusammensetzung und Molmasse fürCopolymere mit unterschiedlichem Vernetzungsgrad

1. Ermittlung der Schwefelbindungsform aus der gemessenen Elementarzusammensetzung des Sulfproduktes

Der ganzzahligen Summenformel sind N_{Ar}= 100 Benzenringe zugeordnet. Als Bruttoreaktionsgleichung lässt sich formulieren

$$C_{x}H_{y} + v_{SS}H_{2}SO_{4} \rightarrow v_{w}H_{2}O + C_{x}H_{(y-(1+a)v_{SS})} \left[SO_{(3-a)}H_{(1-a)} \right]_{v_{SS}}$$
(GI. 3.12)

Die umgeformte Bruttoreaktionsgleichung (Gl. 3.12) ergibt

$$C_x H_y + v_{SS} H_2 SO_4 \rightarrow v_w H_2 O + C_x H_{(y-2av_{SS})} \left[SO_{(3-a)} \right]_{v_{SS}}$$
 (GI. 3.13)

Darin bedeuten:

a Schwefeleinbindungsfaktor ($0 \le a \le 1$)

Ein Schwefeleinbindungsfaktor a = 0 bedeutet, dass nur Sulfonsäuregruppen (-SO₃H) vorliegen (Primärsulfonierung). Dagegen drückt a = 1 aus, dass sämtliche SO₃H-Gruppen mit noch unsulfonierten Aromatenringen unter Bildung von Sulfongruppen (-SO₂-) weiterreagieren (Sekundärsulfonierung) [Mül00].

Für die Koeffizienten in der allgemeinen Summenformel $C_xH_uS_kO_lN_z$ des Sulfproduktes gelten die Relationen:

$$x = \frac{C}{M_C}$$
 $u = \frac{H}{M_H}$ $k = \frac{S}{M_S}$ $l = \frac{O}{M_O}$ $z = \frac{N}{M_N}$ (C, H, S, O, N in Ma-%)

Wird vorausgesetzt, dass sich sämtlicher Kohlenstoff des Copolymers im Sulfprodukt wiederfindet, sind die im Sulfprodukt enthaltenen Kohlenstoffatome n_c bekannt. Für das Einheitsmolekül mit N_{Ar} =1 oder N_{Ar} =100 sind die Zahlenwerte für n_c der Summenformel (Tabelle 3-2) zu entnehmen.

Mit Hilfe des Multiplikators f

$$f = n_C / x$$
 (Gl. 3.14)

können die Molzahlen für H, S, O und N sowie die Molmasse des Sulfproduktes (Gl. 3.20) berechnet werden.

$$n_H = f \cdot u$$
 $n_S = f \cdot k$ $n_O = f \cdot l$ $n_N = f \cdot z$

Daraus leiten sich die folgenden Kenngrößen ab

(1) Schwefelbindungsform

Anteil Sulfongruppen (-SO₂-):
$$a = 3 - \frac{l}{k}$$
 (Gl. 3.15)

Anteil Sulfonsäuregruppen (-SO₃H): $1-a = \frac{l}{k}-2$ (GI. 3.16)

(2) Stöchiometrischer Koeffizient für Schwefelsäure (100 %ig)

$$v_{ss} = fk$$
 (GI. 3.17)

(3) Stöchiometrischer Koeffizient für entstehendes Reaktionswasser

$$v_w = fk (1+a)$$
 (GI. 3.18)

(4) Molmasse Copolymer

$$M_{CP} = n_C \cdot M_C + n_H \cdot M_H$$
 [g/mol] (GI. 3.19)

(5) Molmasse Sulfprodukt

$$M_{SP} = n_C \cdot M_C + n_H \cdot M_H + n_S \cdot M_H + n_O \cdot M_O + n_N \cdot M_N$$
 [g/mol] (GI. 3.20)

Berechnungsbeispiele sind für einen Ionenaustauscher sowie verschiedene sulfonierte Copolymere im Anhang (Tabelle A3-1) zusammengefasst, wobei der Ionenaustauscher mit a=0 eine reine Primärsulfonierung aufweist. Die Schwefelbindungsform der sulfonierten Copolymere kann zunächst nicht bestimmt werden, da a negativ ist. Die Ursache liegt im gegenüber dem Ionenaustauscher geringerem Schwefelgehalt und höherem Sauerstoffgehalt, d.h. in einem höherem O/S-Atomverhältnis, begründet.

Die Molekülformel kann dennoch unter Beachtung der folgenden Annahmen formuliert werden.

- Das H/C-Verhältnis ist Eins
- Überschüssige Wasserstoffatome $(n_{H,w})$ liegen an Sauerstoff $(n_{O,w})$ gebunden als Wasser vor
- Der Molekülbaustein besitzt n_C Kohlenstoffatome
- sämtlicher Schwefel ist in SO3H-Gruppen gebunden

Daraus ergeben sich die:

Anzahl Wasserstoffatome und Sauerstoffatome, die als Wasser vorliegen

(1)
$$n_{H,w} = n_H - n_C$$
 (GI. 3.21)

(2)
$$n_{O,w} = \frac{n_{H,w}}{2}$$
 (GI. 3.22)

Anzahl Sauerstoffatome, die nicht an Schwefel und Wasserstoff gebunden sind

(3)
$$n_{O,Ar} = (n_O - n_{O,w}) - (3 \cdot n_S)$$
 (GI. 3.23)

Die Anzahl der SO₃H-Gruppen je Molekül kann über die Anzahl der Atome bestimmt werden.

(4)
$$n_{Subst..Ar} = n_S$$
 (GI. 3.24)

Das Ergebnis dieser Berechnung zeigt, dass im sulfonierten Copolymer gegenüber dem lonenaustauscher zusätzlich Sauerstoff eingebunden ist. Die Sauerstoffeinbindung ($n_{O,Ar}$) nimmt mit steigendem Vernetzungsgrad ab und steigt bei einem niedrig vernetzten Copolymer mit dem MEV an. Unter den genannten Annahmen kann nun eine Aussage zum Sulfonierungsgrad getroffen werden. Da die Anzahl der Sulfonsäuregruppen am Ring kleiner Eins ist, fand bei den sulfonierten Copolymeren lediglich eine Monosulfonierung statt. Der Sulfonierungsgrad (Anzahl Sulfonsäuregruppen, $n_{Subst,Ar}$) nimmt mit steigendem MEV zu und mit dem Vernetzungsgrad ab.

2. Vorausberechnung von Verbrauchs- und Ausbeutekennzahlen in Abhängigkeit vom MEV

Unter Annahme eines vollständigen Schwefelsäureumsatzes und einer Primärsulfonierung lassen sich die theoretischen Verbrauchs- und Ausbeutekennzahlen des Sulfonierprozesses vorausberechnen. Sie können als Richtwerte für die Bewertung des praktischen Prozesses herangezogen werden.

Für den Prozess sollen vorgegeben sein:

- das Masseeinsatzverhältnis (MEV)
- die Schwefelbindungsform a = 0
- der DVB-Gehalt des Copolymers bzw. die Molmasse des Einheitsmoleküls M_{CP}

Für die in den Versuchen verwendeten Copolymere (Bayer AG) enthält Tabelle 3-3 die gemessenen Elementarzusammensetzungen, die sehr gut mit den theoretisch berechneten Werten aus Tabelle 3-2 übereinstimmen.

Tabelle	3-3:	Gemessene	Elementarzusammensetzung	von	Copolymeren	mit
untersch	iedliche	em Vernetzungs	sgrad			

	Einheit	Polystyren	Lewapol 2	Lewapol 4	Lewapol 7,5	Lewapl 8-4	Lewatit
DVB-Gehalt	Ma-%	0	2	4	7,5	8	80
С	Ma-%	92,30	92,27	92,25	92,24	91,37	91,57
Н	Ma-%	7,70	7,73	7,75	7,76	7,61	8,43
0	Ma-%	0	0	0	0	0	0
Ν	Ma-%	0	0	0	0	1,02	0
S	Ma-%	0	0	0	0	0	0

In der nachfolgenden Tabelle 3-4 sind die Molmassen und Molekülformeln aufgeführt, die sich aus den gemessenen Elementarzusammensetzungen (Tabelle 3-3) ergeben. Dabei handelt es sich um hypothetische Werte für den Einheitsbaustein mit $N_{Ar} = 1$ bzw. für ganzzahlige Verhältnisse ($N_{Ar} = 100$).

Tabelle	3-4:	Berechnete	Molmassen	und	Molekülformeln	auf	Basis	der	gemessenen
Element	arzus	ammensetzu	ng						

	Polystyren	Lewapol 2	Lewapol 4	Lewapol 7,5	Lewapol 8-4	Lewatit
DVB-Gehalt	0	2	4	7,5	8	80
N _{Ar} = 1	C ₈ H ₈	C _{8,03} H _{8,02}	C _{8,07} H _{8,08}	C _{8,12} H _{8,14}	$C_{8,13}H_{8,07}N_{0,08}$	$C_{9,6}H_{10,53}$
M _{CP}	104,00	104,38	104,92	105,58	106,72	125,73
N _{Ar} = 100	C ₈₀₀ H ₈₀₀	C ₈₀₃ H ₈₀₂	C ₈₀₇ H ₈₀₈	C ₈₁₂ H ₈₁₄	C ₈₁₃ H ₈₀₇ N ₈	C ₉₆ H ₁₀₅₃
M _{CP}	10400	10438	10492	10558	10672	12573

In früheren Versuchen hatte sich ein Masseeinsatzverhältnis von 1,6 Masseanteilen Schwefelsäure (96 %) zu 1 Masseanteil Copolymer (Lewapol mit 7,5 % DVB) als optimal in Bezug auf die Aktivatqualität herausgestellt [Kei98]. Setzt man vollständigen Umsatz der Schwefelsäure voraus, dann entspricht dies einer statistischen Anzahl von 1,65 Sulfonsäuregruppen je Benzenring. Bei der Berechnung wurde angenommen, dass sich nur Sulfonsäuregruppen und keine Sulfone (Ar-SO₂-Ar) bilden, d.h. eine Weiterreaktion der Sulfonsäuregruppen mit einem benachbarten Aromatenring wurde ausgeschlossen (Gl. 3.11).

Die Anzahl von Sulfonsäuregruppen pro Ring ergibt sich für a=0 zu:.

$$n_{Subst.,Ar} = \frac{n_{SS}}{n_{CP}} = \frac{\frac{MEV}{M_{SS}} \cdot c_{SS}}{\frac{1}{M_{CP}}}$$
(Gl. 3.25)

Molmasse Sulfprodukt

$$M_{SP} = M_{CP} + n_{Subst.,Ar} \cdot M_{SO_3}$$
 [g/mol] (GI. 3.26)

Masse Sulfprodukt

$$m_{SP} = \frac{M_{SP}}{M_{CP}} \cdot m_{CP}$$
 [g] (GI. 3.27)

Sulfproduktausbeute

$$A_{SP} = \frac{m_{SP}}{m_{CP} + m_{SS}} \cdot 10^2$$
 [%] (GI. 3.28)

spezifische Reaktionswassermenge

$$\frac{m_{H_2O,ber.}}{m_{CP}} = \frac{n_{Subst.,Ar} \cdot M_{H_2O}}{n_{CP}} + (1 - c_{SS}) \cdot MEV \ [g_{H2O}/g_{CP}]$$
(GI. 3.29)

Elementarzusammensetzung des Sulfproduktes ($n_c = 8, 13$)

$$C_{SP} = \frac{n_C \cdot M_C}{M_{SP}} \cdot 10^2$$
 [Ma-%] (Gl. 3.30)

$$H_{SP} = \frac{n_C \cdot M_H}{M_{SP}} \cdot 10^2$$
 [Ma-%] (Gl. 3.31)

$$S_{SP} = \frac{n_{Subst.,Ar} \cdot M_S}{M_{SP}} \cdot 10^2$$
 [Ma-%] (Gl. 3.32)

$$O_{SP} = \frac{3 \cdot n_{Subst.,Ar} \cdot M_{O}}{M_{SP}} \cdot 10^{2}$$
 [Ma-%] (GI. 3.33)

Aus den Gleichungen 3.25 bis 3.33 lassen sich die folgenden Kenngrößen berechnen, die zur Abschätzung der Koksausbeute beim Pyrolyseprozess herangezogen werden können.

Theoretische maximale Koksausbeute ß (ohne Schwefel- und ohne Kohlenstofffreisetzung) bezogen auf sulfoniertes Produkt

$$\beta_{theor.} = S_{SP} + C_{SP}$$
 [Ma-%] (GI. 3.34)

Theoretische maximale Koksausbeute α (ohne Schwefel- und ohne Kohlenstofffreisetzung) bezogen auf eingesetztes Copolymer

$$\alpha_{theor.} = \left(\frac{m_{SP}}{m_{CP}}\right) \cdot \beta_{theor.} \qquad [Ma-\%] \qquad (GI. 3.35)$$

Maximal möglicher Schwefelgehalt im Koks

$$S_{Koks,theor.} = \frac{S_{SP}}{\beta_{theor.}} \cdot 10^2 \qquad [Ma-\%]$$
(GI. 3.36)

Tatsächlich ist die Schwefelflüchtigkeit während der Pyrolyse größer Null. Typische Schwefelgehalte im Koks liegen zwischen 2,5 und 8 Ma-% und korrelieren mit dem MEV. Die Koksausbeute berechnet sich dann wie folgt:

Anteil des Schwefels im Pyrolysegas

$$S_{Gasphase} = \left(\frac{S_{SP}}{C_{SP}} - \frac{S_{Koks,tats\ddot{a}chlich}}{100 - S_{Koks,tats\ddot{a}chlich}}\right) \cdot S_{SP} \cdot 10^{-2} \ [g_S/g_{SP}]$$
(GI. 3.37)

Theoretische Koksausbeute ß mit partieller Schwefelfreisetzung

$$\beta = \beta_{theor.} - S_{Gasphase} \qquad [Ma-\%] \qquad (GI. 3.38)$$

Die theoretische Koksausbeute bei einem angenommenen Koks-Schwefelgehalt von 7,3 Ma-% beträgt nach Tabelle A3-2 43,8 Ma-% für ein MEV von 1,6. Durch Einsetzen in die folgende Gleichung wird die Koksausbeute bezogen auf das eingesetzte Copolymer ermittelt und ergibt für das gleiche MEV einen Wert von 98,7 Ma-%.

Theoretische Koksausbeute α bezüglich des eingesetzten Copolymers

$$\alpha = \left(\frac{m_{Sulfprodukt}}{m_{Copolymer}}\right) \beta \qquad [Ma-\%] \qquad (GI. 3.39)$$

Tabelle A3-2 des Anhangs zeigt eine Übersicht der berechneten Werte (Zeilen 5 bis 23) und ausgewählter Messwerte (Zeilen 24 bis 28) in einem MEV-Bereich von 0,8 bis 2,2.

Ausgehend von den Berechnungsbeispielen ist festzustellen:

- Für den kommerziellen Ionenaustauscher K 1431 (Tabelle A3-1) ergab die Berechnung eine Anzahl Sulfonsäuregruppen je Ring von Eins. Eine Polysulfonierung konnte auch durch Erhöhung des MEV in keinem einzigen Fall nachgewiesen werden.
- 2) Schwefel- und Sauerstoffgehalt des sulfonierten Copolymers nehmen mit steigendem MEV zu und der Kohlenstoff- und Wasserstoffgehalt ab. Der gemessene Schwefelgehalt im Sulfprodukt ist um ca. 3-4 Ma-% kleiner als der berechnete Wert, da während der Sulfonierung ein Teil der Schwefelsäure verdampft.
- Die Sulfproduktausbeute der Messwerte befindet sich im Bereich der theoretisch ermittelten Werte.

4) Mit steigendem Sulfonierungsgrad nimmt die Koksausbeute bezogen auf die Menge an Sulfprodukt ab, aber die Koksausbeute bezogen auf das eingesetzte Copolymer zu. Im praktischen Prozess ist die Schwefelflüchtigkeit größer Null. Durch den freigesetzten Schwefel fällt die Koksausbeute gegenüber dem theoretischen Wert entsprechend niedriger aus. Besonders bei einem MEV kleiner 1,6 wird Kohlenstoff in Form von CO, CO₂ und C_nH_m flüchtig und die Koksausbeute vermindert sich weiter. Bei größeren MEV nähern sich die berechneten Ausbeuten an die Messwerte an.

4 Sulfonierung im Labormaßstab – Einfluss der Sulfonierparameter auf die Koks- und Aktivatqualität

Im Abschnitt 2.3 wurde der derzeitige Kenntnisstand zum Einfluss der Sulfonierparameter auf die Aktivatqualität umrissen. Hier sollen nun weitere Einflussfaktoren, insbesondere das Masseeinsatzverhältnis und die Haltezeit genauer untersucht werden, um Hinweise für die Realisierung der Pilotanlage ableiten zu können.

4.1 Versuchsaufbau und –durchführung

Die praktischen Untersuchungen zur Sulfonierung wurden in einem handelsüblichen Rotationsverdampfer (Rotavapor R114 der Firma Büchi) durchgeführt. Er wurde um einen elektrischen Ofen anstelle des Wasserbades zum Beheizen des Reaktionsgefäßes ergänzt. Eine schematische Darstellung zeigt Bild 4-1. Der Ofen ist auf einer Lafette beweglich angeordnet und kann über das Reaktionsgefäß geschoben werden.

Bild 4-1: Schema der Laborsulfonieranlage (Rotationsverdampfer R114 der Fa. Büchi, RVD)

In Tabelle 4-1 sind die technischen Daten des Versuchssystems und die während der Sulfonierversuche variierten Parameter aufgeführt.

Unterdruck, absolut	≥ 500 mbar	Abkühlphase	10 – 120 min
Ofentemperatur	max. 300 °C	Aufheizrate	1 – 17 K/min
Heizleistung des Ofens	7,5 kW	Drehzahl	5 – 240 min⁻¹
Sulfonierdauer	variabel	Atmosphäre	Luft
MEV [m _{H2SO4} /m _{Copolymer}]	3 – 0,8 : 1	Probentemperatur	160 – 250 °C

Tabelle 4-1: Technische Daten des Versuchssystems und Versuchsbedingungen

Um einen geeigneten Rohstoff für die Herstellung synthetischer Aktivkohle zu finden, wurde der Einfluss der Sulfonierung an Copolymeren mit unterschiedlichem Vernetzungsgrad (Bayer AG) untersucht (siehe Tabelle 2-2). Die Ergebnisse wurden in einer dafür geschaffenen Datenbank niedergelegt.

Die Copolymere LP 97 und LP 7/98 entsprechen dem Lewapol 8-00. Ebenso sind die Lewapole LP 7,5-4-00 und LP 8-4-00 identisch, tragen aber aufgrund ihres unterschiedlichen Herstellungsdatums eine eigene Bezeichnung. Der DVB-Gehalt beträgt für alle diese Produkte 8 Ma-%.

Zunächst wird das Copolymer in einem separaten Arbeitsschritt in den Sulfonierreaktor (3 I -Glaskolben) gegeben. Danach wird die konzentrierte Schwefelsäure im gewünschten Masseeinsatzverhältnis (MEV) dosiert und der Glaskolben über einen Normschliff und eine Metallgabelklemme mit Feststellschraube mit dem RVD verbunden und anschließend über den elektrischen Antrieb in Rotation versetzt. Der Lafettenofen wird über den Glaskolben gefahren und stirnseitig mit einem Wärmeschutzdeckel verschlossen. Nach Einstellen der erforderlichen Drehzahl, der gewünschten Aufheizrate und Endtemperatur wird der Versuch gestartet. Die Temperatur des Reaktionsgemisches wird über ein Thermoelement erfasst, welches sich direkt in der Mischung befindet. Der bei der Sulfonierung frei werdende Wasserdampf wird mit Hilfe einer Wasserstrahlpumpe aus dem Reaktionskolben abgesaugt und passiert dabei den nachgeschalteten Wasserkühler. Die im Wasserdampf enthaltenen Anteile an H₂SO₄ und SO₃ werden auskondensiert und im Sumpf aufgefangen. Nach Ablauf der festgelegten Versuchszeit (Haltezeit bei konstanter Probentemperatur) wird der Ofen vom Reaktor entfernt und das Reaktionsprodukt abgekühlt, danach der Glaskolben vom RVD getrennt, die Auswaage bestimmt und das sulfonierte Produkt (SP) in einen luftdicht verschließbaren Vorratsbehälter gegeben.

Die Pyrolyseversuche wurden in der in Bild 4-2 schematisch dargestellten Laborretorte durchgeführt. Nach der Einwaage von ca. 100 g wird die Anlage luftdicht verschlossen und mit Stickstoff inertisiert. Der Pyrolyseversuch wird nach Einstellen der gewünschten Aufheizrate, Temperatur und Haltezeit am Regler gestartet. Die Inertisierung wird während des Versuches aufrechterhalten, um das Eindringen von Luftsauerstoff zu vermeiden. Nach Abkühlen der Probe bis auf unter 50 °C wird die Probe aus der Retorte entnommen und analysiert.

Bild 4-2: Schema der Pyrolyseapparatur

Ausgewählte Koksproben wurden entweder in der stationären Wirbelschicht oder im Drehrohr aktiviert. Bild 4-3 zeigt schematisch den Aufbau der Laborwirbelschichtanlage. In einem Quarzglasreaktor mit Fritte (Durchmesser 40 mm) wird die Koksprobe (ca. 30 g) eingewogen und unter Stickstoff definiert aufgeheizt. Ab einer Temperatur von 500 °C wird auf Aktivierungsgas umgestellt und die Probe in den Fluidisierungszustand versetzt.

Der Labordrehrohrofen ist in Bild 4-4 schematisch dargestellt. Die Koksprobe (ca. 100 g) befindet sich in dem temperaturkonstanten Teil des Drehrohres (ϕ 72 mm). Nach Einführen der Koksprobe wird der Antrieb eingeschaltet und die Probe bis 500 °C unter Stickstoff, darüber hinaus bis zur festgelegten Aktivierungstemperatur unter Aktivierungsgas aufgeheizt. Die Haltezeit beginnt jeweils mit Erreichen der Endtemperatur. Nach deren Ablauf wird die Probe unter Stickstoff bis auf Raumtemperatur abgekühlt. Für ausgewählte Versuche wurde das Drehrohr mit Hubschaufeln versehen, um den Gas-Feststoff-Kontakt zu verbessern. Die Versuchsbedingungen beider Anlagen sind in Tabelle 4-2 zusammengestellt.

Pyrolyse			
Aufheizgeschwindigkeit	5 - 35 K/min	Endtemperatur	400 - 800 °C
Haltezeit	5 min	Inertgasmenge	60 - 80 l _{N2} /h
Aktivierung			
Aufheizgeschwindigkeit	Drehrohrofen	Aktivierungsgasmenge i.N.	Drehrohrofen
	ca. 6 K/min		109 l/h
	Wirbelschicht		Wirbelschicht
	10 K/min		63,9 l/h
Endtemperatur	800 - 900 °C	Aktivierungsgaszusammensetzung	35 Vol-% H ₂ O _D ,
	Standard: 880 °C		10 Vol-% CO ₂ ,
			55 Vol-% N ₂
Haltezeit	60 - 480 min		
	Standard: 180 min		

Tabelle 4-2: Versuchsbedingunger	i für Pyrolyse und A	Aktivierung
----------------------------------	----------------------	-------------

Bild 4-3: Schema der Aktivierungsapparatur (Wirbelschicht)

- 1 Absperrschieber
- 2 Filter
- 3 MFC
- 4 Wasserdampferzeuger
- 5 Absperrventil
- 6 Ofen
- 7 Temperaturmessstelle
- 8 Antrieb
- 9 Kühler

7

TICR

Bild 4-4: Schema der diskontinuierlichen Drehrohrofenanlage
4.2 Ergebnisse der Sulfonierung im Labormaßstab

In jeder Prozessstufe der Herstellung von Kugelaktivkohlen werden unterschiedliche Ziele verfolgt. Das Aktivat soll als Endprodukt eine günstige Porenstruktur mit einer möglichst hohen inneren Oberfläche aufweisen. Eine solche Porenstruktur kann nur aus einem entsprechend strukturiertem Koks erzeugt werden [HMGN00]. Ziel der Pyrolyse ist daher eine bestimmte Koksporenstruktur und eine hohe Koksausbeute. Darüber hinaus müssen die Kokspartikel unversintert, rissfrei und kugelförmig vorliegen.

Die Sulfonierbedingungen sind so zu wählen, dass der eingebrachte Schwefel möglichst gleichmäßig und vollständig im Copolymerpartikel eingebunden wird. Der bei der Reaktion entstandene Wasserdampf ist zügig aus dem Reaktor abzuführen, um die Rieselfähigkeit des Produktes sicher zu stellen, da das weitere Handling in der sich anschließenden Pyrolysestufe ein rieselfähiges Produkt verlangt.

Die Laborversuche hatten daher zum Ziel grundlegende Zusammenhänge zwischen den Sulfonierbedingungen und den Produkteigenschaften in jeder Stufe zu ermitteln bzw. bereits bekannte zu überprüfen. Die Produkte (sulfoniertes Copolymer, Koks, Aktivat) wurden mit den im Anhang (Anhang A4 - Analysenmethoden) beschriebenen Methoden untersucht.

4.2.1 Sulfonierung

Styren-Divinylbenzen-Copolymer

Charakteristisch für das Copolymer LP 8-4-00 ist die sehr enge Korngrößenverteilung; der mittlere Durchmesser beträgt 0,449 mm. Dieses Lewapol wurde als einziges in der Labor- und in der Pilotanlage eingesetzt. Die wichtigsten Stoffdaten sind in Tabelle 4-3 aufgeführt. Für die thermischen Eigenschaften sind die Daten für Polystyren verwendet worden [Mar99]. Durch die Vernetzung werden insbesondere die Quelleigenschaften stark verändert. Die Dichten des Copolymers und der Copolymerschüttung wurden experimentell bestimmt. Die mit Helium gemessene Reindichte von 1,067 g/cm³ stimmt mit dem in [OS98] für Polystyren angegebenen Wert von 1,065 g/cm³ gut überein. Die nahezu gleich große Rohdichte – gemessen mittels Quecksilberporosimetrie – verdeutlicht, dass die gelförmigen Copolymere praktisch keine Poren aufweisen.

Reindichte	1,067 g/cm ³	Fülldichte	0,596 g/cm ³
Schmelzpunkt	240 °C	Rütteldichte	0,675 g/cm³
Wärmeleitfähigkeit	0,105 W/mK	Rohdichte	0,966 g/cm ³
Wärmekapazität	1,3 kJ/kgK	Lückenvolumen	38,30%

Tabelle 4-3: Stoffdaten von Polystyren/Lewapo

Schwefelsäure

Für die Sulfonierversuche wurde ausnahmslos konzentrierte Schwefelsäure (96%-ig) verwendet. Sie zeichnet sich besonders durch ihre hygroskopische und oxidierende Wirkung aus. Sie ist in jedem Verhältnis mit Wasser mischbar. Die Stoffdaten sind in Tabelle 4-4 zusammengestellt [SRK82].

Tabelle 4-4: Stoffdaten von 96 %-iger Schwefelsäure

Molekulargewicht (100 % ig)	98,08 g/mol
Schmelzpunkt	- 15 °C
Siedepunkt (1013 mbar)	ca. 310 °C
Dichte (20°C)	1,8355 g/cm ³
Wärmekapazität	0,081kJ/kgK

Bild 4-5: Siedekurve und Dampfzusammensetzung von Schwefelsäure [SRK82]

Eine ausführliche Dichtetabelle ist in [Aut60] enthalten. Die Siedekurve (Bild 4-5 [SRK82]) von verdünnter Schwefelsäure steigt mit der Konzentration stark an und erreicht mit 98,3 Ma-% H₂SO₄ ein Maximum bei ca. 339 °C entsprechend dem azeotropen Punkt. Bei Konzentrationen unter 75 Ma-% verdampft praktisch nur Wasser.

Heiße, konzentrierte (>90 Ma-% H₂SO₄) Schwefelsäure wirkt oxidierend und reagiert daher mit Edelmetallen sowie mit Kohlenstoff unter Entwicklung von SO₂. Kohlenwasserstoffe werden bis zur Verkohlung zersetzt.

Ergebnisse der Sulfonierung

Für die Versuche wurden Copolymere mit den Vernetzungsgraden von 2, 4 und 8 Ma-% eingesetzt [Sch99]. Die Sulfonierung erfolgte mit einer Aufheizrate von 16 K/min. Variiert wurde neben dem Masseeinsatzverhältnis (MEV) die Versuchsdauer der Sulfonierung. Die Versuchsdauer setzt sich aus der Aufheizzeit und der Haltezeit bei konstanter Endtemperatur (200 °C) zusammen.

Die Rieselfähigkeit wurde bei Vernetzungsgraden größer 2 Ma-% und einem MEV von 1,6 bereits ab einer Versuchsdauer von 20 Minuten erreicht. Erst nach 40 min wurde das Sulfprodukt aus dem Copolymer mit einem DVB-Gehalt von 2 Ma-% rieselfähig.

Es wurde beobachtet, dass die Sulfproduktausbeute (Definition im Anhang A6) mit sinkendem DVB-Gehalt ansteigt. Jedoch konnte kein Unterschied zwischen mono- und polydispersem Copolymer festgestellt werden. Bei Versuchen mit 20 min Versuchsdauer liegt die Masseausbeute zwischen 85 und 95 Ma-%. Erhöht sich die Versuchsdauer auf 50 min, so sinkt die Masseausbeute auf 50 bis 60 Ma-% (Bild 4-6).

Mit steigendem MEV und Vernetzungsgrad nimmt der Schwefelgehalt des ungewaschenen Sulfproduktes zu. Der Anstieg ist einerseits durch anhaftende Säure und andererseits durch die bessere Zugänglichkeit der Copolymerstruktur zu erklären. Der Maximalwert von 20 Ma-% wird bei einem MEV von 2 erreicht. Die Versuchsdauer hat keinen Einfluss (Bild 4-6).

Unabhängig vom Vernetzungsgrad steigt die Fülldichte des Sulfproduktes mit zunehmendem MEV bei gleicher Versuchsdauer geringfügig an. Eine längere Versuchsdauer bei konstantem MEV hat etwas geringere Fülldichten zur Folge, da gleichzeitig mehr überschüssige Säure verdampft (Bild 4-6).

4.2.2 Pyrolyse der sulfonierten Copolymere

Um den Einfluss der Sulfonierparameter MEV und Haltezeit auf die Kokseigenschaften zu ermitteln, wurden die unter Abschnitt 4.2.1 sulfonierten Copolymere bei konstanten Bedingungen pyrolisiert. Da die sulfonierten Copolymere bei einer schnellen Aufheizung zerplatzen, wurde die Aufheizrate auf 20 K/min festgelegt. Die Pyrolyse wurde bei 750 °C durchgeführt, wobei die Ausstehzeit (Haltezeit) auf 5 min begrenzt wurde. Die Eigenschaften der Kokse sind in den Bildern 4-7 und 4-8 dargestellt. Die Werte für die Sinterneigung (Sintergrad) der Kokse streuen sehr stark. Sie sind unabhängig vom Vernetzungsgrad und fallen mit steigendem MEV stark ab. Ab einem MEV von größer 1,5 tritt praktisch kein Zusammensintern der Kokspartikel mehr auf, wobei die Sulfonierdauer keinen Einfluss ausübt. Der Bruchanteil liegt unabhängig von der Versuchsdauer und ab einem MEV von 1,4 bei max. 12 Ma-%. Mit sinkenden Werten von Vernetzungsgrad und MEV (< 1,4) wurde ein Anstieg des Bruchanteils beobachtet. Der höhere Vernetzungsgrad von 8 Ma-% ist ebenso wie der höhere Schwefelgehalt für eine bessere Stabilisierung der Kugelform verantwortlich.

Bild 4-6: Einfluss von MEV (SZ 20 min) und Versuchsdauer (MEV 1,6) auf Masseausbeute, Schwefelgehalt und Fülldichte für das sulfonierte Produkt (SAHR 16 K/min, ungewaschen)

Bild 4-7: Einfluss von MEV (SZ 20 min) und Versuchsdauer (MEV 1,6) auf Sintergrad und Bruchanteil der Kokse (PT 750 °C, PAHR 20 K/min, PHZ 5 min)

Die Koksausbeute α (Bild 4-8) bezogen auf den eingesetzten Rohstoff steigt mit dem MEV an und bleibt ab einem MEV größer 1,6 auf einem hohen Niveau (ca. 90 %) konstant. Somit findet sich nahezu der gesamte Kohlenstoff des Copolymers (siehe Tabelle 3-3, S. 27) im Koksrückstand wieder. Bei einem MEV < 1,2 kommt es zu einem drastischen Rückgang der Koksausbeute. Bei einem MEV von 1 bis 0,9 entspricht die Ausbeute ungefähr dem Anteil an aromatisch gebundenen Kohlenstoff im Copolymer. Über den Vernetzungsgrad oder die Sulfonierdauer lässt sich die Koksausbeute nicht weiter erhöhen.

Der Schwefelgehalt des Kokses hängt weniger vom Vernetzungsgrad als vielmehr von der Korngrößenverteilung ab. Die polydispersen Kokse besitzen bis zu 3,5 Ma-% mehr Schwefel als die Kokse aus den monodispersen Copolymeren LP 7,5-4-00 und LP 8-4-00. Deren Schwefelgehalte liegen zwischen 3,5 und 4,8 Ma-%. Ein starker Anstieg des Schwefelgehaltes ist zu dem bei den polydispersen Koksen bis zu einem MEV von 1,6 zu beobachten. Der insgesamt höhere Koksschwefelgehalt erklärt sich aus der besseren Durchsulfonierung der feineren Kornklassen des polydispersen Copolymers.

Bild 4-8: Einfluss von MEV (SZ 20 min) und Versuchsdauer (MEV 1,6) auf die Kokseigenschaften Ausbeute, Schwefelgehalt, Gesamt- und Mesoporenvolumen (PT 750 °C, PAHR 20 K/min, PHZ 5 min)

Für Kokse aus den monodispersen Copolymeren LP 7,5-4-00 und LP 8-4-00 nehmen Gesamt- und Mesoporenvolumen rapide mit fallendem MEV zu, wobei das Gesamtporenvolumen bis zu einem MEV von 1,6 bei ca. 160 mm³/g und das Mesoporenvolumen bis zu einem MEV von 1,4 bei ca. 10 mm³/g konstant bleiben. Bei den polydispersen Copolymeren gleichen DVB-Gehaltes sind kaum Veränderungen des Koksporenvolumens mit dem MEV zu beobachten. Die Porenvolumina bleiben von der Versuchsdauer unbeeinflusst (Bild 4-8) [Sch99].

Zusammenfassend zu diesem Abschnitt ist festzustellen, dass die Kokseigenschaften und -ausbeute am stärksten durch den Vernetzungsgrad und das Masseeinsatzverhältnis beeinflusst werden. Die Ergebnisse deuten darauf hin, dass ab einem MEV von 1,4 bis 1,6 keine weiteren Veränderungen mehr zu erreichen sind.

In weiteren Versuchen wurde daher der Einfluss der Pyrolysebedingungen auf die Kokseigenschaften an zwei Sulfprodukten untersucht, die mit einem MEV < 1,6 hergestellt wurden. Dafür wurden 2 Sulfprodukte aus LP 8-4-00 mit einem MEV von 1 und 1,4 ausgewählt. Die Pyrolysetemperatur wurde zwischen 400 und 900 °C und die Aufheizgeschwindigkeit im Bereich von 10 bis 35 K/min variiert [Wac00]. Die Haltezeit von 5 min und die Spülgasmenge (N₂) blieben bei allen Versuchen konstant.

Wie aus Bild 4-9 zu ersehen ist, nimmt die Koksausbeute erwartungsgemäß mit steigender Pyrolysetemperatur ab. Die Aufheizgeschwindigkeit hat keinen Einfluss. Wird das MEV auf 1,4 erhöht, dann erhöht sich die auf Copolymer bezogene Koksausbeute um ca. 20 %. Ursache ist die bessere Schwefeleinbindung in die Copolymerstruktur, die den Anteil an flüchtigen Kohlenwasserstoffen in der Pyrolysephase reduziert.

Bild 4-9: Einfluss der Pyrolysetemperatur auf die Koksausbeuten und den Sintergrad des Kokses (LP 8-4-00, MEV 1 und 1,4; PHZ 5 min)

Aufheizraten größer 20 K/min und Temperaturen größer 600 °C sind begünstigen die Versinterung der Partikel (Bild 4-9). Voraussetzung ist jedoch ein geringes MEV, da bereits bei einem MEV von

1,4 und einer Aufheizrate von 35 K/min der Sintergrad auch bei höheren Temperaturen einen Wert von 10 % nicht überschreitet.

Den Einfluss von Temperatur und Aufheizrate auf die Porenstruktur der Kokse zeigt das Bild 4-10. Für ein MEV von 1 durchlaufen Meso- und Makroporenvolumina ein Maximum zwischen 500 und 600 °C. In diesem Temperaturbereich wurden praktisch unabhängig von der Aufheizrate ca. 220 mm³/g für das Mesoporenvolumen und 30 mm³/g für das Makroporenvolumen gemessen. Bei einem MEV von 1,4 ist ein ähnlicher Trend nur bei den Makroporen erkennbar; das Mesoporenvolumen überschreitet 40 mm³/g nicht. Im Kurvenverlauf für das Mikroporenvolumen deutet sich trotz erheblicher Streuung der Messpunkte ein Minimum in dem genannten Temperaturbereich an. Insgesamt nimmt das Koksporenvolumen bis ca. 500 °C zu und bleibt dann annähernd bei 250 mm³/g konstant. Aufgrund des geringeren Mesoporenvolumens erreicht das Gesamtporenvolumen bei einem MEV von 1,4 erst bei hohen Temperaturen Werte um die 200 mm³/g. Somit lassen sich grobporige Kokse nur bei einem niedrigen MEV und in einem verhältnismäßig engen Temperaturbereich herstellen. Grobe Poren wirken sich auf den nachfolgenden Aktivierungsprozess vorteilhaft aus, da die Diffusion der Aktivierungsgase in das Korninnere dann beschleunigt abläuft.

Bild 4-10: Einfluss der Pyrolysetemperatur auf die Porenvolumenanteile des Kokses (LP 8-4-00, MEV 1 und 1,4; SZ 20 min, PHZ 5 min)

Bild 4-11: Einfluss der Pyrolysetemperatur auf den Schwefelgehalt des Kokses (LP 8-4-00, MEV 1 und 1,4; SZ 20 min, PHZ 5 min)

Der Schwefelgehalt des Kokses (Bild 4-11) sinkt von ca. 5 Ma-% (MEV 1) bei 400 °C auf ca. 3 Ma-% bei 830 °C. Der Schwefelgehalt ist bei Aufheizraten von 20 und 35 K/min über den gesamten Temperaturbereich um ca. 0,7 Ma-% höher als bei 10 K/min.

Eine Erhöhung des MEV auf 1,4 lässt den Schwefelgehalt im Koks um ca. 1 Ma-% ansteigen. Die beobachteten Tendenzen in der Schwefelabspaltung stimmen mit den Ergebnissen aus der Literatur überein [Nee81, NI82].

Fazit:

Die Steuerung der Kokseigenschaften durch eine Variation der Pyrolysebedingungen ist nur für solche Sulfprodukte möglich, für deren Herstellung ein MEV < 1,4 gewählt wird. Der charakteristische Temperaturbereich für die bevorzugte Bildung von Mesoporen liegt zwischen 500 und 600 °C. Da die Aktivierung erst bei höheren Temperaturen mit vertretbarer Geschwindigkeit abläuft, ist zu vermuten, dass sich die Mesoporen in der Nachentgasungsphase zurückbilden. Der Versinterungsgrad dagegen ist irreversibel und lässt sich über die Temperatur und Aufheizrate sehr gut steuern.

Bei den morphologischen Untersuchungen wurden Koks- bzw. Aktivatpartikel detektiert, die einen mehr oder weniger großen Hohlraum aufwiesen. Dieses Phänomen wurde daraufhin genauer untersucht. In den Bildern A4-1 bis A4-7 (siehe Anhang A4) sind 4 Typen derartiger Hohlkugeln schematisch dargestellt. Nach der Pyrolyse besitzen die Partikel je nach gewählten Prozessbedingungen eine dieser Formen. Hohlkugeln bilden sich immer dann, wenn der Kern der Copolymerpartikel nicht oder nur unvollständig sulfoniert wurde. In der anschließenden Pyrolyse zersetzt sich der unsulfonierte Kern vollständig und es entsteht ein Hohlraum. Die entstehenden Gase müssen durch die äußere Hülle entweichen. Wird der Gasdruck im Kern zu groß, platzen die Kugeln auf. Je nach Größe der Hohlkugeln entstehen Risse, Halbkugeln und schließlich kleine Bruchstücke.

Mit abnehmenden Masseeinsatzverhältnis (MEV) verändert sich das Aussehen der Aktivkohle von Typ 0 (Bild A4-1) zu Typ III (Bild A4-4 und A4-5). In gleicher Richtung nimmt die Festigkeit der Partikel ab. In Hohlkugeln vom Typ II und Typ III wurde nach der Hg – Porosimetrie im Hohlraum teilweise Quecksilber festgestellt. Das deutet darauf hin, dass das Porensystem (Porendurchmesser > 7,6 nm) bis in den Hohlraum reicht.

Dieses Phänomen kann für bestimmte Anwendungsfälle von Nutzen sein.

1.) Speicherung von Adsorptiv im Hohlraum

2.) beidseitige und damit verbesserte Zugänglichkeit der porösen Kugelschale

In Tabelle 4-5 ist der Anteil des Hohlkugelvolumens am Gesamtvolumen schematisch dargestellt. Mit zunehmendem MEV sinkt das Hohlraumvolumen bis auf den Wert 0. Dieser Abbildung liegen Proben zugrunde, die in der Laborsulfonieranlage sulfoniert wurden. Als Ausgangsstoff diente das monodisperse Copolymer der Fa. BAYER LP 8-4-00. Die sulfonierten Proben (SAHR 16 K/min, ST 200 °C, SHZ 8 min) wurden in der Laborretorte (PT 750 °C, PAHR 20 K/min, PHZ 5 min) pyrolysiert. Die Wandstärke der Halbkugeln wurde mit einem Stereomikroskop bei 32-facher Vergrößerung bestimmt. Intakte Partikel wurden für die Messung mechanisch zerstört. Der Anteil des Hohlraums am Gesamtvolumen ist:

$$V_{HR} = \left(\frac{\pi}{6}d_i^3 / \frac{\pi}{6}d_a^3\right) \cdot 10^2 \qquad [\%]$$
(GI. 4.1)

d_i Durchmesser des Hohlraumes

d_a Außendurchmesser des Partikels

Tabelle 4-5: Einfluss des MEV auf das Hohlraumvolumen im Pyrolysep
--

	Einheit	Тур 0	Тур І	Тур II	Тур III	Тур III
V _{Hohlraum}	%	0	0 - 15	15 - 35	35 - 50	> 50
MEV	g _{H2SO4} /g _{CP}	> 1,8	1,8 – 1,4	1,4 – 1,2	1,2 – 1	< 1
Schema		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

In weiteren Versuchen wurde beobachtet, dass auch die Aufheizrate während der Sulfonierung einen Einfluss auf das Hohlraumvolumen besitzt. Durch Wahl einer geringeren Aufheizrate kann die Schwefelsäure tiefer in das Partikel eindringen und auch den Kern sulfonieren. Als Ergebnis wurde festgestellt, dass Partikel die mit einem MEV \geq 1,2 und einer Aufheizrate \leq 6 K/min sulfoniert wurden, keinen Hohlraum besitzen.

Die Größe des Hohlraumes wurde durch Ausmessen der REM-Aufnahmen bzw. durch Berechnung des Hohlraumes auf Basis der Rohdichten bestimmt (siehe Anhang A4).

4.2.3 Aktivierung der Kokse

Die Kokse wurden unter einheitlichen Bedingungen (siehe Tabelle 4-2) in der Laborwirbelschichtanlage aktiviert [Sch99]. Der Aktivierungsgrad (Abbrand) sinkt bei konstanter Aktivierungszeit (180 min) mit steigendem MEV (Bild 4-12), was einer Abnahme der Aktivierungsgeschwindigkeit gleich kommt. Ursache ist das ebenfalls abnehmende Koksporenvolumen (Bild 4-8). Damit ist den Aktivierungsgasen der Zugang in die Kokspartikel erschwert. Ein direkter Einfluss der Sulfonierdauer auf den Abbrand wurde nicht beobachtet, auch gibt es keinen Einfluss des Vernetzungsgrades. Letzteres gilt auch für die Aktivateigenschaften.

Bild 4-12: Einfluss von MEV (SZ 20 min) und Sulfonierdauer (MEV 1,6) auf den Aktivierungsgrad (PT 750 °C, PAHR 20 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min)

Da die Aktivate in einem engen Abbrandbereich (40 bis 50 %) liegen, erfolgte eine Normierung der Messwerte durch lineare Interpolation auf einen Abbrand von 45 %. Die Aktivatausbeute bezogen auf das eingesetzte Copolymer steigt bei diesem Abbrand mit dem MEV von ca. 23 % (MEV 0,8) auf ca. 56 % (MEV 1,6) an und bleibt dann konstant (Bild 4-13). Die Kurve verläuft nahezu parallel zur Kurve der Koksausbeute α , was auf ein konstantes Verhältnis von äußerem zu innerem Abbrand während des Aktivierungsvorganges hindeutet. Die Kenngrößen sind im Anhang (A4) definiert.

Da bereits das Koksporenvolumen für LP 8-4-00 mit zunehmendem MEV abnimmt, sinkt auch das Gesamtporenvolumen des Aktivates bei gleichem Abbrand - von 780 mm³/g (MEV 1,1) auf 520 mm³/g (MEV 2)(Bild 4-14). In gleicher Richtung geht die Bildung von Makroporen zurück - von 33 mm³/g (MEV 1,1) auf 6 mm³/g (MEV 2). Die Makroporen werden zum Großteil durch Aufweitung von Mesoporen gebildet. Das Mesoporenvolumen sinkt ebenfalls mit steigendem MEV, jedoch in dem MEV-Bereich von 1 – 1,4 wesentlich stärker. Der gleiche Trend trifft auf die Mikroporen zu.

Bild 4-14: Einfluss von MEV (LP 8-4-00, SZ 20 min) auf die Porenvolumenanteile im Aktivat (PT 750 °C, PAHR 20 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min, AB 45 %)

Für die BET-Oberfläche ergeben sich die im Bild 4-15 dargestellten Abhängigkeiten. Die Messpunkte im linken Bild entsprechen Aktivaten, die bei gleicher Aktivierungszeit hergestellt wurden und wie aus Bild 4-12 ersichtlich einen unterschiedlichen Abbrand aufweisen. Demzufolge muss die massebezogene BET-Oberfläche abfallen. Da sich entgegengesetzt dazu die Fülldichte stärker erhöht, nehmen die auf das Schüttvolumen bezogenen Werte zu.

Das rechte Diagramm in Bild 4-15 zeigt die Abhängigkeit der BET-Oberfläche vom MEV bei einem konstantem Abbrand von 45 %. Mit dem MEV steigt die auf das Schüttvolumen (Basis: Fülldichte) bezogene BET-Oberfläche von 500 (MEV 1) auf 900 m²/cm³_{Sch} (MEV 1,6) und bleibt auf diesem Niveau konstant. Ein ähnliches Verhalten zeigt die auf das Partikelvolumen bezogene BET-Oberfläche. Sie nimmt mit dem MEV von 870 (MEV 1) auf 1460 m²/cm³_P (MEV 1,9) zu. Auch die massebezogene BET-Oberfläche steigt mit dem MEV von 1260 (MEV 1) auf 1400 m²/g (MEV 1,9) an. Aus diesen Kurvenverläufen ist zu folgern, dass sich bei einem höheren MEV Aktivkohlen mit einer sowohl größeren masse- als auch volumenbezogenen BET-Oberfläche, d.h. mikroporenreichere Qualitäten, herstellen lassen. Eine Betrachtung der Porenvolumenanteile für ein niedriges MEV von 1,1 (PV_{Makro} 4,4 %, PV_{Meso} 12,6 %, PV_{Mikro} 83 %) und höheres MEV von 1,8 (PV_{Makro} 0,9 %, PV_{Meso} 4,4 %, PV_{Mikro} 94,7 %) bestätigt diese Aussage.

Bild 4-15: Einfluss von MEV (LP 8-4-00, SZ 20 min) auf die BET-Oberfläche der Aktivate (PT 750 °C, PAHR 20 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min bzw. AB 45 %)

Fazit:

Im Gegensatz zum Masseeinsatzverhältnis haben die Parameter Sulfonierdauer und Vernetzungsgrad keinen Einfluss auf die Aktivateigenschaften. Mit dem MEV nimmt die Aktivatausbeute bezogen Copolymer zu und der Abbrand bei konstanter Aktivierungszeit ab. Das Porenvolumen und die BET-Oberfläche wurden daher auf einen einheitlichen Abbrand normiert. Das Porenvolumen sinkt generell mit steigendem MEV, wobei besonders das Mesoporenvolumen in einem MEV-Bereich von 1 bis 1,4 stark zurück geht. Die BET-Oberfläche nimmt generell mit steigendem MEV zu; die auf das Schüttvolumen und die auf das Partikelvolumen bezogenen bis zu einem MEV von 1,4 verstärkt.

In weiteren Untersuchungen wurde der Einfluss des Abbrandes auf die Aktivateigenschaften

untersucht. Die Sulfonier- und Pyrolysebedingungen wurden so gewählt, dass ein möglichst rissfreies und unversintertes Aktivat erhalten wird.

Zunächst wird der Einfluss des Abbrandes näher betrachtet. Mit steigendem Abbrand nimmt erwartungsgemäß die Aktivatausbeute bezogen auf Copolymer ab. Sie beträgt bei einem Abbrand von 63 % lediglich noch 32 %.

Bild 4-16: Einfluss des Abbrandes auf die Aktivatausbeute (LP 8-4-00, MEV 1,4; PT 750 °C, PAHR 20 K/min, PHZ 5 min, AT 880 °C)

Die bisherigen Betrachtungen zur Porenstruktur bezogen sich auf einen konstanten Abbrand von 45 %. Der Abbrand trägt jedoch maßgeblich zur Bildung der Porenstruktur bei. In Bild 4-17 sind die Porenvolumenanteile über dem Abbrand aufgetragen. Das Gesamtporenvolumen steigt mit dem Abbrand von 300 mm³/g bei 10 % auf 800 mm³/g bei 60 % an. Makro- und besonders das Mesoporenvolumen nehmen progressiv mit dem Abbrand zu. Ab einem Abbrand von 30 % wird eine verstärkte Bildung von Makro- und Mesoporen beobachtet. Das Mikroporenvolumen steigt nahezu linear mit dem Abbrand bis auf 700 mm³/g (AB 63 %) an.

Bild 4-17: Einfluss des Abbrandes auf die Porenvolumina der Aktivate (LP 8-4-00, MEV 1,4; PT 750 °C, PAHR 20 K/min, PHZ 5 min, AT 880 °C)

Bild 4-18 zeigt die Abhängigkeit der BET-Oberfläche vom Abbrand. Im Gegensatz zu Aktivkohlen

aus natürlichen Rohstoffen steigt die innere Oberfläche mit dem Abbrand bis zu hohen Abbränden nahezu linear an. So kann die BET-Oberfläche über den Abbrand in einem weiten Bereich variiert werden, z.B. von 850 m²/g bei 26 % Abbrand bis zu 2150 m²/g bei 77 % Abbrand.

Bild 4-18: Einfluss des Abbrandes auf die BET-Oberfläche (LP 8-4-00, MEV 1,4; SZ 20 min, PT 750 °C, PAHR 20 K/min, PHZ 5 min, AT 880 °C)

4.3 Bewertung der Einflussgrößen auf die Produktqualität

Die Ergebnisse belegen, dass die Sulfonierung von Copolymeren mit nachfolgender Pyrolyse und Aktivierung sehr gut für die Herstellung maßgeschneiderter Aktivkohlen geeignet ist. Durch definierte Variation der Prozessparameter kann die Qualität der Aktivkohle gezielt beeinflusst werden.

Tabelle 4-5 zeigt eine Bewertungsmatrix mit den Einflussgrößen Vernetzungsgrad (VG), Sulfonierhaltezeit (SHZ), Masseeinsatzverhältnis (MEV), Pyrolysetemperatur (PT), Pyrolyseaufheizrate (PAHR) und Aktivierungsgrad (AB).

- (1) Wie zu erkennen ist, hat der Vernetzungsgrad keinen wesentlichen Einfluss auf die Koksund Aktivatqualität. Lediglich beim Gesamtporenvolumen der Kokse wurde eine Zunahme mit steigendem DVB-Gehalt festgestellt. Ein Einfluss wurde in der Sulfonierstufe beobachtet. Mit dem Vernetzungsgrad nimmt die Rieselfähigkeit und der Schwefelgehalt des Sulfproduktes zu und die Ausbeute ab.
- (2) Die Variation der Sulfonierhaltezeit hat über 20 min hinaus ebenfalls keinen nennenswerten Einfluss auf die Produktqualitäten. Lediglich die Ausbeute an Sulfprodukt sinkt mit steigender Haltezeit. Über die Sulfonierhaltezeit wird maßgeblich die Rieselfähigkeit des Sulfproduktes beeinflusst.
- (3) Als entscheidende Einflussgröße auf die Produktqualitäten hat sich das Masseeinsatzverhältnis herausgestellt. Mit steigendem MEV stellt sich der Einfluss wie folgt dar
 - leichte Zunahme der Ausbeute und Fülldichte des Sulfproduktes
 - starke Abnahme der Sinterneigung und leichte Verminderung des Bruchanteils
 - Abnahme des Hohlraumvolumens bis auf den Wert Null
 - Erhöhung der Koksausbeute α bei Zunahme des Schwefelgehaltes im Koks
 - Reduzierung des Porenvolumens, besonders des Mesoporenvolumens und folglich des Gesamtporenvolumens sowohl vom Koks als auch vom Aktivat
 - Abnahme der Aktivierungsgeschwindigkeit und Zunahme der Aktivatausbeute bezogen auf Copolymermasse (bei konstantem Abbrand)
 - Zunahme der massebezogenen und der auf das Korn- bzw. Schüttungsvolumen bezogenen inneren spezifischen Oberfläche (BET) bei konstantem Abbrand
- (4) Die Pyrolysetemperatur und -aufheizgeschwindigkeit beeinflussen die Koksqualität wie folgt
 - die Sinterneigung nimmt bei niedrigen MEV mit steigender Temperatur und Aufheizrate stark zu
 - die Aufheizrate hat nur einen geringen Einfluss auf die Produktparameter, lediglich der S-Gehalt und das Makroporenvolumen (bei 20 K/min) nehmen geringfügig mit der Aufheizrate zu

- Mit steigender Pyrolysetemperatur nehmen die auf das Copolymer bezogene Koksausbeute und der S-Gehalt des Kokses stark ab, aber das Mikroporenvolumen stark zu. Das Meso- (niedrige MEV) und Makroporenvolumen durchlaufen ein Maxima mit steigender Temperatur.
- Das Mikroporenvolumen nimmt mit steigender Pyrolysetemperatur zu.
- (5) Der Aktivierungsgrad (Abbrand) ist primär bestimmend für die Porenstruktur. Besonders die Bildung von Makro- und Mesoporen wird durch den Abbrand verstärkt. Der Mikroporenanteil steigt mit zunehmendem Abbrand an. Die spezifische innere Oberfläche (massebezogen) erfährt eine starke Zunahme mit größer werdendem Aktivierungsgrad.

Einige Einflussgrößen wirken nicht unabhängig von einander. Zwischen einzelnen Kenngrößen gibt es Wechselwirkungen.

MEV ⇔ PAHR die Porenstruktur des Kokses ist bei einer Pyrolyse-Aufheizrate von 20 K/min stärker differenziert als bei 10 K/min
 MEV ⇔ PT die Koksausbeute α nimmt mit steigendem MEV zu; sinkt jedoch mit zunehmender Pyrolysetemperatur
 PT ⇔ PAHR der Sintergrad und Bruchanteil steigen mit der Pyrolysetemperatur an, jedoch deutlich erst bei einer Pyrolyse-Aufheizrate größer 10 K/min (gilt nur für niedrige MEV)
 MEV ⇔ AB Gegensätzlich wirken MEV und Abbrand auf die Aktivateigenschaften

Aktivatausbeute und das Porenvolumen (Gesamt, Makro, Meso, Mikro).

D (\wedge		个	DT	个				\mathbf{T}
Parameter	VG	SHZ		MEV	I	PI		PAHR		Λ	
Bereich	2 - 8	8 - 50		0,8 - 2,2		400 - 900		10 - 35		%	
Einheit	% DVB	min		g_{H2SO4}/g_{CP}		°C		K/min			
Sulfonierung											
Rieselfähigkeit	o 1	`									
Sulfproduktausbeute	0 →	· +	\downarrow	0	\uparrow						
Fülldichte				0	\uparrow						
S-Gehalt	o 1	`									
Pyrolyse											
Sinterneigung				+	\downarrow	+	\uparrow	+	1		
Bruchanteil	- ↓	· _	\downarrow	-	\downarrow	+	\uparrow	+	1		
Koksausbeute α				+	\uparrow	+	\downarrow				_
S-Gehalt				0	\uparrow	+	\downarrow	-	1		
PV gesamt	o 1	` –		+	\downarrow			-	$\uparrow\downarrow$		
PV Makro				-	\downarrow	0	$\uparrow\downarrow$	-	$\uparrow\downarrow$		
PV Meso				+	\downarrow	+	$\uparrow\downarrow$				
PV Mikro				0	\downarrow	+	\uparrow				
Aktivierung											_
Aktivierungsgeschw.				+	\downarrow	n.b.		n.b.		n.b.	
Aktivatausbeute				+	ſ	n.b.		n.b.		+	\downarrow
PV gesamt				+	\downarrow	n.b.		n.b.		+	\uparrow
PV Makro				0	\downarrow	n.b.		n.b.		+	\uparrow
PV Meso				+	\downarrow	n.b.		n.b.		+	\uparrow
PV Mikro				0	\downarrow	n.b.		n.b.		0	\uparrow
BET [m²/g]				+	\uparrow	n.b.		n.b.		+	\uparrow
BET [m²/cm³]				+	\uparrow	n.b.		n.b.		n.b.	
Wirkung: + gro	ßo	mittel		- gering		kein					

Tabelle	4-6:	Bewertungsmatrix	zum	Einfluss	der	Prozessparameter	auf	die
Produkteigenschaften nach der Sulfonierung, Pyrolyse und Aktivierung								

Tendenz: \uparrow steigend \downarrow fa

 \downarrow fallend $\uparrow \downarrow$ Maximum n.b. nicht bestimmt

VG	Vernetzungsgrad
SHZ	Sulfonierhaltezeit
MEV	Masseeinsatzverhältnis
PT	Pyrolysetemperatur
PAHR	Pyrolyse-Aufheizrate

Λ Aktivierungsgrad (Abbrand)

5 Entwicklung und Realisierung eines Pilotreaktors zur Durchführung der Sulfonierung

5.1 Anforderungen und Lösungsvorschlag

Ausgehend von den bereits beschriebenen Erkenntnissen zum Einfluss verschiedener Prozessparameter auf den Verfahrensablauf und die Qualität der resultierenden Produkte müssen von einem Reaktionsapparat zur Durchführung der Sulfonierung folgende Anforderungen erfüllt werden:

- Exaktes Dosieren der Edukte entsprechend einem vorgegebenen Masseeinsatzverhältnis.
- Einheitliche Verweilzeit (Batchbetrieb)
- Intensive Durchmischung der Eduktkomponenten und der Reaktionsmischung (Homogenisierung, Vermeidung von Anbackungen und Agglomeraten, Wärmeaustausch über Reaktorwand).
- Definierte Aufheizung der Reaktionsmischung bis auf die gewünschte Reaktionstemperatur mit anschließender isothermer Fahrweise
- Vermeidung von Temperaturgradienten in der Reaktionsmischung
- Abkühlung des Sulfproduktes im Reaktor bis zu einer festgelegten Temperatur
- Schnelle Abkühlung des leeren Reaktors bis zu einer Mindesttemperatur von 80 °C f
 ür die Wiederbef
 üllung (Bei h
 öheren Temperaturen erweicht das Polymer und verliert die Kugelform)
- Sichere Ableitung entstehender Reaktionsgase aus dem Reaktionsraum
- Korrosionsbeständige Reaktorausführung

Für die Auslegung des Sulfonierreaktors wurde ein bestimmter Copolymerdurchsatz zugrunde gelegt. Des weiteren gab es Begrenzungen bezüglich der Grundfläche und maximalen Bauhöhe des Reaktors.

Vorgaben:

- geforderter CP Durchsatz: 10 15 kg/h (entsprechend 5 kg Aktivkohle/h)
- Raumhöhe: 3,45 m
- Raumlänge und -breite: 3,50 m x 3,50 m

Versuche mit statischen Mischern führten aufgrund starker Anbackungen zu keinem zufriedenstellenden Ergebnis. Deshalb wurden rotierende Mischer näher betrachtet. Insbesondere rotierende Trommelmischer besitzen ein sehr gutes Durchmischungsverhalten. Die Mischzeiten werden mit zunehmender Drehzahl kürzer. Dieser Effekt wird besonders beim Übergang von der Kaskaden- zur Kataraktbewegung deutlich [Wol72].

Aufgrund der Tatsache, dass die Beheizung des Reaktors von außen erfolgen muss, war der Reaktor rotationssymmetrisch auszuführen. Es wurde die Doppelkonusform gewählt, da dieser Typ von Trommelmischer ein besonders gutes Durchmischungsverhalten aufweist [Wol72].

Der Luftspalt zwischen den außen liegenden Heizschalen und der Reaktorwand ermöglicht ein gleichmäßiges Abkühlen des Reaktors samt Reaktionsmischung durch Einblasen von Luft.

Die Länge des Reaktors wurde auf 1200 mm begrenzt. Der Durchmesser des Doppelkonus war mit 600 bis 1000 mm bzw. an Kopf- und Bodenseite mit 100 bis 400 mm vorgegeben.

5.2 Reaktordimensionierung

5.2.1 Ähnlichkeitsansätze und Modellberechnungen

Für die Modellübertragung der Sulfonierung vom Labor- in den Pilotmaßstab wurden die folgenden Ähnlichkeitsansätze gewählt:

1. Geometrische Ähnlichkeit

Als Reaktorform wurde der Doppelkonus gewählt, der dem im Labormaßstab eingesetzten Glaskolben nahe kommt. Als Ähnlichkeitskriterium für eine annähernd gleiche Reaktorform wurde das Länge-Durchmesser-Verhältnis konstant gehalten.

Tabelle 5-1: Geometrische Ähnlichkeit von Labor- und Pilotreaktor

	Länge	Durchmesser	Länge/Durchmesser
	[m]	[m]	
Laborreaktor	0,24	0,18	1,3
Pilotreaktor	1,09	0,84	1,3

2. Strömungstechnische Ähnlichkeit

Als Kriterien für die strömungstechnische Ähnlichkeit wurden die Froude-Zahl und der Füllungsgrad gewählt.

Tabelle 5-2: Strömungstechnische Ähnlichkeit von Labor- und Pilotreaktor

	R	n	n _{krit.}	ω	Fr	Füllungsgrad
	[m]	[min⁻¹]	[min⁻¹]	[s⁻¹]		[%]
Laborreaktor	0,09	43	100	4,50	0,186	20
Pilotreaktor	0,42	20	47	2,09	0,187	20

Die Froude-Zahl (Fr) wird mit der Kreisfrequenz ω gebildet und beschreibt das Verhältnis von Zentrifugal- zu Schwerkraft. Bei der kritischen Drehzahl haftet der gesamte Feststoff an der Reaktorwand und wird nicht mehr durchmischt.

Fr= $(R^*\omega^2)/g \quad \omega=2\pi^*n/60 [s^{-1}] \quad n [min^{-1}]$

3. Thermische Ähnlichkeit

Als Merkmale für eine thermische Ähnlichkeit beider Reaktoren wurden die Aufheizrate, die Temperatur der Heizung (= Reaktorwandtemperatur) und die Probentemperatur festgelegt.

Aufgrund der guten Durchmischung wird angenommen, dass jedes Partikel der Reaktionsmischung die gleiche Temperatur besitzt.

	Aufheizrate	T _{Heizung}	T _{Probe,max}
	[K/min]	[°C]	[°C]
Laborreaktor	1 - 16	300	230
Pilotreaktor	1 - 5	300	230

Tabelle 5-3: Thermische Ähnlichkeit von Labor- und Pilotreaktor

4. Chemische Ähnlichkeit

In beiden Reaktoren werden die gleichen Ausgangsstoffe (Copolymer, konz. Schwefelsäure) unter gleichen Bedingungen (MEV, Temperatur, Haltezeit, u.a.) eingesetzt. Daher wird angenommen, dass in beiden Reaktoren der Reaktionsablauf gleich ist.

5.2.2 Berechnung der Reaktorgröße

Nachfolgend werden die geometrischen Abmessungen des Pilotreaktors entsprechend den oben genannten Vorgaben ermittelt. Gewählt wurde eine symmetrische Form, d.h. der Doppelkonus besteht aus 2 gleich großen Hälften. In Bild 5-1 sind die zu berechnenden Größen vereinfacht dargestellt.

Bild 5-1: Darstellung der Konusform

- D max. Durchmesser des Konus
- d min. Durchmesser der Austrags- bzw. Bodenseite
- L Länge des Konus
- h Höhe des Kreisabschnitts
- s Länge des Kreisabschnitts
- α Winkel des Kreisabschnittes

AAbschnitt Fläche des Kreisabschnitts

AZvlinder Querschnittsfläche des zylindrischen Teils

Agesamtmax. Querschnittsfläche des KonusVzylinderVolumen des zylindrischen TeilsVgesamtGesamtvolumen des KonusVAbschnittVolumen des Abschnittes

Das maximal zulässige Füllvolumen des Reaktors ist in waagerechter Position erreicht, da bei einem höheren Füllungsgrad die Edukte aus dem Reaktor ausfließen würden. Um dieses Volumen V_{Abschnitt} berechnen zu können, wurden folgende Annahmen getroffen:

- Proportional mit der Kreisringfläche A1 ändert sich auch das Volumen des hohlen Pyramidenstumpfes V1.
- Das Verhältnis von Abschnittsvolumen zu Volumen des hohlen Pyramidenstumpfes ist über die Länge L gleich dem Verhältnis von Abschnittsfläche zur Kreisringfläche.

Annahme:
$$A_1 = A_{gesamt} - A_{Zylinder}$$
 (Gl. 5.1)

$$V_1 = V_{gesamt} - V_{Zylinder}$$
(GI. 5.2)

$$\frac{A_{Abschnitt}}{A_1} = \frac{V_{Abschnitt}}{V_1}$$
(GI. 5.3)

gesucht:

 $V_{Abschnitt}$

Berechnung:

$$A_1 = \frac{\pi}{4} (D)^2 - \frac{\pi}{4} (d)^2$$
 [cm²] (GI. 5.4)

$$V_{1} = \left[\frac{\pi}{12}L(D^{2} + Dd + d^{2})\right] - \left(\frac{\pi}{4}(d)^{2}L\right)$$
 [I] (GI. 5.5)

$$h = \frac{D}{2} - \frac{d}{2}$$
 [cm] (GI. 5.6)

$$\alpha = \left[\arccos\left(1 - \frac{D_2 - d_2}{D_2} \right) \right]^2$$
 [°] (GI. 5.7)

$$s = D \cdot \sin\left(\frac{\alpha}{2}\right)$$
 [cm] (GI. 5.8)

$$A_{Abschnitt} = \frac{h}{6s} (3h^2 + 4s^2)$$
 [cm²] (GI. 5.9)

Durch Umstellen der Gleichung (5.3) und Einsetzen der Gleichungen (5.4 – 5.9) erhält man das gesuchte Volumen $V_{Abschnitt}$.

$$V_{Abschnitt} = \frac{A_{Abschnitt}}{A_1} V_1$$
 [I] (GI. 5.10)

Durch Verdopplung des Volumens V_{Abschnitt} erhält man das Gesamtabschnittsvolumen für den Doppelkonus. Das berechnete Volumen gibt die Menge an, die der Reaktor bei horizontaler Lage maximal aufnehmen kann, ohne das die Stirnflächen benetzt werden.

5.2.3 Optimierung der Reaktorabmessungen und -größe

Da das Füllvolumen maßgeblich vom Neigungswinkel abhängt, kann mit den folgenden Gleichungen das sogenannte Neigungsvolumen ($V_{Neigung}$) und der Füllungsgrad zu Versuchsende berechnet werden. Aufgrund der Volumenzunahme während der Reaktion ist das Volumen des sulfonierten Copolymers zu berücksichtigen.

Bild 5-2: Skizze des Doppelkonus

Berechnung des Neigungswinkels γ des Reaktors mit Vorgabe von z (Bild 5-2)

$$\gamma = \arctan(z / L_{\text{Reaktor}}) \qquad [^{\circ}] \qquad (GI. 5.11)$$

z Höhe der Schüttung auf der Bodenseite

L_{Reaktor} Länge des Reaktors (Gesamtlänge beider Konushälften)

Mit Hilfe der Gleichung 5.12 wird das Füllvolumen des Reaktors bei einer bestimmten Neigung berechnet.

$$V_{Neigung} = \left(\frac{V_{gesamt}}{2} - V_{Abschnitt}\right) \cdot \frac{z}{d} + V_{Abschnitt} \quad [1]$$
(GI. 5.12)

V_{Neigung} maximales Füllvolumen bei einem bestimmten Neigungswinkel

V_{gesamt} Gesamtvolumen des Reaktors

d Durchmesser auf der Boden- bzw. Austragsseite

Berechnung der aus dem Neigungsvolumen resultierenden maximalen Sulfproduktmenge:

$$m_{Sulfprodukt} = V_{Neigung} \cdot \rho_{Sulfprodukt}$$
 [kg] (Gl. 5.13)

ρ_{Sulfprodukt} Fülldichte des Sulfproduktes

Berechnung des Füllungsgrades am Ende des Sulfonierprozesses:

$$\varphi = \frac{V_{Neigung}}{V_{gesamt}} \cdot 100$$
 [%] (GI. 5.14)

5.2.4 Überprüfung der Berechnung an einem Modell

Für die Versuche wurde ein Doppelkonusmodell im Maßstab von 1:30 angefertigt. Mit diesem Modell wurde der Einfluss des Neigungswinkels auf den Füllungsgrad untersucht. Zusätzlich konnte das tatsächliche Füllvolumen ermittelt und mit dem berechneten Wert verglichen werden. Es wurde festgestellt, dass die berechneten mit den ermittelten Werten übereinstimmen.

Die Abhängigkeit des Füllvolumens vom Neigungswinkel wurde bestimmt, indem das maximale Füllvolumen bei verschiedenen Neigungen gemessen wurde. Durch Umrechnung in Volumenanteile kann diese Abhängigkeit auf den Pilotmaßstab übertragen werden. Eine Kontrolle des Scale-up ist über die Berechnung des äquivalenten Kugelvolumens möglich. Das berechnete Gesamtvolumen des Modells wird zum Kugelvolumen ins Verhältnis gesetzt. Mit diesem Verhältnis und dem berechneten Kugelvolumen für den Pilotmaßstab wird das Gesamtvolumen des Doppelkonus überprüft. Die Ergebnisse sind in Tabelle 5-4 aufgeführt.

Berechnung des äquivalenten Kugelvolumens (Tabelle 5-4, Punkt 7)

$$V_{Kugel} = \frac{\pi}{6} D^3 / 1000$$
 [I] (GI. 5-14b)

D max. Durchmesser des Konus [cm]

Berechnung des Anteils des berechneten Gesamtvolumens am äquivalenten Kugelvolumen für das Modell (Tabelle 5-4, Punkt 8) und Übertragung des Ergebnisses auf den Pilotmaßstab

$$\frac{V_{ges.,berechnet,Modell}}{V_{Kugel,Modell}}$$

Mit der folgenden Gleichung kann das Gesamtvolumen (V_{gesamt}) des Reaktors berechnet und mit dem bereits bekannten Gesamtvolumen (V_{ges,berechnet}) verglichen werden (Tabelle 5-4, Punkt 9).

$$V_{gesamt,Pilot} = \frac{V_{ges,berechnet,Modell}}{V_{Kugel,Modell}} \cdot V_{Kugel,Pilot}$$
(GI. 5-14c)

		Modellmaßstab	Füllungs-	Pilotmaßstab
			grad	
1	V _{ges,berechnet}	10,251		275,301
2	V _{Abschnitt,} wagerecht	1,351	13,2%	36,261
3	V _{Abschnitt, 7°}	1,981	19,3%	53,181
4	V _{Abschnitt, 11,78°}	2,281	22,2%	61,24l
5	V _{Abschnitt, 16,56°}	2,901	28,3%	77,891
6	Durchmesser _{max}	30 cm		90 cm
7	V _{Kugel}	14,141		381,721
8	Anteil an V _{Kugel}	72,5 %		72,5 %
9	V _{gesamt}	10,251		276,751

Tabelle 5-4: Ergebnisse der Versuche mit dem Doppelkonusmodell

Berechnung des Füllvolumens für den Modellmaßstab

$$V_{\text{Fill Modell}} = 0,0998 \cdot \gamma + 1,25$$
 (GI. 5.15)

Berechnung des Füllvolumens für den Pilotmaßstab

$$V_{F\bar{u}ll,Pilot} = \frac{V_{F\bar{u}ll,Modell}}{V_{Konus,Modell}} \cdot V_{Konus,Pilot}$$
(GI. 5.16)

In Bild 5-3 ist das Füllvolumen im Modell- und im Pilotmaßstab als Funktion des Neigungswinkel aufgetragen. Ein Neigungswinkel von 0 ° bedeutet, dass sich der Doppelkonus in horizontaler Position befindet. In der vertikalen Stellung (90 °) ist die maximale Füllung erreicht.

Berechnungsbeispiele mit unterschiedlichen geometrischen Abmessungen enthält das Kapitel 5.2.8.

Bild 5-3: Abhängigkeit des Füllvolumens vom Neigungswinkel im Doppelkonus

5.2.5 Berechnung der Reaktormasse und der Reaktorwärmekapazität

Für die Auslegung der Heizung ist die eigentliche Masse des Reaktors und dessen Wärmekapazität von Bedeutung. Mit den Gleichungen 5.17 und 5.18 werden diese Parameter berechnet.

Reaktormasse:
$$m_{\text{Reaktor}} = A_M \cdot b_{Stahl} \cdot \rho_{Stahl}$$
(Gl. 5.17)A_MMantelfläche des Reaktors b_{Stahl} Dicke des Stahlblechs ρ_{Stahl} Dichte von StahlWärmeinhalt: $Q_{\text{Reaktor}} = m_{\text{Reaktor}} \cdot c_{p,Stahl} \cdot \Delta T$ $c_{p,Stahl}$ spezif. Wärmekapazität ΔT $(T_{\text{max}} - T_{\text{min}})$

Für die weiteren Betrachtungen sind zu berücksichtigen:

Anfangsmasse m_s

$$m_s = m_{CP} + m_{SS}$$
 [kg] (Gl. 5.19)

$$m_{SS} = MEV \cdot m_{CP}$$
 [kg] (Gl. 5.20)

$$m_s = (1 + MEV) \cdot m_{CP}$$
 [kg] (GI. 5.21)

Lückenvolumen der Copolymerschüttung

$$\varepsilon_{CP} = 1 - \frac{\rho_{CP, full}}{\rho_{CP, roh}}$$
(Gl. 5.22)

Bei gelförmigen Copolymeren kann für die Rohdichte die Reindichte eingesetzt werden.

Volumen der Gesamtmasse

$$V_{Schüttung} = \left(\frac{m_{CP}}{\rho_{CP,füll}}\right) + \left(\frac{m_{CP} \cdot MEV}{\rho_{SS}} - \varepsilon_{CP} \cdot \frac{m_{CP}}{\rho_{CP,füll}}\right) [I]$$
(Gl. 5.23)

Füllungsgrad

$$FG = \frac{V_{F\ddot{u}ll}}{V_{R,\max}} \cdot 100$$
 [%] (GI. 5.24)

V Füll Volumen der Reaktionsmischung [I]

V_{R,max} Volumen des Reaktors [I]

Die spezifische Wärmekapazität c_s für die CP/H₂SO₄ – Mischung ergibt sich aus der Mischungsregel.

$$c_s = \left(\frac{1}{1 + MEV}\right) \cdot c_{CP} + \left(\frac{MEV}{1 + MEV}\right) \cdot c_{SS} \quad [J/(g^*K]$$
(GI. 5.25)

Stoffliche Änderungen infolge Sulfonierung bleiben unberücksichtigt.

5.2.6 Modellierung des Aufheizverhaltens des Laborsulfonierreaktors

Das Ziel der Modellierung des Aufheizverhaltens des Laborsulfonierreaktors war die Vorausberechnung der Zykluszeiten des Pilotreaktors. Aufgrund des Batchbetriebes ist die Kenntnis der Zykluszeit notwendig, um den Pilotreaktor entsprechend dem geforderten Durchsatz auslegen zu können.

Zykluszeit = Aufheizzeit + Haltezeit + Abkühlzeit + Chargierzeit

Die Haltezeit ist aus Laborversuchen bekannt und daher ein Vorgabewert. Aufheiz- und Abkühlzeiten müssen abgeschätzt werden, da eine exakte Vorausberechnung aufgrund der komplizierten Wärmeübertragungsverhältnisse nicht möglich ist. Die Chargierzeit wird ebenfalls abgeschätzt.

Die notwendige Wärme wird von außen über die Reaktorwand eingebracht. Vorgesehen ist der Einsatz einer elektrisch betriebenen Heizung. Im Reaktorinneren sind Hubelemente angebracht, die für eine optimale Durchmischung sorgen. Für das mathematische Modell wurden folgende Annahmen getroffen

- konstante Ofentemperatur (Heizschalentemperatur)
- konstante Reaktionsmasse
- bekannte Reaktionsenthalphie der Sulfonierreaktion

Das Aufheizverhalten des Laborreaktors wurde zunächst ohne Berücksichtigung der Sulfonierreaktion mit einem inerten Material untersucht. Bei diesen Versuchen wurde der Füllungsgrad zwischen 10 und 40 % variiert.

Für das Reaktionssystem gilt die differentielle Wärmebilanz gemäß Gleichung 5.26.

$$m_s c_s \frac{dT_s}{dt} = kA \left(T_{Ofen} - T_s \right) - q_R \frac{dT_s}{dt} m_s$$
(GI. 5.26)

m _s	Masse	[g]
Cs	spezif. Wärmekapazität	[J/gK]
Ts	Feststofftemperatur	[°C]
T _{Ofen}	Ofentemperatur	[°C]
t	Zeit	[s]
k	Wärmedurchgangskoeffizient	[W/m²K]
А	Reaktorwandfläche	[m²]

Auf der linken Seite dieser Gleichung steht die differentielle Enthalpiezunahme des Produktes. Die rechte Seite beinhaltet den Wärmeeintrag von außen und den Reaktionswärmeterm. Die Reaktionswärme wird als temperaturabhängig betrachtet. Definitionsgemäß ist q_R bei exothermen Reaktionen negativ und somit wird die entstandene Reaktionswärme zum Wärmeeintrag addiert.

1. Lösung von Gleichung 5.26 für den Fall q_R=konst., d.h. q_R ist keine Funktion der Temperatur

Nach Umstellen der Gleichung (5.26) erhält man eine inhomogene Differentialgleichung 1. Ordnung:

$$\frac{dT_s}{dt} + \left(\frac{k \cdot A}{m_s(c_s + q_R)}\right) \cdot T_s - \frac{k \cdot A \cdot T_{Ofen}}{m_s(c_s + q_R)} = 0$$
(GI. 5.27)

bzw. in der Form

$$\frac{dT_s}{dt} + P \cdot T_s - Q = 0 \tag{GI. 5.28}$$

mit

Die allgemeine Lösung der Gleichung 5.28 ist:

$$T_s = \frac{Q}{P} + C_0 \cdot \exp(-P \cdot t)$$
(GI. 5.29)

mit der Anfangsbedingung

$$t = 0$$
: $T_s = T_{s,0}$

ergibt sich für die Konstante $C_0 = T_{s,0} - \frac{Q}{P} = T_{s,0} - T_{Ofen}$

 $P = \left(\frac{k \cdot A}{m_s(c_s + q_R)}\right) \qquad Q = \frac{k \cdot A \cdot T_{Ofen}}{m_s(c_s + q_R)}$

und somit

$$T_s(t) = T_{Ofen} - (T_{Ofen} - T_{s,0}) \cdot \exp\left(-\frac{k \cdot A}{m_s \cdot (c_s + q_R)} \cdot t\right) [^{\circ}C]$$
(GI. 5.30)

Hinweis: Die Masse des Reaktionsgefäßes wird vernachlässigt. Lediglich die Masse der Edukte wird in m_s berücksichtigt.

2. Ermittlung von k für $q_R = 0$ durch Anpassung von Gleichung (5.30) an gemessene Aufheizkurven mit der Laborsulfonieranlage (RVD)

Die Aufheizkurve für den mit Inertmaterial gefüllten Reaktor lautet:

$$T_{s}(t) = T_{Ofen} - (T_{Ofen} - T_{s,0}) \cdot \exp\left(-\frac{k \cdot A}{m_{s} \cdot c_{s}} \cdot t\right) \qquad [^{\circ}C]$$
(GI. 5.31)

Durch Umstellen und Logarithmieren ergibt sich:

$$\ln\left(\frac{T_{Ofen} - T_s(t)}{T_{Ofen} - T_{s,0}}\right) = -k \frac{A}{m_s \cdot c_s} \cdot t$$

Daraus kann durch lineare Regression der Messwerte der Wärmedurchgangskoeffizient ermittelt werden. Als Fläche wird die vom Feststoff benetzte Wandfläche eingesetzt. Diese und die Feststoffmasse sind deshalb abhängig vom Füllungsgrad. Wie Bild 5-4 verdeutlicht ist auch der so ermittelte k-Wert füllungsgradabhängig.

3. Ermittlung von $q_R(T_S)$ durch Anpassung an gemessene Aufheizkurven mit dem bereits ermittelten k – Wert

Da die Reaktionswärme der Sulfonierung nicht gemessen werden konnte, wurde diese durch intervallweise Anpassung der Modellkurve an die Messkurve bestimmt. Hierfür wurden Aufheizkurven bei ablaufender Sulfonierreaktion aufgenommen. Die von

 T_s abhängige Reaktionswärme q_R wird im Zeitintervall Δt bzw. im Temperaturintervall ΔT als konstant vorausgesetzt. Die genannte Bedingung wird in Gleichung 5.30 durch Einführung von Zeitintervallen Δt statt der kumulierten Zeit t erfüllt, wobei die Genauigkeit mit kleiner werdenden Zeitschritten steigt. Die so ermittelte Reaktionswärme beträgt zwischen 140 und 190 °C -0,63 J/gK, d.h. die Reaktion ist exotherm. Bei Temperaturen größer 190 °C läuft eine endotherme Reaktion ab mit einer Reaktionswärme von +2 J/gK. Die Werte gelten für ein MEV von 1,6 : 1. Bild 5-5 zeigt beispielhaft je eine vorausberechnete Aufheizkurve für die Pilotanlage mit und ohne Anpassung der Reaktionswärme für eine Copolymer-Füllung von 25 kg, eine Schwefelsäuremasse von 40 kg (MEV 1,6) und eine Reaktorwanddicke von 2 mm. Die gegebenen Abmessungen für dieses Beispiel sind:

max. Durchmesser des Konus:	84,5 cm
min. Durchmesser des Konus:	12 cm
Seitenlänge des Konus:	55 cm

Bis zum Erreichen einer Sulfoniertemperatur von 200 °C wurde für dieses Beispiel eine Aufheizzeit von ca. 45 min ermittelt. Die für die Vorausberechnung der Aufheizkurve notwendigen Parameter wurden bereits in Abschnitt 5.2.5 (Gl. 5-17 bis Gl. 5.25) vorgestellt.

(GI. 5.32)

Bild 5-5: Darstellung der berechneten Aufheizkurven mit und ohne Reaktionswärme

5.2.7 Das mathematische Modell der Abkühlung des Pilotsulfonierreaktors

Im Fall des Abkühlens kann nicht der gleiche Weg wie beim Aufheizen gegangen werden, da die äußeren Wärmeübertragungsverhältnisse beim Pilotreaktor durch die Wärmeabfuhr an die im konzentrischen Luftspalt strömende Luft geprägt sind. Sowohl der äußere als auch der innere Wärmeübergang wurde daher mit Beziehungen aus der Literatur versucht zu erfassen.

Für die Modellierung werden folgende Annahmen getroffen:

- Die Temperatur der Heizwicklung ist gleich der des Reaktors.
- $((m \cdot c)_{Heizwicklung} \ll (m \cdot c)_{Re \ aktor})$
- Die Wärmekapazität der Heizwicklung und der sie umgebenden Keramikschalen werden bei der Berechnung berücksichtigt.
- Aufgrund sehr guter Feststoffvermischung wird die Temperatur des Produktes gleich der der Reaktorwand gesetzt.
- Abstrahlungs- und Leitungsverluste werden vernachlässigt. Es wird nur konvektiver Wärmetransport auf den Luftstrom berücksichtigt.
- Die Temperatur des Feststoffs wird in der Schüttung als gleich angenommen.

Der Wärmetransport von der Partikeloberfläche auf die Kühlluft ist abhängig vom:

- Wärmeübergang Partikel Reaktorwand (innere Wärmeübergangszahl α_i)
- Wärmeübergang Reaktorwand Kühlluft (äußere Wärmeübergangszahl α_a)

Unter Berücksichtigung der Wärmeleitung in der Reaktorwand ergibt sich der Wärmedurchgangskoeffizient zu

$$k = \frac{1}{\frac{1}{\alpha_i} + \frac{s_{Wand}}{\lambda_{Wand}} + \frac{1}{\alpha_a}}$$
(GI. 5.33)

1) Innere Wärmeübergangszahl α_i für eine mechanisch durchmischte Schüttung [VDI94b]

- Drehzahl: ca. 30 min⁻¹
- Mischzeit:> 200 s
- $\alpha_i \approx 50$ [W/m²K] (siehe Anhang Bild A5-1)

2) Äußerer Wärmeübergangskoeffizient α_a für einen konzentrischen Ringspalt [VDI94a]

$$Nu = \frac{\alpha \cdot d_{h}}{\lambda} \qquad \text{mit} \quad d_{h} = d_{a} - d_{i} = 2 \cdot s_{Luftspalt} \qquad \qquad s_{Wand} = 0,0024m$$
$$\lambda_{Wand} = 15W / mK$$
$$\lambda_{Luft} = 0,031W / mK$$
$$Nu = 7$$

Für die Ermittlung der Nußelt-Zahl wurde angenommen, dass laminare Strömungsverhältnisse (Re < 2300) vorliegen und die Wärmeübertragung zu beiden Seiten des Ringspaltes erfolgt (Bild A5-2) [VDI94a], da sowohl die Heizwicklung als auch der Reaktor abgekühlt werden.

Der Abkühlvorgang lässt sich analog zur Aufheizung mit einer differentiellen Wärmebilanz beschreiben (Gl. 5.34). Auf der linken Seite der Gleichung steht der Term für die differentielle Enthalpieabnahme der zu kühlenden Masse, welche sich aus Reaktormasse, Masse Sulfprodukt und Masse der Heizwicklung (ca. 10 kg) zusammensetzt. Die rechte Seite dieser Gleichung enthält die Enthalpieerhöhung der Kühlluft.

$$-m \cdot c \cdot \frac{dT_s}{dt} = V_n \cdot c_{p,L} (\vartheta_{L,a} - \vartheta_{L,e})$$
(GI. 5.34)

m	[g]	Gesamtmasse (Reaktor + Sulfprodukt + Heizwicklung)
С	[J/gK]	mittlere spezif. Wärmekapazität
Τs	[°C]	Temperatur Feststoff (= Reaktortemperatur)
Vn [m	າ³ _N /s]	Luftvolumenstrom im konzentrischen Luftspalt
C _{P,L}	[J/m³ _N ł	<] spezif. Wärmekapazität von Luft
$\vartheta_{\text{L,a}}$	[°C]	Austrittstemperatur der Luft
$\vartheta_{\text{L,e}}$	[°C]	Eintrittstemperatur der Luft
t	[s]	Zeit

Für den Wärmeübergang auf den Luftstrom gilt die Kopplungsbedingung nach Gl. 5.35

$$-V_n \cdot c_{p,L}(\vartheta_{L,a} - \vartheta_{L,e}) = k \cdot A(\vartheta_{L,m} - T_s)$$
(GI. 5.35)

ϑ_{L,m} [°C] mittlere Lufttemperatur

Da die Größen $\vartheta_{L,m}$, $\vartheta_{L,a}$ und T_S in Gleichung 5.35 Funktionen der Zeit sind, sind diese zunächst zu substituieren.

Es wird Kolbenströmung der Luft im konzentrischen Ringspalt angenommen. Näherungsweise wird $\vartheta_{L,m}$ mit der Gleichung 5.36 erfasst.

$$\vartheta_{\mathrm{L,m}} = \frac{\vartheta_{\mathrm{L,e}} + \vartheta_{\mathrm{L,a}}}{2} \tag{GI. 5.36}$$

Beim Doppelkonus ändert sich der Durchmesser mit der Länge, deshalb wurde mit einem mittleren Durchmesser (äquivalenter Zylinderdurchmesser) gerechnet. Weil sich die Lufttemperatur mit der Länge ändert, wird eine Einteilung in Intervalle vorgenommen (Gleichung 5.37). Es wurde vorausgesetzt, dass sich die Temperatur der Reaktorwand T = T_s sowie die Wärmedurchgangszahl k nicht mit dem Strömungsweg ändern.

$$V_n \cdot c_{p,L} \cdot d\vartheta_L = k \cdot D \cdot \pi \cdot (T_s - \vartheta_L) dl$$
(GI. 5.37)

$$V_n \cdot c_{p,L} \cdot \int_{\vartheta_{L,e}}^{\vartheta_L} \frac{d\vartheta_L}{T_s - \vartheta_L} = k \cdot D \cdot \pi \cdot \int_0^L dl$$
 (GI. 5.38)

Integration der Beziehung 5.38 führt über die Substitution

$$T_{s} - \vartheta_{L} = z$$
$$-d\vartheta_{L} = dz$$
$$-\int \frac{dz}{z} = -\ln z + C$$

zur Lösung der Beziehung 5.39

$$-V_n \cdot c_{p,L} \cdot \left[\ln(T_s - \vartheta_L)\right]_{\vartheta_{L,e}}^{\vartheta_{L,a}} = k \cdot D_{aqu} \cdot \pi \cdot L$$
(GI. 5.39)

Einsetzen der Grenzen und Umformen der Gleichung 5.39 führt zur Austrittstemperatur der Luft.

$$\ln \frac{T_s - \vartheta_{L,a}}{T_s - \vartheta_{L,e}} = -\frac{k \cdot D_{\bar{a}qu} \cdot \pi \cdot L}{V_n \cdot c_{p,L}}$$

$$\vartheta_{L,a} = T_s - (T_s - \vartheta_{L,e}) \cdot \exp\left(-\frac{k \cdot D_{\bar{a}qu} \cdot \pi \cdot L}{V_n \cdot c_{p,L}}\right)$$
(GI. 5.40)

In Gleichung 5.39 ist D_{äqu} der Durchmesser des volumengleichen Zylinders mit der Mantelfläche.

$$A_{M} = D_{aqu} \cdot \pi \cdot L \tag{GI. 5.41}$$

Einsetzen von $\vartheta_{L,a}$ in Gleichung 5.34 ergibt

$$\frac{dT_{S}}{dt} + \frac{V_{n} \cdot c_{p,L}}{m \cdot c} T_{S} \left(1 - \exp\left(-\frac{k \cdot A_{M}}{V_{n} \cdot c_{p,L}}\right)\right) - \frac{V_{n} \cdot c_{p,L}}{m \cdot c} \vartheta_{L,e} \left(1 - \exp\left(-\frac{k \cdot A_{M}}{V_{n} \cdot c_{p,L}}\right)\right) = 0 \quad \text{(GI. 5.42)}$$

$$Q = \frac{V_{n} \cdot c_{p,L}}{m \cdot c} \vartheta_{L,e} \left(1 - \exp\left(-\frac{k \cdot A_{M}}{V_{n} \cdot c_{p,L}}\right)\right) \quad P = \frac{V_{n} \cdot c_{p,L}}{m \cdot c} \left[1 - \exp\left(-\frac{k \cdot A_{M}}{V_{n} \cdot c_{p,L}}\right)\right]$$

Diese Gleichung ist ebenfalls vom Typ her eine inhomogene Differentialgleichung 1. Ordnung.

$$\frac{dT_s}{dt} + PT_s - Q = 0$$

!

Mit der Anfangsbedingung: t = 0: $T_s = T_{s,1}$ ($T_{s,1}$: Feststofftemperatur zu Kühlbeginn)

$$\frac{Q}{P} = \vartheta_{L,e} \qquad \qquad T_{s,1} = \frac{Q}{P} + C \qquad \qquad C_0 = T_{s,1} - \frac{Q}{P}$$

folgt

$$T_{s}(t) = \frac{Q}{P} + (T_{s,1} - \frac{Q}{P}) \exp(-Pt)$$

bzw. $T_s = \vartheta_{L,e} + (T_{s,1} - \vartheta_{L,e}) \cdot \exp(-P \cdot t)$ (GI. 5.43)

In Bild 5-6 ist das Abkühlverhalten des Sulfonierreaktors im gefüllten (blaue Kurve) und im leeren Zustand (rot markiert) dargestellt. Aufgrund der geringeren Masse kühlt der geleerte Reaktor bedeutend schneller ab.

Bild 5-6: Darstellung der Abkühlkurven für gefüllten (MEV 1,6) und leeren Reaktor

Tabelle 5-5 enthält die berechnete Zykluszeit für den Pilotreaktor. Für die Chargierung (Befüllen und Entleeren des Reaktors) wurden 15 min angesetzt. Bei Verkürzung bzw. Verlängerung der Haltezeit ändert sich auch die Zykluszeit in gleichem Maße. Mit einer Haltezeit von 20 min wurde eine Zykluszeit zwischen 77 und 127 min ermittelt.

	Aufheizzeit	Haltezeit	Abkühlzeit	Abkühlzeit	Chargier-	Zyklus
	von 80 °C		gefüllt	leer	zeit	
	bis 200 °C		bis 80 °C	bis 80 °C		
	[min]	[min]	[min]	[min]	[min]	[min]
Ohne Reaktion	46	20	46	12	15	93 - 127
Mit Reaktion	30	20	46	12	15	77 - 111

Tabelle 5-5: Vorausberechnete Zykluszeit des Pilotreaktors

5.2.8 Berechnungsbeispiele zur Reaktorauslegung

Die Berechnung wurde in einer Tabellenkalkulation programmiert, wobei die Durchmesser (D, d) und die Längen (L) des Konus variabel sind. Tabelle 5-6 enthält 4 Berechnungsbeispiele zur Reaktorauslegung in den bereits genannten Grenzen.

Im Beispiel 2 wird bei einem Füllungsgrad von 20 % ein Füllvolumen von 48,4 I ermittelt. Dieses Füllvolumen entspricht einer Copolymermasse von etwa 30 kg. Mit einem MEV von 2 hat das sulfonierte Copolymer ein Volumen von ca. 90 I (siehe Tabelle 5-7). Das maximale Produktvolumen (V_{Abschnitt}), das der Reaktor aufnehmen kann, wurde mit 96,4 I berechnet (horizontal). Dieses muss immer größer als das notwendige Produktvolumen sein, da andererseits Produkt in die Dosiervorrichtung austreten kann.

Nr.	D	d	L _A	L _B	V _{Doppelkonus}	A _M	m _{Reaktor,leer}	V _{Füll} (20%)	V Abschnitt
	mm	mm	mm	mm		CM ²	kg	I	I
1	700	100	520	520	155,2	15088	28,7	31,0	61,6
2	845	120	627	488	242,2	20193	38,5	48,4	96,4
3	900	150	650	650	329,3	24754	47,3	65,9	124,6
4	1000	250	650	650	446,7	29469	57,4	89,3	140,0
A	linker Ko	nus		В	rechter Kon	us			

Tabelle 5-6: Be	eispiele der	Reaktordimensior	nierung (V	Nanddicke 2,4	l mm)
-----------------	--------------	------------------	------------	---------------	-------

linker Konus В

rechter Konus

Die Tabelle 5-7 enthält die Leistungsangaben des Pilotsulfonierreaktors mit den in Tabelle 5-6 variierten geometrischen Abmessungen. Die Abkühlzeit für den leeren Reaktor mit einer Wanddicke von 2,4 mm bis 80 °C beträgt 35 min. Aus der vorausberechneten Zykluszeit und der spezifischen Produktmenge wird die Leistung berechnet. Diese beträgt für Beispiel 2 ca. 16,4 kg_{CP}/h. Die Sulfproduktmasse ist bei gleicher Copolymermasse abhängig vom MEV und beträgt ca. 81 kg/Charge bzw. 44,2 kgsp/h. Die in Beispiel 2 ermittelten geometrischen Abmessungen und Leistungen entsprechen den Anforderungen und dienen als Vorlage für die Konstruktion der Anlage.

Nr.	Sulfprodukt		Aufheizzeit ¹	Zykluszeit ²	Leistung	Leistung
	kg/Charge	I/Charge	min	min/Charge	kg SP/h	kg CP/h
1	51,9	57,7	42	100	31,1	11,5
2	81,0	90,0	52	110	44,2	16,4
3	110,3	122,6	61	119	55,6	20,6
4	149,5	166,1	68	126	71,2	26,4

Tabelle	5-7:	Berechnung	der	Leistung	des	Pilotsulfonierreaktors	auf	Basis	der
Reaktordimensionierung (MEV 2)									

¹ minimale Aufheizzeit von 50 bis 200 °C

² minimale Zykluszeit bei 20 min Haltezeit und 15 min Chargierzeit

Während der Konstruktion und Herstellung der Sulfonieranlage erfolgte eine geringfügige Anpassung der Abmaße. Tabelle 5-8 und Bild 5-13 enthalten die tatsächlichen Abmessungen und die daraus berechneten Kenngrößen des Pilotsulfonierreaktors. Tabelle 5-9 enthält die entsprechenden Leistungsdaten.

Tabelle 5-8: Endabmessun	gen und berechnete k	Kenngrößen des	Pilotsulfonierreaktors
--------------------------	----------------------	----------------	------------------------

D	d	L _A	L _B	V _{Doppelkonus}	A _M	m _{Reaktor,leer}	V _{Füll} (20%)	V Abschnitt
mm	mm	mm	mm	I	Cm ²	kg		I
839	120	616	469	232,5	19640	40,5	46,5	92,3

Tabelle 5-9: Berechnete Leistung auf Basis der tatsächlichen Abmaße

Sulfpro	odukt	Aufheizzeit	Zykluszeit	Leistung	Leistung
kg/Charge	I/Charge	min	min/Charge	kg SP/h	kg CP/h
77,8	86,5	51	109	42,8	15,9

5.2.9 Auslegung der Rückkühleinheit

Für die Auslegung der Rückkühleinheit wurde angenommen, das die bei der Sulfonierung anfallenden Dämpfe vollständig kondensieren. Die spezifische Kondensatmenge wurde in der Laboranlage ermittelt, wobei 10 Versuche mit den folgenden Versuchsbedingungen durchgeführt wurden.

Apparat:	Laborsulfonieranlage (RVD)
Kolbengröße:	21
Einwaage Copolymer:	300 g
MEV:	1,6 [kg _{H2SO4} /kg _{CP}]
Unterdruck, absolut:	750 mbar
Ofentemperatur:	300 °C
Aufheizrate:	ca. 16 K/min
Sulfonierdauer:	20 min

Nach 10 Versuchen wurde eine Kondensatmasse von 485 g gemessen. Daraus ergibt sich eine spezifische Kondensatmasse bezogen auf eingesetztes Copolymer von

$$m_{K,Labor} = \frac{m_{Kondensat}}{m_{Copolymer}} = 0,162g/g_{CP}$$
(GI. 5.44)

Mit diesem für die Laboranlage gültigen Wert beträgt die zu erwartende Kondensatmasse für eine CP-Charge:

$$m_{K,HTV} = m_{K,Labor} \cdot 30kg = 4,86kg$$

Für den Zeitraum der Dampffreisetzung (Reaktion) wird eine Zeit von 60 min angenommen. Damit ergibt sich folgende Dampfmenge (Annahme: Wasserdampf):

$$m_{Dampf} = 4,86 kg / h$$
 (30 kg_{CP}/Charge)

 $V_{Dampf,i.N.} \approx 6000l / h$

Mit dieser Dampfmenge wurde die notwendige Kühlleistung berechnet.

 $h_{D, 200^{\circ}C} = 2875 \text{ kJ/kg}$ $h_{K, 40^{\circ}C} = 168 \text{ kJ/kg}$ $Q = m \cdot (h_{K, 40^{\circ}C} - h_{D, 200^{\circ}C})$ Q = -13141kJ / Zyklus

5.3 Versuchsaufbau und –durchführung

Das Herzstück der Anlage (Bild 5-7, Bild A5-3 des Anhangs) ist ein von einem Heizmantel

Bild 5-7: Pilotsulfonieranlage

umgebenes Reaktionsgefäß von der Form eines Doppelkonus. Dieses ist in einem Gestell drehend gelagert und kann mit maximal 30,4 min⁻¹ um seine Längsachse in Rotation versetzt werden. Zusätzlich ist eine Schwenkbewegung in der Senkrechten um 180 ° möglich, um den Reaktor befüllen und entleeren zu können. Das Handling der Ausgangsstoffe und der Produkte erfolgt mit Transportbehältern. Die Dosierung der Schwefelsäure erfolgt separat über ein Rohrleitungssystem direkt aus einem Vorratsbehälter mittels einer Membranpumpe (Dosierkopf Bild 5-8). Bild A5-4 zeigt den schematischen Aufbau der Pilotanlage. Angaben zu den erwartenden Stoffströmen enthält Bild A5-5 in Form des verfahrenstechnischen Fließbildes.

Die Anlage und alle peripheren Einrichtungen (außer der externen Waage) werden über eine SPS (Speicherprogrammierbare Steuerung) gesteuert. Eine Visualisierung der Prozessparameter erfolgt am PC. Es werden Soll- und Istwerte von der SPS abgefragt und in bestimmten Zeitintervallen gespeichert.

Bild 5-8: Dosier- und Absaugkopf

Durch die Visualisierung lässt sich eine Vielzahl von Parametern übersichtlich zusammenfassen. Somit ist der Zustand der Anlage leicht zu kontrollieren.

Die Temperaturverläufe der Reaktorwand- und Probentemperatur werden in Echtzeit in einem Diagramm über die Prozessdauer aufgezeichnet. Somit ist der Temperaturverlauf zu jedem Zeitpunkt der Reaktion ablesbar. In einem Versuchsprotokoll werden zur Sicherheit die Sollwerte, die Istwerte und mögliche Vorkommnisse bzw. Störungen während des Sulfonierprozesses in regelmäßigen Abständen handschriftlich vermerkt.

Für die Fertigung des Reaktors wurde hochlegierter Edelstahl (1.4591, Nicrofer 3033-alloy 33, Tabelle 5-10) eingesetzt, mit dem Ziel, Korrosion durch den Schwefelsäurekontakt weitgehend zu vermeiden. In umfangreichen Korrosionstests zeigte diese Legierung den geringsten Materialabtrag. Der Reaktor

ist von zwei feststehenden Heizhalbschalen umgeben (Bild 5-9). Die Heizwicklung ist in eine 12 cm starke Schicht aus Aluminiumsilikat (KVF 121/200, Tabelle 5-10) eingebettet, die gleichzeitig als Isolierung dient. Die Heizwicklung besteht aus drei einzeln regelbaren Heizsegmenten (Bild 5-13):

Heizleistung Segment 1: 2 x 1,5 kW; Heizleistung Segment 2: 2 x 6,2 kW; Heizleistung Segment 3: 2 x 2,2 kW.

Bild 5-9: Reaktor mit aufgeklappter Heizschale

		Nicrofer 3033-alloy 33	KVF 121/200
Rohstoffbasis		X1CrNiCuN33-32-1	Aluminiumsilikatfaser
Dichte	[g/cm³]	7,9	0,2
Wärmekapazität	[kJ/kgK]	0,5	0,96
Wärmeleitfähigkeit	[W/mK]	16,2	0,26

Tabelle 5-10: Materialeigenschaften von Nicrofer 3033-alloy 33 und KVF 121/200
Der Automatikbetrieb wird vom Bedientableau aus gestartet. Nach Arretierung des Wagens (Bild 5-10) wird der Transportbehälter angehoben und gewogen. Der Behälter wird anschließend angekoppelt und bei dem Umschwenken des Reaktors in die 0°-Position in den Reaktor entleert. Die Positionierung des leeren Transportbehälters erfolgt über dem Reaktor. Die Dosierung der Schwefelsäure erfolgt nach Ankopplung des Befüllstutzens (70°).

in Arbeitsposition (86°)

Bild 5-10: Arretierung des Wagens (180 °) mit dem Transportbehälter

Sie wird in 1000 Liter-Kunststofftanks angeliefert und über einer Edelstahlwanne gelagert (Bild 5-12). Gegen die Umgebung ist die Wanne durch einen Schutzvorhang abgeschirmt. Mit einer Membranpumpe (FA Seybert & Rahier GmbH, Typ C409.1-340c) wird die Säure über PVC-Leitungen zum Befüllstutzen gefördert. Im Anschluss an die Dosierung erfolgt die Aufheizung des Copolymer-Säure-Gemisches (in Arbeitsposition (86°, Bild 5-11)) entsprechend der gewünschten Aufheizrate (max. 4 - 5 K/min) auf die vorgegebene Reaktionstemperatur. Ist sie erreicht, wird sie über eine vorgegebene Haltezeit mit +/- 10 K konstant gehalten. Bild 5-11: Reaktor befindet sich Nach Ablauf der Haltezeit wird Kühlluft (ca. 38 m³/h i.N.) in den Spalt zwischen Heizschalen und der Reaktorwand (Bild 5-13) zur Abkühlung des Reaktors eingeblasen. Der Reaktor bleibt in dieser

Phase in Arbeitsposition. Ziel ist eine möglichst schnelle Abkühlung des Sulfproduktes. Zur direkten Kühlung des Sulfproduktes wird deshalb Druckluft in den Reaktor eingeblasen (Zusatzkühlluft, ca. 12 m³/h i.N.). Diese Phase der Abkühlung wird im Folgenden als Abkühlphase I bezeichnet. Ist die vorgegebene Abkühlzeit erreicht, wird der Transportbehälter wieder aufgenommen und der Reaktorinhalt unter Schwerkraftwirkung in diesen entleert. Der leere Reaktor wird weiter bis auf die gewünschte Temperatur gekühlt. Ist diese erreicht, kann ein neuer Versuch gestartet werden.

Bild 5-12: Säurelagerung und -dosierung

Reaktorgeometrie

Bild 5-13 zeigt schematisch den Sulfonierreaktor und die wichtigsten Abmessungen.

Bild 5-13: Abmessungen des Doppelkonusreaktors und Kennzeichnung der Heizsegmente [Kro01]

Die Reaktorwandstärke beträgt ca. 2,6 mm. Die Isolation ist in dieser Skizze nur einseitig dargestellt. Die Temperaturmessstellen auf dem Reaktormantel und der Isolationsinnenfläche sind durch Punkte markiert. Das Thermoelement zur Messung der Innentemperatur ist eingehülst und dreht sich mit dem Reaktor. Die Kühlluft tritt radial auf Flanschhöhe (Konus A) in den Spalt ein und am kleinen Konusdurchmesser des Konus' B aus. Der Spalt ist am oberen und unteren Ende abgedichtet.

Aus den in Bild 5-13 angegebenen Abmaßen können über Strahlensätze weitere Durchmesser, Höhen und Seitenlängen berechnet werden. Die Gleichungen zur Berechnung der Mantelfläche und des Volumens des Kreiskegelstumpfes lauten mit der Seitenlänge I, den Kreisdurchmessern d₁ und d₂ sowie der Höhe h:

$$A_{M} = \frac{l\pi}{2} (d_{1} + d_{2})$$
 (GI. 5.45)

$$V = \frac{\pi h}{12} \left(d_1^2 + d_1 d_2 + d_2^2 \right)$$
 (GI. 5.46)

Die Gleichung des Mantelvolumens eines hohlen Kreiskegelstumpfes der Wandstärke b kann aus der Subtraktion zweier Kegelstümpfe hergeleitet werden.

$$V_{M} = \frac{\pi h}{2} \left(d_{1}b + d_{2}b - 2b^{2} \right)$$
(GI. 5.47)

Durch Summation der Mantelflächen und Volumina der Kreiskegelstümpfe A und B erhält man die in Tabelle 5-11 aufgeführten Werte.

Reaktorvolumen	232,5	I
Reaktormantelfläche	1,964	m²
Mantelvolumen	4423,4	cm³
Luftspaltvolumen	25026,5	cm³
Isolationsvolumen	227809,5	cm³
Heizflächensegment 1	0,404	m²
Heizflächensegment 2	0,982	m²
Heizflächensegment 3	0,578	m²
Flächenanteile der Heizse	gmente	
a _{HS1}	20,6	%
a _{HS2}	50,0	%
a _{HS3}	29,4	%

Tabelle 5-11: Flächen und Volumina des Doppelkonusreaktors [Kro01]

Berechnung des Füllungsgrades des Reaktors

Der Füllungsgrad des Reaktors ist maßgebend für die erzielbare maximale Leistung sowie Aufheizrate bzw. die erforderliche Abkühlzeit und ist in Gleichung 5.24 definiert.

Während der Aufheizung des Copolymer-Schwefelsäure-Gemisches wird durch die Reaktorrotation die Wand zunächst vollständig benetzt (Bild 5-15). Mit fortschreitender Reaktion entsteht ein pastöses Reaktionsprodukt, das durch Verdampfung des Reaktionswassers schließlich rieselfähig wird. Entsprechend ändert sich die effektive Wärmeübertragungsfläche. Auf Grund der geneigten Arbeitsstellung des Reaktors ist ein maximaler Füllungsgrad vorgegeben. Grundlage für dessen Berechnung ist die Kenntnis des Volumens der Reaktionsmischung V_R. Bei der Berechnung des Volumens des Copolymer-Schwefelsäure-Gemisches wird berücksichtigt, dass das Lückenvolumen der Copolymerschüttung vollständig mit Schwefelsäure gefüllt ist. Die Porosität ε_{CP} einer bewegten Copolymerschüttung kann aus der Fülldichte und der Rohdichte des Polymers berechnet werden (siehe Gl. 5.22).

Für das eingesetzte Lewapol 8-4 beträgt der Lückenvolumenanteil einer nicht verdichteten Schüttung 38,3 %. Ist das Lückenvolumen größer als das Schwefelsäurevolumen (abhängig vom vorgegebenen MEV), so kann das Reaktionsvolumen dem Volumen der Copolymerschüttung gleichgesetzt werden.

$$V_{Sus} = V_R = \frac{m_{CP}}{\rho_{Full,CP}}$$
(Gl. 5.48)

V_{Sus} Gemischvolumen [I]

m_{CP} Copolymermasse [kg] p_{Full.CP} Fülldichte des Copolymers [kg/l]

Die feuchten Copolymerpartikel benetzen die Wand nur bis zur Füllhöhe der Copolymerschüttung. Übersteigt das Schwefelsäurevolumen das Lückenvolumen, so vergrößert sich das Gesamtvolumen des Gemisches und somit das Reaktionsvolumen.

$$V_{Sus} = V_R = (1 - \varepsilon_{CP}) \cdot \frac{m_{CP}}{\rho_{F\bar{u}ll,CP}} + \frac{m_{SS}}{\rho_{SS}}$$
(GI. 5.49)

m_{SS} Schwefelsäuremasse [kg]

ρ_{SS} Schwefelsäuredichte [kg/l]

Bezieht man die Gleichung 5.49 auf das Copolymervolumen ($V_{CP} = m_{CP} / \rho_{Füll,CP}$), so erhält man eine lineare Abhängigkeit vom MEV (=m_{SS}/m_{CP}):

$$\frac{V_R}{V_{CP}} = (1 - \varepsilon_{CP}) + \frac{\rho_{Füll,CP}}{\rho_{SS}} \cdot \frac{m_{SS}}{m_{CP}}$$
(GI. 5.50)

Gleichung 5.48 dividiert durch V_{CP} ist definitionsgemäß Eins. Beide Kurven schneiden sich bei einem MEV = 1,18. Unterhalb dieses Wertes sind die Zwischenräume der Copolymerschüttung demzufolge noch nicht vollständig mit Schwefelsäure gefüllt (Bild 5-14). Bei einem rieselfähigen Produkt sind Reaktionsvolumen und Füllvolumen des Sulfproduktes identisch.

$$V_{SP} = V_R = \frac{m_{SP}}{\rho_{Full,SP}}$$
(Gl. 5.51)

V_{SP} Füllvolumen des Sulfproduktes [I]

m_{SP} Sulfproduktmasse [kg]

 $\rho_{\text{Full,SP}}$ Fülldichte des Sulfproduktes [kg/l]

Für den Wärmeübergang steht nur die Berührungsfläche der rieselfähigen Schüttung mit der Wand zur Verfügung (Bild 5-15).

Bild 5-14: Abhängigkeit des auf das Copolymervolumen bezogenen Reaktionsvolumens vom MEV [Kro01]

Bild 5-15: Wärmeübertragende Flächen des Copolymer-Schwefelsäure-Gemisches und der rieselfähigen Sulfproduktschüttung [Kro01]

6 Optimierung der Reaktorfahrweise und Durchführung von Sulfonierversuchen

6.1 Bilanzierung der Pilotsulfonieranlage

Masse- und Elementebilanz

Die während eines Sulfonierzyklus ein- und ausgebrachten Stoffmengen sind in Bild 6-1 dargestellt. Die Bilanzgrenze schließt neben dem Sulfonierreaktor auch die Dampfkondensation des Abgases mit ein. Die Massebilanz eines Sulfonierzyklus lautet:

$$m_{CP} + m_{SS} = m_{SP} + m_{Kond} + m_{A,ges}$$
 (GI. 6.1)

m _{CP}	Copolymermasse [kg]
m _{ss}	Schwefelsäuremasse [kg]
m _{SP}	Masse des sulfonierten Copolymers (Sulfprodukt) [kg]
m _{Kond}	Kondensatmasse [kg]
m _{A,ges}	Abgasmasse [kg] (wasserdampfgesättigt)

Die Abgasmasse kann nicht aus Messdaten berechnet werden. Sie lässt sich nur als Differenz aus Gl. 6.1 bestimmen. In der aus der Bilanz erhaltenen Abgasmasse ist demzufolge der Bilanzfehler enthalten.

Bild 6-1: Bilanzgrenze und Bilanzgrößen der Pilotsulfonieranlage

Aus der Massebilanz können die Masseausbeuten an säurefeuchtem und trockenem Sulfprodukt sowie der Schwefelsäureumsatz berechnet werden. Die Gleichungen sind der Übersichtlichkeit halber im Anhang A6 zusammen gefasst. Bei der Berechnung des Umsatzgrades wurde vorausgesetzt, dass die Restsäure als 96%-ige Schwefelsäure vorliegt; tatsächlich dürfte die Konzentration nach der Reaktion niedriger liegen. Der entstehende Fehler ist jedoch vernachlässigbar gering.

Die Elementebilanzen der Sulfonierung lauten:

• C-Bilanz:

$$C_{CP}m_{CP} = C_{SP}m_{SP} + m_{C,Verlust}$$
(GI. 6.2)

H-Bilanz:

$$H_{CP}m_{CP} + c_{SS}m_{SS} \frac{2}{98} + (1 - c_{SS})m_{SS} \frac{2}{18} = H_{SP}m_{SP} + (1 - c_{SS,K})m_K \frac{2}{18} + m_{H,Verlust}$$
(GI. 6.3)

O-Bilanz:

 $O_{CP}m_{CP} + c_{SS}m_{SS} \frac{64}{98} + (1 - c_{SS})m_{SS} \frac{16}{18} = O_{SP}m_{SP} + (1 - c_{SS,K})m_K \frac{16}{18} + m_{O,Verlust}$ (GI. 6.4)

• N-Bilanz:

$$N_{CP}m_{CP} = N_{SP}m_{SP} + m_{N,Verlust}$$
(GI. 6.5)

S-Bilanz:

$$c_{SS}m_{SS} \frac{32}{98} = S_{SP}m_{SP} + m_{S,Verlust}$$
 (GI. 6.6)

Die Elementmassen für H, O und S des H_2SO_4 – Anteils im Kondensat wurden dem jeweiligen Verlust zugeschlagen. Zielgrößen des Sulfonierschrittes sind die mit dem Sulfprodukt ausgebrachten Elementmassen. Neben der Einbindung des mit der Schwefelsäure eingebrachten Schwefels ist auch der Abbau des Kohlenstoffs und Wasserstoffs sowie der Einbau des Sauerstoffs von Interesse. Da mit dem Sulfprodukt Elemente auch in Form von Restschwefelsäure ausgetragen werden, sind die Kenngrößen ebenfalls für das trockene Produkt zu formulieren. Anstelle der Elementarzusammensetzung des schwefelsäure-feuchten Sulfproduktes tritt die ebenfalls gemessene Zusammensetzung des durch Waschen und Trocknen erhaltenen trockenen Sulfproduktes (Anhang GI. A 6.4 - A 6.7).

Der Kohlenstoff des Copolymers wird theoretisch betrachtet zu 100 % in das Sulfprodukt eingebunden. Durch oxidativen Angriff der Schwefelsäure bei Temperaturen oberhalb etwa 200 °C kann ein Teil davon als CO und CO₂ verloren gehen.

Wärmebilanz

Bei diskontinuierlichen Prozessen (intermittierend betriebene Batchreaktoren) ist ein zyklisches Aufheizen und Abkühlen des Reaktors notwendig. Zwangsweise muss dabei dem gesamten Reaktor Wärme zugeführt und wieder entzogen werden. Durch den instationären Temperaturverlauf des Reaktors ändern sich die fließenden Wärmeströme ebenfalls mit der Zykluszeit [Hes79].

Während der Aufheizphase wird die durch die Beheizung bereitgestellte Wärmeenergie eingesetzt zur

- Aufheizung des Reaktionsgemisches (Copolymer und Schwefelsäure) Q_{RM},
- Aufheizung des Reaktormantels Q_M,

- Aufheizung der Isolation Q_{Iso},
- Verdampfung des Reaktionswassers (Kondensationswärme Q_{Kond}, Abgaswärme Q_A),
- Deckung von Verlusten Q_V (Abstrahlung, Leitung entlang der Konstruktion, freie Konvektion der heißen Luft im Spalt).

$$Q_{H} = Q_{RM} + Q_{M} + Q_{Iso} + Q_{Kond} + Q_{A} + Q_{V}$$
(GI. 6.7)

Die bei der Sulfonierung freiwerdende Reaktionswärme ist in Q_H enthalten. Anhand von protokollierten Messdaten kann der von der Heizwicklung abgegebene Wärmestrom $\dot{Q}_H = P_{el}$ errechnet werden. Die Heizung wird durch die SPS mittels Zykluszeiten geregelt; der Anteil $\eta_{\text{Re gler}}$ der im Regelintervall eingebrachten Leistung an der maximalen Leistung P_{max} wird in den Versuchsprotokollen aufgezeichnet.

$$P_{el} = \eta_{\text{Re gler}} P_{\text{max}} \qquad [kW] \tag{GI. 6.8}$$

Die in der Aufheizphase von der Heizung eingebrachte Wärmemenge $Q_H = Q_{el}$ kann durch Summation aller eingebrachten Wärmen in den Zeitintervallen Δt_i [s] berechnet werden:

$$Q_{el} = \sum_{i} \eta_{\text{Regler}} P_{el,i} \cdot \Delta t_{i} \qquad [kJ]$$
(GI. 6.9)

Bild 6-2: Berechnete Heizleistung und Heizwärme in der Aufheizphase eines Zyklus

Für die Reaktionsmischung, Reaktorwand und die Isolation kann aus der am Ende der Aufheizphase erreichten Temperatur die aufgenommene Wärmemenge bestimmt werden:

$$Q_{RM} = m_{RM} c_{P,RM} \left(T_{RM}^{end} - T_{RM}^{0} \right) [kJ]$$
(GI. 6.10)

 m_{RM} Masse der Reaktionsmischung [kg]

c_{P,RM} Wärmekapazität der Reaktionsmischung [kJ/kgK]

T_{RM}^{end} Endtemperatur der Reaktionsmischung [°C]

 T_{RM}^{0} Anfangstemperatur der Reaktionsmischung [°C]

$$Q_M = m_M c_{P,M} \left(T_M^{end} - T_M^0 \right)$$
 [kJ] (GI. 6.11)

m_M Masse der Reaktorwand [kg]

c_{P,M} Wärmekapazität der Reaktorwand [kJ/kgK]

- T_M⁰ Anfangstemperatur der Reaktorwand [°C]
- T_M^{end} Endtemperatur der Reaktorwand [°C]

$$Q_{Iso} = m_{Iso} c_{P,Iso} \left(T_{Iso}^{end} - T_{Iso}^{0} \right) \quad [kJ]$$
(GI. 6.12)

m_{lso} Masse der Reaktorisolation [kg]

c_{P, Iso} Wärmekapazität der Reaktorisolation [kJ/kgK]

T_{Iso}^{end} Endtemperatur der Reaktorisolation [°C]

T_{Iso}⁰ Anfangstemperatur der Reaktorisolation [°C]

Die Wärmekapazität der Reaktionsmischung wurde aus den Wärmekapazitäten des Copolymers und der Schwefelsäure nach der Mischungsregel berechnet (Gl. 5.32).

Tabelle 5-10 und Tabelle 5-11 enthalten die Stoffdichten sowie die Volumina des Reaktormantels und der Isolation. Aus der angefallenen Kondensatmenge und der aus der Gesamtmassebilanz (Gl. 6.1) ermittelten Abgasmenge kann die durch Verdampfung des Wassers abgeführte Wärme berechnet werden.

$$Q_{Kond} = m_{Kond} \Delta h_V \text{ [kJ]}$$
(GI. 6.13)

m_{Kond} Kondensatmasse [kg]

 Δh_V Verdampfungsenthalpie von Wasser [kJ/kg]

$$Q_A = m_{A,ges} \cdot w_D \cdot \Delta h_V \cdot 10^{-2} \text{ [kJ]}$$
 (GI. 6.14)

m_{A,ges} Abgasmasse [kg]

 Δh_V Verdampfungsenthalpie [kJ/kg]

w_D Wasserdampfgehalt [Ma-%]

Bei einer Temperatur von 190°C werden nur geringe Anteile Schwefelsäure verdampft (Bild 4-6), so dass allein die Verdampfungsenthalpie von Wasser berücksichtigt wird (190 °C: 1978,2 kJ/kg). Verluste durch Abstrahlung, Leitung und Konvektion können nicht direkt rechnerisch ermittelt werden. Q_V kann nur aus der Wärmebilanz als Differenz ermittelt werden und enthält demzufolge den Bilanzfehler.

Der energetische Nutzen der Aufheizphase besteht streng betrachtet in der Aufheizung des Reaktionsgemisches und der Verdampfung des Reaktionswassers (Kondensationswärme und Abgaswärme). Die Gleichung für den Nutzwirkungsgrad lautet:

$$\eta_{Nutz} = \frac{Q_{RM} + Q_{Kond} + Q_{A}}{Q_{el}} \cdot 100 \,[\%]$$
(GI. 6.15)

In den Reaktorwirkungsgrad geht zusätzlich der Energieanteil ein, der für die Aufheizung des Reaktormantels als wärmeübertragende Fläche erforderlich ist:

$$\eta_{\text{Re aktor}} = \frac{Q_{RM} + Q_{Kond} + Q_A + Q_M}{Q_{el}} \cdot 100 \,[\%]$$
(GI. 6.16)

Nach Ablauf der Reaktion werden Sulfprodukt und Reaktor durch Luft direkt und indirekt abgekühlt. Die Kühlluft führt neben der Speicherwärme des Reaktormantels und des Reaktionsgemischs zwangsweise auch die in der Isolation gespeicherte Wärme ab. Die über den Dosierkopf eingeblasene Luft (Zusatzkühlluft) kühlt ausschließlich den Reaktorinnenraum, d.h. den Reaktormantel und das Produktgemisch ab. Die Wärmebilanz der Abkühlphase I (siehe Bild 6-3) lautet:

$$Q_{KL} + Q_{ZKL} + Q_V = Q_{RM} + Q_M + Q_{Iso}$$
(GI. 6.17)

Die in einem Zeitintervall Δt_i mit der Kühlluft abgeführte Wärmemenge $Q_{KL,i}$ kann aus der protokollierten Austrittstemperatur der Kühlluft $T_{KL,i}$ berechnet werden.

$$Q_{KL,i} = \dot{m}_{KL} c_{P,KL} (T_{KL,i} - T_U) \Delta t_i \quad [kJ]$$
(GI. 6.18)

 \dot{m}_{KL} Kühlluftmassestrom [kg/s]

CP, KL Wärmekapazität der Kühlluft [kJ/kgK]

T_U Umgebungstemperatur [°C]

- T_{KL} Austrittstemperatur der Kühlluft [°C]
- Δt_i Zeitintervall [s]

Die in der Abkühlphase I bzw. II (siehe Bild 6-3) insgesamt abgeführte Wärme erhält man durch Summation über die einzelnen Zeitintervalle:

$$Q_{KL} = \sum_{i} \dot{m}_{KL} c_{P,KL} (T_{KL,i} - T_U) \Delta t_i \, [kJ]$$
(GI. 6.19)

Aufgrund fehlender Messstellen wird für die Berechnung der mit der Zusatzkühlluft abgeführten Wärme die Annahme getroffen, dass die heiße Luft des Reaktorinnenraumes durch die kalte

Zusatzkühlluft verdrängt wird. Die Austrittstemperatur der Zusatzkühlluft wird der momentanen Reaktorinnentemperatur (gemessen am eingehülsten Thermoelement) T_{RM} gleichgesetzt:

$$Q_{ZKL,i} = \dot{m}_{ZKL} c_{P,ZKL} (T_{ZKL,i} - T_U) \Delta t_i [kJ]$$
(GI. 6.20)

$$Q_{ZKL} = \sum_{i} \dot{m}_{ZKL} c_{P,ZKL} (T_{ZKL,i} - T_U) \Delta t_i \, [kJ]$$
(GI. 6.21)

 $\dot{m}_{\it ZKL}$ Zusatzkühlluftmassestrom [kg/s]

c_{P, ZKL} Wärmekapazität der Zusatzkühlluft [kJ/kgK]

T_U Umgebungstemperatur [°C]

T_{ZKL} Austrittstemperatur der Zusatzkühlluft [°C]

Δt_i Zeitintervall [s]

In der Abkühlphase II (leerer Reaktor) entfällt Q_{ZKL} auf der linken Seite von GI. 6.17. An die Stelle von Q_{RM} tritt die mit der heißen Luft dem Reaktor entzogene Wärmemenge Q_{RI} :

$$Q_{RI} = V \frac{p}{R_L \left(\frac{T_{RI}^{end} + T_{RI}^0}{2}\right)} c_{P,L} \left(T_{RI}^{end} - T_{RI}^0\right) [kJ]$$
(GI. 6.22)

- V Volumen des Doppelkonusreaktors [m³]
- p Normdruck (101325 Pa)

R_L Gaskonstante von Luft (R_L=287,33 kJ/kgK)

c_{P,L} Wärmekapazität von Luft [kJ/kgK]

T_{RI}^{end} Endtemperatur des Reaktorinnenraumes [°C]

 T_{RI}^{0} Anfangstemperatur des Reaktorinnenraumes [°C]

6.2 Ermittlung der Aufheiz- und Abkühldynamik unter Ausschluss der Reaktion

Um den Einfluss von Drehzahl, Füllungsgrad, Zugabe von Kühlluft in den Reaktor (Zusatzkühlluft) und Kühlluftmenge auf die Aufheiz- und Abkühlzeiten zu erfassen, wurden Versuche unter Ausschluss der Sulfonierung durchgeführt, indem der Reaktor mit bereits ausreagiertem Sulfprodukt befüllt wurde (so genannte Inertversuche). Tabelle 6-1 enthält den Versuchsplan. Variiert wurden Füllungsgrad, Reaktordrehzahl sowie der Kühlluftstrom für die Reaktoraußenwandkühlung. Die Versuche wurden sowohl mit als auch ohne Zusatzkühlluft durchgeführt.

Versuch Nr.	Füllungsgrad	Drehzahl	Zusatzkühlluft	Kühlluft	Sofort-
AV	%	min⁻¹	12 m³/h i.N.	m³/h i.N.	entleerung
1	20	30,2	EIN	37,70	NEIN
2	20	30,2	AUS	37,70	NEIN
3	20	15,8	EIN	37,70	NEIN
4	20	30,2	AUS	37,70	JA
7	30	30,2	EIN	37,70	NEIN
8	30	30,2	AUS	37,70	NEIN
9	30	15,8	EIN	37,70	NEIN
11	30	23	EIN	37,70	NEIN
12	30	30,2	EIN	48,16	NEIN
13	10	30,2	EIN	37,70	NEIN
14	10	30,2	AUS	37,70	NEIN
15	10	15,8	EIN	37,70	NEIN
17	10	23	EIN	37,70	NEIN
18	10	30,2	EIN	48,16	NEIN
20	0	30,2	EIN	37,70	NEIN
21	30	30,2	EIN	37,70	NEIN
22	0	30,2	EIN	37,70	NEIN
23	0	30,2	EIN	70,57	NEIN
24	0	30,2	EIN	37,70	NEIN

Tabelle 6-1: Versuchsplan der Inertversuche

Typische Temperaturverläufe für die Reaktionsmischung (Probe) und das Reaktorsegment 3 (siehe Bild 5-9) beinhaltet Bild 6-3. In der Aufheizphase wird der Feststoff auf die gewünschte Endtemperatur definiert aufgeheizt. Nach einer Haltezeit (hier nicht dargestellt) werden der Reaktormantel und die Heizschalen mit Luft gekühlt (Abkühlphase I). Zusätzlich wird direkt in den Reaktor Luft (Zusatzkühlluft) eingeblasen und der Feststoff gekühlt. Die Kühlung des Reaktormantels wird nach dem Ausleeren des Reaktors fortgesetzt (Abkühlphase II). Die einzelnen Abschnitte Aufheizphase, Abkühlphase I und Abkühlphase II werden neben der Zeitdauer mit den Temperaturgradienten (Aufheiz- bzw. Abkühlraten) beschrieben.

Bild 6-3: Zeitlicher Verlauf der Proben- und Manteltemperatur bei den Inertversuchen

Aus den Versuchsprotokollen wurden die in Tabelle A6-1 des Anhangs aufgeführten Größen wie folgt berechnet:

- a) Die Aufheizzeit ist die erforderliche Zeit, um die Probe von 80 °C (h
 öchstzul
 ässige Temperatur f
 ür das Wiederbef
 üllen mit Copolymer) auf Endtemperatur aufzuheizen.
- b) Zur Berechnung der mittleren Aufheizrate wurde bei einer Probentemperatur von 140 °C und 180 °C die Zeit abgelesen und daraus der Temperaturgradient gebildet.
- c) Zur Ermittlung der maximalen Aufheizrate wurden die Temperaturgradienten des einzelnen Regelintervalls berechnet. Der größte auftretende Wert wurde als maximale Aufheizrate bezeichnet.
- d) Die mittlere Abkühlrate I wurde aus der Temperaturdifferenz der Probe zu Beginn und am Ende der Abkühlphase I dividiert durch die vorgegebene Zeit berechnet.
- e) Die maximale Abkühlrate I und II wurde analog der maximalen Aufheizrate ermittelt.
- f) Die mittlere Abkühlrate II wurde aus der Manteltemperatur zu Beginn der Abkühlphase II minus 80 °C Mantelendtemperatur geteilt durch die dafür benötigte Zeit berechnet.
- g) Die Gesamtabkühlzeit ist die Zeit zwischen Haltezeitende und Zyklusende.
- h) Die mittlere Abkühlrate ist die Manteltemperaturdifferenz zwischen Haltezeitende und Zyklusende dividiert durch die Gesamtabkühlzeit.

Einfluss von Füllungsgrad und Drehzahl auf die Aufheiz- und Abkühlraten

Die mittlere Aufheizrate nimmt mit sinkendem Füllungsgrad (FG) und wachsender Drehzahl (DZ) zu. Grund dafür sind die kleineren aufzunehmenden Wärmemengen und die bessere Durchmischung des Reaktorinhalts. Bei gleicher Reaktordrehzahl muss die mittlere Aufheizrate bei kleineren Füllungsgraden stets größer sein. Hinsichtlich der Durchmischung liegen die Versuchspunkte zwischen den zwei Idealfällen der ruhenden Schüttung und der ideal durchmischten Schüttung. Im Fall der ruhenden Schüttung würden sich die Temperaturprofile über der Schütthöhe mit zunehmender Aufheizzeit ausgleichen. Die mittlere Aufheizrate für DZ = 0 min⁻¹

würde nur mit steigendem Füllungsgrad kleiner werden. Bei der idealen Durchmischung müsste bei einer Grenzdrehzahl eine maximale mittlere Aufheizrate erreicht werden [Kro01].

Die Versuchspunkte (Bild 6-4) entsprechen diesen Überlegungen, jedoch können aufgrund der Streuung keine genaueren Aussagen gemacht werden. Die Drehzahl ist gegenüber dem Füllungsgrad von geringerem Einfluss.

Bild 6-4: Abhängigkeit der mittleren Aufheizrate von Füllungsgrad und Reaktordrehzahl

Die mittlere Abkühlrate I (Bild 6-5) ist im Gegensatz dazu zwar vom Füllungsgrad abhängig, die Drehzahl hat jedoch nur einen geringen Einfluss. Der Wärmeübergang im Spalt wird durch die Umlaufgeschwindigkeit des Reaktors kaum verbessert, da die Kühlluftgeschwindigkeit wesentlich größer ist.

Die mittlere Abkühlrate II (Bild 6-5) ist aus diesem Grund ebenfalls unabhängig von der Drehzahl. Da der Reaktor bereits leer ist, hat der Füllungsgrad naturgemäß keinen direkten Einfluss mehr. Indirekt aber bewirkt ein höherer Füllungsgrad eine schlechtere Abkühlung in der Abkühlphase I (konstante Zeitdauer) und somit eine höhere Anfangstemperatur in Phase II, was sich durch eine leicht erhöhte mittlere Abkühlrate II bei höheren Füllungsgraden bemerkbar macht. Der Mittelwert liegt bei 1,95 K/min, die Standardabweichung beträgt 0,17 K/min. Die zu den Aufheiz- und Abkühlraten zugehörigen Zeitabschnitte verhalten sich indirekt proportional.

Bild 6-5: Abhängigkeit der mittleren Abkühlraten I und II von Füllungsgrad und Reaktordrehzahl

Einfluss von Kühlluft und Zusatzkühlluft auf das Abkühlverhalten

Um den Reaktorinhalt in der Kühlphase I maximal abzukühlen, wird zusätzlich Luft in den Innenraum eingeblasen. Dies führt zu einer Steigerung der mittleren Abkühlrate I (Bild 6-6). Ein wesentlicher Teil der in der Probe gespeicherten Wärme kann also durch die Zusatzkühlluft abgeführt werden.

Auch die Wärmeabfuhr über die mit Luft gekühlte Reaktorwand kann durch eine Steigerung des Kühlluftstroms im Spalt verbessert werden (Bild 6-6, rechtes Teilbild). Die Re-Zahl liegt mit 200 bis 1000 weit unter dem Umschlagpunkt zur turbulenten Spaltströmung. Allerdings sind die Endtemperaturdifferenzen zwischen Luft und Reaktorwand am Luftaustritt so gering (< 5 K), dass eine ungenügende Ausnutzung der wärmeübertragenden Wandfläche zu vermuten ist. Durch eine Steigerung des Kühlluftmengenstroms würde die Endtemperaturdifferenz aufgeweitet und die Reaktorwandfläche als Kühlfläche besser genutzt werden.

Bild 6-6: Abhängigkeit der Abkühlrate I von der Zusatzkühlluft bzw. der Abkühlrate II von der Kühlluftmenge (Drehzahl = 30,2 min⁻¹)

Auf Basis der mittleren Aufheiz- und Abkühlrate kann die Zyklusdauer in Abhängigkeit vom Füllungsrad und der Zusatzkühlluft abgeschätzt werden. Tabelle 6-2 enthält ausgewählte Beispiele. Die Halte- und Chargierzeit wurde für die Berechnung der Zykluszeit mit 20 bzw. 15 min angenommen. Das Abkühlen ohne Zusatzkühlluft wirkt sich besonders auf die Abkühlrate I aus. Diese sinkt von 0,89 K/min (AV 7) auf 0,43 K/min (AV 8) (siehe Tabelle A6-1 des Anhangs). Somit ergibt sich als Ergebnis der Inertversuche eine Zykluszeit der Pilotanlage von 127 bis 153 min.

		Aufheizzeit	Haltezeit	Abkühlzeit	Chargierzeit	Zykluszeit
		(80 – 200 °C)		(200 – 80 °C)		
	FG / ZKL	min	min	min	min	min
AV 13	10 % /EIN	32	20	60	15	127
AV 1	20 % /EIN	39	20	73	15	147
AV 7	30 % /EIN	44	20	69	15	148
AV 8	30 % /AUS	48	20	70	15	153

Tabelle 6-2: Einfluss des Füllungsgrades und der Zusatzkühlluft auf die Zykluszeit

Ergebnisse der Wärmebilanz

In Tabelle 6-3 und Bild 6-7 sind die Ergebnisse der Wärmebilanz für Aufheizphase und Haltezeit bei den so genannten Inertversuchen zusammengestellt. Um die Wärmeverteilung bei unterschiedlichen Füllungsgraden vergleichen zu können, werden nur die Versuche berücksichtigt, die gleiche Startbedingungen (Probentemperatur < 30 °C) aufweisen (Bild 6-7). Bei den anderen Versuchen liegt die Starttemperatur darüber.

Versuch	FG	DZ	Startbedingung	Q _{EL}	Q _{RM}	Q _M	Q _{Iso}	Q _{Kond}	Qv	Zeit	η_{Nutz}	η_{Reaktor}
	%	min-1		kJ	kJ	kJ	kJ	kJ	kJ	min	%	%
AV 15	10	15,8	>30°C	18396	1015	3181	7912	556	5733	44	5,5	22,8
AV17	10	23,0		22899	1426	3964	9124	278	8108	53	6,2	23,5
AV 13	10	30,2		26851	1451	4168	9852	1112	10268	59	5,4	20,9
AV18	10	30,2		23169	1420	3921	8544	278	9007	56	6,1	23,1
AV 14	10	30,2	>30°C	17462	1052	3188	8078	0 *	5145	40	6,0	24,3
AV 3	20	15,8	>30°C	20661	1854	3190	8842	278	6496	50	9,0	24,4
AV 1	20	30,2	Isolation ausgekühlt	39198	2575	4264	11581	8340	12438	72	6,6	17,4
AV 2	20	30,2		30455	2551	4085	10490	139	13191	63	8,4	21,8
AV4	20	30,2	>30°C	19845	1852	3305	8811	278	5599	45	9,3	26,0
AV 9	30	15,8		42373	4055	4694	13932	3058	16634	69	9,6	20,6
AV22	30	15,8	>30°C	22890	2721	3227	9080	3892	3970	52	11,9	26,0
AV 11	30	23,0	>30°C	35948	3829	4150	11658	1668	14643	63	10,7	22,2
AV 7	30	30,2	Isolation ausgekühlt	41569	2624	4299	11825	3892	18929	71	6,3	16,7
AV21	30	30,2	-	32661	3861	4105	11048	3892	9756	82	11,8	24,4
AV 12	30	30,2		37542	3860	4291	10934	1390	17067	70	10,3	21,7
AV 8	30	30,2	>30°C	21642	2684	3221	9354	834	5550	48	12,4	27,3

Tabelle 6-3: Ergebnisse der Wärmebilanz ohne Reaktion

* kein Kondensat

Bild 6-7: Einfluss des Füllungsgrades und der Drehzahl auf den Wärmebedarf (ohne Reaktion)

Die vom Inertmaterial aufgenommene Wärme steigt erwartungsgemäß mit dem Füllungsgrad an. Die Energie, die für die Aufheizung des Reaktormantels und der Isolation benötigt wird, bleibt konstant. Da mit dem Füllungsgrad die Aufheizzeit steigt, nehmen auch die Wärmeverluste zu. Der Nutzwirkungsgrad ist gering, steigt jedoch mit dem Füllungsgrad von 5 % auf 10 % an.

Der Reaktorwirkungsgrad liegt bei 20 %. Für die Erwärmung der Isolation werden 32 bis 38 % der Heizleistung benötigt. Dieser hohe Anteil kommt nicht nur durch die hohe Wärmekapazität und Isolationsmasse zustande, sondern auch durch die sehr hohe Temperatur der Isolationsinnenfläche. Die Verluste durch Wärmeabstrahlung, Konvektion und Leitung summieren sich auf 37 - 43 % der Heizleistung.

Die Bilanzergebnisse der Abkühlphase sind in Tabelle A6-2 (Anhang) zusammengefasst. In Abkühlphase I werden 40 % der insgesamt abgeführten Wärme als Verluste an die Umgebung abgestrahlt. Durchschnittlich 21 % der mit der Luft abgeführten Wärme werden dem Reaktor durch die Zusatzkühlluft entzogen. Der größte Wärmeanteil wird von der Reaktorisolation abgegeben. Sie gibt jedoch wegen ihrer geringen Wärmeleitfähigkeit nur einen Teil der gespeicherten Wärme ab.

6.3 Versuchsplan und -durchführung der Sulfonierversuche

Die Abhängigkeit der Produkteigenschaften von den Sulfonierparametern Masseeinsatzverhältnis, Haltezeit und Temperatur wurde in 22 Versuchen ermittelt. In einzelnen Versuchspunkten wurde darüber hinaus der Einfluss einer Nachreaktion in der abgelagerten Sulfproduktschüttung sowie von Füllungsgrad und Reaktorinnendruck auf den Prozess ermittelt.

Ziele der Sulfonierversuche waren:

- Beschreibung des Sulfonierzyklus',
- Stoff- und Wärmebilanzierung,
- Bewertung der erzeugten Sulfprodukte, Kokse und Aktivate,
- Vergleich der Produktqualitäten aus der Pilotanlage mit bereits durchgeführten Laborversuchen.

Der Versuchsplan (Tabelle 6-4) umfasst die nachfolgenden Parameter. Die Drehzahl des Reaktors wurde mit 30,2 min⁻¹ konstant gehalten, die mittlere Aufheizrate betrug 2,8 – 4,5 K/min.

Masseeinsatzverhältnis (MEV):

	SU 4	1,0	SU 6	1,2	SU 8	1,4	SU 10	1,6	SU 19	1,8	SU 22	2,0
(SHZ 2	0 mir	ו, ST 1	95 °C	C, m _{CP}	15 kg	j, FG 10	- 13	,1 %, RI	D 75 ·	– 80 kPa	a)

Haltezeit (SHZ):

SU 18	5 min	SU 17/21	10 min	SU 8	20 min	SU 13	30 min	SU 14	40 min
(MEV 1	,4, ST	195 °C, m _{CF}	∍ 15 kg, I	RD 75 -	– 80 kPa)			

• Sulfoniertemperatur (ST):

SU 11	180 °C;	SU 8	195 °C	SU 27	220 °C
(MEV 1,	4, SHZ 2	0 min, I	m _{CP} 15 k	g, RD 7	5 – 80 kF

Reaktordruck (RD):

SU 22	75 – 80 kPa	SU 29	100 kPa
(MEV 2	, SHZ 20 min, ST	⊺ 195 °C	, m _{CP} 15 kg)

• Füllungsgrad (FG):

SU 8/19	10 %	m _{CP} = ′	15 kg	SU 16/25	18 %	m _{CP} = 25,5 kg
(MEV 1,4	, SHZ 2	20 bzw.	40 min, S	T 195 °C, R	D 75 –	80 kPa)

Nachreaktion:

Die Versuche SU 23 (MEV 1,4; SHZ 20 min) und SU 24 (MEV 1,8; SHZ 20 min) wurden im Reaktor bis auf eine Temperatur von 100 °C abgekühlt, um eine Nachreaktion des Sulfproduktes in den Transportbehältern zu unterbinden. Abhängig vom Füllungsgrad stellten sich nach 30 min Abkühlzeit Sulfprodukttemperaturen zwischen 100 und 160 °C ein.

Versuch	0.5	Sollwert	е	Halte	phase	Abkühlphase I	Reaktordruck	Einwaage	MEV
Nr.	HZ 1	HZ 2	HZ 3	T _{Probe}	Zeit		absolut	CP (FG)	
	°C	°C	°C	°C	min	min	kPa	kg	
SU 1	200	210	210	195	0	10	75 - 80	20 (13,6 %)	1
SU 2	200	210	210	195	20	30	75 - 80	20 (13,6 %)	1
SU 3	200	210	210	195	20	30	75 - 80	20 (13,6 %)	1
SU 4	200	210	210	195	20	30	75 - 80	15 (10,2 %)	1,0
SU 6	200	210	210	195	20	30	75 - 80	15 (10,3 %)	1,2
SU 8	200	210	210	195	20	30	75 - 80	15 (11 %)	1,4
SU 10	200	210	210	195	20	30	75 - 80	15 (11,7 %)	1,6
SU 11	180	190	190	180	20	30	75 - 80	15 (11 %)	1,4
SU 12	220	230	230	210	20	30	75 - 80	15 (11 %)	1,4
SU 13	200	210	210	195	30	30	75 - 80	15 (11 %)	1,4
SU 14	200	210	210	195	40	30	75 - 80	15 (11 %)	1,4
SU 16	200	210	210	195	20	30	75 - 80	25,5 (18,7 %)	1,4
SU 17	200	210	210	195	10	30	75 - 80	15 (11 %)	1,4
SU 18	200	210	210	195	5	30	75 - 80	15 (11 %)	1,4
SU 19	200	210	210	195	20	30	75 - 80	15 (12,4 %)	1,8
SU 20	200	210	210	195	20	30	75 - 80	15 (11 %)	1,6
SU 21	200	210	210	195	10	30	75 - 80	15 (11 %)	1,4
SU 22	200	210	210	195	20	30	75 - 80	15 (13,1 %)	2,0
SU 23	200	210	210	195	20	bis 100°C	75 - 80	15 (11 %)	1,4
SU 24	200	210	210	195	20	bis 100°C	75 - 80	15 (12,4 %)	1,8
SU 25	200	210	210	195	40	30	75 - 80	25,5 (18,7 %)	1,4
SU 27	220	230	230	220	20	30	75 - 80	15 (11 %)	1,4
SU 28	200	210	210	195	20	30	100	15 (13,8 %)	2,2
SU 29	200	210	210	195	20	30	100	15 (13,1 %)	2,0
SU 30	200	210	210	195	20	30	75 - 80	15 (13,1 %)	2,0
SU 31	200	210	210	195	20	30	75 - 80	15 (13,1 %)	2,0

Tabelle 6-4: Versuchsplan der Sulfonierversuche

6.4 Beschreibung des Sulfonierzyklus

Einen typischen Temperaturverlauf der Probe und der Heizzone 3 (Reaktorwand) für einen Sulfonierzyklus zeigt Bild 6-8. Tabelle A6-3 (Anhang) umfasst neben den Versuchsparametern die zur Beschreibung verwendeten Größen.

In der Aufheizphase ist deutlich das Einsetzen der exothermen Sulfonierungsreaktion zwischen 110 und 120 °C zu erkennen. Da die exotherme Sulfonierreaktion das Copolymer - Schwefelsäure-Gemisch oberhalb 110 °C stark aufheizt, wurden neben der mittleren Aufheizrate zwischen der Anfangs- und Reaktionstemperatur noch die mittleren Aufheizgeschwindigkeiten zwischen 50 und 100 °C (Aufheizrate a) und zwischen 120 und 150 °C (Aufheizrate b) gebildet.

Im Vergleich mit den Inertversuchen liegt die Aufheizrate a im selben Bereich, da die Wärmekapazität des Copolymer-Schwefelsäure-Gemisches analog derjenigen des Sulfproduktes ist und der Aufheizvorgang bis zum Einsetzen der Reaktion ähnlich abläuft (Bild 6-9).

Bild 6-8: Temperaturverläufe und zugehörige Phasen eines Sulfonierzyklus

Wie bereits erwähnt, beginnt die Sulfonierreaktion bei einer Probentemperatur von 100 - 120 °C. Aufgrund der Kapselung des Thermoelements wird die Probentemperatur mit einer bestimmten zeitlichen Verzögerung gemessen. Der tatsächliche Reaktionsstart ist daher eher zu suchen. Da auch der Wärmeübergang an das Thermoelement eine gewisse Zeit und eine Temperaturdifferenz zur Überwindung der Transportwiderstände benötigt, sind die aus den Prozessdaten abgelesenen Starttemperaturen der Reaktion stark schwankend. Der Einfluss des MEV auf den Temperaturverlauf kann deshalb nicht eindeutig beschrieben werden (Bild 6-10). Die Reaktion scheint jedoch bei geringem MEV bei geringeren Temperaturen zu starten.

Die freiwerdende Reaktionswärme wird vollständig zur Aufheizung der Reaktionsmischung genutzt. Die Aufheizrate b ist deshalb gegenüber der Aufheizrate a doppelt so hoch (Bild 6-11). Die Werte streuen aber zu stark, um eine Abhängigkeit vom Füllungsgrad oder Masseeinsatzverhältnis erkennen zu können. Da dem Reaktormantel keine Wärme mehr entzogen wird, wird er durch die eingebrachte Heizleistung zügiger als vorher aufgeheizt. Die Manteltemperaturen sind jedoch aufgrund der Regelung stets 10 - 15 K höher als die Probentemperatur (Bild 6-8), es wird deshalb keine Wärme aus dem Copolymer - Schwefelsäure - Gemisch abgeführt. Die Aufheizrate b des Mantels ist geringer als die der Reaktionsmischung (Bild 6-12). Die Temperaturdifferenz kann in der relativ kurzen Zeitspanne nicht durch die Reaktion verringert werden.

Bild 6-9: Aufheizrate a der Sulfonierversuche und mittlere Aufheizrate der Inertversuche in Abhängigkeit vom Füllungsgrad Bild 6-10: Einfluss des MEV auf den Reaktionsbeginn der Sulfonierung

Bild 6-11: Vergleich der Aufheizraten a (ohne Reaktion) und b (mit Reaktion) in Abhängigkeit vom Füllungsgrad (MEV 1,4) Bild 6-12: Abhängigkeit der Aufheizrate b der Reaktionsmischung (Probentemperatur) und des Reaktormantels vom MEV (m_{CP} = 15 kg)

Die Verdampfung von Reaktionswasser (und geringfügig Schwefelsäure) beginnt bei ca. 180 °C. Die Aufheizrate des Reaktionsgemisches steigt trotz Wärmeabfuhr über den Dampf unvermindert bis auf 200 °C an. In der nachfolgenden Haltezeit sinkt die Temperatur regelungstechnisch bedingt langsam wieder auf ca. 190 °C ab. Mit der Regelung kann dieser Temperaturabfall nur wenig beeinflusst werden. Für dieses Regelverhalten sind mehrere Ursachen verantwortlich:

- Die Manteltemperaturen und nicht die Probentemperatur werden als Sollwerte f
 ür die 3 Heizschalensegmente verwendet. Dadurch kann die tats
 ächliche Probentemperatur nur indirekt beeinflusst werden.
- Es besteht apparativ keine Möglichkeit zur Kühlung des Reaktionsgemisches. Die Reaktionswärme kann deshalb nicht abgeführt werden (Bsp. SU 11). Die Verdampfung des Reaktionswassers und die dosierte Schwefelsäuremenge begrenzen jedoch den Temperaturanstieg, so dass ein Durchgehen der Reaktion nicht möglich ist (Bsp. SU 27).
- Ein Großteil der Heizenergie wird für die Aufheizung der Isolation verbraucht. Das zu regelnde System ist deshalb sehr träge.

Nach Ablauf einer Haltezeit von 20 min (mit Ausnahme der Versuche mit höherem Füllungsgrad) konnte bei allen Versuchen ein rieselfähiges Sulfprodukt erhalten werden.

Bei den Sulfonierversuchen zeigte sich ein ähnliches Abkühlverhalten wie bei den Inertversuchen (Tabelle A6-3 - Anhang). Da jedoch die Reaktordrehzahl von 30,2 min⁻¹ konstant gehalten wurde, sind nur Abhängigkeiten vom Füllungsgrad darstellbar (Bild 6-13,). Die Sulfonierversuche bestätigen die bei den Inertversuchen gefundene Füllungsgradabhängigkeit. Wie bereits in Abschnitt 6.4 erläutert, ist die Abkühlung des Reaktormantels in der Abkühlphase II nur von den Randbedingungen Kühlluftzufuhr und Anfangstemperatur abhängig, nicht aber vom Füllungsgrad oder der Drehzahl (Bild 6-14).

Bild 6-13: Mittlere Abkühlrate I der Inert- und Sulfonierversuche (Haltezeit 20 min, Abkühlzeit 30 min, Reaktordrehzahl 30,2 min⁻¹) Bild 6-14: Mittlere Abkühlrate II der Inertund Sulfonierversuche (Haltezeit 20 min, Abkühlzeit 30 min, Reaktordrehzahl 30,2 min⁻¹)

Fazit:

Die Aufheiz- und Abkühldynamik kann durch die Drehzahl des Reaktors und den Füllungsgrad beeinflusst werden. Durch höhere Drehzahlen und geringere Füllungsgrade werden höhere Temperaturgradienten erreicht. Das Einblasen von Zusatzkühlluft in der Abkühlphase I beschleunigt die Abkühlung des Reaktorinhalts. Die Abkühlrate I steigt von 0,43 K/min (AV 8) auf

0,89 K/min (AV 7) an. Die geringe Temperaturdifferenz zwischen Reaktormantelfläche und Kühlluft am Kühlluftaustritt lässt eine noch schnellere Abkühlung bei höheren Luftvolumenströmen erwarten, wenn eine gleichmäßige Beaufschlagung der Reaktorwand erreicht wird. Die Versuchsdauer variiert mit Füllungsgrad und Drehzahl.

Eine Abschätzung der Zyklusdauer lässt sich mit den gemessenen Werten für die Inertversuche aus Tabelle A6-1 (Anhang) vornehmen:

- Füllungsgrad: 10 % (23,7 l) 20 % (47,4 l) 30 % (71,1 l)
- Aufheizzeit (ohne Reaktion): 30 min 40 min 48 min
- Haltezeit (Vorgabe): 5-40 min
- Abkühlphase I (Vorgabe): 30 min
- Reaktorentleerung (Vorgabe): 15 min
- Abkühlphase II (bis 80 °C): 50 min
- Zykluszeit (ohne Reaktion): 130 165 min 140 175 min 148 183 min
- Leistung: 8,6 10,9 l/h 16,3 20,3 l/h 23,3 28,8 l/h

Je nach Haltezeit und Füllungsgrad sind somit für einen Zyklus mindestens 130 min zu erwarten. Mit dem Füllungsgrad nimmt auch die Zykluszeit ab. Jedoch lässt die Reduzierung der Zykluszeit über den Füllungsgrad keine Leistungssteigerung zu. Diese sinkt mit dem Füllungsgrad im Mittel von 26,1 auf 9,8 l/h. Die Sulfonierversuche gliedern sich sehr gut in die bei den Inertversuchen gewonnenen Ergebnisse ein. Die Aufheizraten und Abkühlraten sind mit Ausnahme des Reaktionsabschnittes ab 100 °C übertragbar. Für weitere Optimierungsversuche genügt es deshalb, mit Inertmaterial als Füllstoff für den Reaktor zu arbeiten. Durch die exotherme Reaktion wird der Aufheizvorgang unabhängig vom Masseeinsatzverhältnis stark beschleunigt. Die mittlere Aufheizrate der Sulfonierversuche liegt zwischen 5 und 6 K/min und somit deutlich über den Inertversuchen (2,4 bis 4,2 K/min). Die Aufheizzeit wird um bis zu 30 min kürzer. Da die Haltezeit und die Abkühlzeit unverändert bleiben, wird die Zykluszeit um den gleichen Betrag kürzer und somit die Leistung der Anlage (siehe Kapitel 7.3) erhöht.

Die Wärmebilanz eines intermittierend betriebenen Prozesses mit prozessbedingt notwendiger Abkühlung des Reaktors ist allgemein ungünstig. Beim Sulfonierreaktor wirkt sich zusätzlich die in der Isolationsmasse der Heizwicklung gespeicherte Wärmemenge negativ auf die Bilanz aus, da sie zu einem erheblichen Anteil ständig zu- und abgeführt werden muss.

Die vorausberechneten Zykluszeiten (siehe Tabelle 5-5) liegen mit Reaktion zwischen 77 und 111 min und ohne Reaktion zwischen 93 min und 127 min. Für die Vorausberechnung wurde ein Füllungsgrad von 30 % (m_{CP} 25 kg, MEV 1,6) angenommen. Die berechnete Aufheizzeit entspricht etwa der gemessenen (Tabelle A6-3, über AHR ermittelt), sowohl ohne (46 min) als auch mit Reaktion (30 min). Haltezeit und Chargierzeit wurden in beiden Fällen vorgegeben. Aufgrund des höheren Volumenstroms bei der Berechnung von 480 m³_N/h gegenüber 38 m³_N/h ist die vorausberechnete Abkühlzeit wesentlich kürzer als die gemessene.

7 Prozessanalyse und Eigenschaften des Sulfproduktes

7.1 Ergebnisse der Bilanzierung des Sulfonierzyklus

Massebilanz

Die für die Bilanzierung des Reaktors notwendigen Gleichungen und Ausbeutedefinitionen wurden bereits im Abschnitt 6.1. sowie im Anhang A6 formuliert. Neben den Versuchsbedingungen sind die Messdaten zur Charakterisierung der Stoffströme und Bilanzgrößen in Tabelle A7-1 des Anhangs aufgeführt.

Für die Versuche wurde Lewapol 8-4-00 (Bayer AG) eingesetzt. Im Bild 7-1 ist die Abhängigkeit der Ausbeute an feuchtem bzw. trockenem Sulfprodukt (siehe Anhang A4) sowie der Produktfeuchte (Restsäure) vom MEV und der Haltezeit dargestellt. Die Masseausbeute (feucht) des Sulfproduktes liegt je nach MEV und Haltezeit zwischen 80 und 93 %. Da die Masse an feuchtem Sulfprodukt mit dem MEV ansteigt (Tabelle A7-1), bleibt daher die Ausbeute an feuchtem Sulfprodukt etwa konstant. Sie sinkt jedoch mit Verlängerung der Haltezeit, weil maßgeblich Reaktionswasser und Schwefelsäure verdampft werden. Folglich sinkt auch die Feuchte des Sulfproduktes. Die Masseausbeute an schwefelsäurefreiem (trockenem) Sulfprodukt liegt zwischen 60 und 80 %.

Bild 7-1: Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf die Feuchte (Restsäure) des Sulfproduktes sowie die erreichbaren Ausbeuten und Schwefelsäureumsätze (m_{CP} 15 kg, ST 195 °C)

Der Anteil der Restschwefelsäure nimmt mit dem MEV von 3,6 auf 31 % zu. Überraschenderweise bleibt die auf Copolymer bezogene trockene Sulfproduktmasse m_{SP,tr} ab einem MEV von 1,2 mit im Mittel 1,72 kg/kg ebenfalls konstant. Dieser Kennwert berechnet sich wie folgt:

$$m_{SP,tr} = A_{Sp,tr} (1 + MEV) \cdot 10^{-2}$$
 [kg/kg] (GI. 7.1)

Daraus lässt sich abschätzen, dass je Aromatenring lediglich eine Sulfonsäuregruppe (-SO₃H) angelagert wurde.

$$n_{Subst,Ar} = (m_{SP,tr} - 1) \frac{M_{CP}}{M_{SO_3}} \cong 0,95$$
 M_{CP} ≈ 105 g/mol; M_{SO3} = 80 g/mol (GI. 7.2)

Es kann trotz einer Steigerung des Schwefelsäureanteils im Reaktionsgemisch (MEV) nur eine begrenzte Schwefelsäuremenge umgesetzt werden. Der Umsatz der Schwefelsäure nimmt daher mit dem MEV von 60 % (1) bis auf 40 % (> 1,6) ab.

Die Dämpfe kondensieren fast vollständig im Kühler aus (Abgastemperatur max. 35 °C). Das im Kondensatbehälter aufgefangene, stark saure Abwasser enthält weniger als 3 Ma-% Schwefelsäure. Bei der Kondensation bilden sich an den Kühlflächen überwiegend weiße Beläge, sie können jedoch auch grau oder gelblich gefärbt sein. Die Abhängigkeit der Kondensateigenschaften von den Versuchseinstellungen MEV und Haltezeit ist im Bild 7-2 dargestellt. Es lassen sich daraus folgende Zusammenhänge ableiten:

- Das MEV hat nur einen geringen Einfluss auf die anfallende Kondensatmenge. Die Kondensatdichte und die daraus bestimmte H₂SO₄-Konzentration sowie der pH-Wert und SO₂-Gehalt bleiben konstant.
- Eine längere Haltezeit führt neben einem erhöhten Kondensatanfall auch zu einer zunehmenden Verdampfung von Schwefelsäure. Bei einer Verdoppelung der Haltezeit wird die 1,5-fache Kondensatmenge auskondensiert. Die Kondensatdichte steigt mit der Haltezeit an. Die daraus ermittelte H₂SO₄-Konzentration zeigt, dass am Beginn der Verdampfung der Dampf zu 99 % aus Wasser und nur zu 1 % aus Schwefelsäure besteht. Der pH-Wert liegt bei etwa 1,2; der titrierte SO₂-Gehalt ist mit 5 g/l relativ gering. Durch die Wasserverdampfung steigt die Schwefelsäurekonzentration im Sulfprodukt. Deshalb erhöht sich auch mit zunehmender Haltezeit die H₂SO₄-Konzentration im Kondensat. Die abdestillierte Schwefelsäuremenge nimmt zu, der SO₂-Gehalt steigt dadurch stark an, der pH-Wert sinkt auf ca. 1,0.

Bild 7-2: Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf Kondensatmenge (je Charge) und Kondensateigenschaften (m_{CP} 15 kg, ST 195 °C)

Die nach Kühler noch vorhandene kondensierbare Dampfmenge im Abgas kann nur rechnerisch aus der Bilanzgleichung (GI. 6.1) bestimmt werden. Darin enthalten ist der Bilanzfehler. Mit Steigerung von MEV und Haltezeit nimmt auch die Abgasmenge absolut und bezogen auf die eingesetzte Reaktionsmischung zu (Bild 7-3).

Bild 7-3: Einfluss der Sulfonierparameter MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf die Abgasmenge (m_{CP} 15 kg, ST 195 °C)

Für qualitative Aussagen wurden bei Versuch SU 30 über die Versuchszeit dem Abgasstrom Gasproben entnommen. Tabelle 7-1 enthält die Analysenergebnisse für das trockene Gas.

Komponente		II	III	IV	V
H ₂	0,02	0,34	0,11	0,01	0,01
CO ₂	0,09	3,22	1,54	0,16	0,16
O ₂	20,65	20,05	20,60	19,27	19,20
N ₂	78,19	75,18	77,24	73,18	73,17
СО	0,02	1,21	0,51	0,03	0,04
SO ₂	1,03	0,00 *	0,00 *	7,35	7,42
H₂S	0,00	0,00	0,00	0,00	0,00
CH₄	0,00	0,00	0,00	0,00	0,00
Ethan	0,00	0,00	0,00	0,00	0,00
Ethen	0,00	0,00	0,00	0,00	0,00
Ethin	0,00	0,00	0,00	0,00	0,00

Tabelle 7-1: Ergebnisse der Gasanalyse (Vol.-%) des Versuches SU 30

* SO₂ - Peak von H₂O - Peak überlagert, so dass SO₂ nicht bestimmbar; Analyse auf 100 % korrigiert

Die Probe I wurde in der Aufheizphase bei einer Produkttemperatur von 140 °C genommen. Das Abgas hat eine trockene Zusammensetzung ähnlich der von Luft, enthält aber bereits geringe Mengen SO₂. Die während der Haltezeit entnommenen Proben II und III konnten nicht vollständig getrocknet werden. Der SO₂-Peak wird deshalb bei der GC – Analyse vom H₂O-Peak überlagert. Zur SO₂-Freisetzung können daher keine Angaben gemacht werden. Die Proben II und III enthalten gegenüber Probe I höhere CO- und CO₂-Mengen. Das deutet auf eine Oxidation des Kohlenstoffs durch die Schwefelsäure hin. Die Proben IV und V wurden 10 min nach Beginn der Abkühlphase I entnommen. Durch die eingeblasene Zusatzkühlluft wird das Gas stark verdünnt. Die CO-/CO₂-Anteile sind zwar geringer als während der Haltephase, liegen aber dennoch über denen der Probe I. Auch der SO₂-Anteil liegt mit 7,4 Vol-% deutlich über dem der Probe I.

Elementebilanzen

Aus den Elementebilanzen lassen sich genauere Informationen über die ablaufenden chemischen Reaktionen gewinnen als aus der Massebilanz allgemein. Die Elementarzusammensetzung des Sulfproduktes sowie die daraus berechneten Ausbeuten an Kohlenstoff und Wasserstoff sowie die Schwefel- und Sauerstoffeinbindungsgrade sind in den Tabellen A7-2 und A7-3 des Anhangs aufgeführt. Dabei ergibt sich folgende Verteilung auf die einzelnen Stoffströme (Bild 7-4):

Über 80 % des zugeführten Kohlenstoffs sind im feuchten Sulfprodukt gebunden. Für trockenes Sulfprodukt wird eine Kohlenstoffausbeute des Sulfonierschrittes von > 90 % ermittelt. Der Kohlenstoff entweicht in Form von flüchtigen Kohlenwasserstoffverbindungen oder als CO und CO₂. Über diese Mengen sind jedoch nur qualitative Aussagen möglich. Flüchtige Bestandteile werden sich größtenteils im Kühler und in den Rohrleitungen niederschlagen. Der im Kühler abgeschiedene Belag hat einen C-Gehalt von 57 Ma-% (H: 4,16 %, O: 22,99 %;N: 0,41 %, S: 15,44 %). Die Atomverhältnisse H/C = 0,87 (1), O/S = 2,98 (3), H/O = 2,87 (2,67) deuten darauf hin, dass es sich um sulfoniertes Styren bzw. Polystyren (Klammerwerte) handeln könnte. Während der Aufheizung im Reaktor ist eine geringfügige Freisetzung der Monomere nicht auszuschließen, die in der Gasphase sulfoniert werden und im Kühler repolymerisieren. Die nachgewiesenen Mengen sind jedoch unbedeutend.

Die Elementaranalyse der Ablagerungen in der Rohrleitung nach dem Kühler ergab C: 34,87 %; H: 5,17 %; O: 46,85 %; N: 0,083 %; S: 13,03 %. Die Atomverhältnisse betragen H/C = 1,77, O/S = 7,2, H/O = 1,8. Damit unterscheidet sich dieser Niederschlag gravierend vom vorigen.

- Die Wasserstoffausbeute (trocken) fällt mit steigendem MEV und zunehmender Haltezeit unter 100 % ab. Der mit dem Copolymer eingebrachte Wasserstoff wird durch oxidativen Angriff der Schwefelsäure teilweise als Wasser freigesetzt. Besonders der Versuch SU 27 (MEV 1,4, SHZ 20 min, ST 220 °C) ergab aufgrund der höheren Sulfoniertemperatur (verstärkter Säureangriff) eine vergleichsweise geringe H-Ausbeute von 85 %. Da das feuchte Sulfprodukt zusätzlich Schwefelsäure enthält, kann der Wasserstoffanteil auch größer als 100 % sein.
- Sauerstoff und Schwefel werden vorwiegend als Sulfonsäuregruppen in das Copolymer eingebunden. Die prozentual eingebundenen Mengen verringern sich jedoch mit ansteigendem MEV; für Schwefel stärker als für Sauerstoff. Auch eine verlängerte Haltezeit führt zu keiner verbesserten Schwefeleinbindung. Damit werden die Ergebnisse der Massebilanz bestätigt. Bezogen auf das trockene Sulfprodukt bleibt der Schwefelgehalt über dem MEV und der Haltezeit konstant.
- Analoges Verhalten zeigt die Sauerstoffbilanz. Da der Sauerstoffgehalt nur aus der Gesamtbilanz bestimmt werden kann, geht hier die Summe aller Messfehler ein. Entgegen dem Verhalten von C, H und S mit der Haltezeit, deutet sich hier eine leichte Zunahme der Sauerstoffeinbindung mit der Reaktionsdauer an. Es ist sehr wahrscheinlich, dass es neben der Sulfonierung noch zu einer Oxidation des Copolymers kommt.
- Der Stickstoff, der von der Herstellung monodisperser Copolymere herrührt, ist für die Prozessbetrachtungen von untergeordneter Rolle. Durch die geringe Menge ist hier der Analysenfehler besonders groß. Da die Kühlerverschmutzungen auch Stickstoff enthalten, wird

er vermutlich bei der Sulfonierung teilweise mit den flüchtigen Bestandteilen ausgetragen. Der Großteil verbleibt jedoch im Sulfprodukt.

Bild 7-4: Elementeausbeuten und -einbindungsgrade bei der Sulfonierung

Wärmebilanz

Die Auswertung der Sulfonierversuche erfolgte wie bereits bei den Inertversuchen nach der in Abschnitt 6.1 vorgestellten Verfahrensweise und den dazugehörigen Gleichungen. Tabelle 7-2 enthält die aufgenommenen Wärmemengen und die sich daraus ergebenden Wirkungsgrade. Bei der Interpretation der Daten ist zu berücksichtigen, dass in Q_A der Fehler der Massebilanz und in Q_V der Fehler der Wärmebilanz enthalten ist, woraus sich die negativen Beträge bei einzelnen Versuchen erklären.

Die exotherme Reaktionswärme der Sulfonierungsreaktion bewirkt eine sehr schnelle Aufheizung des Reaktionsgemisches ab etwa 110 °C und somit eine Verkürzung der Aufheizphase. Im Vergleich mit den Inertversuchen (Tabelle 6-1: AV 2, AV9, AV 21, AV 12; Aufheizzeit 63 – 82 min) wurde bei einem Füllungsgrad von 20 bis 30 % bereits nach 20 min die Sulfonierendtemperatur erreicht. Dementsprechend verkürzt sich die Zykluszeit. Mit dem Anspringen der Reaktion ist nur noch die Energie zur Aufheizung des Reaktormantels und der Isolation sowie für die Wärmeverluste aufzubringen. Der Energiebedarf sinkt dadurch um ca. 16 % (SU 18: $Q_{EL} = 25$ MJ vs. AV 2: $Q_{EL} = 30$ MJ). Isolation, Reaktormantel und das Reaktionsgemisch nehmen die gleiche Wärmemenge wie bei den Inertversuchen auf, da die Massen, Wärmekapazitäten und Endtemperaturen gleich groß sind. Die Leitungs- und damit Abstrahlungsverluste der Isolation sind geringer, ebenso der Verlust durch Konvektion der Heißluft im Spalt.

ſabelle 7-2: Wärmebilanz für die Aufhei	z- und Haltezeitphase der	Sulfonierung
---	---------------------------	--------------

Vers.	m _{CP}	MEV	FG	T _R	Haltezeit	Q _{EL}	Q_{RM}	Q _M	Q _{lso}	Q _{Kond}	Q _A	Q _V **	Zeit	η_{Nutz}	η_{Reaktor}
Nr.	kg		%	°C	min	kJ	kJ	kJ	kJ	kJ	kJ	kJ	min	%	%
SU 4	15	1	10,2	195	20	34319	3654	3611	10454	5262	4233	7104	35	38,3	48,8
SU 6	15	1,2	10,3	195	20	28796	3625	3673	10805	n.b.	n.b.	n.b.	36	n.b.	n.b.
SU 8	15	1,4	11,0	195	20	27668	3573	3291	8998	n.b.	n.b.	n.b.	36	n.b.	n.b.
SU 10	15	1,6	11,7	195	20	28803	3557	3326	8982	4352	3462	5125	37	39,5	51,0
SU 11	15	1,4	11,0	180	20	26777	3620	3499	9935	3106	5104	1513	33	44,2	57,2
SU 13	15	1,4	11,0	195	30	31084	2795	3339	10687	5737	5143	3383	47	44,0	54,7
SU 14	15	1,4	11,0	195	40	32991	2795	3211	10333	7023	5638	3992	56	46,8	56,6
SU 16	25,5	1,4	18,7	195	20	37152	6048	3588	11492	5539	5737	4749	41	46,6	56,3
SU 17	15	1,4	11,0	195	10	27160	3728	3618	9941	3046	2295	4532	26	33,4	46,7
SU 18	15	1,4	11,0	195	5	25223	3659	3591	10226	2295	-2295 *	7748	21	14,5	28,7
SU 19	15	1,8	12,4	195	20	27927	3323	3300	9602	4965	13234	-6498	36	77,1	88,9
SU 20	15	1,6	11,7	195	20	27979	2757	2928	9930	4728	3284	4352	36	38,5	49,0
SU 21	15	1,4	11,0	195	10	26306	3560	3463	9200	2789	2156	5138	28	32,3	45,5
SU 22	15	2	13,1	195	20	32203	3663	3571	11255	4115	9139	460	37	52,5	63,6
SU 23	15	1,4	11,0	195	20	27331	3080	2935	8686	4609	2216	5805	37	36,2	47,0
SU 24	15	1,8	12,4	195	20	27127	2797	3067	9198	4767	8783	-1485	37	60,3	71,6
SU 25	25,5	1,4	18,7	195	40	45912	6268	3817	13427	8961	11592	1846	60	58,4	66,7
SU 27	15	1,4	11,0	220	20	53816	4290	4174	11269	12423	9970	11690	98	49,6	57,3
SU 28	15	2,2	13,8	195	20	32086	3881	3696	11028	4510	11909	-2938	37	63,3	74,8
SU 29	15	2	13,1	195	20	31266	3746	3622	11063	4411	9693	-1270	37	57,1	68,7
SU 30	15	2	13,1	195	20	33766	3787	3706	11587	4649	7379	2658	39	46,8	57,8
SU 31	15	2	13,1	195	20	30827	3269	3351	10661	4550	8031	964	38	51,4	62,3
* inkl. Massebilanzfehler $EC = V_R = 100$ $V = (1 - c)$, $\frac{m_{CP}}{m_{CP}} + \frac{m_{H2SO4}}{m_{H2SO4}}$									H2SO4						
** inkl. Wärmebilanzfehler			1	10 - 1	$V_{R,\max}$	100		' R	- (i C	ρ_{P}	Füll ,CI	ŗρ	H2SO4		

Die Versuche SU 1 – 3 waren erste Testversuche mit Parametervariation. Sie werden in der Auswertung daher nicht berücksichtigt.

Der Einfluss des MEV auf die freiwerdende Reaktionswärme kann aus den Versuchsdaten heraus nicht abgelesen werden. Neben der Reaktionswärme wird auch der Füllungsgrad durch das MEV beeinflusst. Die über dem Füllungsgrad aufgetragenen Wärmemengen (Bild 7-5) schwanken aufgrund der Störeinflüsse stark. Die von der Isolation und dem Reaktor aufgenommenen Wärmen sind konstant. Die Verluste bleiben deshalb ebenfalls konstant.

Die von der Reaktionsmischung aufgenommene Wärme steigt mit dem Füllungsgrad nur geringfügig an. Der Grund ist der niedrige c_P-Wert der Schwefelsäure. Die Abgasmenge (Bild 7-3) und die dafür aufgebrachte Verdampfungswärme nehmen dagegen mit dem MEV und folglich auch mit dem Füllungsgrad zu. Bei einer Erhöhung des Füllungsgrades von 10 auf 18 % ist für Aufheizung und Haltezeit insgesamt eine zusätzliche Heizenergie von 35 % aufzubringen.

Eine Verlängerung der Haltezeit (Bild 7-6) führt zu einem höheren Energiebedarf (SU18: 25223kJ vs. SU 14: 32991kJ). Die für Isolation, Reaktormantel und Reaktionsgemisch benötigten Wärmen ändern sich aufgrund ihrer gleich bleibenden Temperatur mit der Haltezeit nicht. Da bei längerer Haltezeit größere Mengen an Reaktionswasser und Restsäure verdampft werden, nehmen auch die Kondensat- und Abgasmenge (Bild 7-2 und Bild 7-3) sowie die dafür benötigte Verdampfungswärme zu.

Bild 7-5: Füllungsgradeinfluss auf die Wärmebilanz der Sulfonierversuche (SHZ 20 min, ST 195 °C)

Bild 7-6: Einfluss der Haltezeit auf die benötigten Wärmen (MEV 1,4; m_{CP} 15 kg, ST 195 °C)

Der Nutzwirkungsgrad (Bild 7-7) der Sulfonierung ist mit durchschnittlich 46 % wesentlich höher als der Wirkungsgrad der Inertversuche. Der Grund dafür ist die Absenkung des Energiebedarfs durch die exotherme Reaktion und die zu berücksichtigende Verdampfungswärme. Mit steigender Kondensat- oder Abgasmenge nimmt auch der Wirkungsgrad des Prozesses zu, da die im sulfonierten Copolymer gespeicherte Enthalpie wesentlich geringer ist als die Verdampfungswärme. Der Reaktorwirkungsgrad ist gegenüber dem Nutzwirkungsgrad um 8 bis 13 %-Punkte höher; das entspricht dem von Füllungsgrad und Haltezeit unabhängigen Anteil der im Reaktormantel gespeicherten Wärme an der insgesamt eingebrachten Heizwärme.

Bild 7-7: Wirkungsgrade in Abhängigkeit von Haltezeit (MEV 1,4; m_{CP} 15 kg, ST 195 °C) und Füllungsgrad (SHZ 20 min, ST 195 °C)

Fazit:

Bei der Sulfonierung des Copolymers ist unabhängig von Masseeinsatzverhältnis und Haltezeit eine absolut betrachtet gleichbleibende Einbindung des Schwefels zu beobachten. Die nicht umgesetzte Schwefelsäure verbleibt als Restfeuchte im Sulfprodukt, ein sehr geringer Anteil wird mit dem Reaktionswasser verdampft. Der Schwefelsäureanteil im Kondensat und die Kondensatmenge steigen bei längerer Haltephase an. Gleichzeitig erhöht sich der Aufwand für die Neutralisation des Kondensates. Der Kohlenstoff des Copolymers geht geringfügig durch das Entweichen flüchtiger Bestandteile und durch oxidativen Angriff verloren.

Tabelle A7-4 des Anhangs beinhaltet die Ergebnisse der Wärmebilanz für die Abkühlphasen I und II. In der Abkühlphase I wird das Sulfprodukt trotz des hohen Füllungsgrades auf ca. 150 °C abgekühlt. Die dabei freiwerdende Wärme wird mit der eingeblasenen Zusatzkühlluft abgeführt ($Q_{RM} \approx Q_{ZKL}$). Während der Abkühlung muss die Reaktorisolation zwangsweise mit abgekühlt werden. Diese freiwerdende Wärme wird teils durch die Kühlluft, teils durch Abstrahlung an die Umgebung abgeführt.

7.2 Eigenschaften des Sulfproduktes

Die hergestellten Sulfprodukte wurden mit den in Anhang A4 beschriebenen Methoden untersucht. Für die vergleichende Bewertung dienen die folgenden Kenngrößen: Mittlerer Durchmesser (Tabelle A7-5) Korngrößenanalyse (Tabelle A7-6) Relative Volumenzunahme (Tabelle A7-5) Fülldichte (Tabelle A7-5) Schwefelgehalt (Tabelle A7-2) Atomverhältnisse (Tabelle A7-5)

7.2.1 Einfluss des Masseeinsatzverhältnisses

Durch die Sulfonierung des monodispersen Copolymers werden die granulometrischen Eigenschaften verändert. Während der Sulfonierung quillt das Copolymer um das 2,25-fache seines ursprünglichen Volumens (Bild 7-8). Ab einem MEV von 1,2 erfolgt eine Verschiebung der Korngrößenverteilung zu höheren Werten, die Breite der Körnung bleibt jedoch erhalten. Wird das MEV auf 1,4 erhöht, so wird neben einem geringfügigen Quellfortschritt eine geringe Einengung der Verteilung erreicht. Ab einem MEV von 1,6 erfolgt keine weitere Einengung der Korngrößenverteilung und der mittlere Durchmesser (Bild 7-8) sowie die relative Volumenzunahme bleiben konstant. Bei sehr geringem MEV kann es zu einer ungleichmäßigen Benetzung des Copolymers mit der Schwefelsäure kommen, da das Lückenvolumen der Copolymerschüttung erst ab einem MEV von 1,2 vollständig mit Schwefelsäure gefüllt ist. Wegen des geringeren Säureanteils wird durch das ungleichmäßige Aufquellen der Partikel die Korngrößenverteilung aufgeweitet, aber der mittlere Partikeldurchmesser nur geringfügig angehoben. Um ein einheitliches Quellen und damit die Homogenität des Sulfproduktes zu gewährleisten, ist eine ausreichende Benetzung aller Copolymerpartikel notwendig.

Bild 7-8: Einfluss des Masseeinsatzverhältnisses auf den mittleren Durchmesser, die relative Volumenzunahme und die Korngrößenverteilung (SHZ 20 min, ST 195 °C)

Eine wichtige Kenngröße für den Sulfoniererfolg ist der Schwefelgehalt des Sulfproduktes (Bild 7-9). Da die Schwefelgehalte der trockenen Sulfprodukte unabhängig vom MEV konstant bleiben, weisen alle den gleichen Sulfonierungsgrad auf. Eine Mehrfachsulfonierung wird auch bei höherem MEV nicht erreicht. Die überschüssige Schwefelsäure verbleibt als Feuchte im Produkt, so dass der Schwefelgehalt des feuchten Sulfproduktes ansteigt.

Die Atomverhältnisse des säurefrei gewaschenen und getrockneten Sulfproduktes (Bild 7-9) deuten auf eine Veränderung der Reaktionsabläufe mit steigendem Schwefelsäureanteil (MEV) hin. Das H/C-Verhältnis fällt mit steigendem MEV geringfügig von 1,11 auf 1,04 ab, was auf einen oxidativen Angriff hindeuten könnte. Da das O/S- Verhältnis ansteigt und andererseits der

Schwefelgehalt des gewaschenen Sulfproduktes konstant bleibt, muss Sauerstoff in die Copolymermatrix eingelagert worden sein. Sowohl die Wasserstoffabspaltung als auch die Sauerstoffeinlagerung lassen das H/O-Verhältnis abfallen.

Bild 7-9: Einfluss des Masseeinsatzverhältnisses auf den Schwefelgehalt und die Atomverhältnisse H/C, H/O und O/S des trockenen Sulfproduktes (SHZ 20 min, ST 195 °C)

7.2.2 Einfluss der Sulfonierhaltezeit

Ein Einfluss der Haltezeit auf das Quellvermögen, den mittleren Durchmesser, die Korngrößenverteilung und den Schwefelgehalt (trocken und feucht) des Sulfproduktes wurde nicht beobachtet (Bild 7-10 und 7-11). Der Schwefelgehalt des trockenen Sulfproduktes liegt bei durchschnittlich 11,2 Ma-%, der des feuchten Sulfproduktes bei etwa 17,2 Ma-% (Bild 7-11). Die Haltezeit hat keinen Einfluss auf die Wasserstoffabspaltung, da das H/C- Verhältnis konstant bleibt. Das steigende O/S-Verhältnis hingegen macht deutlich, dass mit längerer Verweildauer mehr Sauerstoff in die Copolymermatrix eingebunden wird. Dadurch sinkt das H/O-Verhältnis, der Wert für Wasser (2) wird aber auch bei Haltezeiten von 40 min nur geringfügig (H/O = 1,91) unterschritten. Während der Pyrolyse wird demnach der größte Teil des Wasserstoffs als Wasser frei.

Bild 7-10: Einfluss der Haltezeit auf den mittleren Durchmesser, die relative Volumenzunahme und die Korngrößenverteilung (MEV 1,4; m_{CP} 15 kg, ST 195 °C)

Bild 7-11: Einfluss der Haltezeit auf die Atomverhältnisse H/C, H/O und O/S des trockenen Sulfproduktes und den Schwefelgehalt (MEV 1,4; m_{CP} 15 kg, ST 195 °C)

Fazit:

Da die Quellung des Copolymers ab einem MEV von 1,6 gleich bleibt, kann von einer gleichmäßigen und ausreichenden Benetzung durch die Schwefelsäure ausgegangen werden. Das bemerkenswert hohe O/S – Atomverhältnis lässt eine Oxidation des Copolymers mit Sauerstoffeinbindung vermuten. Die Bildung von Sulfonylgruppen (-SO₂-) ist eher unwahrscheinlich. Mit 96 %iger Schwefelsäure ist auch bei Temperaturen bis 200 °C keine Mehrfachsulfonierung der aromatischen Kerne zu erreichen. Eine erhöhte S- Einbindung würde sich günstig auf die Mikroporenbildung während der Aktivierung auswirken [Mue00].

7.2.3 Einfluss weiterer Prozessparameter

Die Steuerung der Sulfprodukteigenschaften durch Temperatur, Nachreaktion bei der Lagerung, Reaktorfüllung und Druck konnte nur an 2 bis 4 Versuchseinstellungen untersucht werden. Die nachfolgenden tendenziellen Aussagen sollten deshalb in weiteren Arbeiten genauer beleuchtet werden (Ergebnisse siehe Tabelle A7-1 bis A8-6 des Anhangs).

- Die Reaktionstemperatur wurde bei sonst gleichen Parametern (MEV 1,4, m_{CP} 15 kg, SHZ 20 min) von 195 °C (SU 8) auf 220 °C (SU 27) gesteigert. Die Temperatur stellte sich erst nach vollständiger Verdampfung der Restfeuchte ein. Die Aufheizzeit wird dadurch um ca. eine Stunde verlängert. Die Feuchte des Sulfproduktes sinkt von 20 Ma-% auf 2 Ma-%. Der mittlere Korndurchmesser nimmt gegenüber SU 8 (0,66mm) ab, liegt aber dennoch mit 0,55 mm über dem des Copolymers. Der Schwefelgehalt des feuchten Sulfproduktes nimmt aufgrund der geringeren Restschwefelsäure ebenfalls ab (14,9 Ma-%). Das trockene Sulfprodukt hat dagegen einen höheren Schwefelgehalt (12,73 Ma-%). Durch die geringere Ausbeute (trocken) von 67 % gegenüber 74 % bei geringerer Temperatur (SU 8) sinkt die auf trockenen Zustand bezogene Schwefelausbeute ab. Bei der auf feuchtes Sulfprodukt bezogenen Schwefelausbeute wird dieser Effekt durch die geringere Restfeuchte von SU 27 noch verstärkt. Durch hohe Sulfoniertemperaturen wird der oxidative Angriff begünstigt. Das H/C-Verhältnis sinkt auf 0,92 ab. Da in der Copolymermatrix gleichzeitig weniger Sauerstoff verbleibt (O/S = 4,76), wird das H/C-Verhältnis > 2 (SU 27: H/C = 2,13).
- Der Versuch SU 29 (MEV 2, SHZ 20 min, ST 195 °C, AKP I 30 min) wurde unter Umgebungsdruck (100 kPa) durchgeführt. Gegenüber SU 22 (77 kPa) sind kaum Unterschiede beim Sulfprodukt erkennbar. Die Restfeuchte des Sulfprodukts nimmt von 30 auf 27 % ab.
- 3. Bei den Versuchen SU 23 (MEV 1,4) und SU 24 (MEV 1,8) wurde das Sulfprodukt im Reaktor auf 100 °C abgekühlt, um Nachreaktionen in den Transportbehältern zu vermeiden. Der Sulfonierzyklus verlängert sich dadurch um ca. 15 min. Gegenüber den Versuchen SU 8 (MEV 1,4) und SU 19 (MEV 1,8), bei denen nur auf ca. 150 °C abgekühlt wurde, kann so eine bessere Schwefeleinbindung erreicht werden. Sowohl die Schwefelgehalte als auch die Schwefelausbeute des feuchten und trockenen Sulfprodukts steigen an. Das H/O- und H/C-Verhältnis wird durch die Nachreaktion nicht beeinflusst, dagegen wird das O/S-Verhältnis durch die höhere Schwefeleinbindung bei den Versuchen SU 23 und SU 24 verringert.
- 4. Der höhere Füllungsgrad bei den Versuchen SU 16 und SU 25 steigert die auf trockenes Sulfprodukt bezogenen Schwefelgehalte und –ausbeuten. Durch den höheren Füllungsgrad sinkt die Aufheizrate und die Reaktionsphase verlängert sich, was sich günstig auf die S-Einbindung auswirkt. Jedoch bleiben wegen der geringeren Restfeuchte die Schwefelgehalte und die S-Ausbeute des feuchten Sulfproduktes konstant. Der höhere Schwefelgehalt senkt das O/S-Verhältnis bei höherem Füllungsgrad, während das H/C-

Verhältnis konstant bleibt. Über die Abhängigkeit des H/O-Verhältnisses kann keine Aussage getroffen werden.

7.2.4 Lagereigenschaften des Sulfproduktes

Das Lagerverhalten der hergestellten sulfonierten Copolymere ist mit Ausnahme von SU 4 einheitlich. MEV und Haltezeit haben nur einen geringen Einfluss. Die Fülldichte liegt zwischen 0,83 und 0,91 g/cm³. Der Schüttwinkel beträgt 28 ° (Tabelle 7-3). Die Sulfprodukte sind mit Ausnahme von SU 16 sehr gut rieselfähig. Dises bei maximaler Reaktorfüllung und nur 20 min Haltezeit erzeugte Sulfprodukt war nur mäßig rieselfähig, da es kleine Verklumpungen enthielt. Dem kann jedoch durch eine längere Haltezeit (SU 25) entgegen gewirkt werden.

Aufgrund der Restschwefelsäure sind die Sulfprodukte stark hygroskopisch. Deshalb steigt auch mit zunehmender Restschwefelsäuremenge die pro Stunde aufgenommene Wassermenge (Bild 7-12). Da wasserfeuchtes Sulfprodukt nicht mehr rieselfähig ist, müssen die Lagerbehälter luftdicht verschlossen sein, um die Rieselfähigkeit zu erhalten.

Probe Nr.	Schüttwinkel [°]							
	1. Messung	2. Messung	Messung	MW				
SU 4	29	30	30	30				
SU 6	28	29	28	28				
SU 8	28	28	26	27				
SU 10	28	27	28	28				
SU 14	29	27	25	27				
SU16	32	31	30	31				
SU 17	29	29	25	28				
SU 18	25	28	26	26				
SU 19	27	30	28	28				

Tabelle 7-3: Schüttwinkel ausgewählter Sulfprodukte

Bild 7-12: Spezifische Wasseraufnahmerate des Sulfproduktes (T = 20 °C, rel. Feuchte 100 %, Expositionsdauer = 54 Tage)
7.3 Praktisch-technische Kennziffern der Pilotsulfonieranlage

7.3.1 Leistung der Anlage im Dauerbetrieb

Die Leistung der Pilotanlage hängt vom gewählten Füllungsgrad und den einzuhaltenden Prozessbedingungen ab. Zu letzteren zählen das Masseeinsatzverhältnis (MEV), die Aufheizrate und Ausstehzeit sowie die Abkühlgeschwindigkeit und Kühlendtemperatur. Die Festlegung der Kühlendtemperatur richtet sich nach dem thermoplastischen Verhalten des Copolymers. Bei der gewählten Verfahrensweise wird zuerst das Copolymer dosiert, anschließend die Schwefelsäure, d.h. die Reaktorinnenwand muss auf mindestens 80°C abgekühlt sein, bevor neu befüllt werden kann.

Tabelle 7-4 zeigt die Leistungsdaten der Pilotanlage an ausgewählten Beispielen. Durch Erhöhung der Einwaage (konstantes MEV) von 15 auf 25,5 kg_{CP}/Charge, entsprechend einem Füllungsgradanstieg von 10 auf 19 %, steigt die produzierte Sulfproduktmasse von 32,9 auf 55,5 kg/Charge an. Die Zykluszeit erhöht sich gleichzeitig von 2,1 auf 2,5 Stunden. Damit ergibt sich eine Leistungssteigerung von 15,4 auf 24,9 kg/h Sulfprodukt.

Mit der Erhöhung des MEV von 1,4 auf 2 bei konstanter Copolymermasse steigt - bei annähernd gleicher Chargenzeit - die sulfonierte Produktmenge von 32,9 auf 38,3 kg/Charge bzw. von 15,4 auf 19,2 kg/h. Wie bereits dargelegt, erhöht sich unter diesen Bedingungen die Menge an Restsäure im Sulfprodukt.

Den Zahlenwerten liegen eine Haltezeit von 20 min und eine Aufheizrate a von 2,8 – 4,1 K/min (bei einer Aufheizrate b: 7,9 – 12 K/min; Tabelle A6-3 des Anhangs) zugrunde. Sollte eine Reduzierung der Aufheizrate erforderlich werden, beispielsweise auf 1 K/min (verbesserte Durchsulfonierung des Copolymers), dann erhöht sich die Zykluszeit auf 4 Stunden (FG = 12 %) und die Leistung sinkt auf 7,71 kg/h ab. Leistungsreserven der Anlage liegen in der Abkühlphase. Um diese zu nutzen, müsste die Kühlluftmenge gesteigert werden, was nur mit einem stärkeren Kühlluftgebläse möglich ist. In der derzeitigen Ausführung der Anlage ist eine Sulfprodukterzeugung im Dauerbetrieb von ca. 22 kg/h möglich. Der maximale Füllungsgrad der Anlage beträgt dann 22 % $(m_{CP} = 30 \text{ kg}, \text{MEV} = 1,4, m_{SP} = 65 \text{ kg/Charge})$. Aufgrund der Volumendilatation während des Sulfonierens ist die Kapazität der Transportbehälter der limitierende Faktor. Eine Erhöhung des Füllungsgrades auf über 30 % (m_{CP} = 40 kg/Charge, MEV = 1,4, m_{SP} = 86 kg/Charge) würde das Wärmeübertragungsverhaltens Durchmischungsund verschlechtern und zu einer Leistungsminderung führen. Aufgrund fehlender Versuche kann keine Aussage zum optimalen Füllungsgrad getroffen werden.

		SU 8	SU 22	SU 16	SU 25	
Edukte						
MEV		1,4	2,0	1,4	1,4	
Copolymer		15,0	15,0	25,5	25,5	kg
H ₂ SO ₄		21,00	30,00	35,70	35,70	kg
gesamt		36,00	45,00	61,20	61,20	kg
Zeiten						
Aufheizung*		60	59	78	65	min
Aufheizzeit bis 8	30 °C	25	30	27	30	min
Haltezeit		20	20	20	40	min
Abkühlphase I		30	30	30	30	min
Abkühlphase II	(T _{Probe} bis 80 °C)	28	26	33	30	min
gesamt		138	135	161	165	min
Temperaturen						
Start, kalt		26	28	25	18	°C
Zyklusstart, war	m	80	80	80	80	°C
Haltephase		195	195	195	195	°C
Versuchsende (T _{Innenraum})	80	80	80	80	°C
Produkt						
Masse		32,90	38,30	55,50	50,81	kg
Fülldichte		0,87	0,938	0,896	0,863	g/cm³
Volumen		37,82	40,83	61,94	58,88	
Versuchsdaue	r (T _{Start} = 80 °C)					
netto		113	105	134	135	min
Chargierzeit		15	15	15	15	min
Zykluszeit (gesa	amt)	128	120	149	150	min
		2,13	2,00	2,48	2,50	h
Spezifische Le	istungen					
Copolymerverbr	auch	7,03	7,50	10,27	10,20	kg/h
Schwefelsäurev	erbrauch	9,84	15,00	14,38	14,28	kg/h
Produktmenge		15,42	19,15	22,35	20,32	kg/h
		17,73	20,42	24,94	23,55	l/h
24 Stunden	Copolymer	169	180	246	245	kg/d
	H_2SO_4	236	360	345	343	kg/d
	Produkt	370	460	536	488	kg/d
7 Tage	Copolymer	1181	1260	1725	1714	kg/Woche
	H_2SO_4	1654	2520	2415	2399	kg/Woche
	Produkt	2591	3217	3755	3414	kg/Woche
4 Wochen	Copolymer	4725	5040	6900	6854	kg/Monat
	H_2SO_4	6615	10080	9661	9596	kg/Monat
	Produkt	10364	12869	15019	13658	kg/Monat

Tabelle 7-4: Leistungsübersicht der Pilotanlage

* maximal mögliche Aufheizrate (siehe Tabelle A6-3)

7.3.2 Energiebedarf der Pilotanlage

In Tabelle 7-5 wurde der Energiebedarf pro Charge nach Verbrauchern aufgeschlüsselt. Bild 7-13 zeigt hierzu die Anteile der einzelnen Verbraucher in der Übersicht. Mit zunehmendem Füllungsgrad steigt der Energieanteil der Heizung im aufgeführten Beispiel von 40 auf 48 %.

	SU 8	SU 22	SU 16	SU 25	Einheit
Füllungsgrad	11	13,1	18,7	18,7	%
Zykluszeit (gesamt)	128	120	149	150	min
	2,1	2,0	2,5	2,5	h
Produkt	32,9	38,3	55,5	50,8	kg
Heizung	27668	32203	37152	45912	kJ
	7,69	8,95	10,32	12,75	kWh
Steuerung	7680	7200	8940	9000	kJ
	2,13	2,00	2,48	2,50	kWh
Absaugung (Gebläse)	15300	14220	18180	18900	kJ
	4,25	3,95	5,05	5,25	kWh
Kühlung I (Kühlluftgebläse)	5220	5040	5670	5400	kJ
	1,45	1,40	1,58	1,50	kWh
Kühlung II (Rückkühlung)	6528	6120	7599	7650	kJ
	1,81	1,70	2,11	2,13	kWh
Sonstiges (Motoren,	7680	7200	8940	9000	kJ
Beleuchtung)	2,13	2,00	2,48	2,50	kWh
27					
Energiebedarf	19,47	20,00	24,02	26,63	kWh
spez. Energiebedarf	0,59	0,52	0,43	0,52	kWh/kg
Leistungsaufnahme	9,12	10,00	9,67	10,65	kW

Tabelle 7-5: Energiebedarf der Pilotanlage pro Charge

Bild 7-13: Aufteilung des Energiebedarfs der Pilotanlage für eine mittlere und eine große Charge

In Tabelle 7-6 und Bild 7-14 ist die Verteilung der Leistungsaufnahme über einen Sulfonierzyklus dargestellt. Während der Aufheizung hat die Leistungsaufnahme mit 17,9 kW den größten Wert. 2 kW beträgt die Leistungsaufnahme während der Chargierung. Anlaufströme von Motoren wurden in dieser Betrachtung unberücksichtigt gelassen.

	Heizung	Steuerung	Absaugung	Kühlung	Sonstiges	Summe
	kW	kW	kW	kW	kW	kW
Aufheizung	12,87	1	3	0	1	17,9
Abkühlphase I	0	1	3	2,35	1	7,4
Abkühlphase II	0	1	0	2,35	1	4,4
Chargierung	0	1	0	0	1	2,0

Bild 7-14: Leistungsbedarf der einzelnen Abschnitte eines Zyklus

7.3.3 Emissionssituation und Abproduktentsorgung

Die Emissionen der Anlage teilen sich auf in kondensierbare Bestandteile, die als verdünnte Schwefelsäure im Kühler anfallen (Kondensat), und nicht kondensierbare Bestandteile im Abgas (Tabelle 7-7). Das Kondensat wird aufgefangen und neutralisiert. Das Abgas wird mit der Rückkühlluft des Kühlwasserkreislaufes (ca. 1000 m³/h i.N.) verdünnt und in die Atmosphäre abgegeben.

		SU 8	SU 22	SU 16	SU 25	
Zykluszeit		128	120	149	150	min
		2,1	2,0	2,5	2,5	h
Kondensat		2,3 *	2,1	2,8	4,5	kg
		70	55	51	89	kg/t _{SP}
		1,1	1,1	1,1	1,8	kg/h
	24 Stunden	25,9	25,2	27,1	43,2	kg/d
	pH-Wert	1 *	1	1,1	1,02	
	C _{H2SO4}	2,3 *	2,41	1,81	2,56	Ma-%
NaOH-Beda	rf (40 %)	0,132	0,127	0,127	0,288	kg/Charge
		4,03	3,30	2,28	5,66	kg/t _{SP}
		0,06	0,06	0,05	0,12	kg/h
	24 Stunden	1,49	1,52	1,22	2,76	kg/d
Abgas		2,5	4,6	2,9	5,9	kg
		76	120	52	116	kg/t _{SP}
		1,17	2,30	1,17	2,36	kg/h
	24 Stunden	28,13	55,20	28,03	56,64	kg/d

Tabelle 7-7: Emissionen und Entsorgung	saufwand für die Pilotanlage
--	------------------------------

* geschätzte Werte

Fehlchargen werden als Sondermüll behandelt und müssen den gesetzlichen Verordnungen entsprechend entsorgt werden.

7.3.4 Aufgetretene Störungen

Die während der Anlagenerprobung und des Versuchsbetriebes aufgetretenen Störungen wurden gründlich analysiert. Am häufigsten wurde beobachtet, dass die Druckluftzylinder wegen Verspannung oder zu großer Reibung ihre Endlage nicht erreichten.

Der Reaktionsbehälter und die gasabführenden Leitungen sowie das Seitenkanalgebläse unterliegen einer erhöhten Korrosionsbeanspruchung durch einerseits konzentrierte Schwefelsäure von 200°C und andererseits verdünnte Schwefelsäure bzw. –dämpfe im Abgassystem. Der durch Schwefelsäurekorrosion bedingte Materialabtrag der Reaktorwand (Werkstoff: 1.4591) wurde in bestimmten Zeitabständen kontrolliert und ausgewertet. Bild A7-1 zeigt die Anordnung der Messstellen für die Wanddickenmessung mittels Ultraschall. Zusätzlich zum korrosionsbedingten Abtrag kommt eine abrasive Beanspruchung der Wandung durch die Bewegung der Reaktionsmischung im Behälter. Gemessene und interpolierte Abtragswerte enthält Tabelle 7-8. Mit Ausnahme der Schalldämpfer des Seitenkanalverdichters wurden keine weiteren korrosionsbedingten Schadensfälle im Abgassystem festgestellt.

		mm	mm/h
Mittelwert im kritisch	nen Bereich:	-0,41	-0,0046
Betriebsstunden: 88		(ca. 28 Chargen)	
-0,014 mm/Charge (1 Charg		(1 Charge ~ 3 h)	
	-0,028	8 mm/d (max. 2 Chargen/	
1 mm Abtrag nach :	862 h		

Tabelle 7-8: Korrosionswerte im kritischen Bereich (Benetzte Wandfläche während des Versuchsbetriebes)

Den kritischen Bereich der Reaktorinnenwand mit stärkerem korrosionsbedingten Abtrag kennzeichnen die folgenden Messstellen: 5, 6, 13, 14, 15, 22, 23, 34, 35

Fazit:

Eine Erhöhung des Füllungsgrades von 10 auf 19 % führt zu einer Leistungssteigerung um 57 % Sulfprodukt je Stunde bei konstanten Prozessbedingungen. Wird das MEV von 1,4 auf 2,0 erhöht, nimmt die Leistung um 24 % zu. Das Sulfprodukt enthält unter diesen Bedingungen eine größere Menge an Restsäure, die in der anschließenden Pyrolysestufe zum überwiegenden Teil freigesetzt wird. Eine Verlängerung der Haltezeit von 20 auf 40 min bewirkt dagegen einen Rückgang der Leistung um 9 %. Die Kapazität liegt zwischen 15 und 23 kg_{SP}/h und liegt deutlich unterhalb des vorausbestimmten Wertes. Ursache ist die unterdimensionierte Kühlleistung. Die in der Vorausberechnung zugrunde gelegte Kühlleistung konnte nicht verwirklicht werden.

Der Energiebedarf der Pilotanlage steigt mit dem MEV (um 2,7 %), mit dem Füllungsgrad (um 23,4 %) und mit der Haltezeit (um 10,8 %) an. Bei einem Füllungsgrad von 19 % ist die Heizung mit einem Anteil von 48 % der größte Energieverbraucher. Die Pilotanlage hat einen spezifischen Energiebedarf von 0,43 bis 0,59 kWh/kg_{SP}. Die Leistungsaufnahme beträgt maximal 11 kW.

Die spezifische Kondensatmenge steigt nahezu unabhängig vom MEV mit dem Füllungsgrad leicht (um 4,6 %), jedoch mit der Haltezeit stark (um 59,7 %) an. Dagegen nimmt die spezifische Abgasmenge unabhängig vom Füllungsgrad mit dem MEV (um 96,2 %) und der Haltezeit (um 102 %) zu. Für die Neutralisation des Kondensates sind zwischen 2,28 und 5,66 kg/t_{SP} 40 %ige Natronlauge notwendig.

7.3.5 Technisch-wirtschaftliche und ökologische Bewertung des Verfahrens - Vergleich mit alternativen Verfahren zur Herstellung von Kugelaktivkohle

Ziel dieses Projektes war die innovative Weiterentwicklung und halbtechnische Erprobung einer neuartigen (patentierten) Verfahrenstechnologie zur Erzeugung von Kugelaktivkohlen (Bild 7-15). Basis dafür ist das im Labormaßstab realisierte Verfahren. Die nach dieser Technologie

produzierten Aktivkohlen tragen aufgrund ihrer besseren Qualität und Leistungsparameter in Verbindung mit der neuartigen Technologie direkt und indirekt zur Entlastung der Umwelt bei.

Die Konzeption der technischen Anlage (Bild 7-15) sieht vor, das im Prozess freigesetzte SO₂ in nachgeschalteten Prozessstufen als Schwefelsäure zurückzugewinnen und dem Prozess wieder zuzuführen.

Das Herstellungsverfahren selbst zeichnet sich durch einen qualitativen Sprung bei der Produktqualität (BET-Oberflächen > 2000 m²/g) und geringere spezifische Verbräuche an Einsatzstoff (2 – 2,5 kg/kg Aktivkohle beim neuen Verfahren gegenüber 8 kg/kg Aktivkohle (Rohm & Haas)) sowie durch einen geringeren Energiebedarf (Einsparung 60%) aus.

Bei der Durchführung einer Wirtschaftlichkeitsanalyse wurden Herstellungskosten ermittelt, die mit 15 bis 16 DM/kg Aktivkohle deutlich unter den marktüblichen Preisen liegen [ST99].

Die Innovation gegenüber dem Stand der Technik spiegelt sich in den folgenden Punkten wider:

- Reduzierung der Rohstoffanzahl auf Copolymer und Schwefelsäure
- Minimierung der Anzahl an Verfahrensstufen (Sulfonierung, Pyrolyse, Aktivierung)
- Verringerung des Energiebedarfs
- Minimierung des Schwefelsäureeinsatzes (im Vergleich zum Verfahren von Rohm & Haas)
- Verkürzung der Zykluszeit im Verfahrensschritt Sulfonierung
- Reduzierung der Emissionen
- Senkung der Invest- und Personalkosten

In Tabelle 7-9 ist das neue Verfahren zur Herstellung von Kugelaktivkohlen den Verfahren der Firmen Rohm & Haas und Kureha gegenübergestellt.

Firma	Neues Verfahren	Rohm-Haas (USA)	Kureha (J)
Aktivkohletyp	TACT	Ambersorb	SAR-0
Rohstoffe	Copolymer	Copolymer	50 % Pech
	Schwefelsäure	Schwefelsäure/	25 % Kohle
		Oleum	25 % Naphtalin
		Wasser	Wasser
			Verseifungsmittel
			Luft, NH ₃ , HNO ₃
			Lösungsmittel
	Aktivierungsgas	Aktivierungsgas	Aktivierungsgas
Prozessstufen	3	9	10
Energiebedarf	3000 - 6000 kWh/tAK	9555 kWh/tAK	7555 kWh/tAK
Masseinsatzverhältnis	1 - 3	20	-
Verweilzeit in Sulfonierstufe	2 h	16 h	-
Investkosten	8,3 Mio DM	10,9 Mio US \$	15,1 Mio US \$
Personalbedarf	61,7 h/d	69 h/d	75,6 h/d

Taballa	7 A.	Varalalah						ما م را بنا به ا م ا م	I CTON
rabelle	/-91	veroieicn	von ver	ianren z	ur ners	ienuna v	/011 6100	егакнукоп	16 12 1331
						concerning t			

Bild 7-15: Verfahrensfließbild der halbtechnischen Pilotanlage

8 Auswirkungen der Sulfonierung auf die Koks- und Aktivatqualität

8.1 Einfluss der Sulfonierung auf den Pyrolyseprozess und die Eigenschaften des Kokses

Die in der Pilotsulfonieranlage hergestellten Sulfprodukte (Tabelle A6-3) wurden unter konstanten Bedingungen in einer Laborretorte (Bild 4-2) verkokt. Aus Untersuchungen der Pyrolyse und Aktivierung [Wac00] leitet sich eine bevorzugte Aufheizrate von 10 K/min ab. Für die in den Abschnitten 8.1 und 8.2 dargestellten Abhängigkeiten wurden ausschließlich mit dieser Aufheizrate hergestellte Kokse betrachtet. Für den Vergleich der Pilotsulfonierung mit den Laborergebnissen (Abschnitt 8.3) wurden ausgewählte Proben zusätzlich mit einer Aufheizgeschwindigkeit von 20 K/min hergestellt, um die Vergleichbarkeit zu gewährleisten. Die Pyrolysebedingungen, Messwerte und Kokseigenschaften sind in den Tabellen A8-1 und A8-2 (Anhang) aufgeführt.

Die Kokseigenschaften wurden nach den in Anhang A7 vorgestellten Methoden ermittelt. Die Kokse SUV 22, SUV 30 und SUV 31 bestätigen die Reproduzierbarkeit der Sulfprodukteigenschaften.

8.1.1 Koksausbeute

Einen Einfluss auf die Koksausbeuten haben das Masseeinsatzverhältnis, die Haltezeit (Bild 8-1) und die Sulfoniertemperatur (Bild 8-2). Ein Einfluss von Nachreaktion, Druck und Füllungsgrad auf die Koksausbeuten besteht nicht.

Die Feuchte des Sulfproduktes nimmt mit steigendem MEV zu. Da während der Pyrolyse die Restschwefelsäure des Sulfprodukts weiter umgesetzt oder verdampft wird, sinkt demzufolge die Koksausbeute β^{feucht} (Bezugsbasis feuchtes Sulfprodukt). Die auf das trockene Sulfprodukt bezogene Ausbeute β^{trocken} durchläuft ein flaches Maximum. Die höhere Koksausbeute β^{trocken} könnte mehrere Ursachen haben:

- Weiterreaktion der Restschwefelsäure in der Pyrolysestufe und stärkere Fixierung des Kohlenstoffs in der Koksmatrix
- Verstärkter oxidativer Angriff durch die höheren Restschwefelsäureanteile.

Die auf das Copolymer bezogene Koksausbeute α steigt mit dem MEV bis annähernd 100 % (MEV 1,6) an. Ab einem MEV von 1,6 ist der Kohlenstoff des Copolymers nahezu vollständig im Koks fixiert.

Mit der Haltezeit nimmt der Feuchteanteil des eingesetzten Sulfprodukts ab, die Schwefelgehalte des eingesetzten Sulfproduktes bleiben jedoch konstant. Die Ausbeuten zeigen das bereits beschriebene Verhalten. Bei einer höheren Restschwefelsäuremenge (SU 18, SHZ 5 min, MEV 1,4) ist β^{feucht} mit 42 % geringer als bei längerer Haltezeit (SU 14, SHZ 40 min, MEV 1,4; β 46 %). Der Effekt ist jedoch gering. Die Ausbeuten β^{trocken} und α nehmen mit längerer Haltezeit ab, da die Restfeuchte des Sulfprodukts abnimmt.

Bild 8-1: Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf die Koksausbeute in der Pyrolysestufe (PT 750 °C, PAHR 10 K/min, PHZ 5 min)

Der Einfluss der Sulfoniertemperatur auf die Koksausbeute (Bild 8-2) kann ebenfalls auf die Verringerung der Feuchte des Sulfproduktes zurückgeführt werden. Durch Erhöhung der Sulfoniertemperatur auf 220 °C steigt die Koksausbeute β^{feucht} auf 57 %. Im Gegensatz dazu nimmt

die Ausbeute α von 100,7 auf 93,6 % ab, da aufgrund der sehr hohen Sulfonierendtemperatur von 226 °C der oxidative Angriff begünstigt wird. Der Kohlenstoff wird partiell in CO und CO₂ überführt.

Bild 8-2: Einfluss der Sulfoniertemperatur auf die Koksausbeute (MEV 1,4; SHZ 20 min, PT 750 °C, PAHR 10 K/min, PHZ 5 min)

Fazit:

MEV, Haltezeit und Temperatur wirken über die Restschwefelsäure und Teilzersetzung des Copolymers auf die Ausbeuten ein. In der Pyrolysestufe reagiert die Restschwefelsäure weiter mit dem Copolymer und stabilisiert die aromatischen Kerne. Steigt die Feuchte des Sulfproduktes, nehmen auch die Koksausbeuten α und $\beta^{trocken}$ zu (Bild 8-3). Die Koksausbeute β^{feucht} sinkt mit zunehmender Feuchte, weil diese während der Pyrolyse verdampft wird. Hohe Sulfoniertemperaturen > 220 °C bewirken gleichzeitig niedrigere Koksausbeuten (α und $\beta^{trocken}$), da die Teilzersetzung des Copolymers bereits in der Sulfonierstufe beginnt.

Bild 8-3: Einfluss der Feuchte auf die Koksausbeute (PT 750 °C, PAHR 10 K/min, PHZ 5 min)

8.1.2 Verbleib des Schwefels

In der Pyrolysestufe werden über 80 % des eingebrachten Schwefels in die Gasphase überführt. Besonders das MEV (Bild 8-4) und die Sulfoniertemperatur beeinflussen den Schwefelgehalt und die Schwefelabspaltung. Von geringem Einfluss sind die Sulfonierhaltezeit (Bild 8-4) und der Füllungsgrad. Die Nachreaktion lässt keinen Einfluss erkennen (Tabelle A8-3, SUV 8-2–SUV 23-1, SUV 19-1–SUV 24-1).

Mit steigendem MEV (bis 1,6) sinkt die Schwefelabspaltung. Dagegen steigt der Schwefelgehalt des Kokses an. Wird das MEV über 1,6 erhöht, dann bleiben Schwefelabspaltung und Schwefelgehalt konstant. Die Ursache für dieses Verhalten könnte der Restschwefelsäureanteil des Sulfprodukts sein, da ab einem MEV von 1,6 die Restfeuchte bei ca. 23 Ma-% konstant bleibt. In Bild 8-5 sind Schwefelgehalt und –abspaltung über der Restfeuchte des Sulfproduktes aufgetragen. Trotz starker Streuung der Punkte ist eine Zunahme des Schwefelgehaltes des Kokses mit der Feuchte des Sulfproduktes erkennbar (Bild 8-5). Die weiteren Einflussgrößen lassen sich ebenfalls in diesen Erklärungsansatz einordnen.

Bild 8-4: Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf den Schwefelgehalt des Kokses und die Schwefelabspaltung (PT 750 °C, PAHR 10 K/min, PHZ 5 min)

Bild 8-5: Einfluss der Restfeuchte des Sulfprodukts auf den Schwefelgehalt des Kokses und die Schwefelabspaltung (PT 750 °C, PAHR 10 K/min, PHZ 5 min)

8.1.3 Kokseigenschaften

Granulometrie

Die Prozessführung bei der Sulfonierung hat kaum einen Einfluss auf die granulometrischen Eigenschaften des Kokses. Der mittlere Durchmesser des Kokses beträgt $0,414\pm0,032$ mm, das Kugelvolumen verringert sich durch Schrumpfung um $73,2\pm6,2$ %. Wie aus Bild 8-6 zu erkennen ist, kommt es bei einem MEV von Eins (SUV 4) zu einer stärkeren Kornschrumpfung. Die Fülldichte der Kokse schwankt zwischen 0,75 g/cm³ und 0,795 g/cm³. Die Rütteldichte beträgt 0,806±0,014g/cm³. Die Sinterneigung und der Bruchanteil der hergestellten Kokse sind sehr gering (<3%).

Bild 8-6: Korngrößenverteilung ausgewählter Kokse (PT 750 °C, PAHR 10 K/min, PHZ 5 min)

Porenstruktur der Kokse

Während des Pyrolysevorganges werden zum Teil die nicht sulfonierten aliphatischen Ketten und die unsulfonierten Aromaten des Copolymers abgebaut. An den Abbaustellen setzt die Porenbildung durch freiwerdende Räume ein. Dieser Abbau von Molekülen und Molekülbruchstücken erzeugt einen mikroporösen Koks. Bedingt durch die Probenahme und Einfachmessung streuen die Porenvolumina sehr stark (Tabelle A8-2 des Anhangs). Nachfolgend soll deshalb nur der Einfluss von MEV und Sulfonierhaltezeit als Haupteinflussgrößen diskutiert werden. Um den Einfluss von Füllungsgrad, Druck und Nachreaktion zu beschreiben, sind weitere Versuche notwendig, die die vorliegenden Ergebnisse bestätigen bzw. ergänzen. Der Einfluss des MEV auf das Gesamtporenvolumen des Kokses ist gegenüber den Laborsulfprodukten wenig ausgeprägt (Bild 8-7). Das Gesamtporenvolumen wird durch das Mikroporenvolumen dominiert. Bei geringem MEV = 1 - 1,4 beträgt das Mikroporenvolumen 125 mm³/g. Mikroporenvolumen und Mesoporenvolumen nehmen bis zu einem MEV von 1,6 ab und darüber hinaus wieder zu. Die Mesoporenbildung findet größtenteils im Porenradiusbereich 3,8-10,6 nm statt, es werden gegenüber einem niedrigen MEV kleinere Poren erzeugt (Bild 8-9).

Eine Verlängerung der Sulfonierhaltezeit führt zu einem etwas geringeren Gesamt- und Mikroporenvolumen (Bild 8-8). Das Maximum stellt sich bei Haltezeiten von 5 bis 10 min ein. Das Mesoporenvolumen liegt unter 20 mm³/g. Die Makroporenporenbildung ist sehr gering (unter 5 mm³/g). Da der prozentuale Mikroporenanteil mit längerer Sulfonierhaltezeit leicht ansteigt, der Mesoporenanteil jedoch abnimmt, wird die mittlere Porenweite insgesamt kleiner. Die Porenradienverteilung der Kokse (Bild 8-9) weist ein kumulatives Meso- und Makroporenvolumen zwischen 15 und 23 mm³/g aus. Bei einem geringen MEV (bis 1,4) werden verstärkt Poren mit einem Radius von 10 bis 30 nm gebildet (SUV 4, SUV 8-2).

Bild 8-7: Porenvolumen und -anteile der Kokse in Abhängigkeit vom MEV (SHZ 20 min, PT 750 °C, PAHR 10 K/min, PHZ 5 min)

Bild 8-8: Porenvolumen und -anteile der Kokse in Abhängigkeit von der Haltezeit (MEV 1,4; PT 750 °C, PAHR10 K/min, PHZ 5 min)

Fazit:

Die aus früheren Versuchen [HMGN00] bekannte fallende Tendenz des Porenvolumens mit zunehmendem MEV findet sich nur bis MEV = 1,6 bestätigt und ist darüber hinaus nur schwach ausgeprägt. Wie noch gezeigt werden wird (Abschnitt 8.3), ist dies nicht durch die Art des Sulfproduktes begründet. Ursache ist vielmehr die geringere Aufheizrate von 10 K/min bei der Pyrolyse gegenüber 20 K/min bei den früheren Versuchen. Der Einfluss des MEV im Bereich 1 – 1,6 kommt ebenfalls in der Porenradienverteilung zum Ausdruck. Die Kokse sind überwiegend mikroporös (> 80 %). Über die Haltezeit bei der Sulfonierung kann das Mesoporenvolumen zwischen 5 und 15 % bei einem MEV von 1,4 variiert werden.

Bild 8-9: Porenradienverteilung ausgewählter Kokse (SHZ 20 min, PT 750 °C, PAHR 10 K/min, PHZ 5 min)

8.2 Einfluss der Sulfonierung auf den Aktivierungsprozess und die Eigenschaften des Aktivates

Die Aktivierung der Kokse erfolgte unter einheitlichen Bedingungen in einem Quarzglasreaktor (Bild 4-3). Die Eigenschaften sind im Anhang in den Tabellen A8-4 bis A8-6 neben den Aktivierungsparametern zusammengefasst.

8.2.1 Aktivierungsgrad (Abbrand) und Aktivierungsgeschwindigkeit

Unter den gewählten Bedingungen (siehe Tabelle 4-2) werden durchschnittlich 47 % der eingesetzten Koksmasse vergast. Das Abbrandverhalten der Kokse wird von den Sulfonierparametern MEV und Haltezeit in nur geringem Maß beeinflusst (Bild 8-10), da der Schwefelgehalt der Kokse in engen Grenzen liegt (2,5 – 6 Ma-%) und die Kokse sich in der Porenstruktur kaum von einander unterscheiden. Druck, Temperatur, Füllungsgrad und Nachreaktion haben keinen Einfluss auf das Abbrandverhalten. Der Abbrand nimmt jedoch mit steigendem Schwefelgehalt im Koks leicht zu (siehe Bild 8-11).

Bild 8-10: Einfluss der Sulfonierparameter MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf den Abbrand der Aktivierungsstufe (PT 750 °C, PAHR 10 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min)

Bild 8-11: Abhängigkeit des Abbrandes vom Koksschwefelgehalt (PT 750 °C, PAHR 10 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min)

8.2.2 Verbleib des Schwefels

Der Schwefelgehalt der Aktivate liegt zwischen 2,3 und 3,4 Ma-%. 49 bis 77 % des im Koks enthaltenen Schwefels werden während der Aktivierung abgespalten. Der Schwefelgehalt des Aktivates kann nur durch den Sulfonierparameter MEV beeinflusst werden. Mit dem MEV nehmen sowohl Schwefelgehalt als auch Schwefelabspaltung bis zu einem MEV = 1,6 zu und bleiben dann auf diesem Niveau konstant (Bild 8-12).

Bild 8-12: Abhängigkeit des Aktivatschwefelgehaltes und der Schwefelabspaltung von den Sulfonierparametern MEV (SHZ 20 min) und Haltezeit (MEV 1,4) (PT 750 °C, PAHR 10 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min)

Bild 8-13: Schwefelgehalte der Aktivate und Schwefelabspaltung in Abhängigkeit vom Koksschwefelgehalt (PT 750 °C, PAHR 10 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min)

Wie in Abschnitt 8.1.2 dargestellt, wirken die Prozessparameter der Sulfonierung über die Restfeuchte auf den Schwefelgehalt des Kokses. Der Kurvenverlauf des Schwefelgehaltes im Aktivat ist vergleichbar mit dem Kurvenverlauf des Koksschwefelgehaltes (Bild 8-4). Für die Aktivierungsstufe kann der Schwefelgehalt und die Schwefelabspaltung in Abhängigkeit vom Schwefelgehalt des Kokses dargestellt werden (Bild 8-13). Beide Werte nehmen mit dem Schwefelgehalt des Kokses zu. Die Auswirkungen der Sulfonierparameter auf den Schwefelgehalt

von Koks und Aktivat sind gering (10 % Feuchteunterschied bewirken um 1 % veränderte Koksschwefelgehalte und um 0,27 % veränderte Aktivatschwefelgehalte).

8.2.3 Aktivateigenschaften

Granulometrie

Auf die Granulometrie der Aktivate haben die Sulfonierparameter keinen Einfluss. Bild 8-14 zeigt die Korngrößenverteilung ausgewählter Aktivate. Durchschnittlich haben diese einen Kugeldurchmesser von 0,36 mm, was gegenüber dem Koks einer Abnahme um 13 % entspricht. Bedingt durch die Porenbildung beträgt die Fülldichte noch 0,508 g/cm³ und die Rütteldichte 0,528 g/cm³. Die Aktivate sind frei von Versinterungen und weisen einen nur geringen Bruchanteil (< 1,8 %) auf.

Bild 8-14: Korngrößenverteilung ausgewählter Aktivate (PT 750 °C, PAHR 10 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min, AB 51 ± 3 Ma-%)

Morphologie

Tabelle 8-1 enthält die Ergebnisse der mikroskopischen Untersuchung. Bei niedrigem MEV wurden Hohlräume in den Partikeln festgestellt. Diese können durch Wahl eines MEV > 1,8 oder einer Sulfonierhaltezeit von mindestens 30 min bei einem MEV von 1,4 unterbunden werden. Der Anteil an "Hütchen" ist von den Sulfonierparametern unabhängig, fällt jedoch sehr gering aus. Die Deformationen und Hohlräume sind bereits im Koks enthalten und durch die Aktivierung nicht beeinflussbar. Die bei den Aktivaten auftretende Rissbildung nimmt mit steigendem MEV und längeren Sulfonierhaltezeiten ab.

Aktivat		Bruch	Versinterung	Hohlraum	Risse	"Hütchen"	1.000		
	MEV			MEV-Reihe			5755	MA	
SUA 4	1	nein	nein	groß	nein	ja (-)	11222013	(33)	
SUA 6-2	1,2	ja (-)	nein	mittel	ja (-)	nein	All and a second		
SUA 8-2	1,4	ja (-)	nein	mittel	ja (-)	ja (-)	Kugelform	Witchenform	
SUA 10-2	1,6	nein	nein	gering bis mittel	nein	ja (-)	Rugenonn	nuchenionn	
SUA 19-2	1,8	ja (-)	nein	nein	nein	ja (-)			
SUA 22-2	2	ja (-)	nein	nein	nein	ja (-)			
SUA 30	2	ja (-)	nein	nein	nein	ja (-)	(1995) (1996)		
SUA 31	2	nein	nein	nein	nein	nein			
	SHZ			Haltezeit-Reihe				Halbkugel	C.F.
SUA 18-2	5 min	ja (-)	nein	groß	ja (-)	ja (-)	Versinteruna	(Bruch)	Part
SUA 17-2	10 min	ja (-)	nein	klein	ja (-)	ja (-)		NO ROBULT AND THORE	
SUA 8-2	20 min	ja (-)	nein	mittel	ja (-)	ja (-)			
SUA 13	30 min	nein	nein	nein	nein	nein	Bild 8-15:	Häufige	
SUA 14-2	40 min	nein	nein	nein	nein	ja (-)	Formen [Wac00]		

Tabelle 8-1: Ergebnisse der mikroskopischen Begutachtung der Aktivate

(-) geringer Anteil "Hütchen": Eindellung der Kugel (siehe Bild)

Porenstruktur der Aktivkohlen

Im Gegensatz zur Koksporenstruktur (Bild 8-7 und 8-8) zeigt die Porenstruktur der Aktivate (Bild 8-16) Abhängigkeiten von den Sulfonierparametern MEV, Haltezeit und Temperatur. Das Gesamtporenvolumen der Aktivate liegt durchschnittlich um 550 mm³/g über dem der Kokse. Besonders Mikro- und Mesoporen werden durch die Aktivierung gebildet.

- MEV

Das Gesamtporenvolumen beträgt unabhängig vom MEV durchschnittlich 700 mm³/g (Abbrand ca. 50 %). Das Mikroporenvolumen nimmt bis zu einem MEV von 1,6 zu und bleibt darüber hinaus auf diesem Niveau konstant. Das Mesoporenvolumen verringert sich dagegen von 270 mm³/g (MEV 1) auf 200 mm³/g (MEV 2). Das Makroporenvolumen ist bei einem Masseeinsatzverhältnis > 1 unabhängig vom MEV und beträgt durchschnittlich 30 mm³/g. Nur bei sehr geringem MEV (SU 4, MEV = 1) kann mit 76 mm³/g ein relativ hoher Wert für das Makroporenvolumen erreicht werden. Durch die Aktivierung entstehen relativ viel Mesoporen (30 – 40 %). Die Makroporen werden zu etwa 50 % im Porenbereich 27-109 nm gebildet.

- Haltezeit

Die Haltezeit hat einen geringeren Einfluss auf die Porenstruktur als das Masseeinsatzverhältnis. Das Gesamtporenvolumen und das Mikroporenvolumen erreichen bei 20 min Haltezeit ihren Höchstwert. Alle Aktivate weisen einen Mikroporenanteil von ≥ 50 % auf. Das Mesoporenvolumen beträgt etwa 30 % (MEV 1,4). Wird die Sulfoniertemperatur gesteigert, so werden verstärkt Makround Mesoporen zu Lasten des Mikroporenanteils gebildet (Tabelle A8-5: SUA 8-2 vs. SUA 27-1). Der höhere Füllungsgrad führt bei SUA 25 zu einem geringeren Mesoporenvolumen. Mikro- und Makroporenvolumen bleiben dagegen konstant.

Bild 8-16: Porenvolumen und –anteile der Aktivate in Abhängigkeit von MEV (SHZ 20 min) und der Haltezeit (MEV 1,4) (PT 750 °C, PAHR 10 K/min, PHZ 5 min, AT 880 °C, AHZ 180 min)

Aus der Porenradienverteilung Bild 8-17 wird deutlich, dass das Meso- und Makroporenvolumen der Referenzprobe SAR-0 um das 1,3 bis 2,4 fache übertroffen wird. Das Porenvolumen nimmt besonders im Porenradienbereich kleiner 30 nm zu.

Bild 8-17: Porenradienverteilung ausgewählter Aktivate (AB 51 ± 3 Ma-%)

Die durch die Aktivierung erzeugte BET-Oberfläche (Bild 8-18) der Aktivate erhöht sich bis zu einem MEV von 1,6, da gleichzeitig mehr Mikroporen gebildet werden (siehe Bild 8-16). Die Sulfonierhaltezeit hat jedoch keinen Einfluss auf die BET-Oberfläche.

Bild 8-18: Einfluss von MEV und Haltezeit auf die BET-Oberfläche (AT 880 °C, AB 44 – 54 %)

Fazit:

Das Aktivierungsverhalten der Kokse wird hauptsächlich durch den Schwefelgehalt beeinflusst und dieser wiederum durch das MEV der Sulfonierung. Der unter sonst gleichen Bedingungen erreichte Abbrand nimmt dadurch um etwa 5 % - Punkte zu, wenn sich der Koksschwefelgehalt von 3 auf 6 Ma-% erhöht. Gleichzeitig erhöht sich die BET – Oberfläche von 850 m²/g auf 1100 m²/g überproportional zum Abbrandzuwachs. Das Mesoporenvolumen reduziert sich dann auf ca. 200 mm³/g, nimmt mit etwa 30 % aber immer noch einen unverhältnismäßig hohen Anteil am Gesamtporenvolumen der Aktivate ein.

8.3 Vergleich der Produkte aus Pilot- (PSA) und Laborsulfonieranlage (RVD)

Dem Vergleich liegen die Sulfprodukte aus den Versuchen SU 4, SU 6, SU 8, SU 10, SU 19 (MEV - Reihe) und SU 18, SU 17, (SU 8), SU 14 (Haltezeit - Reihe) der Pilotsulfonieranlage (PSA) und die unter gleichen Sulfonierbedingungen im Laborreaktor (RVD) hergestellten Produkte zugrunde. Der Vergleich erstreckt sich auf die Ergebnisse der Sulfonierung, Pyrolyse und Aktivierung. Die Analysenergebnisse und die daraus berechneten Kenngrößen sind in den Tabellen A8-1 bis A8-3 (Anhang) für den Koks und in den Tabellen A8-4 bis A8-6 (Anhang) für das Aktivat zusammengefasst.

Sulfonierung

In Bild 8-19 sind Ausbeute, Schwefelgehalt und Fülldichte der Sulfprodukte in Abhängigkeit von MEV und Sulfonierhaltezeit aufgetragen. Die Eigenschaften des mit der Pilotanlage hergestellten sulfonierten Copolymers stimmen sehr gut mit den Laborergebnissen überein. Die Ausbeute der Sulfonierung in der Pilotanlage ist bei längerer Haltezeit etwas höher als bei den Laborversuchen. Grund dafür ist eine geringere Verdampfung des Reaktionswassers und der Schwefelsäure.

Bild 8-19: Einfluss des MEV (SHZ 20 min) und der Haltezeit (MEV 1,4) auf die Ausbeute, den Schwefelgehalt und die Fülldichte der Sulfprodukte

Pyrolyse

Bild 8-20 zeigt die Ausbeuten und Schwefelgehalte des Kokses. Wie deutlich zu erkennen ist, werden identische Koksausbeuten erreicht. Der Koks aus den Laborversuchen hat jedoch einen etwas geringeren Schwefelgehalt. Der Erklärungssatz liegt auch hier in der höheren Restfeuchte des zur Pyrolyse eingesetzten Pilot-Sulfproduktes, da die Restschwefelsäure in der Pyrolysestufe weiter in die Copolymermatrix eingebunden wird.

Gesamt- (Bild 8-21), Makro-, Meso- und Mikroporenvolumen (Bild 8-22, Bild 8-23) der Kokse aus der Pilotsulfonieranlage stimmen gut mit den entsprechenden Werten aus den Laborversuchen überein. Gegenüber Bild 8-7 ergeben sich höhere Werte des Gesamtporenvolumens, was auf die hier gewählte schnellere Aufheizung bei der Pyrolyse zurück zu führen ist.

Bild 8-20: Einfluss des MEV (SHZ 20 min) und der Haltezeit (MEV 1,4) auf Koksausbeute und Schwefelgehalt der Kokse (PT 750 °C, PAHR 20 K/min, PHZ 5 min)

Bild 8-21: Einfluss des MEV (SHZ 20 min) auf das Gesamtporenvolumen der Kokse (PT 750 °C, PAHR 20 K/min, PHZ 5 min)

Bild 8-22 Einfluss des MEV auf die Makro-, Meso- und Mikroporenvolumina der Kokse

Bild 8-23: Einfluss des MEV auf die Makro-, Meso- und Mikroporenvolumenanteile der Kokse

Aktivierung

Die Aktivierung wurde in der Laborwirbelschichtanlage (Bild 4-3) unter den in Tabelle 4-2 genannten Bedingungen durchgeführt. Die aus Pilot-Sulfprodukt hergestellten Aktivate weisen einen deutlich höheren äußeren Abbrand gegenüber den Labormustern auf, erkennbar an der Aktivatkorngröße. Diese ist im Mittel mit 0,363 mm geringer als bei den Aktivaten annähernd gleichen Abbrandes aus den Laborversuchen (0,40 mm).

Mit zunehmendem MEV werden mit Pilot-Sulfprodukt unter gleichen Pyrolyse- und Aktivierungsbedingungen ebenfalls höhere Abbrände erreicht (Bild 8-24). Tendenziell sinkt der Abbrand mit steigendem MEV. Der Abbrand bei den Pilot-Sulfprodukten liegt durchschnittlich um 10 bis 15 % über den Werten bei Einsatz von Labor-Sulfprodukt, d.h. die Kokse aus Pilot-Sulfprodukt weisen eine generell höhere Aktivierungsgeschwindigkeit auf. Daraufhin wurden die Kokse auf eventuell vorhandene katalytisch wirksame Metallionen untersucht. Da der Sulfonierreaktor aus Fe-, Ni-, Cr-Legierung besteht, galt diesen Metallen besonderes Interesse. Das Ergebnis einer AAS-Analyse zeigte, dass im Koks 0,26 bis 0,3 Ma-% Eisen, 0,18 bis 2,5 Ma-% Nickel und 0,24 bis 3,2 Ma-% Chrom enthalten sind. Aus der Literatur [AA95, LCRM92, Mat91,

MS93, MWKM91, Nis91] ist die katalytische Wirkung von Fe, Ni, Cr, Zn sowie der Alkali- und Erdalkalimetalle auf die Kohlenstoffvergasung bekannt. Eine beschleunigte Vergasungsreaktion bewirkt bei gleicher Aktivierungszeit einen höheren Abbrand, der zunehmend an der äußeren Kornoberfläche stattfindet. In Abschnitt 9 wird der Einfluss der Katalysatormenge auf den Abbrand und die Aktivateigenschaften näher untersucht.

Die Entwicklung der massebezogenen BET – Oberfläche (Bild 8-24) folgt dem jeweiligen Trend des Abbrandes über dem MEV. Für die PSA – Aktivate erreicht sie Werte zwischen 1104 m²/g (MEV = 1,2) und 1135 m²/g (MEV = 1,8). Bei den RVD – Aktivaten ist aufgrund rückläufiger Abbrände erwartungsgemäß ein fallender Trend zu beobachten. Bemerkenswert sind jedoch die bei gleichem Abbrand insgesamt höheren BET – Werte im Vergleich zu den PSA – Aktivaten. Die Unterschiede können bis zu 400 m²/g betragen und erklären sich aus dem gleichzeitig höheren Mesoporenanteil der aus Pilot-Sulfprodukt hergestellten Aktivate.

Die volumenbezogene BET – Oberfläche der PSA – Aktivate steigt ebenfalls mit zunehmendem MEV an, liegt jedoch ebenfalls unter den Werten der Labormuster. Die höheren Abbrände und die damit verbundenen geringeren Fülldichten sind die Ursache dafür.

Bild 8-24: Einfluss des Masseeinsatzverhältnisses auf Abbrand und BET-Oberfläche (AT 880 °C, AHZ 180 min)

Aufgrund der höheren Abbrandwerte bei den PSA – Aktivaten stellen sich auch entsprechend höhere Werte für das Gesamtporenvolumen ein. Da Makro- und Mikroporenvolumen von PSA- und RVD- Aktivaten annähernd gleich sind, ist die Ursache für das größere Gesamtporenvolumen im größeren Mesoporenvolumen der PSA – Aktivate begründet (Bild 8-25). Das Mesoporenvolumen verringert sich in beiden Fällen mit steigendem MEV, liegt jedoch bei den PSA-Aktivaten beim 3 bis 8-fachen des Wertes der Labormuster. Sowohl bei den PSA- als auch bei den RVD- Aktivaten ist die Beeinflussung der Mesoporenbildung über die Variation des MEV der Sulfonierung möglich, wenn die Aufheizrate bei der Pyrolyse 20 K/min beträgt.

Bild 8-25: Einfluss des MEV auf das Makro-, Meso-, Mikro- und Gesamtporenvolumen der Aktivate (AT 880 °C, AHZ 180 min)

Fazit:

Der Vergleich zeigt eine gute Übertragbarkeit des chemischen Prozesses der Sulfonierung in den Pilotmaßstab. Die Eigenschaften des Sulfproduktes und des Kokses stimmen mit den Ergebnissen aus den Laborversuchen gut überein. Unterschiede treten lediglich im Aktivierungsverhalten sowie bei den Aktivateigenschaften zwischen den in der Pilotanlage und im Labormaßstab hergestellten Sulfprodukten auf. Die bei den Koksen aus Pilot-Sulfprodukt zu beobachtende höhere Aktivierungsgeschwindigkeit führt zu einem erhöhten Abbrand und zu einer stärkeren Reduzierung der Korngröße. Darüber hinaus bilden sich deutlich mehr Mesoporen. Für die hergestellten TACT-Versuchsmuster ist eine Porenstruktur, bestehend aus im Mittel 60 % Mikroporen, 33 % Mesoporen und 7 % Makroporen charakteristisch. Eine Variation ist durch das MEV der Sulfonierung und darüber hinaus durch die Variation des Abbrandes (siehe Abschnitt 4.2.3) möglich. Aufgrund der ausgeprägten Mesoporenstruktur ist eine hohe Spontanität dieser Aktivkohlen zu erwarten.

8.4 Reproduzierbarkeit der Versuche mit der Pilotsulfonieranlage

Die Reproduzierbarkeit wurde mit den Versuchen SU22, SU 30 und SU 31 nachgewiesen (siehe Tabellen A8-1 bis A8-6 des Anhangs). Folgende Schwankungsbreiten wurden festgestellt:

Sulfonierung

- Prozessgrößen

AHR a:	3,64 bis 3,82 K/min	$3,73\pm0,09$ K/min
AHR b:	8,14 bis 9,89 K/min	9,02 \pm 0,87 K/min
Reaktionstemperatur:	195,1 bis 195,9 °C	$195\pm0,4~^\circ\text{C}$
AKR I:	1,28 bis 1,31 K/min	1,295 ± 0,015 K/min

AKR II:	1,6 bis 1,95 K/min	1,78 \pm 0,18 K/min
Versuchsdauer:	131 bis 135 min	$133\pm2~\text{min}$
- Produkteigenschaften:		
Sulfproduktmasse:	38,3 bis 38,92 kg	$38,61 \pm 0,31 \text{ kg}$
Fülldichte:	0,905 bis 0,938 g/cm³	$0,922 \pm 0,017 \text{ g/cm}^3$
Mittlerer Durchmesser:	0,66 mm	$0,66\pm0$ mm
Pyrolyse		
Koksausbeute β^{feucht} :	36,91 bis 38,25 %	$37,58 \pm 0,67$ %
Koksausbeute α :	94,71 bis 98,54 %	96,63 ± 1,92 %
Fülldichte:	0,767 bis 0,780 g/cm³	$0,774 \pm 0,006 \text{ g/cm}^3$
Mittlerer Durchmesser:	0,419 bis 0,430 mm	$0,425 \pm 0,006 \text{ mm}$
PV _{gesamt} :	136,48 bis 155,92 mm³/g	146,20 ± 9,720 mm³/g
Aktivierung		
Aktivierungsgrad:	48,94 bis 53,57 %	51,26 \pm 2,32 %
Fülldichte:	0,467 bis 0,501 g/cm³	$0,484 \pm 0,017 \text{ g/cm}^{3}$
Mittlerer Durchmesser:	0,360 bis 0,361 mm	$0,3605\pm0,0005~\text{mm}$
BET – Oberfläche:	1075 bis 1132 m²/g	1104 ± 28 m²/g
BET – Oberfläche:	528 bis 536 m²/cm³ (Füllvolumen)	$532\pm4~m^2/cm^3$
PV _{gesamt} :	667,0 bis 748,6 mm³/g	$707,8 \pm 40,8 \text{ mm}^3/\text{g}$
PV _{Makro} :	23,19 bis 30,18 mm³/g	$26,69 \pm 3,49 \text{ mm}^3/\text{g}$
PV Meso:	186,44 bis 250,49 mm³/g	218,47 ± 32,03 mm³/g
PV _{Mikro} :	436,90 bis 467,92 mm³/g	452,41 ± 15,51 mm³/g

Alle Aktivierungskenngrößen sind vom Aktivierungsgrad (hier: 48 – 54 %) abhängig. Die Fülldichte und der mittlere Durchmesser sinken mit steigendem Aktivierungsgrad. Alle anderen genannten Kenngrößen nehmen mit steigendem Aktivierungsgrad zu.

Die Sulfonierversuche mit der Pilotanlage und die erhaltenen Ergebnisse lassen sich sehr gut reproduzieren. Grund ist die automatische Steuerung des Prozessablaufes. Obwohl das Verhalten der Reaktionsmischung vom anfänglichen Zustand eines oberflächenfeuchten Partikelhaufwerkes über eine temporäre Agglomeratbildung bis hin zur Rieselfähigkeit statistischen Schwankungen unterliegt, variieren die Einzelchargen nur in engen Grenzen.

Bei den Koksen und Aktivaten beobachtet man bei einigen Merkmalen größere Schwankungen, die jedoch die Reproduzierbarkeit nicht in Frage stellen. Die Gründe für die festgestellten Abweichungen sind in erster Linie in der Statistik der Probenahme zu suchen, da die Messverfahren mit extrem kleinen Mengen (< 1 g) arbeiten und bewusst keine Doppelbestimmung vorgenommen wurde.

9 Maßschneidern von TACT's durch geeignete Wahl der Prozessbedingungen

Unter Maßschneidern von Aktivkohlen ist zu verstehen, dass sich durch Veränderung der Prozessbedingungen (Steuergrößen) beim Sulfonieren, Pyrolysieren und Aktivieren unterschiedliche Porenstrukturen erzeugen lassen.

In diesem Abschnitt werden zusammenfassend die Abhängigkeiten der Aktivateigenschaften von den folgenden Einflussgrößen betrachtet.

- Masseeinsatzverhältnis
- Pyrolysetemperatur
- Pyrolyseaufheizrate
- Aktivierungsgrad (Abbrand)
- Aktivierungstemperatur
- Aktivierungsgasmedium
- Katalysatormenge

Nachfolgend werden getrennt für die drei Prozessstufen Sulfonierung, Pyrolyse und Aktivierung die verfahrenstechnischen Möglichkeiten der Steuerung der Aktivatqualität aufgezeigt.

9.1 Variation der Prozessbedingungen

Sulfonierung

Tabelle 9-1 enthält zusammenfassend die Aktivateigenschaften sowie den Sintergrad und Bruchanteil des Kokses in Abhängigkeit vom MEV. Die sonstigen Bedingungen wurden jeweils konstant gehalten. Die Sulfonierung wurde in der Laborsulfonieranlage durchgeführt. Für Pyrolyse und Aktivierung wurden die Laborretorte bzw. die Laborwirbelschichtanlage eingesetzt. Die Einteilung der TACT-Qualitäten erfolgte nach 3 MEV-Bereichen:

Bereich	MEV
I	gering (0,8 - 1,2)
П	mittel (1,2 – 1,6)
III	groß (1,6 – 2,0)

Durch Auswahl eines MEV aus dem Bereich I kann eine Aktivkohle mit einem hohen Meso- und Makroporenvolumen erzeugt werden. Die BET-Oberfläche beträgt mindestens 1250 m²/g bei einem Abbrand von 45 %. Die Partikel sind stark versintert, teilweise zerstört und weisen ein Hohlraumvolumen > 35 % auf. Aus diesem Grund liegt die Aktivatausbeute bezogen Copolymer bei nur 31 – 45 %.

Wird eine Aktivkohle mit geringerem Mesoporenvolumen angestrebt, ist ein MEV gemäß der Bereiche II und III zu wählen. Mit einem mittleren MEV (Bereich II) werden der prozentuale Mikroporenanteil, die BET-Oberfläche und die Aktivatausbeute bei gleichem Abbrand erhöht. Das Hohlraumvolumen, der Sintergrad und der Bruchanteil nehmen ab.

Um eine hohlraumfreie und unversinterte Aktivkohle herzustellen, ist ein MEV gemäß Bereich III zu wählen. Die Aktivatausbeute, der prozentuale Mikroporenanteil und die BET-Oberfläche erreichen beim gewählten Abbrand ihre Maximalwerte. Die Meso- und Makroporenhäufigkeit wird minimal.

			II	
MEV		0,8 - 1,2	1,2 - 1,6	1,6 - 2,0
SAHR / ST / SHZ		16/200/8	16/200/8	16/200/8
PT / PAHR / PHZ		750/20/5	750/20/5	750/20/5
AT / AB (normiert)		880/45	880/45	880/45
Aktivatausbeute	%	31-45	45-55	55-60
BET	m²/g	1250 - 1300	1300 - 1400	1400-1500
BET (Basis Fülldich	m²/cm³	500-650	650-880	880-1020
PV gesamt	mm³/g	1000-650	650-550	550-500
PV Mikro	mm³/g	600-500	550-500	500-450
PV Mikro	%	55-85	85-90	90-93
PV Meso	mm³/g	280-50	50-30	50-30
PV Meso	%	30-9	9-5	9-5
PV Makro	mm³/g	65-30	30-16	19-3
PV Makro	%	8-4	5-3	3-0,5
Hohlraum	%	>50-35	35-10	10-0
Sintergrad Koks	%	>15	<15	<3
Bruchanteil Koks	%	12-3	4-2	<3
Fülldichte	g/cm ³	0,4-0,5	0,5-63	0,63-0,68

Tabelle 9-1: Variation der Sulfonierbedingungen am Beispiel des MEV

Pyrolyse

In Tabelle 9-2 ist der Einfluss der Pyrolysetemperatur auf die Aktivatqualität für zwei unterschiedliche MEV zusammengefasst. Die Aktivatausbeute bezogen Copolymer sinkt mit steigender Pyrolysetemperatur und abnehmenden MEV. Durch Erhöhung der Pyrolysetemperatur wird die massebezogene BET-Oberfläche, das Gesamt-, Mikro-, Meso- und Makroporenvolumen erhöht. Der prozentuale Mikroporenanteil nimmt jedoch ab. Dieser wird jedoch mit Erhöhung des MEV größer. Besonders durch Wahl eines MEV aus dem Bereich 2 und eine niedrige Pyrolysetemperatur können unversinterte und bruchfreie Aktivatpartikel hergestellt werden. Der Bruchanteil nimmt mit der Pyrolysetemperatur zu.

Wird eine hohe volumenbezogene BET-Oberfläche verlangt, kann diese durch Wahl eines MEV des Bereiches II und eine niedrigen Pyrolysetemperatur erreicht werden.

MEV		1	1	1,4	1,4
SAHR / ST / SHZ		16/200/8	16/200/8	16/200/8	16/200/8
PT / PAHR / PHZ		500/20/5	750/20/5	500/20/5	750/20/5
AT / AB		880/50	880/50	880/54	880/54
Aktivatausbeute	%	41,3	35,6	45,9	38,6
BET	m²/g	1230	1392	1394	1600
BET (Basis Rütteldichte)	m²/cm³	592	639	885	854
PV gesamt	mm³/g	752	978	574	640
PV Mikro	mm³/g	618	671	523	538
PV Mikro	%	82	69	91	84
PV Meso	mm³/g	108	253	38	62
PV Meso	%	14	26	6,5	9,5
PV Makro	mm³/g	26	55	13	40
PV Makro	%	3,5	5,5	2,3	6,3
Sintergrad Koks	%	18	12,5	0,7	15
Bruchanteil Koks	%	3,5	7	0,5	12,5
Rütteldichte	g/cm³	0,481	0,459	0,635	0,534

Tabelle 9-2: Einfluss der	Pyrolysetemperatur	auf die	Aktivatqualität	(Einsatz	von 2	MEV	aus
den Bereichen I und II)							

Durch Wahl einer bestimmten Pyrolyse-Aufheizrate kann bereits die Koksqualität gezielt beeinflusst werden (Tabelle 9-3). Mit steigender Aufheizrate sinkt bei niedrigem MEV (1) das Gesamt-, Mikro- und Mesoporenvolumen ab und der prozentuale Makroporenanteil sowie der Sintergrad steigen an. Ein höheres MEV bewirkt eine größere Koksausbeute, die wiederum mit der Aufheizrate sinkt. Die Porenvolumina beleiben für dieses MEV (1,4) praktisch konstant.

	ia ii,						
MEV		1	1	1	1,4	1,4	1,4
SAHR / ST / SHZ		16/200/8	16/200/8	16/200/8	16/200/8	16/200/8	16/200/8
PT / PAHR		740/10/5	750/20/5	730/35/5	665/10/5	680/20/5	670/35/5
Koksausbeute α	%	67,2	71,1	67,2	92	91	89
PV gesamt	mm³/g	421	364	241	126	137	143
PV Mikro	mm³/g	344	293	178	95	84	93
PV Mikro	%	82	80	74	76	61	65
PV Meso	mm³/g	64	48	45	26	23	19
PV Meso	%	15	13	19	20	17	14
PV Makro	mm³/g	13	23	18	5	30	31
PV Makro	%	3	6	8	4	22	22
Sintergrad Koks	%	13	13	74	04	2.8	23

Tabelle 9-3: Einfluss der Pyrolyse-Aufheizrate auf die Koksqualität (Einsatz von 2 MEV aus den Bereichen I und II)

Aktivierung

Bruchanteil Koks

Um den Einfluss des Abbrandes auf die Aktivatqualität zu untersuchen, wurde ein MEV aus dem Bereich II ausgewählt. Der Abbrand wurde von 10 bis 63 % variiert (0 % = Koksqualität) und in 3 Bereiche eingeteilt (Tabelle 9-4). Besonders die BET-Oberfläche und die Porenvolumina nehmen mit steigendem Abbrand zu. Aktivate mit hohen Abbränden besitzen einen absolut höheren Meso-

0,7

1,1

0,1

0,4

0,5

0,8

%

und Makroporenanteil, jedoch einen fast unveränderten prozentualen Meso- und Makroporenanteil, d.h. der prozentuale Mikroporenanteil bleibt bis zu Abbränden von 60 % und darüber hinaus auf hohem Niveau konstant.

MEV		1,4	1,4	1,4
SAHR / ST / SHZ		16/200/8	16/200/8	16/200/8
PT / PAHR / PHZ		750/20/5	750/20/5	750/20/5
AT		880	880	880
Abbrand	%	0-24	24-48	48-63
Aktivatausbeute	%	88-65	65-46	46-32
BET	m²/g	<860	860-1420	1420-1820
BET (Basis Rütteldichte)	m²/cm³	<560	560-760	760-790
PV gesamt	mm³/g	200-360	360-620	620-840
PV Mikro	mm³/g	160-320	320-540	540-700
PV Mikro	%	78-88	85-88	87-83
PV Meso	mm³/g	15-17	16-36	36-87
PV Meso	%	8-4	4-7	7-10,5
PV Makro	mm³/g	23-28	28-34	34-50
PV Makro	%	13-8	8-5,5	5,5-6,5
Rütteldichte	g/cm³	0,663-0,65	0,65-0,535	0,535-0,434

Tabelle 9-4: Einfluss des Abbrandes

Mit Sulfprodukt aus der Pilotanlage wurde zusätzlich der Effekt der Aktivierungstemperatur auf die Entwicklung der Porosität untersucht. Die Sulfonierung erfolgte bei einem MEV von 2 (SU 22), um Versinterungen zu vermeiden. Die Pyrolyse erfolgte bei 750 °C in der Laborretorte mit einer Aufheizrate von 5 K/min. Zunächst zeigt Bild 9-1, in welchem Maß die Abbrandgeschwindigkeit mit der Temperatur zunimmt. Man erkennt, dass der Abbrand selbst keinen Einfluss ausübt.

Die durchschnittliche Abbrandgeschwindigkeit (Definition siehe Anhang A4) steigt erwartungsgemäß mit der Aktivierungstemperatur und unabhängig vom Abbrand an (Bild 9-1).

Bild 9-1: Einfluss des Abbrandes und der Aktivierungstemperatur auf die Abbrandgeschwindigkeit (AG: 69,9 Vol-% H₂O, 30,1 Vol-% N₂, DRO, m_{Koks} 100g)

Eine Variation der Aktivierungstemperatur hat – wie Bild 9-2 verdeutlicht – keinen signifikanten Einfluss auf das erzeugte Gesamtporenvolumen. Es gibt keinen Hinweis darauf, dass bei den untersuchten hohen Temperaturen verstärkt äußerer Abbrand auftritt.

Innerhalb eines Streubandes liegen auch die Messwerte für das Makroporenvolumen (Bild 9-2), wie auch des Mikroporenvolumens (Bild 9-3). Lediglich bei den Mesoporen deutet sich ein schwacher Trend zu erhöhten Werten mit steigender Temperatur an.

Wie bereits erwähnt, übt der Abbrand einen wesentlichen Einfluss auf die Porenvolumina aus. Gesamt-, Makro- und Mesoporenvolumen nehmen mit dem Abbrand zu, verstärkt bei Abbränden größer 45 %. Das Mikroporenvolumen steigt ebenfalls mit dem Abbrand an. Bei Abbränden größer 45 % werden zugunsten der Mesoporen verstärkt Mikroporen aufgeweitet. Die Zunahme des Mikroporenvolumens wird dadurch vermindert. Die massebezogene BET-Oberfläche steigt ebenfalls mit dem Abbrand an, jedoch bei hohen Werten vermindert. Das hohe Mesoporenvolumen und das damit verbundene geringere Mikroporenvolumen sind die Ursache dafür, dass eine BET-Oberfläche von 1400 m²/g erst bei einem Abbrand von ca. 60 % erreicht wird. Die volumenbezogene BET-Oberfläche durchläuft aufgrund der mit steigendem Abbrand geringer werdenden Fülldichte bei ca. 45 % Abbrand ein Maximum mit ca. 720 m²/cm³.

Bild 9-2: Einfluss des Abbrandes und der Aktivierungstemperatur auf das Gesamt- und Makroporenvolumen (AG: 69,9 Vol-% H_2O , 30,1 Vol-% N_2 , DRO, m_{Koks} 100g)

Bild 9-3: Einfluss des Abbrandes und der Aktivierungstemperatur auf das Meso- und Mikroporenvolumen (AG: 69,9 Vol-% H₂O, 30,1 Vol-% N₂, DRO, m_{Koks} 100g)

Bild 9-4: Einfluss des Abbrandes und der Aktivierungstemperatur auf die BET-Oberfläche (AG: 69,9 Vol-% H₂O, 30,1 Vol-% N₂, DRO, m_{Koks} 100g)

Aktivierungsmedium

In den folgenden Bildern ist zum Einen der Einfluss des Aktivierungsmediums (Bild 9-5) und zum Anderen der Einfluss der Aktivierungsgasmenge (Bild 9-6) auf die Aktivateigenschaften dargestellt. Die Aktivierungsgasmenge ist bestimmend für die sich einstellenden Partialdrücke der gasförmigen Reaktionsteilnehmer. Die Aktivierung erfolgte einheitlich bei 840 °C. Die Werte wurden durch lineare Interpolation auf einen Abbrand von 40 % bzw. 50 % normiert. Wie zu erkennen ist, können mit Wasserdampf als Aktivierungsmittel mikroporöse Aktivate mit hohen BET-Oberflächen erzeugt werden. Durch Verdopplung des Wasserdampfanteils nehmen die BET-Oberfläche, das Gesamt-, und das Mikroporenvolumen bei gleichem Abbrand zu. Da das Meso- und Makrovolumen in der Summe unverändert bleibt, erklärt sich die Zunahme des Porenvolumens aus dem Anstieg der Mikroporosität. Da der Gesamtabbrand gleich ist, geht der äußere Abbrand (ohne Porenbildung) zurück.

Mit Kohlendioxid als Aktivierungsmittel wird besonders die Meso- und Makroporenbildung verstärkt. Der Mikroporenanteil und die BET-Oberfläche sind gegenüber der Wasserdampfaktivierung deutlich geringer.

Durch Aktivierungsgasvolumenstromes Partialdrücke Erhöhuna des werden die der Reaktionsprodukte H₂ und CO, die die Kohlenstoffvergasung inhibieren, entsprechend vermindert, erkennbar an der wachsenden Abbrandgeschwindigkeit (Bild 9-6). Gleichzeitig werden - bezogen auf gleichen Abbrand – zunehmend mehr Meso- und Makroporen zuungunsten der Mikroporen gebildet. Das Gesamtporenvolumen liegt zwischen 600 und 650 mm³/g und das Mikroporenvolumen zwischen 460 und 530 mm³/g, jeweils bezogen auf einen Abbrand von 50 %. Beide Werte durchlaufen bei 218 l/h (2,18 l_N/h·g_{Koks}) ein Maximum. Deutlich nimmt das Mesoporenvolumen mit der Aktivierungsgasmenge zu, während die BET-Oberfläche abnimmt von 1215 m²/g bei 109 l_N/h auf 1069 m²/g bei 436 l_N/h.

Eine Steigerung der Aktivierungsgasmenge über ein bestimmtes Maß hinaus verstärkt den äußeren Abbrand, da der die Aktivierung inhibierende Effekt des Wasserstoffes und Kohlenmonoxides zurück gedrängt wird. Durch entsprechende Wahl der wichtigsten Prozesssteuergrößen lassen sich für eine grobe Orientierung die folgenden TACT-Qualitäten erzeugen (Basis Copolymer Lewapol 8-4-00).

Steuergrößen für

Mikroporenreiche TACT's

- hohes MEV (≥ 1,6)
- niedrige Pyrolysetemperatur (500 °C)
- niedrige Pyrolyseaufheizrate (10 K/min)
- Abbrand (50 ± 10 %)

Sinterkörper

- niedriges MEV (\leq 1,2)
- hohe Pyrolysetemperatur (> 600 °C)
- hohe Pyrolyse-Aufheizrate (35 K/min)

Mesoporenreiche TACT's

- niedriges MEV (\leq 1,2)
- hohe Pyrolysetemperatur (750 °C)
- hohe Abbrände (≥ 50 %)

Bevorzugte Aktivierungsbedingungen sind:

- Temperatur 800 880 °C
- Wasserdampfanteil 35 70 Vol-%
- spezif. Aktivierungs-

gasmenge:

0,1-0,4 l_N/h[·]g_{Koks}

Bild 9-5: Einfluss des Aktivierungsmediums auf die Aktivateigenschaften (PSA: SU22, PT 750 °C, PAHR 5 K/min, PHZ 5 min, AT 840 °C, AB 40 %, DRO, m_{Koks} 100g)

Bild 9-6: Einfluss der Aktivierungsgasmenge auf die Aktivateigenschaften (Aktivateigenschaften auf AB 50 % normiert; PSA: SU22, MEV 2, PT 750 °C, PAHR 5 K/min, PHZ 5 min, AT 840 °C, AG: 69,9 Vol-% H₂O, 30,1 Vol-% N₂, DRO, m_{Koks} 100g)

9.2 Einfluss von Aktivierungshilfsstoffen

Aktivierungsmittel in Form von katalytisch wirksamen Substanzen stellen eine weitere Möglichkeit zur gezielten Beeinflussung der Porenstruktur dar. Wie bereits in Kapitel 8.3 erwähnt, werden während der Sulfonierung durch den Säureangriff auf den Werkstoff der Reaktorinnenwand Metallionen (Fe, Ni, Cr) in die Polymerstruktur eingebunden. Sie wirken während der Aktivierung katalytisch, d.h. sie beschleunigen die Kohlenstoff-Wasserdampf-Reaktion und die Kohlenstoff-Kohlendioxid-Reaktion. Damit verbunden ist eine Veränderung der Porenbildung. Wie gezeigt wurde (Bild 8-25) weisen die Aktivate aus Sulfprodukt der Pilotsulfonieranlage gegenüber den Aktivaten aus der Laborsulfonieranlage eine erhöhte Mesoporenbildung auf. In weiteren Versuchen sollte daher geklärt werden, inwieweit die Zugabe von Katalysatoren die Aktivateigenschaften verändern kann. Zu diesem Zweck wurden in Laborversuchen unterschiedliche Mengen Eisensulfat mit dem Copolymer homogen vermischt und anschließend sulfoniert, pyrolysiert und aktiviert.

Der für die Aktivierungsversuche eingesetzte Koks wurde unter den folgenden Bedingungen hergestellt:

 Laborsulfonieranlage:
 LP 8-4-00, MEV 2, ST 200 °C, SHZ 8 min, FeSO₄ 7H₂O 0-14 Ma-%

 Laborretorte:
 PT 750 °C, PAHR 5 K/min, PHZ 5 min

 Labordrehrohrofen:
 AT 900 °C, AHZ 300 min, AG: 35 Vol-% H₂O, 10 Vol-% CO₂, 55 Vol-% N₂, m_{Koks} 100g

Die Bilder 9-7 und 9-8 verdeutlichen die Auswirkungen der Katalysatorzugabe auf die Abbrandgeschwindigkeit und die Porenstruktur. Die Abbrandgeschwindigkeit steigt mit der Katalysatormenge an. Aufgrund konstanter Aktivierungszeit nimmt auch der Abbrand zu. Makround Mesoporenvolumen werden maßgeblich durch den Katalysator beeinflusst. Bereits durch Zugabe einer geringen Katalysatormenge (0,025 g/g) wird das Mesoporenvolumen mehr als verdreifacht. Um das Makroporenvolumen auf über 200 mm³/g zu steigern, ist eine Katalysatormenge von > 0,125 g/g notwendig.

Bild 9-7: Einfluss der Katalysatormenge (als FeSO₄⁻⁷H₂O) auf das Aktivierungsverhalten und die Meso- und Makroporenbildung

Aufgrund der Zunahme von Makro- und Mesoporenvolumen steigt das Gesamtporenvolumen mit der Katalysatormenge an. Das Mikroporenvolumen und die BET-Oberfläche hängen stark vom Abbrand ab. Aus diesem Grund wurde sie auf den Abbrand bezogen. Dieser Wert sinkt bis auf ein bestimmtes Niveau (ca. 22 m²/g %) und bleibt auf diesem konstant. Ebenso sinkt die volumenbezogene BET-Oberfläche bis auf ein Niveau von ca. 570 m²/g.

Bild 9-8: Einfluss der Katalysatormenge auf das Gesamt- und Mikroporenvolumen sowie die BET-Oberfläche

Fazit:

Werden dem Eduktgemisch vor der Sulfonierung katalytisch wirksame Substanzen zugegeben, erfolgt deren Einbindung in die Copolymermatrix durch Ionenaustausch. Je nach Katalysatormenge werden mehr oder weniger Kationen der Katalysatorsubstanz gegen Protonen der Sulfonsäuregruppe ausgetauscht. Es wurde festgestellt, dass über die Katalysatormenge gezielt die Porenstruktur beeinflussbar ist. Besonders Meso- und Makroporenvolumen werden mit zunehmender Katalysatormenge erhöht. Das absolute Mikroporenvolumen bleibt unverändert. Setzt man einen konstanten Abbrand voraus, sinkt die BET-Oberfläche bis auf ein bestimmtes Niveau ab und bleibt auf diesem konstant.

Inwieweit die katalytischen Effekte auf die Porenbildung wirken, zeigt ein Vergleich der Porenentwicklung. Daraus wird sichtbar welche Porenklassen sich im Aktivat wiederfinden. Bild A9-1 (siehe Anhang) gibt in der Übersicht die Entwicklung der Porenstruktur im Vergleich zum jeweiligen zugrundeliegenden Koks wieder. In der linken Spalte sind die Ergebnisse für Aktivate aus Labor-Sulfprodukt und in der rechten Spalte für Aktivate aus Pilot-Sulfprodukt dargestellt. Die Bezugsbasis für das Aktivatporenvolumen ist hier die Masseeinheit Koks. Die Zahlenwerte ergeben sich durch Multiplikation des aktivatmassebezogenen Volumens mit (1- Λ), wobei Λ der innere Abbrand ist. Stimmen die so berechneten Werte mit den am Koks gemessenen überein, bilden sich weder Poren noch geht Porenraum verloren (z.B. durch äußeren Abbrand). Liegen die Zahlenwerte darüber, ist eine Neubildung von Poren zu verzeichnen. Bei den Mikroporen kann dies auf eine direkte Neubildung von Poren zurückgeführt werden oder wie bei den groben Poren aus einer Aufweitung und Koaleszenz von feinen Poren herrühren [HMGN00].

Aus der Darstellung ergibt sich, das Mikroporen weitgehend unabhängig von den gewählten Sulfonierbedingungen gebildet werden. Die Mikroporenneubildung aus Pilot-Sulfprodukt ist jedoch etwas geringer (Teilbilder L4, R4). Dagegen steigt die Neubildung von Mesoporen (Teilbild R3) und Makroporen (Teilbild R2) für Aktivate aus Pilot-Sulfprodukt zu niedrigem MEV hin an. Die Aktivate aus Labor-Sulfprodukt weisen lediglich bei einem niedrigen MEV eine Porenneubildung von Makro-(Teilbild L2) und Mesoporen (Teilbild L3) auf. Ursache für die Porenneubildung bei den Aktivaten aus Pilot-Sulfprodukt ist die bereits erwähnte katalytische Wirkung der Metallionen. In [CRRL96] wird beschrieben, dass durch den Einsatz von Kalzium Mikroporen aufgeweitet werden und über die Kalziummenge die Porenneubildung gesteuert werden kann.
10 Zusammenfassung

Die Arbeit beschäftigt sich mit der Herstellung von Hochleistungsaktivkohlen mit definiert aufgeprägter ("maßgeschneiderter") Porenstruktur. Für diese Technologie sind die Prozessstufen Vorbehandlung (z.B. Sulfonierung), Pyrolyse und Aktivierung generell notwendig. Die Vorbehandlung dient der Vernetzung und thermischen Stabilisierung des Copolymers. Unter den verschiedenen Methoden ist die Sulfonierung ein weit verbreiteter Prozess, um die Polymere unschmelzbar zu machen und eine hohe Koksausbeute zu sichern. Darüber hinaus ist durch Masseeinsatzverhältnis und Sulfonierhaltezeit eine Steuerung der Schwefeleinbindung und damit der Koks- und Aktivateigenschaften möglich. Die Optimierung der Sulfonierstufe und Überführung dieses Reaktionssystems in den Pilotmaßstab sind Schwerpunkte dieser Arbeit.

Zunächst wurden Copolymere mit unterschiedlichem Vernetzungsgrad hinsichtlich ihrer Eignung zur Herstellung synthetischer Aktivkohlen im Labormaßstab untersucht. Im Anschluss erfolgte eine Optimierung hinsichtlich Rieselfähigkeit, Koksausbeute und Porenstruktur durch Variation der Sulfonierparameter Masseeinsatzverhältnis (Schwefelsäure/Polymer), Aufheizrate, Haltezeit. Die Rolle der Sulfonierungsparameter für die Aktivkohlequalität wurde anhand ausgewählter Beispiele eingehend untersucht und dargestellt.

Wichtig für die Realisierung der erforderlichen Prozessparameter war die technische Umsetzung in einem geeigneten Reaktorsystem. Zu diesem Zwecke wurden bekannte Reaktorprinzipien auf ihre Eignung hin überprüft. Im Ergebnis wurde ein Sulfonierreaktor entwickelt, der die vom Sulfonierverhalten der Polymere spezifischen Anforderungen (intensive Durchmischung ohne Anbackungen, einheitliches Aufheizen und Abkühlen entsprechend gewünschtem Temperaturregime, sicheres Abführen der Reaktionsgase, korrosionsbeständige Ausführung) und den geforderten Durchsatz erfüllt. Die Scaling-up-Fähigkeit der Reaktorausführung und des verfahrenstechnischen Procedere der Sulfonierung konnte in systematischen Versuchen einschließlich der Reproduzierbarkeit nachgewiesen werden.

Nach der räumlichen Dimensionierung des Reaktors unter Berücksichtigung von Ähnlichkeitsansätzen erfolgte die Vorausberechnung des Aufheiz- und Abkühlverhaltens mit Hilfe eines Modells. Mit der ermittelten Chargenzeit und dem Füllungsgrad wurde die Leistung des Reaktors bestimmt. Auf Basis dieser Daten erfolge die technische Ausführung des Sulfonierreaktors.

Zentrales Element der Pilotsulfonieranlage ist der dreh- und schwenkbare Doppelkonusreaktor mit einem maximalen Füllvolumen von 85,5 I. Die Prozesswärme wird durch eine elektrische Beheizung von außen bereitgestellt. Zur Minderung der Wärmeverluste ist der Reaktor isoliert. Das bei der Reaktion entstehende Wasser wird größtenteils verdampft und als saures Kondensat in einem nachgeschalteten Kühler aufgefangen. Die entstehenden Gase und der Wasserdampf werden aus dem Reaktor mittels Seitenkanalgebläses abgesaugt. Zur Abkühlung des Reaktors und des sulfonierten Copolymers wird Kühlluft in den Spalt zwischen Isolation und Reaktorwand eingeblasen. Das Sulfprodukt kann zusätzlich durch direkt eingeblasene Luft gekühlt werden (Zusatzkühlluft). Zum Transport und zur Lagerung des Sulfproduktes werden speziell konstruierte und innenbeschichtete (PTFE - DPL) Behälter eingesetzt. Das Temperaturprogramm für den Reaktionsablauf wird zu Beginn des Sulfonierzyklus' vorgegeben und dann vollautomatisch abgefahren. Die Anlagenparameter werden von der SPS an einen Rechner ausgegeben, visualisiert und in einem Versuchsprotokoll aufgezeichnet.

Der experimentelle Teil der Untersuchungen an der Pilotanlage gliederte sich in

- die Ermittlung der Anlagencharakteristik (Aufheiz-/Abkühldynamik u.a.),
- die Durchführung von Sulfonierversuchen bei Variation der Prozessgrößen.

Aus den Versuchen mit bereits sulfoniertem Material (Inertversuche) konnte die Aufteilung der zugeführten Heizenergie auf die einzelnen Verbraucher ermittelt werden. Es wurde gefunden, dass die Heizleistung nur zu ca. 22 % für die Aufheizung der Sulfproduktschüttung und des Reaktormantels genutzt wird. Durch die große Isolationskapazität (Masse x Wärmekapazität) und – temperatur werden etwa 39 % für die Aufheizung der Reaktorisolation verbraucht. Durch die langen Aufheizzeiten geht ein weiterer Anteil von ca. 39 % verloren (Wärmeverluste durch Abstrahlung, Leitung, Konvektion). Dieser Verlustanteil bleibt in den Abkühlphasen erhalten. Mit der Zusatzkühlluft werden durchschnittlich 12,5 % der Wärme abgeführt.

Der Transportwiderstand der Schüttung ist in den Aufheiz- und Abkühlphasen gering gegenüber dem Wärmetransportwiderstand zwischen Heizwicklung und Reaktorwand. Dadurch stellt sich zu jedem Zeitpunkt ein einheitliches Temperaturfeld in der Reaktionsmischung ein. Andererseits kann das Aufheiz- und Abkühlverhalten nur geringfügig durch die Variation von Füllungsgrad oder Reaktordrehzahl beeinflusst werden. Eine Steigerung der Kühlluftmenge würde zu einer Verbesserung und Beschleunigung der Wärmeabfuhr und zu einer Verkürzung der Zykluszeit führen.

Zur Untersuchung der erreichbaren Produktqualitäten aus Lewapol 8-4-00 wurden Masseeinsatzverhältnis und Sulfonierhaltezeit variiert. In einzelnen Versuchseinstellungen wurde darüber hinaus der Einfluss von Sulfoniertemperatur, Druck und Füllungsgrad untersucht. Die hergestellten Sulfprodukte wurden in einer Laborretorte unter Standardbedingungen verkokt:

80-100 g
10 und 20 K/min
750 °C
5 min bei Endtemperatur
70-80 l/h

Die Kokse wurden anschließend in einem Quarzglasreaktor unter Wirbelbedingungen und gleichbleibenden Versuchseinstellungen zu Kugelaktivkohle aktiviert:

Probeneinwaage	30 g
Aufheizgeschwindigkeit	10 K/min
Endtemperatur	880 °C
Haltezeit	210 min bei Endtemperatu
Aktivierungsgaszugabe	ab 500 °C

Inertgas	N_2	35,06 l/h	55 Vol-%
Aktivierungsgase	H_2O_D	22,36 l/h	35 Vol-%
	CO_2	6,38 l/h	10 Vol-%

Um Aussagen über die chemische Beschaffenheit, Granulometrie und Porenstruktur der Kokse und Aktivate treffen zu können, wurden umfangreiche Analysen angefertigt.

Das eingesetzte monodisperse Lewapol quillt in der Sulfonierstufe um etwa das 2-fache seines Volumens. Die Analysen des Sulfproduktes zeigen, dass unabhängig von MEV und Haltezeit eine stets gleiche Schwefelsäuremenge umgesetzt wird. Die nicht eingebundene Schwefelsäure verbleibt als Restfeuchte im Produkt und beeinflusst die Ausbeuten und chemischen Eigenschaften des Sulfproduktes. Bei allen Versuchen konnte ein rieselfähiges Produkt (Schüttwinkel 26 - 31°) hergestellt werden. Die Lagerung muss jedoch wegen der Hygroskopizität in luftdicht verschlossenen Behältern mit Druckausgleich erfolgen. Gegenüber den Laborversuchen wird ein höherer Schwefelgehalt (des feuchten Sulfprodukts) erreicht.

In der Pyrolysestufe wird die Restschwefelsäure weiter mit dem Copolymer umgesetzt. Die auf das eingesetzte Copolymer bezogene Koksausbeute steigt mit größerem MEV und kleineren Haltezeiten an, da das Kohlenstoffgerüst durch die höhere Restfeuchte besser stabilisiert werden kann. Durch das hohe MEV entsteht ein mikroporöser Koks mit einem Mikroporenanteil von durchschnittlich 88 %. Gegenüber den Laborversuchen wird ein gleich großes Mesoporenvolumen gebildet. Der höhere Mikroporenanteil führt aber zu einem größeren Gesamtporenvolumen. Bei einem Masseeinsatzverhältnis > 1,8 kann die Bildung von Hohlräumen in der Kokspartikel unterbunden werden. Alle Kokse sind kaum versintert und rissfrei. Dadurch ist auch der Anteil des Kugelbruches sehr gering.

In der Aktivierungsstufe wurde unter den gewählten Bedingungen ein Abbrand von durchschnittlich 50 % erreicht. Der Schwefelgehalt des Aktivates erhöht sich mit steigendem MEV von 2,3 Ma-% auf 3,4 Ma-%. Durch höhere Masseeinsatzverhältnisse nimmt das Mikroporenvolumen zu. Das Mesoporenvolumen verringert sich dagegen. Aufgrund katalytischer Effekte ist das Mesoporenvolumen höher als bei den Aktivaten aus dem Labormaßstab, die BET-Oberfläche bei gleichem Abbrand demzufolge geringer.

Bis auf das Mesoporenvolumen der Aktivate und die BET – Oberfläche reihen sich die Eigenschaften der Produkte sehr gut in die bei den Laborversuchen gefundenen Zusammenhänge ein. Die Aktivatqualität kann auch im Pilotmaßstab durch die Sulfonierparameter MEV und Haltezeit gesteuert werden.

Durch die exotherme Sulfonierungsreaktion werden die Wirkungsgrade des Reaktors auf durchschnittlich 56 % gesteigert, die notwendige Heizwärme und die Verluste nehmen durch die effektive Aufheizung des Reaktionsgemisches und die Verkürzung der Aufheizphase auf 20 min stark ab.

Die Leistung der Pilotanlage hängt vom gewählten Füllungsgrad und den einzelnen Prozessbedingungen ab. In den Versuchen wurde eine Leistung der Pilot-Sulfonieranlage zwischen 15,4 und 22,4 kg_{Sulfprodukt}/h ermittelt. Damit verbunden ist ein Copolymerverbrauch von 7 bis 10,3 kg/h, ein Schwefelsäureverbrauch von 9,9 bis 15 kg/h und ein spez. Energiebedarf von 430 – 590 kWh/t_{Sulfprodukt}, wobei der größte Anteil für die Aufheizung aufgebracht werden muss. Die Emissionen der Anlage teilen sich auf in kondensierbare Bestandteile, die als verdünnte Schwefelsäure im Kühler anfallen, und nicht kondensierbare Bestandteile im Abgas (z.B. SO₂). Für die pro 1 t Sulfprodukt anfallende Kondensatmenge werden zwischen 4,2 und 5 kg NaOH (40 %-ig) benötigt. Mit dem Abgas verlassen 0,8 bis 1,1 kg SO₂/t_{Sulfprodukt} die Anlage. Das Abgas wurde in den Versuchen mit 1000 m³_{Luft}/h i.N. verdünnt und in die Atmosphäre abgegeben. Das Konzept der Schließung des Schwefelsäurekreislaufes konnte aus Kostengründen für die Pilotanlage nicht umgesetzt werden.

Durch Veränderung der Prozessbedingungen (Steuergrößen) beim Sulfonieren, Pyrolysieren und Aktivieren kann eine unterschiedliche Porenstruktur erzeugt werden, d.h. die Aktivkohle wird maßgeschneidert hergestellt.

Folgende Typen sind herstellbar:

- Mikroporenreiche TACT's
- Mesoporenreiche TACT's
- Sinterkörper

Ein zusätzlicher Freiheitsgrad wurde durch den Einsatz von Aktivierungshilfsmitteln geschaffen. Durch die Verwendung von Katalysatoren kann die Porenstruktur gezielt beeinflusst werden. Besonders Meso- und Makroporenvolumen werden mit zunehmender Katalysatormenge erhöht.

Symbolverzeichnis

Abkürzungen

A	Fläche	m²
A	Ausbeute	%
A	Abgas	
AAS	Atom-Absortions-Spektroskopie	
AB	Aktivierungsgrad (Abbrand)	%
AHZ	Aktivierungshaltezeit	min
AG	Aktivierungsgas	l/h
AT	Aktivierungstemperatur	°C
AV	Aufheiz- und Abkühlversuch	
а	Anteil	
b	Wandstärke	m
С	Kohlenstoffgehalt	%
CP	Wärmekapazität	kJ/(kg K)
с	Konzentration	
C_{Λ}	Abbrandgeschwindigkeit	%/h
с	Aktivatausbeute	%
D, d	Durchmesser	m
DVB	Divinylbenzen	
DRO	Drehrohrofen	
EVB	Ethylvinylbenzen	
f	Multiplikator	
FG	Füllungsgrad	%
g	Erdbeschleunigung	g=9,81 m/s²
GC	Gaschromatograph	
Н	Wasserstoffgehalt	%
h, H	Höhe	m
HZ	Heizzone	
Δh_V	Verdampfungsenthalpie	kJ/kg
L, I	Länge	m
LP	Lewapol® der Bayer AG	
Μ	Molmasse	kg/kmol
MEV	Masseeinsatzverhältnis	kg _{H2SO4} /kg _{CP}
m	Masse	kg
Ν	Stickstoffgehalt	%
Ν	Anzahl	
n	Molzahl	kmol
n, DZ	Drehzahl	s⁻¹, min⁻¹
0	Sauerstoffgehalt	%
Р	Leistung	kW
PAHR	Pyrolyseaufheizrate	K/min
PHZ	Pyrolysehaltezeit	min

PSA	Pilot-Sulfonieranlage	
PT	Pyrolysetemperatur	°C
PV	Porenvolumen	mm³/g
р	Druck	Pa
Q	Wärme	kJ
RD	Reaktordruck	kPa
RL	Gaskonstante von Luft	R _L =287,33 KJ/(kgK)
R, r	Radius	m
r _P	Porenradius	m
RVD	Rotationsverdampfer	
S	Schwefelgehalt	%
S _{BET}	BET-Oberfläche	m²/g
SAHR	Sulfonieraufheizrate	K/min
SHZ	Sulfonierhaltezeit	min
ST	Sulfoniertemperatur	°C
ST-DVB	Styren-Divinylbenzen	
SU	Sulfonierversuch	
SZ	Sulfonierzeit, Sulfonierdauer	
т	Temperatur	°C
t	Zeit	S
U	Umsatz	%
V	Volumen	m³
VG	Vernetzungsgrad	Ma-%
w	Geschwindigkeit	m/s
w	Feuchtegehalt	Ma-%
х, у	Variable	
х	Anteil	
α	Koksausbeute bezogen auf das Copolymer	%
β	Koksausbeute bezogen auf das Sulfprodukt	%
β	Neigungswinkel	0
8	Porosität	%
ε	Emissionskoeffizient	
Φ	Einbindungsgrad	%
φ	Flächenbedeckungsgrad	
Λ	Abbrand	%
η	Wirkungsgrad	%
ρ	Dichte	g/cm³
ω	Sintergrad, Bruchanteil	%
ω	Kreisfrequenz	s⁻¹
ν	Stöchiometrischer Koeffizient	

Indizes

А	Abgas (ohne kondensierbare Bestandteile)
а	außen, Austritt
AHP	Aufheizphase
AKP	Abkühlphase
Ar	Aromat
Aktivat	Aktivat
В	Bruch
bed	Fließbett
ben	benetzt
ber.	Berechnet
С	Kohlenstoff
CP	Copolymer
D	Dampf
DVB	Divinylbenzen
E	Element
е	Eintritt
El	elektrisch
Elementar	Elementaranalyse
F	Fluid
Füll, füll	Fülldichte
feucht	Bezugsbasis feuchtes Sulfprodukt
G	Gas
gesamt, ges	gesamt
Н	Wasserstoff
H, HZ	Heizung
HS	Heizsegment
h	hydraulisch
Iso	Isolation
innen	Innenraum
i, k	Zählgrößen
KL	Kühlluft
Koks	Koks
Kond, K	Kondensat
krit.	kritisch
L	Luft
М	Reaktorwand, Reaktormantel
Makro, Ma	Makroporen
Meso, Me	Mesoporen
Mikro, Mi	Mikroporen
MS	Mantelsegment
m	mittel
max	maximal
mix	Mischen

Ν	Stickstoff
Nutz	Nutzen
0	Sauerstoff
Р	Partikel
PS	Polystyrol
Q	Querschnitt
R	Reaktion
Reaktor, R	Reaktor
Rein	Reindichte
rel	relativ
RG	Reaktionsgemisch
RI	Reaktorinnenraum
RM	Reaktionsgemisch
Roh, roh	Rohdichte
Rütt	Rütteldichte
rel	relativ
rieself.	rieselfähiger Zustand
S	Schwefel
S	Sinterkörper
Schütt	Schüttung
SG	Sulfonylgruppen
SP	Sulfprodukt
SS	Schwefelsäure
Subst	Substituent
Sus	Suspension
S	Sättigung
theor.	theoretisch
trocken, tr	Bezugsbasis trockenes Sulfprodukt
U	Umgebung
V	Verlust
W	Wasser
ZKL	Zusatzkühlluft

Kennzahlen

Fr	Froude-Zahl
Re	Reynolds-Zahl
Nu	Nußelt-Zahl

Literaturverzeichnis

[AA95]	Akyurtlu, J.F.; Akyurtlu, A.
	Catalytic gasification of Pittsburgh coal char by potassium-sulfate and ferrous
	sulfate mixtures
	In: Fuel Processing Technology, (1995), 43: (1) 71-86
[Bay96]	Information der Bayer AG Leverkusen
	Vertriebsorganisation Deutschland, GB Organische Chemikalien, Stand 16.08.96
[Bec99]	Becker, H. G. O.
	Organikum.
	20. Auflage, Wiley-VCH, Weinheim 1999
[BT75]	Bamford, C.H.; Tipper, C.F.H.
	Comprehensive Chemical Kinetics, Vol. 14, Degradation of Polymers
	Elsevier, Amsterdam, 1975
[Cha81]	Chang, C.H.
	Preparation and Characterization of Carbon-Sulfur Surface Compounds
	In: Carbon, (1981), Vol. 19, 175-186
[CRRL96]	Cazorla-Amoròs, D.; Ribes-Perez D.; Roman-Martinez, M.C.; Linares-Solano, A.
	Selective porosity development by calcium-catalyzed carbon gasification
	In: Carbon, (1996), Vol. 34, 869-878
[Dor70]	Dorfner, K
	Ionenaustauscher
	Walter de Gruyter & Co, Berlin, 1970
[Dor91]	Dorfner, K
	Ion Exchangers
	Walter de Gruyter & Co, Berlin, 1991
[FPZ92]	Fedkte, M.; Pritzkow, W.; Zimmermann, G.
	Technische Organische Chemie
	Deutscher Verlag für Grundstoffindustrie, Leipzig, 1992
[Gie95]	Gierak, A.
	Preparation, characterization and adsorption application of spherical carbon
	adsorbents obtained from sulfonated polymers
	In: Materials Chemistry and Physics, (1995), 41, 28-35
[Gil77]	Gilbert, E.E.
	Sulfonation and related reactions
	Robert E. Krieger Publishing Co., Huntington, New York, 1977
[GLM87]	Garrido, J.; Linares-Solano, A.; Martin-Martinez, J.M.; Molina-Sabio, M.;
	Rodriguez-Reinoso, F.; Torregrosa, R.
	The Effect of Gasification by Air (623 K) or CO2 (1098 K) in the Development of
	Microporosity in Activated Carbons
	In: J. Chem. Soc., Faraday Trans. I, (1987), 83, pp. 1081-1088

[Gro94]	Große-Allermann, St.
	Untersuchungen zur Beeinflussung der Hohlraumstruktur von Aktivkohlen durch
	die Aktivierungsbedingungen
	Dissertation, Universität Essen, 1994
[Hau88]	Hauptmann, S:
	Organische Chemie.
	Deutscher Verlag für Grundstoffindustrie, Leipzig 1988
[HBP98]	Hesekamp, B.; Broecker, H.; Pahl, M.
	Chemo-Rheologie vernetzter Polymere
	In: Chemie-Ingenieur-Technik, (1998), (70), Nr. 3, 286-290
[HD96]	Henning, KD. and Degel, J.
	Arbeitsgemeinschaft Adsorption, Bericht Jahrestreffen (Februar 1996),
	Frankfurt am Main
[Hel59]	Helfferrich, F.
	lonenaustauscher
	Band I, Verlag Chemie GmbH, Weinheim/Bergstr., 1959
[Hes79]	Heschel, W., Klose, E., Anker, HJ.: Energiewirtschaftliche Analyse von
	intermittierend betriebenen Anlagen der thermischen Stoffwandlung.
	Energieanwendung, 28. Jg., Heft 5, S 168-171, 1979
[Hes90]	Heschel, W.
	Beitrag zur Modellierung des Aktivierungsprozesses bei der Herstellung von
	Aktivkohle
	Habilitationsschrift, TU Bergakademie Freiberg, 1990
[Hes00]	Heschel, W.
	Vorlesungsunterlagen Adsorptionstechnik.
	TU Bergakademie Freiberg, 2000
[HGM01]	Heschel, W.; Günther, H.; Müller, D.
	Innovatives Verfahren zur Herstellung von Kugelaktivkohle "Tailored Activated
	Carbon Types (TACT's)" – Entwicklung einer halbtechnischen Anlage
	Abschlussbericht, TU Bergakademie Freiberg, 2001
[HM96]	Heschel, W.; Müller, D.
	Untersuchungen zur endgültigen Rohstoffauswahl, Versuche zur Optimierung der
	Pyrolysebedingungen, erste Aktivierungsversuche;
	Laborbericht, TU Bergakademie Freiberg, 1996
[HM98b]	Heschel, W.; Müller, D.
	Literatur- und Patentrecherche zum FuE-Thema "Entwicklung eines
	Kugeladsorbers"
	Unveröffentlichter Bericht, TU Bergakademie Freiberg, 1996
[HM98]	Heschel, W.; Müller, D.
	Kohlenstoffadsorbentien-Stand und Entwicklungsrichtungen
	In: Freiberger Forschungshefte: A 845: Energietechnik, Seite 19 – 43, 1998

152	
-----	--

[HMGN00]	Heschel,W.; Müller, D.; Günther, H.; Neitsch, M.:
	Maßgeschneiderte Aktivkohlen
	In: Freiberger Forschungshefte A 859, 1-28, 2000
[JSC91]	Jankowska, H.; Swiatkowski, A.; Choma J.
	Active Carbon
	Ellis Horwood, New York, 1991
[KB80]	von Kienle, H.; Bäder E.
	Aktivkohle und ihre industrielle Anwendung
	F. Enke Verlag Stuttgart, 1980
[Kei98]	Keibel, T
	Optimierung des Sulfonierprozesses im Labormaßstab und Überführung in den
	halbtechnischen Maßstab als Verfahrensschritt bei der Herstellung von
	Hochleistungs-Aktivkohle auf Polymerbasis
	Diplomarbeit, TU Bergakademie Freiberg, 1998
[Koc98]	Koch, K.
	Verbesserte Methoden zur Charakterisierung von Adsorbentien auf Grundlage der
	Tieftemperaturadsorption
	Dissertation, Universität Leipzig, 1998
[Kro01]	Kropfgans, F.
	Optimierung des Sulfonierprozesses im Pilotmaßstab als Verfahrensschritt bei der
	Herstellung von Hochleistungs-Aktivkohle auf Polymerbasis
	Diplomarbeit, TU Bergakademie Freiberg, 2001
[KT85]	Klose, E.; Toufar W.
	Grundlagen der Vergasung
	Lehrbrief, TU Bergakademie Freiberg, 1985
[KT86]	Klose, E.; Toufar W.
	Grundlagen der Kohlepyrolyse
	1. Lehrbrief, TU Bergakademie Freiberg, 1986
[LCRM92]	Lopezpeinado, A.; Carrascomarin, F.; Riverautrilla, J.; Morenocastilla, C.
	Steam gasification of a lignite char catalyzed by metals from chromium to zinc
	In: Fuel, (1992), 71: (1) 105-108
[Mar92]	March, J:
	Advanced Organic Chemistry.
	4. Auflage, John Wiley & Sons, 1992
[Mat91]	Matsumoto, S.
	Catalyzed hydrogasification of Yallourn char in the presence of supported
	hydrogenation nickel-catalyst
	In: Energy & Fuels, (1991), 5: (1) 60-63
[MB86]	Morrison, T. R.; Boyd, N. R.
	Lehrbuch der organischen Chemie
	3. Auflage, VCH Verlagsgesellschaft, Weinheim, 1986

1	53	
	00	

[Mey95]	Meyer, J.
	Die Adsorption: Ein klassisches Trenn- und Reinigungsverfahren
	Unveröffentlicht, Universität Oldenburg, 1995
[MF87]	Matsuda, M.; Funabashi, K.
	Influence of Functional Sulfonic Acid Groups on Styrene-Divinylbenzene
	Copolymer Pyrolysis
	In: Journal of Polymer Science: Part A: Polymer Chemistry, (1987),
	Vol. 25, 669 - 673
[MKJ98]	Menig, H.; Krill, H.; Jüstel, K.
	Abgasreinigung durch Adsorption-Die Richtlinie VDI 3674 als Spiegel einer Technik
	für den Umweltschutz
	In: Gefahrstoffe-Reinhaltung der Luft, (1996), 56, 81-85, Springer-Verlag
[MS93]	Matsumoto, S.; Sakagami, S.
	Catalytic gasification of iron enhanced by split-over hydrogen
	In: Studies in surface science and catalysis, (1993), 77: 409-412
[Mül00]	Müller, D.
	Herstellung von kohlenstoffhaltigen Adsorbentien aus polymeren
	Ausgangsprodukten unter Anwendung eines neuentwickelten Pyrolysereaktors
	Dissertation, TU Bergakademie Freiberg, 2000
[MWKM91]	Meijer, R.; Weeda, M.; Kapteijn, F., Moulijn, J.A.
	Catalyst loss and retention during alkali-catalyzed carbon gasification in CO2
	In: Carbon, (1991), 29: (1) 929-941
[Nau72]	Naumann, G.
	Ionenaustauscher
	In: Ullmanns Enzyklopädie der technischen Chemie, (1972), Band 13, 279-346
[Nee81]	Neely, J.W.
	Characterization of polymer carbons derived from porous sulfonated polysterene
	In : Carbon, (1981), Vol. 19, 27-36
[NI82]	Neely, J.W.; Isacoff, E.G.
	Carbonaceous adsorbents for the treatment of ground and surface waters
	Dekker, New York, 1982
[Nis91]	Nishiyama, Y.
	Catalytic gasification of coals – features and possibilities
	In: Fuel Processing Technology, (1991), 29: (1-2) 31-42
[Pat95]	Patrick, J. W.
	Porosity in Carbons
	Edward Arnold, London, 1995
[PP98]	Puziy, A. M. ; Poddubnaya, O. I.
	The properties of synthetic carbon derived from nitrogen- and phosphorus-
	containing polymer
	In : Carbon, (1998), Vol. 36, pp. 45-50

154

[PR95]	Patei, S.; Rappoport, Z.
	The Chemistry of Suphonic Acid, Esters and their Derivates
[Dee09]	Beekill Benert 1009
[R0590]	Roskill – Report, 1990
[20199]	Schweiger, A.
	Purolusetechnologie
	Diplomathait TII Bargakadamia Eraibarg, 1999
	Simon G Hambrecht L: Ott K H · Pöhr H
	Polystyrol einschließlich ABS und SAN
	In: Illimanns Enzyklonädie der technischen Chemie (1080) Band 10, 265 205
[5]085]	Sleiko E I
	Adsorption Technology
	Marcel Dekker, New York, 1985
ISP771	Schutzrecht US 4 063 912 (1977-20-12)
[SIX77] [SD776]	Schutzrecht US 4 000 912 (1977-20-12)
	Schutzrecht UK 1 525 420 (1977)
	Schutzrecht US 4 830 331 (1980 13 06)
	Schutzrecht US 4 057 807 (1909-13-00)
[3030]	Schutzrecht US 5 004 754 (1992 10 03)
	Schutzrecht DE $42.29,210,41,(1992-10-03)$
[SR95]	Schutzrecht US 5 595 408 (1006 17 12)
	Schutzrecht DE 106 25 060 (1990-17-12)
[SK90]	Schutzrecht DE 196 50 414 41 (1008 26 02)
	Schutzrecht DE 106 52 228 A1 (1008 25 06)
	Schutzrecht DE 107 52 502 A1 (1990-23-00)
[2893]	Schutzrecht ED 1 078 600 42 (2000 16 08)
	Schutzrecht US 6 194 177 P1 (2001 06 02)
	Schutzlecht US 6 164 177 BT (2001-06-02)
[οπτο2]	Salidei, U., Rollie, U., Rola, R.
	Scriwerersaure
	In: Olimannis Enzyklopadie der technischen Chemie, (1982), Band 21, 117-165
[2199]	Schmal, I.
	heretellung oue nehrmeren Einestasteffen
	Dislamarkait TIL Bargakadamia Freikara, 1000
[000]	Dipiomarbeit, TO Bergakademie Freiberg, 1999
[Suz90]	Suzuki, M.
	Adsorption Engineering
	Elsevier, Amsterdam, 1990
[VDI94a]	
	Warmeübergang im konzentrischen Ringspalt
	VDI-Verlag GmbH, Düsseldorf, 7. Auflage, Gd1-Gd8, 1994

[VDI94b]	VDI-Wärmeatlas
	Wärmeübergang von einer Heizfläche an ruhende oder mechanisch durchmischte
	Schüttungen
	VDI-Verlag GmbH, Düsseldorf, 7. Auflage, Mg1-Mg9, 1994
[Wac97]	Wache, H.
	Pyrolyse und Aktivierung von Ionenaustauschern
	Studienarbeit, TU Bergakademie Freiberg, 1997
[Wac98]	Wache, H.
	Flüssigphasenoxidation von Copolymeren
	Studienarbeit, TU Bergakademie Freiberg, 1998
[Wac00]	Wache, H.
	Einfluss der Pyrolysebedingungen auf die Koks- und Aktivateigenschaften bei der
	Herstellung von Kugelaktivkohlen aus sulfonierten Copolymeren
	Diplomarbeit, TU Bergakademie Freiberg, 2000
[Wie84]	Wienhaus, O.
	Die thermisch-chemische Veredelung von Holzresten zu Holz- und Aktivkohlen
	Dissertation B, Technische Universität Dresden, 1984
[Wig89]	Wigmans, T.
	Industrial aspects of production and use of activated carbons
	In: Carbon, (1989), Vol. 27, pp. 13
[Wol72]	Wohlfarth, A.
	Mischen von Feststoffen
	In: Ullmanns Enzyklopädie der technischen Chemie, (1972), Band 2, 301-311
[WSJJ96]	Weijtong, L.; Semones, T.R.; Jianping, L.; Jenkins, R.
	Preparation and Characterization of Bimodal Porous Carbons derived from a
	Styrene-Divinylbenzene Copolymer
	In: Adsorption, (1996), 3: 67-79
[ZK96]	Zippi, E. M.; Kabalka, G. W.
	Synthesis, Charcterization and pyrolysis of poly (styren/divinylbenzen) derivates
	In: Carbon, (1996), Vol. 34, pp. 1539-1542

Tabellenverzeichnis

		Seite
Tabelle 2-1:	Merkmale und Einsatzgebiete technischer Adsorbentien	3
Tabelle 2-2:	Kommerzielle Copolymere auf Basis Styren-DVB (Auswahl)	6
Tabelle 2-3:	Gewählte Parameter der Flüssigphasenoxidation	8
Tabelle 3-1:	Summenformel und daraus berechnete Werte des Polystyren- und DVB-	00
T - h - ll - 0 0		22
Tabelle 3-2:	Summenformel und daraus berechnete Zusammensetzung und Molmasse	00
T - h - ll - 0 0	fur Copolymere mit unterschledlichem Vernetzungsgrad	23
Tabelle 3-3:	Gemessene Elementarzusammensetzung von Copolymeren mit	00
T-1-0.4	unterschiedlichem Vernetzungsgrad	26
Tabelle 3-4:	Berechnete Molmassen und Molekultormein auf Basis der gemessenen	00
-		26
Tabelle 4-1:	Technische Daten des Versuchssystems und Versuchsbedingungen	31
Tabelle 4-2:	Versuchsbedingungen für Pyrolyse und Aktivierung	32
I abelle 4-3:	Stoffdaten von Polystyren/Lewapol 8-4-00	34
Tabelle 4-4:	Stoffdaten von 96 %-iger Schwefelsäure	35
Tabelle 4-5:	Einfluss des MEV auf das Hohlraumvolumen im Pyrolysepartikel	43
Tabelle 4-6:	Bewertungsmatrix zum Einfluss der Prozessparameter auf die Produkt-	
	eigenschaften nach der Sulfonierung, Pyrolyse und Aktivierung	50
Tabelle 5-1:	Geometrische Ähnlichkeit von Labor- und Pilotreaktor	52
Tabelle 5-2:	Strömungstechnische Ähnlichkeit von Labor- und Pilotreaktor	52
Tabelle 5-3:	Thermische Ähnlichkeit von Labor- und Pilotreaktor	53
Tabelle 5-4:	Ergebnisse der Versuche mit dem Doppelkonusmodell	57
Tabelle 5-5:	Vorausberechnete Zykluszeit des Pilotreaktors	66
Tabelle 5-6:	Beispiele der Reaktordimensionierung	66
Tabelle 5-7:	Berechnung der Leistung des Pilotsulfonierreaktors auf Basis der	
	Reaktordimensionierung	67
Tabelle 5-8:	Endabmessungen und berechnete Kenngrößen des Pilotsulfonierreaktors	67
Tabelle 5-9:	Berechnete Leistung auf Basis der tatsächlichen Abmaße	67
Tabelle 5-10:	Materialeigenschaften von Nicrofer 3033-alloy 33 und KVF 121/200	69
Tabelle 5-11:	Flächen und Volumina des Doppelkonusreaktors	72
Tabelle 6-1:	Versuchsplan der Inertversuche	81
Tabelle 6-2:	Einfluss des Füllungsgrades und der Zusatzkühlluft auf die Zykluszeit	84
Tabelle 6-3:	Ergebnisse der Wärmebilanz ohne Reaktion	85
Tabelle 6-4:	Versuchsplan der Sulfonierversuche	87
Tabelle 7-1:	Ergebnisse der Gasanalyse des Versuches SU 30	95
Tabelle 7-2:	Wärmebilanz für die Aufheiz- und Heizphase der Sulfonierung	98
Tabelle 7-3:	Schüttwinkel ausgewählter Sulfprodukte	105
Tabelle 7-4:	Leistungsübersicht der Pilotanlage	107
Tabelle 7-5:	Energiebedarf der Pilotanlage pro Charge	108

Tabelle 7-6:	Leistungsaufnahme der Pilotsulfonieranlage über einen Zyklus	109
Tabelle 7-7:	Emissionen und Entsorgungsaufwand für die Pilotanlage	110
Tabelle 7-8:	Korrosionswerte im kritischen Bereich	111
Tabelle 7-9:	Vergleich von Verfahren zur Herstellung von Kugelaktivkohle	112
Tabelle 8-1:	Ergebnisse der mikroskopischen Begutachtung der Aktivate	123
Tabelle 9-1:	Variation der Sulfonierbedingungen am Beispiel des MEV	133
Tabelle 9-2:	Einfluss der Pyrolysetemperatur auf die Aktivatqualität	134
Tabelle 9-3:	Einfluss der Pyrolyse-Aufheizrate auf die Koksqualität	134
Tabelle 9-4:	Einfluss des Abbrandes	135

Bilderverzeichnis

	S	Seite
Bild 2-1:	Schematische Darstellung der Maschenweite bei gelförmigen und	2
	makroporösen lonenaustauschern	5
Bild 2-2:	Schematische Darstellung des Vernetzungsprozess von Polystyren	5
Bild 2-3:	Polymere Ausgangsstoffe der Bayer AG	6
Bild 2-4:	Masseverlust von ST-DVB und sulfoniertem ST-DVB in Abhängigkeit von der	
	Temperatur	10
Bild 2-5:	Pyrolyseprodukte des sulfonierten ST-DVB-Copolymers	11
Bild 2-6:	Änderung im XPS-Spektrum von Schwefel 2p während der Pyrolyse von	
	sulfoniertem ST-DVB-Copolymer	12
Bild 2-7:	Strukturelle Veränderungen von sulfonierten ST-DVB zwischen 200 und 400 $^\circ C$	13
Bild 2-8:	Strukturelle Veränderung während der Pyrolyse eines sulfonierten	
	ST-DVB-Copolymers im Temperaturbereich von 300°C bis 500 °C	13
Bild 2-9:	Strukturelle Veränderung während der Pyrolyse eines sulfonierten	
	ST-DVB-Copolymers im Temperaturbereich von 500°C bis 800 °C	14
Bild 3-1:	Schematische Darstellung der Sulfonierreaktion	17
Bild 3-2:	Potentialkurve der Sulfonierung	18
Bild 3-3:	Die p-Elektronenwolke des Benzenrings bildet eine Elektronenquelle	19
Bild 4-1:	Schema der Laborsulfonieranlage	30
Bild 4-2:	Schema der Pyrolyseapparatur	32
Bild 4-3:	Schema der Aktivierungsapparatur (Wirbelschicht)	33
Bild 4-4:	Schema der diskontinuierlichen Drehrohrofenanlage	33
Bild 4-5:	Siedekurve und Dampfzusammensetzung von Schwefelsäure	35
Bild 4-6:	Einfluss von MEV und Versuchsdauer auf Masseausbeute, Schwefelgehalt und	
	Flüchtige für das sulfonierte Produkt	37
Bild 4-7:	Einfluss von MEV und Versuchsdauer auf Sintergrad und Bruchanteil der Kokse	38
Bild 4-8:	Einfluss von MEV und Versuchsdauer auf die Kokseigenschaften Ausbeute,	
	Schwefelgehalt, Gesamt- und Mesoporenvolumen	39
Bild 4-9:	Einfluss der Pyrolysetemperatur auf die Koksausbeuten und den Sintergrad des	
	Kokses	40
Bild 4-10:	Einfluss der Pyrolysetemperatur auf die Porenvolumenanteile des Kokses	41
Bild 4-11:	Einfluss der Pyrolysetemperatur auf den Schwefelgehalt des Kokses	42
Bild 4-12:	Einfluss von MEV und Sulfonierdauer auf den Aktivierungsgrad	44
Bild 4-13:	Einfluss von MEV auf die Ausbeuten von Koks und Aktivat bezogen auf	
	eingesetztes Copolymer	44
Bild 4-14:	Einfluss von MEV auf die Porenvolumenanteile im Aktivat	45
Bild 4-15:	Einfluss von MEV auf die BET-Oberfläche der Aktivate	46
Bild 4-16:	Einfluss des Abbrandes auf die Aktivatausbeute	46
Bild 4-17:	Einfluss des Abbrandes auf die Porenvolumina der Aktivate	47
Bild 4-18:	Einfluss des Abbrandes auf die BET-Oberfläche	47

Bild 5-1:	Darstellung der Konusform	53
Bild 5-2:	Skizze des Doppelkonus	55
Bild 5-3:	Abhängigkeit des Füllvolumens vom Neigungswinkel	57
Bild 5-4:	k-Wert in Abhängigkeit vom Füllungsgrad	61
Bild 5-5:	Darstellung der berechneten Aufheizkurven mit und ohne Reaktionswärme	62
Bild 5-6:	Darstellung der Abkühlkurven für gefüllten und leeren Reaktor	65
Bild 5-7:	Sulfonierreaktor	68
Bild 5-8:	Dosier- und Absaugkopf	69
Bild 5-9:	Reaktor mit aufgeklappter Heizschale	69
Bild 5-10:	Arretierung des Wagens	70
Bild 5-11:	Reaktor befindet sich in Arbeitstellung	70
Bild 5-12:	Säurelagerung und –dosierung	70
Bild 5-13:	Abmessungen des Doppelkonusreaktors und Kennzeichnung der	
	Heizsegmente	71
Bild 5-14:	Abhängigkeit des auf das Copolymervolumen bezogenen Reaktionsvolumens	
	vom MEV	73
Bild 5-15:	Wärmeübertragende Flächen des Copolymer-Schwefelsäure-Gemisches und	
	der rieselfähigen Sulfproduktschüttung	74
Bild 6-1:	Bilanzgrenze und Bilanzgrößen der Pilotsulfonieranlage	75
Bild 6-2:	Berechnete Heizleistung und Heizwärme in der Aufheizphase eines Zyklus	77
Bild 6-3:	Zeitlicher Verlauf der Proben- und Manteltemperatur bei den Inertversuchen	81
Bild 6-4:	Abhängigkeit der mittleren Aufheizrate von Füllungsgrad und Reaktordrehzahl	82
Bild 6-5:	Abhängigkeit der mittleren Abkühlraten I und II von Füllungsgrad und Reaktordrehzahl	83
Bild 6-6:	Abhängigkeit der Abkühlrate I von der Zusatzkühlluft bzw. der Abkühlrate II von	84
	der Kühlluftmenge	
Bild 6-7:	Einfluss des Füllungsgrades und der Drehzahl auf den Wärmebedarf (ohne	
	Reaktion)	85
Bild 6-8:	Temperaturverläufe und zugehörige Phasen eines Sulfonierzyklus	88
Bild 6-9:	Aufheizrate a der Sulfonierversuche und mittlere Aufheizrate der Inertversuche	
	in Abhängigkeit vom Füllungsgrad	89
Bild 6-10:	Einfluss des MEV auf den Reaktionsbeginn der Sulfonierung	89
Bild 6-11:	Vergleich der Aufheizraten a (ohne Reaktion) und b (mit Reaktion) in	
	Abhängigkeit vom Füllungsgrad	89
Bild 6-12:	Abhängigkeit der Aufheizrate b der Reaktionsmischung und des	
	Reaktormantels vom MEV	89
Bild 6-13:	Mittlere Abkühlrate I der Inert- und der Sulfonierversuche	90
Bild 6-14:	Mittlere Abkühlrate II der Inert- und Sulfonierversuche	90
Bild 7-1:	Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf die Feuchte	
	(Restsäure) des Sulfproduktes sowie die erreichbaren Ausbeuten und	
	Schwefelsäureumsätze	92

Bild 7-2:	Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf Kondensatmenge	
	und Kondensateigenschaften	94
Bild 7-3:	Einfluss der Sulfonierparameter MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf	95
	die Abgasmenge	
Bild 7-4:	Elementeausbeuten und -einbindungsgrade bei der Sulfonierung	97
Bild 7-5:	Füllungsgradeinfluss auf die Wärmebilanz der Sulfonierversuche	99
Bild 7-6:	Einfluss der Haltezeit auf die benötigten Wärmen	99
Bild 7-7:	Wirkungsgrade in Abhängigkeit von Haltezeit und Füllungsgrad	100
Bild 7-8:	Einfluss des Masseeinsatzverhältnisses auf den mittleren Durchmesser, die	
	relative Volumenzunahme und die Korngrößenverteilung	101
Bild 7-9:	Einfluss des Masseeinsatzverhältnisses auf den Schwefelgehalt und die	
	Atomverhältnisse H/C, H/O und O/S des trockenen Sulfproduktes	102
Bild 7-10:	Einfluss der Haltezeit auf den mittleren Durchmesser, die relative	
	Volumenzunahme und die Korngrößenverteilung	103
Bild 7-11:	Einfluss der Haltezeit auf die Atomverhältnisse H/C, H/O und O/S des	
	trockenen Sulfproduktes und den Schwefelgehalt	103
Bild 7-12:	Spezifische Wasseraufnahmerate des Sulfproduktes	105
Bild 7-13:	Aufteilung des Energiebedarfs der Pilotanlage für eine mittlere und eine große	
	Charge	108
Bild 7-14:	Leistungsbedarf der einzelnen Abschnitte eines Zyklus	109
Bild 7-15:	Verfahrensfließbild der halbtechnischen Pilotanlage	113
Bild 8-1:	Einfluss von MEV und Haltezeit auf die Koksausbeute der Pyrolysestufe	115
Bild 8-2:	Einfluss der Sulfoniertemperatur auf die Koksausbeute	115
Bild 8-3:	Einfluss der Feuchte auf die Koksausbeute	116
Bild 8-4:	Einfluss von MEV (SHZ 20 min) und Haltezeit (MEV 1,4) auf den	
	Schwefelgehalt des Kokses und die Schwefelabspaltung	116
Bild 8-5:	Einfluss der Restfeuchte des Sulfprodukts auf den Schwefelgehalt des Kokses	
	und die Schwefelabspaltung	117
Bild 8-6:	Korngrößenverteilung ausgewählter Kokse	117
Bild 8-7:	Porenvolumen und -anteile der Kokse in Abhängigkeit vom MEV	118
Bild 8-8:	Porenvolumen und -anteile der Kokse in Abhängigkeit von der Haltezeit	119
Bild 8-9:	Porenradienverteilung ausgewählter Kokse	119
Bild 8-10:	Einfluss der Sulfonierparameter MEV und Haltezeit auf den Abbrand der	
	Aktivierungsstufe	120
Bild 8-11:	Abhängigkeit des Abbrandes vom Koksschwefelgehalt	120
Bild 8-12:	Abhängigkeit des Aktivatschwefelgehaltes und der Schwefelabspaltung von den	
	Sulfonierparametern MEV und Haltezeit	121
Bild 8-13:	Schwefelgehalte der Aktivate und Schwefelabspaltung in Abhängigkeit vom	
	Koksschwefelgehalt	121
Bild 8-14:	Korngrößenverteilung ausgewählter Aktivate	122
Bild 8-15:	Häufige Formen	123

Bild 8-16:	Porenvolumen und –anteile der Aktivate in Abhängigkeit von MEV und der
Bild 8-17:	Porenradienverteilung ausgewählter Aktivate
Bild 8-18:	Einfluss von MEV und Haltezeit auf die BET-Oberfläche
Bild 8-19:	Einfluss des MEV und der Haltezeit auf die Ausbeute, den Schwefelgehalt und die Fülldichte der Sulfprodukte
Bild 8-20:	Einfluss des MEV und der Haltezeit auf Koksausbeute und Schwefelgehalt der Kokse
Bild 8-21:	Einfluss des MEV auf das Gesamtporenvolumen der Kokse
Bild 8-22:	Einfluss des MEV auf die Makro-, Meso- und Mikroporenvolumina der 7 Kokse
Bild 8-23:	Einfluss des MEV auf die Makro-, Meso- und Mikroporenvolumenanteile der Kokse
Bild 8-24:	Einfluss des Masseeinsatzverhältnisses auf Abbrand und BET-Oberfläche
Bild 8-25:	Einfluss des MEV auf das Makro-, Meso-, Mikro- und Gesamtporenvolumen der Aktivate
Bild 9-1:	Einfluss des Abbrandes und der Aktivierungstemperatur auf die Abbrand- geschwindigkeit
Bild 9-2:	Einfluss des Abbrandes und der Aktivierungstemperatur auf das Gesamt- und Makroporenvolumen
Bild 9-3:	Einfluss des Abbrandes und der Aktivierungstemperatur auf das Meso- und Mikroporenvolumen
Bild 9-4:	Einfluss des Abbrandes und der Aktivierungstemperatur auf die BET- Oberfläche
Bild 9-5:	Einfluss des Aktivierungsmediums auf die Aktivateigenschaften
Bild 9-6:	Einfluss der Aktivierungsgasmenge auf die Aktivateigenschaften
Bild 9-7:	Einfluss der Katalysatormenge (als FeSO4.7H2O) auf das Aktivierungsverhalten und die Meso- und Makroporenbildung
Bild 9-8:	Einfluss der Katalysatormenge auf das Gesamt- und Mikroporenvolumen sowie die BET-Oberfläche

Anhang

Tabellenverzeichnis

	Se	eite
Tabelle A3-1:	Gemessene Elementarzusammensetzung und daraus berechnete	
	Schwefelbindungsform und Summenformel für einen Ionenaustauscher	A3
Tabelle A3-2:	Berechnete Kennwerte für das Styren-DVB-Copolymer (Lewapol 8-4) in	A4
	Abhängigkeit vom MEV	
Tabelle A4-1:	Beispiele zur Berechnung des Hohlraumvolumens	A25
Tabelle A4-2:	Porenbereiche der IUPAC – Norm des Quecksilberporosimeters 2000	A29
Tabelle A6-1:	Beschreibung des Aufheiz- und Abkühlverhaltens der Inertversuche	A5
Tabelle A6-2:	Wärmebilanz der Inertversuche – Ergebnisse der Abkühlphasen I und II	A6
Tabelle A6-3:	Kenngrößen zur Beschreibung des Sulfonierzyklus	A7
Tabelle A7-1:	Massebilanz der Sulfonierung	A8
Tabelle A7-2:	Elementarzusammensetzung des feuchten und des säurefreigewaschenen	
	getrockneten Sulfproduktes	A9
Tabelle A7-3:	Kohlenstoff und Wasserstoffausbeuten sowie Schwefel- und Sauerstoff-	A10
	einbindungsgrade bei der Sulfonierung	
Tabelle A7-4:	Ergebnisse der Wärmebilanz der Abkühlphasen I und II der	
	Sulfonierversuche	A11
Tabelle A7-5:	Sulfprodukteigenschaften	A12
Tabelle A7-6:	Korngrößenanalysen	A13
Tabelle A8-1:	Kokseigenschaften I (Versuche SUV 6 – SUV 19 mit 20 K/min pyrolysiert)	A14
Tabelle A8-2:	Kokseigenschaften II (Versuche SUV 6 – SUV 19 mit 20 K/min pyrolysiert)	A15
Tabelle A8-3:	Kokseigenschaften III (Versuche SUV 6 – SUV 19 mit 20 K/min pyrolysiert)	A16
Tabelle A8-4:	Aktivateigenschaften I (Versuche SUA 6 – SUA 19 mit 20 K/min pyrolysiert)	A17
Tabelle A8-5:	Aktivateigenschaften II (Versuche SUA 6 – SUA 19 mit 20 K/min pyrolysiert).	A18
Tabelle A8-6:	Aktivateigenschaften III (Versuche SUA 6 – SUA 19 mit 20 K/min pyrolysiert)	A19

Bilderverzeichnis

	Se	eite
Bild A3-1:	Paritätsdiagramme für Sulfproduktausbeute, Schwefelgehalt des Sulfproduktes	
	und Koksausbeuten	A4
Bild A4-1:	Schematische Darstellung der Aktivkohle des Typs 0 mit Poren	A20
Bild A4-2:	Schematische Darstellung des Hohlkugeltyps I	A20
Bild A4-3:	Hohlkugeltyp I	A20
Bild A4-4:	Schematische Darstellung des Hohlkugeltyps II	A21
Bild A4-5:	Hohlkugeltyp II	A21
Bild A4-6:	Schematische Darstellung des Hohlkugeltyps III	A21
Bild A4-7:	Hohlkugeltyp III	A22
Bild A4-8:	TACT-Muster mit geringem Hohlraum	A22
Bild A4-9:	TACT-Muster mit mittlerem Hohlraum	A22
Bild A4-10:	TACT-Muster mit großem Hohlraum	A23
Bild A4-11:	Schnitt durch Hohlkugel-TACT	A23
Bild A4-12:	Schematische Darstellung der Waschapparatur	A29
Bild A5-1:	Wärmeübergang zwischen einer Heizfläche und einer draufliegenden ruhenden	
	bzw. mechanisch bewegten Schüttung	A31
Bild A5-2:	Nußelt-Zahl für 3 Randbedingungen bei der Wärmeübertragung im Ringspalt in	
	Abhängigkeit vom Verhältnis d _i /d _a	A31
Bild A5-3:	Anlagenschema der Pilotsulfonieranlage	A32
Bild A5-4:	Schematischer Aufbau der Pilotanlage	A33
Bild A5-5:	Verfahrenstechnisches Fließbild der Pilotanlage	A34
Bild A7-1:	Messstellen auf der Reaktorwand	A37
Bild A9-1:	Porenentwicklung der Kokse und zugehörigen Aktivate für die gewählten	
	Masseeinsatzverhältnisse bezogen auf Masseeinsatz Kokse	A38

Copolyme	re (gewas	schen)			Ionenausta		
	Einheit	K 1431	LP 2-00	LP 2-00	LP 2-00	LP 8-4	LP 8-4
		Ionenaustauscher	MEV 1,4	MEV 1,6	MEV 1,9	MEV 1,4	MEV 1,9
С	Ma-%	52,6	50,22	47,12	45,34	47,94	47,20
Н	Ma-%	4,4	4,82	4,77	4,71	5,22	5,13
S	Ma-%	17,2	14,05	14,53	14,76	13,91	14,43
0	Ma-%	25,8	30,90	33,58	35,19	32,47	32,85
N	Ma-%	0	0	0	0	0,46	0,39
x		4,38	4,19	3,93	3,78	4,00	3,93
u		4,40	4,82	4,77	4,71	5,22	5,13
k		0,54	0,44	0,45	0,46	0,43	0,45
I		1,61	1,93	2,10	2,20	2,03	2,05
z		0,00	0,00	0,00	0,00	0,03	0,03
n _C	N _{Ar} =1	8,13	8,03	8,03	8,03	8,13	8,13
f		1,85	1,92	2,04	2,13	2,04	2,07
n _H		8,16	9,25	9,75	10,01	10,62	10,60
n _s		1,00	0,84	0,93	0,98	0,88	0,93
n _o		2,99	3,71	4,29	4,67	4,13	4,24
n _N		0,00	0,00	0,00	0,00	0,07	0,06
а		0,00	-1,40	-1,62	-1,77	-1,67	-1,55
1-a		1,00	2,40	2,62	2,77	2,67	2,55
V _{ss}		1,00	0,84	0,93	0,98	0,88	0,93
v _w		1,00	-0,34	-0,58	-0,75	-0,59	-0,52
M _{CP} (N _{Ar} =1)	g/mol	105,7	104,4	104,4	104,4	105,7	105,7
M _{CP} (N _{Ar} =100)	g/mol	10569	10439	10439	10439	10569	10569
M _{SP} (N _{Ar} =1)	g/mol	185	192	204	213	204	207
Summenformel	N _{Ar} =1	$C_{8,13}H_{8,16}S_1O_{2,99}$	$C_{8,03}H_{9,25}S_{0,84}O_{3,71}$	$C_{8,03}H_{9,75}S_{0,93}O_{4,29}$	$C_{8,03}H_{10,01}S_{0,98}O_{4,67}$	$C_{8,13}H_{10,62}S_{0,88}O_{4,13}N_{0,07}$	$C_{8,13}H_{10,6}S_{0,93}O_{4,24}N_{0,06}$
Summenformel	N _{Ar} =100	C ₈₁₃ H ₈₁₆ S ₁₀₀ O ₂₉₉	C ₈₀₃ H ₉₂₅ S ₈₄ O ₃₇₁	C ₈₀₃ H ₉₇₅ S ₉₃ O ₄₂₉	C ₈₀₃ H ₁₀₀₁ S ₉₈ O ₄₆₇	C ₈₁₃ H ₁₀₆₂ S ₈₈ O ₄₁₃ N ₇	C ₈₁₃ H ₁₀₆ S ₉₃ O ₄₂₄ N ₆
O/S		3,00	4,40	4,62	4,77	4,67	4,55
H/C		1,00	1,15	1,21	1,25	1,31	1,30
H/O		2,73	2,50	2,27	2,14	2,57	2,50
O/C		0,37	0,46	0,53	0,58	0,51	0,52
n _{H,w}		0,03	1,22	1,72	1,98	2,49	2,47
n _{O,w}		0,02	0,61	0,86	0,99	1,25	1,24
n _{O,Ar}		-0,02	0,57	0,64	0,74	0,23	0,21
n _{Subst.,Ar}	(Gl. 3.24)	1,00	0,84	0,93	0,98	0,88	0,93

TabelleA3-1:GemesseneElementarzusammensetzungunddarausberechneteSchwefelbindungsformundSummenformel f ür einen lonenaustauscherundsulfonierteCopolymere (gewaschen)

Weitere Möglichkeiten für eine Sauerstoffeinbindung sind *:

- Oxidation von Alkylaromaten zu aromatischen Carbonsäuren
- Peroxygenierung (Bildung von Hydroperoxiden bzw. Peroxiden)
- Radikalische Substitutionsreaktionen (z.B. Sulfoxidation)

1	Masseeinsatzverhältnis	MEV	x : 1	0,8	1	1,2	1,4	1,6	1,8	2	2,2
2	Konzentration der Schwefelsäure	c _{SS}	%	96	96	96	96	96	96	96	96
3	Molmasse Copolymer	M _{CP}	g/mol	105	105	105	105	105	105	105	105
4	Molmasse Schwefelsäure	M _{SS}	g/mol	98	98	98	98	98	98	98	98
5	Sulfonsäuregruppen je Ring (N _{Ar} =1)	n _{Subst.,Ar}		0,82	1,03	1,23	1,44	1,65	1,85	2,06	2,26
6	Sulfonsäuregruppen je Einheitsmolekül (N _{Ar} = 100)	n _{Subst.,Ar,100}		82	103	123	144	165	185	206	226
7	Molmasse Sulfprodukt	M _{SP}	g/mol	170,8	187,3	203,7	220,2	236,7	253,1	269,6	286,0
8	Masse Copolymer	m _{CP}	g	100	100	100	100	100	100	100	100
9	Masse Schwefelsäure	m _{ss}	g	80	100	120	140	160	180	200	220
10	Masse Sulfprodukt	m _{SP}	g	163	178	194	210	225	241	257	272
11	Sulfproduktausbeute	A _{SP}	%	90,4	89,2	88,2	87,4	86,7	86,1	85,6	85,1
12	theoretische Reaktionswassermenge	m _{H2O,ber.} /m _{CP}	g/g _{CP}	0,173	0,216	0,260	0,303	0,346	0,389	0,433	0,476
13	Kohlenstoffgehalt im Sulfprodukt	C _{SP}	Ma-%	57,1	52,1	47,9	44,3	41,2	38,5	36,2	34,1
14	Wasserstoffgehalt im Sulfprodukt	H _{SP}	Ma-%	4,8	4,3	4,0	3,7	3,4	3,2	3,0	2,8
15	Schwefelgehalt im Sulfprodukt	S _{SP}	Ma-%	15,4	17,6	19,4	20,9	22,3	23,4	24,4	25,3
16	Sauerstoffgehalt im Sulfprodukt	O _{SP}	Ma-%	23,1	26,4	29,1	31,4	33,4	35,1	36,6	38,0
17	theoretische Koksausbeute (ohne S- u. C-Freistzg.)	β theor.	Ma-%	72,5	69,7	67,3	65,2	63,5	62,0	60,6	59,4
18	theoretische Koksausbeute (ohne S- u. C-Freistzg.)	α _{theor.}	Ma-%	118,0	124,3	130,5	136,8	143,1	149,3	155,6	161,9
19	max. Schwefelgehalt im Koks (ohne S-Freisetzung)	S Koks,theor.	Ma-%	21,3	25,2	28,8	32,1	35,1	37,8	40,3	42,6
20	Schwefelgehalt Koks (Annahme) ¹	S _{Koks}	Ma-%	3,4	4,9	6,1	6,9	7,3	7,5	7,2	6,7
21	Anteil Schwefel im Pyrolysegas	S _{Gasphase}	g_{S}/g_{SP}	0,13	0,15	0,16	0,18	0,19	0,20	0,22	0,23
22	theoretische Koksausbeute (partielle S-Freisetzg.)	β	Ma-%	59,1	54,8	51,0	47,6	44,5	41,7	39,0	36,6
23	theoretische Koksausbeute (partielle S-Freisetzg.)	α	Ma-%	96,2	97,7	98,9	99,8	100,3	100,4	100,2	99,6
	Messwerte (Basis: Copolymer mit 8 % DVB)										
24	Sulfproduktausbeute ²	A _{SP}	%	86,11	87,00	84,77	87,28	89,08	88,86	82,42	n.b.
25	Schwefelgehalt im Sulfprodukt	S _{SP} *	Ma-%	12,32	n.b.	n.b.	17,67	17,91	19,20	n.b.	n.b.
26	Koksausbeute bezogen Sulfprodukt ³	β	Ma-%	36,51	42,93	42,67	40,92	38,96	36,62	37,88	n.b.
27	Koksausbeute bezogen Copolymer	α	Ma-%	56,58	76,44	79,58	85,71	90,24	91,12	93,65	n.b.
28	Schwefelgehalt Koks	S _{Koks}	Ma-%	2,71	n.b.	n.b.	3,88	4,56	4,61	n.b.	n.b.

Tabelle	A3-2:	Berechnete	Kennwerte	für	das	Styren-DVB-Copolymer	(Lewapol	8-4)	in
Abhäng	igkeit v	om MEV							

Werte stammen aus einer Korrelation von Schwefelgehalt über MEV

* ungewaschen

ST 200 °C, SAHR 16 K/min, SHZ 8 min

³ PT 750 °C, PAHR 20 K/min, PHZ 5 min

1

2

Bild A3-1: Paritätsdiagramme für Sulfproduktausbeute, Schwefelgehalt des Sulfproduktes und Koksausbeuten

	Versu	chsstart		Reaktionsend	de	Abküh	Iphase I	beendet		Abkü	hlphase l	II beendet			
Vers.		Aufh	eizrate					Abkü	hlrate I		Abkü	hlrate II	mittlere	Gesamt-	Kommentar
Nr.	Т	mittlere	maximale	Aufheizzeit	Т	Zeit	т	mittlere	maximale	Zeit	mittlere	maximale	Abkühlrate	abkühlzeit	
	°C	[K/min]	[K/min]	min	°C	min	°C	[K/min]	[K/min]	min	[K/min]	[K/min]	[K/min]	[min]	
AV 1	22,4	3,07	4,85	46	195	30	158,8	1,21	1,55	47	1,61	2,10	1,66	77	FG=20 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 2	27,6	3,33	4,76	38	198,5	30	176,7	0,73	1,15	45	1,99	3,20	1,70	75	FG=20 %, 30,2 min⁻1, Zusatzluft aus, Kühlluft Standard
AV 3	70,7	2,58	3,05	50	198,1	30	162,2	1,20	1,54	40	1,89	2,83	1,87	69	FG=20 %, 15,8 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 4	68,9	3,47	4,18	44	200,8	-	-	-	0,00	65	2,00	3,60	2,00	65	FG=20 %, 30,2 min ⁻¹ , Zusatzluft aus, Kühlluft Standard, Sofortentleerung
AV 13	21,7	3,77	6,40	34	200,4	30	151,2	1,64	2,10	33	1,88	2,78	2,01	63	FG=10 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 15	75,8	3,80	4,90	43	201,2	30	158	1,44	1,95	36	1,90	2,73	1,94	66	FG=10 %, 15,8 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 14	69,3	4,22	5,34	39	200,8	30	169,5	1,04	1,75	40	2,09	2,83	1,83	70	FG=10 %, 30,2 min ⁻¹ , Zusatzluft aus, Kühlluft Standard
AV 7	25,4	2,73	4,05	46	199,6	30	172,9	0,89	1,15	45	1,93	3,02	1,73	75	FG=30 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 20	68,5	2,74	5,05	41	199,2	30	134,2	2,17	2,88	25	1,60	2,00	2,31	55	FG=0 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 9	24	3,30	4,00	38	204,6	30	183,2	0,71	1,19	47	2,08	3,68	1,78	77	FG=30 %, 15,8 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 11	44,1	2,92	4,08	42	199,2	30	177,9	0,71	1,14	43	2,18	2,93	1,79	73	FG=30 %, 23 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 12	25,7	2,74	2,85	42	199,2	30	173,7	0,85	1,05	37	2,24	3,29	1,93	67	FG=30 %, 15,8 min ⁻¹ , Zusatzluft ein, Kühlluft gesteigert (Direktanschluß roter Schlauch)
AV 8	78,3	2,48	3,00	49	200	30	187	0,43	1,01	44	2,24	3,22	1,73	75	FG=30 %, 30,2 min ⁻¹ , Zusatzluft aus, Kühlluft Standard
AV 21	28,3	3,05	4,00	42	199,2	60	148,9	1,68	1,31	31	2,04	2,60	1,42	91	FG=30 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft Standard, KP II 60 min
AV 22	74,3	2,40	2,85	51	198,9	30	177,5	0,71	1,33	43	2,10	3,29	1,80	73	FG=30 %, 15,8 min ^{₋1} , Zusatzluft ein, Kühlluft Standard
AV 17	29,5	3,99	6,10	32	199,2	30	157,6	1,39	2,05	35	1,99	2,80	1,92	65	FG=10 %, 23 min ⁻¹ , Zusatzluft ein, Kühlluft Standard
AV 23	38,8	2,82	5,07	46	200,4	-	-	-	-0,70	28	4,62	6,64	4,62	28	FG=0 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft gesteigert (Direktanschluß glatter Schlauch)
AV 18	30,2	4,17	6,30	31	199,2	30	150,4	1,63	2,26	32	1,88	3,77	2,00	62	FG=10 %, 23 min ⁻¹ , Zusatzluft ein, Kühlluft gesteigert (Direktanschluß roter Schlauch)
AV 24	20,5	2,84	5,85	39	195	-	-	-	0,40	52	2,39	3,65	2,39	52	FG=0 %, 30,2 min ⁻¹ , Zusatzluft ein, Kühlluft Standard

Tabelle A6-1: Beschreibung des Aufheiz- und Abkühlverhaltens der Inertversuche

Ve	ersuchsp	paramet	er	Abkühlphase I					Abkühlphase II					
Versuch	FG	DZ	Zusatz-	Q _{RM}	Q _M	Q _{Iso}	Q _{KL}	Q _{ZKL}	Q _V	Q _{RI}	Q _M	Q _{Iso}	Q _{KL}	Qv
	%	min ⁻¹	kühlluft											
AV17	10	23,0	ein	421	1737	5375	2819	1501	3213	19	1511	2416	1659	2288
AV18	10	30,2	ein	463	1460	4048	3449	1472	1049	19	1929	3561	1846	3663
AV 9	30	15,8	ein	465	1347	8188	3631	1313	5056	26	1971	3459	3057	2399
AV22	30	15,8	ein	688	1574	6183	3133	1566	3745	24	1827	3004	2072	2782
AV 11	30	23,0	ein	797	1673	7407	3273	1649	4955	23	1790	2962	2010	2764
AV 7	30	30,2	ein	391	1189	6779	2706	1284	4370	26	2271	3532	2755	3074
AV21	30	30,2	ein	1369	2301	7870	5125	2692	3723	17	1240	1917	1429	1745
AV 12	30	30,2	ein	680	1224	5497	3791	1568	2043	24	2372	4268	2327	4337
AV 8	30	30,2	aus	535	1429	6304	3224	0	5042	25	1975	3112	2133	2979

Tabelle A6-2: Wärmebilanz der Inertversuche – Ergebnisse der Abkühlphasen I und II

Proben Nr.	m _{CP}	m _{H2SO4}	MEV	Soll-	lst-	Halte-	Reaktor-	Au	fheizph	ase	At	okühlpha	se I	Abküh	Iphase II	Versuchs-
				temperatur	temperatur	zeit	druck	AHR a	T _{Start}	AHR b	Zeit	AKR I	T _{end I}	Zeit	AKR II	dauer
	[kg]	[kg]	[kg _{H2SO4} /kg _{CP}]	°C	°C	min	kPa	K/min	°C	K/min	min	K/min	°C	min	K/min	min
SU 4	15	15	1	195	202,1	20	78	4,42	106,7	9,18	30	1,40	163,8	36	1,69	133
SU 6	15	18	1,2	195	195,2	20	78	4,41	94,0	10,06	30	1,46	148,6	28	1,72	131
SU 8	15	21	1,4	195	194,9	20	77	4,13	107,8	10,98	30	1,41	150,1	28	1,77	138
SU 10	15	24	1,6	195	194,6	20	78	3,98	118,5	10,00	30	1,35	150,1	27	1,90	132
SU 11	15	21	1,4	180	192,8	20	75	4,34	111,5	10,00	30	1,62	144,0	18	1,74	125
SU 13	15	21	1,4	195	194,3	30	80	3,70	111,5	12,00	30	1,42	151,6	27	1,71	141
SU 14	15	21	1,4	195	193,6	40	78	3,84	110,0	9,09	30	1,32	155,4	34	1,59	154
SU 16	25,5	35,7	1,4	195	194,6	20	76	2,84	106,3	7,93	30	1,03	160,3	33	1,49	161
SU 17	15	21	1,4	195	196,8	10	79	3,83	113,3	9,37	30	1,59	149,3	27	1,77	124
SU 18	15	21	1,4	195	196,7	5	78	4,13	110,0	9,89	30	1,67	152,0	29	1,73	117
SU 19	15	27	1,8	195	195,9	20	77	3,82	119,6	8,74	30	1,30	153,8	35	1,64	135
SU 20	15	24	1,6	195	196,3	20	77	3,87	113,7	9,94	30	1,38	152,0	23	1,58	127
SU 21	15	21	1,4	195	197,2	10	78	4,17	112,2	10,00	30	1,60	148,6	22	2,04	129
SU 22	15	30	2	195	195,9	20	77	3,82	114,1	9,89	30	1,31	153,8	26	1,60	135
SU 23	15	21	1,4	195	195,2	20	75	3,82	109,7	9,68	82	1,11	100,4	n.b.	n.b.	153
SU 24	15	27	1,8	195	196,0	20	77	3,84	115,2	10,00	87	1,05	100,1	n.b.	n.b.	n.b.
SU 25	25,5	35,7	1,4	195	191,2	40	78	3,33	107,8	12,00	30	1,15	157,2	30	1,84	165
SU 27	15	21	1,4	220	226,7	20	79	4,14	110,8	10,06	30	1,66	131,6	13	1,84	206
SU 28	15	33	2,2	195	197,8	20	100	3,64	115,2	9,28	30	1,32	155,7	22	2,11	332
SU 29	15	30	2	195	183,8	20	100	3,96	106,3	8,49	30	1,42	153,1	22	1,67	131
SU 30	15	30	2	195	195,2	20	77	3,64	110,0	8,14	30	1,30	153,5	25	1,85	134
SU 31	15	30	2	195	195,1	20	77	3,83	114,5	8,53	30	1,28	153,1	20	1,95	131

Tabelle A6-3: Kenngrößen zur Beschreibung des Sulfonierzyklus

T Start: Messbarer Beginn der Sulfonierreaktion

n.b.: nicht bestimmt

Tabelle A7-1: Massebilanz der Sulfonierung

Proben Nr.	m _{CP}	MEV	Haltezeit	m _{SP}	т _к	W _{SP}	ρ_{Kond}	X _{SO2,Kond}	pH-Wert	X _{H2SO4,Kond}	m _{A,ges}	U _{H2SO4}	A _{SP} feucht	A _{SP} trocken
	[kg]	[kg _{H2SO4} /kg _{CP}]	min	kg	kg	%	kg/l	g _{so2} /I		%	kg	%	%	%
SU 4	15	1	20	25,20	2,66	3,57	1,0140	20,05	0,97	2,33	2,14	65,09	84,00	81,00
SU 6	15	1,2	20	29,70	n.b.	12,75	n.b.	n.b.	n.b.	n.b.	n.b.	55,75	90,00	78,52
SU 8	15	1,4	20	32,90	n.b.	19,24	n.b.	n.b.	n.b.	n.b.	n.b.	47,48	91,39	73,81
SU 10	15	1,6	20	35,05	2,20	23,60	1,0130	18,05	1	2,18	1,75	41,32	89,87	68,66
SU 11	15	1,4	20	31,85	1,57	14,44	1,0135	12,67	1,02	2,26	2,58	51,25	88,47	75,70
SU 13	15	1,4	30	30,50	2,9	8,56	1,0165	24,28	1,01	2,71	2,60	53,47	84,72	77,47
SU 14	15	1,4	40	29,60	3,55	12,69	1,0070	10,15	1,1	1,28	2,85	39,03	82,22	71,79
SU 16	25,5	1,4	20	55,50	2,80	17,94	1,0105	15,44	1,1	1,81	2,90	53,00	90,69	74,42
SU 17	15	1,4	10	33,30	1,54	19,79	1,0055	5,55	1,18	1,06	1,16	45,40	92,50	74,20
SU 18	15	1,4	5	36,00	1,16	24,61	1,0065	6,22	1,23	1,21	(-1,16)*	49,96	100,00	75,39
SU 19	15	1,8	20	32,80	2,51	24,07	1,0100	12,72	1,08	1,73	6,69	38,09	78,10	59,29
SU 20	15	1,6	20	34,95	2,39	21,05	1,0135	18,82	1,03	2,26	1,66	49,78	89,62	70,75
SU 21	15	1,4	10	33,50	1,41	18,70	1,0110	15,89	1,09	1,88	1,09	55,48	93,06	75,65
SU 22	15	2	20	38,30	2,08	30,63	1,0145	19,32	1	2,41	4,62	39,43	85,11	59,04
SU 23	15	1,4	20	32,55	2,33	18,09	1,0130	19,10	1,04	2,18	1,12	53,06	90,42	74,06
SU 24	15	1,8	20	35,15	2,41	24,36	1,0145	21,29	1,00	2,41	4,44	45,08	83,69	63,30
SU 25	25,5	1,4	40	50,81	4,53	4,28	1,0155	25,60	1,02	2,56	5,86	51,78	83,02	79,47
SU 27	15	1,4	20	24,68	6,28	2,07	1,0220	34,61	0,94	3,55	5,04	46,75	68,56	67,14
SU 28	15	2,2	20	39,70	2,28	28,21	1,0185	29,49	0,98	3,02	6,02	35,39	82,71	59,38
SU 29	15	2	20	37,87	2,23	27,72	1,0185	27,99	0,98	3,02	4,90	40,32	84,16	60,83
SU 30	15	2	20	38,92	2,35	25,42	1,0155	21,41	1,02	2,56	3,73	39,83	86,49	64,51
SU 31	15	2	20	38,64	2,3	22,74	1,0145	20,57	1,01	2,41	4,06	40,08	85,87	66,34

n.b.: nicht bestimmt

* negativer Bilanzfehler

Tabelle A7	'-2: El	lementarzusan	nmensetzi	ung des	feuchten	und
Proben Nr.	m _{CP}	MEV	Haltezeit	Eleme	entaranaly	'se - fe
				С	Н	0
	[ka]	[ka /ka]	min	M_{0} 0/		Ma

Proben Nr.	m _{CP}	MEV	Haltezeit	Eleme	ntaranaly	vse - feucl	htes Sulfp	orodukt	Eleme	ntaranalys	se - trock	enes Sulf	produkt
				С	Н	0	N	S	С	Н	0	N	S
	[kg]	[kg _{H2SO4} /kg _{CP}]	min	Ma-%	Ma-%	Ma-%	Ma-%	Ma-%	Ma-%	Ma-%	Ma-%	Ma-%	Ma-%
SU 4	15	1	20	48,54	4,84	31,46	0,48	14,68	52,64	4,77	29,48	0,51	12,60
SU 6	15	1,2	20	45,59	4,49	33,10	0,50	16,33	49,44	4,59	33,39	0,44	12,14
SU 8	15	1,4	20	39,60	4,24	38,90	0,37	16,89	48,23	4,57	35,01	0,43	11,76
SU 10	15	1,6	20	n.b.	n.b.	n.b.	n.b.	17,77	47,82	4,22	35,90	0,44	11,61
SU 11	15	1,4	20	42,38	4,37	35,15	0,43	17,67	48,65	4,57	34,18	0,22	12,38
SU 13	15	1,4	30	n.b.	n.b.	n.b.	n.b.	16,89	49,22	4,29	33,50	0,37	12,62
SU 14	15	1,4	40	43,80	4,26	34,20	0,47	17,28	48,13	4,45	37,03	0,45	9,94
SU 16	25,5	1,4	20	n.b.	n.b.	n.b.	n.b.	17,12	50,58	4,85	31,10	0,44	13,02
SU 17	15	1,4	10	41,90	4,38	36,03	0,42	17,26	51,27	4,75	32,34	0,45	11,19
SU 18	15	1,4	5	40,60	4,66	36,59	0,46	17,69	52,82	4,85	29,73	0,49	12,12
SU 19	15	1,8	20	34,11	3,98	42,75	0,32	18,85	49,17	4,40	33,07	0,41	12,95
SU 20	15	1,6	20	39,04	4,10	37,93	0,39	18,54	49,28	4,46	32,36	0,33	13,57
SU 21	15	1,4	10	n.b.	n.b.	n.b.	n.b.	17,96	47,49	4,07	34,81	0,21	13,41
SU 22	15	2	20	33,47	3,99	42,36	0,28	19,90	46,39	4,16	35,23	0,27	13,96
SU 23	15	1,4	20	n.b.	n.b.	n.b.	n.b.	18,13	48,57	4,18	33,84	0,32	13,10
SU 24	15	1,8	20	n.b.	n.b.	n.b.	n.b.	18,71	47,73	4,02	33,53	0,38	14,35
SU 25	25,5	1,4	40	n.b.	n.b.	n.b.	n.b.	17,24	45,30	3,99	38,63	0,16	11,91
SU 27	15	1,4	20	56,68	4,41	23,41	0,61	14,90	52,44	4,06	30,26	0,50	12,73
SU 28	15	2,2	20	n.b.	n.b.	n.b.	n.b.	19,88	44,03	3,77	39,23	0,12	12,84
SU 29	15	2	20	n.b.	n.b.	n.b.	n.b.	19,59	46,61	3,92	35,39	0,23	13,85
SU 30	15	2	20	33,54	3,94	42,10	0,32	20,10	44,90	3,92	38,11	0,16	12,90
SU 31	15	2	20	34,49	3,89	41,88	0,35	19,38	44,17	3,85	39,20	0,14	12,63

des säurefreigewaschenen getrockneten Sulfproduktes Tal

An	hang)			

Proben Nr.	m _{CP}	MEV	Haltezeit	AC	AC	AH	AH	Φ_0^{leucht}	Φ_0^{trockern}	Φ_{S}	Φ_{S}	Abgas- Elementemassen				
												m _c	m _H	m _o	m _s	$\rm m_{SO2}$
	[kg]	[kg _{H2SO4} /kg _{CP}]	min	%	%	%	%	%	%	%	%	kg _C	kg _H	kg _O	kg _S	kg _{SO2}
SU 4	15	1	20	89,42	93,53	105,67	100,43	53,80	48,61	78,68	65,09	0,886	0,292	2,350	0,020	0,041
SU 6	15	1,2	20	98,99	93,66	115,35	102,99	55,60	48,92	85,93	55,75	0,868	n.b.	n.b.	n.b.	n.b.
SU 8	15	1,4	20	95,24	93,68	120,66	105,16	62,03	45,08	84,42	47,48	0,865	n.b.	n.b.	n.b.	n.b.
SU 10	15	1,6	20	n.b.	93,61	n.b.	97,95	n.b.	40,77	82,77	41,32	0,874	0,242	1,944	0,016	0,031
SU 11	15	1,4	20	98,67	96,92	120,60	107,92	54,26	45,14	85,49	51,25	0,421	0,173	1,387	0,012	0,023
SU 13	15	1,4	30	n.b.	100,35	n.b.	103,65	n.b.	45,29	78,24	53,47	n.b.	n.b.	n.b.	0,026	0,051
SU 14	15	1,4	40	94,79	90,93	109,09	99,48	49,06	46,38	77,69	39,03	1,240	0,393	3,145	0,015	0,030
SU 16	25,5	1,4	20	n.b.	99,08	n.b.	112,51	n.b.	40,38	84,89	53,00	n.b.	n.b.	n.b.	0,017	0,033
SU 17	15	1,4	10	102,01	100,11	126,41	109,95	58,15	41,86	87,33	45,40	0,000	0,171	1,365	0,005	0,011
SU 18	15	1,4	5	106,85	104,80	145,36	113,98	63,84	39,10	96,74	49,96	0,000	0,129	1,028	0,005	0,009
SU 19	15	1,8	20	81,79	89,52	112,98	94,83	52,86	31,05	73,04	38,09	1,434	0,277	2,221	0,014	0,028
SU 20	15	1,6	20	99,74	99,42	124,07	106,44	56,23	37,87	86,11	49,78	0,080	0,263	2,112	0,018	0,035
SU 21	15	1,4	10	n.b.	94,56	n.b.	96,07	n.b.	45,96	91,41	55,48	n.b.	n.b.	n.b.	0,009	0,017
SU 22	15	2	20	93,71	90,11	132,35	95,64	55,04	31,76	81,03	39,43	1,353	0,228	1,837	0,016	0,033
SU 23	15	1,4	20	n.b.	94,66	n.b.	96,41	n.b.	43,73	89,65	53,06	n.b.	n.b.	n.b.	0,017	0,033
SU 24	15	1,8	20	n.b.	92,77	n.b.	92,43	n.b.	33,61	77,70	45,08	n.b.	n.b.	n.b.	0,019	0,038
SU 25	25,5	1,4	40	n.b.	94,75	n.b.	98,89	n.b.	53,57	78,26	51,78	n.b.	n.b.	n.b.	0,038	0,076
SU 27	15	1,4	20	102,27	92,66	94,14	85,01	28,00	35,45	55,85	46,75	1,004	0,683	5,529	0,073	0,145
SU 28	15	2,2	20	n.b.	91,75	n.b.	92,96	n.b.	34,49	76,28	35,39	n.b.	n.b.	n.b.	0,022	0,045
SU 29	15	2	20	n.b.	93,27	n.b.	92,85	n.b.	32,87	78,89	40,32	n.b.	n.b.	n.b.	0,022	0,044
SU 30	15	2	20	95,44	95,28	132,78	98,63	55,59	37,53	83,20	39,83	0,645	0,258	2,075	0,020	0,039
SU 31	15	2	20	97,44	96,41	130,14	99,63	54,91	39,71	79,63	40,08	0,491	0,253	2,031	0,018	0,036

Tabelle A7-3: Kohlenstoff und Wasserstoffausbeuten sowie Schwefel- und Sauerstoffeinbindungsgrade bei der Sulfonierung

n.b.: nicht bestimmt

							Abkühl	phase I			Abkühlphase II						
Vers. Nr.	m _{CP}	MEV	T _{Reaktion}	Haltezeit	Q _{RM}	Q _M	Q _{lso}	Q _{KL}	Q _{ZKL}	Qv	Q _{RI}	Q _M	Q _{lso}	Q _{KL}	Qv	Zeit	
	kg		°C	min	kJ	kJ	kJ	kJ	kJ	kJ	kJ	kJ	kJ	kJ	kJ	min	
SU 4	15	1	195	20	825	1287	6573	4680	1156	2850	22	1555	2938	4257	257	36	
SU 6	15	1,2	195	20	905	1279	5981	4600	1111	2455	18	1492	2538	3488	561	28	
SU 8	15	1,4	195	20	879	1287	6270	4690	1101	2645	18	1624	2572	3506	709	28	
SU 10	15	1,6	195	20	2060	7079	1302	5561	1080	3799	17	1328	2441	3195	591	27	
SU 11	15	1,4	180	20	1002	1256	5865	4499	1086	2538	15	1049	1820	2407	476	18	
SU 13	15	1,4	195	30	879	1338	7934	5093	1135	3924	17	1322	2266	3280	326	27	
SU 14	15	1,4	195	40	821	1273	7007	4947	1130	3024	20	1710	2899	4249	379	34	
SU 16	25,5	1,4	195	20	1105	1102	6376	4984	1159	2441	16	1159	1668	3435	592	33	
SU 17	15	1,4	195	10	1004	1240	5279	4503	1124	1897	16	1230	2236	3178	304	27	
SU 18	15	1,4	195	5	1037	1329	5802	4538	1128	2503	17	1480	2376	3337	536	29	
SU 19	15	1,8	195	20	828	1219	6528	4897	1117	2560	20	1570	2756	4368	21	35	
SU 20	15	1,6	195	20	865	1279	7265	4874	1109	3425	16	1353	2054	3085	338	23	
SU 21	15	1,4	195	10	994	1257	5399	4436	1094	2120	16	1190	2041	2849	399	22	
SU 22	15	2	195	20	833	1224	6814	4919	1119	2832	16	1288	2169	3051	421	26	
SU 23	15	1,4	195	20	1959	2241	8824	9920	2500	604	4	364	545	746	168	n.b.	
SU 24	15	1,8	195	20	2020	2275	9692	10672	2649	667	n.b.	n.b	n.b	n.b	n.b	n.b.	
SU 25	25,5	1,4	195	40	1193	1262	8366	5265	1148	4408	20	1591	2640	3737	513	30	
SU 27	15	1,4	220	20	2091	2293	8140	9415	2398	710	12	981	1386	1922	457	13	
SU 28	15	2,2	195	20	860	1238	6516	4982	1155	2477	15	921	1278	2757	543	22	
SU 29	15	2	195	20	907	1282	6853	4879	1123	3040	17	1224	2149	3048	343	22	
SU 30	15	2	195	20	830	1250	7002	4909	1117	3056	17	1398	2318	3031	702	25	
SU 31	15	2	195	20	824	1248	7231	4982	1129	3191	15	1138	1803	2543	413	20	

Tabelle A7-4: Ergebnisse der Wärmebilanz de	r Abkühlphasen I und II der Sulfonierversuche
---	---

n.b.: nicht bestimmt

Tabelle A7-5: Sulfprodukteigenschaften

Proben Nr.	m _{CP}	MEV	Haltezeit Fülldichte		d _m	ΔV_{rel}	Atomverhälrnisse- trockenes Sulfproc				
	[kg]	[kg _{H2SO4} /kg _{CP}]	min	g/cm³	mm	%	O/S	H/C	H/O		
SU 4	15	1	20	0,829	0,55	-88	4,69	1,08	2,57		
SU 6	15	1,2	20	0,896	0,65	-206	5,51	1,11	2,18		
SU 8	15	1,4	20	0,870	0,66	-220	5,96	1,13	2,07		
SU 10	15	1,6	20	0,886	0,66	-224	6,20	1,05	1,87		
SU 11	15	1,4	20	0,872	0,64	-198	5,53	1,12	2,12		
SU 13	15	1,4	30	0,847	0,63	-183	5,32	1,04	2,03		
SU 14	15	1,4	40	0,893	0,65	-207	7,46	1,10	1,91		
SU 16	25,5	1,4	20	0,896	0,66	-214	4,79	1,14	2,48		
SU 17	15	1,4	10	0,864	0,64	-191	5,79	1,10	2,33		
SU 18	15	1,4	5	0,884	0,66	-220	4,92	1,09	2,59		
SU 19	15	1,8	20	0,903	0,66	-226	5,12	1,07	2,11		
SU 20	15	1,6	20	0,905	0,66	-216	4,78	1,08	2,19		
SU 21	15	1,4	10	0,890	0,66	-214	5,20	1,02	1,86		
SU 22	15	2	20	0,938	0,66	-224	5,06	1,07	1,87		
SU 23	15	1,4	20	0,898	0,64	-188	5,18	1,02	1,96		
SU 24	15	1,8	20	0,908	0,66	-217	4,68	1,00	1,90		
SU 25	25,5	1,4	40	0,863	0,63	-176	6,50	1,05	1,64		
SU 27	15	1,4	20	0,830	0,55	-86	4,76	0,92	2,13		
SU 28	15	2,2	20	0,895	0,66	-224	6,12	1,02	1,52		
SU 29	15	2	20	0,894	0,66	-225	5,12	1,00	1,76		
SU 30	15	2	20	0,905	0,66	-225	5,92	1,04	1,63		
SU 31	15	2	20	0,912	0,66	-225	6,22	1,04	1,56		

 ΔV_{rel} : - Dilatation

+ Kontraktion

Tabelle A7-6: Korngrößenanalysen

	Sulfprodukt							Koks								Aktivat											
Probe Nr.	>1	>0,8	>0,63	>0,5	>0,4	>0,315	>0,2	<0,2	Σ	>1,00	>0,8	>0,63	>0,5	>0,4	>0,315	>0,2	<0,2	Σ	>1,00	>0,8	>0,63	>0,5	>0,4	>0,315	>0,2	<0,2	Σ
	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
SU 6	0,00	0,00	0,01	87,44	11,98	0,57	0,00	0,00	100,00	3,21	12,38	3,46	41,92	26,42	3,30	0,54	8,78	100,00	0,00	0,00	0,00	0,96	21,08	69,20	7,66	1,11	100,00
SU 8	0,00	0,00	0,01	96,38	3,14	0,46	0,00	0,00	100,00	2,96	13,80	2,13	32,06	46,90	0,59	0,05	1,51	100,00	0,00	0,00	0,15	0,15	2,70	95,36	1,57	0,07	100,00
SU 10	0,00	0,01	0,01	98,43	1,19	0,36	0,00	0,00	100,00	0,02	0,37	0,13	29,29	49,93	5,09	0,59	14,58	100,00	0,00	0,00	0,00	0,07	4,93	86,71	7,93	0,36	100,00
SU 14	0,01	0,00	0,00	88,35	10,70	0,93	0,00	0,00	100,00	5,70	22,87	3,47	23,58	41,46	0,82	0,09	2,01	100,00	0,00	0,07	0,21	0,14	3,84	93,79	1,74	0,21	100,00
SU 17	0,00	0,00	0,01	78,67	20,64	0,67	0,01	0,00	100,00	2,72	15,04	2,96	35,95	32,61	2,62	0,41	7,69	100,00	0,00	0,00	0,28	0,28	8,37	84,88	6,05	0,14	100,00
SU 18	0,02	0,01	0,01	95,52	4,33	0,09	0,02	0,00	100,00	2,33	9,97	1,85	55,23	24,17	1,60	0,30	4,55	100,00	0,00	0,00	1,72	0,76	5,23	88,34	3,70	0,25	100,00
SU 19	0,01	0,06	0,06	99,18	0,54	0,16	0,00	0,00	100,00	2,93	3,84	0,88	61,77	29,41	0,31	0,05	0,82	100,00	0,00	0,14	3,26	1,02	3,80	90,56	1,09	0,14	100,00
SU 4	0,00	0,00	0,03	8,22	84,98	6,74	0,04	0,00	100,00	0,00	0,46	0,48	0,15	13,55	84,75	0,58	0,04	100,00	0,00	0,00	0,25	0,19	1,53	96,30	1,66	0,06	100,00
SU 6-2	0,00	0,00	0,02	87,72	11,76	0,49	0,00	0,00	100,00	0,20	0,39	0,07	36,87	60,65	0,53	0,04	1,26	100,00	0,00	0,00	0,00	0,19	1,93	96,78	0,97	0,13	100,00
SU 8-2	0,00	0,00	0,01	96,38	3,14	0,46	0,00	0,00	100,00	0,00	0,00	0,00	0,14	63,13	36,35	0,36	0,02	100,00	0,00	0,00	0,07	0,07	2,93	96,22	0,65	0,07	100,00
SU 10-2	0,00	0,01	0,01	98,43	1,19	0,36	0,00	0,00	100,00	0,25	0,12	0,27	0,10	67,49	31,24	0,50	0,02	100,00	0,00	0,00	0,00	0,26	2,58	96,10	0,86	0,20	100,00
SU 11-1	0,00	0,02	0,01	82,82	16,51	0,64	0,00	0,00	100,00	0,05	0,14	0,24	0,07	28,73	70,40	0,34	0,02	100,00	0,00	0,00	0,18	0,12	2,55	96,38	0,71	0,06	100,00
SU 13-1	0,00	0,01	0,02	73,09	26,38	0,50	0,00	0,00	100,00	0,05	0,09	0,09	0,05	23,42	76,06	0,23	0,02	100,00	0,00	0,00	0,00	0,12	2,04	97,27	0,50	0,06	100,00
SU 14-2	0,01	0,00	0,00	88,35	10,70	0,93	0,00	0,00	100,00	0,08	0,06	0,21	0,04	40,39	58,69	0,52	0,02	100,00	0,00	0,00	0,00	0,18	2,12	96,41	1,18	0,12	100,00
SU 16	0,47	0,07	0,04	90,00	8,84	0,58	0,01	0,00	100,00	0,69	0,09	1,23	0,34	37,08	60,01	0,50	0,05	100,00	0,00	0,00	0,55	0,43	7,25	90,11	1,54	0,12	100,00
SU 17-2	0,00	0,00	0,01	78,67	20,64	0,67	0,01	0,00	100,00	0,00	0,07	0,05	0,18	54,87	44,29	0,52	0,02	100,00	0,00	0,00	0,00	0,13	2,79	95,69	1,40	0,00	100,00
SU 18-2	0,02	0,01	0,01	95,52	4,33	0,09	0,02	0,00	100,00	0,00	0,05	0,12	52,02	46,40	0,40	0,02	1,00	100,00	0,00	0,00	0,00	0,13	2,94	96,43	0,44	0,06	100,00
SU 19-2	0,01	0,06	0,06	99,18	0,54	0,16	0,00	0,00	100,00	3,54	1,59	1,16	0,21	61,45	31,75	0,28	0,03	100,00	0,00	0,27	0,20	0,27	4,13	93,60	1,47	0,07	100,00
SU 20-1	0,00	0,04	0,05	93,86	5,40	0,64	0,00	0,00	100,00	0,05	0,76	1,49	0,24	38,83	57,79	0,69	0,15	100,00	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
SU 20-2	0,00	0,04	0,05	93,86	5,40	0,64	0,00	0,00	100,00	3,41	1,19	1,70	0,23	38,68	54,15	0,56	0,07	100,00	0,00	0,00	0,07	0,07	2,83	96,23	0,74	0,07	100,00
SU 21-1	0,00	0,01	0,05	92,19	7,34	0,40	0,01	0,00	100,00	0,00	0,05	0,10	0,24	40,71	58,43	0,46	0,02	100,00	0,00	0,00	0,11	0,11	5,07	93,60	1,07	0,05	100,00
SU 22-2	0,07	0,02	0,29	97,56	1,68	0,38	0,01	0,00	100,00	0,96	2,24	2,32	0,29	49,23	44,52	0,35	0,08	100,00	0,00	0,00	0,21	0,36	2,36	95,93	0,93	0,21	100,00
SU 22-1	0,07	0,02	0,29	97,56	1,68	0,38	0,01	0,00	100,00	0,00	1,32	1,92	0,26	39,12	56,65	0,71	0,03	100,00	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
SU 23-1	0,09	0,06	0,07	75,90	23,08	0,77	0,01	0,02	100,00	0,00	0,14	0,35	0,07	36,67	62,27	0,46	0,05	100,00	0,00	0,00	0,06	0,13	2,40	95,70	1,33	0,38	100,00
SU 24-1	0,00	0,00	0,04	94,36	5,12	0,48	0,00	0,00	100,00	1,19	1,29	1,24	0,18	39,01	56,64	0,43	0,03	100,00	0,00	0,00	0,00	0,07	2,04	97,19	0,56	0,14	100,00
SU 25-1	0,00	0,01	0,02	68,77	30,27	0,92	0,01	0,00	100,00	0,00	0,00	0,13	0,04	32,14	67,04	0,62	0,02	100,00	0,00	0,00	0,12	0,12	2,54	96,22	0,95	0,06	100,00
SU 27-1	0,00	0,02	0,02	1,41	97,31	1,21	0,03	0,00	100,00	0,00	0,27	0,53	0,14	24,67	73,79	0,58	0,02	100,00	0,00	0,00	0,19	0,06	1,69	97,34	0,65	0,06	100,00
SU 28	0,00	0,00	0,36	97,74	1,30	0,61	0,00	0,00	100,00	0,24	1,26	1,12	0,15	44,79	52,26	0,18	0,00	100,00	0,00	0,00	0,00	0,14	2,58	96,70	0,50	0,07	100,00
SU 29	0,00	0,00	0,16	98,61	1,20	0,03	0,00	0,00	100,00	2,67	2,61	2,07	0,35	34,32	57,38	0,54	0,05	100,00	0,00	0,00	0,26	0,20	2,44	96,25	0,66	0,20	100,00
SU 30	0,02	0,01	0,29	98,13	1,45	0,10	0,01	0,00	100,00	1,67	2,63	2,47	0,44	29,67	62,76	0,33	0,03	100,00	0,00	0,00	0,35	0,21	2,10	96,29	0,84	0,21	100,00
SU 31	0,00	0,00	0,21	98,29	1,45	0,05	0,01	0,00	100,00	1,65	2,24	2,74	0,53	30,21	62,23	0,35	0,05	100,00	0,00	0,00	0,13	0,66	2,70	95,58	0,79	0,13	100,00

Proben Nr.	m _{CP}	MEV	Haltezeit	Т	Ausbeute		Fülldichte	Rütteldichte	d _m	ΔV_{rel}	Sintergrad	Bruchanteil	
					β ^{reucht}	β ^{trocken}	α					ω _S	ω _B
(Koks)	[kg]	[kg _{H2SO4} /kg _{CP}]	min	°C	%	%	%	g/cm³	g/cm³	mm	in %	%	%
SUV 6	15	1,2	20	767	42,97	47,90	85,07	0,633	0,698	0,546	40,79	3,21	9,32
SUV 8	15	1,4	20	752	41,83	54,43	91,75	0,725	0,779	0,565	37,42	2,96	1,56
SUV 10	15	1,6	20	755	38,95	58,90	91,01	0,778	0,829	0,429	72,90	0,02	15,17
SUV 14	15	1,4	40	750	44,73	51,54	88,26	0,694	0,755	0,613	16,61	5,70	2,10
SU 17	15	1,4	10	760	39,12	56,10	86,84	0,667	0,732	0,552	35,91	2,72	8,10
SUV 18	15	1,4	5	755	41,60	59,69	99,85	0,670	0,745	0,558	39,50	2,33	4,84
SUV 19	15	1,8	20	760	42,47	55,68	92,86	0,792	0,824	0,554	42,17	2,93	0,86
SUV 4	15	1	20	752	48,05	44,48	80,73	0,784	0,825	0,374	69,14	0,00	0,62
SUV 6-2	15	1,2	20	740	44,83	49,25	88,76	0,767	0,801	0,490	57,06	0,20	1,30
SUV 8-2	15	1,4	20	745	45,90	51,80	100,68	0,763	0,805	0,416	75,05	0,00	0,38
SUV 10-2	15	1,6	20	738	40,06	50,99	93,62	0,793	0,826	0,423	74,05	0,25	0,52
SUV 11-1	15	1,4	20	775	41,41	52,28	87,93	0,764	0,805	0,386	78,58	0,05	0,36
SUV 13-1	15	1,4	30	775	43,75	42,78	88,96	0,767	0,814	0,380	78,42	0,05	0,25
SUV 14-2	15	1,4	40	760	46,28	47,65	91,32	0,782	0,822	0,396	77,48	0,08	0,54
SUV 16	25,5	1,4	20	750	43,74	51,75	95,21	0,775	0,826	0,401	77,12	0,69	0,55
SUV 17-2	15	1,4	10	750	43,78	59,91	97,18	0,751	0,792	0,409	73,96	0,00	0,55
SUV 18-2	15	1,4	5	750	42,23	59,46	101,34	0,755	0,780	0,506	54,80	0,00	1,02
SUV 19-2	15	1,8	20	745	38,61	60,46	84,43	0,783	0,808	0,450	68,94	3,54	0,31
SUV 20-1	15	1,6	20	750	43,39	50,74	101,10	0,794	0,830	0,403	77,05	0,05	0,83
SUV 20-2	15	1,6	20	760	42,54	52,45	99,12	0,772	0,806	0,427	72,54	3,41	0,63
SUV 21-1	15	1,4	10	755	41,55	53,81	92,79	0,759	0,792	0,396	78,03	0,00	0,48
SUV 22-2	15	2	20	755	37,09	66,71	94,71	0,767	0,801	0,430	72,77	0,96	0,43
SUV 22-1	15	2	20	750	34,89	63,06	89,09	0,790	0,813	0,407	76,80	0,00	0,74
SUV 23-1	15	1,4	20	750	42,84	53,45	92,95	0,751	0,789	0,393	76,56	0,00	0,51
SUV 24-1	15	1,8	20	750	38,91	55,83	91,19	0,776	0,801	0,413	75,37	1,19	0,46
SUV 25-1	25,5	1,4	40	750	45,24	40,34	90,15	0,769	0,801	0,387	76,61	0,00	0,64
SUV 27-1	15	1,4	20	750	56,87	44,31	93,56	0,781	0,832	0,383	66,24	0,00	0,60
SUV 28	15	2,2	20	750	33,99	59,26	89,96	0,752	0,794	0,411	76,08	0,24	0,18
SUV 29-1	15	2	20	760	36,49	57,48	92,13	0,763	0,802	0,428	73,19	2,67	0,60
SUV 30-1	15	2	20	770	36,91	49,73	95,78	0,780	0,817	0,419	74,78	1,67	0,36
SUV 31-1	15	2	20	772	38,25	45,16	98,54	0,780	0,817	0,419	74,89	1,65	0,40

Tabelle A8-1: Kokseigenschaften I (Versuche SUV 6 – SUV 19 mit 20 K/min pyrolysiert)

Proben Nr.	m _{CP}	MEV	Haltezeit	Т	$\rho_{\text{ Rein}}$	ρ_{Roh}	ε _P	PV _{gesamt}	PV _{mikro}	PV _{mikro}	PV _{meso}	PV_{meso}	PV _{makro}	PV _{makro}
(Koks)	[kg]	[kg _{H2SO4} /kg _{CP}]	min	°C	g/cm³	g/cm³	%	mm³/g	mm³/g	%	mm³/g	%	mm³/g	%
SUV 6	15	1,2	20	767	1,719	1,218	29,19	239,76	193,10	80,54	30,18	12,59	16,49	6,88
SUV 8	15	1,4	20	752	1,819	1,324	27,19	205,38	162,86	79,29	18,59	9,05	23,95	11,66
SUV 10	15	1,6	20	755	1,858	1,338	28,00	209,36	175,08	83,63	22,99	10,98	11,27	5,38
SUV 14	15	1,4	40	750	1,845	1,340	27,36	204,10	161,97	79,37	9,91	4,86	32,20	15,78
SU 17	15	1,4	10	760	1,889	1,222	35,33	289,20	232,48	80,38	23,03	7,96	33,71	11,65
SUV 18	15	1,4	5	755	1,657	1,248	24,68	197,70	140,38	71,01	30,62	15,49	26,70	13,51
SUV 19	15	1,8	20	760	1,746	1,433	17,94	125,18	110,23	88,04	12,95	10,34	2,02	1,61
SUV 4	15	1	20	752	1,630	1,324	18,75	141,62	125,28	88,46	14,03	9,91	2,31	1,63
SUV 6-2	15	1,2	20	740	1,596	1,313	17,73	135,09	116,60	86,31	18,11	13,40	0,39	0,29
SUV 8-2	15	1,4	20	745	1,600	1,313	17,98	136,98	121,95	89,03	14,39	10,51	0,64	0,47
SUV 10-2	15	1,6	20	738	1,606	1,350	15,93	118,00	103,24	87,49	10,09	8,55	4,67	3,96
SUV 11-1	15	1,4	20	775	1,629	1,334	18,11	135,77	114,71	84,49	17,62	12,98	3,44	2,53
SUV 13-1	15	1,4	30	775	1,668	1,370	17,91	130,78	121,37	92,80	8,23	6,29	1,18	0,90
SUV 14-2	15	1,4	40	760	1,637	1,350	17,54	129,91	119,06	91,65	9,76	7,51	1,09	0,84
SUV 16	25,5	1,4	20	750	1,678	1,371	18,28	133,31	113,82	85,38	19,15	14,37	0,34	0,26
SUV 17-2	15	1,4	10	750	1,607	1,290	19,76	153,20	136,50	89,09	15,36	10,03	1,36	0,89
SUV 18-2	15	1,4	5	750	1,652	1,330	19,50	146,65	131,93	89,95	9,80	6,68	4,94	3,37
SUV 19-2	15	1,8	20	745	1,688	1,378	18,33	132,99	110,51	82,84	22,55	16,90	0,35	0,27
SUV 20-1	15	1,6	20	750	1,762	1,404	20,28	144,43	124,13	85,95	19,95	13,81	0,35	0,24
SUV 20-2	15	1,6	20	760	1,662	1,369	17,63	128,81	113,55	88,15	9,06	7,03	6,20	4,81
SUV 21-1	15	1,4	10	755	1,628	1,393	14,42	103,51	86,55	83,61	16,57	16,01	0,39	0,38
SUV 22-2	15	2	20	755	1,676	1,364	18,62	136,48	118,95	87,16	17,04	12,49	0,49	0,36
SUV 22-1	15	2	20	750	1,758	1,368	22,16	161,99	150,72	93,04	10,03	6,19	1,24	0,77
SUV 23-1	15	1,4	20	750	1,633	1,322	19,02	143,83	126,68	88,08	15,04	10,46	2,11	1,47
SUV 24-1	15	1,8	20	750	1,636	1,348	17,64	130,91	116,03	88,63	14,59	11,15	0,29	0,22
SUV 25-1	25,5	1,4	40	750	1,619	1,302	19,53	149,96	133,01	88,70	16,72	11,15	0,23	0,15
SUV 27-1	15	1,4	20	750	1,614	1,301	19,41	149,24	134,50	90,12	14,37	9,63	0,37	0,25
SUV 28	15	2,2	20	750	1,648	1,323	19,70	148,89	130,10	87,38	16,72	11,23	2,07	1,39
SUV 29-1	15	2	20	760	1,671	1,352	19,11	141,40	124,76	88,23	13,47	9,53	3,17	2,24
SUV 30-1	15	2	20	770	1,703	1,346	20,98	155,92	138,86	89,06	15,18	9,74	1,88	1,21
SUV 31-1	15	2	20	772	1,713	1,365	20,33	149,01	128,98	86,56	17,15	11,51	2,88	1,93

Tabelle A8-2: Kokseigenschaften II (Versuche SUV 6 – SUV 19 mit 20 K/min pyrolysiert)

Anhang

Proben Nr.	m _{CP}	MEV	Haltezeit	Т		Elem	entaran	alyse		S-Abspaltung	Atomverhältnisse			se
					С	Н	0	Ν	S	(1- $\Phi_{S,Koks}$)	C/H	S/C	C/O	O/S
(Koks)	[kg]	[kg _{H2SO4} /kg _{CP}]	min	°C	Ma%	Ma%	Ma%	Ma%	Ma%	%				
SUV 6	15	1,2	20	767	86,99	1,09	7,81	0,35	3,76	90,11	6,70	0,02	14,85	4,16
SUV 8	15	1,4	20	752	88,85	1,10	5,14	0,17	4,74	88,27	6,78	0,02	23,04	2,17
SUV 10	15	1,6	20	755	n.b.	n.b.	n.b.	n.b.	5,16	88,70	n.b.	n.b.	n.b.	n.b.
SUV 14	15	1,4	40	750	87,64	0,97	6,62	0,40	4,37	88,69	7,61	0,02	17,64	3,03
SU 17	15	1,4	10	760	87,04	0,97	7,88	0,16	3,95	91,06	7,56	0,02	14,73	4,00
SUV 18	15	1,4	5	755	88,13	1,77	4,56	0,40	5,13	87,92	4,18	0,02	25,78	1,78
SUV 19	15	1,8	20	760	83,58	1,55	7,35	0,47	7,04	84,13	4,52	0,03	15,17	2,09
SUV 4	15	1	20	752	90,44	1,89	4,73	0,17	2,78	90,91	4,02	0,01	25,47	3,41
SUV 6-2	15	1,2	20	740	n.b.	n.b.	n.b.	n.b.	3,82	89,52	n.b.	0,02	n.b.	n.b.
SUV 8-2	15	1,4	20	745	n.b.	n.b.	n.b.	n.b.	4,72	87,17	n.b.	0,02	n.b.	n.b.
SUV 10-2	15	1,6	20	738	n.b.	n.b.	n.b.	n.b.	5,69	87,18	n.b.	0,02	n.b.	n.b.
SUV 11-1	15	1,4	20	775	90,21	1,67	3,59	0,43	4,11	90,37	4,55	0,02	33,55	1,75
SUV 13-1	15	1,4	30	775	n.b.	n.b.	n.b.	n.b.	4,17	89,20	n.b.	n.b.	n.b.	n.b.
SUV 14-2	15	1,4	40	760	n.b.	n.b.	n.b.	n.b.	4,31	88,45	n.b.	0,02	n.b.	n.b.
SUV 16	25,5	1,4	20	750	n.b.	n.b.	n.b.	n.b.	3,79	90,30	n.b.	n.b.	n.b.	n.b.
SUV 17-2	15	1,4	10	750	n.b.	n.b.	n.b.	n.b.	4,30	89,09	n.b.	0,02	n.b.	n.b.
SUV 18-2	15	1,4	5	750	n.b.	n.b.	n.b.	n.b.	4,54	89,18	n.b.	0,02	n.b.	n.b.
SUV 19-2	15	1,8	20	745	n.b.	n.b.	n.b.	n.b.	5,99	87,73	n.b.	0,03	n.b.	n.b.
SUV 20-1	15	1,6	20	750	87,50	1,37	4,73	0,42	5,99	85,99	5,38	0,03	24,64	1,58
SUV 20-2	15	1,6	20	760	n.b.	n.b.	n.b.	n.b.	5,90	86,02	n.b.	0,03	n.b.	n.b.
SUV 21-1	15	1,4	10	755	n.b.	n.b.	n.b.	n.b.	4,60	90,39	n.b.	n.b.	n.b.	n.b.
SUV 22-2	15	2	20	755	n.b.	n.b.	n.b.	n.b.	6,31	87,10	n.b.	0,03	n.b.	n.b.
SUV 22-1	15	2	20	750	87,93	1,35	4,57	0,59	5,57	89,61	5,48	0,02	25,66	1,64
SUV 23-1	15	1,4	20	750	n.b.	n.b.	n.b.	n.b.	4,85	87,95	n.b.	n.b.	n.b.	n.b.
SUV 24-1	15	1,8	20	750	n.b.	n.b.	n.b.	n.b.	5,78	84,90	n.b.	n.b.	n.b.	n.b.
SUV 25-1	25,5	1,4	40	750	n.b.	n.b.	n.b.	n.b.	3,96	90,98	n.b.	n.b.	n.b.	n.b.
SUV 27-1	15	1,4	20	750	90,54	1,85	3,47	0,39	3,74	89,14	4,11	0,02	34,79	1,85
SUV 28	15	2,2	20	750	n.b.	n.b.	n.b.	n.b.	5,86	90,10	n.b.	n.b.	n.b.	n.b.
SUV 29-1	15	2	20	760	n.b.	n.b.	n.b.	n.b.	5,65	89,36	n.b.	n.b.	n.b.	n.b.
SUV 30-1	15	2	20	770	86,49	1,62	5,32	0,50	6,07	82,21	4,50	0,03	21,69	1,75
SUV 31-1	15	2	20	772	85,10	1,62	6,90	0,48	5,91	80,79	4,42	0,03	16,45	2,34

Tabelle A8-3: Kokseigenschaften III (Versuche SUV 6 – SUV 19 mit 20 K/min pyrolysiert)

n.b.: nicht bestimmt
Proben Nr.	m_{CP}	MEV	Haltezeit	Abbrand	Abbrandge-	Fülldichte	Rütteldichte	d _m	ΔV_{rel}	Sintergrad	Bruchanteil
					schwindigkeit					ω _S	ω _B
(Aktivat)	[kg]	[kg _{H2SO4} /kg _{CP}]	min	%	%/h	g/cm³	g/cm³	mm	in %	%	%
SUA 6	15	1,2	20	54,96	15,70	0,364	0,370	0,368	69,24	0,00	8,60
SUA 8	15	1,4	20	55,72	14,86	0,407	0,421	0,359	74,32	0,00	1,62
SUA 10	15	1,6	20	53,80	15,37	0,434	0,450	0,353	44,11	0,00	8,00
SUA 14	15	1,4	40	52,82	15,09	0,418	0,441	0,360	79,67	0,00	1,91
SUA 17	15	1,4	10	53,59	15,31	0,393	0,407	0,360	72,12	0,00	6,04
SU A 18	15	1,4	5	48,27	13,79	0,457	0,470	0,366	71,87	0,00	3,85
SUA 19	15	1,8	20	51,79	14,80	0,497	0,502	0,374	69,13	0,00	1,21
SUA 4	15	1	20	48,04	13,73	0,494	0,515	0,358	11,88	0,00	1,71
SUA 6-2	15	1,2	20	48,80	13,94	0,492	0,512	0,358	60,98	0,00	1,07
SUA 8-2	15	1,4	20	49,56	14,16	0,487	0,505	0,360	35,21	0,00	0,71
SUA 10-2	15	1,6	20	50,77	14,50	0,493	0,512	0,359	38,76	0,00	1,05
SUA 11-1	15	1,4	20	44,61	12,75	0,527	0,553	0,360	18,82	0,00	0,76
SUA 13-1	15	1,4	30	47,12	13,46	0,511	0,526	0,359	15,74	0,00	0,55
SUA 14-2	15	1,4	40	44,19	12,62	0,551	0,565	0,358	25,89	0,00	1,28
SUA 16	25,5	1,4	20	36,13	10,32	0,616	0,626	0,365	24,57	0,00	1,64
SUA 17-2	15	1,4	10	48,35	13,81	0,494	0,514	0,359	32,19	0,00	1,38
SUA 18-2	15	1,4	5	47,74	13,64	0,507	0,518	0,360	64,12	0,00	0,48
SUA 19-2	15	1,8	20	50,98	14,57	0,500	0,516	0,362	47,75	0,00	1,53
SUA 20-2	15	1,6	20	50,13	14,32	0,505	0,527	0,360	40,48	0,00	0,79
SUA 21-1	15	1,4	10	38,03	10,87	0,584	0,604	0,362	23,72	0,00	1,11
SUA 22-2	15	2	20	53,57	15,31	0,467	0,487	0,360	41,36	0,00	1,13
SUA 23-1	15	1,4	20	48,07	13,73	0,498	0,522	0,358	24,45	0,00	1,70
SUA 24-1	15	1,8	20	53,13	15,18	0,481	0,497	0,359	34,32	0,00	0,70
SUA 25-1	25,5	1,4	40	44,42	12,69	0,532	0,556	0,359	19,97	0,00	0,99
SUA 27-1	15	1,4	20	49,29	14,08	0,495	0,514	0,359	17,83	0,00	0,70
SUA 28-1	15	2,2	20	54,56	15,59	0,466	0,486	0,359	33,29	0,00	0,57
SUA 29-1	15	2	20	49,69	14,20	0,498	0,521	0,360	40,52	0,00	0,84
SUA 30-1	15	2	20	51,16	14,62	0,485	0,511	0,360	36,85	0,00	1,04
SUA 31-1	15	2	20	48,94	13,98	0,501	0,521	0,361	36,03	0,00	0,92

Tabelle A8-4: Aktivateigenschaften I (Versuche SUA 6 – SUA 19 mit 20 K/min pyrolysiert)

Proben Nr.	m _{CP}	MEV	Haltezeit	$ ho_{rein}$	ho _{roh}	ε _P	BET-Oberfl.	PV _{gesamt}	PV _{mikro}	PV_{mikro}	PV _{meso}	PV _{meso}	PV _{makro}	PV _{makro}
(Aktivat)	[kg]	[kg _{H2SO4} /kg _{CP}]	min	g/cm³	g/cm³	%	m²/g	mm³/g	mm³/g	%	mm³/g	%	mm³/g	%
SUA 6	15	1,2	20	2,143	0,662	69,12	1104	1044,21	575,01	55,07	367,49	35,19	101,69	9,74
SUA 8	15	1,4	20	2,113	0,724	65,74	1145	907,98	492,71	54,27	321,75	35,44	93,44	10,29
SUA 10	15	1,6	20	2,221	0,738	66,77	1108	904,58	545,36	60,29	307,09	33,95	52,08	5,76
SUA 14	15	1,4	40	2,218	0,756	65,93	1096	872,50	489,87	56,15	296,09	33,94	86,45	9,91
SUA 17	15	1,4	10	2,119	0,689	67,50	1133	980,30	548,26	55,93	319,44	32,58	112,64	11,49
SU A 18	15	1,4	5	2,165	0,787	63,64	1108	808,50	525,12	64,96	224,09	27,72	59,21	7,32
SUA 19	15	1,8	20	2,105	0,841	60,06	1135	714,38	446,59	62,52	235,08	32,91	32,66	4,57
SUA 4	15	1	20	2,070	0,847	59,09	863	697,78	356,08	51,03	265,23	38,01	76,47	10,96
SUA 6-2	15	1,2	20	2,093	0,841	59,80	915	710,67	392,07	55,17	283,99	39,96	34,60	4,87
SUA 8-2	15	1,4	20	2,166	0,836	61,43	1005	735,27	471,42	64,12	231,64	31,51	32,15	4,37
SUA 10-2	15	1,6	20	2,153	0,863	59,91	1060	694,03	541,42	65,04	215,45	31,04	27,15	3,91
SUA 11-1	15	1,4	20	2,032	0,857	57,82	1017	674,54	437,23	64,82	203,62	30,19	33,69	4,99
SUA 13-1	15	1,4	30	2,048	0,880	57,05	987	648,65	376,83	58,09	231,34	35,67	40,48	6,24
SUA 14-2	15	1,4	40	2,073	0,852	58,90	978	691,32	425,43	61,55	240,56	34,81	25,17	3,64
SUA 16	25,5	1,4	20	2,034	0,912	55,17	922	605,09	415,68	68,70	164,25	27,14	25,16	4,16
SUA 17-2	15	1,4	10	2,183	0,851	61,04	991	717,67	461,89	64,35	221,08	30,80	34,77	4,84
SUA 18-2	15	1,4	5	2,093	0,876	58,14	1023	663,83	429,21	64,65	206,10	31,05	28,54	4,30
SUA 19-2	15	1,8	20	2,168	0,848	60,88	1084	717,62	486,60	67,81	201,21	28,04	29,83	4,16
SUA 20-2	15	1,6	20	2,079	0,868	58,25	1056	670,99	403,28	60,10	233,38	34,78	34,33	5,12
SUA 21-1	15	1,4	10	2,042	0,990	51,52	827	520,35	361,73	69,52	143,41	27,56	15,21	2,92
SUA 22-2	15	2	20	2,169	0,827	61,89	1132	748,59	467,92	62,51	250,49	33,46	30,18	4,03
SUA 23-1	15	1,4	20	2,128	0,892	58,09	996	651,46	397,98	61,09	230,01	35,31	23,47	3,60
SUA 24-1	15	1,8	20	2,091	0,846	59,56	1098	704,28	424,38	60,26	251,40	35,70	28,50	4,05
SUA 25-1	25,5	1,4	40	2,110	0,935	55,71	976	596,16	422,60	70,89	152,57	25,59	20,99	3,52
SUA 27-1	15	1,4	20	2,128	0,848	60,15	938	709,51	396,98	55,95	255,82	36,06	56,71	7,99
SUA 28-1	15	2,2	20	2,170	0,814	62,49	1145	767,69	458,37	59,71	281,86	36,72	27,46	3,58
SUA 29-1	15	2	20	2,111	0,882	58,23	1075	660,55	426,45	64,56	209,65	31,74	24,45	3,70
SUA 30-1	15	2	20	2,230	0,873	60,87	1106	697,55	436,90	62,63	237,46	34,04	23,19	3,32
SUA 31-1	15	2	20	2,092	0,867	58,58	1075	676,01	464,78	68,75	186,44	27,58	24,79	3,67

Tabelle A8-5: Aktivateigenschaften II (Versuche SUA 6 – SUA 19 mit 20 K/min pyrolysiert)

Proben Nr.	\mathbf{m}_{CP}	MEV	Haltezeit	Elementaranalyse				S-Abspaltung	Atomverhältnisse			e	
				С	Н	0	Ν	S	(1- $\Phi_{S,Aktivat}$)	H/C	S/C	O/C	O/S
(Aktivat)	[kg]	[kg _{H2SO4} /kg _{CP}]	min	Ma%	Ma%	Ma%	Ma%	Ma%	%				
SUA 6	15	1,2	20	91,22	0,73	5,17	0,22	2,67	68,01	0,096	0,016	0,042	3,870
SUA 8	15	1,4	20	89,99	0,65	6,28	0,15	2,93	72,62	0,086	0,020	0,052	4,288
SUA 10	15	1,6	20	n.b.	n.b.	n.b.	n.b.	3,22	71,13	n.b.	n.b.	n.b.	n.b.
SUA 14	15	1,4	40	89,52	0,63	6,88	0,13	2,84	69,37	0,085	0,019	0,058	4,849
SUA 17	15	1,4	10	91,89	0,66	4,17	0,10	3,18	62,60	0,087	0,017	0,034	2,622
SU A 18	15	1,4	5	93,16	0,68	2,63	0,16	3,38	65,94	0,087	0,022	0,021	1,554
SUA 19	15	1,8	20	90,73	0,66	5,17	0,12	3,31	77,33	0,088	0,032	0,043	3,125
SUA 4	15	1	20	90,93	0,83	5,74	0,15	2,36	55,82	0,109	0,012	0,047	4,864
SUA 6-2	15	1,2	20	n.b.	n.b.	n.b.	n.b.	2,71	63,60	n.b.	n.b.	n.b.	n.b.
SUA 8-2	15	1,4	20	n.b.	n.b.	n.b.	n.b.	3,09	67,01	n.b.	n.b.	n.b.	n.b.
SUA 10-2	15	1,6	20	n.b.	n.b.	n.b.	n.b.	3,33	71,19	n.b.	n.b.	n.b.	n.b.
SUA 11-1	15	1,4	20	91,28	0,68	4,94	0,11	2,99	59,74	0,090	0,017	0,041	3,308
SUA 13-1	15	1,4	30	n.b.	n.b.	n.b.	n.b.	2,93	62,89	n.b.	n.b.	n.b.	n.b.
SUA 14-2	15	1,4	40	n.b.	n.b.	n.b.	n.b.	2,77	64,09	n.b.	n.b.	n.b.	n.b.
SUA 16	25,5	1,4	20	n.b.	n.b.	n.b.	n.b.	2,72	54,27	n.b.	n.b.	n.b.	n.b.
SUA 17-2	15	1,4	10	n.b.	n.b.	n.b.	n.b.	2,85	65,78	n.b.	n.b.	n.b.	n.b.
SUA 18-2	15	1,4	5	n.b.	n.b.	n.b.	n.b.	2,99	65,58	n.b.	n.b.	n.b.	n.b.
SUA 19-2	15	1,8	20	n.b.	n.b.	n.b.	n.b.	3,42	72,01	n.b.	n.b.	n.b.	n.b.
SUA 20-2	15	1,6	20	93,11	0,65	2,92	0,08	3,24	72,66	0,084	0,025	0,024	1,807
SUA 21-1	15	1,4	10	n.b.	n.b.	n.b.	n.b.	3,79	48,95	n.b.	n.b.	n.b.	n.b.
SUA 22-2	15	2	20	n.b.	n.b.	n.b.	n.b.	3,24	64,40	n.b.	n.b.	n.b.	n.b.
SUA 23-1	15	1,4	20	n.b.	n.b.	n.b.	n.b.	3,17	66,01	n.b.	n.b.	n.b.	n.b.
SUA 24-1	15	1,8	20	n.b.	n.b.	n.b.	n.b.	3,19	74,10	n.b.	n.b.	n.b.	n.b.
SUA 25-1	25,5	1,4	40	n.b.	n.b.	n.b.	n.b.	2,91	59,17	n.b.	n.b.	n.b.	n.b.
SUA 27-1	15	1,4	20	92,94	0,59	3,46	0,21	2,79	62,15	0,077	0,015	0,028	2,476
SUA 28-1	15	2,2	20	n.b.	n.b.	n.b.	n.b.	3,22	75,01	n.b.	n.b.	n.b.	n.b.
SUA 29-1	15	2	20	n.b.	n.b.	n.b.	n.b.	3,39	69,82	n.b.	n.b.	n.b.	n.b.
SUA 30-1	15	2	20	88,36	0,66	7,32	0,31	3,36	72,92	0,089	0,026	0,062	4,349
SUA 31-1	15	2	20	87,39	0,60	8,56	0,09	3,36	70,93	0,082	0,026	0,073	5,089

Tabelle A8-6: Aktivateigenschaften III (Versuche SUA 6 – SUA 19 mit 20 K/min pyrolysiert)

n.b.: nicht bestimmt

TACT's mit definiertem Hohlraum

Тур 0

Bild A4-1: Schematische Darstellung der Aktivkohle des Typs 0 mit Poren

Тур I

- kleiner Hohlraum im Kern
- Poren reichen nicht bis in den Hohlraum

Bild A4-2: Schematische Darstellung des Hohlkugeltyps I

Bild A4-3: Hohlkugeltyp I (links: REM–Aufnahme 150-fach, rechts: Stereomikroskop 32-fach)

Typ II

- mittelgroßer Hohlraum
- Poren reichen bis in den Hohlraum

Bild A4-4: Schematische Darstellung des Hohlkugeltyps II

Bild A4-5: Hohlkugeltyp II (links: REM–Aufnahme 150-fach, rechts: Stereomikroskop 32-fach)

Typ III

- großer Hohlraum
- die verbleibende Aktivkohleschale ist nahezu vollständig von Poren durchzogen

Bild A4-6: Schematische Darstellung des Hohlkugeltyps III

Bild A4-7: Hohlkugeltyp III (links: REM – Aufnahme 150-fach, rechts: Stereomikroskop 32-fach)

Bestimmung des Hohlraumvolumens durch Ausmessen

Für das Ausmessen des Hohlraumes eignen sich besonders Halbkugeln. Von ausgewählten Aktivkohlen wurden mit dem Rasterelektronenmikroskop (REM) Aufnahmen gemacht und anschließend vermessen. Die folgenden Bilder 4-9 bis 4-11 zeigen die Ergebnisse.

Maßstab:	30 = 100 µm
Hohlraum d _i :	20 = 66,6 µm
Partikel d _a :	99 = 330 µm
d _i / d _a :	0,202
Wanddicke:	131,7 µm

Bild A4-8: TACT – Muster mit geringem Hohlraum

Maßstab:	30 = 100 µm
Hohlraum d _i :	66 = 220 µm
Partikel d _a :	119 = 396,6 µm
d _i / d _a :	0,555
Wanddicke:	88,3 µm

Bild A4-9: TACT – Muster mit mittlerem Hohlraum

Maßstab:	30 = 100 µm
Hohlraum d _i :	76 = 253,3 µm
Partikel d _a :	106 = 353,3 µm
d _i / d _a :	0,717
Wanddicke:	50 µm

Bild A4-10: TACT – Muster mit großem Hohlraum

Berechnung des Hohlraumvolumens auf Basis der Rohdichten

Da REM-Aufnahmen sehr aufwendig und teuer sind, wurde eine Methode entwickelt, mit der das Hohlraumvolumen über die Hg - Porosimetrie ermittelt werden kann. Bild A4-11 zeigt den schematischen Aufbau eines Koks- bzw. Aktivatpartikels mit Hohlraum.

Diese Methode setzt voraus, dass alle zu untersuchenden Partikel intakt (rissfrei) und ohne Bruchstücke sind.

Bild A4-11: Schnitt durch Hohlkugel-TACT

Die Messung der Rohdichte erfolgt sowohl an der intakten Hohlkugel und an der Kugelschale (Kugelbruch).

Fall 1

 $\rho_{s,KS} > \rho_{s,HK}$: Es liegt ein makroporöser Hohlraum vor.

Fall2

 $\rho_{r,KS} > \rho_{r,HK}$: Es liegen geschlossene Poren vor. Wahrscheinlicher ist jedoch eine kinetische Hemmung bei der Heliumdichtemessung bedingt durch eine erschwerte Zugänglichkeit des Porensystems bei der intakten Hohlkugel im Vergleich zum Kugelbruch.

Das Hohlraumvolumen Kenngrößen und weitere folgenden werden mit den Berechnungsgleichungen ermittelt.

1. Berechnung des Hohlraumvolumens V_{HR}:

Als relatives Hohlraumvolumen wird das Verhältnis aus absolutem Hohlraumvolumen und Kugelvolumen bezeichnet.

a)
$$V_{HR} = \left(1 - \frac{\rho_{s,HK}}{\rho_{s,KS}}\right) - \rho_{s,HK} \cdot \left(\frac{1}{\rho_{r,HK}} - \frac{1}{\rho_{r,KS}}\right) [\text{mm}^{3}_{\text{HR}}/\text{mm}^{3}_{\text{Kugel}}]$$
(GI. A4.1)

$ ho_{\scriptscriptstyle s,HK}$	Rohdichte der Hohlkugel	[cm³/g]
$ ho_{\scriptscriptstyle s,KS}$	Rohdichte der Kugelschale	[cm³/g]
$ ho_{r,{\scriptscriptstyle H\!K}}$	Reindichte der Hohlkugel	[cm³/g]
ρ_{rKS}	Reindichte der Kugelschale	[cm³/g]

2. Porosität

- der Kugelschale

 $\rho_{r,KS}$

a)
$$\varepsilon_{KS} = 1 - \frac{\rho_{s,KS}}{\rho_{r,KS}}$$
 (GI. A4.2)

- der Hohlkugel

b)
$$\varepsilon_P = 1 - \frac{\rho_{s,HK}}{\rho_{r,KS}}$$
 (GI. A4.3)

c)
$$\varepsilon_P = \varepsilon_{KS} + V_{HR} \cdot (1 - \varepsilon_{KS})$$
 (GI. A4.4)

3. Dicke der Kugelschale S KS:

$$S_{KS} = 0.5 \cdot d_a \left(1 - \sqrt[3]{V_{HR}} \right)$$
 [mm] (GI. A4.5)

4. Innendurchmesser der Hohlkugel di:

$$d_i = d_a \sqrt[3]{V_{HR}}$$
 [mm] (GI. A4.6)

Berechnungsbeispiele enthält Tabelle A4-1 des Anhangs. Wie deutlich zu erkennen ist, wird mit dieser Methode ein Hohlraum für die Proben mit einem MEV ≤ 1,4 detektiert. Dieser Hohlraum ist jedoch viel kleiner als der mit der optischen Methode ermittelte. Tendenzielle Aussagen zur

Abhängigkeit vom MEV können nicht bestätigt werden. Durch Mehrfachmessungen wurden die mittleren Abweichungen der Messmethoden bestimmt. Setzt man diese in die Berechnungsgleichungen ein, kann für die Probe A 390 (definitiv kein Hohlraum) theoretisch ein Hohlraum von 2,1 % ermittelt werden.

Mit dieser Methode können Hohlräume detektiert werden, jedoch kann ihre exakte Größe nicht genau bestimmt werden.

		>0,09	9 (KS)	0,3 - 0	,4 (HK)	1. a)	b)		2.a)	b)	C)		3.	4.		
	MEV	ρ_{s}	ρ_r	ρ_{s}	ρ_r	V _{HR}	V _{HR}	V_{HR}	$\epsilon_{\rm KS}$	ε _P	ε _P	d_a	S _{кs} *	di	$d_{i\!\prime}d_a$	V_{HR}
	x:1	g/cm³	g/cm³	g/cm³	g/cm³	mm ³ /mm ³ _{Kugel}	mm³/mm³ _K		%	%	%	mm	mm	mm	%	mm³
V 316	1	1,3153	1,7068	1,2829	1,6703	0,0082	0,0246	2,5%	22,9	24,8	24,8	0,45	0,160	0,13	29,1	1,18E-03
V 316	1	1,3153	1,7068	1,2829	1,6703	0,0082	0,0246	2,5%	22,9	24,8	24,8	0,36	0,128	0,10	29,1	6,02E-04
VR 11	1	1,4444	1,7233	1,2069	1,628	0,1234	0,1644	16,4%	16,2	30,0	30,0	0,45	0,102	0,25	54,8	7,85E-03
VR 11	1	1,4444	1,7233	1,2069	1,628	0,1234	0,1644	16,4%	16,2	30,0	30,0	0,36	0,081	0,20	54,8	4,02E-03
A 344	1,15	1,0434	2,2451	0,9625	2,106	0,0492	0,0775	7,8%	53,5	57,1	57,1	0,36	0,103	0,15	42,6	1,89E-03
A 301	1,4	1,1381	2,092	1,0332	2,0905	0,0918	0,0922	9,2%	45,6	50,6	50,6	0,36	0,099	0,16	45,2	2,25E-03
V152	2	1,3774	1,7698	1,3774	1,7698	0,0000	0,0000	0,0%	22,2	22,2	22,2	0,444	0,222	0,00	0,0	0,00E+00
A 390	2	1,0935	2,0947	1,0935	2,0947	0,0000	0,0000	0,0%	47,8	47,8	47,8	0,356	0,178	0,00	0,0	0,00E+00
A 390	2	1,1053	2,0834	1,1053	2,0834	0,0000	0,0000	0,0%	46,9	46,9	46,9	0,356	0,178	0,00	0,0	0,00E+00
A 390	2	1,1053	2,0834	1,0817	2,106	0,0269	0,0214	2,1%	46,9	48,1	48,1	0,356	0,129	0,10	27,7	5,04E-04
4			- ·	12 1 4												

Tabelle A4-1:	Beispiele zur	Berechnung	des Hohl	raumvolumens
---------------	---------------	------------	----------	--------------

1.a) für gemessene Reindichten

1.b) Annahme: Reindichte der Kugelschale = Reindichte Hohlkugel

* mit V_{HR} (1.b)) berechnet

Analysenmethoden

- Korngrößenanalyse DIN 22019
- Drahtsiebe

DIN 4188

- ♦ 1,00 mm
- ♦ 1,00 0,80 mm
- ♦ 0,80 0,63 mm
- ♦ 0,63 0,50 mm
- ♦ 0,50 0,40 mm
- ♦ 0,40 0,315 mm
- ♦ 0,315 0,20 mm
- <0,20 mm
- Mittlere Korngröße

$$d_m = \frac{\sum_{i} (x_{m,i} \cdot y_i)}{100}$$
 [mm] (GI. A 4.7)

- d_m mittlerer Korndurchmesser[mm] $x_{m,i}$ mittlerer Korndurchmesser der Kornklasse i[mm] y_i prozentualer Anteil der Kornklasse i[%]
- Sintergrad

$$\omega_{s} = \left(1 - \frac{m_{Durchgang}}{m_{gesamt}}\right) \cdot 100$$
[%] (GI. A 4.8)

 $m_{Durchgang}$ - Masse des Siebdurchganges (Korndurchmesser < 1mm) [g] m_{gesamt} - Gesamtmasse der zur Siebung eingesetzten Probe [g]

- Entstehung von Unterkorn (Bruch, Abrieb)
- bei Pyrolyse

$$\omega_{B,Koks} = \left(\frac{m_{Durchgang,Koks}}{m_{Gesamt,Koks}} - \frac{100}{\beta^{feucht}} \frac{m_{Durchgang,SP}}{m_{Gesamt,SP}}\right) \cdot 100 \quad [\%]$$
(GI. A 4.9)

 $m_{Durchgang}$ Masse des Siebdurchganges des Kokses bzw. Sulfprodukts

(Korndurchmesser < 0,315 mm) [g]

 m_{gesamt} Gesamtmasse der zur Siebung eingesetzten Probe [g]

 β^{Feucht} Koksausbeute bezogen auf feuchtes Sulfprodukt [%]

- bei Aktivierung

$$\omega_{B,Aktivat} = \left(\frac{m_{Durchgang,Aktivats}}{m_{Gesamt,Aktivats}} - \frac{100}{1 - \Lambda} \frac{m_{Durchgang,Koks}}{m_{Gesamt,Koks}}\right) \cdot 100 \quad [\%]$$
(GI. A 4.10)

m_{Durchgang} Masse des Siebdurchganges des Aktivats bzw. Kokses

- (Korndurchmesser < 0,315 mm) [g] m_{gesamt} Gesamtmasse der Siebung eingesetzten Probe [g]
- Λ
 Abbrand des Aktivats
 [%]
- Berechnung der relativen Volumenänderung

$$\Delta V_{rel,0} = \frac{d_{m,0}^3 - d_{m,1}^3}{d_{m,0}^3} \cdot 100$$
 [%] (GI. A 4.11)

 $d_{m,0}$ mittlerer Durchmesser vor Behandlung [mm] $d_{m,1}$ mittlerer Durchmesser nach Behandlung [mm]

$$\Delta V_{\it rel,0}$$
 relative Volumenänderung des behandelten Produktes [%]

• Fülldichte

$ \rho_{F\ddot{u}ll} = $	$\frac{m_{Probe}}{V_{F\ddot{u}ll}}$	[g/cm ³]	(GI. A 4.12)
$ ho_{F\"ull}$	Fülldichte	[g/cm ³]	
<i>m_{Probe}</i>	Masse der Probe	[g]	
V _{Füll}	Volumen der losen Schüttung	[cm ³]	

Rütteldichte

S

DIN 53149

$ \rho_{R\ddot{u}tt} = $	$\frac{m_{Probe}}{V_{R\ddot{u}tt}}$	[g/cm ³]	(GI. A 4.13)
$ ho_{ m {\it R}\"{\it u}tt}$	Rütteldichte	[g/cm ³]	
<i>m_{Probe}</i>	Masse der Probe	[g]	
V _{Rütt}	Volumen der verdichteten Probe	[cm ³]	

- Feuchtebestimmung DIN 51718
- Elementaranalyse auf Basis der folgenden Normen:

C,H	DIN 51721
Ν	DIN 51722

$$O = 100 - (C + H + N + S)$$
 (GI. A 4.14)

DIN 51724

(praktische Durchführung in Analysatoren)

Kondensatanalyse

0	pH –Wert	DIN 19261
0	Bestimmung der Dichte	DIN 19570
0	SO_2 – Konzentration	VDI 2462

- Bestimmung der Reindichte (Heliumdensometrie)
 - o Dichtemessgerät Accu Pyc 1330 der Firma Micromeritics
 - o DIN 51913
 - $\circ \quad \rho_{rein} \left[g/cm^3 \right]$
- Bestimmung des Porenvolumens (Hg Porosimetrie) und der Rohdichte
 - o Quecksilberporosimeter 2000 der Firma Fison Instruments
 - o DIN 66133

a) Rohdichte

V _{Probe}	$=V_D - \frac{d_K^2 \cdot \pi \cdot \Delta h}{4}$	$\frac{m_{ges} - m_D - m_{Probe}}{\rho_{Hg}}$	[cm ³]	(GI. A 4.15)	
V _{Probe}	Probenvolumen ((bei 1 bar)	[cm ³]		
V _D	Volumen des Dila	atometers	[cm ³]		
d _K	Durchmesser de	r Kapillare	[cm]		
∆h	Absenkung des H				
m _{ges}	Masse des gefüll	ten Dilatometers	[g]		
m_D	Masse des leerer	n Dilatometers	[g]		
m _{Probe}	Probemasse		[g]		
$ ho_{{\sf Hg}}$	Dichte des Quecksilbers bei Messtemperatur [g/cm ³]				

$$\rho_{Roh} = \frac{m_{Probe}}{V_{Probe}}$$
 [g/cm³] (GI. A 4.16)

b) Porenvolumen

Bei einem Maximaldruck von 2000bar, können nur Poren mit einem Radius größer 3,75 nm erfasst werden (Annahme Zylinderform). Die Porenbereiche wurden deshalb abweichend von der IUPAC-Norm (International Union of Pure and Applied Chemistry) neu festgelegt. Die Unterschiede sind in der nachfolgenden Übersicht (Tabelle A4-2) dargestellt.

Porenklassen	IUPAC – Norm	Hg – Porosimeter 2000	Porenvolumen
	Porenradius (r_P)	Porenradius (r _P)	(Bezeichnung)
Submikroporen	< 0,2nm	-	
Mikroporen	0,2 – 1,0nm	< 3,75nm	PV _{mikro}
Mesoporen	1,0 – 25nm	3,75 – 25nm	PV _{meso}
Makroporen	> 25nm	25 – 6800nm	PV _{makro}

Tabelle A4-2:	Porenbereiche	der IUPAC -	Norm und des	Quecksilber	porosimeters	2000
---------------	---------------	-------------	--------------	-------------	--------------	------

Das Quecksilberporosimeter 2000 kann das Meso- und Makroporenvolumen direkt messen. Das Mikroporenvolumen PV_{mikro} berechnet sich aus der Differenz zwischen Gesamtporenvolumen und Meso- und Makroporenvolumen, wie die Gleichung (Gl. A 4.17) zeigt.

$$PV_{mikro} = PV_{gesamt} - (PV_{meso} + PV_{makro})$$
 [mm³/g] (GI. A 4.17)

$$PV_{gesamt} = \left(\frac{1}{\rho_{roh}} - \frac{1}{\rho_{rein}}\right) \cdot 10^3$$
 [mm³/g] (GI. A 4.18)

- Bestimmung der spezifischen Oberfläche
 - o Autosorb 1 der Firma Quantachrom
 - o DIN 66131, DIN 66132

(Für die 3 P – BET – Methode wurden die Relativdrücke 0,05; 0,075 und 0,1 zugrunde gelegt.)

Bestimmung der Feuchte [Kro01]

Die Restfeuchte w_{SP} des Sulfprodukts ist der Masseanteil der im sulfonierten Copolymer (Sulfprodukt) verbliebenen Schwefelsäuremenge. Zur Bestimmung wird eine zuvor abgewogene

Menge in eine Waschflasche (Bild A4-12) gefüllt. Die Flasche wird mit der dazugehörigen Glasfritte verschlossen und mit dem Kopf nach unten an einem Stativ befestigt, so dass das eingewogene Sulfprodukt sich als ca. 2 cm hohe Schüttschicht im Kopf befindet.

Bild A4-12: Schematische Darstellung der Waschapparatur

Von unten wird Leitungswasser durch diese Schicht geleitet und oben über die Fritte wieder abgeführt. Das sulfonierte Copolymer wird als schwefelsäurefrei betrachtet, wenn das abfließende Wasser unter Zugabe von Bariumjodid keine Trübung mehr erkennen lässt. Die mindestens notwendige Waschzeit beträgt etwa 2 Stunden. Das sulfonierte, restsäurefreie Copolymer wird am Ende des Waschens abfiltriert und in einem Wägegläschen getrocknet. Bei 80 °C wird die Probe zunächst über 4 Stunden entfeuchtet. Anschließend wird unter Stickstoffatmosphäre bei 106 °C nochmals 4 Stunden getrocknet und danach das erhaltene trockene Sulfprodukt ausgewogen. Aus der Massedifferenz der in die Waschflasche eingefüllten Probenmasse und dem Probengewicht nach der Trocknung kann die Restfeuchte des Sulfprodukts bestimmt werden.

$$w_{SP} = \frac{m_{SP, feucht} - m_{SP, trocken}}{m_{SP, feucht}} \cdot 100 \ [\%]$$
(GI. A4-19)

mit

 $m_{SP,feucht^-}$ Einwaage des schwefelsäurefeuchten Sulfprodukts [kg] $m_{SP,trocken^-}$ Masse des gewaschenen, trockenen Sulfprodukts [kg]

Bild A5-1: Wärmeübergang zwischen einer Heizfläche und einer daraufliegenden ruhenden bzw. mechanisch durchmischten Schüttung [VDI94b]

Bild A5-2: Nußelt-Zahl für 3 Randbedingungen bei der Wärmeübertragung im Ringspalt in Abhängigkeit vom Verhältnis d_i/d_a [VDI94a]

Bild A5-3: Anlagenschema der Pilotsulfonieranlage

Bild A5-4: Schematischer Aufbau der Pilotanlage

Bild A5-5: Verfahrenstechnisches Fließbild der Pilotanlage

Sulfonierung

• Masseausbeute an feuchtem Sulfprodukt:

$$A_{SP}^{feucht} = \frac{m_{SP}}{m_{CP} + m_{SS}} \cdot 100$$
 [%] (GI. A 6.1)

• Masseausbeute an trockenem Sulfprodukt:

$$A_{SP}^{trocken} = \frac{(100 - w_{SP})m_{SP}}{m_{CP} + m_{SS}}$$
[%] (GI. A 6.2)

• Schwefelsäureumsatz:

$$U_{SS} = 100 - \frac{w_{SP}m_{SP} + c_{SS,K}m_K}{c_{SS}m_{SS}} \cdot 100$$
 [%] (GI. A 6.3)

(Der nach der Kondensation im Reaktionsgas verbleibende Anteil an Schwefelsäuredämpfen wird vernachlässigt.)

• Kohlenstoffausbeute:

$$A_C^{feucht} = \frac{C_{SP}^{feucht} m_{SP}}{C_{CP} m_{CP}}$$
[%] (GI.A 6.4a)

$$A_{C}^{trocken} = \frac{C_{SP}^{trocken} \left(1 - w_{SP}\right) m_{SP}}{C_{CP} m_{CP}}$$
[%] (GI. A 6.4b)

• Wasserstoffausbeute:

$$A_{H}^{feucht} = \frac{H_{SP}^{feucht} m_{SP}}{H_{CP} m_{CP}}$$
[%] (GI. A 6.5a)

$$A_{H}^{trocken} = \frac{H_{SP}^{trocken} (1 - w_{SP}) m_{SP}}{H_{CP} m_{CP}}$$
[%] (GI. A 6.5b)

• Sauerstoffeinbindungsgrad:

$$\Phi_O^{feucht} = \frac{O_{SP}^{feucht} m_{SP}}{c_{SS} m_{SS} \frac{64}{98} + (1 - c_{SS}) m_{SS} \frac{16}{18}}$$
[%] (GI. A 6.6a)

$$\Phi_O^{trocken} = \frac{O_{SP}^{trocken} (1 - w_{SP}) m_{SP}}{c_{SS} m_{SS} \frac{64}{98} + (1 - c_{SS}) m_{SS} \frac{16}{18}}$$
[%] (GI. A 6.6b)

Schwefeleinbindungsgrad:

$$\Phi_{S}^{feucht} = \frac{S_{SP}^{feucht} m_{SP}}{c_{SS} m_{SS} \frac{32}{98}}$$
[%] (GI. A 6.7a)

$$\Phi_{S}^{trocken} = \frac{S_{SP}^{trocken} (1 - w_{SP}) m_{SP}}{c_{SS} m_{SS} \frac{32}{98}}$$
[%] (GI. A 6.7b)

Pyrolyse

Koksausbeuten bezogen Sulfprodukt

$$\beta^{feucht} = \frac{m_{Koks}}{m_{SP}} \cdot 100$$
 [%] (GI. A 6.8a)

$$\beta^{trocken} = \frac{m_{Koks}}{(1 - w_{SP})m_{SP}} \cdot 100$$
 [%] (GI. A 6.8b)

• Koksausbeute bezogen Copolymer

$$\alpha = \left(\frac{m_{Koks}}{m_{CP}}\right) \cdot 100$$
 [%] (GI. A 6.9a)

• Schwefelabspaltung

$$1 - \phi_{S,Koks} = \left(1 - \frac{S_{Koks} \cdot m_{Koks}}{S_{SP}^{feucht} \cdot m_{SP}}\right) \cdot 100$$
[%] (GI. A 6.9b)

Aktivierung

• Abbrand (Aktivierungsgrad)

$$\Lambda = \left(1 - \frac{m_{Aktivat}}{m_{Koks}}\right) \cdot 100$$
 [%] (GI. A 6.10a)

• Schwefelabspaltung

$$1 - \phi_{S,Aktivat} = \left(1 - \frac{S_{Aktivat} \cdot m_{Aktivat}}{S_{Koks} \cdot m_{Koks}}\right) \cdot 100$$
[%] (GI. A 6.10b)

Aktivatausbeute

$$c = \frac{m_{Aktivat}}{m_{Koks}} \cdot \alpha$$
 [%] (GI. A 6.10c)

Abbrandgeschwindigkeit

$$c_{\Lambda} = \frac{\Lambda}{t_{Aktivierung}}$$
 [%/h] (GI. A 6.11)

Bild A7-1: Messstellen auf der Reaktorwand

Labormaßstab (SAHR 16 K/min, SHZ 8 min, ST 200 °C)

Bild A9-1: Porenentwicklung der Kokse und zugehörigen Aktivate für die gewählten Masseeinsatzverhältnisse bezogen auf Masseeinheit Koks

 $Pilotmaßstab ~({\tt SAHR 5 K/min, SHZ 20 min, ST 195 °C})$