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SYMBOLS 

AND   :Logic function AND 

A(q-1)   :Output polynomial coefficients of q-1 

α   :Momentum (see neural networks software) 

B(q-1)   :Input polynomial coefficients of q-1 

BP   :Back-Propagation 

βi, λ i   :Pole coefficients for reference model  

C(q-1)   :Disturbance polynomial coefficients of q-1 

CPi   :Slab specific heat  [Cal/ kg °C] 

CPe   :Water specific heat [Cal/ kg °C] 

d   :Desired values 

d(t)   :Desired values (dynamic) 

Dynschell  :Mathematical model for the strand temperature calculation 

∆qE   :Variations of mass or energy quantity 

∆TU-L   :Mould upper and lower temperature difference [°C] 

∆t   :Sampling time [min] 

∆W   :NN weight variation 

EAF   :Electrical arc furnace 

Ep   :Learning quadratic index 

ei   :Modelling error  

eu(t)   :Tracking error 

IR   :Infra- Red  

I(t)   :Motor current 

J   :Criterion 

KRi   :Proportional action  

L,h,li   :Strand geometrical dimensions [m] 

λ(t)   :Forgetting factor 

NN   :Neural Network 

η   :Learning rate 

MTM   :Mould Thermal Monitoring 

mi   :Mass of zone(i) [kg] 

OR   :Logic function OR 
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PID   :Proportional, Integral and Derivative controller 

P(t)   :Gain matrix 

Q   :Quality index 

Qinput   :Input quantity (mass or energy) 

Qoutput   :Output quantity (mass or energy) 

qE   :Quantity dynamics (mass or energy) 

q-1   :Delay operator 

qi(t)   :Water flow rate at the zone (i) [kg/min or l/min] 

q0   :Initial water flow  rate [kg/min or l/min] 

qm(t)   :Flow heat transfer [Cal/min] 

ri(t)   :Set point of reference model at the zone (i) 

ℜ Nx1   :Real space (dimension Nx1) 

ρ   :Density [kg/m3] 

SSE   :Sum of Square Errors 

SPC   :Statistical Process Control 

Te   :Water temperature [°C] 

Ti(t)   :Surface temperature at the zone (i) [°C] 

Tgi(t)   :Target temperature at the zone (i)  [°C] 

T0(t)   :Casting temperature [°C] 

TNi   :Integral action  

TVi   :Derivative action  

TU   :Mould upper temperature [°C] 

TL   :Mould lower temperature [°C] 

θ   :Model parameters vector 

u(t)   :Process input 

up(t)   :Predicted process input 

v(t)   :Casting speed [m/min] 

vc(t)   : Set point of casting speed [m/min] 

VAI   : Voest Alpine Industrial Compagny 

Wij
old   :NN old weight 

Wij
new   :NN new weight 

w(t)   :Random noise 

X   :Model input vector 

y(t),yp(t)  :Real and predicted process output 
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1 INTRODUCTION 
 

Steel industries are characterized by complex phenomena particularly where there are 

considerable phase changes, such as the liquid�solid transformation. During this process, 

complex reactions which depend on the raw materials and production parameters take place. 

These reactions define the final quality of ingot and slabs. Actually, much work has been  

carried out  to achieve production free defects with minimal production costs [1-3]. To realise 

this, a quality insurance system based on the advanced modelling was developed and applied 

in different steel industries [4-8]. The optimisation of a big system such as a steel plant is 

based on dividing the global system into different subsystems. This thesis is focused on the 

process optimisation and the development of process control aspects of the main iron and 

steel processes, particularly those that have an economical impact. It presents the 

development and validation of models using raw industrial data acquired from the EKO 

STAHL steel industry in Germany and the SIDER Group SPA in Algeria with special 

attention to the applied aspect. This thesis can be used as a basic work in introduction of the 

artificial intelligence in Algerian steel industry. It assumes a good comprehension of the new 

technology that will be proposed by the international engineering company at the moment of 

commissioning operations of steel industry modernisation.  

Many mathematical models have been developed and applied worldwide in steel industry. 

These models use different approaches such as analytical modelling, statistical modelling and 

artificial intelligence modelling. This thesis is a contribution towards the application of  the 

neural networks (NN) modelling in the steel industry. The theme of this subject is based on 

the introduction of the NN as a tool for the technological improvement of the process and 

quality. The method of investigation is based on: 

 

• A good comprehension and analysis of the NN technology particularly for the on-line 

application 

• Data acquisition from different steel processes in Algeria and Germany. Particular 

importance is given to the breakout problem, which is the main theme of this thesis 

• Modelling and simulation using NN as a new tool 

• Comparison of different results obtained by the NN modelling and the practice 

 

NN modelling is an approach that is recommended for processes that feature non-linearity and 

noise and coupling between different inputs and outputs. Using this we can model the 
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analytical and logical law together. This is very complex to achieve using other modelling 

approaches such as statistical or physical methods. 

In practice, generally a complete package of models called hybrid models is used. This 

involves a combination of many approaches for each situation. In this thesis the application of 

NN modelling to the breakout prediction is relatively new. This model is the basis for a 

software development equivalent to the ones developed by different companies in Asia and 

Europe such as Nippon Steel. More details will be given in chapter 4. The introduction of the 

computerised process monitoring and fault detection is a new approach for SIDER Group,  

Algeria. This approach allows to detect rapidly  the source of defects which are monitored in 

real-time. The implementation of this approach is of great importance for the maintenance 

service that uses this as a tool of investigation. 

 

1.1 Description of main steelmaking processes  
 

The objective of the steel work is to obtain a semi final product free from defects with 

minimal production costs. The final quality depends on the  process parameters during the 

production  [6-11]. A general scheme of the process of steel work is given in Fig. 1.1. First 

the raw materials are transformed into liquid steel at a specified  chemical composition and 

temperature in the Oxygen Converter or in the Electrical Arc Furnace (EAF). Then the liquid 

steel is poured into a ladle and transferred to the refining unit. In this unit the chemical 

composition and temperature are adjusted using additions (FeMn, FeSi, coke etc�) and 

additional heating and stirring. During  this process the raw materials which are relatively 

expensive require reduction in terms of  the cast cost [12], this aspect is the main theme of 

chapter 3. After refining the steel in the ladle is transferred to the continuous casting process, 

distributed in the tundish and cooled in the mould [12-14]. This process is characterised by 

phase changes such as the liquid�solid transformation. In practice, the main problem in the 

mould is breakout and its consequence such as the process reliability and the production 

shutdown induced by metal sticking in the copper mould. A breakout prediction and detection 

system will be presented in chapter 4. The sticking is increased as a result of the temperature 

variations in the tundish (Fig. 1.2) and the casting speed which is adjusted based on the 

prevailing condition such as the thermal losses in the tundish [9, 15, 16]. These variations 

affect the thermal profile during the secondary cooling [9, 16, 17]. This process defines the 

final solidification and the cooling water flow rate which is adjusted  according to the process 

events. The secondary thermal profile control  will be considered  in chapter 5. 
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The monitoring of defects in slab and ingot due to variations of process parameters is an 

important tool in reducing the management  cost and a guarantee of the product quality [18, 

19, 20]. Chapter 6 presents  an application of Neural Network (NN) to predict fault detection 

on the power control equipment of casting speed. This problem has led to many shutdowns in 

order to find out the cause of the defects. The problem was solved using real-time data for 

monitoring and process diagnosis methods. An alarm model has been developed and 

implemented to predict the similar fault. 

 

1.2 Problem statement and objectives 
 

The objective of this study was to investigate the possibilities to improve the practical 

operating conditions in steel works using mathematical models. As defined in section 1.1, 

steelmaking is a complex process and it is necessary to develop some tools to optimise the 

process with respect to chemical composition and temperature in the refining unit, controlled 

solidification in the mould, secondary cooling and final quality monitoring and defect 

detection. Many mathematical models have been developed in the field of steelmaking. These 

models are based generally on the theoretical aspects and calibrated using experimental data 

[1, 2, 9, 14, 21-23]. Thus modelling approach is generally oriented in the field of the design 

and off-line simulation. From the on-line and real-time implementation point of view, this 

modelling approach is considered to be long. Sometimes for achieving this, it is necessary to 

synchronise the computer and units to reduce the computing time [24-25]. Another type of the 

modelling today expended in the steel industry is based on neural networks [26-45].  

Most models for processing steel in the steel industry are to predict the process output 

parameters such as tapping temperature and chemical composition as a function of other 

parameters. Unfortunately the �conventional� approach, based on energy and mass balances 

by solving the physical and chemical equations, is very difficult, mainly because it does not 

consider some parameters (raw materials characteristics etc.), and the non�linear interactions 

between inputs and outputs. The use of neural networks for modelling can solve this problem 

[46-50]. First, only the phenomena at the end of the process were modelled. The dynamic 

follow up of the process is performed by a series of interconnected multi-layer perceptions, 

which are �activated� at predefined moments  during the process elaboration. This work seeks 

to develop an approach to optimise different processes using mathematical modelling based 

particularly on a new modelling strategy such as neural networks and its applications to the 

modelling and optimisation using the appropriate data base [50-64]. In the ladle treatment 
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process, it considers the modelling and the optimisation of additions because the inputs are 

generally costly. This process permits to obtain the target chemical composition and 

temperature at minimal cost. The monitoring of the first solidification in the mould is 

achieved by the development of new breakout detection and prediction system and the 

breakout problem is modelled using neural networks [37, 42, 65-68]. This approach based on 

the use of a real breakout database from EKO STAHL reduces the false alarm number 

comparatively to the conventional system [37, 42, 68]. An optimal modelling and detection of 

this phenomenon reduces the shutdown time and the cost of maintaining the equipment. A 

neural closed loop control model is considered to achieve a stable surface temperature of the 

secondary cooling profile according to the casting events such as variations of casting speed, 

tundish temperature and its influence on heat transfer and slab quality particularly for 

sensitive steel grades [1, 9, 15-16, 18, 24, 42, 69]. Prediction and monitoring of the product 

quality has an important influence on the global production cost. A soft sensor using the steel 

work database was developed [42, 70-74]. Particular importance is given to the analysis of the 

relationship between the dynamics of process parameters and the defect apparition on the final 

product. The analysis and modelling of the main data bank assumes the prediction and the 

monitoring of the faults and their effect on the slab quality. Alarms are set forth when a fault 

or defect is predicted and the necessary correction and adaptation will be achieved [68, 73, 

75-76].  

In this thesis  the followings aspects have been developed: 

 

• Prediction of final chemical composition and the temperature of liquid  steel in the 

ladle as a function of additions, this constitutes a soft sensor. Prediction using neural 

networks model achieves good results comparatively to the conventional model based 

on analytical and statistical approach. This prediction is an important tool for 

optimising the mass of additions and the temperature. Non-linearities, thermal losses 

and noise are taken into account.  

 

• Improvement of the breakout prediction system using neural networks is clearly 

proven in chapter 4 using the EKO STAHL breakout database. False alarms generated 

by the fluctuating temperatures in the copper mould are cancelled. These results are 

obtained by experience from earlier databases based on real and false alarms. This 

model takes into account breakout propagation in the space of the mould and in the 

time according to the temperature variation. 
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• Closed loop stabilisation of surface temperature using conventional PID and neural 

networks control algorithms are developed in chapter 5. This new closed loop control 

achieves a stable surface temeprature. The control algorithm can be connected to the 

different existing heat conduction models. Simulation results are carried out by a 

simplified heat transfer model. The robustness of the control algorithm is tested using 

some changes in the process parameters such as casting speed and water temperature.   

 

• Quality monitoring and classification is developed in chapter 6 on the basis of the 

importance of breakouts which is connected to the breakout detection system. This 

technique achieves a classification of different defects according to different alarms 

given by the breakout prediction system. For example a breakout detected by many 

alarms achieves an important defect as compared to that detected only by one alarm. 

This constitutes a guide tool for the quality classification. Fault detection is also 

developed using a neural networks model. Conventional modelling cannot establish a 

complex non-linear relationship between alarm state (0-1) and historical dynamic 

process parameters such as casting speed and motor current. This technique has been 

applied at SIDER Group in Algeria. This allows to find out as soon as possible the 

equipment defect using a real-time data acquisition system. The model is implemented 

on the process computer using graphical programming by �Labview� software. 
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1.3 Process parameter analysis and control 
 
 

 
Fig. 1.3: Principle of process monitoring and control 

 

In practice the steelmaking process every day generates a lot of information related to raw 

materials, energy, quality, process parameters, machine parameters, reliability etc. This 

constitutes an important database (Fig. 1.3) which provides a prerequisite to obtain the 

desired prediction models. The exploitation of abnormal operating conditions can provide an 

interesting information about the process dynamics. Optimal operating conditions must be 

found based on the process output and prediction capability. The database is generally filtered 

to eliminate the data affected by the noise. The predicted values obtained by the modelling 

process are compared to the target values and the necessary adaptation will be realised which 

is operated by different process set points. In the first elaboration process (EAF or Oxygen 

Converter), we consider liquid steel with an acceptable chemical composition and 

temperature. Importance is given to the refining and continuous casting processes because 

these constitute the latest step in the steel plant. More details will be developed in this thesis.  
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Computer aided production management is an important skill today. In the major production 

process, computerised management and control constitute an important tool to optimise 

production and quality. The development of communication network has eased the expansion 

of computerised production and optimisation, particularly for comprehensive systems where it 

is necessary to undertake a distributed data processing [75-77]. The global process is divided 

into many subsystems. Each sub-system is processed by its own algorithm and computer. The 

data bank exchange between different sub-systems is carried out by the communication 

network. Today, computer performance achieves  real-time data processing and executes the 

optimisation algorithm to reduce the production cost. The modelling of the input-output 

interactions is an important tool for the research of the optimisation algorithm. This algorithm 

allows an optimal adaptation of the control parameters to achieve the optimisation objective. 

When the model for the inputs�outputs is defined around the operating point, the optimal 

decision will be achieved by a closed loop called: �Loop of continuous amelioration�. The 

continuous amelioration closed loop is a unified approach that may be applied to any system 

or process. The computerised implementation seeks to implement this principle as a numerical 

and logical model. The data processing can be realised in real-time or in off-line operation, 

this depends on the calculation and the sampling time. Sometimes, different processes are 

geographically dispatched, in this case the communication network is used to transfer data. 

The process monitoring of critical parameters which has an important impact on the 

production uses different methods of modelling such as neural networks. The data acquisition 

is obtained by an analog to digital device for the measured process parameters and by the 

specified terminal for other types of data and information. The local processing unit executes 

the limited computing task such as the execution of the regulation algorithm (PI; PID) around 

the set point. It is also considered in this part of sequential task. This doesn�t allow a long 

computing time. The local processing considers the algorithm in the field of the binary and 

sequential control and stabilisation of the process. The objective is to assume a stable control 

loop. The host process computer that executes the optimisation algorithm gives the set points 

with optimal values. In this case the local information is transferred to the host computer, 

which has a sufficient computing capability. The production management computer, the 

process computer and the local processing units are connected via network for  exchange of 

information. The network has a high transmission rate and noise rejection. All processing 

units and terminals are inter-connected. Generally, the mathematical models are executed by 

the process computer [14-15, 77-78]. 
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2 MATHEMATICAL MODELLING  
 

System and process are characterised by the complex interactions between the input and 

output variables. There are many mathematical modelling approaches. In this thesis, particular 

models are developed for easy application in the on-line control and optimisation. 

Unfortunately, these systems are very complex by their structural and parameter changes such 

as non-linearity and unsteady state behaviour [34, 44, 67, 79]. In these operating conditions, 

conventional models such as linear modelling appear limited to achieve a high performance 

for these processes. Hence, on-line adaptation according to the process parameter changes 

must be performed [79-87]. Another aspect related to models validation must be considered 

since physico-chemical models based on energy and mass balances feature some difficulties 

on the validation using the measurement data. Sometimes, it is difficult to find the optimal 

values of the physical parameters assuming a minimal error between the model and the 

measurement; this reduces the precision of modelling. Models based on the identification 

techniques particularly those using neural networks improve the prediction by reducing the 

modelling error. This approach uses direct raw data. This process allows us to define inputs 

and outputs of the model. Multilayered neural networks fit the non-linear Multi-Input and 

Multi-Output Process (MIMO). Process interactions are taken into account by the 

interconnectivity of the neurones between different hidden layers [87-97]. The aim of this 

section is to review the different modelling methods and control using  mathematical 

modelling. Particular importance is given to the NN approach. 

 

2.1 Conventional modelling  

 

The importance of conventional modelling is particularly its use for the design and off-line 

simulation. On-line implementation of this modelling approach is particularly limited by its 

long computing time. To reduce this, it is sometimes necessary to use special computing 

techniques. 

Generally, the conventional modelling is based on energy and mass balances. The steady state 

balance can be obtained by the following equation:  
output

i
input

i tQtQ )()( =          (2.1) 

and the dynamic equilibrium conditions can be written as: 
output

i
input

i
E
i tQtQtq )()()( −=∆         (2.2) 
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Equations (2.1) and (2.2) are valid for the mass and energy balances. 

)...)(),(),...,(),(,()( 1 ttytyttututftQ iiiii
input

i ∆−∆−=          (2.3) 

)...)(),(),...,(),(,()( 2 ttytyttututftQ iiiii
output

i ∆−∆−=         (2.4) 

)...)(),(),(),(,()( 3 ttytyttututftq iiiii
E
i ∆−∆−=                  (2.5) 

 

The differential analysis of different equations gives a non-linear differential system. In the 

linear case, these equations will be linearised around the operating point of each variable. The 

linearisation process induces inevitably model precision losses. The numerical 

implementation is obtained by a discretisation of the differential operator defined by the 

following approximation 

)()()( ttqtqtq E
i

E
i

E
i ∆−−≈∆                 (2.6) 

∆t is the sampling time. After  transformation we obtain a recurrent model defined by:  

0)....)(),(),...,(),(,( =∆−∆− ttytyttututF iiii       (2.7) 

Fig. 2.1 defines the structure and the interactions between different process variables. 

 

Fig. 2.1: Process model structure 

 

t, ui(t), wi(t) and yi(t) are  the time, process inputs, disturbance and process outputs 

respectively, wi(t) is a random perturbation. 

 

 

 

 

 
 

Process Model 
ui(t) yi(t) 

wi(t)
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2.1.1 Identification models [48, 88, 98-100] 

 
The conventional identification technique permits to find the process parameter vector using 

the minimum least square error between the process output and model output according to the 

dynamical data. We consider a process with dynamic output and exogenous input; this model 

is called Autoregressive Moving Average with eXogenous inputs (ARMAX). Each predicted 

output can be written as: 

)()()()()()( 111 twqCtuqBtyqA −−− +=                (2.8) 
n

n qaqaqaqA −−−− ++++= ...)1)( 2
2

1
1

1              (2.9) 

m
mqbqbqbbqB −−−− ++++= ...)( 2

2
1

10
1            (2.10) 

 
p

p qcqcqccqC −−−− ++++= ...))( 2
2

1
10

1           (2.11) 

n, m and p is the differentiation order for the output, the input and the exogenous input 

respectively which are defined according to the process dynamics. 

The objective is to find optimal values of the process parameters using a least square 

algorithm. The principle of identification is given by the  scheme below (Fig. 2.2). 

 

 

Fig. 2.2: Model identification principle 

 

From equation (2.8 ),  the model output can be written as: 

 

 
Real Process

Process 
Model 

 yp(t) 

y(t) 
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)1()()( −= ttXty T θ            (2.12) 

with: 
TptwtwmtutuntytytytX )](),...,1(),(),...,1(),(),...,2(),1([)( −−−−−−−=  (2.13) 

T
pmn cccbbaaat ],...,,,,...,,,...,,[)( 21121=θ        (2.14) 

The prediction error can be defined as: 

)1()()()( −−= ttXtyte T
p θ          (2.15) 

The identification objective is to find the process parameters that minimise the sum of errors 

e(t). 

optimal

t

k
tkeJMin )(})({}{

0
θ⇒= ∑

=

         (2.16) 

The following form gives the recursive estimation of vector parameters: 

)()()()1()( tetXtPtt +−=θθ          (2.17) 

where: 









−+

−−−−=
)()1()()(
)1()()()1()1(

)(
1)(

tXtPtXt
tPtXtXtPtP

t
tP T

T

λλ
      (2.18) 

The forgetting  factor λ(t) is usually computed according to the rule 

λ(t)=λ0λ(t-1)+1-λ0           (2.19) 

P(0)=I/α, α<<1             (2.20) 

Recursive estimation can be defined as: 

 

Step1: Initialisation 

• Define:  θ∈ℜ Nx1, P∈ℜ NxN ,  X∈ℜ Nx1, I=Diag(NxN), y(0),u(0)� 

• P0=I/α, α<<1 

• θ0=[0 0 0��.0]T 

• λ 0=0.95 

Step2: Recursive estimation 

• Input/output data acquisition  

• TptwtwmtutuntytytytX )](),...,1(),(),...,1(),(),...,2(),1([)( −−−−−−−=  

• )1()()( −= ttXty T θ  

• Compute )(te  Equ(2.15) 

• Compute )(tθ  Equ(2.17) 

• Compute λ(t)  Equ(2.19) 
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• Compute )(tP  Equ(2.18) 

• Assign w(t)=e(t) 

• If t=tmax: Go to step 3 

• Else t=t+1 and Go to step 2 

Step3: END 

 

After the convergence of the identification algorithm, the estimated process parameters 

θ(t)=θ0 are used to synthesise the control law, i. e, the PID tuning  values. 

 

2.1.2 Process control  

 
Conventional or classic closed loop control is used for the process output stabilisation around 

the set point. In the industry, generally, the Proportional Integral and Derivative (PID) 

algorithm is used.  

The identification results are used only for tuning the PID controller parameters in off-line. 

Many conventional process control approaches based on  linear modelling have been applied, 

but they remain limited and don´t assume the necessary optimisation particularly for complex 

processes with regard to: 

• time variant process parameters 

• models with high non-linearities 

• It is more important when the optimisation objective is based on the prediction of the 

product characteristics that are not directly measured by sensors but determined by 

quality classification (defect, type and importance of the defects). In this situation 

advanced approach of the production database analysis and modelling must be 

considered. 

  

2.2 Neural network modelling [48, 90-102] 
 

Advanced process control and monitoring require accurate process models. The development 

of analytical models from the relevant physical and chemical knowledge, especially complex 

processes with phase changes, can be too costly or even impossible. For such process models 

based on process production operational data should be capitalised. Many industrial processes 

exhibit non-linear dynamic behaviour and non-linear models should be developed. Neural 
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networks have been shown to be able to approximate continuous non-linearity and have been 

applied to non-linear and complex process modelling. Network training results in a �Black 

Box� representation in which the model developed can be difficult to be analysed. The 

complexity is due to the large number of network weights. In practice, many non-linear 

processes are approximated by reduced order models, possibly linear, which are clearly 

related to the underlying process characteristics. 

 

2.2.1 Neural network identification and modelling 

2.2.1.1 Problem formulation and back-propagation learning 
 

We consider dynamic systems which are governed by the following non-linear relationship: 

)](),...,1(),(),...,1(),(),...,1([)( ptwtwmtutuntytyfty −−−−−−=    (2.21) 

Fig. 2.3 shows the identification and modelling principle.  

 

Fig. 2.3. Principle of neural network learning p

 

The Back-Propagation (BP) algorithm is explained in detail by 

process is  briefly summarize here, the network to be trained cons

shown in Fig. 2.4. The kth layer contains Nk nodes, and for L=k, o

whose activation is always 1. Weighted branches exhaustively in

The weight Wijk refers to the branch from node i in layer k to no
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layer contains the network input X and the last layer the network output y. In the forward 

propagation node, X is given, and each node in the second and subsequent layers calculates 

the activation z as an exponential function of the sums of weight of its inputs. 

jkujk
e

z −+
=

1
1

           (2.22) 

 

where 

∑
+

=
−−

−

=
1

1
1,,1,

1kN

i
kjikijk Wzu          (2.23) 

The network outputs are the activations of the last column zL. 

In the learning mode, training examples which consist of p input/output vector pairs (Xp, dp) 

are given. The objective is to select weights that minimise the sum of squared errors between 

the net predictions yp and the desired outputs specified by the overall training examples dp:  

 

∑
=

=
P

p
p

W
EJ

1
min           (2.24) 

where Ep is the sum of squared errors associated with a single training example: 
2

ppp dyE −=           (2.25) 

During learning, the network is initialised with small random weights on each branch. A 

training example is selected randomly, and the input vector Xp is propagated through the 

network to get the predicted output yp. A gradient in the space of network weights is then 

calculated using the Generalised Delta Rule (GDR). The GDR gives the steepest descent 

direction mp associated with the training example p: 

ikkjijk zm 1, +=δ            (2.26) 

Where mijk is the component of the gradient associated with Wijk. For the output layer L: 

)1()(, jjjjLi yyyd −−=δ          (2.27) 

Where  LNj ≤≤1  and for other layers,  

∑ +−= 1,)1( kjijkikikik Wzz δδ          (2.28) 

Where 11 −<< Lk  and kNi ≤≤1  

Using the gradient mp, the weight changes on step q, ∆qW, are calculated according to the 

following formula: 

WmW qpq 1−∆+=∆ αη           (2.29) 
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In this expression two constants appear, η called the learning rate which is equivalent to a step 

size, and α which acts as a momentum term to keep the direction of descent from changing 

too rapidly from step to step. After the weights have been updated, a new training example is 

selected and the procedure is repeated until satisfactory reduction of the objective function is 

achieved. 

Fig. 2.4: Neural network architecture and weight indexing 

 

2.2.1.2 Learning algorithm 
 

The following computing steps constitute the learning algorithm: 

Step1: Initialisation of the network weights 

Step2: Learning process 

• Acquisition of inputs/outputs 

• Compute the model output equ(2.22, 2.23) 

• Compute the errors equ(2.26, 2.27, 2.28) 

• If Ep<<1, save weights go to step3 

• Else adapt the network weights equ(2.29) and go to step2 

step3: END 
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2.2.2 Neural process control   
 

Neural network is a tool used to describe the input/output relationship and the first step is to 

use the NN to identify the process model. Many techniques were developed for application in 

the field of control and optimisation design. The objective is to obtain optimal control inputs 

that minimise the sum of quadratic error between the desired outputs on the one hand and  

predicted output on the other hand. Several training and control methods have been developed 

[48, 101-108]. Assuming that the system to be controlled can be described by equation (2.21), 

the desired network is the one that isolates the most recent control input u(t), 

)]1(),...,(),1(),...,1(),1(),...,1([)( 1 +−+−−+−+= − ptwtwmtutuntytyftu pp  (2.30) 

and can be used for controlling the process by substituting the output at time t+1 by the 

desired output r(t+1). 

A specialised training approach defined by the control scheme in Fig. 2.5, that minimises a 

criterion of the following type, is developed: 

∑
=

−=
N

t
tytr

N
J

1

2)]()([
2
1),( φθ        (2.31) 

 

Fig. 2.5: Overall
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Inspired by the recursive training algorithms the network might alternatively be trained to 

minimise the relation 
2

1 )]()([)1(,())(,( tytrtJtJ tt −+−= − φθφθ        (2.32) 

This is an on-line approach and therefore the scheme constitutes an adaptive controller. By 

way of introduction, a recursive gradient method is considered. Assuming that Jt-1 has already 

been minimised, the weights are adjusted at time t according to the following formula: 

θ
µθθ

d
tdett )()1()(

2

−−= ,        (2.33) 

where e(t)=ym(t)-y(t), ym(t) is the reference model output [48] and 

)()()(2

te
d

tdy
d

tde
θθ

−=               (2.34) 

By application of the chain rule the gradient  
θd
tdy )(

 can be calculated as  

θθ d
tdu

tu
ty

d
tdy )1(

)1(
)()( −

−∂
∂=                     (2.35) 
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tu
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)(
)1()1(

)1(
)(

21
  (2.36) 

It appears that the Jacobeans [48] of the system, 
θ∂

∂ )(ty
, are required. These are generally 

unknown since the system is unknown. To overcome this problem an estimation is given as 

follows: 

)1(
)(

)1(
)(

−∂
∂

≅
−∂

∂
tu

ty
tu

ty p
           (2.37) 

The (simplified) specialised training can easily be implemented with the back-propagation 

algorithm. The back-propagation algorithm is used in the inverse model by assuming the 

following �virtual� error of the output of the controller: 

)(
)1(

)(
)( te

tu
ty

te p
u −∂

∂
=           (2.38) 

The on-line specialised control algorithm is summarised by the followings steps: 

Step1: Data acquisition 

• Read input/output data from the process 

Step2: Control law computing 

• Calculate the tracking error 

• Calculate the virtual error 
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• Update weights with recursive form equ(2.29) 

Step3: Go to step1 

 

2.2.3 Neural process optimisation and monitoring 
 

Process supervision is  to bring a dynamical system from one global state to another. Its task 

differs severely from typical feedback control problems which concern the task to make the 

system output follow a given trajectory and to attenuate stochastic or �small� deterministic 

disturbances. Fig. 2.6 illustrates the principle of monitoring 

 

Fig. 2.6: Principle of proc
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3 MODELLING OF LADLE METALLURGICAL   

   TREATMENT PROCESSES  
 

3.1 Introduction 

 
The principe of ladle treatment in SIDER (Algeria) is given in Fig. 3.1. After additions the 

homogenisation of chemical steel composition and temperature is carried out by blowing 

argon gas (1 bar). The slag is formed on the surface of the steel melt. Generally, ordinary and 

microalloyed steel grades are treated in the ladle. 
 
 

 

  

 

The following

• Desox

 [Si]   

 [C] 
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 2[Al] + 3[O]  (Al2O3)    

• Separation of Oxide Inclusions 

 Al2O3(Steel)               Al2O3(Slag) 

   [Mn] + [S]  (MnS) 

 [Ca] + [S]  (CaS)   
 

In steel industry,  the refining process adjusts the final chemical composition and temperature 

of liquid steel by adding the optimal quantity of additions and energy. Generally a 

conventional charge calculation based on mathematical and thermodynamic models that 

provide considerable help is used, but it is difficult to model the highly complex nature of the 

interactions between process variables such as thermal losses and the dynamics of non-linear 

chemical reactions. Neural networks are able to identify internal relationships through training 

examples.  

In this work, the application of identification models using linear approach and  (NN) to 

predict the final chemical composition and temperature of the refining process is considered 

[48, 90, 100, 102]. Using an industrial process database, dynamics of complex reactions is 

modelled using the back propagation-learning algorithm. This model is used as a charge 

calculation to predict the final process parameters. The performance of the model is evaluated 

from  new inputs and outputs. Production and quality cost management is reduced by an 

optimal control of the input variables such as the mass of additions  (FeMn, FeSi and coke) 

and heating energy. 

The aim of this section is to predict the process output for an optimal control of the process. 

This constitutes an important tool particularly for SIDER Group in Algeria where there are 

some problems with chemical analysis. Our investigation is based on the modelling and 

analysis of the database generated by this process. The main chemical reactions are the 

oxidation of the iron and the adjustement of manganese (Mn), silicon (Si) and carbon (C) 

contents in the liquid steel. Reactions are complex and depend particularly on the 

thermodynamic parameters. The final chemical composition of steel is adjusted by an optimal 

control of different input variables. In practice, sometimes the chemical reactions have not 

reached equilibrum and further operations are required to obtain the desired contents and 

temperature. These manipulations induce excess costs by an excess consumption of different 

additions and energy. Conventional charge calculations don´t take into account different non-

linear and random process changes. In this work an approach is considered based on NN to 

model the complex input and output relationships. Modelling of real process databases 
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considers different noise measurements, non-linearity of process and other complex properties 

[48, 109-112]. High prediction ability of the NN model improves the casting cycle and 

reduces the cost quality analysis and management in the steel plant. Thus the model can be 

used as a soft sensor. In our case the process inputs and outputs are defined as: 

Input parameters: 

• Different masses of additions (coke, FeMn, FeSi) 

• Thermodynamic parameters (steel temperature) 

• Initial chemical composition of liquid steel 

Output parameters: 

• Final liquid steel temperature or liquid steel temperature variation 

• Final chemical composition or variation of chemical composition 

All input and output data are used to define the NN parameters using the back-propagation 

algorithm that reduces the error between the target values and NN outputs. After convergence, 

the NN is used to predict the outputs using a new input database. The obtained model is used 

to compute the input according to the target outputs, i .e, liquid steel temperature and the final 

chemical composition. 

  

3.2 Process description  
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The principle of the refining process is given in Fig. 3.2. The ladle with liquid steel arrives in 

the refining station  with the initial chemical composition and temperature. According to these 

initial values and the desired chemical composition and temperature, optimal quantities of 

additions (coke, FeMn, FeSi) are applied.   

The main reactions are: 

 

FeSi+1/2 O2                 Si+FeO 

 

FeMn+1/2 O2                  Mn+FeO 

 

C+1/2 O2                CO 

 

Fig. 3.3 defines the main process reactions according to different inputs. 

All chemical reactions are controlled by temperature and pressure according to the reaction 

equilibra and kinetics. In our case the pressure is constant. 
 
 

 
Fig. 3.3: Input/output interactions 

 
The input parameters are: 
 

C0 :Initial  carbon in the liquid steel  (%) 

Mn0 :Initial manganese in the liquid steel   (%) 

Si0 :Initial silicon in the liquid steel   (%) 
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T0 :Initial  temperature of liquid steel  (°C) 

FeSi :Added weight of ferro silicon   (kg) 

FeMn :Added weight of ferro manganese  (kg)  

Coke :Added weight of coke    (kg) 

 
The output parameters are: 

 

C :Final  carbon in the liquid steel  (%) 

Mn :Final  manganese in the liquid steel   (%) 

Si :Final  silicon in the liquid steel   (%) 

T :Final  temperature of liquid steel  (°C) 

 

The final temperature determines the casting condition. This temperature has limited values. 

When it falls below these limits the liquid steel is not recommended for continuous casting. 

Inputs and outputs of the process structure are used to define the NN architecture. 

 

3.3 Process modelling and identification 
 

3.3.1 Linear model 
 

A comparative study between the linear approach obtained by the iterative least square 

algorithm and the non-linear model based on the back-propagation algorithm is considered. 

The identification has been achieved using databases containing 100 raw samples. The input 

vector is defined as: 

X=[C0,  Mn0, Si0, T0, FeSi, FeMn, coke], θi=[aC0i, aMni, aSii, aT0i, bFesii, bFeMni, bcokei] 

and the output as 

Y=[∆C, ∆Mn, ∆Si, ∆T ], Y(i)=yi, i=1 to 4. 

A total of 7x4=28 parameters are identified  

where 

∆C = C-C0 
∆Mn = Mn-Mn0 
∆Si = Si-Si0 
∆T = T-T0 
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The  structure of this linear identification model is given in Fig. 3.4. All data are selected 

from real refining processes (SIDER - Algeria). The time series of input and output process 

variables are given in  Figs. 3.6 and  3.7, respectively. 

 

 

 
Fig. 3.4: Structure of linear identification model 

 

3.3.2 Neural network model  
 

Fig. 3.5 gives the structure of the network. There are seven (07) inputs [C0,  Mn0, Si0, T0, 

FeSi, FeMn, coke], four (04) outputs [∆C, ∆Mn, ∆Si, ∆T ] and ten (10) neurones in the 

intermediate hidden. 

The relationship between input and output parameters is defined as: 

 

coke]  FeSi,  FeMn,  ,T ,Si  ,Mn ,C[T]  Si,  Mn,   C,[ 0000NN=∆∆∆∆    (3.1) 

 

This multi input-output model characterizes the complex relationships between different 

components. The approach considers the chemical reactions which are not easy to model 

using  conventional methods.   

The back-propagation algorithm adapts the parameters of the network in order to minimise 

the error between the output detected by the model and the desired output.  
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Fig. 3.5: Structure of identification using NN 
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Fig. 3.6a: Initial chemical composition 
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Fig. 3.7a: Real values and model identification of carbon 
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Fig. 3.7c: Real values and model identification of silicon 
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Fig. 3.7e: Carbon modelling error in the linear case  
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3.4 Application 
 

After off-line identification using NN and a linear model, models are used to predict the 

outputs using a new series of process data. Figs. 3.8 and 3.9 give new process inputs and 

predictions, respectively.  
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Fig. 3.8a: Evolution of initial chemical composition 
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Fig. 3.8b: Evolution of additions 
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Fig. 3.9a: Real values and model prediction of carbon 
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Fig. 3.9b: Real values and model prediction of managanese 
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Fig. 3.9c: Real values and model prediction of silicon 
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Fig. 3.9d: Real values and model prediction of temperature 
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3.5 Results and analysis 
 

Model identification results by linear model and NN model respectively are summarised by 

the value of the sum of square errors (SSE=∑e2) for each output in  Table 3.1. Modelling 

errors using the NN model are better than  those using a linear model. This improvement is 

also valid for the prediction.  

 

SSE [%C]2 [%Mn]2 [%Si]2 [T(°C)]2 

NN model 0,0788 0,419 1.1563 8,817e03 

Linear model 0,197 3,5027 9,5987 4,365e04 

 

Table 3.1a: Sum Square Errors (SSE) in modelling 

 

The mean modelling error of the temperature is defined as: 

92,0102/9095,93/8,817e03T Mean ===∆ N °C 
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SSE [%C]2 [%Mn]2 [%Si]2 [T(°C)]2 

NN model 0,037 0,151 0,0521 6,5719e03 

Linear model 0,026 2,329 0,6167 4,3973e04 

 

Table 3.1b: Sum Square Errors (SSE) in prediction 

 

The mean prediction error of the temperature is defined as: 

55,152/0673,81/6,5719e03T Mean ===∆ N  °C 

 

A method for the prediction of the final chemical composition and temperature has been 

developed using linear and NN models. Results obtained from new process data confirm that 

this method can be used as a soft sensor. More tests should be carried out before final 

application. 
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  CONTROLLED SOLIDIFICATION IN CONTINUOUS  
   CASTING MOULDS 

he following developments have been realised on the EKO STAHL continuous casting 

rocess. The principle of this process is given in Fig. 4.1. 

 
 

Fig. 4.1: Principle of continuous casting process [42] 

he principal characteristics of this machine are defined as follows: 

• VAI radial continuous casting machine (R=10 m, Slab Caster, 250 mm thickness) 

• Instrumented mould by a matrix of thermocouples 

• Conventional breakout detection system (BOY System) 

• Controlled mould bath level and casting speed 
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• Six secondary cooling zones 

• Compensation of casting speed effect on strand surface temperature by a feedforward 

using �Dynschell� model 

• Format 850-1800 mm 

• Casting speed (0 � 1.5 m/min) 

• Slab thickness 250 mm 

• Ordinary and microalloyed steel grades 

• Contactless measurement of the slab width and temperature after cutting  

 

4.1 Control and monitoring of solidification in the mould 
 

In the present study,  Mould Thermal Monitoring (MTM) technology in continuous casting 

has been investigated in order to optimize casting control. The mould is the location of 

complex metallurgical reactions characterising the liquid�solid  transformation forming the 

first crystals of solidification. Continuous measurements of the thermal profile are obtained 

by a matrix of thermocouples. In such a way, real-time monitoring and control of the process 

are considered. The control algorithm predicts solidification defects using mathematical 

models. In this work, a new approach for a breakout detection system has been developed by 

means of  NN . A process database is used for training the NN using a back-propagation 

algorithm. The learning process uses modelled data samples related to the real alarm 

situations. After training the NN predicts new breakouts. Using this approach the number of 

false alarms will be considerably reduced comparatively to the conventional system. 

In continuous casting, the phenomenon of the breakout is generally caused by rupture of the 

solid crust due to an increase in temperature at various points of the mould. Both peak and 

temperature oscillations have a direct influence on the quality resulting from solidification 

[31, 36, 42]. These phenomena appear at the time of slag incrustation, formation or 

propagation of cracks and in the case of poor friction and generally at the time of an 

imbalance of distributed thermal reactions in the mould. In this study, the monitoring and the 

detection of abnormal phenomena affecting thermal conditions in the mould have been 

developed using NN  [48]. The structure and training process of the breakout prediction NN 

model are obtain as a result of temperature measurements that have been obtained from 

thermocouples  fixed at the copper plates of the mould. The input of the time series network is 

formed by the measured temperature samples, while the output is formed by alarm defining 

the importance of defects. A new spatial network considers the combination of different time 
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series models alarm. The training has been carried out by the exploitation of databases 

characterising the normal and deteriorated operating conditions of solidification process. Such 

databases contain information on the dynamics of process parameters and the operating state 

of the process (alarms, shutdown of production,). In the following training, the simulation 

tests based on cases of real defects are applied to estimate the model detection ability.  

 

4.2 Analysis of breakout phenomena 
 

4.2.1 Breakout propagation process [31, 42, 63, 69] 
 

The mechanism for the original sticking can be explained by the existing conditions at the 

meniscus such as variations of casting speed, mould bath level of liquid steel, steel 

temperature and lubrification. Changes of casting speed have an important influence. 

Procedures for start-up and speed changes have been altered to slowly ramp up the speed.  

A breakout appears generally during metal sticking on the copper plate of the mould followed 

by perforation of the solid shell due to a solidification disturbance. Sticking breakout is 

propagated with various speeds in various directions and particularly in casting direction. Fig. 

4.2 shows an example of breakout propagation and Fig. 4.2a a little crack which has been 

developed in a breakout affecting the slab quality (see Fig. 4.2b). 

 

 

 
 

 

Fig. 4.2: Example of breakout propagation [31] 
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In this complex situation, it is practically impossible to describe the development of a 

breakout in the geometrical space of the mould using an analytical model based on heat 

transfer, solidification and the mechanical laws. The measurement and acquisition of 

temperature in different points at the mould surface constitute a tool for analysis and 

comprehension of the phenomenon. This experimental approach is also used for the 

development of a reliable system. 

The technique is the basis of the MTM system that considers the mould as a thermal reactor 

and the appearance of breakout is a result of an imbalance of the distributed thermal reactions. 

The dynamics of process data that have generated a breakout are affected by these random 

terms. 

 

4.2.2 Breakout effect in the mould temperature field 
 

Generally  when a breakout is generated, the upper thermocouple records a higher 

temperature TU due to the local breakout, followed by a reduction in temperature that is also 

due to a partial solidification (see Figs. 4.3 and  4.4). Under the effect of the casting speed, 

the crack propagates and the same phenomenon is observed at lower thermocouples TL. 

Alarms and reductions of casting speed are activated. In the case of conventional techniques, 

when the difference between the measured temperatures and those calculated by a model 

reaches a fixed threshold, a series of alarms is activated. When the error reaches dangerous 

levels, the casting speed is automatically reduced to zero [31, 63].  

 

 

Fig. 4.3.  Development of a sticking breakout [31] 

 

Fig. 4.4 gives an example of temperature field variation according to a breakout. 
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Fig. 4.4: Breakout mould temperature variations 

 

4.3 Breakout prediction and detection 
 

Since the development and  implementation of the breakout detection system on continuous 

casting processes, efforts have been focused on the simplification of instrumentation by 

reducing the number of thermocouples and the development of advanced models able to 

minimise the number of false alarms [65]. The principle of  detection is based on the analysis 

of temperatures on the mould and their gradients. Such a system ensures the monitoring and 

the detection of different alarm levels and responds to the reduction of casting speed.  

Temperatures are acquired and transmitted to a computer for monitoring. Control is 

performed by a specific algorithm which ensures the task of detection and control. A method 

using the conventional or the NN model controls the analysis and the decision processes. Fig. 

4.5 gives the principle of the breakout detection system. 
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Fig. 4.5: Principle of the breakout detection system 

 

4.3.1 Mould instrumentation and measurement of thermal profiles 
 

One of the most important parameters to be measured is the temperature of the copper on the 

mould surface. Generally a matrix of thermocouples is used on each mould face. Fig. 4.6 

gives the location of thermocouples on the copper plate mould. Thermocouples pair 17-18 and 

19-20 correspond to the small mould faces. Thermocouples 1 to 8 and thermocouples 9 to 16 

correspond to the large faces. Geometrical details of the EKO STAHL  mould are presented in 

Fig. 4.7. In the case of casting using medium and small formats (< 1800 mm), thermocouples 

1, 2, 7, 8 and 9, 10, 15, 16 are not used.  
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Fig. 4.6: Location of thermocouples on the copper mould faces 

Fig. 4.7a:  Geometrical details of mould faces (dimensions in mm) 

 

. 4.7b: Principle of copper plate temperature measurement using thermocouples introduced 
through the cooling box 
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Fig. 4.7c: Principle of thermocouple fixatio

 

4.3.2 Conventional method [65] 
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Fig. 4.8: Geometrical interpretation of a breakout 

 

Three cases of temperature dynamics are taken into account by the conventional system: 

The gradients of upper and lower temperature are defined as: 
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The temperature difference between the upper and the lower thermocouples is expressed as: 

)()()( 111 tTtTtT LULU −=∆ −            (4.6) 

The breakout detection algorithm is based on the analysis of the values of equations (4.4), 

(4.5) and (4.6). The limits  of Ua , La and ∆TU-L are predefined [65].  

False alarms are generally due to thermal perturbations. Sometimes these variations cannot be 

well detected by the conventional system using a fixed error range or a predefined statistical 

characteristics of the error between measured and calculated temperatures in each point. This 

introduces some false alarms and reduces the process reliability. The neural network permits 
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to solve the problem  by the learning process using the breakout data base related to the real 

and false alarm situation, respectively. 

 

4.3.3 Advanced methods using neural network modelling 
 

The principle of breakout detection using neural networks is based on the analysis of a node 

of thermocouples regarding upper and lower processing units. Each unit considers the 

temperature variation in time (time series model) and the interaction between different 

thermocouple temperatures (spatial model). Fig. 4.9 gives the principle of the neural network 

breakout detection system. 

 

4.3.3.1 Upper processing unit 
 

4.3.3.1.1 Time series model 
 

The time series model takes into account  the temperature variations that can be approximated 

by equation (4.1). The principle is to find the whole complex of relations between dynamic 

variations of temperature and the appearance of  defects [63, 69, 113]. This can be formulated 

by the following non-linear relationship: 

 

)]()....1(),([ nkTkTkTNNAlarm −∆−∆∆=         (4.7) 

    

)(kT∆  is the temperature change which is defined as: 

 

)1()()( −−=∆ kTkTkT               (4.8)    
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The model is obtained by the learning process using the back-propagation algorithm and the 

characteristics of breakout temperature.  Fig. 4.10 gives the learning principle of the time 

series model. 

 

 
Fig. 4.10: Principle of lea
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4.3.3.1.2 Spatial model 

 
The Spatial Model assumes  cross interaction between the thermocouples upper(j)-upper(j+1) 

and upper(j)-lower(j+1).  

O1 is the alarm output corresponding to the time series model of the upper thermocouple (j+1) 

O2 is the alarm output corresponding to the time series model of the upper thermocouple (j) 

O3 is the alarm output corresponding to the time series model of the lower thermocouple (j+1) 

Fig. 4.12 gives the principle of final alarm signals, Fig. 4.12a the structure of the spatial 

model and Fig. 4.12b the architecture of the NNs. 

 

Fig. 4.12a: Structure of the spatial model 

 

A1=NNs(O1,O2)             (4.9) 

A2=NNs(O2,O3)            (4.10) 

 

Table 4.1 gives the
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O1 O2 A1 O2 O3 A2 

0 0 0 0 0 0 

0 1 0 0 1 0 

1 1 1 1 1 1 

1 0 0 1 0 0 

 

Table. 4.1: Logic table of spatial model (upper processing unit) 

 

4.3.3.2 Lower processing unit 
 

Lower processing units assume a breakout control using the time series model related to the 

temperature difference between the upper and lower thermocouples. They are also considered  

as a spatial model to analyse the cross interaction between lower and upper thermocouples. 

 

4.3.3.2.1 Time series model 
 

For lower processing units the temperature difference between the upper and the lower 

thermocouples is considered.  

 

)()()( kTkTkT LULU −=∆ −           (4.11). 

 

In the same manner as in section (4.3.3.1.1) the output alarm is calculated as: 

 

)]([ kTNNAlarm LU −∆=                  (4.12) 

 

Fig. 4.13 illustrates the learning process using the difference )(kT LU −∆  between the upper 

and  lower thermocouples using breakout data from EKO STAHL. Breakouts are detected by 

a conventional system. At the sampling number of 400, alarm is activated  by passing from 0 

to 1.  
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Fig. 4.13a: Upper and lower temperature variations 
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4.3.3.2.2 Spatial model 
 

O4 is the alarm output corresponding to the time series model according to the temperature 

difference between the upper(j) and lower(j) thermocouples. 

O5 is the alarm output corresponding to the time series model of the lower thermocouple (j+1) 

The principle of final alarm is given by the following scheme (Fig. 4.14a): 

 

Fig. 4.14a: Spatial model (lower processing unit) 
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),,( 5423 OOONNA L
s=            (4.13) 

The L
sNN  architecture is given in Fig. 4.14b. 

Fig. 4.14b: Architecture of NNS
L 

Table 4.2 gives the logic table of  the spatial model according to the lower processing unit. 

O2 O4 O5 A3 

0 0 0 0 

0 0 1 0 

0 1 1 1 

1 1 1 1 

1 0 1 0 

1 0 0 0 

1 1 0 1 

0 1 0 0 

 

Table. 4.2: Logic table of spatial model (lower processing unit) 

NNS
L  is a combination of AND and OR logical function, it can be defined as: 

 

A3=[(O2 OR O5) AND O4]            (4.14) 

 

4.3.4 Application 
 

Using a typical breakout (alarm and temperature variations) detected by the conventional 

system from EKO STAHL, a NN model has been developed in section (4.3.3). The obtained 

NN models will be used to predict new series of alarm breakouts based on measured 

temperature fields. 
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The principle given in Fig. 4.15 consists of comparing the ability of the developed model to 

detect alarms with the conventional system and reality. 

 

Fig. 4.15: Comparison of dete
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Fig. 4.17a: Real breakout Nr 1: Thermocouple node [19-20-11-12] 
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Fig. 4.18a: Real breakout Nr 2: Thermocouple node [19-20-11-12] 
 

 

 

0 100 200 300 400 500 600
-4 

-2 

0 

2 

4 

0 100 200 300 400 500 600
-0.5

0 

0.5 

1 

1.5 

∆T
(k

)  
[°

C
] 

        ∆T(k)[19];       ∆T(k)[11];      
        ∆T(k)[12] 

Fig. 4.18b: Differentiation of equ(4.8)

A
la

rm
 si

gn
al

 [0
-1

] 

Sampling number 
Fig. 4.18c: Calculated and real alarms 

       A1 ;    *   A2     +  O3
       O2                   O1 
       Real alarm 

 
 
 
 

Chapter 4: Controlled solidification in continuous casting moulds                               Salah Bouhouche PhD thesis 2002



 70

 
 

0 100 200 300 400 500 600
-50 

0 

50 

100

0 100 200 300 400 500 600
-0.5 

0 

0.5 

1 

1.5 

∆T
(k

)U
-L

 [°
C

] 

Fig. 4.18d: Difference ∆T(k)U-L[11-12] 

A
la

rm
 si

gn
al

 [0
-1

] V   A3;       O2 
     Real alarm 
      O5,      O4  

Sampling number 

Fig. 4.18e: Real and calculated alarms 
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Fig. 4.19a: Real breakout Nr 2: Thermocouples node [13-11-12-14] 
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Fig. 4.19c: Calculated and real alarms 
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4.3.4.2 Application to false breakout prediction  
 

In this section false alarm processing detected by the conventional system at a sampling 

number of 400 is considered. False alarm is an alarm detected by the system while there is no 

breakout in reality. False alarm is generally announced by the conventional system when there 

are some measured temperature variations without generation of a real breakout. This 

situation can be observed at the moment of slag incrustation or measured temperature 

fluctuations. 

This work considered four (4) false alarms detected by the conventional system from EKO 

STAHL. Results are given in Figs. 4.20, 4.21 and 4.22. 
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Fig. 4.20a: False breakout Nr 1: Thermocouple node [3-4-5-6] 
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Fig. 4.20e: Real and calculated alarms 
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Fig. 4.21a: False breakout Nr 2: Thermocouples[3-4-5-6] 
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Fig. 4.21c: Real and calculated alarms 
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Fig. 4.22a: False alarm Nr 3: Thermocouple node [17-1-18-2] 
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Fig. 4.22c: Calculated and real alarms 
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Fig. 4.22e: Real and calculated alarms 

 
 
 
4.3.5 Results and analysis 
 

As presented in Table 4.3, the NN breakout system ability was tested through (10) real 

breakouts detected by the conventional system used by EKO STAHL. NN models have 

investigated all breakouts detected by the conventional system. The detection is achieved by 

the upper, lower and upper-lower processing units. In this case, NN and conventional systems 

are equivalent. 

 

System Sticker Misclassification Breakout 

Conventional 10 4 0 

NN model 10 0 0 

 

Table 4.3: Real breakout analysis 

 

Sticker   : Alarm has been generated and was justified 

Misclassification : Alarm has been generated but was not justified 
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Breakout  : A breakout occurred but no alarm has been generated 

 

In the case of false breakout detection by the conventional system (misclassification), the NN 

model has been tested through four (4) false breakouts detected by the EKO STAHL 

conventional system. The NN model has not detected all false alarms. In this case the NN 

model has a greater ability not to take into account the field temperature  variations that do 

not generate a breakout.  

 

As presented in Table 4.3, the objective of reducing the false alarm rate has been achieved. 

The NN breakout detection system has been tested through real data. The obtained results 

confirm an improvement.  
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5 CONTROL OF HEAT TRANSFER IN SECONDARY   

    COOLING 
 

5.1 Introduction 

 
In continuous casting, the cooling�solidification process is based on the adaptation of heat 

transfer which is directly connected to casting speed. In practice, the casting speed is 

continuously changed by the casting operator on the basis of thermal loss and  chemical 

composition of steel in the tundish. Most of the control schemes are based on the static 

relation between casting speed and water flow rate in each cooling zone. This constitutes an 

open loop that does not consider surface temperature variation which is an important 

parameter for slab quality. In steelmaking, changes in the casting speed affect the entire heat 

transfer. An optimal operation requires an adjustment of the process  variables, i. e., global 

heat transfer that depends on the operating point, steel grades, water flow rate and most 

importantly the casting speed. A learning NN allows the identification and the control of a 

non-linear heat transfer model in the continuous casting process. A heat transfer model was 

developed using the dynamic heat balance. A comparison between the experimental open 

loop results and those of the model simulation is considered. From the adaptation, the model 

is used for controlling the slab surface temperature in the closed loop using NN technology 

and PID controllers. Temperature stability is very important especially for casting crack 

sensitive steel grades. Such performance cannot be achieved without the NN technology, as 

the process features an important non-linearity and disturbances in casting speed, water 

temperature and specific heat coefficients.  

In the steel industry, the continuous casting process results in the formation of  steel strands  

obtained by the passage of liquid steel through several cooling zones. In this phase, the liquid 

steel is poured into the mould, cooled by water, and transfered through the cooling zones at a 

constant casting speed and a constant water flow rate. The final quality of the solidified strand 

depends on its thermal history within the  different cooling zones. It is, therefore, necessary to 

control the cooling based on the casting events,  variations of thermal loss, casting speed and 

different heat dissipation. In most industrial applications, the appropriate cooling rate is 

adjusted on the basis of  the casting speed by linear correlation and the anticipated casting 

speed effect on the temperature in the cooling zones [1-3]. This control approach is inefficient 

in transient response as the thermal diffusion and the relation between water flow rate and 
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casting speed is non-linear and an unsteady state function [14-16]. At present, this control 

approach is only an open loop linear static compensation. 

During the cooling phase, strands maintained at high temperature are in direct contact with the 

cooling water which leads to the formation of oxides called calamine involving variations in 

heat exchange and thus affecting surface temperature stability. From the results of 

metallurgical studies, surface defects such as cracks and segregations are generated due to  

variations in temperature in the different cooling zones. Thus it is essential to control the 

temperature in the  cooling zones. The appropriate application of water cooling is of great 

importance as it significantly affects the casting quality. The variation of temperature in the 

cooling zone causes a variety of problems such as residual stress, coarsening of 

microstructure and plastic deformation. The temperature at the embedding point should be out 

of the low ductility range [2, 3, 21] that is characterised by a high level of surface oxidation 

which generates instability of the measured surface temperature. 

The aim of the present work has been to develop a closed loop control scheme for temperature 

in all cooling zones. This control approach takes into account the overall heat transfer 

changes, i. e., casting speed variations and effects. Such a control scheme is based on NN 

identification and control. Due to their ability in approximating an arbitrary non-linear 

function, neural networks have become an attractive means for modelling complex non-linear 

processes such as strand cooling in continuous casting. Numerous neural network models and 

their corresponding learning strategies, particularly multilayered feed forward neural 

networks with back-propagation learning algorithms, have been proposed to identify the 

strand surface temperature in continuous casting. Our investigation is based on the on-line 

adaptive neural network method which is applied in this work to compute an optimal iterative 

control law [48, 113].  

 

5.2 Simplified heat transfer control model [13, 23, 114-117] 
 

Fig. 5.1 illustrates the cooling-solidification process control in continuous casting. 

Each cooling zone  is characterised by  temperature Ti(t), flow water rate qi(t) and length of 

the zone (li). 
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Fig. 5.1: Principle of continuous casting process control 
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Steel  flows into the mould at a temperature T0(t), called casting temperature, and at a casting 

speed v(t). 

The solidified strand is characterised by: 

- Strand density (ρ) 

- Strand specific heat (Cpi) 

- Geometrical characteristics (L, h see Fig. 5.3) 

The cooling changes are characterised by:  

- Water specific heat (CPe) 

- Water temperature (Te)  

 

The thermal balance in the dynamic regime for every  zone is given as: 

 

)T(t)(T(t)Cq(t))T(t)(T(t)Cq
dt

(t)dTCm eiPeii1iPim
i

Pii −−−= −     (5.1) 

where 

 

iLhlρmi = , ρLhv(t))(q m =t  

 

We consider Cpi, Cpe, mi, ρ  and Te  constant. 

A second order variation of the equation (5.1) is written as: 

)
dt

(t)dT
dt

(t)dT(
Cm
ρLhv(t)C

dt
dv(t)Lh(t))T(t)(T

Cm
C

dt
(t)Td i1i

Pii

Pi
i1i

Pii

Pi
2
i

2

−+−= −
− ρ     

                  
dt

(t)dT
Cm

(t)Cq
dt

(t)dq
)T(t)(T

Cm
C i

Pii

Peii
ei

Pii

Pe −−−                 (5.2) 

 

t
t)-(tT(t)T

dt
(t)dT iii

∆
∆−≈                 (5.3) 

where ∆t is the sampling time (the sampling number is a multiple of the sampling time). 

After transformation we obtain: 

 

F)1)(kET(k)DT2)(kCT1)-(k(BTA(k)T 1i1iii-1i +−++−+= −−        (5.4) 

where, 
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)(∆ta)(∆q∆ta(k)qa∆t(k)a∆q∆tA -1
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1
m2

-1
1m

-2 kqkt i++∆++= − ; 

)(q∆ta∆t(k)aq∆t2B i
-1

3
-1

2m
-2 k++=  

-2∆tC = ; -1
m2m

-1
1 t(k)qa)(∆q∆taD ∆+= k ; -1

m2 t(k)qaE ∆−= ; -1
ei3 ∆t(k)TqaF ∆−= ; 

1
iPi1 mCa −= ; 1

iPi2 mCa −= ; 11
iPe3 mCa −−= PiC ; 1)(kq(k)q)(q iii −−=∆ k ; 

1)(kq(k)q)(q mmm −−=∆ k  

Equation (5.2) is a non-linear relation, describing temperature variations in the zones (i), (i-1), 

and the casting speed and flow rate of cooling water in the zones (i), (i-1). It also considers 

the coupling due to zone interactions. The main influences on the strand surface temperature 

are the water flow rate, the strand specific heat coefficient (CPi), the specific heat coefficient 

of water (CPe), the water temperature (Te) and the casting speed (v(k)). Other variables are not 

crucial in casting operation. 

 

5.3 Measurement and experimental data analysis 
 

The simulation results obtained from the model described by equation (5.2) have been 

compared with measured results on the continuous casting process computer. 

The measurement principle is illustrated in Fig. 5.2 and achieved at the EKO STAHL 

(Germany) casting shop. 

An infrared pyrometer was installed in the cooling zone at 2.5 m below the level of the mould 

bath, which is supplied with compressed air for its own cooling. 

 
Fig. 5.2: Principle of temperature measurement and closed loop control 

Strand
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The measured signals of the pyrometer range from 4 to 20 mA corresponding  to a 

temperature range of  900 � 1300 °C. 

The sampling time for all process variables is equal to 8 s.  

 

The constants and structure of the model are shown in Fig. 5.3. The calculated and measured 

temperatures obtained by the model are shown in Fig. 5.4. Process dynamics described in Fig. 

5.4 have been used for testing the model temperature response. It has been noticed that an 

adequate choice of initial conditions for the model  described by equation (5.2) results in a 

static error approximately equal to zero. In the present case, the initial value of the casting 

temperature was equivalent to 1532°C. The complex metallurgical reactions such as strand 

surface oxidation  disturb the temperature measurement due to the variation of the specific 

heat  coefficient (CPi) of the steel. 

 

The change in water quality affects the specific heat coefficient (CPe) of the water. The casting 

temperature variation  (T0(t)) has a considerable effect on the internal stress and defects of the 

solidified strand, but it has a negligible influence on the strand surface temperature [3, 9]. As 

shown in Fig. 5.4, temperature variation of the sampling number 520 approximately is 

generated by a reduction of casting speed according to a casting incident. 
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Fig. 5.4b: Water flow  rate dynamics 
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Fig. 5.4c: Measured and calculated temperatures 
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5.4 Conventional control [114-118]  

 

5.4.1 Feed forward control 
 

The control scheme shown in Fig. 5.5 is currently applied to the majority of processes for a 

compensation of the casting speed variations carried out by a linear and stationary 

anticipation, where q0(t) is the minimal water flow rate. This control approach is operated in a 

linear open loop via feed forward. In this case, there is inevitably an important static error that 

cannot be accepted for a specific steel grade. The control objective is the stabilisation of the 

temperature Ti(t) at the desired value. From  equation (5.1) it can be seen where 

 

0
dt

(t)dTi =  ⇒ ]T(t)[T(t).Cq(t)]T(t)[T(t).Cq eiPeii1iPim −=−−    (5.5) 

a condition is reached represented by 

)T(TC
)T(TρLhC

v(t)
)(q

K
eiPe

i1iPiii lim −
−

== −

∞→

t
t

 

In a steady state regime, the control input is for each cooling zone (i) defined by: 

 

v(t)K(t)q i
i =            (5.6) 

 

where Ki is the compensation constant. The implementation of this control law allows to 

obtain the results given in Fig. 5.6. The variation of casting speed has induced a static error of 

surface temperature. This scheme is an open loop control system without any feedback. The 

important fluctuations of strand surface temperature would be able to increase the defect if 

their peaks and static error exceed a fixed threshold. 

Fig. 5.5: Principle of fee
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Fig. 5.6a: Casting speed 
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Fig. 5.6c: Controlled surface temperature 
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5.4.2 Proportional, integral and derivative digital control (PID) [119] 
 

Fig. 5.7 gives the closed loop structure using a PID controller. The tracking error for each 

cooling zone (i) is defined by the following equation: 

)()()(ei kTkTgk ii −=           (5.7) 

Where, Tgi(k), is the set point of each temperature cooling zone (i). The PID digital control 

attains a stable closed loop by an optimal tuning of PID actions. The control input is the water 

flow rate qi(k).  

Fig. 5.7: Structure of PID control 

 

 

• Analog PID control 
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• Analog PD control for TNi→→→→∝∝∝∝  
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• Analog PI control for TVi=0 
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KRi is the proportional action, TNi is the integral action and TVi is the derivative action. 

     Te       v(k)   CPi   CPe 

Ti(k)qi(k) Tgi(k) 

[PID]i 
 

Heat transfer 
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Chapter 5:Control of heat transfer in secondary cooling                                      Salah Bouhouche PhD thesis 2002 



 90

A digital control input is obtained by a discretisation of the derivative and the integral 

operators. From equ(5.8), the following digital control algorithms are obtained 

 

• Digital PID control 
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From equ (5.11) and equ(5.12), we obtain the recursive form: 
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• Digital PD control  
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• Digital  PI control 
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The general form of  the control law can be written as: 

 

)2(.)1(.)(.)1(.)( 2101 −+−++−= kebkebkebkqakq iiiiiiiii      (5.16) 

The stability of the recurrent equation (5.16) depends on the coefficients ia1 , ib0 , ib1  and ib2 . 

Optimal values of these coefficients form an optimal and stable closed loop. More details are 

presented in [119]: 

ia1 =1 : for the PI and PID algorithm 

ia1 =0 : for the PD algorithm 

ib0 = KRi(1+TVi/∆t),  ib1 =KRi(1- ∆t/TNi  +  2TVi/∆t) and ib2 = KRi. TVi/∆t   

The reference model is a second order system defined by the structural scheme in  

Fig. 5.8 and by the following equation: 

 

(k)r1)(kTg λ(k)Tg β1)(kTg iiiiii +−+=+      (5.17) 
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where ri(k) is the bounds input to the reference model. The coefficients βi and λ i were selected 

to ensure that the poles are within the unit circle and feature the type of the response achieved 

by the process. The selected reference model is asymptotically stable assuming that the 

tracking error tends to zero. 

 

 

         Fig. 5.8: Reference model structure 

 

Appropriate values of λ i and βi are obtained through the simulation in view of an optimal 

closed loop performance according to step variations of ri(k). 

After  several trials, the optimal values of controller actions (KRi, TNi and TVi) are chosen 

through the simulation. Optimal values of PID actions for the casting speed variations result 

in a closed loop stability limit for the heat transfer characterized by the variations of CPi, CPe 

and Te. Figs. 5.9 and 5.10 show the closed loop control performance for the variations of 

casting speed and specific heat coefficients. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

2nd Order model 
Tgi(k+1)=βiTgi(k)+λ iTgi(k-1)+ri(k)

ri(k) Tgi(k+1) 
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5.5 Neural network control 

 

5.5.1 Overall structure of the neural identification and control  
 

In this section, iterative on-line adaptive weights of the NN are considered. The control input 

is estimated to achieve a process output according to the track of a given reference signal. The 

neural network is used for controlling the heat transfer model, i. e., strand surface temperature 

is described by equation (5.2). The overall structure of the identification and control is given 

in Fig. 5.11. In a widely used multilayer feed forward network the past process output, the 

measured perturbations, control input and the past control input are introduced. At first, a feed 

forward NN identifies the inverse process model. The network weights are initialised by 

arbitrary values. These values are then used to compute the NN output. The network is trained 

to generate appropriate weights in order to reduce the error. After convergence after few 

iteration steps, the obtained NN weights are used to compute the control law.  

 

Fig. 5.11: Overall structure control using NN of temperature 
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For each secondary cooling zone, the inputs of the network are [Ti(k-1), Ti(k-2), qi(k-1),  

qi(k-2),v(k-1), v(k-2)] and  the output is Ti(k). 

 

5.5.2 Control using neural networks  
 

The objective of the control system is to track the strand surface temperature at the desired 

values as defined by the optimal operating conditions. The reference model through the 

trajectory selects the set point dynamics.  

The control scheme (Fig. 5.11) is used to compute the control law  using the weights from the 

identification process. For each controlled temperature zone, the control law minimises the 

tracking error. 

To ensure that  the error signal is equal to zero, the control inputs are inversely estimated by 

trained NN as: 

 

)]1(),1(),1(),1(),(),(),1(),1([)( 1111 −−−−++= −−−− kqkqkTkTkTkTkTgkTgNNkq iiiiiiiii (5.18) 

 

Figs. 5.12 and 5.13 show  the NN closed loop performance for the variation of casting speed, 

water temperature (Te) and specific heat coefficients (CPi, CPe). 

The on-line control algorithm can be summarised as follows:  

Step 0: Initialise the network weight (-0.5 to +0.5) 

Step 1: Identification 

• Acquisition of inputs/outputs 

• For each cooling zone (i), calculate the tracking error (k)(k)(k)e ii TTg i −=  

• If 0(k)ei ≅ , old
ijW=new

ijW  

• Else, adjust NN weights using the BP algorithm section (2.2.1.2) 

Step 2: Control 

• Using new
ijW , compute the new control inputs (k)qi , equation (5.18) 

• Next step time k=k+1 

• Go to step 1 
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Fig. 5.12: NN control according to casting speed variations 
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Fig. 5.13: NN  control according to variations of CPi, CPe and Te 
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5.6 Results of Simulation  
 

The analysis of the heat transfer dynamic model shows the existence of coupling between 

cooling zones (i) and (i-1). A multivariable structure with two inputs and two outputs has 

therefore been selected. The set points r1(k) and r2(k) are filtered by a second-order model that 

defines stable closed loop dynamics which  reduces the output temperature oscillations Ti(k) 

and limits the control saturation of water flow  rate qi(k). In the present NN controller, there 

are 8 nodes, yr1(k+1), yr2(k+1), T1(k), T2(k), T1(k-1), T2(k-1), q1(k-1) and q2(k-1), in the input 

layer. These include 3 in the first hidden layer and 2 in the second hidden layer and 2 NN 

outputs q1(k) and q2(k) are chosen to learn the controller dynamics equation (5.18). A learning 

rate (η ) of 0.01 and a momentum (α ) of 0.01 were used. The closed loops dynamics must 

track the second order system equation (5.17) with (λ1, λ2) of 0.5 and (β1, β2) of 0.4. For the 

same variations of casting speed, water temperature  and specific heat coefficients, the closed 

loop performance for the PID and the NN controllers were different. NN control gives an 

improvement of the surface temperature dynamics compared to PID with reduced  tracking 

error. After several simulations, an optimally tuned PID controller based on the variations of 

the casting speed has been found, while for other variables (Te, CPi and CPe), the surface 

temperature behaviour is yet to be improved. This was expected due to the large variations of 

process parameters and  the model non-linearities with some oscillations due mainly to the 

variations of Te, CPi and CPe. In practice, at normal operating conditions, the maximum 

variation of casting speed (| )1()( −− kvkv |) is limited to 0.3 m/min which doesn�t affect the 

surface temperature stability and reduces the inputs oscillations for NN and PID control. The 

present performance was obtained by iterative adaption of NN weights using  the tracking 

error. 

A closed loop control model has been developed. As shown in the different figures (Figs. 5.9, 

5.10, 5.12 and 5.13), the closed loop is stable. NN identification and control strategy achieve a 

robust and stable temperature closed loop control comparatively to the conventional PID. 
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6 FAULT AND QUALITY MONITORING BY DATABASE MODELLING 
 

In continuous casting, on-line quality control systems and process fault detections are 

generally based on the implementation of mathematical models  using the process database. It 

is usually possible to find a complex relation between the quality or fault and the process 

parameter variations. Statistical Process Control (SPC) is applied in different steel plants as a 

tool for process monitoring. SPC is used to obtain the monitoring process parameters which 

are controlled between a low and high limit defined by the optimal operating conditions using 

their statistical properties. NN�s permit to obtain complex non-linear relationships between 

quality or defect classification and process parameters [33, 34, 120, 121, 122]. This 

constitutes an important tool for the optimisation of quality control and fault detection. 

Quality defects have many origins such as important process parameter deviations and faults 

due to equipment. In practice, it is sometimes very difficult to find the cause of a fault in the 

equipment without a real-time machine and equipment monitoring and analysis. Two 

applications are considered in this chapter, the first is related to breakout alarms and their  

effect on strand defects and  the second is an application of real-time monitoring of casting 

speed control equipment parameters. This approach of monitoring has been used to find the 

cause of faults. The aim of this section is the following 

• Monitoring of strand defects on the basis of the alarm number detected by the 

breakout system. 

• Real-time monitoring and diagnosis using computerised methods as a tool of fault 

investigation (data acquisition and modelling using neural networks).  

 
6.1 Breakout alarm and quality monitoring in continuous casting 
 

6.1.1 Position of the problem  

 
In chapter 4 a breakout detection system based on temperature field changes using breakout 

events was developed. It is shown that a breakout can be detected by several alarms together 

or by individual ones. False alarms are caused by temperature field changes and can be 

cancelled by advanced modelling. In  this section, the relationship between breakout alarms 

and the importance of defects on the strand surface is considered. Using upper and lower 

processing units of breakout it is possible to find a complex relation between alarms generated 
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by different units, breakout importances and models. Fig. 6.1 defines the principle of alarm 

breakout and quality management. 

Fig. 6.1. Principle of alarm breakout management and quality monitoring 

 

6.1.2. Alarm, breakout propagation and quality monitoring 

 
On the basis of the importance of breakouts (Fig. 6.2), the different possibilities for breakout 

detection include: 

• Propagation follow trace 1: Alarm acted by thermocouples upper(j) and upper(j+1)  

• Propagation follow trace 2: Alarm acted by thermocouples upper(j) and upper(j+1) 

and lower(j+1) 

• Propagation follow trace 3: Alarm acted by thermocouples upper(j) and lower(j). 

A strong breakout is achieved  by the  detection of all thermocouples together. 

False alarm can be also considered. In such a situation there exists no breakout but the surface 

quality is affected by cracks, for example. 
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Fig. 6.2: Thermocouple node and breako

 

6.1.2.1 Classification [120, 122] 
 

The importance of breakout defects depends on their prop

the mould which is measured by different thermocouple

4.3.3), alarm signals and the following logic table (Tabl

quality effects: 

Alarm A1 Alarm A2 Alarm A3 Alarm O4 

0 0 0 0 

0 0 0 1 

0 0 1 0 

0 0 1 0 

0 1 1 0 

0 1 1 1 

1 1 1 1 

1 1 1 0 

 

Table 6.1: Alarms and quality clas

 

 

Upper(j) Upper(j+1) 

Lower(j)  

trace 1 

2

trace 3 

Sticking point 
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ut propagation 

agation in the temperature field of 

s. As shown in Fig. 4.9 (section 

e 6.1) can define breakout strand 

Q Quality classification

1 100%[very good] 

0.75 75%[good] 

0.5 50%[medium] 

0.5 50%[medium] 

0.5 50%[medium] 

0.5 50%[medium] 

0 0%[low] 

0 0%[low] 

sification 

Lower(j+1) 



 

 

Table 6.1: Alarms and quality classification (continued) 

 

6.1.2.2 Modelling  
 

The following neural network (Fig. 6.3) represents a model according to Table 6.1: 

Fig. 6.3:Structure of alarm and quality evaluation using the N

 

We define Q as: 

 

Q = NN[A1, A2, A3, O4]        

 

NN is found using a back-propagation learning algorithm( see Figs. 6.4a

 

1 0 1 1 0.5 50%[medium] 

1 0 1 0 0.5 50%[medium] 

1 0 0 0 0.5 50%[medium] 

1 0 0 1 0.5 50%[medium] 

1 1 0 0 0.5 50%[medium] 

1 1 0 1 0.5 50%[medium] 

0 1 0 0 0.5 50%[medium] 

0 1 0 1 0.5 50%[medium] 
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6.2 Process monitoring and casting speed control fault detection  
 

6.2.1 Position of the problem  
 

The continuous casting process is characterised by several parameters with different physical 

criteria such as casting temperature and particularly casting speed at different locations of the 

strand machine. A PID algorithm controls the casting speed. 

In this part, an approach to diagnosis and detection of a power defect in the trained casting  

mechanism has been considered in SIDER- Algeria. This fault caused important disturbances 

in the production line. The defect is characterised by an important constrain of the steel strand 

between the guiding rolls. The diagnosis process is based on the real-time monitoring of the 

rotation equipment  parameters with  importance  given to the casting speed and the motor 

current. The monitoring is achieved using a rapid computerised data acquisition system. After 

repair, the fault data bank was used to develop a neural network model for detection and 

prediction of fault occurrence. 

The casting process is a semi-continuous process that transforms the liquid steel to strands 

which are firstly cooled in different cooling zones before being guided via several driven 

motors rolls to obtain a semi-product at the end. Fig. 6.5 shows the principle of the casting 

and rolling guidance where the different roll speeds are controlled in a closed loop. 

 

 

 

 

 

 

 

) 
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6.2.2 Process analysis and diagnosis 

 
In this work, an approach to process diagnosis and fault detection has been developed using 

the major parameters of the casting speed control dynamics. 

The aims are to 

• establish a rapid detection of fault origin at normal operating conditions  

• develop a model for detecting and predicting typical faults using the monitoring and 

modelling techniques. 

The treated problem may be due to  different factors such as mechanical process parameter 

and casting speed control. Real-time monitoring of the important parameters is achieved. The 

present  approach may contribute to solve the problem related to the casting speed shutdown 

when there exists a synchronisation problem between different roll guidances (v1(t), v2(t), 

vn(t)). 

Fig. 6.6 gives the structure of the closed loop casting speed. After several trials, monitoring of 

the main parameters such as the casting speed and the driving current of the final rotation 

units number one (Nr 1) and number two (Nr 2) is considered. 

The principle of data acquisition, monitoring and diagnosis is given in Fig. 6.6. 

 
Fig. 6.6: Principle of clo
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 monitoring and diagnosis 

cquisition system interfaces using a 

results are given in Fig. 6.7. 
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Analysis of  data shows that the motor current is cancelled at the moment when the motor 

must have a maximum power. This observation has been used to verify the power bloc; the 

defect is detected on the electrical power unit. After repair, the casting process has continued 

to operate normally without strand defects. The results are given in Fig. 6.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.3 Fault detection and modelling 
 
Data acquisition from the process is used as a data bank to model the faults related to the  

electrical power unit. The objective of the modelling is to detect and  predict a similar defect 

which permits the quick detection of the origin and reduces the reject production. The desired 

alarm model equation is: 

 

1)]-(kv(k),),1(),([Alarm 11vkIkINN −=        (6.2) 

 

The overall structure of the fault detection is given in Fig. 6.9. This is a widely used 

multilayer feed forward network in which the measured process parameters are used as inputs. 

Firstly, a feed forward NN identifies the alarm model in which  the network weights are 

initialised by arbitrary values. These values are then used to compute the NN output. The 

error between computed  and real output is propagated by the learning rate and the network is  
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designed to generate appropriate weights in order to reduce the error. After convergence, the 

obtained NN weights are used to compute the alarm output.  

 

Fig. 6.9: Overall structure of learning and modelling of the alarm model 

For each sampling number, the network input is [I(k), I(k-1),v1(k), v1(k-1)] and the output is 

an alarm signal d [0 �1]. Fig. 6.10 gives the learning convergence of the fault detection 

model. 
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6.2.4 Application 
 

The objective of the fault detection model is to predict a future defect by releasing an alarm. 

The alarm signal is equal  to zero (0) at normal operating conditions and is equal to one (1) 

when there is a defect. The neural network modelling and identification of the considered 

defect are achieved by an off-line learning mode. The neural network model fault detection 

was implemented on the process computer using graphic programming software under a 

Windows NT operating system. Results of on-line application of this model are given in Figs. 

6.11, 6.12 and 6.13. 

 

6.2.5 Results  
 

The learning processes of neural networks were achieved using an off-line training by the 

process defect database. The model convergence given in Fig. 6.8 was obtained in 110 

epochs. The obtained neural network weights were used to detect the faults related to the on-

line thyristor defects. Two types of model input signals were applied based on normal 

operating conditions and  process defects. Figs. 6.11 and 6.12 show two cases for the model 

capability to detect a fault using the developed model. Two tests have been realised (Figs. 

6.11 and 6.12) for the case of defect presence. Alarms are activated by passing from 0 to 1 at 

the sampling number of 580 and 3000 respectively (Figs. 6.11b and 6.12b). Fig. 6.13 shows 

the normal operating conditions and the alarm level which equals approximately zero (of the 

order of 10-4). This modelling and prediction technique allows for the detection of the casting 

speed synchronisation problem that strongly affects  the strand surface quality. 

A NN model has been developed for quality monitoring on the basis of breakout propagation 

in the mould. The obtained results confirm the importance of NN as a tool for quality control, 

fault diagnosis and investigation.  

 

 

 

 

 

 

 

 

Chapter 6 : Fault and quality monitoring by database modelling                        Salah Bouhouche PhD thesis 2002  



 110

Example I 
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Fig. 6.11a: Dynamical motor parameters 
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Example II 
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Fig. 6.12a: Dynamical motor parameters 
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Example III 
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7 CONCLUSION AND OUTLOOK 
 

In this thesis work, a contribution to process and quality optimisation in ladle refining and 

continuous casting of steel has been developed. The advanced tools based on neural networks 

modelling have been applied to different process stages in steel production. Particular 

attention has been given to the development of a reliable breakout prediction system in 

continuous casting. The ability of this new system has been tested using breakout alarm 

databases from EKO STAHL, Eisenhüttenstadt, Germany. 

 

The NN breakout system based on the instrumentation of the mould by a matrix of 

thermocouples using a model of prediction by NN was developed, implemented and tested. 

The training of the model and tests of detection were carried out using real and false breakout 

data. In the case of real alarm, the results do not detect the presence of false alarms. The 

developed algorithm detected the dynamic behaviour of temperature profiles having generated 

real breakouts. In the case of false alarms, the developed model does not detect  false 

breakouts. 

 

The ability of the NN to detect complex processes by noise signals makes these a valuable 

tool in almost all fault detections and helps in increasing the production quality standards. 

This work is an example for a NN based system which has been acquired using earlier data 

and can improve continuously by learning from  experiences gathered during on-line 

operation. The capability of the neural breakout detection system can be summarised by the 

following items: 

 

• Reliable detection of stickers in the continuous casting process 

• Avoidance of the misclassification of conventional alarm systems 

• Invariance with respect to variations in steel quality 

• Robustness based on the variations of casting conditions 

• Robustness on the basis of  bath level and steel temperature variations 

 

The results of the off-line evaluation have been fully confirmed. All real alarms have been 

detected by both systems. However, the alarms from the NN detection system occur  earlier 

compared to those of the conventional system.  
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rther developments seem to be necessary for a better optimisation of the structure and 

rameters of the model. 

 chapter 3, a NN predictor was designed and tested through simulation and practice. The 

evious NN model based on the back-propagation learning algorithm has a good prediction 

rformance. Because the casting cycle is long, the learning process is easily achieved 

tween the actual and the next charge. The prediction ability using NN improves the 

ediction capacity. Large-scale industrial tests, on-line implementation in steelmaking and 

e development of a software package are currently being investigated at SIDER Group 

geria. In specific situations of steel refining processes, where there are problems related to 

e timing and the chemical analysis equipment, this model can be used as a soft sensor to 

edict the final chemical composition without waiting for laboratory analysis results. This 

proach can be expanded without difficulties to other typical processes. 

NN closed loop control scheme of heat transfer in the continuous casting process was 

signed and tested through simulation in chapter 5. The neural network controller based on 

 inverse model seems to have a good control performance for changes of heat transfer 

rameters, casting speed variations and set point changes. The changes in strand surface 

perature are smaller than in conventional control where there exists an important tracking 

ror. Coupling effects are also cancelled. The implementation of on-line control in the 

ntinuous casting process is currently being investigated. Feedback control requires a 

ntinuous measurement of surface temperature in the cooling zones. This constitutes a 

sadvantage. In practice it is recommended that this approach should be used only in specific 

uations with regard to sensitive steel grades.  

 chapter 6, systems for fault diagnosis, detection of cracks and  repair were realised in the 

ntinuous casting process using real-time monitoring of the major process parameters. The  

al-time monitoring of the process parameters is an important tool for detecting and repair 

cause it reduces the defect searching time. Fault databases were used to develop a fault 

odel that predicts future defects by the electrical power unit using dynamics of the rotation 

stem parameters such as rolling speed and electrical current.  This model is actually 

plemented on the process computer in the continuous casting process. 
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e NN quality monitoring is a non-linear classifier which is obtained by a combination of 

levant variables that have been considered by the breakout detection system.  Breakout 

rm monitoring using the NN model is an important tool to quality classification. It can be 

ed to guide quality inspection services.  

e breakout alarm management and quality monitoring remains open for other developments 

ch as neuro-fuzzy application to a number of alarms and breakout defects. 

he application of this technology for the prediction of other types of defects will be the 

bject of future research and development work. 

contribution to the improvement of main processes in steelmaking has been achieved. The 

ientific importance given through the NN model implementation and on-line control 

presents a highlight. Particular importance has been given to the breakout detection system 

ich is of great economical impact. Mathematical modelling does not completely solve 

oblems in steelmaking but in the majority of cases it leads to an improvement. Parallel 

ocess computing approaches can be used as a means for future development and application 

   mathematical modelling in the main processes of the steel industry.  
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