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A B S T R A C T

My dissertation shows how neural networks can be used in order to achieve more
accurate approximation as well as better decision making in financial markets. In
order to study its approximation ability for computational finance, I perform differ-
ent empirical investigations. First, neural networks are suitable for approximating
price functions of assets. I present empirical results for pricing and hedging FX
options. Second, the usage of neural computing for forecasting financial time series
is investigated, where neural networks compete with traditional time series models.
I show empirical studies about the maritime freight rates market and the Chinese
FX market. Above all mentioned techniques remains the question of neuronal
computing application in the financial industry. In a last step I thus propose the
implementation and design of a financial decision support system with neural
networks. Nevertheless, I also expose limitations and further research topics in
the area of neural networks, which could improve applications in computational
economics in the future.
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Z U S A M M E N FA S S U N G

Meine Dissertation zeigt, wie Neuronale Netze für eine bessere Entscheidungs-
findung an den Finanzmärkten eingesetzt werden können. Um die Approxima-
tionsfähigkeit für den Einsatz in Computational Finance zu analysieren, habe
ich verschiedene empirische Untersuchungen durchgeführt. Zunächst eignen sich
Neuronale Netze für die Approximation der Preisfunktion von Assets. Ich zeige
empirische Ergebnisse für die Preisfindung und Absicherung von FX-Optionen.
Zweitens wird der Einsatz von Neural Computing für die Prognose finanzieller
Zeitreihen untersucht, wo Neuronale Netze mit traditionellen Zeitreihenmodellen
konkurrieren. Dazu zeige ich empirische Analysen über den maritimen Frachtraten-
markt und den chinesischen Devisenmarkt. Über allen erwähnten Techniken bleibt
die Frage der Anwendung von Neural Computing in der Finanzmarktindustrie.
Ich schlage daher in einem letzten Schritt die Umsetzung und das Design eines
Financial Decision Support System mit Neuronalen Netzen vor. Dennoch stelle ich
auch Einschränkungen und weitere Forschungsthemen für den Einsatz von Neural
Computing vor, die Anwendungen im Bereich von Computational Economics in
Zukunft verbessern könnten.
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X . . . . . . . . . . . . . . . . . . . 20

Figure 3.1 h-step forecasting model scheme . . . . . . . . . . . . . . . . 21

Figure 3.2 Model classification of the shipping freight rates market . . 25

Figure 3.3 Examined freight rates and neural network specification . . 30

Figure 3.4 RMB FX market: three different currencies; HSBC . . . . . . 33

Figure 3.5 Examined FX rates and neural network specification . . . . 36

Figure 4.1 Different computerized DSSs; Power and Sharda (2007) . . . 38

Figure 4.2 DSS architecture framework; Holsapple (2008) . . . . . . . . 40

Figure 5.1 Assessment criteria . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure A.1 Exemplarily 3-layered perceptron . . . . . . . . . . . . . . . . 56

Figure A.2 Approximation of a function f (~x) and its first partial deriva-
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure A.3 Simulated training data of intra-day FX EUR/USD quotes . 62

Figure A.4 Option call price approximation . . . . . . . . . . . . . . . . 62

Figure A.5 First-order partial derivatives approximation . . . . . . . . . 64

Figure A.6 Higher-order partial derivatives approximation . . . . . . . 65

Figure C.1 Topology of a typical NN for time series forecasting . . . . . 73

Figure C.2 Renminbi quotes in the sample period from 08 September
2010 to 20 March 2013 . . . . . . . . . . . . . . . . . . . . . . 75

Figure D.1 Our FDSS development methodology framework with de-
sign science research according to Hevner et al. (2004) . . . 83

Figure D.2 Overview about the proposed FDSS to pricing and trading
FX options - embedded in a high-frequency trading process 86

Figure D.3 Our proposed neural network’s topology (three-layered per-
ceptron) used for market price synthesis . . . . . . . . . . . . 88

Figure D.4 Underlying EUR/USD futures prices, EUR/USD FX options
and correspondent option premiums for six different strike
prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure D.5 Separation in training, validation and out-of-sample gener-
alization sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



list of figures xii

Figure D.6 Quantile-quantile plot of fitted (model) and observable op-
tion market prices . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure D.7 Best 25 single training errors of topologies A-F (hidden neu-
rons 1-5 and 8) for 100, 1000 and 5000 successfully trained
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure E.1 Exemplarily 3-layered perceptrons . . . . . . . . . . . . . . . 100

Figure E.2 NN topologies (three-layered perceptron) with variable num-
ber of hidden neurons used for market price synthesis . . . 104

Figure E.3 Underlying EUR/USD futures prices and options for five
different strike prices . . . . . . . . . . . . . . . . . . . . . . . 107

Figure E.4 Density of pricing errors . . . . . . . . . . . . . . . . . . . . . 112

Figure F.1 Topology of a typical NN for time series forecasting . . . . . 119

Figure F.2 Spot and forward prices for TD3 and TD5 . . . . . . . . . . . 121

Abbildung J.1 Raummodell kontextsensitiver Interaktion und Kommunika-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Abbildung J.2 Bedürfnisse als Treiber im Nomadic Computing . . . . . . . 144

Abbildung J.3 Vorgehen im Referenzmodell zur Potentialanalyse und -
bewertung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Abbildung J.4 Identifikation von mobilen Prozessteilen . . . . . . . . . . . . 156



L I S T O F TA B L E S

Table 2.1 Model typology . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Table 2.2 Studies using NNs to price and to hedge financial options . 16

Table 3.1 Model typologies; McNelis (2005) . . . . . . . . . . . . . . . . 23

Table A.1 2–5–1 NN results for BAW call price function . . . . . . . . . 63

Table A.2 Approximation accuracy . . . . . . . . . . . . . . . . . . . . . 66

Table C.1 Descriptive statistics for the onshore/offshore spot and for-
ward prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table C.2 One step-ahead forecasting performance for spread, CNH
and CNY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table D.1 Dataset of six EUR/USD FX options on futures (underlying)
with different strike prices in the period from 13 August
2012 to 7 September 2012 . . . . . . . . . . . . . . . . . . . . . 90

Table D.2 NN approximation performance of option market prices
with different network topologies (1000 successfully com-
puted networks) . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Table D.3 Major clusters of critical aspects, limitations or possible en-
hancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Table E.1 Number of ticks in the whole trading simulation period . . 106

Table E.2 Statistical out-of-sample pricing accuracy for all strike prices 110

Table E.3 Statistical out-of-sample pricing accuracy for each trading
period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Table F.1 Overview of the relevant freight forward contracts . . . . . . 120

Table F.2 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . 123

Table F.3 Johansen tests for the number of cointegration vectors . . . 124

Table F.4 Estimation parameter and diagnostics . . . . . . . . . . . . . 125

Table F.5 One-step ahead forecast performance for Route TD3 . . . . 126

Table F.6 One-step ahead forecast performance for Route TD5 . . . . 126

Table F.7 Trading performance for Route TD3 . . . . . . . . . . . . . . 129

Table F.8 Trading performance for Route TD5 . . . . . . . . . . . . . . 130

Tabelle J.1 Begriffsbestimmungen Nomadic Computing . . . . . . . . . 137

Tabelle J.2 Nutzenpotentiale . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiii



ACRONYMS

ARIMA Autoregressive Integrated Moving Average.
ATM at-the-money.

BAW Barone-Adesi and Whaley.
BS Black-Scholes.

CME Chicago Mercantile Exchange.
CNH offshore Yuan.
CNY onshore Yuan.
CPU Central Processing Unit.

DSS Decision Support System.

FAUN Fast Approximation with Universal Neural Net-
works.

FFA Forward Freight Agreement.
FX Foreign exchange.

GARCH Generalized Autoregresssive Conditional Hetero-
cedasticity.

GPU Graphics Processing Unit.

HFT High-frequency Trading.

ITM in-the-money.

MLP Multilayer perceptron.

NN Neural Networks.

OTM out-of-the-money.

RMB Renminbi.
RMSE root mean square error metric.

xiv



acronyms xv

RW Random Walk.

S&P Standard Poor’s.
SPI Australian Share Price Index futures.

VAR Vector Autoregression.
VECM Vector Error Correction Model.
VLSI Very-large-scale-integrated technology.



S Y M B O L S

b Bias.
Ct Option call price at time t.
C(In) Space of continuous functions on the n-dimensional

unit hypercube [0, 1]n.
∆ Option Delta.
ε Error.
Ft Forward/Futures price at time t.
f (·) Target function.
f̂ (·) Approximated network function.
Γ Option Gamma.
k Training pattern.
κT−t Costs of carrying rate between period t and T.
ϕ(·) Network activation function.
r Risk-free interest rate.
ρ Performance metric.
St Spot market price at time t.
σ Volatility of the underlying.
τ Maturity time T − t.
Θ Option Theta.
wj Network weights from input to hidden layers.
νj Network weights from hidden to output layers.
X Strike price.
x Network input variables.

xvi



P U B L I C AT I O N S

I have grouped all papers by "publication classes". You will also find a list of all
conferences where I have lectured.

journal papers and book chapters

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2013). Numerical
Approximation of Option Pricing Functions and Its Partial Derivatives by Neural
Networks. In: Dunis, C., Mettenheim, H.-J.v. and McGroarty, F. (Eds.), New
Developments in Quantitative Trading and Investment (submitted/forthcoming).
Palgrave Macmillan, Basingstoke.

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2014). Real-time Pric-
ing and Hedging of Options on Currency Futures with Artificial Neural Networks.
Journal of Forecasting 33 (6), 419-432.

• Spreckelsen, C.v. , Kunze, F. , Windels, T. and Mettenheim, H.-J.v. (2014).
Forecasting Renminbi Quotes in the Revised Chinese FX Market - Can We get
Implications for the Onshore/Offshore Spread-Behaviour? International Journal of
Economic Policy in Emerging Economies 7 (1), 66-76.

Paper also presented at the 20th Forecasting Financial Markets Conference
2013, Hannover, Germany, May 29-31, 2013.

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2014). Steps towards
a High-frequency Financial Decision Support System to Pricing Options on Cur-
rency Futures with Neural Networks. International Journal of Applied Decision
Sciences 7 (3), 223-238.

conference contributions and proceedings

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2013). Pricing and
Forecasting of High-Frequency Options on Currency Futures with Fast Neural Net-
works. Paper presented at the 20th Forecasting Financial Markets Conference
2013, Hannover, Germany, May 29-31, 2013.

Paper also presented at the 26th European Conference on Operational Re-
search 2013, Rome, Italy, July 01-04, 2013.

xvii



publications xviii

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2012). Freight Rates
in the Tanker Shipping Market - Short-Term Forecasting of Spot Rates and Derivatives
with Linear and Non-Linear Methods. Paper presented at the 19th Annual
Meeting of the German Finance Association (DGF), Hannover, Germany,
October 05-06, 2012.

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2012). Short-Term
Trading Performance of Spot Freight Rates and Derivatives in the Tanker Shipping
Market: Do Neural Networks provide suitable results? In: Engineering Appli-
cations of Neural Networks, 13th International Conference, EANN 2012,
London, UK, September 20-23, 2012. Communications in Computer and
Information Science Volume 311, pp. 443-452.

• Spreckelsen, C.v. , Mettenheim, H.-J.v. and Breitner, M.H. (2012). Spot and
freight rate futures in the tanker shipping market: short-term forecasting with linear
and non-linear methods. In: Operations Research Proceedings 2012: Selected
Papers of the International Annual Conference of the German Operations
Research Society (GOR), Leibniz University of Hannover, Germany, September
5-7, 2012, pp. 247-252.

reports

• Spreckelsen, C.v. , Bartels, P. and Breitner, M.H. (2006). Geschäftsprozessorien-
tierte Analyse und Bewertung der Potentiale des Nomadic Computing. IWI Discus-
sion Paper No. 17, 14. Dezember 2006.

presentations at conferences

• International Annual Conference of the German Operations Research Society
(GOR), Hannover, Germany, September 5-7, 2012.

• 13th International Conference, EANN 2012, London, UK, September 20-23,
2012.

• 19th Annual Meeting of the German Finance Association (DGF), Hannover,
Germany, October 5-6, 2012.

• 20th Forecasting Financial Markets Conference 2013, Hannover, Germany,
May 29-31, 2013.

• 26th European Conference on Operational Research 2013, Rome, Italy, July
01-04, 2013.



publications xix

R
an

ki
ng

s

C
ha

pt
er

D
at

e
Ti

tl
e

En
ti

ty
V

H
Ba

SJ
R

b
A

BD
C

c

A
fo

rt
hc

om
in

g
T

he
»G

re
ek

s
A

pp
ro

xi
m

at
io

n«
Pa

pe
r:

N
um

er
ic

al
A

pp
ro

xi
m

at
io

n
of

O
p-

ti
on

Pr
ic

in
g

Fu
nc

ti
on

s
an

d
It

s
Pa

rt
ia

lD
er

iv
at

iv
es

by
N

eu
ra

lN
et

w
or

ks
Bo

ok
C

ha
pt

er

B
2

0
1

4
Th

e
»P

ri
ci

ng
an

d
H

ed
gi

ng
O

pt
io

ns
«

Pa
pe

r:
R

ea
l-t

im
e

Pr
ic

in
g

an
d

H
ed

g-
in

g
of

O
pt

io
ns

on
C

ur
re

nc
y

Fu
tu

re
s

w
it

h
A

rt
ifi

ci
al

N
eu

ra
lN

et
w

or
ks

Jo
ur

na
l

B
Q

2
A

C
2

0
1

4
Th

e
»F

or
ec

as
tin

g
R

en
m

in
bi

Q
uo

te
s«

Pa
pe

r:
Fo

re
ca

st
in

g
R

en
m

in
bi

Q
uo

te
s

in
th

e
R

ev
is

ed
C

hi
ne

se
FX

M
ar

ke
t

-
C

an
W

e
ge

t
Im

p
lic

at
io

ns
fo

r
th

e
O

ns
ho

re
/O

ff
sh

or
e

Sp
re

ad
-B

eh
av

io
ur

?

Jo
ur

na
l

Q
4

C

D
2

0
1

4
Th

e
»F

in
an

ci
al

D
ec

is
io

n
Su

pp
or

t
Sy

st
em

«
Pa

pe
r:

St
ep

s
to

w
ar

ds
a

H
ig

h-
fr

eq
u

en
cy

Fi
na

nc
ia

l
D

ec
is

io
n

Su
p

p
or

t
Sy

st
em

to
P

ri
ci

ng
O

p
ti

on
s

on
C

ur
re

nc
y

Fu
tu

re
s

w
it

h
N

eu
ra

lN
et

w
or

ks

Jo
ur

na
l

Q
2

E
2

0
1

3
Th

e
»P

ri
ci

ng
O

pt
io

ns
«

Pa
pe

r:
Pr

ic
in

g
an

d
Fo

re
ca

st
in

g
of

H
ig

h-
Fr

eq
ue

nc
y

O
pt

io
ns

on
C

ur
re

nc
y

Fu
tu

re
s

w
it

h
Fa

st
N

eu
ra

lN
et

w
or

ks
C

on
fe

re
nc

e

F
2

0
1

2
T

he
»F

or
ec

as
ti

ng
Fr

ei
gh

t
R

at
es

I«
P

ap
er

:
Fr

ei
gh

t
R

at
es

in
th

e
Ta

nk
er

Sh
ip

pi
ng

M
ar

ke
t-

Sh
or

t-
Te

rm
Fo

re
ca

st
in

g
of

Sp
ot

R
at

es
an

d
D

er
iv

at
iv

es
w

it
h

Li
ne

ar
an

d
N

on
-L

in
ea

r
M

et
ho

ds

C
on

fe
re

nc
e

G
2

0
1

2
T

he
»T

ra
d

in
g

Ta
nk

er
Fr

ei
gh

t
R

at
es

«
P

ap
er

:S
ho

rt
-T

er
m

Tr
ad

in
g

P
er

fo
r-

m
an

ce
of

Sp
ot

Fr
ei

gh
t

R
at

es
an

d
D

er
iv

at
iv

es
in

th
e

Ta
nk

er
Sh

ip
p

in
g

M
ar

ke
t:

D
o

N
eu

ra
lN

et
w

or
ks

pr
ov

id
e

su
it

ab
le

re
su

lt
s?

Pr
oc

ee
di

ng

H
2

0
1

2
T

he
»F

or
ec

as
ti

ng
Fr

ei
gh

t
R

at
es

II
«

Pa
pe

r:
Sp

ot
an

d
fr

ei
gh

t
ra

te
fu

tu
re

s
in

th
e

ta
nk

er
sh

ip
p

in
g

m
ar

ke
t:

sh
or

t-
te

rm
fo

re
ca

st
in

g
w

it
h

lin
ea

r
an

d
no

n-
lin

ea
r

m
et

ho
ds

Pr
oc

ee
di

ng

J
2

0
0

6
T

he
»N

om
ad

ic
C

om
p

u
ti

ng
P

ap
er

«
P

ap
er

:G
es

ch
äf

ts
p

ro
ze

ss
or

ie
nt

ie
rt

e
A

na
ly

se
un

d
Be

w
er

tu
ng

de
r

Po
te

nt
ia

le
de

s
N

om
ad

ic
C

om
pu

ti
ng

R
ep

or
t

a
Ve

rb
an

d
de

r
H

oc
hs

ch
ul

le
hr

er
fü

r
Be

tr
ie

bs
w

ir
ts

ch
af

t
e.

V.
2

.1
.

b
SC

Im
ag

o
Jo

ur
na

lR
an

k
(S

JR
in

di
ca

to
r)

.
c

A
us

tr
al

ia
n

Bu
si

ne
ss

D
ea

ns
C

ou
nc

il
Jo

ur
na

lQ
ua

lit
y

Li
st

2
0

1
3

R
ev

ie
w

.



E X E C U T I V E S U M M A RY

Estimating an underlying relationship from a given finite input-output data set - or
more precisely: function approximation involves - has been the fundamental prob-
lem for a variety of applications in financial engineering. Nowadays, feedforward
neural networks such as Multilayer perceptron (MLP) have been widely used as
an alternative approach to function approximation since they provide a generic
functional representation. They have been shown to be capable of approximating
any continuous function with arbitrary accuracy.

This dissertation shows how neural networks can be used in order to achieve
more accurate approximation as well as better decision making in financial markets.
The importance of better market price approximation or synthesis, forecasting, and
the relationship between spot and derivative markets for better decision making,
in the light of increasing financial market volatility and internationalized capital
flows, cannot be over exaggerated. In order to study its approximation ability for
computational economics, I perform different empirical investigations. Figure 0.1
summarizes the organization of my dissertation.

netwok approximation by theory

The universal approximation theorem of Cybenko (1989) and Hornik (1989) pro-
vides the latent basis of my empirical studies. Artificial neural networks can be
mathematically shown to be universal function approximators. This means that
NNs can automatically approximate whatever functional form characterizes the
data best. Since it is my goal to extract an alternative option pricing function by
market observations, I focus on MLP that are applicable to non-linear regression
problems. I follow the argumentation of Hornik (1989), that feedforward networks
with only one hidden layer and a linear output unit are able to approximate si-
multaneously its unknown derivatives up to an arbitrary degree of accuracy. This
characteristic is substantial since the partial derivatives of a pricing formula are
needed for the hedging of option positions.

I perform my network training with the Fast Approximation with Universal
Neural Networks (FAUN) neurosimulator. As described in Mettenheim and Breitner
(2010) two reasons make FAUN suitable for HFT. First, the FAUN neurosimulator
uses fine-grained parallelization. This allows easily achieved speedups on dual
and quad core CPUs. FAUN also features coarse-grained parallelization using an
easy to install grid computing client. It is possible to use clusters of heterogeneous
workstations. Second, using reverse accumulation and matrix algorithms allow a
very efficient computation.

xx
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Figure 0.1: Overview
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Neural networks are information processing tools commonly used for function
approximation and classification. They offer an alternative way of developing
option pricing and hedging models. Their particular strength lies in their ability to
approximate highly non-linear and multivariate relationships without the restrictive
assumptions implicit in parametric approaches. This property of neural networks
makes them attractive for problems such as pricing and hedging options. Moreover,
they are adaptive and respond to structural changes in the financial markets. The
drawback of this approach is that it is highly data driven, requiring large quantities
of historical prices.

I present empirical results for pricing and hedging FX options. The empirical
results confirm the ability of neural networks for universal approximation. Sub-
sequent studies mostly investigated daily equity index options data for option
pricing approximations. Despite the high liquidity of FX options markets, there
is no noticeable investigation about pricing FX options with neural networks in a
HFT-context.

Hence, I build on prior investigations, but I extend my studies paper B and
paper E with a run-time trading process in order to uncover special characteristics
of high-frequency data. In particular, I pose the following challenge: If option
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prices were truly determined by the theoretical model exactly, can the closed-form
formula be estimated by learning networks with a sufficient degree of accuracy to
be of practical use? Furthermore, can both models be implemented in an automatic
HFT trading process, in which a signal must be precise enough to trigger trades in
a fraction of a second?

To assess the approximation capability I use two big data sets. On the one hand
there is a full high-frequency data set of cleared 118,291 quotes of an EUR/USD
option on currency futures with various strike prices available. On the other hand I
generate more than 20,000 simulated intra-day option prices to get a broader range
of data.

To assess the potential value of network pricing formulas in HFT, I implement
two different investigations: First, paper B and paper E perform a rolling 15 minutes
out-of-sample interval for each trading day to assess the models pricing ability.
The derived approximation function is then used to perform a delta-hedging
examination. All results are benchmarked using a theoretical closed-form model
for pricing options on futures. Second, in order to carry out the approximation
capability of the network function and its partial derivatives the network in paper
A trains on a simulated data set without any rolling-window technique in order
to investigate the numerical approximation of option price functions and their
derivatives. I am also interested in the question of whether the data availability is
crucial for a better approximation.

forecasting capability

The usage of neural computing for forecasting financial time series is investigated,
where neural networks compete with conventional time series models. Theoretically,
the efficient market hypothesis implies that in an efficient market, it is impossible
to obtain better predictions using forecasting methods because the observable price
already reflects all available information and price fluctuations that will occur in
the future randomly. In reality, however, systematic patterns might be found in
financial time series.

First, I show empirical studies about the maritime spot and derivatives freight
rates market. In paper F, paper G and paper H I perform several forecasting
techniques in order to examine the forecasting ability of freight rates. I find a lack
of jointly spot and forward forecasting investigations with neural networks. Thus, I
extend my study on freight derivatives and a wider range of time series models.
The main objective of this paper is to investigate neural networks prediction ability
for maritime business forecasting and provide a practical framework for actual
forecasting and trading applications of neural computing.

I sample daily prices of the International Maritime Exchange (Imarex) TD3 and
TD5 freight forward contracts. These contracts are written on daily spot rates for
TD3 and TD5 published by the Baltic Exchange. The spot and Forward Freight
Agreement (FFA) data is available from 5 April 2004 to 1 April 2011. I investigate
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short-term forecasts of spot and FFA prices in the market in order to make inferences
about the efficiency and usefulness of FFA rates. The question arises: Are forward
rates expectations of spot rates? I consider both univariate and multivariate model
specifications fitted with lagged spot freight rates returns ∆Ŝt and forward rates
returns ∆F̂t.

Another interesting research object is the very unique Chinese FX market, which
exhibits a dual characteristic of the market. The uniqueness comes from the two
separated markets for the Renminbi (RMB), namely the onshore Yuan (CNY) and
offshore Yuan (CNH) market. The main goal of paper C is to gain insights in the
comparatively new market for offshore RMB and to detect first indications for
feasible forecasting models for the onshore RMB respectively to improve CNY spot
forecasts. I employ a simple GARCH model as well as neural networks. I do also
analyze the somewhat older NDF market for which Ding et al. (2012) found a
strong relationship with the CNY spot rate. As their work deals with the three RMB
markets until June 2011 and since then the CNH market grew quite rapidly and
seems to be replacing the NDF market, I lay our main focus on the CNH market.

I collect daily exchange rate data for onshore spot CNY, offshore spot CNH,
one-month offshore NDF and CNH forward rates from Bloomberg. The sample
period spans 08 September 2010 to 20 March 2013. All forecast models are separated
in univariate and multivariate classes: The univariate models consist of single series
of CNY, CNH and their spread. I exclusively analyze the CNY in a multivariate
way by incorporation of the one-month forward rates NDF and CNH respectively.

decision making

Above all mentioned techniques remains the question of neuronal computing
application in the financial industry. In a last step I thus propose the implementation
and design of a financial decision support system with neural networks, which is
a more business informatics oriented discussion. The merits of neural networks
especially for high-dimensional problems are shown.

I present steps towards a model-driven DSS to pricing option on currency futures,
which can be embedded in a high-frequency trading process. In order to develop
an appropriate DSS, I use the design science methodology of Hevner et al. (2004).
Efficient implementation of trading algorithms is crucial, because a vast amount of
data has to be processed in very short time.

main contributions

In summary, I have attempted to provide empirical evidence for neural networks
capability to approximate financial time series. Main contributions are:

• Model option prices derived from NN can synthesize HFT option market
prices in a similar manner, but in a simultaneous way and with a more
parsimonious input specification. There is e.g. no need of volatility or interest
estimation.
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• If market liquidity exists, which is equivalent to full data availability in a
particular state space, learning networks are capable to approximate first- and
higher-order partial derivatives with a sufficient accuracy. But the approxima-
tion accuracy decreases with higher-order partial derivatives.

• However, I can not confirm the hypothesis that once a predominant network
approximation is found for pricing purposes, the same could be applied for
hedging. I have to notice that it is an exhausting balancing act for learning
systems to apply the delivered pricing approximation function on unknown
hedge parameters.

• In case of forecasting financial time series neural network results are com-
parable to those of the other models. Some regularities from two different
financial markets:

• Tanker freight rates market: Changes in spot rates are explained by autocor-
relation and by changes in the forward rates; but: changes in forward rates
are not explained by past changes in spot rates. There is, however, a highly
significant autocorrelation in forward rates that is difficult to conciliate with
efficient markets. These results imply that the futures prices contain valuable
information about future spot rates.

• Chinese FX market: Our results do not support our assumption of a parity
between the CNY and CNH. On the one hand the fact that the used forecasting
methods do not outperform the naïve RW forecasts points to the direction that
the price movements in the Chinese FX markets are similar to the movements
in developed economies’ FX markets, which are said to be rather efficient. On
the other hand I found strong evidence that structural breaks do exist in the
RMB markets.

• Neural networks are a suitable core engine for a model-driven DSS embedded
in a high-frequency trading process and can support trading decisions.

Hence, this dissertation provides empirical evidence that neural networks may
be put to work for more accurate approximation and for better decision making in
financial markets.

evaluation criteria

In evaluating my empirical studies, there are still some questions left: First, can the
empirical results be generalized? Second, are there any restrictions to a practical
implementation, which have not been taken into account? For this purpose, I have
identified three assessment criteria as shown in figure 0.2. I will give answers in
detail to the two questions mentioned above in chapter 5.

In summary, it can be stated that:
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Figure 0.2: Assessment criteria

Computational

Approximation
Practicabilityaccuracy

effort

Usability
assessment of

neural computation

• All empirical investigations in each case refer only to certain time periods
and assets. There is a need for further evidence to confirm a generalization or
robustness of the models.

• The approximation of neural networks suffer from inhomogeneous data
density, in particular when trainable data is rare.

• To implement large and effective software neural networks, much processing
and storage resources need to be committed. Neural network systems will
often need to simulate the transmission of signals through many of these
connections and their associated neurons - which must often be matched with
incredible amounts of CPU processing power and time.

The good news are: I also expose further research topics in doing with neural
networks, which could improve neural networks applications in computational
economics in future.



Part i

A S U RV E Y A N D C R I T I C A L R E V I E W

The following part summarizes and evaluates main findings of my
empirical research during my research on this dissertation. First, I give a
brief introduction about the research field and methodology. Moreover,
I discuss all appended papers in three major chapters before I discuss
and conclude my dissertation.



1
I N T R O D U C T I O N

Science, my lad, is made up of mistakes,
but they are mistakes which it is useful to make,

because they lead little by little to the truth.

— Jules Verne, A Journey to the Center of the Earth

1.1 synthesis, forecasting and decision making

Function approximation, which finds the underlying relationship from a given
finite input-output data is a fundamental problem in a vast majority of applications
in computational economics, such as prediction, pattern recognition or data mining.
Various methods have been developed to address this problem, where one of
them is by using artificial Neural Networks (NN). The main idea in conventional
approaches is to find a global function of systems based on mathematical tools.
However, it is well known that these methods have been found to be unsatisfactory
in coping with ill-defined and uncertain systems. In order to circumvent these
problems, model-free approaches using neural networks have been proposed.
Functionally, a neural network can be described as a function approximator. They
aim at obtaining an approximation of an unknown mapping

f : Rn → Rm

from sample patterns drawn from the function f (·). Artificial neural networks
can be universal function approximators for even non-linear functions. They can
also estimate piece-wise approximations of functions. This dissertation seeks to
explore empirically these possibilities.

The importance of better market price approximation or synthesis, forecasting,
and the relationship between spot and derivative markets for better decision
making, in the light of increasing financial market volatility and internationalized
capital flows, can not be over exaggerated.

Nowadays, the pricing of instruments for hedging positions on underlying risky
assets and optimal portfolio diversification have become major activities in financial
institutions. One of the key questions facing practitioners in financial markets is the
market price synthesis of derivative products as a demand for these instruments

2
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grows. Correct pricing of risk, of course, crucially requires the use of models that
give relatively accurate out-of-sample prices.

Market price synthesis provides the basis for another discipline: The prediction or
forecasting of time series. Forecasting simply means understanding which variables
lead or help to predict other variables, when many variables interact in volatile
markets. This means looking at the past to see what variables are significant leading
indicators of the behavior of other variables. It also means a better understanding of
the timing of lead-lag relations among many variables, understanding the statistical
significance of these lead-lag relationships, and learning which variables are the
more important ones to watch as signals for further developments in other returns.
Obviously, if one know the true underlying model generating the observable
market data, one will know how to obtain the best forecasts. However, if the true
underlying model may be too complex or unknown, one has to approximate the true
underlying model by approximating models. Having in mind that approximation
models exhibit model risk, neural network approaches will emerge as a strong
competitor to the standard benchmark linear model.

The ability to forecast the future, based only on past data, leads to strategic
advantages, which may be the key to success in financial institutions. In real life, one
would be interested not only in efforts in forecasting, but also in practical trading
strategies with possibility of taking positions in financial markets. Traders must
predict asset price movements in order to sell at top range and to buy at bottom
range. Decision making is the process of developing and analyzing alternatives,
and then selecting from the available alternatives. Market price synthesis and
forecasting are basic disciplines in the process of decision making. Hence, both
disciplines are always connected with the decision support system to improve
decision-making.

Financial problems, in particular, can be of an exceptionally complex and un-
structured nature. The sophisticated mathematical financial models in use, the
incredibly large, dynamic, rapidly expanding data sets involved, and the potential
for catastrophic losses are factors that contribute to the increasingly important role
of Decision Support System (DSS) in the finance. In some decision situations, quan-
titative models embedded in a DSS can help managers to make better decisions.
Model-driven DSSs use algebraic, decision analytic, financial, simulation and opti-
mization models to provide decision support. Real-time decision support systems
are emerging due to the new development of artificial intelligence techniques such
as machine learning or the improvement of computer hardware and mathematical
programming techniques in terms of speed of CPU and the problem size. As the
survey indicates, a large proportion of DSSs involves optimization systems. Ever
increasing computing power makes it possible to solve a large scale mathematical
optimization model in a fraction of a second. Moreover, the machine learning
approach can obtain knowledge from prior data, decisions and examples, and
contribute to the creation of DSS to support repetitive, complex real-time decision
making.
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The message of this dissertation is that financial decision makers now have the
computational power and methods for more accurate diagnostics, forecasting, and
control in volatile, increasingly complex environments at hand. Decision makers
need no longer confine themselves to linear or log-linear models, or assume that
underlying stochastic processes are Gaussian or normal in order to obtain forecasts
and pinpoint risk-return trade-offs. In short, one can go beyond linearity and
normality with the use of neural networks.

1.2 approximation by neural computing

1.2.1 Universal Approximation Theorem

In the mathematical theory of neural networks, the universal approximation the-
orem states that a feed-forward network with a single hidden layer containing a
finite number of neurons, the simplest form of the MLP, is a universal approx-
imator among continuous functions on compact subsets of Rn. This means that
neural networks can automatically approximate whatever functional form best
characterizes the data. While this property gives little value if the functional form is
simple, it allows neural networks to extract more benefits from complex underlying
functional forms.

One of the first versions of the theorem was proved by Cybenko (1989) for
sigmoid activation functions. Hornik (1991) showed that it is not the specific choice
of the activation function, but rather the multilayer feedforward architecture itself
which gives neural networks the potential of being universal approximators.

I begin with some definitions of Hornik (1989) to speak precisely about the
class of multi-layer feedforward networks under consideration. For notational
convenience the results are only formulated for the case where there is only one
hidden layer and one output unit.

Definition. Let f (·) be a continuous real-valued function on a compact subset U
of Rn, i.e.

f̂ : U ⊂ Rn → R (or : f ∈ C(U,R)). (1.1)

A typical example of a compact subset would be the n-dimensional product of
the unit interval [0, 1]n.

The set C(U,R) can be very large. Hence, one is interested to find a subclass K of
functions, such that for any ε > 0 one can always find f̂ ∈ K that | f (·)− f̂ (·)| < ε,
where | · | represents some distance measure in C(U,R).

K can be the set of neural nets with n input variables and one output. Given any
f (·), and any ε > 0, the question follows, if one can always find a neural net f̂ (·)
that approximates f (·), i.e.

ρ = sup
x∈U
| f (x)− f̂ (x)|, (1.2)
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where ρ denotes some performance metric. In other applications, one thinks
of the inputs as random variables and are interested in the average performance
where the average is taken with respect to the input environment measure µ, where
µ(Rn) < ∞. In this case, closeness is measured by the Lp(µ) distances

ρ =

[∫

Rn
| f (x)− f̂ (x)|pdµ(x)

]1/p

. (1.3)

The special case p = 2 corresponds to mean square error. The class of MLP
networks can be defined as follows:

Definition. For any n ∈ N, An is the set of all affine functions from Rn to R, that
is, the set of all functions of the form A(x) = w · x + b where w and x are vectors
in Rn and b ∈ R is a scalar. In the present context, x corresponds to network input,
w corresponds to network weights from input to the intermediate layer, and b
corresponds to a bias.

A number of diverse application areas are concerned with the representation
of general functions of an n-dimensional real variable, x ∈ Rn, by finite linear
combinations of the form

N

∑
j=1

νj ϕ(wT
j x + bj). (1.4)

A leading case occurs when ϕ(·) is a sigmoidal function, in which case ∑n(ϕ) is
the familiar class of output functions for single hidden layer feedforward networks
with a sigmoid function at the hidden layer and no sigmoid function at the output
layer. The scalars νj, correspond to network weights from hidden to output layers.

Definition. A function ϕ : R→ [0, 1] is a sigmoidal function if it is non-decreasing,
limλ→∞ ϕ(λ) = 1, and limλ→−∞ ϕ(λ) = 0. Because sigmoidal functions have at
most countably many discontinuities, they are measurable.

Funahashi (1989) and Cybenko (1989) proofed the following

Theorem. Let ϕ(·) be a nonconstant, bounded, and monotonically-increasing continuous
function. Let In denote the n-dimensional unit hypercube [0, 1]n. The space of continuous
functions on In is denoted by C(In). Then, given any function f ∈ C(In) and ε > 0, there
exist an integer N and real constants νj, bj ∈ R, wj ∈ Rn, where j = 1, . . . , N such that
one may define:

f̂ (x) :=
N

∑
j=1

νj ϕ(wT
j x + bj) (1.5)

as an approximate realization of the function f where f is independent of ϕ(·); that is,

| f (x)− f̂ (x)| < ε (1.6)

for all x ∈ In. In other words, functions of the form f̂ (x) are dense in C(In).
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Proof. Let K ⊂ C(In) be the set of functions of the form ϕ(x) as in equation 1.5.
One claims that the closure of K is all of C(In). Assume that the closure of K is not
all of C(In). Then the closure of K, say R, is a closed proper subspace of C(In). By
the Hahn-Banach theorem, L is a bounded linear functional on C(In). This bounded
linear functional L is of the form

L(h) =
∫

In

h(x)dµ(x) (1.7)

for all h ∈ C(In). In particular, since ϕ(wTx + b) is in R for all w and b, we must
have that

∫

In

ϕ(wTx + b)dµ(x) = 0 (1.8)

for all w and b. However, assuming that ϕ(·) was discriminatory so that this
condition implies that µ = 0 contradicting the assumption. Hence, the subspace K
must be dense in C(In). �

If one thinks of the network architecture as a rule for computing values at m
output units given values at n input units, hence implementing a class of mappings
from Rn to Rm, one can ask how well arbitrary mappings from Rn to Rm can be
approximated by the network, in particular, if as many hidden units as required
for internal representation and computation may be employed.

Moreover, in many applications, it is also necessary that the derivatives of the
approximating function implemented by the network closely resemble those of
the function to be approximated, up to some order. This issue was first taken
up in Hornik et al. (1990), who discuss the sources of need of smooth functional
approximation in more detail.

Similarly, Hornik (1989) established that whenever ϕ is continuous, bounded
and nonconstant, then, for arbitrary compact subsets K of Rn standard multilayer
feedforward networks with activation function ϕ(·) can approximate any continu-
ous function on K arbitrarily well. Hence, he implied that "any lack of success in
applications must arise from inadequate learning, insufficient numbers of hidden
units or the lack of a deterministic relationship between input and target." The
results establish that standard multilayer feedforward networks are capable of
approximating any measurable function to any desired degree of accuracy, in a
very specific and satisfying sense.

1.2.2 Multilayer Feedforward Networks

Neural networks are mathematical, algorithmic models inspired by biological
artificial neural networks. They consist of basic units, termed neurons, who have
predispositions that affect the strength of their output. The neuron combines the
inputs, incorporates the effect of the bias, and outputs signals. In both real and



1.2 approximation by neural computing 7

artificial neurons, learning occurs and alters the strength of connections between
the neurons and the biases.

Since it is my goal to extract an alternative option pricing function or predict any
market observations, I focus on MLP that are applicable to non-linear regression
problems. I follow the argumentation of Hornik (1989), that feedforward networks
with only one hidden layer and a linear output unit are able to approximate
simultaneously its unknown derivatives up to an arbitrary degree of accuracy. This
characteristic is substantial since the partial derivatives of a pricing formula are
needed for the hedging of option positions.

Figure 1.1: Exemplarily 3-layered perceptrons used in this dissertation
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Note that FAUN set the bias b = wj0 · 0.5.

Referring to figure 1.1, given an input ~xl−1
i in layer l − 1, a neuron j can compute

an output yl
j in layer l according to its prior training, represented by the weight

vector (wl
j0, ~wlT

j )T where superscript T denotes the transpose operation. The weights
provide the abilities of prediction or classification to the system. Firstly, the inputs
(~xl−1

i ) fed to the input layer are weighted and summed up. Then they are entered
to an activation function ϕl

j in order to get an output from each neuron in the
hidden layer. The weights are iteratively changed until the best loads are obtained.
To find the right weights within a so-called training process thousands of MLPs
with various topologies and with different weight initializations are trained.

Once a set of discrete data is available, the neural network can be trained to
approximate or generalize the function over the domain. Neural network training
is commonly posed as an optimization problem in the weight space. The non-linear
least squares objective function in this case is defined by

E(~W) =
It

∑
k=1

e2
k , (1.9)

where It is the number of training patterns and

ε2
k =

(
f (~xk)− f̂ (~xk)

)2
(1.10)
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is the squared error associated with the training pattern k, f is the target or
desired output, and f̂ is the computed output corresponding to the input ~xk. The
error vector is defined by

~ε = (ε1, ε2, . . . , ε It)
T. (1.11)

In the rest of this paper I only discuss three layer neural networks consisting of
an input layer, a hidden layer and an output layer. Furthermore, I consider fully
connected networks in which a neuron will receive signals from each and every
neuron in the immediately preceding layer.

1.2.3 Merits of Neural Computing for this Dissertation

Neural networks are inherently non-linear as described in Rumelhart and McCle-
land (1986) and Wasserman (1989). With neural networks using one or more hidden
layers, the networks can partition the sample space automatically and build differ-
ent functions in different portions of that space. Thus, the use of neural networks
offers the following useful properties and capabilities:

1. Non-linearity: An artificial neuron can be linear or non-linear. Hence, they
can extract any residual non-linear elements from the data after linear terms
are removed.

2. Input-output mapping: The network can learn an input-output relations with
a method called supervised leaning. This involves modification of the synaptic
weights by applying a set of labeled training samples.

3. Adaptivity: Neural networks have a built-in capacity to adapt their synaptic
weights to changes in the surrounding environment.

4. Evidential response: In context of pattern classification, a neural network can
be designed to provide information not only about which particular pattern
to be selected but also about the confidence in the decision made.

5. Contextual information: Every neuron in the network is potentially affected
by the global activity of all other neurons in the network. Consequently,
contextual information is dealt with naturally by a neural network.

6. Fault tolerance: A neural network implemented in a hardware form, has the
potential to be inherently fault tolerant, or capable of robust computation, in
the sense that its performance degrades gracefully under adverse operating
conditions.

7. High-performance computing: The massively parallel nature of a neural
network makes it potentially fast for computation of certain tasks. This same
feature makes a neural network well suited for implementation using Very-
large-scale-integrated technology (VLSI) technology.
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Function approximation, or regression analysis, including time series prediction,
fitness approximation and modeling is therefore only one particular task in the
majority of various challenges like data processing or pattern recognition.

For empirical analysis I perform my network training with the FAUN neurosim-
ulator. As described in Mettenheim and Breitner (2010) two reasons make FAUN
suitable for HFT. Since my supervisor Michael H. Breitner started the FAUN project
in 1996 there has been continuous development and improvement - see chapter 4

for further details. The neural network types and topologies supported are among
the most powerful and worldwide accepted for real life problems.

1.3 research design and organisation of my dissertation

This dissertation provides empirical evidence that neural networks can be used in
order to achieve more accurate approximation as well as better decision making in
financial markets. I perform several different empirical studies to investigate the
approximation capability of neural networks in case of time series analysis and
market price synthesis.

After theoretically explaining the approximation capability by neural networks, I
approximate price functions of financial products - in this case for FX options - for
real-time pricing using neural networks in chapter 2. The objective is to generate
a functional relationship of the option price from existing market prices by a
semi-heuristic approach. Market actors are able to conduct hedging strategies by
deriving partial derivatives of first- and higher-orders. The generated network
functions can also be used for real-time out-of-sample pricing and hedging.

In chapter 3, neural networks can also be used for forecasting financial market
data, in which lagged time series data points are set as input variables. I consider
both univariate and multivariate models. It is my objective to achieve accurate
forecasting accuracy of existing data, but also to detect the unique market char-
acteristics, e.g. the lead-lag relationship between the spot and derivatives market,
volatility, and price behavior. Exemplary I have investigated the highly volatile
maritime freight market and the Chinese FX market. Both disciplines, pricing
approximation and time series analyzes, are based on a decision making process in
practice.

In chapter 4 I present the use of neural networks in a model-driven decision
support system. A computer-based decision making technique may be used for
trading purposes in practice. Neural networks can meet computational and tech-
nical requirements that allows an algorithmic control. Figure 1.2 summarizes the
organization of my dissertation.

In most studies, neural networks compete with particular benchmark models.
In case of market price synthesis for options there is a broad range of analytical
closed-form models like the famous Black-Scholes model. In the field of time series
analysis neural networks can be seen as an alternative to regressive models with
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Figure 1.2: Overview
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constant and non-constant volatility. The comparison to the benchmark models is
discussed in detail in chapter 2 and chapter 3.

Outside of my dissertation topic, I list a working paper about nomadic computing,
which is quite a more information science orientated theme. The paper is not the
result of my studies and treated a then still unknown and innovative topic. It
describes the use of new mobile services with mobile devices and services from a
business perspective. With advent of smart phones, the concept nomadic computing
has been thoroughly worked up. However, and there are already new developments
such as augmented reality for private customers. In this respect I did not even
discuss this report, but the manifold implications from the implementation of
intelligent systems.

1.4 empirical studies at a glance

In the second part of my dissertation I append all empirical studies on which this
synopsis and critical review is based. The reader may consider a short summary
of all papers in this section. I group the individual papers on the mentioned three
application cluster market price synthesis, forecasting and decision making.
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In order to approximate market prices I conduct an empirical run-time trading
simulation with a tick data set of EUR/USD options on currency futures of four
weeks. The high-frequency data set is very large and consists of more than 100,000

quotes. Due to the difficulty of option valuation, I provide an alternative model-
free option pricing approach with neural networks, which can be embedded in
a high-frequency trading process. In non-overlapping 15 minutes out-of-sample
intervals theoretical option prices derived from the Black model compete against
heuristic option prices through neural network models. In an earlier investigation
"Pricing and Forecasting of High-Frequency Options on Currency Futures with Fast
Neural Networks" (see Paper E) the preliminary focus lies on the pricing capability
of network functions. I examine different topologies in order to achieve suitable
results in comparison to the Black model. The paper "Real-time Pricing and Hedging
of Options on Currency Futures with Artificial Neural Networks" (see Paper B) is an
extension, where I optimize the network topologies in order to achieve better results
than the benchmark model. In addition, I perform a bootstrap significance test
and investigate the hedging performance of the network function. The latter issue
is object of research in my last investigation "Numerical Approximation of Option
Pricing Functions and Its Partial Derivatives by Neural Networks" (see Paper A). This
paper addresses the partial derivations of generated network functions for hedging
purposes.

Besides real-time pricing and hedging algorithms market actors are interested in
dynamics and predictions of relevant market variables. This leads to examination
of autoregressive time series processes and model specifications with lagged input
variables. I perform my investigations in two interesting markets: The high-volatile
shipping freight rates market and the revised Chinese FX market. In "Freight Rates
in the Tanker Shipping Market – Short-Term Forecasting of Spot Rates and Derivatives
with Linear and Non-Linear Methods" (see Paper F) and "Spot and freight rate futures
in the tanker shipping market: short-term forecasting with linear and non-linear methods"
(see Paper G) I investigate the forecasting and trading performance of linear and
non-linear methods, in order to generate short-term forecasts of spot freight rates
and corresponding freight derivatives respectively FFA in the dirty tanker shipping
market. I attempt to uncover the benefits of using several time series models and the
potential of neural networks. Maritime forecasting studies using neural networks
are rare and only focus on spot rates, with the result that only longer forecasting
horizons lead to encouraging results with neural networks. I build on this kind of
investigation, but I extend my study on freight rates derivatives or FFA prices and
a wider range of time series models. The field of attention in "Short-Term Trading
Performance of Spot Freight Rates and Derivatives in the Tanker Shipping Market: Do
Neural Networks provide suitable results?" (see Paper H) lies more in examination of
the trading performance. In a simple empirical simulation I compare univariate
and multivariate models results.

The Chinese FX market is a restricted currency market with different sub-
currencies. Since 2011 China attempts to internationalize its currency by allowing
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more cross-border trade to be settled in RMB. In "Forecasting Renminbi Quotes in the
Revised Chinese FX Market – Can We get Implications for the Onshore/Offshore Spread-
Behaviour?" (see Paper C) we investigate the short-term forecasting performance
of spot CNY with GARCH-type and neural network models in order to uncover
the benefits of relationships between onshore and offshore RMB. This is achieved
by simulating both RMB time series in a multivariate way. Our conclusion is, that
our proposed models lead to a better understanding of the still young volatility
behaviour of the two different RMB series.

Both market price synthesis and forecasting disciplines induce relevant trading
decisions in financial markets. Hence, market actors need appropriate decision
making techniques. In "Steps towards a High-frequency Financial Decision Support
System to Pricing Options on Currency Futures with Neural Networks" (see Paper D) I
present steps towards a model-driven DSS to pricing options on currency futures,
which can be embedded in a high-frequency trading process. I show that the use of
neural networks is not only suitable in generating accurate trading signals, but also
in generating automated fast run-time trading signals for the decision taker.

The last paper "Geschäftsprozessorientierte Analyse und Bewertung der Potentiale des
Nomadic Computing" (see Paper J) is not explicitly part of my dissertation topic, but
refers to a more business informatics field. Nomadic computing is a new paradigm
of computer usability, in which the users from anywhere and at any time get access
to data, information and services. I design a business framework in order toevaluate
this technology. Beyond this paper I introduce the discussion about using artificial
intelligence in social life and networks and for handling big data.



2
M A R K E T P R I C E S Y N T H E S I S

2.1 approximation of price functions and their derivatives

Learning an input-output relation from observable market prices can be considered
as the problem of approximating an unknown function f (x) from a set of data
points. The general situation is as in figure 2.1, where the model f̂ (x) has to be
constructed based on finitely many observations on the target function f (·). For
example, traders are interested in the price of financial option products, at now.
There is a wide range of pricing models for this product: in some ways closed-form
analytical models, for more complicated products numerical solutions. One further
believes that the price of the option depends upon some parameters. Of course, no
one knows a precise formula to compute this price as a closed-form function of the
parameters, but only has available data on the many options traded on the market.

Figure 2.1: Market price synthesis scheme

x

Actual Price Function

Computed Model

f (x)

f̂ (x)

There are two kinds of errors involved in using f̂ (x) as a predictor for f (x).
The intrinsic error arises from the fact that I am computing a model rather than
the actual function. The second, often called noise, comes from the fact that the
observations on which the model is based contain errors. While the subject of
statistics deals with the problem of making a model reliable by controlling the
noise, the subject of approximation theory deals with the intrinsic error.

Neural networks are commonly used for function approximation, and they offer
an alternative way of developing option pricing and hedging models. Their partic-
ular strength lies in their ability to approximate highly non-linear and multivariate
relationships without the restrictive assumptions implicit in parametric approaches.
This property of NNs makes them attractive for problems such as pricing and
hedging options.

13
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To be more specific, option pricing is based on theoretical models developed
by Black and Scholes (1973), Merton (1973) and Cox et al. (1979) with several
extensions. In each case, the derivation of the pricing formula intimately depends
on the particular parametric form of the underlying asset’s price dynamics St. A
misspecification of the stochastic process for St will lead to systematic pricing and
hedging errors for derivatives. Therefore, the success or failure of the traditional
approach to pricing and hedging options is closely tied to the ability to capture the
dynamics of the underlying asset’s price process. Despite usefulness of closed-form
type models, Black (1975), Rubinstein (1985) and Bakshi et al. (2000) emphasized
that some models primarily address perceived weaknesses.

Unfortunately, theoretical pricing models are based on several unrealistic as-
sumptions. First of all, markets are efficient, i.e., nobody can consistently predict
the direction of the market or an individual underlying. Secondly, underlying
prices follow a memoryless continuous-time or discrete-time stochastic process.
In addition, the future volatility σ of the underlying price can be estimated accu-
rately and is a priori known to seller and buyer of an option. Fourth, most of the
option pricing models assume normal or log-normal distributions of asset returns.
However, finding such a distribution in volatile environments means going beyond
simple assumptions of normality or log normality used in conventional models.
Hence, one must get its hands dirty in numerical approximation, and can no longer
plug numbers into quick formulae based on normal distributions.

Table 2.1 summarizes the main differences and links between parametric models
and NNs.

Table 2.1: Model typology

Parametric model Neural networks

• Restrictive assumptions leading to
systematic bias

• Multivariate and non-linear
• Fails to adjust to changing market be-

haviour
• Easy to apply and no historical data

is required

• Recognizes patterns and relationships
without restrictive assumptions

• Effectively approximates non-linear
functions

• They are adaptive and respond
to structural changes in the data-
generating processes and robust to
specification errors that plague para-
metric models

• Requires a large amount of data
and is sometimes unable to converge
rapidly

Network-based pricing methods for pricing and hedging derivatives attempt
to overcome the mentioned restrictions in theoretical models. Rather than start-
ing from a price process of the underlying asset and subsequently deriving the
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corresponding option value, the option market’s pricing mechanism is estimated
by means of observed prices via a neural network. When properly trained, the
network synthesizes the option pricing formula, which may be used in the same
way that formulas obtained from the parametric pricing method are used.

Another way to interpret an estimated model is to examine a few of the partial
derivatives or the effects of certain input variables on the dependent variable.
With these partial derivatives, one can assess, qualitatively and quantitatively, the
relative strength of how input variables affect the dependent variable. There are
two approaches: Analytical and finite-difference methods. Fortunately, computing
such derivatives is a relatively easy task.

Of course, the network-based pricing method is highly data-intensive, requiring
large quantities of historical prices to obtain a sufficiently well-trained network.
Therefore, such an approach would be inappropriate for thinly traded derivatives,
or newly created derivatives. However, I show in this chapter how the neural
network performs when applied to high-frequency option data sets.

2.2 modelling fx options by neural computation

2.2.1 Literature Review

Previous studies about pricing options by neural computation show no ambiguous
picture, if neural networks can generally outperform traditional closed-form models
with satisfied robustness. Of course, many authors achieved better results by using
neural networks - mostly for a particular time and asset classes. Table 2.2 shows an
extract of different studies of pricing and hedging options by neural computation.

Hutchinson et al. (1994) compared three neural networks with the Black-Scholes
(BS) model in pricing American-style call options on Standard Poor’s (S&P)500

futures, and found that all three networks were superior to BS. Malliaris and
Salchenberger (1993) compared the performance of the Black-Scholes model and a
network-based model in pricing American-style S&P100 call options. They found
that BS was preferable for in-the-money (ITM) options, whereas the network
performed better for out-of-the-money (OTM) options. Lajbcygier et al. (1997);
Lajbcygier and Connor (1997) compared three networks with three closed-form
models - BS, Barone-Adesi and Whaley (BAW) and modified Black - in pricing
American-style call options on Australian Share Price Index futures (SPI). They
concluded that the learning systems were inferior to the theory-based models;
however, for observations that were at-the-money (ATM) for short-maturity options,
the networks were superior. Garcia and Gençay (2000) compared the performance
of an neural network in pricing European-style call options on the S&P500 index
with that of Black-Scholes and concluded that the neural network was superior.

In the following, Andreou et al. (2002), Amilon (2003), Bennell and Sutcliffe (2004)
and Andreou et al. (2006) got similar encouraging results regarding European-style
options. Many of these studies assume that their option pricing network formula
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Table 2.2: Studies using NNs to price and to hedge financial options

Pricing
options

S&P 500 Andreou et al. (2002, 2006, 2008, 2010), Garcia and Gençay
(2000), Gradojevic et al. (2009)

S&P 100 Malliaris and Salchenberger (1993)
FTSE 100 Bennell and Sutcliffe (2004)
DAX Anders et al. (1998), Hanke (1999)
OMX Amilon (2003)
S&P 500 Futures Hutchinson et al. (1994), Carverhill and Cheuk (2003)
SPI Futures Boek et al. (1995), Lajbcygier et al. (1997); Lajbcygier and

Connor (1997); Lajbcygier (2004)
BASF Breitner (2000)
FX Chen and Sutcliffe (2012)
Simulated Hutchinson et al. (1994), Hanke (1997), Kohler et al. (2006)

Hedging
options

S&P 500 Andreou et al. (2008, 2010), Garcia and Gençay (2000)
S&P 500 Futures Hutchinson et al. (1994); Carverhill and Cheuk (2003)
OMX Amilon (2003)
SPI Futures Lajbcygier et al. (1997); Lajbcygier and Connor (1997);

Lajbcygier (2004)
Simulated Hutchinson et al. (1994), Hanke (1997), Kohler et al. (2006)

is homogeneous of degree one in the underlying asset price St and in the strike
price X which enables them to use a smaller number of inputs in learning the
nonparametric pricing function. This parsimony is an advantage since the rate of
convergence of nonparametric estimators slows down considerably as the number
of input increases.

Due to the data-driven character of neural networks, some authors tested the
approximation capability of neural networks with simulated data. This method
ensures that learning networks get the full data space for training. Of course,
there is no evaluation with market data possible. Hutchinson et al. (1994) did
several Monte Carlo simulations in order to test the robustness of their proposed
models. Hanke (1997) used simulated data to investigate the performance of neural
networks in pricing Asian-style call options.

Further model extensions consider an adjustment of the network topology, e.g.
Boek et al. (1995) and Lajbcygier et al. (1997) proposed hybrid neural networks,
which combine theoretical option models with neural networks. These nested
models often exceed the performance of other models. Gradojevic et al. (2009)
performed a kind of regime-switching or modular network topology like, where
the pricing function is decomposed into separate non-linearities called modules.
The modules are trained independently on the data for the ITM and OTM options
and during run-time pricing.

However, the heart in the option pricing theory lies in the replication of an
option with an asset portfolio. Thus, the determination of price sensitivities of
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an option is crucial. Hedge ratios can be derived analytically from the chosen
parametric pricing model. Since NNs are differentiable functions of the input
variables, option sensitivities, namely the Greeks, such as the hedge ratio can also
be derived analytical from the neural network pricing approximation. The proposed
studies in table 2.2 conducted hedging strategies to evaluate partial derivatives
derived by neural computation.

Alternatively, neural networks can be trained directly on the desired hedge ratios
as described in Bengio (1997). Carverhill and Cheuk (2003) applied this technique
to option prices. They found that the best delta hedging performance was produced
by the binomial model, followed by the new neural network, while hedge ratios
derived from the pricing network-based model were worst.

2.2.2 Methodology and Implementation

As before mentioned, subsequent studies mostly investigated daily equity index Research
formulationoptions data for option pricing approximations. Despite the high liquidity of FX

options markets, there is no noticeable investigation about pricing FX options with
neural networks in a HFT-context.

Hence, I build on prior investigations, but I extend my studies paper B and
paper E with a run-time trading process in order to uncover special characteristics
of high-frequency data. In particular, I pose the following challenge: If option
prices were truly determined by the theoretical model exactly, can the closed-form
formula be estimated by learning networks with a sufficient degree of accuracy to
be of practical use? Furthermore, can both models be implemented in an automatic
HFT trading process, in which a signal must be precise enough to trigger trades in
a fraction of a second?

I sample intra-day prices of an EUR/USD option on currency futures with five Data object

different strike prices. These are derivative contracts that grant the purchaser the
right, but not the obligation, to trade a EUR/USD futures contract, which is a
contract to exchange EUR and USD at an agreed-upon exchange rate at a certain
point in the future. A high-frequency data samples FX futures data of four weeks
available from 13 August 2012 to 17 September 2012 (expiry date) by the Chicago
Mercantile Exchange (CME). The options data is available from 13 August 2012 to 7

September 2012, due to the prior expiry of options to final settlement or expiration
of the underlying FX futures contract. The data contains trade or quote prices, bid
and ask prices and volumes. A UNIX timestamp in milliseconds records the date
and the time at which the quote originates. Due to the high-frequency character
of tick data, I match the nearest futures quote or available trade price with the
relevant option price. For high-frequency data cleaning it is necessary to implement
automatic procedures based on different criteria in order to decide on the possible
elimination of each observation. In summary, I obtain a full data set of 118,291

quotes and prices after data cleaning for training and out-of-sample evaluation
(figure 2.2a).
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Figure 2.2: High-frequency CME option data and simulated American call option prices
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In a further simulation experiment (paper A) I investigate the numerical approx-
imation of option pricing functions and their derivatives by neural networks. I
am also interested in the question of whether the data availability is crucial for
a better approximation. For this purpose I generate simulated more than 20,000

high-frequency option prices to get a broader range of data (figure 2.2b).
To assess the potential value of network pricing formulas in HFT, I implement Implementation

two different investigations. First, paper B and paper E perform a rolling 15 minutes
out-of-sample interval for each trading day to assess the models pricing ability.
The derived approximation function is then used to perform a delta-hedging
examination. All results are benchmarked using a theoretical closed-form model
for pricing options on futures. Second, in order to carry out the approximation
capability of the network function and its partial derivatives paper A trains on the
full data set without any rolling-window technique.

The network specifications declines mainly to the parsimonious parameteriza- Specification

tions as proposed in Hutchinson et al. (1994), i.e., only two observable variables are
necessary. This network specification in figure 2.3a is the standard topology in all
my studies. From this several extensions are possible. I test various topologies like
in figure 2.3b, where I add further variables ~x = (t, X, σS, r)T. I also specify so-called
hybrid models. Either the network trains directly on the difference between the
market option price and the benchmark model price or the benchmark model price
is directly linked to the output neuron in figure 2.3c.

It still remains to be examined how far the different network specifications lead Evaluation

to good out-of-sample pricing performance. To compare the observed market prices
Ct with those obtained by traditional models statistical performance measures,
least square errors are reported. As option pricing models are frequently used
to calculate hedge parameters, it is necessary to check whether the parameters
obtained by the neural networks are reliable in so far as they satisfy theoretical
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Figure 2.3: Various network topologies

S
X

τ

C
X

0.5

(a) Parsimonious model

S
X

τ

C
X

~x

0.5

(b) Extended model

S
X

τ

C
X

0.5

Ĉ
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theoretical patterns: The network-based models have to be able to hedge an option
position.

Following Hutchinson et al. (1994), I investigate the tracking error of replicating
portfolios designed to delta-hedge an option in paper B. Another way of assessing
model performance is to trade in mispriced options in order to yield a higher final
value, which is shown by Amilon (2003). The tracking error at the termination of
the hedge position can be used as a measure of accuracy. Since all prices and hedge
ratios are calculated theoretically, the model with the lowest absolute tracking error
has best captured the dynamics of the underlying asset. In paper A I derive further
price sensitivities and compare the surface of price sensitivities with the market
price substitution derived by the BAW pricing method.

2.3 empirical findings

I examine both the pricing accuracy and delta-hedging performance. The results
are encouraging in the sense that they simultaneously provide accurate market
prices for different strike prices. Although nonparametric pricing formulas are
slightly better, the results show that the pricing accuracy for nonparametric learning
networks depends on the availability of data, which reflects the state space. This
reflects in particular the approximation of partial derivatives. I draw the following
conclusions:

• Model option prices derived from networks can synthesize option market
prices in a similar manner, but in a simultaneous way and with a more
parsimonious input specification. There is e.g. no need of volatility or interest
estimation.

• This argumentation is also valid in case of HFT data (empirical and simulated
data), i.e., learning and real-time pricing in very short time periods.

• If market liquidity exists, which is equivalent to full data availability in a
particular state space, learning networks are capable to approximate first- and
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higher-order partial derivatives with a sufficient accuracy. But the approxima-
tion accuracy decreases with higher-order partial derivatives.

• Incorporation of further input variables, e.g. σF or r, do not necessarily
improve the network results. Conversely, the pricing and hedging accuracy
of all mentioned benchmark models highly depend on the unobservable
volatility estimate. Thus, ones can control benchmark results by accurately
estimation of this parameter. Several studies assume a constant volatility over
time, which is quite imprecise.

• However, I can not confirm the hypothesis that once a predominant network
approximation is found for pricing purposes, the same could be applied for
hedging. I have to notice that it is an exhausting balancing act for learning
systems to apply the delivered pricing approximation function on unknown
hedge parameters.

In summary, the results are encouraging in the sense that I get a good fit of
the data though training big HFT time series simultaneously. The approximation
results are close related to the selected number of hidden neurons. As figure 2.4
illustrates the pricing error declines with additional neurons. Not very surprisingly,
the computing time increases - I come back again to this fact in chapter 4.

Figure 2.4: Network pricing errors C
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(a) . . . with 2 hidden neurons
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(b) . . . with 5 hidden neurons

From this point of investigation, further research steps are thinkable and I recom-
mend to augment network topologies to achieve more robust results. Nevertheless,
I think that neural networks could be a useful HFT support system beside closed-
form models for particular market situations. The benefits of the FAUN technology
as a kind of core engine allow both option sellers and buyers to approximate call
option prices across different strike prices simultaneously and with parsimonious
input specification.



3
F O R E C A S T I N G F I N A N C I A L T I M E S E R I E S

3.1 time series modeling by neural computing

Due to the increasing volatility in financial markets, forecasting market prices
has become more relevant for management decisions. Obtaining an effective and
accurate prediction of asset prices supports decision makers in reaching a variety of
decisions, such as storage decisions, buy and hold decisions or hedging decisions.
Theoretically, the efficient market hypothesis implies that in an efficient market,
it is impossible to obtain better forecasts using forecasting methods because the
observable price already reflects all available information and price fluctuations in
the future occur randomly. In reality, however, systematic patterns might be found
in financial sequences. Knowing and discovering these structures will facilitate the
process of price-forecasting. But one has to know which approximating models to
use, in combination with past data, to predict future events.

Figure 3.1: h-step forecasting model scheme
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Consider a univariate time series xt, which, for simplicity, is observed at equally
spaced time intervals. I denote the observations by {xt|t = 1, . . . , T}, where T is the
sample size. If there is a functional relation between the successive observations, one
can try to formulate a linear or non-linear prediction model of the time series (3.1).

According to Tsay (2002), a purely stochastic time series xt is said to be linear if
it can be written as

xt = α +
∞

∑
i=0

βiat−i, (3.1)

21
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where α is a constant, βi are real numbers with β0 = 1, and {at} is a sequence
of independent and identically distributed (iid) random variables with a well-
defined distribution function. Assuming that the distribution of at is continuous
and E(at) = 0 and V(at) = σ2

a . A commonly used linear model for forecasting is
the autoregressive model. Any stochastic process that does not satisfy the condition
of equation 3.1 is said to be non-linear.

Mathematically, a purely stochastic time series model for xt is a function of an
iid sequence consisting of the current and past shocks - that is

xt = f (at, at−1, . . .). (3.2)

The linear model in equation 3.1 says that f (·) is a linear function of its arguments.
Any non-linearity in f (·) results in a non-linear model. The general non-linear
model in equation 3.2 is not directly applicable because it contains too many
parameters.

Moreover, the model of xt can be written in terms of its conditional moments.
Let Ft−1 be the σ-field generated by available information at time t− 1. Typically,
Ft−1 denotes the collection of linear combinations of elements in {xt−1, xt−2, . . .}
and {at−1, at−2, . . .}. The conditional mean and variance of xt given Ft−1 are

µt = E [xt|Ft−1 ≡ g(Ft−1)] , σ2
t = V [xt|Ft−1 ≡ h(Ft−1)] , (3.3)

where g(·) and h(·) are well-defined functions with h(·) > 0. Thus, I restrict the
model to

xt = g(Ft−1) +
√

h(Ft−1)εt,

where ε = at/σt is a standardized shock. For the linear series xt in equation 3.1,
g(·) is a linear function of elements of Ft−1 and h(·) = σ2

a . the development of
non-linear models involves making extensions of the two equations in equation 3.3.
If g(·) is non-linear, xt is said to be non-linear in man. If h(·) is time-variant, then
xt is non-linear in variance.

Bollerslev (1986) provide a survey of the existence of non-linearities in the finan-
cial data, and developed a model to predict financial time series called Generalized
Autoregresssive Conditional Heterocedasticity (GARCH) that combines all the
features observed in these series. These conditional heteroscedastic models are non-
linear in variance, because their variances σ2

t evolve over time. They are extensions
of the conditional variance equation 3.3.

To locate the neural network model among different typologies of models, ta-
ble 3.1 differentiates between parametric and semi-parametric models, and models
that do not have closed-form solutions.

The most commonly used approximation method is the polynomial expansion,
which has the flexibility to represent very general non-linear relationships. Approx-
imation of more complicated functions by polynomials is a basic building block for
a great many numerical techniques. With a polynomial or neural network model,
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Table 3.1: Model typologies; McNelis (2005)

Closed-form solution Parametric Semi-parametric

Yes Linear Polynomial
No GARCH Neural network

the functional forms are given, but the degree of the polynomial or the number of
neurons are not. Thus, the parameters are neither limited in number, nor do they
have a straightforward interpretation, as the parameters do in linear or GARCH
models. But the price one has to pay for an increasing degree of accuracy is an
increasing number of parameters to estimate, and thus a decreasing number of
degrees of freedom. For this reason, I refer to these models as semi-parametric.

Substantial benefit can be had from orthogonal polynomials. Orthogonal poly-
nomials can be used to minimize the error of approximation, and to minimize
the sensitivity of calculations. Unlike the typical polynomial based on raising the
variable x to powers of higher order, these classes of polynomials are based on
sine, cosine, or alternative exponential transformations of the variable x. They have
proven to be more efficient approximators than the power polynomial. The network
is an alternative to the parametric linear, GARCH models, and semi-parametric
polynomial approaches for approximating a non-linear system.

It has often been found that simple linear time series models usually leave certain
aspects of economic and financial data unexplained. Since non-linear models are
more general than the linear ones, one would expect that neural networks should
lead to better forecasts. However, financial time series are seldom easy to handle.
The goal is to find an approach or method that forecasts well data generated by
often unknown and highly non-linear processes, with as few parameters as possible,
and which is easier to estimate than parametric non-linear models.

Both the GARCH and neural network are examples of models that do not have
closed-form solutions for the coefficient vector of the respective model. What is
clear from table 3.1, moreover, is that one has a clear-cut choice between linear and
neural network models. The linear model may be a very imprecise approximation
to the volatile financial markets, but it gives very easy, quick, exact solutions.
The neural network may be a more precise approximation, capturing non-linear
behavior, but it does not have exact easy-to-obtain solutions. Without a closed-form
solution, one has to use approximate techniques.

The rationale for the use of the neural network is forecasting or predicting a given
target or output variable from information on a set of observed input variables
(Hill et al. (1994)). To test the application of neural networks for the prediction
of time series, I show empirical examples of two different financial markets in
the following: First, the freight market is a representative of an extremely volatile
market. Information about the future quotation of freight rates, the relationships
between spot and forward contracts and price dynamics are of interest here. Second,
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the Chinese FX market is, however - according to a revision - a very young market,
whose behaviors have not yet been thoroughly investigated. I am particularly
interested in the relationship between the sub-currencies - the onshore and offshore
Renminbi.

3.2 forecasting shipping freight rates by neural computation

3.2.1 The Shipping Freight Rates Market

In an industry that is characterized by highly volatile prices, seasonality, strong
business cycles, cyclicality and capital intensiveness, risk management is extremely
important. Ship-owners and charterers face enormous risks, which emanate from
fluctuations in freight rates, bunker prices, interest rates, foreign exchange rates and
vessel values. These risks substantially affect the interplay between revenue and
costs. Modern risk management techniques, involve the use of financial derivatives
products, some of which have been developed exclusively for protecting or hedging
against the adverse price fluctuations of the before mentioned sources of risk in
shipping.

Freight derivatives have the potential to offset freight rate risk of the dry bulk
and wet bulk sectors of the shipping industry and its support industries. The
primary benefits futures markets provide to economic agents are price discovery
and risk management through hedging. Price discovery is the process of revealing
information about future spot prices through the futures markets. Risk management
refers to hedgers using futures contracts to control their spot price risk. The dual
roles of price discovery and risk transfer provide benefits that cannot be offered
in the spot market alone and are often presented as the justification for futures
trading.

Broadly speaking, modeling the freight rates market can be classified into three
thematic approaches: Equilibria with demand-supply structural models, equilibria
with reduced-form models, and deriving shipping derivatives prices - see figure 3.2.

First, structural models provide integrated econometric models of freight rates
and a complete model of freight rate relations by using the demand-supply mecha-
nism. The key feature of this work is not in the econometrics; rather it is the seminal
development of a coherent explanation of ship price behaviour, which is grounded
in the application of the two basic hypotheses of rational expectations of freight
prices and market efficiency. These classical equilibrium models capture well some
features of shipping market structure and provide many economic implications.
Beenstock (1985); Beenstock and Vergottis (1989b,a), Tvedt (2003b), Adland and
Strandenes (2007) and Tezuka et al. (2012) developed shipping equilibrium models.
However, it is difficult to apply these models directly in practical situations, because
there are many parameters needed for estimation. Thus, this interesting methods
are not part of my studies.
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Figure 3.2: Model classification of the shipping freight rates market
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Second, the recent focus of exploring the relationship between spot and forward
rates has been on re-examining the statistical properties of shipping market data
by using reduced-form models or time series analysis. Reduced-form models
are suitable and easily to implement for detecting main characteristics of the
relationship between spot and forward commodity prices.

Grammenos (2002), Stopford (2008) and Alizadeh and Nomikos (2009) docu-
mented well that freight rates at any point in time reflect the balance between
supply and demand for shipping services, which in turn depends on factors such
as world economic activity, the stock of fleet, political events, and the international
commodity trade. In other words, freight rates are formed through the interaction
between shipping supply and demand schedules.

Across time, spot and forward prices are mutually linked by the cost-of-carry
relationship, which plays a central role in pricing of derivatives. Thus, the price of
a forward contract for a storable commodity, must be equal to the spot price of the
commodity today plus the financial and other costs, e.g. storage and insurance, to
carry it forward in time. If this is not the case and the forward price is overpriced
(underpriced), arbitrageurs can simultaneously sell (buy) the forward contract, buy
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(sell) the underlying commodity and store it until the expiry of the contract. At
expiry, reversing these positions will produce a risk-free profit. These movements
by arbitrageurs ensure that correct prices always prevail in efficiently working
markets, and they will be

Ft = St + κT−t, (3.4)

where, Ft is the price of the forward contract at time t, St is the spot price of the
underlying commodity and κT−t is the costs of carrying the commodity forward
in time between period t and T. This feature of the underlying commodity of the
derivatives contract violates the usual arbitrage arguments, that leads to the pricing
of futures and forward contracts in storable commodities. In this case pricing of
the futures or FFA contracts with the freight service as the underlying commodity
is described though the following relationship

Ft = E[ST], (3.5)

where E[ST] denotes the expected value of ST, with expectations formed at time
period t. Forward prices are formed in terms of market expectations that will
prevail at the maturity of the derivatives contract. Assuming rational expectations,
the above equation becomes

Ft = St + εt; εt ∼ iid(0, σ2). (3.6)

Provided the relationship is verified with actual data, it can be argued that the
freight forward market satisfies its price discovery function. This is cause, forward
prices today help as discover spot prices in a future time period, specifically at the
expiry of the derivatives contract.

However, due to their non-storable character, freight rates provide different
patterns in contrast to other commodities. The hypotheses of rational expectations of
freight prices and market efficiency is explored by testing particular characteristics
of spot-forward relationships:

• The unbiasedness hypothesis may provide insight to whether the futures
can be used to guide physical market decisions. In speculatively efficient
markets for non-storable commodities, forward prices are unbiased estimators,
i.e. there is no spread between spot and forward rates and all available
information must be reflected in the price of a future. The thinness of the FFA
market and the absence of a strong speculative interest mean that forward
freight rates may exhibit neither of these properties.

• The lead-lag relationship between future prices and spot rates refers to how
well the two markets are linked and how fast one of the markets reflects
new information relative to the other. Assuming that new information is
available to both markets at the same time, the markets should theoretically
react simultaneously. Due to their non-storable character, futures prices may
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not contribute to the discovery of new information to the same extent as the
markets for storable commodities.

Third, spot and forward prices are random; hence, need to be modeled. The
objective is how these models can be adjusted to the specific properties of com-
modity prices. Spot freight rate models have been restricted to simple parametric
models adopted from financial economics: The Geometric Brownian motion, the
Ornstein-Uhlenbeck process, and the lognormal process of Brennan and Schwartz.
These well-known models are convenient as they usually facilitate closed-form
solutions for the term structure of freight rates and certain freight rate contingent
claims.

3.2.2 Literature Review

A number of related studies have been published regarding to the term structure
of spot and forward rates.

According to the unbiasedness hypothesis, Fortenbery and Zapata (1997) found
that in the thinly traded market of cheddar cheese in the US, futures contracts price
new information independently from the underlying spot market and consequently
do not contribute to the discovery of new information regarding the future spot
prices. In case of freight rates Veenstra (1999) supported the existence of a term
structure in ocean spot and future freight rates. In the following, Kavussanos
and Nomikos (1999); Kavussanos and Alizadeh (2002); Kavussanos et al. (2004)
and Alizadeh et al. (2007) investigated the unbiased expectations property of the
forward prices in the market. They found that futures prices one and two months
before maturity are unbiased forecasts of the underlying spot prices. Futures
prices three months before maturity are however found to be biased. Adland and
Culliane (2005) presented a simple argument for rejecting the applicability of the
expectations theory in bulk shipping freight markets. Kavussanos and Visvikis
(2004) examined also the lead-lag relationship between OTC FFAs and spot returns.
They found that FFAs have a leading role.

Freight forwards may have forecasting abilities regardless of whether the unbi-
ased hypothesis holds. These price discovery properties may be investigated by
comparing forward prices to forecasts generated by time series models. Building
forecasting models for the FFA market is interesting for three reasons: First, forward
rates are not tied to spot rates through a no-arbitrage condition, but are free to be
determined by speculative activity. Second, there are asymmetric transactions costs
between spot and FFA markets. These costs are believed to be higher in the spot
freight market as they involve the physical asset, the vessel. Third, the forward
freight market is relatively new and, like all forward markets, has developed pri-
marily in response to the needs of hedgers. FFA prices can enhance the forecasting
performance of spot prices.
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Culliane (1992) and Culliane et al. (1999) reported success in forecasting spot
freight rates by using univariate autoregression techniques. Alizadeh and Nomikos
(2003) examined the directional forecast accuracy of FFAs and BIFFEX in four
routes and concluded that FFAs do not seem to be very accurate in revealing the
direction of future freight rates, and, in general, forecasting accuracy declines as
maturity increases. Veenstra and Franses (1997), Kavussanos and Nomikos (2003)
and Batchelor et al. (2007) compared the performance of multivariate models in
generating short-term forecasts of spot freight rates and FFA prices. It seems that
spot prices cannot help in enhancing the forecasting performance of FFA prices,
which indicates that the forward rate does contain significantly more and different
information than is embodied in the current spot rate. They found that forward
rates do help to forecast spot rates, suggesting some degree of speculative efficiency.
However, in predicting forward rates, the Vector Error Correction Model (VECM)
is unhelpful, and Autoregressive Integrated Moving Average (ARIMA) or Vector
Autoregression (VAR) models forecast better.

However, the use of linear time series models for freight rates is sometimes criti-
cized, due to the fact that most financial time series show non-linear patterns - see
Adland and Cullinane (2006) and Goulielmos and Psifia (2009). As a representative
of non-linear methods, neural networks could be implemented for several financial
applications. Li and Parsons (1997) investigated the potential of feedforward neural
networks for short- to long-term prediction of monthly tanker spot freight rates.
Their evidence shows that neural networks can significantly outperform time series
models, especially for longer-term forecasting. In another study Lyridis et al. (2004)
attempted to uncover the benefits of using neural networks in forecasting VLCC
spot freight rates. Neural Networks demonstrated mean errors comparable to
benchmark model for 1-month forecasts but significantly outperformed it in the
3-, 6-, 9- and 12-month cases. However, investigations of freight rates with neural
networks is scarce.

Hence, while the development and subsequent growth in the freight derivatives
market have enabled participants in the shipping industry to hedge their freight
and cash flows, the process of assessing, modeling, and managing freight market
volatility is still a difficult one. An abundance of studies have been carried out in
an attempt to understand the time-varying characteristics of freight rate volatility,
yet among them only a few have discussed what are the causes and impacts of the
time-varying risk in shipping markets.

Kavussanos (1996) found that the pattern and magnitude of time-varying volatil-
ities in the dry bulk freight markets are different across vessel sizes. In particular,
freight rates for larger vessels tend to be more volatile than smaller ones. Chen
and Wang (2004) and Jing et al. (2008) also examined the asymmetric characters
of daily return volatility in different bulk shipping sectors and different market
conditions by EGARCH models. The results show that the asymmetric characters
are distinct for different vessel size segments and different market conditions. Glen
and Martin (1998), Jia and Adland (2002) and Batchelor et al. (2005) performed
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similar investigations. Alizadeh and Nomikos (2011) investigated the relationship
between the dynamics of the term structure and time-varying volatility of shipping
freight rates. They found support for the argument that the volatility of freight rates
is related to the shape of the term structure of the freight market. Furthermore,
it is found that this relationship is asymmetric in the sense that when the freight
market is in backwardation, volatility is higher compared to periods when the
market is in contango. Xu et al. (2008, 2011) studied the relationship between the
time-varying volatility of dry bulk freight rates and the change of the supply of
fleet trading in dry bulk markets. Their results revealed that the change in fleet size
positively affects freight rate volatility, while the spot rate volatility of capesize dry
bulk exhibits a stronger reaction to the change in fleet size.

Little research work has been conducted on stochastic modeling freight rates and
derivatives by using fundamental stochastic models. Tvedt (2003a), Koekebakker
and Adland (2004) and Adland et al. (2007) performed investigations. The closed
form of valuation formulae for options on shipping forward contracts is derived
using the relationship between spot freight rates and forward prices. Tvedt (1998),
Koekebakker et al. (2007) Wang et al. (2009) set up the theoretical framework for
the valuation of the Asian-style options traded in the freight derivatives market.
They suggest approximate dynamics in the settlement period for the FFA that leads
to closed-form option pricing formulas for Asian call and put options written on
the spot freight rate indices in the Black framework. But in fact, empirical research
of freight options is very difficult due to the lack of data.

3.2.3 Methodology and Implementation

In paper A, paper G and paper H I perform different forecasting methods in Research
formulationorder to examine the forecasting ability of freight rates. I find a lack of jointly

spot and forward forecasting investigations with neural networks. Thus, I build
on prior investigations, but extend my study on freight derivatives and a wider
range of time series models. The main objective of this paper is to investigate
neural networks’ prediction ability for maritime business forecasting and provide
a practical framework for actual forecasting and trading applications of neural
networks.

I sample daily prices of the International Maritime Exchange (Imarex) TD3 and Data object

TD5 freight forward contracts. These contracts are written on daily spot rates for
TD3 and TD5 published by the Baltic Exchange. The spot and FFA data is available
from 5 April 2004 to 1 April 2011. For purpose of forecasting, each data set is
divided into two subsets: The first subset runs from 5 April 2004 to 16 February
2010, the second subset from 17 February 2010 to 1 April 2011. The first subset is
used to estimate the statistical models and identify the neural network structure
while the second is used only for out-of-sample prediction comparison. This implies
that I get a sample of 1466 daily observations for the estimation period and a sample
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of 282 daily observations for the forecasting period - a ratio of 5.25 to 1. Figure 3.3a
shows the two spot freight rates.

I investigate short-term forecasts of spot and FFA prices in the market in order to Implementation

to make inferences about the efficiency and usefulness of FFA rates. The question
arises: Are forward rates expectations of spot rates? A one-step ahead forecast of
spot freight rates returns ∆Ŝt and forward rates returns ∆F̂t is computed using
lagged input variables in a univariate way as follows

∆Ŝt+1 = f (∆St, ∆St−1, . . . , ∆St−p)

∆F̂t+1 = f (∆Ft, ∆Ft−1, . . . , ∆Ft−p)

and in a multivariate way

∆Ŝt+1 = f (∆St, ∆St−1, . . . , ∆St−p, ∆Ft, ∆Ft−1, . . . , ∆Ft−p)

∆F̂t+1 = f (∆St, ∆St−1, . . . , ∆St−p, ∆Ft, ∆Ft−1, . . . , ∆Ft−p),

where f (·) denotes the function determined by the network and ∆Ft and ∆t

are changes in log futures and spot prices, respectively. Thus the neural network
is equivalent to the non-linear autoregressive model for time series forecasting
problems.

I separate all models in univariate and multivariate model classes: The univariate Model
specificationmodels consist of an ARIMA and a NN model, where I include only the relevant

single spot or FFA time series. For the multivariate models VAR, VECM and a
multivariate neural network, I include both spot and all FFA rates of each route. All
models, estimated over the initial estimation period, are used to generate one-step
ahead, or h = 1, out-of-sample forecasts.

Figure 3.3: Examined freight rates and neural network specification
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The general approach used in the neural networks is to use historical values of
the time series to train the network and test it with new values. Sliding the training
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window one step at a time I can extract N − p training examples from a time series
with N data points. After several training steps I can measure how well the network
has learned to forecast the future. This technique corresponds to the autoregression
models popular among statisticians.

Typically, modeling techniques are optimized using a mathematical criterion, Evalution

but ultimately the results are analyzed on a financial criterion upon which is not
optimized. In other words, the forecast error may have been minimized during
model estimation, but the evaluation of the true merit should be based on the
performance of a trading simulation. Hence, I evaluate my forecasting results in a
simple trading simulation, which is a better indicator for trading purposes than
forecasting performance measures.

3.2.4 Empirical Findings

Spot and forward freight rates time series exhibit certain characteristics. Assuming
that new information is available to both markets at the same time, the markets
should theoretically react simultaneously. Due to their non-storable character,
futures prices may not contribute to the discovery of new information to the same
extent as the markets for storable commodities. There is evidence that forward
rates tend to discover new information more rapidly than spot prices:

• The multivariate models confirmed this by generally providing more accurate
forecasts than their univariate cousins. I observe this advantage especially for
spot freight rates. These results imply that the futures prices contain valuable
information about future spot rates.

• Vice versa forecasting FFA rates are much harder to forecast than the spot
rates.

• Furthermore, the VECM, which has an equilibrium correction feature, perform
better than VAR models for forecasts of spot rates, but not for forecasts of
FFA rates.

• Changes in spot rates are explained by autocorrelation and by changes in
the forward rates; but: Changes in forward rates are not explained by past
changes in spot rates.

• There is, however, a highly significant autocorrelation in forward rates that is
difficult to conciliate with efficient markets.

The rational expectations hypothesis seems to depend on the route in question
and time to maturity. For short-term horizons (two month prior to maturity) mostly
indicate that freight future prices are unbiased. In particular, I highlighted the
forecasting capability of neural networks:
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• The neural network results are comparable to those of the other models. It
is interesting that the univariate NN achieve relatively good results, but the
multivariate NN is not able to reinforce this advantage significantly.

• It seems, that the neural network as a non-linear approximator is already
able to extract sufficient information out of the univariate time series. The
additional information contained in other time series is therefore not needed.

• With respect to the important measures of net gain and risk-adjusted return
as measured by the Sharpe ratio the univariate NN and multivariate VECM
shows relatively good and stable results. I conclude, that both VECM and
univariate NN may generate more robust trading results for this time series
and perform better than the other forecasting models.

For shipowners and charterers, the findings of my study are encouraging, in
the sense that they suggest that spot freight rates are forecastable, and the rates
offered by Forward Freight Agreements to some extent help anticipate spot freight
rates. For analysts of commodity markets the message is more cautionary, an
illustration of the dangers of forecasting with an equilibrium correction model
when the underlying market is evolving, and the parameter estimates conflict with
sensible theoretical priors.

3.3 forecasting the chinese fx market by neural computation

3.3.1 The Chinese FX Market

I will rather focus on one of the most unique features of the Chinese foreign
exchange markets: the dual characteristic of the market (shown in figure 3.4). The
uniqueness comes from the two separated markets for the RMB, namely the and
market. The CNY stands for the inconvertibility of the Chinese currency under
the capital account. The CNH market in Hong Kong is effectively a separate
currency altogether, neither a perfect proxy for the onshore CNY, nor for the
NDF (forward) curve market. The latter’s otherwise known as the offshore dollar
settled non-deliverable forward market, which is the traditional domain of offshore
participants.

Recent reforms introduced by the Chinese authorities have sought to increase
the use of the RMB in international trade and investment. In contrast to a few
years ago, it is now possible for any trade transaction with China to be contracted
in RMB. While the development of the offshore market for RMB has been a key
part of the reform strategy, capital controls restrict the flow of funds between the
onshore and offshore markets, thereby preventing full convertibility.

The Bank of China, however, provides an important link between the two markets,
since it is permitted to undertake cross-border transactions subject to specified
controls. Permitted cross-border flows between the onshore and offshore markets
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Figure 3.4: RMB FX market: three different currencies; HSBC
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have thus far been largely related to the RMB trade settlement scheme, although
this may change as restrictions on cross-border flows are eased. An accumulation of
RMB offshore has occurred as RMB-denominated imports into China have generally
outweighed RMB-denominated exports from China under the scheme. This has
likely largely reflected the incentive for foreigners to acquire and hold RMB when
the RMB exchange rate has been expected to appreciate. RMB can also flow to
and from the Mainland via some investment schemes, although it is unclear how
extensively these have been used to date, given the existence, in many cases, of
quotas and approval lags.

There has been some tendency for the offshore CNH exchange rate to converge
to the onshore CNY exchange rate in recent years. Up until late last year, there
was typically a small premium in the CNH rate - that is, one US dollar bought
less yuan offshore than onshore - reflecting the expectation of some near-term
appreciation of the CNY rate. The tendency for convergence over the past few
years has been made possible by the ability to use trade flows, particularly between
affiliated companies in the Mainland and Hong Kong, to arbitrage between the two
exchange rates. However, increased concerns about the euro area debt crisis and the
outlook for the US economy late last year resulted in a temporary reversal of this
premium as offshore investors undertook a broad-based liquidation of emerging
market investments, including those in the offshore RMB market. As a result, the
offshore CNH exchange rate traded at a sizeable discount to the onshore rate for
the first time. Trading conditions in the offshore market were further strained by the
incentive this discount provided for RMB to flow back onshore to take advantage
of a stronger onshore rate.
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3.3.2 Literature Review

Although the rise of the Chinese currency is more present in the current debate
of the future global currency structure than ever before the Chinese FX regime
still seems like a Gordian knot with respect to forecast performance. For decades
gaining insights in the FX markets and improving the forecasting performance
has been in the center of attention of many academics as well as financial market
professionals. On the one hand the performance of professional forecasters has
always been subject to a lot of critique. Recently, ? showed that exchange rates
follow a martingale process at short horizons, but over long horizons are less
likely to follow a random process and may contain some predictable structure.
Conversely, forecasting models do not perform better than simple naïve forecasts.

One of the first steps in forecasting exchange rates is to identify the underlying
exchange regime. In general, international financial markets as a whole do not
follow at all a one size fits all approach. This is especially true for FX markets where
the underlying regimes change over the course of time as well as from country to
country. For example Frankel (1999) roughly classified exchange rate regimes to be
in the flexible corner, to be intermediate or in the fixed corner respectively. In this
paper I focus on one special case of an intermediate exchange regime which is to
some extent similar to what for example Calvo and Reinhart (2002) characterized
as soft peg.

Whalley and Chen (2013) discussed whether the CNH should be seen as a so-
called stepping stone to full convertibility or as a workaround (internationalization
without convertibility) and also give a very good overview of the two RMB markets.
Under the expression "RMB market" one can subsume a substantial variety of
financial market products whereas onshore products are traded in CNY and
offshore products are traded in CNH, i.e. spot trading, forward products, interest
rate and also cross currency products. Ding et al. (2012) pointed out the starting
point of offshore trading has been marked by the PBOC in July 2010. Before that
point in time the main focus of attention with subject to Chinese exchange rates
has been on the market for non-deliverable forwards (NDF). Amongst others,
Colavecchio and Funke (2008) analyzed the impact of volatility spill-overs from the
Chinese NDF market on several Asia-Pacific markets using multivariate GARCH
techniques. They found out that Chinese NDFs in fact had impacts on China’s
trading partners’ currencies. But these impacts did vary to a large extend due to
different financial integration.

Currently the focus of the financial industry and that of a growing of amount
academic researchers is on China’s offshore markets with Hong Kong being the
most important and best developed. The Hong Kong market - often referred to
as mainland China’s test vehicle for free trade of the Chinese currency as well as
bonds denominated in RMB (see for example Fung and Yau (2012)) - has also been
highlighted in the People’s Republic’s most recent five-year plan. According to Fung
and Yau the state planners want the offshore market of the special administrative
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region to support the RMB in becoming an international currency. Having the same
currency RMB being traded in three different markets - onshore, offshore and NDF
- raises inevitably the questions of parity.

Besides, the offshore RMB bond market was developed as part of China’s attempt
to internationalize the RMB. It enhances the circulation of RMB outside mainland
China. Loechel et al. (2013) focused on forecasting the term structure of yields in
Chinese government bond market. Their paper aims to identify the determinants of
the Hong Kong offshore sovereign yield curve and to test the hypothesis that, other
than its onshore equivalent, the respective offshore curve is not predominantly
driven by policy-related factors. They found that onshore government bond yields
are primarily driven by policy-related factors such as the policy rate and money
supply, whereas offshore government bond yields are additionally driven by market-
related factors as well as liquidity constraints. At the current stage of market
development there are virtually no spillover effects between the onshore and
offshore government bond curves.

3.3.3 Methodology and Implementation

The main goal of paper C is to gain insights in the comparatively new market Research
formulationfor offshore RMB (CNH spot market) and to detect first indications for feasible

forecasting models for the onshore RMB (CNY spot market) respectively to improve
CNY spot forecasts. I employ a simple GARCH model as well as neural networks.
I do also analyze the somewhat older NDF market for RMB for which for example
Ding et al. (2012) found a strong relationship with the CNY spot rate. As their work
deals with the three RMB markets until June 2011 and since then the CNH market
grew quite rapidly and seems to be replacing the NDF market, I lay my main focus
on the CNH market.

I collect daily exchange rate data for onshore spot (CNY), offshore spot (CNH), Data object

one-month offshore NDF and CNH forward rates from Bloomberg. Although some
studies argue in favour of longer NDF maturities, I use one-month rates given
one-month NDFs are less prone to purely speculative pressures, more liquid, and
less susceptible to exaggerated price swings. My sample period spans 08 September
2010 to 20 March 2013. Figure 3.5a shows data points of the mentioned series.

For purpose of forecasting, I conduct a rolling-window technique of 100 data Implementation

points to generate one step-ahead forecasts. The first insample runs from 08 Septem-
ber 2010 to 25 January 2011. The insample subset is used to estimate the statistical
models and identify the neural network structure while the second is used for
independent out-of-sample prediction comparison. This implies that I get a sample
of 560 daily observations for the one step-ahead forecasting period.

I separate all results in univariate and multivariate classes: The univariate models Model
specificationconsist of single series of CNY, CNH and their spread. I exclusively analyze the

CNY in a multivariate way by incorporation of the one-month forward rates NDF
and CNH respectively.
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Figure 3.5: Examined FX rates and neural network specification
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The forecast performance of each model is assessed using the conventional Evaluation

Root Mean Square Error metric (RMSE) and Theil’s U statistic. The latter allows a
relative comparison of formal forecasting methods with a naïve model, a no-change
Random Walk (RW). Statistical performance measures are often inappropriate
for financial applications. Trading strategies guided by forecasts on the direction
of price change may be more effective and generate higher profits. Therefore,
predicting the direction is a practical issue which usually affects a financial trader’s
decision to buy or sell a contract. The trading simulation assumes that, at the
beginning of each trading day, the investor will invest 1 monetary unit at the
beginning of each contract period.

3.3.4 Empirical Findings

In this paper, I have examined the influence of the offshore CNH trading on onshore
RMB rates (CNY). In contrast to prior studies I assume that the new CNH trading
market becomes more relevant for the onshore CNY. Thus, I expect a tendency
for parity between these two rates. To proof my assumption I predict single CNH
and CNY rates, as well as multivariate effects of forward rates on the CNY with a
GARCH-type and a neural network model.

• It is remarkable that predicting the spread is more difficult than the offshore
CNH or onshore CNY. For the spread-behaviour I conclude that both markets
still have a moderate level of comovement. Thus, there might exists a low
level of information integration between CNY and CNH rates.

• When examining onshore spot trading against offshore NDF trading, my
results show no ambiguous picture that onshore spot rates are influenced by
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offshore forward rates. This is not in line with prior results, where the CNY
and NDF markets became even more informatively integrated after the CNH
began trading.

• While the NDF is a contract whose forward curve acts like a futures curve
on onshore Yuan spot rates, the CNH is a spot rate whose forward curve
acts more like an onshore interest rate curve. Thus, NDF rates more closely
track onshore Yuan spot rates whereas CNH rates more closely track onshore
interest rates.

• My results do not support my assumption of a parity between the CNY
and CNH. On the one hand the fact that the used forecasting methods do
not outperform the naïve RW forecasts points to the direction that the price
movements in the Chinese FX markets are similar to the movements in
developed economies’ FX markets, which are said to be rather efficient. On
the other hand I found strong evidence that structural breaks do exist in the
RMB markets.

In summary, my results give us no ambiguous evidence to confirm my assump-
tion. Having in mind that the CNH market is rather new and subject to a lot of
regulatory changes within a short time frame this is not surprising at all. The
paradox lies in the fact that from a forecasting perspective Chinese FX market seem
to be rather effective although substantial capital controls do exist. Nevertheless,
several extensions for further research are necessary. From my point of view further
research should focus on structural breaks and much more advanced forecasting
methods. First, I would incorporate statistical multivariate GARCH models to
analyze the relationship between the CNH market and CNY rates in detail. I would
expect to get practical hints for a better specification of FAUN to improve forecast
accuracy.



4
D E C I S I O N M A K I N G T E C H N I Q U E S

4.1 model-driven decision support systems for trading

Any capability to approximate market price functions or forecasting time series
data leads to strategic advantages, which may be the key to success in financial
institutions. In real life, one would be interested not only in efforts in forecasting,
but also in practical trading strategies with possibility of taking positions in various
financial markets. Nowadays, the prominence of sophisticated mathematical finan-
cial models in use and the rapidly expanding data sets involved, and the potential
for catastrophic losses contribute to the high relevance of DSS in the finance.

At first decision support researchers need to differentiate three computerized
systems associated with improving or enhancing individual and organizational
decision making as shown in figure 4.1.

Figure 4.1: Different computerized DSSs; Power and Sharda (2007)
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Automated decision systems are intended to automate and make decisions in
routine, well-structured situations, whereas DSSs are auxiliary systems intended to
assist decision makers in a wide variety of semi-structured and recurring decision
situations. Finally, computerized tools used by technical experts to complete special
decision studies are usually not appropriately categorized as DSSs. In this chapter I
will put the attention on the automated - or model-driven - DSS fitted with neural
networks embedded in high-frequency trading systems.
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Financial markets are undergoing rapid innovation due to the continuing pro-
liferation of computer power and algorithms. These developments have created a
new discipline called algorithmic trading and high-frequency trading. Algorithmic
trading or automated trading, is the use of electronic platforms for entering trading
orders with an algorithm which executes pre-programmed trading instructions
whose variables may include timing, price, or quantity of the order, or in many
cases initiating the order by a robot, without human intervention. A special class of
algorithmic trading is HFT.

HFT strategies utilize computers that make elaborate decisions to initiate orders
based on information that is received electronically, before human traders are
capable of processing the information they observe. Thus, HFT strategies are
characterized by a higher number of trades and a lower average gain per trade.
Traders execute multiple trades each day, gaining a fraction of percent return per
trade, with few, if any, positions carried overnight.

The advances in computer technology over the past decades have enabled fully
automated high-frequency trading. Technological innovation has always been a
driving factor in the development of algorithmic trading and HFT. Beside the
automation of financial markets, the use of computer algorithms to support trading
decisions or even to make independent trading decisions has become commonplace.
The competitive edge has become an issue of speed and sophistication of algorithms.
Computational trading application must accomplish the following tasks:

• Automated trading signals,

• Auto-hedging,

• Risk allocation algorithm,

• Pricing and

• Execution engines.

To be more specific, efficient high-frequency trading systems make a full range
of decisions, from identification of underpriced or overpriced options, through
optimal portfolio allocation, to best execution. A signal must be precise enough to
trigger trades in a fraction of a second.

Of course, today’s algorithmic trading involves neural networks, fuzzy logic,
pattern recognition. Network-based models may be particularly valuable if the
decision contains important non-linear elements or some of the other advantages
of neural networks are crucial in a given application. For example if one believes
that a group of indicators are somehow indicative of a change in price for a trading
instrument but one does not have any rules in mind, one may use those indicators
in a neural network to achieve a precise trading signal.
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4.2 high-frequency trading systems with neural computation

4.2.1 Literature Review

Holsapple (2008) defined a decision support system simply as any system that
represents and processes information for the purpose of improving decision making.
Such systems are used by decision makers by using both a large data bases and a
model base as shown in figure 4.2. According to Power and Sharda (2007), many
technologies have been used to support decision making, and thus constitute DSS.
Zhang et al. (2009) defined financial DSS as system which help decision makers
solve problems within the financial management domain. Weber (2008) asserted
that the role of DSS in the decision process can be either leading to a clear and
unique best solution (normative) or providing information and guidance to the
decision (decision-analytic). He pointed out that the core elements of a DSS are
the same as any DSS: a data base, a model base, and a user interface. These core
components are also evident in the more comprehensive DSS framework proposed
by Zhang et al. (2009).

Figure 4.2: DSS architecture framework; Holsapple (2008)
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Considering the evolution of non-linear dynamic systems to improve decisions
is certainly not a new idea. There is a wide range of research in context of model-
driven DSS, e.g. Gupta (2006), Turban et al. (2010), Grosan and Abraham (2011)
and Schuff et al. (2011). Beraldi et al. (2011) presented a DSS which implements
sophisticated mathematical models and integrates simulation and optimization
techniques. Today, DSSs use interactive and artificial intelligence computer-based
systems like neural networks for decision making. Artificial intelligence programs
often learn from a priori given processes, data, etc. and corresponding appropriate
decisions.
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While algorithmic trading is defined by Hendershott et al. (2011) as "the use
of computer algorithms to automatically make trading decisions, submit orders,
and manage those orders after submission", HFT remains undefined, but it is
considered as a subcategory of algorithmic trading and includes more sophisticated
and complex strategies that make use of the fast connection and processing speed of
computers. According to Aldridge (2010), high-frequency is defined as quantitative
analysis embedded in computer systems processing data and making trading
decisions at high speeds and keeping no positions overnight.

4.2.2 Methodology and Implementation

In paper D I present steps towards a model-driven financial decision support Research
formulationmodel to pricing option on currency futures, which can be embedded in a high-

frequency trading process. To develop an appropriate DSS, I use the design science
methodology of Hevner et al. (2004). This leads to three major challenges:

1. Decision problem: Financial trading systems need support in making correct
trading decisions, which are rather complex but important for participants in
financial markets.

2. Option pricing problem: An accurate market valuation of option products in
the FX market is still difficult and needs appropriate models and techniques.

3. Performance problem: From the operational perspective, the high speed of
computer-driven decisions requires a particular comfort level with computer-
driven execution.

Most systematic trading platforms are organized as shown in figure 4.2. A Model
frameworksuccessful high-frequency trading system adapts itself easily to contemporary

market conditions. As a result, most high-frequency systems accept, process, and
archive volumes of quotes and other market data delivered at real-time frequency.
Some systems may convert streaming real-time data into equally spaced data
intervals for use in their internal econometric analysis. Other systems may run on
the raw, irregularly spaced quotes. The decision whether to convert the data should
be based on the requirements of the run-time econometric analysis.

I propose a heuristic option pricing model with FAUN to synthesize the option Data and
implementationpremium for all call FX option. I also implement FAUN as a core engine in a

high-frequency trading process. To evaluate its usability I start an experimental
design with empirical tick data of EUR/USD options on currency futures. The raw
data set is the same as used in paper B and paper E, but here I concentrated more
on insample training large tick data without any out-of-sample intervals.

I identify problem relevance in the field of pricing options in financial markets, Evaluation

and suggest needs for efficient DSS to manage high-frequency trading processes. I
perform my network training with the FAUN neurosimulator. The FAUN neurosim-
ulator uses fine-grained parallelization which allows easily achieved speedups on
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dual and quad core Central Processing Unit (CPU)s. FAUN also features coarse-
grained parallelization using an easy to install grid computing client. It is possible
to use clusters of heterogeneous workstations. Furthermore, using reverse accu-
mulation and matrix algorithms allow a very efficient computation. This technical
specifications make FAUN suitable for HFT, where computational requirements
should be high and require special high performance computers.

4.3 empirical findings

The results are encouraging in the sense that FAUN provides accurate market prices
for six different strike prices simultaneously. If the market and heuristic prices
differ significantly a trader can take this as a signal that an option is currently either
too cheap or too expensive. I am now able to answer the research formulation in
the following way:

• Neural networks are a suitable core engine for a model-driven DSS embedded
in a high-frequency trading process and can support trading decisions.

• Run-time evaluation of ensembles takes fractions of a second and is therefore
instantaneous in a high-frequency context.

• Contrarily, post-trade network training is a computing-intensive issue.

From my point of view the most developable aspect is to test the model on a
wider range of overlapping option series with different expiry dates. This will allow
us to better gauge the practical applicability of FAUN. The proposed methodology
and design of a network-based HFT trading system might evaluated as proposed
in Paper B.
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C R I T I C A L A S S E S S M E N T A N D L I M I TAT I O N S

In evaluating the empirical studies, there are still some questions left: first, can the
empirical results be generalized? Second, are there any restrictions to a practical
implementation, which have not been taken into account? An evaluation should be
developed on the basis of some major criteria. For this purpose, I have identified
three assessment criteria as shown in figure 5.1. I will give answers to the two
questions mentioned above in this chapter.

Figure 5.1: Assessment criteria
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Artificial neural networks, as a semi-parametric data-driven approach, have been
proposed as an alternative approximation technique, which includes market price
synthesis and forecasting of time series. The popularity of neural networks as
a generalized non-linear forecasting model is due to several distinguishing fea-
tures that make them a valuable and attractive tool for approximation purposes.
Neural networks as an universal approximator, as explained earlier, appear to
be particularly suitable for financial time series approximation for a number of
reasons:

• They are reliable for modeling non-linear, complex and dynamic market
signals. They are capable to perform non-linear modeling without an a priori
knowledge about the relationships between input and outputs variables.
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• They can perform prediction after learning the underlying relationship be-
tween the input variables and outputs.

• One of the major advantages of neural networks is their ability to generalize.
This means that a trained network could classify data from the same class as
the learning data that it has never seen before.

• They are self-adaptive methods, i.e. numerical parameters are tuned by a
learning algorithm.

• They do not require any assumptions concerning the underlying data-generating
process and can handle noisy data.

From a statistician’s point of view, neural networks are analogous to nonpara-
metric, non-linear regression models. But, it is not a panacea, because the basic
principle, the minimization of an error, resembles a simple regression.

Nevertheless, one can assess the value of my empirical computations with FAUN
and other benchmark models by two criteria:

1. Effectiveness of validation and

2. Effectiveness of implementation.

First, effectiveness of validation ensures that the insample or out-of-sample
procedure is well specified. This includes comparisons with well-accepted models,
use of ex-ante validations and use of a reasonable sample of forecasts, i.e. the size
of the validation samples should be adequate to allow inferences to be drawn.
It is important to note, that a comparison with closed-form benchmark models
is not always informative. In both cases, forecasting and option pricing, one can
control performance results by model settings. Hence, many authors choose a
constant volatility estimator for their benchmark option pricing model. But it is
well known, that this parameter effects significantly the pricing performance. I
made the experience that out-of-sample pricing in very short intervals, like the 15

minutes buckets in Paper B, leads to a perfect specified closed-form model.
In addition, Hanke (1999) applied neural networks and the BS model to European-

style call options on the DAX index. After optimizing the volatility and interest
rate data to suit the BS model, the neural network was less accurate than BS. Thus,
it is not obvious, that my neural network specification outperforms the closed-form
model in general. The results depend on the given data set and model specification.
There exist no exact methods for finding the "right" inputs or the "right" network
topology: Practitioners have to use heuristics until they arrive at a combination
of inputs and topology that satisfies their requirements. However, this is also a
general statement of the universal approximation theorem.

Second, for studies that have effectively validated the neural network one demand
effectiveness of implementation. In determining the effectiveness with which a
neural network had been developed and tested, I used the guidelines for evaluating
network performance suggested by Refenes (1995):
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• Convergence is concerned with the problem of whether the learning proce-
dure is capable of learning the classification defined in a data set. In evaluating
this criterion, therefore, one was interested in the insample performance of
the proposed network since it determines the network’s convergence capa-
bility and sets a benchmark for assessing the generalizabilty, i.e. ex ante
performance, of the network.

• Generalization measures the ability of neural networks to recognize patterns
outside the training sample. The accuracy rates achieved during the learning
phase typically define the bounds for generalization. If performance on a
new sample is similar to that in the convergence phase, the neural network is
considered to have learned well.

• Stability is the consistency of results, during the validation phase, with dif-
ferent samples of data. This criterion evaluates whether the neural network
configuration determined during the learning phase and the results of the
generalization phase are consistent across different samples of test data. Stud-
ies could demonstrate stability either through use of iterative resampling from
the same data set or by using multiple samples for training and validation.

The criteria are sufficiently general to be applicable to any network architecture
or learning mechanism. If one wishes to use empirical studies to make a case
for or against the applicability of neural networks to forecasting or prediction,
though, one must be able to determine which represents good implementations
for that purpose. Convergence problems occurs mostly in case of deriving partial
derivatives. While closed-form approaches bound some derivatives in a particular
interval, e.g. ∆ of a call option in [0, 1], the neural network does not inherently
know these interval boundary. A solution for this problem might be to specify
alternative network topologies by replacing the target option price by the desired
hedge ratio proxy. Carverhill and Cheuk (2003) reported a better performance by
training the networks based on the performance criterion ultimately used. The
reason is that the neural network minimizes the error of the price function, but has
no knowledge of the unobservable sensitivity.

practicability

Performing a permanently run-time network-based DSS put high requirements on
practicality and useability. Encouraging empirical results are only one side of the
coin - but neural networks must also prove in practical use as robust and stable.
They compete with conventional closed-form analytical approaches in the field of
market price synthesis and statistical models in time series analysis. For both my
study and in general, the following limitations may be mentioned:

• Neural network methodology and modeling techniques are rapidly changing,
whereas many statistical modeling techniques are stable and well developed.
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• Software is readily available for statistical techniques but commercial artificial
neural network software, although of good quality, often lags developments
in the field.

• Neural network models are harder to interpret than many other statistical
models.

• Neural networks contain more parameters to estimate than most other statis-
tical forecasting models do; this can result in overfitting problems. Moreover,
they require a large diversity of training for real-world operation.

• Though the estimation procedure can be automated, neural networks must
be re-estimated periodically when new data arrives.

One can extract two major requirements from the listed points: robustness and
stability; i.e. are the network results of its term, in other market conditions stable?
Is there much manual adjustment needed?

According to chapter 2, I have seen some weak points of neural networks during
my computations in the field of market price synthesis. On the one hand, analytical
approaches such as the Black model are easy to use, and they produce very quickly
desired results with sufficient accuracy. On the other side, FAUN underperforms
closed-form models in this data regions, due to the lack of data. Thus, in case
of less market liquidity, which results in less data points, network results mostly
achieve higher deviations than benchmark models. Hence, the data dependency is
a major disadvantage in the network performance evaluation. To avoid the problem
of limited data for training - in my case OTM options - I have performed a modular
network topology like those proposed by Gradojevic et al. (2009). The pricing
function is decomposed into separate non-linearities called modules. The modules
are trained independently on the data for the ITM and OTM options and during
run-time pricing. Of course, the training error decreases, but induces an increased
modeling effort.

Moreover, the model specification of neural networks in context of time series
analysis is often difficult. While a number of tests and diagnostic tools help to spec-
ify conventional statistical models, neural networks models are usually specified
by heuristic approaches. In this respect I can confirm Horniks presumption that
poor results must arise from inadequate specification.

computational efforts

Efficient implementation of trading algorithms is crucial, because a vast amount
of data has to be processed in a very short time. A common criticism of neural
networks, is that they require a large diversity of training data and operations.
This is not surprising, since any learning machine needs sufficient representative
examples in order to capture the underlying structure that allows it to generalize
to new cases. These issues are common in neural networks that must decide
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from amongst a wide variety of responses, but can be dealt with in several ways,
for example by randomly shuffling the training examples, by using a numerical
optimization algorithm.

To implement large and effective software neural networks, much processing and
storage resources need to be committed. Neural network systems will often need
to simulate the transmission of signals through many of these connections and
their associated neurons - which must often be matched with incredible amounts
of CPU processing power and time. While neural networks often yield effective
programs, they too often do so at the cost of efficiency.

In response to this kind of criticism, one should note that although researchers
involved in exploring learning algorithms for neural networks are gradually uncov-
ering generic principles which allow a learning machine to be successful. For that
matter, the following high-performance computing approaches are available:

• Parallel calculations: Parallel calculations can be split into many smaller
sub-calculations. This means that each sub-calculation can be worked on by
a different processor, so that many sub-calculations can be worked on "in
parallel". This allows ones to speed up computations.

• Coarse-grained calculations: Coarse-grained calculations are often embar-
rassingly parallel. A calculation is embarrassingly parallel when each sub-
calculation is independent of all the other calculations.

• Fine-grained calculations: In a fine-grained calculation, each sub-calculation
is dependent on the result of another sub-calculation. Fine-grained parallel
calculations require very clever programming to make the most of their
parallelism, so that the right information is available to processors at the right
time.

• Grid computing: Many interesting problems in science require a combination
of fine- and coarse-grained calculations, and this is where grids can be
particularly powerful.

For example, in the case of financial modeling, one launch many similar calcu-
lations to see how different parameters affect their models. Each calculation is a
fine-grained parallel calculation that needs to run on a single cluster or supercom-
puter. Using a grid, these many independent calculations can be distributed over
many different grid clusters, thus adding coarse-grained parallelism and saving a
lot of time.

In addition, since a neural network requires a considerable number of vector and
matrix operations to get results, it is very suitable to be implemented in a parallel
programming model and run on Graphics Processing Unit (GPU). A GPU offers
a highly parallelized computing architecture that is suitable for massive parallel
computing tasks. Unlike modern CPU, which have two or more cores, a modern
GPU has hundreds of cores that provide an incredible computational platform for
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a wide variety of tasks. The recent resurgence of interest in neural networks owes a
certain debt to the availability of affordable, powerful GPU which routinely speed
up common operations such as large matrix computations.

future research

Throughout this dissertation I have attempted to provide empirical evidence for
neural network’s capability to approximate financial time series. The elaborated
limitations give me useful hints for further research.

First, to demonstrate the universality of this study’s results, it is necessary to
validate specified models against a broader data base. To check the robustness and
stability of network-based approximations I recommend to perform monte-carlo
methods. These methods can simulate a lot of different market situations and time
series data. Of course, the simulated data is artificial. But it allows a deeper analysis
of network behavior. Moreover, one should also take real time series into account.

Second, I have only used MLPs in my empirical investigations. Implementing
other network topologies and neural network types like recurrent networks, genetic
algorithms or radial basis function networks are alternative models, which could
achieve better results.

Third, I would expect that an incorporation of more effective and modern
computational methods improve the computation performance. This is an important
fact in order to confirm a practical and routinely implementation. Nevertheless, the
latter point needs programming knowledge, time . . . and money.



6
C O N C L U S I O N

This thesis seeks to address how neural networks may be put to work for more
accurate approximation and for better decision making in financial markets. I per-
form several different empirical studies to investigate the approximation capability
of neural networks in case of time series analysis and market price synthesis. For
empirical analysis I use the FAUN neurosimulator.

The universal approximation theorem of Cybenko (1989) and Hornik (1989)
provides the latent basis of my empirical studies. Artificial neural networks can
be mathematically shown to be universal function approximators. This means
that neural networks can automatically approximate whatever functional form
best characterizes the data. Since it is my goal to extract an alternative option
pricing function by market observations, I focus on the MLP that are applicable to
non-linear regression problems.

In order to study its approximation ability for computational economics, I per-
form different empirical computations. First, due to their complex and non-linear
character, neural networks are suitable for approximating price functions of fi-
nancial options. In a more heuristic approach financial market actors are able to
approximate network-based pricing formulas and their partial derivatives depend-
ing on specific market situations. I present empirical results for pricing and hedging
Foreign exchange (FX) options, which confirm the capability of neural networks
for universal approximation.

Second, real-time pricing and hedging algorithms market actors are interested in
dynamics and predictions of relevant market variables. This leads to examination
of autoregressive time series processes and model specifications with lagged input
variables. I investigate the usage of neural computing for forecasting financial time
series, where neural networks compete with conventional time series models. I show
empirical studies about two financial markets: the maritime spot and derivatives
freight rates market and the Chinese FX market. Neural networks achieve suitable
results in both markets, which both have their own uniqueness.

Above all mentioned techniques remains the question of neuronal computing
application in the financial industry. In a last step I thus propose the implementation
and design of a financial decision support system with neural networks, which is
a more business informatics oriented discussion. The merits of neural networks
especially for high-dimensional problems are shown.

49
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In summary, I have attempted to provide empirical evidence for neural network’s
capability to approximate financial time series. Main contributions are:

• Model option prices derived from neural networks can synthesize HFT option
market prices in a similar manner, but in a simultaneous way and with a
more parsimonious input specification. There is e.g. no need of volatility or
interest estimation.

• If market liquidity exists, which is equivalent to full data availability in a
particular state space, learning networks are capable to approximate first- and
higher-order partial derivatives with a sufficient accuracy. But the approxima-
tion accuracy decreases with higher-order partial derivatives.

• However, I can not confirm the hypothesis that once a predominant network
approximation is found for pricing purposes, the same could be applied for
hedging. I have to notice that it is an exhausting balancing act for learning
systems to apply the delivered pricing approximation function on unknown
hedge parameters.

• In case of forecasting financial time series neural network results are com-
parable to those of the other models. Some regularities from two different
financial markets:

• Tanker freight rates: Changes in spot rates are explained by autocorrelation
and by changes in the forward rates; but: changes in forward rates are
not explained by past changes in spot rates. There is, however, a highly
significant autocorrelation in forward rates that is difficult to conciliate with
efficient markets. These results imply that the futures prices contain valuable
information about future spot rates.

• Renminbi: The results do not support our assumption of a parity between the
CNY and CNH. On the one hand the fact that the used forecasting methods
do not outperform the naïve RW forecasts points to the direction that the
price movements in the Chinese FX markets are similar to the movements in
developed economies’ FX markets, which are said to be rather efficient. On
the other hand I found strong evidence that structural breaks do exist in the
RMB markets.

• Neural networks are a suitable core engine for a model-driven FDSS embed-
ded in a high-frequency trading process and can support trading decisions.

Hence, this dissertation provides empirical evidence that neural networks are well
suited for non-linear relations due to their ability to approximate any measurable
function up to an arbitrary degree of accuracy. I also expose limitations and
further research topics in doing with neural networks, which could improve neural
networks applications in computational economics in the future.
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Nevertheless, when I refer to the quote of Jules Verne at the beginning of this
work, namely that small error steps lead to the truth, . . . then neural networks seem
to approximate very well the truth.
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abstract

This article presents a simple approach for numerical approximating the value and
its partial derivatives of American call options by powerful neural networks. The
key to this approach is the use of a parsimonious semi-parametric learning networks
in order to approximate not only the option price but also their partial derivatives.
We perform a empirical simulation with thousand of option prices derived by
a simulation experiment. We show that the approximated pricing function of
learning networks is suitable for generating fast run-time option pricing and
hedging evaluation. Whereas neural networks can approximate desired functions
in an appropriate manner, we show that approximation accuracy highly depends
on market liquidity and decreases for higher-order derivatives. However, directly
networking training on approximated observable Greeks reverse this failure.
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Numerical Approximation of Option Pricing Functions and
Its Partial Derivatives by Neural Networks

Christian von Spreckelsen
Hans-Jörg von Mettenheim

Michael H. Breitner

Gottfried Wilhelm Leibniz Universität, Institute of Information Systems Research
Königsworther Platz 1, 30167 Hannover, Germany

1 introduction

Option pricing models are among the most popular analytical methods for the
solution of partial differential equations governing many problems in financial
engineering. Due to a lack of closed-form solutions to American option valuation
problems, a vast array of approximation schemes has been advanced. Numerical
methods such as the finite difference method of Brennan and Schwartz (1977) and
the binomial tree model of Cox et al. (1979) are among the earliest and still widely
used ones. Even though these methods are quite flexible, they are also among the
most time consuming ones.

Another category of potential methods includes analytical approximations.
MacMillan (1986), Barone-Adesi and Whaley (1987) and Bjerksund and Stens-
land (1993) are among these methods. A common feature of these methods is
that they are many times faster, but a drawback is that they are not very accurate,
especially for long maturity options.

In absence of any closed form formula for American options, a reliable analytical
approximation is obviously highly desirable. Network-based models are funda-
mentally different in some respects to theoretical models. First, since they do not
rely on restrictive parametric assumptions such as lognormality or sample-path
continuity. Second, they are adaptive and respond to structural changes in the
data-generating processes and robust to specification errors that plague parametric
models. Standard applications of neural networks (NN) do not involve any financial
theory and can be used to estimate directly the unknown empirical option pricing
function. As option pricing theory typically derives non-linear relations between an
option price and the variables determining it, NNs are well suited for this purpose
due to their ability to approximate any measurable function up to an arbitrary
degree of accuracy. When properly trained, the network synthesizes the (true)
option pricing formula, which may be used in the same way that formulas obtained
from the parametric pricing method are used. From a practical perspective NNs are
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well suited to parallel computing, which allows significant gains in computational
speed and efficiency.

First attempts of market price approximation with NNs were made in the early
1990ies. Pioneers are Malliaris and Salchenberger (1993) and Hutchinson et al. (1994),
who compared the performance of the BS model and NNs in pricing American-
style call options. Many of these studies show that NN models are capable of
approximating option pricing functions. In the following, Anders et al. (1998),
Garcia and Gençay (2000), Amilon (2003) and Andreou et al. (2006) got similar
encouraging results regarding European-style options. Whereas some studies only
concentrated on pricing accuracy some authors also performed a Delta-hedging
simulation in order to investigate the first partial derivative of network functions.

However, Andreou et al. (2010) noted some limitations in using NNs for option
pricing. In particular, the use of standard NNs can deliver option prices that
violate fundamental financial principles, e.g., irrational option values or hedging
parameters. But on the other side, the universal approximation theorem of Cybenko
(1989) and Hornik (1991) states that a feed-forward network with a single hidden
layer containing a finite number of neurons is a universal approximator among
continuous functions.

The objective of this paper is to report a numerical approximation of option
pricing functions and their derivatives by NNs. The benefits of our NN technology
as a kind of core engine allow both option sellers and buyers to approximate call
option prices and hedging parameters across different strike prices simultaneously
and with parsimonious input specification.

Contrary to prior studies we pose the following challenge: are NNs not only
capable to approximate option prices, but also its first- and higher-order partial
derivatives with a sufficient degree of accuracy? In addition, does this approach
satisfy necessary convergence criteria? We perform a simulation experiment, in
which NNs discover American call option prices when trained on Barone-Adesi
and Whaley (BAW) call option prices. The derived approximation function is then
used to derive various partial derivatives.

Partial derivatives of financial options, the so-called Greeks of option values, are
vital tools in risk management. Each Greek measures the sensitivity of the value of
a portfolio to a small change in a given underlying parameter, so that component
risks may be treated in isolation, and the portfolio rebalanced accordingly to achieve
a desired exposure.

The remaining of the paper is organized as follows. First, we introduce the unique
approximation capability of NNs. In section 3 we explain the pricing functions of
financial options and their partial derivatives, which we want to approximate by
NNs. In section 4 we perform a numerical experiment with artificial derived option
prices by a Monte-Carlo simulation. Theoretical derived option Greeks compete
with NN approximations. The paper ends with a brief conclusion and summary of
the results in section 5.
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2 approximation capabilities of feedforward neural networks

2.1 Approximation of Functions by the Multilayer Perceptron

Neural Networks can be mathematically shown to be universal function approxima-
tors. This means that NNs can automatically approximate whatever functional form
best characterizes the data. One of the first versions of the theorem was proved
by Cybenko (1989) for sigmoid activation functions. Hornik (1991) showed that
it is not the specific choice of the activation function, but rather the multilayer
feedforward architecture itself which gives NNs the potential of being universal
approximators.

Let a(·) be a nonconstant, bounded, and monotonically-increasing continuous
function. Given any function f and ε > 0, there exists an integer M and real
constants αj, β j ∈ R, wj ∈ RN , where j = 1, . . . , M such that we may define:

f̂ (x) :=
M

∑
j=1

αja(wT
j x + β j) (A.1)

as an approximate realization of the function f , where f is independent of a; that
is,

| f (x)− f̂ (x)| < ε. (A.2)

Since it is our goal to extract an alternative option pricing function by market
observations, we focus on multilayer perceptron (MLP) that are applicable to non-
linear regression problems. We follow the argumentation of Hornik (1989), that
feedforward networks with only one hidden layer and a linear output unit are
able to approximate simultaneously its unknown derivatives up to an arbitrary
degree of accuracy. This characteristic is substantial since the partial derivatives of
a pricing formula are needed for the hedging of option positions.

Figure A.1: Exemplarily 3-layered perceptron

xl−1
1

xl−1
2

xl−1
N

∑
al

j
yl

j

wl
j1

Activation function

wl
j00.5

al
j = ∑N

i=1 wjixi + wj0 · 0.5

wl
j2

wl
jN

Transfer function

(a) Neuron j

0.5

x1

xN

. . .

Input layer Hidden layer Output layer

y

(b) Feedforward network



the »greeks approximation« paper 57

Referring to figure A.1, given an input ~xl−1
i in layer l− 1, a neuron j can compute

an output yl
j in layer l according to its prior training, represented by the weight

vector (wl
j0, ~wlT

j )T where superscript T denotes the transpose operation. The weights
provide the abilities of prediction or classification to the system. Firstly, the inputs
(~xl−1

i ) fed to the input layer are weighted and summed up. Then they are entered to
an activation function al

j in order to get an output from each neuron in the hidden
layer. The weights are iteratively changed until the best loads are obtained. To
find the right weights within a so-called training process thousands of multi-layer
perceptrons with various topologies and with different weight initializations are
trained.

Once a set of discrete data is available, the NN can be trained to approximate or
generalize the function over the domain. NN training is commonly posed as an
optimization problem in the weight space. The nonlinear least squares objective
function in this case is defined by

E(~W) =
It

∑
p=1

e2
p, (A.3)

where It is the number of training patterns and

ε2
p =

(
f (~xp)− f̂ (~xp)

)2
(A.4)

is the squared error associated with the training pattern p, f is the target or
desired output, and f̂ is the computed output corresponding to the input ~xp. The
error vector is defined by

~ε = (ε1, ε2, . . . , ε It)
T. (A.5)

In the rest of this paper we only discuss three layer NN consisting of an input
layer, a hidden layer and an output layer. Furthermore, we consider fully connected
NNs in which a neuron will receive signals from each and every neuron in the
immediately preceding layer.

2.2 Numerical Approximation of Partial Derivatives

The capability of NN with as few as one hidden layer to approximate functions has
been theoretically proven by Hornik et al. (1990). Here, we are also interested in
the numerical approximation of partial derivatives of functions. Fortunately, NN
can be extended for this purpose as shown by Nguyen-Thien and Tran-Cong (1999).
Figure A.2 describes an NN with a multi-neuron input layer, a single multi-neuron
hidden layer and a single-neuron output layer.

The activation functions of the input layer neurons and output layer o neurons
are simply the identify functions. On the other hand the tanh-sigmoidal function is
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Figure A.2: Approximation of a function f (~x) and its first partial derivatives
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A three-layer neural network for approximation of a function f (~x) and its first partial derivatives.
Superscript h denotes the hidden layer and superscript o the output layer. Note that we have only
one single neuron in the output layer, whose activation function a1 retains the subscript 1 for
consistency.

used by the hidden layer h neurons. This sigmoidal function and its derivative are
given by

ah
j (x) = tanh x =

1− e−2x

1 + e−2x , (A.6)

ȧh
j (x) =

dah
j (x)

dx
= 1−

(
ah

j (x)
)2

= sech2x. (A.7)

Thus, given an input ~x ∈ RN , the function is computed by the network according
to

f̂ (~x) =
M

∑
j=1

wo
1ja

h
j (~x

T~wh
j ), (A.8)

and the corresponding first order derivatives are given by

∂ f̂ (~x)
∂xi

=
M

∑
j=1

wo
1jw

h
ji ȧ

h
j (~x

T~wh
j ), i = 1, . . . , N, (A.9)

where M is the number of neurons in the hidden layer. We define the synaptic
weight vector as

~W =
(

wh
10, ~whT

1 , . . . , wh
M0

, ~whT
M , wo

10, ~woT
1

)T
. (A.10)

Note that biases wh
k0, k = 1, . . . , M and wo

10 are also included. Second derivatives
of the function can be derived as

∂2 f̂ (~x)
∂xi∂xk

= −2
M

∑
j=1

wo
1jw

h
jiw

h
jk ȧh

j (~x
T~wh

j ) · ah
j (~x

T~wh
j ), i, k = 1, . . . , N. (A.11)
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Thus, given an activation function such as equation (A.6), a nonlinear function
can be approximated by equation (A.8). Once the network is trained successfully,
the calculation of the function’s first and second order partial derivatives is given
by equations (A.9) and (A.11). It remains to determine the synaptic weight vector
from a given set of data points. Note that the weight vector is not unique due the
symmetry of fully connected NNs.

3 price derivatives of american call options

The problem of finding the price of an American option is related to the optimal
stopping problem of finding the time to execute the option. Since the American
option can be exercised at any time before the expiration date, the Black-Scholes
equation becomes an inequality of the form

∂C
∂t

+
1
2

σ2S2 ∂2C
∂S2 + rS

∂C
∂S
− rC ≤ 0 (A.12)

with the terminal and (free) boundary conditions: C(S, T) = H(S) and C(S, t) ≥
H(S) where H(S) denotes the payoff at asset price S. In general this inequality
does not have a closed form solution.

Barone-Adesi and Whaley (1987) provide an analytical approximation formula,
where the stochastic differential equation is split into two components: the European
option value and the early exercise premium. With some assumptions, a quadratic
equation that approximates the solution for the latter is then obtained. This solution
involves finding the critical value, such that one is indifferent between early exercise
and holding to maturity.

Bjerksund and Stensland (1993) provide an approximation based on an exercise
strategy corresponding to a trigger price. Here, if the underlying asset price is
greater than or equal to the trigger price it is optimal to exercise, and the value must
equal S− X. This approximation is computationally inexpensive and the method
is fast, with evidence indicating that the approximation may be more accurate in
pricing long dated options than Barone-Adesi and Whaley.

In addition to finding accurate pricing methods for American options, traders
are interested in pricing sensitives for hedging and speculative purposes. In math-
ematical finance, the Greeks are the quantities representing the sensitivity of the
price of derivatives such as options to a change in underlying parameters on which
the value of an instrument or portfolio of financial instruments is dependent. Col-
lectively these have also been called the risk sensitivities, risk measures or hedge
parameters.

For computational purposes we analyze the first, second and third partial deriva-
tives. Since deriving partial derivatives depends on the input variables of our
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network model, derivatives with respect to r and σ are not possible. In summary,
we choose the following Greeks in equations (A.13) to (A.17).

Delta ∆ =
∂C
∂S

(A.13)

Dual Delta =
∂C
∂X

(A.14)

Theta Θ = −∂C
∂τ

(A.15)

Gamma Γ =
∂∆
∂S

=
∂2C
∂S2 (A.16)

Speed =
∂Γ
∂S

=
∂3C
∂S3 (A.17)

Delta, ∆, measures the rate of change of option value C with respect to changes
in the underlying asset’s price S. In addition, the correct, exact calculation for the
probability of an option finishing in-the-money (ITM) is its Dual Delta, which is
the first derivative of option price with respect to strike X.

Theta, Θ, measures the sensitivity of the value of the derivative to the passage
of time (time decay). Theta is almost always negative for American long calls and
puts. In summary, Delta, Dual Delta and Theta are first-order Greeks.

As a representee of second-order Greeks we compute Gamma, Γ, which measures
the rate of change in the delta with respect to changes in the underlying price.
Gamma is the second derivative of the value function with respect to the underlying
price. All long options have positive gamma. Gamma is greatest approximately
at-the-money (ATM) and diminishes the further out you go either ITM or out-of-
the-money (OTM). Gamma is important because it corrects for the convexity of
value. When a trader seeks to establish an effective Delta-hedge for a portfolio, the
trader may also seek to neutralize the portfolio’s Gamma, as this will ensure that
the hedge will be effective over a wider range of underlying price movements.

The third-order Greek Speed measures the rate of change in Gamma with respect
to changes in the underlying price. Speed is the third derivative of the value
function with respect to the underlying spot price S. Speed can be important to
monitor when Delta-hedging or Gamma-hedging a portfolio.

4 learning greeks – a simulation experiment

4.1 Calibrating the Simulation

We can now outline the components of our simulation experiment. We generate a
sample path of EUR/USD currency (FX) and option prices on which the learning
networks are trained, i.e., the network parameters are fitted to the sample path so
as to minimize a quadratic loss function. This yields a network pricing formula.

In the first phase of our simulation experiment - the training phase - we simulate
a three-month sample of intra-day EUR/USD FX prices, and create a cross-section
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of options according to the rules used by the Chicago Mercantile Exchange (CME)
with prices given by the BAW analytical approximation. We refer to this three-
month sample of FX and (multiple) option prices as a single training path, since
the network is trained on this sample. We assume that the underlying asset for our
simulation experiments is a typical CME FX asset, with an initial price S(0) of 1.35,
an annual continuously compounded expected rate of return µ of 2 percent, and an
annual volatility σ of 10 percent. To run our simulation, we adopt a Black-Scholes
framework. The price of the underlying asset on which the option is written follows
a geometric Brownian motion:

dS(t) = µS(t)dt + σS(t)dW(t)

and taking a time interval of four hours (six quotes per day), we draw 396 pseudo-
random variates Z(t) from the distribution N(µ · dt, σ2 · dt) to obtain three-month
of intra-day continuously compounded returns, which are converted to prices with
the usual relations S(t) = S(0)e∑t

i=1 Zi , t ≥ 0. Assuming that the number of trading
days per year is 252, the time increment dt between two quotes is 0.000661.

Given a simulated training path {S(t)} of daily stock prices, we construct a cor-
responding path of option prices according to the rules of the CME for introducing
options on stocks. At any one time, CME FX options outstanding on a particular
currency have eight unique expiration dates: the current week, the current month,
the next month, and the following four expirations from a quarterly schedule. The
CME sets strike prices at multiples of 0.01 for EUR/USD. We set a grid of eleven
strike prices around our starting point and move the grid in that way, into which all
of our simulated prices fall. We assume that all of the options generated according
to these rules are traded every day, although in practice, far-from the-money and
long-dated options are often very illiquid.

Our simulated training path is shown in figure A.3a. We can also plot the training
path as a three-dimensional surface if we normalize stock and option prices by the
appropriate strike price and consider the option price as a function of the form
f (S/X, 1, τ) (see figure A.4), where τ denotes the maturity time T− t. NN trains
on available data, thus we visualize the data density space in figure A.3b. Not
surprisingly the most data records occur in regions with lower maturity τ (black
colored regions). The size in terms of number of options and total number of data
points is about 20,790 quotes.

4.2 Training Option Prices

At this stage, we have to find the best topology in order to minimize the training
and validation error. In general, this is achieved by comparing the best trained
network in each simulation study. We choose five hidden neurons, which lead to
accurate results while the computation time will be controllable. We test a parsimo-
nious parameterized model, which relaxes the estimation of r and σ. According to
Hutchinson et al. (1994), the approximated BAW call option price divided by the
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Figure A.3: Simulated training data of intra-day FX EUR/USD quotes
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Figure A.4: Option call price approximation
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As we can see in figure A.4 this parsimonious specification with two input
variables is capable to approximate the BAW call option price surface. The trained
weights are shown in table A.1.

We perform several simulations with different network topologies and simulation
steps to analyze error accuracy. Once an appropriate network has been found,
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Table A.1: 2–5–1 NN results for BAW call price functiona

Hidden layer Output layer

Neuron j wh
j0 wh

j1 wh
j2 wo

1j wo
10

1 −8.815885 2.924135 0.612804 5.784338 100.000000
2 4.677273 −0.240188 0.450100 −66.257553
3 49.073833 7.451910 24.895050 0.265078
4 −0.408146 −0.047813 0.181782 −100.000000
5 10.937928 4.507884 6.313263 0.121390

a There are two inputs and therefore the weights for the hidden layer are wh
ji with i = 0 (bias),

i = 1, 2. There is only one output and therefore the weights for the output layer are wo
10 (bias)

and wo
1j.

computing of option prices with this network takes fractions of a second. Hence,
network evaluation is almost instantaneous even in a high-frequency context.

4.3 Numerical Results

In order to evaluate the approximation ratio, we exploit on the one hand visualiza-
tions to check the network behavior and on the other hand performance measures.
Note that not only the approximation quality is crucial as particular convergence
criteria must be strictly adhered to.

All partial derivatives are based on the approximated price function Ĉ
X . We can

derive appropriate partial derivatives by analytically or numerically deriving the
network functions, provided that the corresponding variable has been included as
an input factor. In our case the partial derivatives with respect to S, X or tau can
be carried out.

In figure A.5 we show the results for the first-order partial derivatives. For both
S and X, we obtain a very encouraging approximation result and the convergence
criteria is not violated. For theta, i.e., partially derived by the maturity, this is also
true - but it is an exhausting balancing act for the NN to train the very few ATM
options in the sensitive area exactly. It should be noted that most data space have
values approaching zero.
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Figure A.5: First-order partial derivatives approximation
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For higher-order derivatives we achieve less accurate approximation results for a
given network topology - see figure A.6. Both Gamma and Speed exhibit inaccurate
values in certain border areas, where data points are scarce. In case of Gamma we
notice a violation of convergence criteria in these regions (values < 0).

Figure A.6: Higher-order partial derivatives approximation

 0.94

 0.98

 1.02

 1.06

 0

 0.25

 0.5

 0.75

 0

 25

 50

 75

 100

C/X

S/Xτ

C/X

(a) BAW Gamma ∂2C
∂S2

 0.94

 0.98

 1.02

 1.06

 0

 0.25

 0.5

 0.75

 0

 25

 50

 75

 100

C/X

S/Xτ

C/X

(b) Network Gamma ∂̂2C
∂S2

 0.94

 0.98

 1.02

 1.06

 0

 0.25

 0.5

 0.75

-6000

 0

 6000

C/X

S/Xτ

C/X

(c) BAW Speed ∂3C
∂S3

 0.94

 0.98

 1.02

 1.06

 0

 0.25

 0.5

 0.75

-6000

 0

 6000

C/X

S/Xτ

C/X

(d) Network Speed ∂̂3C
∂S3

In order to evaluate the performance more precisely, we introduce in table A.2 a
selection of accuracy metrics.

While ME and RMSE are not comparable between different Greeks, we add two
normalized RMSE measures. Since Theta, Gamma and Speed deflect only to a
small region around the ATM expiry, an approximation of the entire surface is
particularly difficult. However, the NRMSE is relative low for this Greeks, because
the majority of data points are zero.
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Table A.2: Approximation accuracy

Error measurea

Function Convergence R̄2 ME RMSE NRMSE CV

Price C > 0 0.9997 0.0000 0.0003 0.0039 0.0133
Delta ∂C/∂S [0, 1] 0.9858 0.1266 0.1459 0.14591 0.2866
Dual Delta ∂C/∂X [−1, 0] 0.9850 −0.1072 0.1251 0.1251 −0.2527
Theta ∂C/∂τ < 0 0.4192 0.0002 0.0003 0.1370 −2.1372
Gamma ∂2C/∂S2 > 0b 0.6415 1.8163 4.0271 0.0484 0.6554
Speed ∂3C/∂S3 0.0636 21.2067 640.5369 0.0417 −57.3113

a R̄2 denotes the adjusted R squared, ME denotes the mean error, MAE denotes the mean absolute
error and RMSE denotes the root mean squared error. NRMSE denotes the normalized RMSE,
where the RMSE is divided by the range of observed values. CV denotes the coefficient of
variation of the RMSE, where the RMSE is normalized to the mean of the observed values.

b Occurrence of convergence violation.

4.4 Discussion

The results lead to the conclusion that one can possibly improve the approximation
as follows: First, the network topology can be certainly improved, e.g. by the
inclusion of further neurons. Secondly, the approximation can be divided into
different regions in order to depict partial derivatives in exactly this area more
closely.

Since the NN only trains on price functions without knowledge of their deriva-
tives we have to suffer disadvantages for the NN. This is especially true for
higher-order derivatives. For this reason, we might train directly on price sensitives
as proposed in Carverhill and Cheuk (2003). However, as hedge-ratios predict price
changes, they can be derived from option price movements. We would expect that
the approximation to higher derivatives can be significantly improved. Nevertheless,
the result highly depends on the accuracy of approximating price sensitives.

Finally, we give a critical appraisal for practical purposes. Of course, the learn-
ing network pricing method is highly data-intensive, requiring large quantities of
historical prices to obtain a sufficiently well-trained network. Therefore, such an ap-
proach would be inappropriate for thinly traded options, or newly created options.
Furthermore, network approximations involve weights as a kind of regression coef-
ficients which need to be calibrated and recalibrated. A similar category of methods
uses regression techniques to fit an analytical approximation based on a lower
bound and an upper bound of an American option (Johnson (1983), and Broadie
and Detemple (1996)). Another drawback is that these methods are not convergent.
However, if an appropriate network is found, the derived network approximation,
which is an analytical formula, will likely be very efficient computationally.
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5 conclusion

In the absence of any closed form formula for American options, a reliable analytical
approximation is obviously highly desirable. Many efficient and accurate analytical
methods for pricing American options exist. However, while these methods can
produce option prices with sufficient accuracy, they often do give less accurate
prices in particular market situations. In this paper, we propose a numerical
approximation for American call option prices and its partial derivatives based on
neural networks.

To evaluate its usability, we perform a trading simulation with artificially derived
intra-day tick data of EUR/USD FX options. Our purpose here is to demonstrate
that multilayer feedforward networks with only one single hidden layer and
fairly arbitrary hidden layer activation functions are capable of arbitrarily accurate
approximation to an option pricing function and its derivatives. With a given
network topology we can derive a suitable approximation of option prices and its
first-order partial derivatives, but the approximation accuracy decreases for higher-
order derivatives. One useful solution might be to train directly on approximated
Greeks.

From this point of investigation, further research steps are thinkable and we
recommend to augment network topologies to achieve more robust results. This
could be either regime-switching network architectures or separate training of
desired Greeks. Nevertheless, we think that NNs could be a useful approximation
tool beside other pricing models for particular market situations.
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1 introduction

For decades gaining insights in the foreign exchange (FX) markets and improving
the forecasting performance has been in the centre of attention of many academics
as well as financial market professionals. According to Cooper (1984) and Basse
(2006), we can observe this phenomena not until after the breakdown of the Bretton
Woods system and the introduction of flexible exchange rates in many countries.
On the one hand the performance of professional forecasters has always been
subject to a lot of critique - for a critical discussion about forecasting FX see Chinn
and Meese (1995). Recently, Cheong et al. (2012) showed that exchange rates follow
a martingale process at short horizons, but over long horizons are less likely to
follow a random process and may contain some predictable structure. Conversely,
forecasting models do not perform better than simple naive forecasts.

One of the first steps in forecasting exchange rates is to identify the underlying
exchange regime. In general, international financial markets as a whole do not
follow at all a one size fits all approach. This is especially true for FX markets where
the underlying regimes change over the course of time as well as from country to
country. For example Frankel (1999) roughly classifies exchange rate regimes to
be in the flexible corner, to be intermediate or in the fixed corner respectively. In
this paper we will focus on one special case of an intermediate exchange regime
which is to some extent similar to what for example Calvo and Reinhart (2002)
characterized as soft peg. Although the case of China is not discussed in their paper,
the authors’ work leads us to the research topic of our analysis: The exchange
markets for the Chinese markets.
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The main goal of our work is to gain insights in the comparatively new market
for offshore RMB (CNH spot market) and to detect first indications for feasible
forecasting models for the onshore RMB (CNY spot market) respectively to improve
CNY spot forecasts. We employ a simple GARCH model as well as neural networks.
We do also analyze the somewhat older NDF market for RMB for which for example
Ding et al. (2012) found a strong relationship with the CNY spot rate. As their work
deals with the three RMB markets until June 2011 and since then the CNH market
grew quite rapidly and seems to be replacing the NDF market, we lay our main
focus on the CNH market.

The paper is organised as follows. Section 2 gives a short introduction about
the Chinese FX market. Next, we introduce our methodology of neural networks
and alternative statistical time series models. Section 4 describes the data and data
preparation. Section 5 gives a brief introduction about our forecasting strategy.
We evaluate our forecasting results and for further discussion. Finally, section 6

summarizes our conclusions and gives a brief outlook on further research.

2 rmb onshore and offshore forward exchange market

Although the rise of the Chinese currency is more present in the current debate
of the future global currency structure than ever before the Chinese exchange
rate regime still seems like a Gordian knot with respect to forecast performance.
The reasons for the more and more intensifying discussion are not surprisingly
manifold. On the one hand the economic weight of China in terms of nominal
GDP and trade flows is pushing the debate in the direction of an international
Chinese currency or even a displacement of the US-Dollar as the "No. 1" world
currency. This is doubtless not to be seen in the foreseeable future. Much more
realistic is the on-going discussion whether China’s currency will reach the status
of an international currency within the next five years or so; see for example Chen
and Hu (2013). See for example Zhang (2013) for a good overview of the impacts
related to an open Chinese capital account.

In the context of exchange rate regimes China currently uses a managed float
with a target central parity where the central bank allows a movement up to ±1.00%
in bilateral exchange rates within a given day (Tian and Chen (2013), although the
authors still refer to the ±0.50% borders which have been double in April 2012).
One large by-product of China’s exchange rate regime which affords interventions
of the People’s Bank of China (PBOC) on a large scale is the accumulation of huge
foreign exchange reserves. The huge amount of foreign exchange reserves did also
fire the discussion on the substantial imbalances on the global financial markets.
Not surprisingly, academic researchers, e.g. Liu and Pauwels (2012), also try to
find evidence for a causal relationship between political pressure and appreciation
of the RMB. As we are interested in forecasting for the Chinese FX markets this -
without question very important - field of research will not be dealt with in the
remainder of this paper.
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We will rather focus on one of the most unique features of the Chinese foreign
exchange markets: the dual characteristic of the market. The uniqueness comes
from the two separated markets for the RMB (or Chinese Yuan) namely the onshore
(currency code CNY) and offshore (currency code CNH) market. The onshore
Yuan stands for the inconvertibility of the Chinese currency under the capital
account. Whalley and Chen (2013) discuss whether the CNH should be seen as a so-
called stepping stone to full convertibility or as a workaround (internationalization
without convertibility) and also give a very good overview of the two RMB markets.
Under the expression RMB market one can subsume a substantial variety of
financial market products whereas onshore products are traded in CNY and
offshore products are traded in CNH, i.e. spot trading, forward products, interest
rate and also cross currency products. Ding et al. (2012) point out the starting point
of offshore trading has been marked by the PBOC in July 2010. Before that point in
time the main focus of attention with subject to Chinese exchange rates has been
on the market for non-deliverable forwards (NDF). Amongst others, Colavecchio
and Funke (2008) analyzed the impact of volatility spill-overs from the Chinese
NDF market on several Asia-Pacific markets using multivariate GARCH techniques.
They found out that Chinese NDFs in fact had impacts on China’s trading partners’
currencies. But these impacts did vary to a large extend due to different financial
integration.

Currently the focus of the financial industry and that of a growing of amount
academic researchers is on China’s offshore markets with Hong Kong being the
most important and best developed. The Hong Kong market - often referred to
as mainland China’s test vehicle for free trade of the Chinese currency as well
as bonds denominated in RMB (see for example Fung and Yau (2012)) - has also
been highlighted in the People’s Republic’s most recent five-year plan. See for
example Loechel et al. (2013) who examined the relationship between offshore and
onshore government bond yields. According to Fung and Yau the state planners
want the offshore market of the special administrative region to support the RMB in
becoming an international currency. Having the same currency RMB being traded
in three different "markets" - onshore, offshore and NDF - raises inevitably the
questions of parity.

3 methodology

For purpose of forecasting Neural networks (NN) can be described as non-linear
input-output models. They provide the basis for an entirely different approach to
the analysis of time series. A general introduction in neural network for market
application is described in Priddy and Keller (2005), Wang (2005) and Li and Ma
(2010). The connections between inputs and outputs are typically made via one
or more hidden layers of neurons, sometimes alternatively called processing units
or nodes. NN also appear to have potential application in time series modelling
and forecasting. Nevertheless, the success of NN modelling depends on a suitable
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topology or architecture. This includes determining the number of layers, the
number of neurons in each layer and which variables to choose as inputs and
outputs. Figure C.1 shows an example of a neural network topology for time series
forecasting purposes.

Figure C.1: Topology of a typical NN for time series forecasting
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Example with one hidden layer and a various number of neurons. The output, e.g. the forecast
variable, depends on the lagged input values at times t, t− 1, . . . , t− p.

Inputs and outputs (xk,t−l , xk,t+h) represent a training pattern k. The number of
hidden layers is often taken to be one, while the number of hidden neurons is
found heuristically. In the case of time series prediction, feedforward NN use the
past lagged observations l = 0, 1, . . . , p as inputs to conduct h-step ahead forecasts.
They do not require any assumptions relating to the underlying data-generating
process.

More formally, a h-step ahead forecast of exchange rates x̂k,t+h is computed using
lagged input variables (xk,t, xk,t−1, . . . , xk,t−p) as follows:

x̂k,t+h = f (xk,t, xk,t−1, . . . , xk,t−p), (C.1)

where f (·) denotes the function determined by the network. One of the input
variables will usually be a constant (bias). The NN attempts to find the best possible
approximation of the function f (·) as a complex combination of elementary non-
linear functions. This approximation is coded in the neurons of the network using
weights that are connected with each neuron. These weights effectively measure the
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’strength’ of the different connections and are parameters that need to be estimated
from the given data.

We further assume there are H neurons in one hidden layer and then attach the
weight wij to the connection between the ith input neuron and the jth neuron in the
hidden level. Given values for the weights, the value to be attached to each neuron
may then be found in two stages. First, a linear function of the inputs is found:

aj = wo +
p

∑
l

wij x̂t−l . (C.2)

For j = 1, 2, . . . , H. Second, the quantity aj is converted to the final value for the
jth neuron by applying an activation function - in our case we use the hyperbolic
tangent, tanh(aj). Having calculated values for each neuron, a similar pair of
operations can then be used to get the predicted value for the output using the
values at the H neurons. This requires a further set of weights wj to be attached to
the links between the neurons and the output. Overall the output x̂t+h, is related to
the inputs by the following expression:

x̂k,t+h = ao

[(
∑

j
wj tanh

(
p

∑
l

wij x̂k,t−l

)
+ wo

)]
, (C.3)

where ao denotes the activation functions at the output layer. It is also easy to
incorporate further input variables into NN model. In this case, we are able to
extend such an univariate NN to a multivariate topology. In addition to the NN
model, we apply a GARCH(1,1) model with a simple AR(1) term.

4 description of data

We collect daily exchange rate data for onshore spot (CNY), offshore spot (CNH),
one-month offshore NDF and CNH forward rates from Bloomberg. Although
some studies argue in favour of longer NDF maturities, we use one-month rates
given one-month NDFs are less prone to purely speculative pressures, more liquid,
and less susceptible to exaggerated price swings. Our sample period spans 08

September 2010 to 20 March 2013. Figure C.2a shows data points of the mentioned
series.
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Figure C.2: Renminbi quotes in the sample period from 08 September 2010 to 20 March
2013

Sep−2010 Mrz−2011 Sep−2011 Mrz−2012 Sep−2012 Feb−2013

6.2

6.3

6.4

6.5

6.6

6.7

6.8
CNY
CNH
NDF1M
CCH1M

(a) Spot and forward Rates

Sep−2010 Mrz−2011 Sep−2011 Mrz−2012 Sep−2012 Feb−2013

−0.10

−0.05

0.00

0.05

0.10

0.15

(b) Spread between the onshore and offshore price

As one can easily see in figure C.2b there exists a significant spread between the
onshore and offshore price of the Chinese currency. Yu (2012); Rhee and Sumulong
(2013) refer to the CNH-CNY-spread as a potential source of arbitrage. Following
the author corporates on mainland China may have substantial opportunities for
arbitrage especially in times of high CNH-CNY-spreads. As figure C.2b further
shows there in fact are times when the CNH is significantly stronger against the
US-Dollar than the CNY. This seems to be especially true when market participants
expect a fastening appreciation of the Chinese currency. One reason for a widening
CNH-CNY spread is the fact that arbitrage opportunities are subject to major
constraints.

Summary statistics of daily spot and forward prices are presented in table C.1
for the whole period.
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Table C.1: Descriptive statistics for the onshore/offshore spot and forward pricesa

Spot Forwards

Spread CNH CNY NDF1M CNH1M

Nb 661 661 661 661 661
Mean 0.01 6.40 6.41 6.41 6.41
SD 0.03 0.13 0.14 0.13 0.13
Skew 1.08 0.42 0.62 0.89 0.44
Kurtosis 11.43 2.27 2.27 2.49 2.37
Jarque-Berac 2085.29*** 33.87*** 57.27*** 93.59*** 32.46***
Ljung-Boxd 4802.62*** 7056.07*** 7326.49*** 7249.67*** 7005.21***
ARCHe 562.06*** 644.61*** 647.27*** 646.31*** 644.14***
ADFf −3.69** −2.81 −1.68 −1.54 −2.81
ADF (differences) −7.72*** −7.29*** −8.19*** −8.37*** −7.35***

a Data are daily in the period 08 September 2010 to 20 March 2013. ∗, ∗∗ and ∗ ∗ ∗ denote
the significance level at 10, 5 and 1%.

b N shows the number of daily observations. Skewness and kurtosis are estimated
centralized third and fourth moments of the data.

c The Jarque-Bera test for normality is distributed as χ2(2).
d Q(12) is the Ljung and Box Q statistics on the first 12 lags of the sample autocorrelation

function.
e ARCH(12) is the test for the 12th-order autoregressive conditional heteroscedasticity.
f ADF is the Augmented Dickey and Fuller test on the first 12 lags. The ADF regressions

include an intercept term.

The result’s excess kurtosis in the CNY, and the skewness does not necessarily
imply a symmetric distribution. The Jarque-Bera tests indicate departures from
normality for both spot and forward prices. This seems to be more acute for the
CNY. The Ljung-Box Q(12) statistic on the first 12 lags of the sample autocorrelation
function and Engle’s ARCH test indicate significant serial correlation and existence
of heteroscedasticity, respectively. Augmented Dickey Fuller (ADF) unit root tests
indicate that all variables are first-difference stationary, but the levels indicate, that
price series follow unit root processes.

5 forecasting results

For purpose of forecasting, we conduct a rolling-window technique of 100 data
points to generate one step-ahead forecasts. The first insample runs from 08 Septem-
ber 2010 to 25 January 2011. The insample subset is used to estimate the statistical
models and identify the neural network structure while the second is used for
independent out-of-sample prediction comparison. As recommended in Tashman
(2000), in order to avoid the bias induced by serially correlated overlapping forecast
errors, we recursively augment our estimation period by h-periods ahead every
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time. This implies that we get a sample of 560 daily observations for the one
step-ahead forecasting period. All models seem to be well specified, as indicated
by relevant diagnostic tests.

The forecast performance of each model is assessed using the conventional
root mean square error metric (RMSE) and Theil’s U statistic. The latter allows a
relative comparison of formal forecasting methods with a naïve model, a no-change
random walk (RW). Statistical performance measures are often inappropriate for
financial applications. Trading strategies guided by forecasts on the direction
of price change may be more effective and generate higher profits. Therefore,
predicting the direction (Directional in %) is a practical issue which usually affects a
financial trader’s decision to buy or sell a contract. The trading simulation assumes
that, at the beginning of each trading day, the investor will invest 1 monetary unit
at the beginning of each contract period. Consider an exchange rate whose prices
fluctuate from day to day and the mid price on the tth day is xt. We can generate
trading signals now by the following rule:

{
long, if x̂t+1 > xt

short, if x̂t+1 < xt

A long signal is to buy contracts at the current price, while a short signal is to
sell contracts at the current price. So far, we can compute a net gain at the end of
our out-of-sample period.

The forecasting performance of each model is presented in matrix form in
table C.2 for all currencies. We separate all results in univariate and multivariate
classes: the univariate models consist of single series of CNY, CNH and their spread.
We exclusively analyze the CNY in a multivariate way by incorporation of the
one-month forward rates NDF and CNH respectively.

Some regularities stand out from the table.

Onshore Spot and Offshore Spot Rates

We first examine the relationship between onshore and offshore spot rates. We find
that the correlation between CNY and CNH returns during the entire sample is
statistically and economically significant (0.9789). It is remarkable that predicting
the spread is more difficult than the offshore CNH or onshore CNY. For the spread-
behaviour we conclude that both markets still have a moderate level of comovement.
Thus, there might exists a low level of information integration between CNY and
CNH rates.

Onshore Spot and Offshore Forward Rates

We now shift our focus to both contemporaneous and lead-lag relationships between
onshore Yuan spot rates and offshore NDF or CNH rates. However, onshore spot
exchange rates of RMB are not only influenced by spot foreign market, but also
offshore forward market. When examining onshore spot trading against offshore
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Table C.2: One step-ahead forecasting performance for spread, CNH and CNYa

Univariate Multivariate CNY

Model Measure Spread CNH CNY NDF1M CNH1M

RWb R̄2 0.8276 0.9912 0.9957 −.− −.−
RMSE 0.0088 0.0099 0.0069 −.− −.−
Theil’s U 1.0000 1.0000 1.0000 −.− −.−
Directional % −.− −.− −.− −.− −.−
Net Gain 0.0000 0.0000 0.0000 −.− −.−

AR(1)-GARCHc R̄2 0.8275 0.9910 0.9956 −.− −.−
RMSE 0.0087 0.0101 0.0069 −.− −.−
Theil’s U 0.9876 1.0178 0.9983 −.− −.−
Directional % 0.6219 0.5161 0.5326 −.− −.−
Net Gain 0.0838 −0.0338 0.0264 −.− −.−

NN R̄2 0.8265 0.9876 0.9951 0.9945 0.9954
RMSE 0.0089 0.0118 0.0073 0.0077 0.0071
Theil’s U 1.0153 1.1952 1.0636 1.1216 1.0288
Directional % 0.5108 0.5425 0.5254 0.4366 0.5072
Net Gain 0.0770 0.0275 0.0848 −0.1332 0.0761

a The table shows forecasting performance measures in the period 26 January 2011 to 20 March
2013.

b RW means a no-change random walk. Hence, the directional performance is not calculable and
the net gain is zero.

c GARCH means the GARCH(1,1) model with an AR(1) term.

NDF trading, our results show no ambiguous picture that onshore spot rates are
influenced by offshore forward rates. This is not in line with prior results, where
the CNY and NDF markets became even more informatively integrated after the
CNH began trading. Specifically, while the NDF is a contract whose forward curve
acts like a futures curve on onshore Yuan spot rates, the CNH is a spot rate whose
forward curve acts more like an onshore interest rate curve. Thus, NDF rates
more closely track onshore Yuan spot rates whereas CNH rates more closely track
onshore interest rates. We think, that further research at this point is necessary.
Further, the introduction of offshore spot trading is associated with an increase
in both cross-market comovement (higher returns correlations) and information
contribution.

Although one might argue that further integration of the CNY and the CNH
market could help to improve FX forecasts for the revised Chinese FX market our
results do not support our assumption of a parity between the CNY and CNH. On
the one hand the fact that the used forecasting methods do not outperform the
naive RW forecasts points to the direction that the price movements in the Chinese
FX markets are similar to the movements in developed economies’ FX markets,
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which are said to be rather efficient. On the other hand we found strong evidence
that structural breaks do exist in the RMB markets. The existence of a significant
as well as non-stationary CNH-CNY-spread thus points to FX market far from
being arbitrage free. Hence, CNH and CNY spot rates do not seem to tend towards
parity. Having in mind that the CNH market is rather new and subject to a lot
of regulatory changes within a short time frame this is not surprising at all. The
paradox lies in the fact that from a forecasting perspective Chinese FX market seem
to be rather effective although substantial capital controls do exist.

In summary, the behaviour of the CNH-CNY-spread might give us an indica-
tion why CNY forecasts seem to be subject to inaccuracy. As the CNH market is
rather new and not as liquid as much more mature FX markets structural breaks
respectively regime shifts can not be ruled out. Due to this conclusion, we perform
a simple regression of CNY and CNH and the Quandt-Andrews test for struc-
tural breaks. As we analyze daily spot rates we utilize the heteroscedasticity and
auto-correlation consistent HAC (Newey-West) approach. We found a very strong
indication for at least one breakpoint within the given time frame, i.e. January, 20th,
2012. For further research as well as to improve forecast accuracy structural breaks
respectively regime shifts within the CNH-CNY-spread should be analyzed further.

6 conclusions and recommendations

In this paper, we have examined the influence of the offshore CNH trading on
onshore RMB rates (CNY). In contrast to prior studies we assume that the new
CNH trading market becomes more relevant for the onshore CNY. Thus, we expect
a tendency for parity between these two rates. To proof our assumption we predict
single CNH and CNY rates, as well as multivariate effects of forward rates on the
CNY with a GARCH-type and a neural network model. In summary, our results
give us no ambiguous evidence to confirm our assumption. Having in mind that
the CNH market is rather new and subject to a lot of regulatory changes within a
short time frame this is not surprising at all. The paradox lies in the fact that from
a forecasting perspective Chinese FX market seem to be rather effective although
substantial capital controls do exist.

Nevertheless, several extensions for further research are necessary. From our
point of view further research should focus on structural breaks and much more
advanced forecasting methods. First, we would incorporate statistical multivariate
GARCH models to analyze the relationship between the CNH market and CNY
rates in detail. We would expect to get practical hints for a better specification of our
neural network model to improve forecast accuracy. In addition, we recommend
investigations of structural breaks respectively regime shifts within the CNH-CNY-
spread. It should be noted that our analysis is only concerned with the initial
impact of RMB offshore spot trading. Results may be temporary effects brought
about by policy changes or policy change uncertainty.
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1 motivation and research formulation

Since the introduction of electronic brokers in the foreign exchange (FX) interbank
market in 1992, the FX market is a vast subject. Advances in computer technology
and automated algorithm trading have supercharged the transmission and execu-
tion of orders, making use of the big data - and established a new phenomenon:
"High-frequency trading". Today, efficient trading systems are taking a more im-
portant position in the financial FX market’s structure. Decision Support Systems
provide management support system technologies for better decision-making. This
leads to three major challenges:

1. Financial trading systems need support in making correct trading decisions,
which are rather complex but important for participants in financial markets
(decision problem).

2. An accurate market valuation of option products in the FX market is still diffi-
cult and needs appropriate models and techniques (option pricing problem).

3. From the operational perspective, the high speed of computer-driven de-
cisions requires a particular comfort level with computer-driven execution
(performance problem).

In this paper we face these challenges by developing steps towards a Financial
Decision Support System (FDSS) based on artificial neural networks (NN) to pricing
options on currency futures. We are motivated by our following research question:

"How can a model-driven FDSS help to approximate options’ market prices,
and determine accurate and efficient trading decisions in a high-frequency
process?"
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Considering the evolution of non-linear dynamic systems to improve decisions
is certainly not a new idea. There is a wide range of research in context of model-
driven Decision Support systems, e.g. Gupta (2006), Weber (2008), Turban et al.
(2010), Grosan and Abraham (2011) and Schuff et al. (2011). Financial services
providers use information systems, in particular model-driven FDSS, for decisions
under uncertainty - in our case to determine the value of options. Today, many
FDSS use interactive and artificial intelligence computer-based systems like NN for
decision making. Artificial intelligence programs like NN often learn from a priori
given processes, data, etc. and corresponding appropriate decisions.

Second, accurate pricing of options is very important for decisions on risks
and hedging. Option pricing is based on theoretical models developed by Black
and Scholes (1973), Merton (1973) and Cox et al. (1979) with several extensions.
Unfortunately these models are based on severally unrealistic assumptions. Bakshi
et al. (1997), Laidi (2009) and Turban et al. (2010) emphasized that some models
primarily address perceived weaknesses that are in use by financial decision mak-
ers. Permanently an unsatisfactory and quite artificial adaption to the true market
conditions is necessary. In contrast to the theoretical pricing models NN algorithms
as an alternative heuristic approach are applied to the option pricing and adopted
to simulate the nonlinear behaviour of such financial derivatives. A general intro-
duction in neural network for market application are described in Priddy and Keller
(2005), Wang (2005) and Li and Ma (2010). First attempts of market price synthesis
with NN were made in the 1990ies by Malliaris and Salchenberger (1993) and
Hutchinson et al. (1994). Subsequent studies investigated particular option pricing
approximations with NN (Garcia and Gençay (2000), Andreou et al. (2002, 2006),
Amilon (2003), Bennell and Sutcliffe (2004) and Kohler et al. (2006)). Huang et al.
(2010) present an alternative FDSS approach with non-parametric kernel regression
for option trading. Many of these studies maintain the view that NN models are
capable of generating better results in comparison to closed-form models like the
Black Scholes formula in pricing options.

A new trading methodology, called high-frequency trading, is the third challenge
for FDSS in context of trading options. According to Aldridge (2010), high-frequency
is defined as quantitative analysis embedded in computer systems processing data
and making trading decisions at high speeds and keeping no positions overnight.
The advances in computer technology over the past decades have enabled fully
automated high-frequency trading. Efficient high-frequency trading systems make
a full range of decisions, from identification of underpriced or overpriced options,
through optimal portfolio allocation, to best execution. A signal must be precise
enough to trigger trades in a fraction of a second.

In this paper, we perform an empirical study of market price synthesis of options
on FX futures contracts. The NN technology as a kind of core engine in the
model-driven FDSS allows option sellers and buyers to approximate call option
prices across different strike prices simultaneously. We focus on designing a high-
frequency FDSS and the approximation ability of NNs. The proposed FDSS is
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also useful for out-of-sample pricing, hedging or currency forecasts. This leads to
kind of currency forecasting technique. Especially currency forecasts have become
extremely important for financial markets not until after the breakdown of the
Bretton Woods system and the introduction of flexible exchange rates in many
countries. For a discussion of the historical events in the late 1960s and early 1970s
see, for example, Cooper (1984) and Basse (2006). For a critical discussion about
forecasting FX see Chinn and Meese (1995).

We organize this paper as follows: First, we introduce our methodology for
developing a model-driven FDSS with support of the design science paradigm.
Next, we propose our high-frequency FDSS architecture for pricing and trading
currency options. We outline NN methods as a core engine of FDSS and explain our
network topology in case of option pricing. In section 4 we conduct an experiment
with empirical tick data of EUR/USD options on currency futures. We analyze and
evaluate our model results. In addition, we outline limitations of our work. The
paper finishes with a brief conclusion and an outlook for further research.

2 methodology

In this paper, we use the concept of design science of Hevner et al. (2004) and
Hevner (2007) as a framework for developing a FDSS. Design science, as conceptu-
alized by Simon (1996), supports a pragmatic research paradigm that combines a
focus on the IT artifact with a high priority on relevance in the application domain.
Thus, the objective of design science is to develop technology-based solutions to
important and relevant business problems using methods and tools available to
the researcher. Figure D.1 shows how we use the concept of design science for our
research question.

Figure D.1: Our FDSS development methodology framework with design science research
according to Hevner et al. (2004)
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First, Problem Relevance deals with the importance of the problem. The difficulty
in accurately estimating the price of an option has been described in a number of
different publications. But correct and fast trading decisions are a fundamental
task of trading systems. All classic theoretical models for option valuation have
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several constraints regarding accuracy, due to severally unrealistic assumptions -
e.g. future volatility of the underlying price is assumed to be accurately estimable
and is a priori known to seller and buyer of an option. Most enhanced approaches
focus on specific advancements, but those perfectly specified option pricing models
are therefore bound to be too complex and computationally intensive for high-
frequency applications. Research Contributions shows that the work makes a
specific contribution to information systems research, and this contribution needs
to be verifiable. The contribution of this paper focuses on pricing options in a high-
frequency trading process. It is highly significant, because financial institutions
have a high stake in this business.

The central design cycle iterates between the core activities of building and
evaluating the design artifacts and processes of the research. Design as an Artifact
indicates that research has to develop a model, a method, or any other kind of
construct. This paper can be described as part of FDSS research; therefore, the
results should be used to develop a FDSS artifact that enables the pricing of
currency options, finds the optimal trading time in the near future and leads to
a run-time trading decision. FDSS provide information in the specific problem
domain of finance using analytical decision models and techniques, in order to
support an investor in making decisions effectively.

Today, model-driven FDSS use algebraic, decision analytic, financial, simulation,
and optimization models to provide decision support. Option pricing is a nonlinear
estimation problem that can be solved by several iterative methods. Hence, we focus
on powerful NN approaches as a core engine in a model-driven high-frequency
FDSS. NN are inspired by the way biological neural system works, such as the brain
process information. In a nutshell, the information processing system is composed
of a large number of highly interconnected processing elements (neurons) working
together to solve specific problems. The most essential property of NN models is its
ability of learning from sample sets. A well-trained NN is a mathematical function
or algorithm which approximates the output of the patterns - in our case currency
option prices - sufficiently accurately. In practical use, NNs give many advantages
to the decision makers. They do not require any modeling or programming for
matching inputs to outputs. Moreover, they are able to be run with missing or
larger data. In consideration of these kinds of advantages, NN are used in a wide
range of applications in engineering and management practices.

Design Evaluation indicates that the model must be evaluated. This especially
applies to neural networks, because they have to be benchmarked against the real
world and other widely used models. After evaluating the results, feedback can be
used to refine the previous approach. The Rigor Cycle provides past knowledge
to the research artifact to ensure its innovation. It describes how the methods of
research need to be applied for the artifact to be successful. This further emphasizes
the need to evaluate one’s results. The question "how is the research artifact
introduced into the application environment" is investigated through a Design
as a Search Process. It means that the resulting model or artifact cannot be clear
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from the start of the process. Information systems need to be redesigned as they
are developed. This also applies to the development of any other model. The last
guideline, Communication of Research, presents results of information system
research to the general public, specifically to audiences from business management
and technology perspectives.

The seven design science guidelines assist in the research process. Information
systems research focuses on creating an artifact, construct, model or any kind of
methodology for the development of an information system. This applies to our
work, because we present steps towards developing a high-frequency FDSS to
pricing options on currency futures.

3 implementation of a high-frequency fdss to pricing options on

currency futures

3.1 Proposed FDSS Architecture

Today, most high-frequency trading systems are built as algorithmic trading systems
that use complex computer algorithms to analyze quote data, making decisions, and
optimize trade execution. High-frequency trading systems require rapid hesitation-
free decision making and execution. We concentrate only on generation high-
frequency trading signals. The development of a fully automated trading system
follows a path similar to that of the standard software development process and is
not discussed in this paper. With help of the design science toolkit we are prepared
to design steps towards a model-driven FDSS to pricing and trading currency
options - embedded in a high-frequency process. Our resulting FDSS architecture
is shown in figure D.2.

A successful high-frequency trading system adapts itself easily to contemporary
market conditions. As a result, most high-frequency systems accept, process, and
achieve volumes of quotes and other market data delivered at real-time frequency.
The run-time processor is a computer program that performs the following three
functions: Receive, evaluate, and achieve incoming quotes, uses the quotes as inputs
to the live trading engine and outputs trading signals. In our case, the run-time
processor receives the network algorithm from the NN back-testing engine before
market opening. We explain the delivered algorithm in the next subsection in detail.
Furthermore, run-time processors calculate run-time portfolio P&L. In summary,
run-time processors contain the core logic of the trading mechanism, can be easily
implemented and have the advantage of computing time saving.

The back-testing engine is typically based on the historical analysis identified
to generate consistent positive returns over a significant period of time during the
simulation and back-testing process. To ensure statistically significant inferences,
the model training period T should be sufficiently large. In the live trading engine, a
different quote module receives real-time tick data originating at the broker-dealers.
An efficient high-frequency trading system does not stop there. The simulation
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Figure D.2: Overview about the proposed FDSS to pricing and trading FX options - em-
bedded in a high-frequency trading process
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engine is an independent module that tests new trading strategies on past and
run-time data without actually executing the trades. Once the back test performs
satisfactorily, the system is switched to run on real-time data, the same data that
feeds into the production system.

3.2 Neural Network Topology

The NN as a back-testing engine is the core engine of the FDSS. In case of pricing
options on currency futures we have to calibrate the NN topology or architecture
and choose appropriate variables. According to Black (1976), the theoretical fair
call option price CBL

t (Black 76 model) depends on the underlying futures price Ft,
the strike price X, the time to expiration M (Maturity), the risk-free interest rate
r up to expiration and the future volatility σF of the underlying price. The Black
formula is similar to the Black-Scholes formula except that the spot price of the
underlying is replaced by a futures price Ft. The only component that cannot be
observed directly is the volatility of the underlying asset.
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Neural networks face these problem by relaxing the unobservable volatility σF

and r. Like the theoretical option price CBL
t , the heuristic option price CNN

t depends
on the permanently available moneyness (Ft/X), which is the quotient of the
underlying price Ft and the option’s strike price X, the strike price X itself and
the time to expiration Mt. Instead of r and the artificially estimated σF, we use the
permanently available trading day t as direct input for the heuristic pricing model.

But how does the NN work? The basic process units of NN architecture are
neurons which are internally in connection with neurons from subsequent layers.
The ability of NNs to process depends on these connections which are named as
weights. The weights give the abilities of prediction or classification to the system.
Inputs and outputs (xk, yk) represent a training pattern k. Firstly, the inputs (xk)

are weighted and summed up. Then they are entered to an activation function f (·) -
in our case the hyperbolic tangent transfer function tanh - in order to get an output
(yk) from the last neuron in the output layer. The weights are iteratively changed
until the best loads are obtained. To find the right weights within a so-called
training process thousands of multi-layer perceptrons with various topologies and
with different weight initializations are trained.

We follow the argumentation of Anders et al. (1998) and Hornik et al. (1990),
that feedforward networks with only one hidden layer and a output unit are
able to approximate simultaneously its unknown derivatives up to an arbitrary
degree of accuracy. The first layer includes the four major influencing variables
(Ft/X), X, Mt and t of a call option price. The second layer has a varying number
of hidden neurons. The third layer contains only the trained options’ market price.
More formally, our 3-layered perceptron with shortcut connections has an auxiliary
neuron N0 (bias neuron) with xk,0 ≡ 1

2 , where k = 1, 2, . . . , np and np denotes the
number of training and validation patterns. We have N1, . . . , Nne input neurons,
with Nne+1, . . . , Nne+nh hidden neurons, where nh is the number of hidden neurons
and nh ≥ 1, with Nne+nh+1 . . . , Nne+nh+no output neurons. Thus, our enabled 3-
layered perceptron is defined by

ak,i := xk,i for i = 0, 1, . . . , ne, (D.1)

ak,i := tanh

(
ne

∑
j=0

wj,iak,j

)
for i = ne + 1, . . . , ne + nh, (D.2)

ak,i := tanh

(
ne+nh

∑
j=0

wj,iak,j

)
for i = ne + nh + 1, . . . , ne + nh + no. (D.3)

Ni’s output for pattern (xk, yk) is denoted by ak,i and equations (D.1)-(D.3) yield
the output of a feedforward network. According to Breitner (2000), we transform all
output market prices Ct in option market premiums ct = (X + Ct − Ft)/Ft, which
can be easily re-computed to option prices. Figure D.3 shows the proposed NN
topology.
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Figure D.3: Our proposed neural network’s topology (three-layered perceptron) used for
market price synthesis
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Combining the layers, the output - a heuristic option premium cNN
t - can be

written as a function f (x; θ), where θ stands for a vector of parameters and the
function f determines how x and θ interact

f (x; θ) = tanh

[
6

∑
j=0

wj,i · tanh

summing over input
nodes︷ ︸︸ ︷(

4

∑
j=0

wj,ixk,i

) ]

︸ ︷︷ ︸
summing over hidden and

input nodes

. (D.4)

To avoid over-fitting we employ the cross-validation technique. The idea of cross
validation is to split the training set into two sets: a set of examples to train with
It, and a validation set Iv. Out-of-sample pricing on the validation set is used to
determine which model should be use, in which the error of the validation set is a
minimum. Training a neural network amounts to choosing its biases and weights
wij in order to minimize a accuracy criterion, e.g. the least squares of the observable
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output. The approximation quality of the NN can be estimated by means of the
training and validation error functions

εt :=
1
2 ∑

k∈It

(
ak,7W − yk

)2
and

εv :=
1
2 ∑

k∈Iv

(
ak,7W − yk

)2
.

Both training and validation error are exclusively affected by the used topology,
i.e. number of inner neurons and shortcuts activation.

We perform our network training with the Fast Approximation with Universal
Neural Networks (FAUN) neurosimulator. The FAUN neurosimulator uses fine-
grained parallelization which allows easily achieved speedups on dual and quad
core CPUs. FAUN also features coarse-grained parallelization using an easy to
install grid computing client. It is possible to use clusters of heterogeneous work-
stations. Furthermore, using reverse accumulation and matrix algorithms allow a
very efficient computation. This technical specifications make FAUN suitable for
HFT, where computational requirements should be high and require special high
performance computers.

4 experimental design: pricing of options on currency futures

4.1 Description and Preparation of Tick Data

Let’s follow the process using an empirical simulation. We sample intra-day prices
of an EUR/USD option on currency futures with six different strike prices. These
are derivative contracts that grant the purchaser the right, but not the obligation, to
trade a currency futures contract; which is a contract to exchange two currencies
at an agreed-upon exchange rate at a certain point in the future. Our data sample
consists of trade and quote data of four weeks available from 13 August 2012 to
17 September 2012 (expiry date) from the Chicago Mercantile Exchange (CME).
The options data is available from 13 August 2012 to 7 September 2012, due to the
prior expiry of options to final settlement or expiration of the underlying futures
contract. The quote data contains trade prices, bid and ask prices and volumes. A
UNIX timestamp in milliseconds records the date and the time at which the quote
originated. Table D.1 shows number of tick data and price ranges.

Due to the high-frequency character of tick data, we match the nearest futures
quote or available trade price to the relevant option price. Figure D.4 show the gener-
ated cleared data sets of underlying futures prices, option prices and correspondent
option premiums.

The dataset period starts with a relatively low exchange rate and converges to a
new high to maturity. Therefore, we can see that all option prices are in-the-money
at the end of the period. In contrast to option prices, the option premiums converge
to zero. This is explained by the remaining trading time.
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Table D.1: Dataset of six EUR/USD FX options on futures (underlying) with different
strike prices in the period from 13 August 2012 to 7 September 2012

a

Option Strike Price

Measure X = 1.21 X = 1.22 X = 1.23 X = 1.24 X = 1.25 X = 1.26

N Ticks (raw) 45, 890 43, 990 54, 904 43, 669 29, 928 14, 271
N Ticks (cleared) 12, 000 12, 000 12, 000 12, 000 12, 000 12, 000
. . . OTM Options 0 0 567 2, 143 2, 209 7, 050
. . . ITM Options 12, 000 12, 000 11, 433 9, 857 9, 791 4, 950

a OTM means out-of-the-money options, whereas ITM are in-the-money options.

Figure D.4: Underlying EUR/USD futures prices, EUR/USD FX options and correspondent
option premiums for six different strike prices
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Nevertheless, data collection at high-frequency on financial markets requires the
manipulation of complex databases and possibly the correction of errors present in
the data. Several studies investigated methods for cleaning tick data - see Dunis
et al. (1998) and Brownlees and Gallo (2006) for further details. After data cleaning,
we remove randomly tick data to get workable sets for our experimental design.

For purpose of training, each data set is divided into several subsets. First, we
separate an out-of-sample. In real life this would be the next trading day after
overnight computing. The in-sample runs from 13 August 2012, 09:30 p.m. GMT to
05 September 2012, 02:15 p.m. GMT. This implies that we get a sample of 60,000

ticks observations for the estimation period and a sample of 12,000 observations
for the out-of-sample period - a typically ratio of 5 to 1. Second, we divide our in-
sample set in a training and a validation set. Conforming to standard heuristics, the
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Figure D.5: Separation in training, validation and out-of-sample generalization sets
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Table D.2: NN approximation performance of option market prices with different network
topologies (1000 successfully computed networks)a

Network Topology

Measure A B C D E F

# Hidden neurons nh 1 2 3 4 5 8
Computing time (hours) 1.02 1.55 2.33 3.15 3.79 5.17
Training error εt 12.6206 4.0805 4.0462 6.5290 8.6431 17.2267
Training error εv 15.5087 5.1262 5.0778 8.2530 10.2904 17.5376
RMSE × 100 0.0368 0.0243 0.0234 0.0297 0.0760 0.0999
Adjusted R̄2 0.9927 0.9972 0.9973 0.9954 0.9848 0.9521

a Note, that the errors increase with more than three hidden neurons. To achieve better results with
higher neurons we might increase the number of successfully trained networks (1000).

training and validation sets were partitioned approximately 2.7 to 1 - see figure D.5
for an illustration of the sample sets.

4.2 Simulation Results

Now, we are ready for training all input variables over the initial period to generate
heuristic (model) premiums for each strike price simultaneously. We do several
simulations with different network topologies and simulation steps to analyze
error accuracy and computing performance time. Due to the restricted post-trade
horizon for back-testing our FDSS (overnight), we first reject network specifications,
which exceed a prescribed computing time. We achieve accurate and stable results
with 1000 simulation steps or trained networks. Second, we have to find the best
topology in order to minimize the training and validation error. In general, this is
achieved by comparison of the best trained network in each simulation study. To
reduce erratic oscillations and to improve accuracy we smooth the training results
by averaging the best 20 trained networks. In table D.2 we present accuracy criteria
for different topologies.

The results are encouraging in the sense that we get a good fit of the data,
although we train six long time series simultaneously. Regarding our data sample,
the topology C with three hidden neurons shows the best accuracy. All heuristic
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option premiums computed by this "winning" network topology are shown in
figure D.6. We can see that the network prices can approximate market prices with
high degree. However, it is important to know that the approximation performance
of OTM options achieve worse results. Due to the minority of OTM option data, it
seems to be an exhausting balancing act for the NN to train options with higher
strike prices more accurately (last subfigure D.6f). In addition, we observe a heavily
price jump of the EUR/USD exchange rate on the 21th August (ECB news regarding
the debt crisis in the euro zone). This explains the outliers in all subfigures.

Figure D.6: Quantile-quantile plot of fitted (model) and observable option market prices
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The computing time does not exceed the overnight time in all topologies. In
general, the error decreases with higher number of trained networks (figure D.7).
We have parallel trained all topologies on a compute server with 2 × 4 cores (2
× CPU Intel Xeon E5420 @ 2.50 GHz) and 16 GB RAM. Topologies with only
one or more than 5 hidden neurons seems to be not perform as well as the other
topologies.

Our network algorithm cNN
t (see formula D.4 in section 3.2) for option pricing

and live trading is now parameterized and is ready for implementation in the live
trading engine. Computing of option prices with this algorithm takes fractions
of a second. All option market prices can be compared to single out overpriced
and underpriced ones for each timestamp. Hence, network evaluation is almost
instantaneous even in a high-frequency context.
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Figure D.7: Best 25 single training errors of topologies A-F (hidden neurons 1-5 and 8) for
100, 1000 and 5000 successfully trained networks
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4.3 Evaluation and Limitations

We outline steps towards a high-frequency FDSS for pricing options and conduct
an experimental study with empirical data. While the experimental results are
encouraging, we also have to take some limitations into account. We are at now not
able to confirm the robustness, validity and performance of a NN-based FDSS in
general. However, our experimental results give us useful hints and motivation to
enhance the developed FDSS. In table D.3 we outline three major clusters of critical
questions, limitations or possible enhancements.

At this point we would like to emphasize on further investigations with alterna-
tive option pricing models or methodologies. In case of option on currency futures
we might benchmark our model with Black’s option pricing model. Furthermore,
hybrid model construction with NN and closed-form option pricing models is
another interesting object of investigation. We expect that an interaction of these
different model types could achieve reliable results. However, the parallel or hybrid
use of different option pricing methodologies might be an attractive but complex
enhancement.

5 conclusions and management recommendations

In this paper we present steps towards a model-driven financial decision support
model (FDSS) to pricing option on currency futures, which can be embedded in
a high-frequency trading process. To develop an appropriate FDSS, we use the
design science methodology of Hevner. We identify problem relevance in the field
of pricing options in financial markets, and suggest needs for efficient FDSS for
high-frequency trading processes.

We propose a heuristic option pricing model with powerful neural networks
(NN) to synthesize the option premium for all call FX option. NN exhibit several
benefits: They are suitable for solving non-linear problems like approximation
of option prices, and we only need available tick data without any assumptions,
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Table D.3: Major clusters of critical aspects, limitations or possible enhancements

Selection of data

• Need for tests over a longer time horizon (this provide longer out-of-sample periods)

• Need for investigations with a wider range of option data dimensions (e.g. over-
lapping option series with different expiry or option prices under different market
conditions)

• Taking other input variables into account could increase accuracy (e.g. volatility and
interest rates)

Selection of model

• Need for benchmarking with different NN model types (e.g. recurrent neural
networks)

• Integration of further methods like out-of-sample pricing or hedging strategies

• Need for accurate model parametrization θ

Usability aspects

• The present FDSS prototype does not feature a graphical user interface (GUI)

• Re-training networks during run-time high-frequency trading might be time-critical
in case of extraordinary market scenarios

• Precluding more complex and granular models in favour of model performance
from a usability view

which leads to a manageable model. Furthermore, NN is able to train different
option series simultaneously. This paper mostly presents the model-driven FDSS
as a high-frequency pricing-decision tool. We implement NN as a core engine in a
high-frequency trading process. To evaluate its usability we start an experimental
design with empirical tick data of EUR/USD options on currency futures. The
results are encouraging in the sense that it provides accurate market prices for
six different strike prices simultaneously. If the market and heuristic prices differ
significantly we can take this as a signal that an option is currently either too cheap
or too expensive. We are now able to answer our research question in the following
way:

• Neural networks are a suitable core engine for a model-driven FDSS embed-
ded in a high-frequency trading process and can support trading decisions.

• While post-trade network training is a computing-intensive issue, run-time
evaluation of ensembles takes fractions of a second and is therefore instanta-
neous in a high-frequency context.
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Nevertheless, we outline critical limitations and thinkable extensions in order
to design further steps towards an efficient FDSS for option pricing applications.
In our view the most important aspect is to test the model on a wider range of
overlapping option series with different expiry dates. This will allow us to better
gauge the practical applicability of our FDSS. With our approach it is not difficult
to adapt to other underlying time series. We expect the model to react robustly
and to generalize well in daily use. We hope that these further steps allow us to
conclude that our FDSS for currency option pricing is an artifact that "extends the
boundaries of human problem solving" (Hevner et al. (2004)).
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1 introduction

Since the introduction of electronic brokers in the foreign exchange (FX) interbank
market in 1992, the FX options market is a vast subject. Advances in computer
technology and automated algorithm trading have supercharged the transmission
and execution of orders, making use of the big data – and established a new
phenomenon: "high-frequency trading" (HFT). Nowadays, market participants
need access to the speed, liquidity and pricing accuracy of FX option products for
hedging or speculative purposes. Thus, an accurate market valuation of option
products in the HFT FX market is still difficult and needs appropriate models and
techniques (Aldridge (2010)).

Option pricing is based on theoretical models developed by Black and Scholes
(1973), Merton (1973) and Cox et al. (1979) with several extensions. In each case, the
derivation of the pricing formula depends intimately on the particular parametric
form of the underlying asset’s price dynamics S(t). A misspecification of the
stochastic process for S(t) will lead to systematic pricing and hedging errors
for derivatives. Therefore, the success or failure of the traditional approach to
pricing and hedging options is closely tied to the ability to capture the dynamics
of the underlying asset’s price process. Despite usefulness of closed-form type
models, Black (1975), Rubinstein (1985) and Bakshi et al. (2000) emphasized that
some models primarily address perceived weaknesses. Unfortunately theoretical
pricing models are based on several unrealistic assumptions. First of all, markets
are efficient, i.e., nobody can consistently predict the direction of the market
or an individual underlying. Secondly, underlying prices follow a memoryless
continuous-time or discrete-time stochastic process. In addition, the future volatility
σ of the underlying price can be estimated accurately and is a priori known to
seller and buyer of an option. Permanently an unsatisfactory and quite artificial
adaption to the true market conditions is necessary.

Hence, nonparametric or model-free pricing methods for pricing and hedging
derivatives attempt to overcome the mentioned restrictions in theoretical models.
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As option pricing theory typically derives non-linear relations between an option
price and the variables determining it, neural networks (NN) are well suited for
this purpose due to their ability to approximate any measurable function up to
an arbitrary degree of accuracy. Rather than starting from a price process of the
underlying security and subsequently deriving the corresponding option value,
the option market’s pricing mechanism is estimated from observed prices via a
NN. When properly trained, the network "becomes" the option pricing formula,
which may be used in the same way that formulas obtained from the paramet-
ric pricing method are used: for pricing, delta-hedging, simulation exercises, etc.
Network-based models have several important advantages over the more traditional
parametric models. First, since they do not rely on restrictive parametric assump-
tions such as lognormality or sample-path continuity. Second, they are adaptive
and respond to structural changes in the data-generating processes and robust to
specification errors that plague parametric models. Of course, the nonparametric
pricing method is highly data-intensive, requiring large quantities of historical
prices to obtain a sufficiently well-trained network. Therefore, such an approach
would be inappropriate for thinly traded derivatives, or newly created derivatives.

Much has been written about option market price synthesis with NN since
first attempts in the 1990ies. For a detailed current overview about the range
of prior studies see Chen and Sutcliffe (2012). Many of these studies maintain
the view that NN models are capable of generating better results in comparison
to closed-form models like the Black-Scholes (BS) formula in pricing options.
Pioneers are Malliaris and Salchenberger (1993) and Hutchinson et al. (1994), who
compared the performance of the BS model and NNs in pricing American-style
call options. They found that NNs were preferable, but in some regimes, i.e. for
out-of-the-money options, the BS performed better. Boek et al. (1995) and Lajbcygier
et al. (1997) proposed hybrid neural networks, which combine theoretical option
models with NNs. This nested models often exceeds the performance of other
models. In the following, Anders et al. (1998), Garcia and Gençay (2000), Andreou
et al. (2002) and Bennell and Sutcliffe (2004) got similar encouraging results with
European-style options. While many studies were motivated in using historical or
realized volatility estimates for the theoretical model specification, other alternative
volatility estimates are rare, e.g. Amilon (2003) and Andreou et al. (2006) extended
their investigation with the use of implied volatilities. Furthermore, subsequent
studies mostly investigated daily equity index options data for option pricing
approximations with NNs. Despite the high liquidity of FX options markets, there
is no noticeable investigation about pricing FX options with NN in a HFT-context.
In general, Dunis and Serpinis (2011) concluded that NN models do have the ability
to forecast EUR/USD returns for the period investigated. Recent research dedicated
to the performance of HFT is concentrated on volatility patterns and forecasts -
see Andersen and Bollerslev (1997), Andersen et al. (2003), McMillan and Speight
(2012), McMillan and Garcia (2013) and Matias and Reboredo (2012).
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Thus, we see a lack of further investigations in option market price synthesis with
NN - especially in case of HFT markets. Here, we propose a model-free method
for estimating the pricing formula of FX options with different strike prices using
learning networks. We build on these prior investigations, but we augment our
study with a run-time trading process to uncover special characteristics of high-
frequency data. The benefits of our NN technology as a kind of core engine allows
option sellers and buyers to approximate call option prices across different strike
prices simultaneously and with parsimonious input specification. In particular,
we pose the following challenge: if option prices were truly determined by the
theoretical model exactly, can the closed-form formula for different strike prices
be estimated nonparametrically by NN with a sufficient degree of accuracy to be
of practical use? Furthermore, can both models be implemented in an automatic
HFT process, where a signal must be precise enough to trigger trades in a fraction
of a second? To assess the potential value of network pricing formulas in HFT, we
simulate theoretical option prices and show that learning networks can recover the
closed-form formula from a four week training set of intra-day EUR/USD options
prices on currency futures. Some reasons for the popularity of options on futures
are that options on futures generally require less investment than options on the
physical good itself. We implement a rolling 15 minutes out-of-sample interval for
each trading day to assess the models pricing ability. The specification of all NN
models is used as in Breitner (2000), were options with different strike prices are
put into one network input. The results are then benchmarked with Blacks model
(Black (1976)) for pricing options on futures.

We organize this paper as follows: First, we introduce our NN methodology for
applications in a high-frequency process. Next, we propose the mentioned option
pricing models for pricing options on futures: a closed-form model of Black, two
NNs and a hybrid approach. in section four we explain the data preprocessing step,
which is essential for handling high-frequency data. In section five we conduct
an experiment with empirical tick data of EUR/USD options on currency futures
and analyze the results. In addition, we outline limitations of our work. The paper
finishes with a brief conclusion, and summarizes the results.

2 methodology

Neural Networks are known as universal approximatiors, since they can interpolate
a large variety of unknown mappings, once a training sample is given. Since
it is our goal to extract an alternative option pricing formula from the market
observations, we focus on multilayer perceptron (MLP), which are applicable to
non-linear regression problems. An alternative network is the so-called radial basis
function (RBF) network. A general introduction in NN for market application is
described in Priddy and Keller (2005), Wang (2005) and Li and Ma (2010). Although
both network types have the universal approximation capability and are therefore
well suited for modelling option prices, here we deal exclusively with the MLP type
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of neural networks. We follow the argumentation of Anders et al. (1998) and Hornik
et al. (1990), that feedforward networks with only one hidden layer and a linear
output unit are able to approximate simultaneously its unknown derivatives up to
an arbitrary degree of accuracy. This characteristic is substantial since the partial
derivatives of a pricing formula are needed for the hedging of option positions, a
subject of similar importance as the pricing itself.

The basic process units of NN architecture are neurons which are internally in
connection with neurons from subsequent layers. Firstly, the inputs (xk) are fed to
the input layer, the outputs (yk) are given in the output layer, and in between, there
is an arbitrary number of hidden neurons. Inputs and outputs (xk, yk) represent
a training pattern k. The network used in our study is a single hidden-layer
feedforward NN - see figure E.1 for illustration.

Figure E.1: Exemplarily 3-layered perceptrons
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Exemplarily 3-layered perceptrons with shortcut connections have an auxiliary
neuron N0 (bias neuron) with xk,0 ≡ 1

2 , where k = 1, 2, . . . , np and np denotes
the number of training and validation patterns, with input neurons N1, . . . , Nne ,
with hidden neurons Nne+1, . . . , Nne+nh+1 (Nne+1 is the auxiliary bias neuron in
the hidden layer), where nh is the number of hidden neurons and nh ≥ 1, with
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output neurons Nne+nh+2, . . . , Nne+nh+no+1 and with the hyperbolic tangent transfer
function tanh. Enabled 3-layered perceptrons are defined by

ak,i := xk,i for i = 0, 1, . . . , ne, (E.1)

ak,i := tanh

(
ne

∑
j=0

ak,jwj,i

)
for i = ne + 1, . . . , ne + nh, (E.2)

ak,i := tanh

(
ne+nh

∑
j=0

ak,jwj,i

)
for i = ne + nh + 1, . . . , ne + nh + no. (E.3)

Ni’s output for pattern (xk, yk) is denoted by ak,i. Note the missing bias neuron
in the hidden layer: it can be omitted, because with shortcut connections enabled
the bias neuron in the input layer influences the output neurons.

The ability of NNs to process depends on connections which are named as
weights w. The weights give the abilities of prediction or classification to the system.
Firstly, the inputs (xk) fed to the input layer are weighted and summed up. Then
they are entered to an activation function in order to get an output from each
neuron. The weights are iteratively changed until the best loads are obtained. To
find the right weights within a so-called training process thousands of multi-layer
perceptrons with various topologies and with different weight initializations are
trained. All weights wj,i of the weight matrices W12 ∈ Rnh+1,ne+1 (input layer →
hidden layer) and W23 ∈ Rno ,nh+1 (hidden layer → output layer), are trainable
except w0,ne+1. For shortcuts W13 ∈ Rno ,ne+1 exists analogously and the bias neuron
in the hidden layer is omitted.

To avoid over-fitting we employ the cross-validation technique. The idea of cross
validation is to split the training set into two: a set of examples to train with
It, and a validation set Iv. Out-of-sample pricing on the validation set is used
to determine which model to use, in which the error of the validation set is a
minimum. Training a neural network amounts to choosing its biases and weights
wij to minimize accuracy criterion, e.g. the least squares of the observable output.
The approximation quality of the NN can be estimated with the training and
validation error functions. These are given for no = 1 by

εt :=
1
2 ∑

k∈It

(
ak,ne+nh+1W − yk

)2
and

εv :=
1
2 ∑

k∈Iv

(
ak,ne+nh+1W − yk

)2
.

For no > 1 a sum over all output neurons must be taken. As usual the perceptron
is trained iteratively, i.e., ε, is decreased by adaption of W, as long as εv < εt

or εv ≈ εt holds. Both training and validation error are exclusively affected by
the used topology, i.e. number of inner neurons and shortcuts activation. Prior
studies of related research have shown that a three-layer network can be trained to
approximate most functions arbitrarily well. Network architectures with more than
three layers only sometimes lead to significant enhancements.
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In case of HFT, computational requirements should be high and require special
high performance computers. We do our network training with the FAUN (Fast
Approximation with Universal Neural Networks) neurosimulator. As described
in Mettenheim and Breitner (2010) two reasons make FAUN suitable for HFT.
First, the FAUN neurosimulator uses fine-grained parallelization. This allows easily
achieved speedups on dual and quad core CPUs. FAUN also features coarse-grained
parallelization using an easy to install grid computing client. It is possible to use
clusters of heterogeneous workstations. Second, using reverse accumulation and
matrix algorithms make a very efficient computation possible.

3 option pricing models

3.1 Closed-form Option Pricing Formula

To judge the pricing accuracy of network pricing, the performance of the NN needs
to be measured against an alternative model. In this study the Black model (BL)
is used for this purpose, which produces a closed-form expression of the option
price. We prefer the Black model instead of the standard Black-Scholes model,
because we are able to relax the assumption about continuous dividend payouts.
Furthermore, the Black model is used for pricing options on futures, which is our
objective here. Despite the fact that both basis theoretical models are generally not
used in its original form in practice, we focus on it here because it is still a widely
used benchmark model, and it is easily applicable in practice.

According to Black (1976), the derivation of the Black model relies on the follow-
ing assumptions. Asset prices follow a geometric Brownian motion, mean returns
and volatilities are constant over time, interest rates are both constant over time and
equal for all maturities, trading occurs continuously on frictionless markets and
no arbitrage opportunities exist. From these premises Black derived the following
formula for the price of a European call option written on a futures contract:

CBL(t) = F(t)Φ(d1)− Xe−rτΦ(d2), (E.4)

where

d1 =
ln(F(t)/X) + (r + σ2

F/2)τ
σ
√

τ

d2 = d1 − σF
√

τ

and Φ(·) is the cumulative probability function for a standardized normal vari-
able. Following equation E.4 the theoretical fair call option price CBL depends on
five input parameters: the underlying futures price F(t), the strike price X, the
time to expiration or live of an option τ = T− t, the risk-free interest rate r up to
expiration and the asset volatility σF of the underlying price. The Black formula is
similar to the Black-Scholes formula except that the spot price of the underlying
S(t) is replaced by a futures price F(t).
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Among parameters described above, the standard deviation σF of the returns
during the life of the option can not be known in advance and consequently
an estimate is required. There is no consensus on the appropriate method for
estimating standard deviation of the price series. Further, it is a common knowledge
that σF of the price series varies with time. An alternative method is to estimate a so
called implied volatility that minimizes option pricing error in previous transaction.
In particular, there can be at most one value for σF that, when applied as an input
to f (σF, τ, F(t), X, r) will result in a particular value for C(t). Assume that there
is some inverse function g = f−1, such that σ̂F = g(C(t), ·). The value σ̂F, is the
volatility implied by the market price or the implied volatility. In general, it is
not possible to give a closed form formula for implied volatility in terms of call
price. Many studies documented presence of systematic biases in implied volatility
measures. As a result, σ̂F often oscillates erratically and closed-form formulas
captures not the option market conditions. The measure often exhibits an U-shape
curve which is known as volatility smile. Nevertheless, implied volatilities yield
often to better results than other techniques like historical or realized volatility
estimates. In our study, we calculate the implied volatility for the last in-sample
market price for each option. These values are then treated as an input variable for
volatility parameter in calculations of the theoretical out-of-sample options price
for the Black model with the implied volatility for the next observation.

3.2 Empirical Option Pricing based on Neural Networks

In contrast to the theoretical pricing models, an empirical model-free pricing model
based on highly accurate neural network approximations can learn true market
pricing of options. We test two alternative topologies. The first is a parsimonious
specified model NN I, which relax the estimation of r and σF. Like the theoretical
option price CBL(F(t), X, τ, r, σF), this empirical option price CNN I(F(t)/X, X, τ, t)
depends only on the permanently available moneyness F(t)/X, which is the quo-
tient of the underlying price F and the option‘s strike price X, the strike price X
itself and the time to expiration τ. Instead of r and the artificially estimated σ̂F, we
use the permanently available trading day t as direct input for the empirical pricing
model. Note that t ∈ R+ enables a continuous-time model and an intra-day option
pricing. Inputs and output of the NN must be carefully transformed and equili-
brated to facilitate the neural network training. Our second topology NN II replaces
the trading time t by the implied volatility σ̂F to investigate the volatility influence.
Rubinstein (1985) found that implied volatility is a function of moneyness F(t)/X
and time to expiration τ. Hence, the empirical option price CNN II(F(t)/X, X, τ, σ̂F)

depends on four input variables. Due to the intra-day character, there is no need for
incorporation of the risk-free interest rate r. Figure E.2a and figure E.2b illustrate
the proposed NN topologies.
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Figure E.2: NN topologies (three-layered perceptron) with variable number of hidden
neurons used for market price synthesis
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Due to performance reasons, we transform all output market prices C(t) in
option market premiums

c(t) =
X + C(t)− F(t)

F(t)
, (E.5)

which can be easily re-computed to option prices. In summary, the NN architec-
ture used in this study is a feed-forward network with three layers. The first layer
includes the four major influencing variables F(t)/X, X, τ and t (NN I) or σ̂F (NN
II) of a call option price. The second layer has a varying number of hidden neurons.
The third layer contains only the trained options’ market premium c(t).

3.3 Empirical Option Pricing based on Hybrid Neural Networks

In a fourth pricing formula the Black model is nested in a NN - a so called hybrid
model (BL+NN). We refer to prior investigation like in Boek et al. (1995) to combine
the Black model and NN and then test its validity. The basis of the hybrid approach
to the problem is in using the Black model as a base, and allowing the NN to
augment its performance. The values of F(t), X, τ and C(t) are obtained from past
market option information, and the interest rate and volatility can be estimated or
approximated as desired. Essentially, the network has F(t)/X, τ, r and σF presented
as inputs, and the difference between the Black model and the C(t)/X value taken
from the real data presented as targets. The network is thus trained to produce an
appropriate deviation from the Black according to the input parameters as shown
in figure E.2c above. Therefore, when the system is used for pricing, the difference
between the theoretical and the network output should produce the appropriate
estimated C(t)/X value. This leads to the following price quotation:

cBL+NN(t) = cBL(t) + ε(t), (E.6)
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where ε(t) means the trained difference between the theoretical pricing formula
and the observable market option price. It is an advantage of the hybrid model
that those parts of the pricing mechanism which are already explained by the
theoretical formula need not to be approximated by the network. When the Black
model provides reasonable results the network can concentrate on the differences
between theoretical and observed prices. If estimation errors are reduced, the
out-of-sample accuracy of the pricing formula should improve.

4 data

We sample intra-day prices of an EUR/USD option on currency futures with five
different strike prices. These are derivative contracts that grant the purchaser the
right, but not the obligation, to trade a EUR/USD futures contract; which is a
contract to exchange EUR and USD at an agreed-upon exchange rate at a certain
point in the future. Further details to options on futures are described in Ball and
Torous (1986) and Broadie et al. (2007). Our data sample consists of trade and quote
futures data of four weeks available from 13 August 2012 to 17 September 2012

(expiry date) from the Chicago Mercantile Exchange (CME). The options data is
available from 13 August 2012 to 7 September 2012, due to the prior expiry of
options to final settlement or expiration of the underlying futures contract. The data
contains trade or quote prices, bid and ask prices and volumes. A UNIX timestamp
in milliseconds records the date and the time at which the quote originated.

Due to the high-frequency character of tick data, we match the nearest futures
quote or available trade price to the relevant option price. For high-frequency
data cleaning it is necessary to implement automatic procedures based on some
criteria in order to decide on the possible elimination of each observation. First, in
order to remove uninformative and non-representative option records we employ
exclusion criteria similar to those of Rubinstein (1985); Sheikh (1991); Xu and
Taylor (1994) and Barndorff-Nielsen et al. (2009). We carefully check, that the lower
boundary condition for the value of European call options is not violated, which
is binding for all European-style options independent of a specific option pricing
model. Furthermore, we have no option, which is deep-in- or deep-out-of-the-
money. Those options are traded roughly at their intrinsic value and have almost no
informational content. Second, we consider an algorithm proposed by Dunis et al.
(1998); Brownlees and Gallo (2006) and Mineo and Romito (2007), that verifies the
validity of an observation on the basis of its relative distance from a neighborhood
of the closest valid observations, based on the following rule. Let {Ci}N

i=1 be an
ordered tick-by-tick price series.

(|C{i} − C̄{−i}(l)| < 3s{−i}(l) + ϕ) =





true observation i is kept

false observation i is removed
(E.7)
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where C̄i(l) and si(l) denote respectively the mean and the standard deviation of
a neighborhood of l observations around i without the i-th observation and ϕ is the
granularity parameter. The granularity parameter is considered because the ultra
high-frequency series often contain sequences of equal prices which would lead to
a zero variance. Third, trading volume and the volatility of the market diminish
significantly during weekends and holidays as shown by Bollerslev and Domowitz
(1993). To eliminate weekend or thinly traded times effect, we concentrate on the
most liquid daily trading period between 12:00 and 16:00 GMT from Monday to
Friday and exclude a London Summer Bank Holiday (27 August) and the USA
Labour Day (03 September). We further replace those options, which has less than
two days to maturity. This criterion is used to eliminate options with a short time
to maturity, as these options have only a small time-value, which can lead to severe
deviations when calculating theoretical option prices. Table E.1 summarizes the
cleared number N of tick data.

Table E.1: Number of ticks in the whole trading simulation period

Single Options

Overall X = 1.21 X = 1.22 X = 1.23 X = 1.24 X = 1.25

N 105, 160 26, 140 23, 548 25, 343 18, 791 11, 338

Figure E.3 shows the generated cleared data sets of underlying futures and cor-
respondent option prices. The dataset period starts with a relatively low exchange
rate and converges to a new high to maturity. Therefore, we can see that all option
prices are in-the-money at the end of the period. In contrast to option prices, the
option premiums converge to zero. This is explained by the remaining trading
time. In order to calculate an adequate interest rate r which matches the time to
maturity for each option, we linearly interpolated the neighbouring interest rates
and transformed the resulting values into compounded rates. Our interest rate data
consist of daily interbank rates (US LIBOR) for overnight, one week, two week and
one month money.

We are now ready to specify our trading simulation strategy. Our objective is to
investigate the run-time pricing accuracy of a closed-form option pricing model
and a model-free NN in a HFT process. Hence, we implement an intra-day rolling
out-of-sample pricing, i.e. the first in-sample for training purposes runs from 12:00

GMT to 12:30 GMT (30 minutes) followed by the first out-of-sample from 12:30

GMT to 12:45 GMT (15 minutes). The second in-sample starts from 12:15 GMT to
12:45 GMT followed by the second out-of-sample from 12:45 GMT to 13:00 GMT
and so on. Thus, we get 14 non-overlapping 15 minutes out-of-sample intervals till
we reach the end of our daily trading period at 16:00 GMT. The next trading day
starts with a new training set. For purpose of training, we divide all in-sample sets
in a training and a validation set. Conforming to standard heuristics, the training
and validation sets were partitioned approximately 4 to 1.
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Figure E.3: Underlying EUR/USD futures prices and options for five different strike prices
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For illustration purposes we force the asynchronously series to a synchronized and equispaced
one minute time grid by taking the last price realized before each grid point.
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In contrast to prior studies we conduct a simultaneous training over the initial
period to generate empirical option prices for each strike price simultaneously.
Note, that prices are typically not recorded at equispaced time points. Both the
theoretical and NN model impose no requirements to the record set, which is
in contrast for statistical estimations. Therefore, we keep all observations in each
sample as they occur. Thus, the number of each option varies during the trading
simulation in each sample.

5 results

5.1 Optimal Network Topologies

We do several simulations with different network topologies and simulation steps to
analyze error accuracy. Due to the restricted in-sample training horizon for pricing
the next 15 minutes, we first reject network specifications, which exceed a prescribed
computing time. We achieve accurate and stable results with 2000 successfully
trained networks. Second, we have to find the best topology in order to minimize
the training and validation error. In general, this is achieved by comparison of the
best trained network in each simulation study. To reduce erratic oscillations and to
improve accuracy we smooth the training results by averaging the best 10 trained
networks. For all three mentioned network models we choose two hidden neurons,
which leads to accurate results while the computation time will be controllable.
Once an appropriate network has been found, computing of option prices with this
network takes fractions of a second. All option market prices can be compared to
single out overpriced and underprized ones for each timestamp. Hence, network
evaluation is almost instantaneous even in a high-frequency context.

5.2 Out-of-sample Pricing Accuracy

It still remains to be examined how far the different network specifications and
volatility estimates lead to good out-of-sample pricing performance. To compare
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the observed market prices C(t) with those obtained from the models Ĉ(t), the
following measures of fit were computed:

R̄2 = 1− T − 1
T − p− 1

∑T
i=1(C(t)− Ĉ(t))2

∑T
i=1(C(t)− ¯̂C(t))2

,

ME =
1
T

T

∑
t=1

(C(t)− Ĉ(t)),

RMSE =

√√√√ 1
T

T

∑
t=1

(C(t)− Ĉ(t))2,

MAPE =
1
t

T

∑
t=1

∣∣∣∣∣
C(t)− Ĉ(t)

C(t)

∣∣∣∣∣ ,

Theil′s U =

√
∑T

t=1(C(t)− Ĉ(t))2

∑T
t=1(C(t)− ĈBL(t))2

.

The adjusted R̄2 measures the correlation between the observed market prices
and fitted option prices, while the mean error (ME) indicates a pricing bias. Since
the network models are estimated by using the sum of squared errors, it is obvious
to evaluate the models with the Root Mean Squared Error (RMSE), which gives
absolute measures of price discrepancy. In addition, we calculate the mean absolute
percentage error (MAPE), which has the advantage of being scale independent, so
they are frequently used to compare forecast performance between different data
series. However, MAPE is sometimes criticized, because it is infinite or undefined
if there are zero values in a series. The Theil’s U represents a relative measures,
which measures how well the model performs against a "naive" model - in our case
the Black model. Theil’s U-Statistic scales the RMSE by the variability of underlying
data and has the advantage of being independent of the variance of the actual
process. If U is more than one, the NN does not beat the "naive" Black model.

When looking on the out-of-sample pricing performance in table E.2 we see that
pricing errors from the observed market prices are quite small. It is interesting that
the Black model achieves encouraged results, which is a little bit surprising in view
of prior studies. Nevertheless, all models fit the observed market prices very well.
The theoretical option prices from the Black model are quite similar for all strike
prices. For the empirical derived prices it seems that a simultaneous training of
five different strike prices would lead to some less accurate prices for higher strike
prices. This could be accounted for by the different moneyness in these options,
which is in line with prior investigations - e.g. Malliaris and Salchenberger (1993)
found that BS was preferable for in-the-money options. At the beginning of our
trading period options with higher strike prices are out-of-the money.

Additional observations are worth pointing out: while the incorporation of the
implied volatility in the NN model does not achieve appreciable performance
improvements, the hybrid model does not improve the theoretical option model.
We assume that the simultaneous training is reasonable for this surprising aspect.
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Table E.2: Statistical out-of-sample pricing accuracy for all strike pricesa

Strike X

Model Measure Overall 1.21 1.22 1.23 1.24 1.25

BL R̄2 0.9999 0.9999 0.9998 0.9992 0.9995 0.9990
ME ×100 0.0009 0.0008 −0.0011 0.0031 0.0004 0.0010
RMSE ×100 0.0119 0.0108 0.0122 0.0155 0.0090 0.0084
MAPE 0.3086 0.1792 0.2379 0.3480 0.3744 0.5567
Theil’s U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NN I R̄2 0.9998 0.9999 0.9997 0.9991 0.9971 0.9932
ME ×100 −0.0022 0.0023 −0.0032 −0.0057 −0.0062 0.0036
RMSE ×100 0.0172 0.0117 0.0144 0.0178 0.0221 0.0218
MAPE 0.5167 0.1810 0.2751 0.4964 0.8316 1.3165
Theil’s U 1.4377 1.0822 1.1815 1.1443 2.4449 2.5770

NN II R̄2 0.9997 0.9999 0.9997 0.9971 0.9982 0.9884
ME ×100 −0.0003 0.0009 −0.0023 −0.0026 −0.0022 0.0077
RMSE ×100 0.0196 0.0107 0.0131 0.0306 0.0168 0.0287
MAPE 0.5093 0.1817 0.2848 0.5783 0.6325 1.3718
Theil’s U 1.6407 0.9963 1.0778 1.9712 1.8563 3.3946

BL+NN R̄2 0.9998 0.9997 0.9995 0.9982 0.9988 0.9974
ME ×100 −0.0003 −0.0008 −0.0011 0.0005 0.0000 0.0006
RMSE ×100 0.0179 0.0161 0.0182 0.0231 0.0139 0.0132
MAPE 0.4944 0.3001 0.3877 0.5487 0.5770 0.9058
Theil’s U 1.4985 1.4922 1.4937 1.4860 1.5348 1.5658

a The table shows the pricing accuracy for the options on currency futures with five different strike
prices X in the period 13 August to 06 September 2012 (16 trading days).

It is obviously an exhausting balancing act for the NN to train five different option
series simultaneously. Hence, it would be interesting to compare single trained
network results. When the NN concentrates only on a particular option series
we would expect an improvement of performance measures in case of the hybrid
model. Furthermore, we show the NN’s difference in the RMSE to the Black model
and the Theil’s U for each trading day in table E.3. Except the hybrid model, the
NN results seem not to be very accurate in the beginning of the trading period. For
the rest the results are comparable.

In summary, the results are encouraging in the sense that we get a good fit
of the data, although we train five long time series simultaneously. The density
plots of out-of-sample differences between market and model prices (figure E.4)
show comparable results. Model-free based option prices derived from NN can
synthesize option market prices in a similar manner, but in a simultaneous way and
with a more parsimonious input specification. E.g., there is no need of volatility or
interest estimation.
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Table E.3: Statistical out-of-sample pricing accuracy for each trading perioda

NN I NN II BL+NN

Period ∆ RMSEb Theil’s U ∆ RMSE Theil’s U ∆ RMSE Theil’s U

1 2012-13-08 0.0055 1.9052 0.0334 6.4690 0.0041 1.6768
2 2012-14-08 0.0135 2.9407 0.0133 2.9090 0.0029 1.4157
3 2012-15-08 0.0081 1.9665 0.0099 2.1830 0.0057 1.6771
4 2012-16-08 0.0029 1.3810 0.0016 1.2064 0.0021 1.2761
5 2012-17-08 0.0051 1.4749 0.0048 1.3741 0.0070 1.5528
6 2012-20-08 0.0048 1.4333 0.0033 1.2553 0.0063 1.6215
7 2012-21-08 0.0012 1.1865 0.0019 1.2901 0.0054 1.7905
8 2012-22-08 0.0060 1.8453 0.0023 1.3228 0.0057 1.7940
9 2012-23-08 0.0083 1.8864 0.0002 1.0250 0.0071 1.7608
10 2012-24-08 0.0021 1.1627 0.0016 1.1208 0.0039 1.3058
11 2012-28-08 −0.0093 0.5183 0.0014 1.0701 0.0103 1.5317
12 2012-29-08 0.0036 1.4864 0.0055 1.7494 0.0028 1.3842
13 2012-30-08 0.0142 2.4443 0.0062 1.6316 0.0053 1.5339
14 2012-31-08 0.0007 1.0313 0.0051 1.2586 0.0086 1.4381
15 2012-05-09 0.0005 1.0690 0.0008 1.1027 0.0033 1.3961
16 2012-06-09 0.0041 1.4340 0.0002 1.0275 0.0054 1.5690

a The table shows the pricing accuracy for the options on currency futures with five different strike
prices X for each considered trading day.

b We show the RMSE difference to the benchmark model (BL). Positive values indicate a lower
RMSE for the benchmark model.

Nevertheless, even the proclaimed naive Black model adapts accurately ob-
servable market prices in short intra-day periods and achieves an outstanding
performance. For our data sample, we conclude that market participants may
orientate themselves towards theoretical option models in short intra-day periods.
In contrast to prior studies we work out two essential differences: first, our trad-
ing horizon (15 minutes) is very short, which leads to small deviations. Second,
the choice of the volatility estimate plays an important role for theoretical option
pricing models. Prior studies often use historical or realized volatility estimations.
Thus, we assume that the implied volatility estimator is an outstanding volatility
estimator for short-term out-of-sample pricing.

5.3 A brief Outlook on further Research

From this point of investigation further research steps are thinkable and we rec-
ommend three particular aspects. First, as mentioned above we could relax our
NN specification of simultaneous option pricing. We would expect, that the NN
captures better the pricing path and pricing accuracy would improve. Second, the
statistical significance of out-of-sample option pricing is difficult to formulate be-
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Figure E.4: Density of pricing errors
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cause the errors in fitting the option prices are likely to be correlated across options
and over time. Usually, we would use the Diebold and Mariano test (Diebold and
Mariano (1995)), which assumes that the sequence of the difference between the
predictions of two models is covariance stationary. But Amilon (2003) noted, that in
case of option pricing the Diebold and Mariano test statistic is not an appropriate
test. He recommended a moving block bootstrap to test the statistical significance.
Therefore, we would extend our study with an appropriate significance test. Third,
as option pricing models are frequently used to calculate hedge parameters, it is
necessary to check whether the parameters obtained from the NNs are reliable
insofar as they follow certain patterns suggested by theory. The very essence of all
parametric continuous-time pricing formulas is the ability to replicate an option
through a dynamic hedging strategy. To be of any practical relevance, the NN
models must also be able to hedge an option position. Of primary interest are the
hedging parameters or Greek letters resulting from the pricing model. They are
defined as follows:

∆ =
∂C(t)
∂F(t)

, Θ =
∂C(t)

∂(T − t)
, Γ =

∂∆
∂F(t)

where delta (∆) and theta (Θ) are the partial derivatives of the option price with
respect to changes in the futures price and the time to maturity, while gamma (Γ)
gives the sensitivity of delta with respect to changes in the futures price. Hence, a
calculation of hedge parameters in order to further validate our models seems to
be necessary.

6 conclusions

In this paper we propose an empirical option pricing model with powerful neural
networks (NN) to synthesize FX option prices. NNs exhibit several benefits: they
are suitable for solving non-linear problems like approximation of option prices,
and we only need available tick data without any assumptions, which leads to
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a manageable model. Furthermore, NN is able to train different option series
simultaneously. This paper mostly presents the NN as a run-time pricing tool for
options, which can be implemented in a HFT process. In particular, option pricing
evaluation is difficult, due to the weakness of theoretical pricing models.

To evaluate its usability we conduct an experimental trading simulation with
empirical tick data of EUR/USD options on currency futures. We specify several
NN topologies: first, a parsimonious network, which relax the parametrization of
the risk-free interest rate and volatility of the underlying asset. Second, we include
the last observable in-sample implied volatility and third, we implement a hybrid
theoretical and NN model. The last one attempt to uncover the pricing differences
between the theoretical and observable market price. To judge the pricing accuracy
of all models we benchmark it with the closed-form Black model for pricing option
on futures. A continuous risk-free interest rate is derived from market data and the
volatility parameter is set by the last observable in-sample implied volatility. We
implement an intra-day 15 minutes rolling out-of-sample pricing in the daily time
period from 12:30 GMT to 16:00 GMT. Thus, we get 14 non-overlapping 15 minutes
out-of-sample intervals till we reach the end of our daily trading period. The next
trading day starts with a new training set.

The results are encouraging in the sense that it provides accurate market prices for
five different strike prices simultaneously. Although parametric pricing formulas are
slightly better, our results show that nonparametric learning-network alternatives
can be useful substitutes. Nevertheless, we outline critical limitations and thinkable
extensions in order to design an augmented HFT trading simulation with NNs.
This includes training option prices separately to achieve a better performance and
implementing a significance test. While the accuracy of the learning network prices
is obviously of great interest, this alone is not sufficient to ensure the practical
relevance of our nonparametric approach. In particular, the ability to hedge an
option position is as important, since the very existence of an arbitrage-based
pricing formula is predicated on the ability to replicate the option through a
dynamic hedging strategy.
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non-linear methods, in order to generate short-term forecasts of spot freight rates
and corresponding freight derivatives respectively Forward Freight Agreements
(FFA) in the dirty tanker shipping market. We attempt to uncover the benefits of
using several time series models and the potential of neural networks. Maritime
forecasting studies using neural networks are rare and only focus on spot rates, with
the result that only longer forecasting horizons lead to encouraging results with
neural networks. We build on this kind of investigation, but we extend our study
on freight rates derivatives or FFA prices and a wider range of time series models.
Before we implement a simple trading simulation in order to evaluate the predicted
freight rates, we compare the statistical forecasting performance of all models.
Our conclusion is, that non-linear methods like neural networks are suitable for
short-term forecasting and trading spot freight rates and freight derivatives, as their
results match or improve on those of other models. Nevertheless, we think that
further research with freight rates and corresponding derivatives is developable for
decision and trading applications with enhanced forecasting models.
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1 introduction

In this paper we investigate the forecasting and trading performance of non-linear
forecasting models, to generate short-term forecasts of spot rates and corresponding
freight forwards respectively Forward Freight Agreements (FFA) in the dirty tanker
shipping market. In recent time freight derivatives become interesting in the mar-
itime market due to the fact, that freight rates are very volatile. Derivative markets
provide a way in which these risks may be transferred to other individuals who
are willing to bear them, through hedging. The main objective of the established
FFA market was to provide a mechanism for hedging of freight risk in the dry-bulk
and wet-bulk shipping sector. Nevertheless, due to the high volatility of freight
rates, actors in the shipping market are forced to use forecasting techniques for the
purpose of risk management.

Freight rates exhibit certain characteristics in the class of commodities: The
freight rate represents as an underlying asset a transport service and can be
classified as non-storable commodity like electricity. This means, that there is no
arbitrage between spot and forward freight rates. Therefore, spot and forward
freight rates are not related to the cost-of-carry relationship. Forward prices are
unbiased predictors for future spot prices in the class of non-storable commodities
in speculative-efficient markets. Thus changes in forward prices are affected by new
information in this market. But the low liquidity in the FFA market and the until
now almost non-existence of speculative interests lead to the fact, that forward rates
do not exhibit these properties. In contrast to other established markets, only a
small number of actors operate in the FFA market and it is not sure that all relevant
information is contained in the forward price. The non-existence of arbitrage in
the FFA market leads to the fact, that the spot rate converges to the forward rate,
because the forward rate contains certain information about future spot rates. There
is no reason, why the forward rate should converge to the spot rate.
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Most studies on forecasting freight rates use traditional time series models and
focus on statistical forecast performance measures, e.g. Culliane (1992), Culliane
et al. (1999) and Veenstra and Franses (1997). Kavussanos and Nomikos (2003) and
Batchelor et al. (2007) compared a range of time series models in forecasting spot
freight rates and freight forward contracts respectively FFA rates. They concluded,
that freight forward contracts are suitable to detect the tendency of future spot
freight rate, but FFA rates do not seem to be helpful in predicting the direction of
future spot rates. In addition, Alizadeh and Nomikos (2003) showed that FFA rates
do not seem to be helpful in predicting the direction of future spot rates. The latter
studies exhibit the common characteristic that the forecasting accuracy declines as
maturity increases.

However, the use of linear time series models for freight rates is sometimes criti-
cized, due to the fact that most financial time series show non-linear patterns (see
Adland and Cullinane (2006) and Goulielmos and Psifia (2009)). As a representative
of non-linear methods, neural networks could be implemented for several financial
applications. Li and Parsons (1997) were the first, who used neural networks in
their investigation of spot freight rates. They pointed out that neural networks can
significantly outperform simple time series models for longer-term forecasting of
monthly tanker spot freight rates. Also, Lyridis et al. (2004) attempted to investigate
the advantages of neural networks in predicting spot freight rates of large oil
carrier (VLCCs). In their opinion neural networks are superior for investigations of
non-stationary and non-linear time series. A more recent study of Mettenheim and
Breitner (2010) shows that neural networks achieve good forecasting and trading
results in predicting the Baltic Dry Index (BDI), which measures the cost to haul dry
freight over the world’s oceans. According to trading investigations of freight rates
and derivatives some examples and details are given by Alizadeh and Nomikos
(2009).

Nevertheless, we find a lack of jointly spot and forward forecasting investigations
with neural networks. We build on these investigations, but we extend our study
on freight derivatives and a wider range of time series models. The main objective
of this paper is to investigate neural networks’ prediction ability for maritime
business forecasting and provide a practical framework for actual forecasting and
trading applications of neural networks. The investigation occurs in two steps:
First, we implement a performance test of several forecasting models in predicting
spot freight rates and FFA prices. The main objective is to reduce forecasting error
in variance. Typically, modeling techniques are optimized using a mathematical
criterion, but ultimately the results are analyzed on a financial criterion upon which
is not optimized. In other words, the forecast error may have been minimized
during model estimation, but the evaluation of the true merit should be based on
the performance of a trading simulation. Hence, we evaluate our forecasting results
in a simple trading simulation, which is a better indicator for trading purposes
than forecasting performance measures.
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The paper is organized as follows. Section 2 gives a short introduction about
the methodology of neural networks and alternative statistical time series models.
Section 3 describes the data and our forecasting strategy. After specifying and
estimation of time series and neural network models in section 4 we generate one-
step ahead predictions of spot freight rates and freight derivatives in section 5. In a
further step we evaluate these statistical performance results in a simple trading
simulation (section 6). Finally, Section 7 summarizes our conclusions.

2 forecasting models

In this paper we apply several forecasting techniques for our investigation. We
introduce both traditional linear time series models and a neural network as a
representative for non-linear models.

2.1 Linear Time Series Models

In general, we can separate time series models in univariate and multivariate time
series classes in case of their input observations. Thus a univariate time series refers
to a single sequence of observations.

Auto-Regressive Integrated Moving Average (ARIMA) models are a general class
of univariate models to find the best fit of a time series to past values of this time
series, in order to make forecasts. They were popularized by Box and Jenkins (1970).
The ARIMA model, also often called Box-Jenkins model, assumes that the time
series is stationary. Box and Jenkins recommend differencing non-stationary series
one or more times to achieve stationarity. We get our ARIMA(p, 1, q) model - in
our case for one spot freight rate and two FFA contracts with different maturities:

∆Ŝt = αs +
p

∑
i−1

αs,i∆St−i +
q

∑
i−1

βs,iεs,t−i + εs,t, εs,t ∼ iidN(0, σ2
s )

∆F̂1,t = α1 +
p

∑
i−1

α1,i∆F1,t−i +
q

∑
i−1

β1,iε1,t−i + ε1,t, ε1,t ∼ iidN(0, σ2
1 )

∆F̂2,t = α2 +
p

∑
i−1

α2,i∆F2,t−i +
q

∑
i−1

β2,iε2,t−i + ε2,t, ε2,t ∼ iidN(0, σ2
2 )

Where ∆F̂t and ∆Ŝt are log returns of spot freight rates and FFA prices, respec-
tively, and the εt are random error terms. To identify the appropriate ARIMA
model for a time series, there are three primary stages in building a Box-Jenkins
time series model: first, we have to identify the order(s) of differencing needing to
stationarize the series. The primary tools for doing this are the autocorrelation plot
and the partial autocorrelation plot. Second, we have to estimate the parameters
for the Box-Jenkins model. At least, model validation ensures to fit the most appro-
priate model. Typically, effective fitting of Box-Jenkins models requires at least a
moderately long series.
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Correspondingly to univariate time series models, a multivariate time series refers
to a sequence of vectors of observations. Statistical multivariate time series methods
include the Vector Auto-Regressive process (VAR) and the Vector Error Correction
model (VECM). A VAR model, first advocated by Sims (1980), is an econometric
model used to capture the evolution and the interdependencies between multiple
time series, generalizing the univariate models. All the variables in a VAR are
treated symmetrically by including for each variable an equation explaining its
evolution based on its own lags and the lags of all the other variables in the model.
Thus our corresponding VAR(p) model with lag-length p is:

∆Ŝt = αs +
p

∑
i−1

αs,i∆St−i +
p

∑
i−1

βs,iF1,t−i +
p

∑
i−1

βs,iF2,t−i + εs,t

∆F̂1,t = α1 +
p

∑
i−1

α1,i∆St−i +
p

∑
i−1

α1,i∆F1,t−i +
p

∑
i−1

β1,iF2,t−i + ε1,t

∆F̂2,t = α2 +
p

∑
i−1

α2,i∆St−i +
p

∑
i−1

α2,i∆F1,t−i +
p

∑
i−1

β2,iF2,t−i + ε2,t

The potential advantage of the multivariate VAR model according to the univari-
ate ARIMA model is that it takes into account the information content in the spot
price movement in determining the forward price and vice versa.

In case of non-stationarity modelling, multivariate time series are complicated.
The cointegration approach of Engle and Granger (1987) is a helpful tool in this case,
which means that a particular linear combination of the non-stationary variables
are stationary. Then the variables are said to be cointegrated. Therefore, we extend
the VAR model by equilibrium correction terms, which represents the cointegrating
(long-run) relationship between the spot freight rates and FFA prices. The VECM
leads often to more satisfactory results than ARIMA and VAR models as both the
short-run dynamics and the long-run relationship between variables are taken into
account.

2.2 Non-linear Neural Network Model

Neural networks (NN) can be described as non-linear input-output models. They
provide the basis for an entirely different approach to the analysis of time series. The
connections between inputs and outputs are typically made via one or more hidden
layers of neurons, sometimes alternatively called processing units or nodes. NN
also appear to have potential application in time series modelling and forecasting.
Nevertheless, the success of NN modelling depends on a suitable topology or
architecture. This includes determining the number of layers, the number of neurons
in each layer and which variables to choose as inputs and outputs. The number
of hidden layers is often taken to be one, while the number of hidden neurons is
found heuristically. In the case of time series prediction, feedworward NN use the
past lagged observations as inputs to conduct one or multi-step ahead forecasts.
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They do not require any assumptions relating to the underlying data-generating
process. Figure F.1 shows an example of a neural network topology for time series
forecasting purposes.

Figure F.1: Topology of a typical NN for time series forecasting

∆St
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Example with one hidden layer of two neurons. The output, e.g. the forecast variable, depends
on the lagged input values at times t− 1, . . . , t− p.

In our case, a one-step ahead forecast of spot freight rates returns ∆Ŝt is computed
using lagged input variables (∆St−1, ∆St−2, . . . , ∆St−p) as follows (for FFA prices
in the same manner):

∆Ŝt = f (∆St−1, ∆St−2, . . . , ∆St−p), (F.1)

where f denotes the function determined by the network. Thus the NN is equiv-
alent to the nonlinear autoregressive model for time series forecasting problems.
One of the input variables will usually be a constant. The neural network attempts
to find the best possible approximation of the function f as a complex combination
of elementary non-linear functions. This approximation is coded in the neurons
of the network using weights that are connected with each neuron. These weights
effectively measure the ’strength’ of the different connections and are parameters
that need to be estimated from the given data. We further assume there are H
neurons in one hidden layer and then attach the weight wij to the connection
between input St−i and the jth neuron in the hidden level. Given values for the
weights, the value to be attached to each neuron may then be found in two stages.
First, a linear function of the inputs is found:

netj = ŵo +
p

∑
i

wij∆St−i (F.2)

for j = 1, 2, . . . , H. Second, the quantity netj is converted to the final value for the
jth neuron by applying an activation function - in our case we use the hyperbolic
tangent, tanh(netj). Having calculated values for each neuron, a similar pair of



the »forecasting freight rates i« paper 120

operations can then be used to get the predicted value for the output using the
values at the H neurons. This requires a further set of weights ŵj to be attached to
the links between the neurons and the output. Overall the output ∆Ŝt, is related to
the inputs by the following expression:

∆Ŝt = fo

[(
∑

j
ŵj tanh

(
p

∑
i

wij∆Ŝt−i

)
+ ŵo

)]
, (F.3)

where fo denotes the activation functions at the output layer. It is also easy to
incorporate further input variables into NN model. In this case, we are able to
extend such an univariate NN to a multivariate topology.

3 description of data and forecasting strategy

A forward freight agreement (FFA) is an agreement between two counterparties to
settle a freight rate or hire rate, for a specified quantity of cargo or type of vessel,
for one or a basket of major shipping routes in the dry-bulk or the tanker markets
at a certain date in the future. The underlying asset of FFA contracts is a freight
rate assessment for an underlying shipping route. On the tanker side, you have
many contracts - tanker FFAs routes are centralized around the biggest physical
routes for shipments of crude oil, known as trade dirty (TD) or trade clean (TC)
followed by a numeral to designate the vessel size and cargo. The most liquid
routes are TD3, TD5, TD7 and TC2. We sample daily prices of the International
Maritime Exchange (Imarex) TD3 and TD5 freight forward contracts - see table F.1
for more details. The Imarex is a hybrid exchange, where standardized contracts
are traded and cleared. These contracts are written on daily spot rates for TD3 and
TD5 published by the Baltic Exchange. The spot and FFA data is available from 5

April 2004 to 1 April 2011.

Table F.1: Overview of the relevant freight forward contracts

Route Tradea Sizeb Lot size Price quotationc

TD3 VLCC, Middle East to Japan 260,000 mt 1000 mt WS points
TD5 Suezmax, West Africa to US East Coast 130,000 mt 1000 mt WS points

a Vessel classes: Suezmax - an ocean-going cargo vessel of the maximum size possible to pass
through the locks of the Suez Canal in Egypt. Very Large Crude Carrier (VLCC) - an ocean-going
crude oil tanker of 200,000 to 299,999 dwt.

b mt means miles per ton.
c WS denotes Worldscale points - a unified system of establishing payment of freight rate for a

given oil tanker’s cargo.

To avoid expiry effects, we calculate "perpetual" forward contract for one month
(22 trading days; FFA 1M) and two month (44 trading days; FFA 2M) as a weighted
average of a near and distant futures contracts, weighted according to their respec-
tive number of days from maturity. This procedure generates a series of futures
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prices with constant maturity and avoids the problem of price-jumps caused by
the expiration of a particular futures contract. Figure F.2 shows all data points. We
can see typical patterns of spot rates and FFA prices: When the spot market is at
a relatively low level, the forward rates increase with time to maturity; in other
words the forward curve is in contango, indicating the anticipation of the market of
future increases in the spot rates. On the other hand, when the spot market is at a
high level, the forward curve is downward sloping, or backwarded, thus indicating
the anticipation of the market of lower freight rates in the future. This pattern in
forward curves is consistent with the mean reversion property of freight rates.

Figure F.2: Spot and forward prices for TD3 and TD5
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All prices are transformed to natural logarithms. Summary statistics of logarith-
mic first-differences ("log returns") of daily spot and FFA prices are presented in
table F.2 for the whole period in the two dirty tanker routes. The result’s excess
kurtosis in all series, and the skewness does not necessarily imply a symmetric
distribution. The Jarque-Bera tests indicate departures from normality for both
spot and FFA prices in all routes. This seems to be more acute for the spot freight
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rates. The Ljung-Box Q(12) statistic on the first 12 lags of the sample autocorre-
lation function and Engle’s ARCH test indicate significant serial correlation and
existence of heteroscedasticity, respectively. In contrast to storable commodities,
such as stocks, there is no reason to expect changes in spot freight to be serially
uncorrelated. Demand and supply for freight services are determined by the needs
of trade.

Augmented Dickey Fuller (ADF) and Phillips-Peron (PP) unit root tests on the
log levels and log first-differences of the daily spot and FFA price series indicate
that all variables are log first-difference stationary, but the levels indicate, that most
price series follow unit root processes. ADF and PP tests are sometimes criticized
for their lack of power in rejecting the null hypothesis of a unit root when it is false.
This lack of power is addressed by the Kwiatkowski, Phillips, Schmidt, and Shin
(KPSS) test, which has stationarity as the null hypothesis. Furthermore, the results
of the Brock, Dechert and Scheinkman (BDS) test strongly suggest that the time
series in all contracts are non-linearly dependent, which is one of the indications of
chaotic behavior.

For purpose of forecasting, each data set is divided into two subsets: the first
subset runs from 5 April 2004 to 16 February 2010, the second subset from 17

February 2010 to 1 April 2011. The first subset is used to estimate the statistical
models and identify the neural network structure while the second is used only for
out-of-sample prediction comparison. This implies that we get a sample of 1466

daily observations for the estimation period and a sample of 282 daily observations
for the forecasting period - a ratio of 5.25 to 1. The estimation period starts with a
relatively higher rate. Both freight rates reached abruptly their highest level at the
end of the year 2004. The forecasting period includes the years of lower rates.

4 estimation results and model specification

We separate all models in univariate and multivariate model classes: the univariate
models consist of an ARIMA and a NN model, where we include only the relevant
single spot or FFA time series. For the multivariate models VAR, VECM and a
multivariate neural network, namely NN+, we include both spot and all FFA rates
of each route. As noted above, the results of the unit root tests on the log levels
and log first-differences of the daily spot and FFA price series indicate that all
variables are log first-difference stationary, all having a unit root on the log levels
representation. This means that the first-differences of spot and forward series
should be used, while cointegration tests should be performed to ascertain the
long-run relationship between the series if the VECM model is going to be used.
Johansen’s multivariate cointegration test (Johansen, 1988) results indicate that spot
and FFA prices are cointegrated in all routes (see table F.3).
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Table F.2: Descriptive statisticsa

TD3 TD5

Spot FFA 1M FFA 2M Spot FFA 1M FFA 2M

Nb 1747 1747 1747 1747 1747 1747
Mean (levels) 4.41 4.44 4.43 4.80 4.81 4.78
SD (levels) 0.52 0.45 0.41 0.44 0.39 0.37
Skew (levels) 0.38 0.13 −0.06 −0.06 −0.12 −0.13
Kurtosis (levels) −0.12 −0.01 −0.13 −0.24 −0.09 −0.22
Jarque-Berac 10212.88*** 1146.48*** 1482.50*** 9560.54*** 1966.65*** 1581.69***
Ljung-Boxd 974.58*** 179.33*** 120.73*** 465.72*** 140.06*** 90.27***
ARCHe 115.64*** 126.99*** 176.95*** 21.90 105.88*** 73.31***
ADFf −18.32*** −24.77*** −26.33*** −22.09*** −25.52*** −26.11***
ADF (levels) −3.78*** −2.72* −2.39 −4.10*** −2.25 −1.65
PP −22.56*** −31.79*** −33.73*** −25.81*** −32.56*** −34.80***
PP (levels) −3.53*** −2.59 −2.19 −3.57 −2.13 −1.67
KPSS 0.02*** 0.03*** 0.04*** 0.01*** 0.03*** 0.05***
KPSS (levels) 0.23 0.27 0.28 0.28 0.34 0.35
BDSg 16.02*** 11.53*** 11.34*** 7.75*** 6.92*** 6.36***

a The table shows descriptive statistics for the log differences of spot and FFA rates. Data are daily
in the period 5 April 2004 to 1 April 2011.

b N shows the number of daily observations. Skewness and kurtosis are estimated centralized third
and fourth moments of the data.

c The Jarque-Bera test for normality is distributed as χ2(2), with a critical 5% value of 5.9915. ∗, ∗∗
and ∗ ∗ ∗ denote the significance level at 10, 5 and 1%.

d Q(12) is the Ljung and Box Q statistics on the first 12 lags of the sample autocorrelation function
with a critical 5% value of 51.48.

e ARCH(12) is the test for the 12th-order autoregressive conditional heteroscedasticity. The 5%
critical value for this statistic is 1.81.

f ADF is the Augmented Dickey and Fuller test. The ADF regressions include an intercept term;
the lag length of the ADF test is determined by minimizing the AIC. PP is the Phillips and Perron
test, and KPSS the Kwiatkowski, Phillips, Schmidt, and Shin test. The 5% critical value for the
ADF and PP tests is -2.89, and the 5% critical value for the KPSS test is 0.146.

g BDS is the Brock, Dechert and Scheinkman test for non-linearity with embedding dimensions
m = 3. The null hypothesis of this test is that the data is an independently and identifically
distributed (iid) process versus general non-linearity in the series. The 5% critical value for the
BDS tests is 1.96.



the »forecasting freight rates i« paper 124

Table F.3: Johansen tests for the number of cointegration vectorsa

Hypothesis Test statistic λmax Hypothesis Test statistic λtrace 95% critical val.

H0 H1 TD3 TD5 H0 H1 TD3 TD5 λmax λtrace

r = 0 r = 1 62.4386 104.2255 r = 0 r > 0 95.0499 137.3461 22.00 34.91

r = 1 r = 2 27.2815 28.5986 r = 1 r > 1 32.6113 33.1206 15.67 19.96

r = 2 r = 3 5.3298 4.5219 r = 2 r > 2 5.3298 4.5219 9.24 9.24

a r represents the number of cointegrating vectors. λmax(r, r + 1) = −T ln(1− λ̂r+1) and λtrace(r) =
−T ∑n

i=r+1 ln(1− λ̂i) where λ̂i are the estimated eigenvalues of the ∏ matrix. Critical values are
from Osterwald-Lenum (1992).

The estimation results of all models for spot and FFA rates for the two routes is
presented in the following table F.4.

The lag length for the autoregressive and moving average parts are chosen
to minimize the Akaike information criterion (AIC). As expected, the adjusted
coefficients of determination for the multivariate models are in most cases slightly
higher than those of the univariate models due to the use of extra information,
namely, the lagged FFA rates in the spot equation and vice versa. All models seem
to be well specified, as indicated by relevant diagnostic tests.

Conforming to standard heuristics, the training and validation sets of our neural
networks were partitioned approximately 2.7 to 1. The training set runs from 5

April 2004 to 14 July 2008 (1066 observations) and the validation set runs from
15 July 2008 to 16 February 2010 (398 observations), identical to the in-sample
period for the benchmark models. To start, traditional linear partial autocorrelation
function can give some indication about significant lag structures for the input
variables - although neural networks models attempt to map non-linearities. For
the multivariate case linear cross-correlation analysis helped establish the existence
of a relationship between spot freight rate and FFA returns per route. Lagged terms
that were most significant are primarily candidates for input variables.

5 forecasting performance results

All models, estimated over the initial estimation period, are used to generate one-
step ahead out-of-sample forecasts. The forecasting performance of each model is
presented in matrix form in tables F.5 and F.6 for spot rate forecasts and FFA rate
forecasts, respectively. Forecasts made using first-differences will be transformed
back to levels to ensure that the measures presented above are comparable for all
models. The forecast performance of each model is assessed using the conventional
root mean square error metric (RMSE) and Theil’s U statistic. The latter allows a
relative comparison of formal forecasting methods with a naïve model, a no-change
random walk (RW1). In addition, we show the mean absolute percentage error
(MAPE).
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Table F.4: Estimation parameter and diagnosticsa

Univariate Multivariate

Route Contract Measure ARIMA NN VAR VECM NN+

TD3 Spot R̄2 0.9940 0.9944 0.9947 0.9948 0.9955
RMSE 0.0420 0.0405 0.0397 0.0393 0.0366
Q(12) 2.14 15.48 2.24 5.20 3.98

(0.9992) (0.2162) (0.9989) (0.9509) (0.9837)
FFA 1M R̄2 0.9904 0.9908 0.9905 0.9907 0.9894

RMSE 0.0463 0.0454 0.0460 0.0456 0.0486
Q(12) 12.31 10.33 7.48 8.15 19.02

(0.4211) (0.5871) (0.8241) (0.7737) (0.0880)
FFA 2M R̄2 0.9916 0.9913 0.9917 0.9920 0.9927

RMSE 0.0400 0.0406 0.0397 0.0395 0.0373
Q(12) 10.75 17.70 10.13 8.19 8.11

(0.5501) (0.1250) (0.6049) (0.7703) (0.7768)

TD5 Spot R̄2 0.9880 0.9887 0.9893 0.9899 0.9900
RMSE 0.0489 0.0474 0.0464 0.0450 0.0447
Q(12) 2.93 12.40 14.71 3.97 18.26

(0.9960) (0.4141) (0.2577) (0.9839) (0.1081)
FFA 1M R̄2 0.9927 0.9931 0.9928 0.9930 0.9930

RMSE 0.0335 0.0326 0.0334 0.0331 0.0329
Q(12) 8.92 17.58 20.63 20.11 13.75

(0.7095) (0.1292) (0.0561) (0.0651) (0.3171)
FFA 2M R̄2 0.9952 0.9957 0.9953 0.9955 0.9953

RMSE 0.0260 0.0244 0.0257 0.0256 0.0255
Q(12) 5.71 6.96 12.06 11.10 20.52

(0.9298) (0.8603) (0.4406) (0.5208) (0.0579)

a Estimated coefficients of ARIMA and VAR estimated using daily data on spot and FFA freight
rates over the period 5 April 2004 to 16 February 2010. All values are transformed back to levels.
Q(12) is the Ljung and Box Q-statistic testing up to 12th-order serial correlation in the residuals,
and the figures in brackets show exact significance levels for the tests.
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Table F.5: One-step ahead forecast performance for Route TD3
a

Univariate Multivariate

Contract Measure RW1 ARIMA NN VAR VECM NN+

Spot R̄2 0.9659 0.9723 0.9748 0.9752 0.9756 0.9752
MAPE 0.6769 0.6044 0.5938 0.5717 0.5541 0.5713
RMSE 0.0468 0.0425 0.0406 0.0408 0.0397 0.0403
Theil’s U 1.0000 0.9087 0.8738 0.8726 0.8591 0.8710

FFA 1M R̄2 0.9740 0.9764 0.9771 0.9761 0.9759 0.9769
MAPE 0.5129 0.5084 0.5068 0.5151 0.5173 0.5176
RMSE 0.0307 0.0293 0.0289 0.0295 0.0295 0.0291
Theil’s U 1.0000 0.9530 0.9406 0.9609 0.9614 0.9494

FFA 2M R̄2 0.9577 0.9593 0.9595 0.9594 0.9590 0.9601
MAPE 0.4968 0.5022 0.5026 0.5030 0.4991 0.5025
RMSE 0.0284 0.0279 0.0277 0.0279 0.0279 0.0276
Theil’s U 1.0000 0.9826 0.9786 0.9839 0.9825 0.9744

a The table shows the number (282) of one-step ahead forecasts in the period 17 February 2010 to 1

April 2011.

Table F.6: One-step ahead forecast performance for Route TD5
a

Univariate Multivariate

Contract Measure RW1 ARIMA NN VAR VECM NN+

Spot R̄2 0.9397 0.9475 0.9521 0.9578 0.9595 0.9564
MAPE 0.7827 0.7373 0.7174 0.6656 0.6422 0.6764
RMSE 0.0578 0.0540 0.0516 0.0485 0.0471 0.0496
Theil’s U 1.0000 0.9345 0.8996 0.8401 0.8185 0.8649

FFA 1M R̄2 0.9595 0.9627 0.9625 0.9623 0.9621 0.9628
MAPE 0.4832 0.4675 0.4663 0.4703 0.4672 0.4675
RMSE 0.0298 0.0287 0.0287 0.0290 0.0288 0.0287
Theil’s U 1.0000 0.9622 0.9619 0.9701 0.9626 0.9612

FFA 2M R̄2 0.9617 0.9616 0.9628 0.9637 0.9639 0.9623
MAPE 0.3602 0.3698 0.3629 0.3559 0.3520 0.3617
RMSE 0.0222 0.0223 0.0219 0.0216 0.0216 0.0220
Theil’s U 1.0000 1.0043 0.9873 0.9751 0.9725 0.9936

a see notes to table F.5.
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All models outperform their naïve benchmark, except the ARIMA model in
predicting the TD5 FFA 2M. Some regularities stand out from the two tables. First,
the FFA rates are much harder to forecast than the spot rates. This phenomenon
is not unusual for freight rates and confirms prior studies in the tanker market.
Second, in most cases the multivariate models are superior against the univariate
representives. We can find this advantage especially for spot freight rates. But
this error difference or advantage declines in the FFA contracts. Furthermore, the
VECM, which has an equilibrium correction feature, perform better than VAR
models for forecasts of spot rates, but not for forecasts of FFA rates. The neural
network results are comparable to those of the other models. It is interesting that
the univariate NN achieve relatively good results, but the multivariate NN+ is not
able to reinforce this advantage significantly. It seems, that the neural network as a
non-linear approximator is already able to extract sufficient information out of the
univariate time-series. The additional information contained in other time-series is
therefore not needed.

6 forecasting performance evaluation by economic criteria

Statistical performance measures are often inappropriate for financial applications.
For example, Leitch and Tanner (1991) show a lack of significant correlation between
profits and RMSE in forecasts of T-bill rates. Therefore, predicting the direction is a
practical issue which usually affects a financial trader’s decision to buy or sell a
freight rate contract. Based on the generated results we provide a simple trading
simulation to evaluate our forecasting performance in this section.

6.1 Trading Strategy and Experiment

The trading simulation assumes that, at the beginning of each trading day, the
investor makes an asset allocation decision. Consider a freight rate contract whose
prices fluctuate from day to day and the mid price on the tth day (t = 0, 1, 2, . . . , n)
is qt. Let pt = ln qt be the log price and rt = pt − pt−1 be the continuously
compounded return on day t. We can generate trading signals now by the following
rule:

{
long, if p̂t+1 > pt

short, if p̂t+1 < pt

A long signal is to buy contracts at the current price, while a short signal is to sell
contracts at the current price. This approach has been widely used in the literature;
see, for example, Hsu et al. (1993). Therefore, we formulate a set of trading rules
guided by the directions predicted by the mentioned forecasting models. Except
for the straightforward naïve strategy, a random walk, all benchmark models were
estimated on our in-sample period. The naïve strategy is defined by r̂t+1 = rt,
where rt is the actual rate of return at period t and r̂t+1 is the forecast rate of return
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for the next period. So, we switch from the no-change random walk to a constant
(last) change random walk model (RW2).

The testing period runs from 17 February 2010 to 1 April 2011 for a total of 282

days of out-of-sample observations. In the trading experiment, it is assumed that
during the initiation period, an investor will invest 1 money unit at the beginning
of each contract period. So far, our results have been presented without accounting
for transaction costs during the trading simulation.

6.2 Results and Analysis

The net gain in assets, number of trades executed, and the rate of return over the
out-of-sample forecast horizon are shown in table F.7 and F.8 for TD3 and TD5.
The initial investments are identical in all models due to the buy-and-hold strategy.
Therefore, all measures are comparable. We see some implications: All models earn
a positive trading result in case of no transaction costs. However, it is obvious, that
the trading results in spot rates are more profitable than those for FFA contracts.
This is also valid for the directional measures "winning trades per %". In most cases
the models outperform the naïve RW2 model, except some time series models in
predicting FFA prices. The multivariate NN+ undermatch the RW2 benchmark
trading results for TD3 spot freight rates.

Additional observations are worth pointing out. The results generated by NN
are encouraging in comparison to the other models. For every predicted asset
the univariate NN shows the best performance across all models (univariate and
multivariate) with respect to the important measures of net gain and risk-adjusted
return as measured by the Sharpe ratio. ARIMA and VAR results show no unam-
biguous picture. Both models outperform the RW2 in case of spot rates. But ARIMA
does not perform for TD5 FFA 2M contracts and VAR get worse results for TD3

FFA contracts. The multivariate VECM shows relatively good and stable results,
except for the FFA 1M contracts. The multivariate NN+ achieves only in some
cases preeminent trading results, e.g. for the TD5 spot freight rates. As mentioned
above, additional time series do not improve the neural network performance. We
conclude, that both VECM and univariate NN may generate more robust trading
results for this time series and perform better than the other forecasting models.

7 conclusions and recommendations

In this paper, we have examined the forecasting and trading performance of various
standard linear time series models and a non-linear neural network to jointly
predict spot and forward freight rates (FFA prices). We have focused on short-term
forecasting, more precisely a one-step ahead forecasting horizon. To our knowledge
there is a lack in the literature of joint predictions of freight rates and derivatives
with neural networks and traditional time series models. We have built on prior
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Table F.7: Trading performance for Route TD3
a

Univariate Multivariate

Contract Measure RW2b ARIMA NN VAR VECM NN+

Spot # trades 282 282 282 282 282 282
net gain 4.76 5.52 6.07 5.72 5.48 4.64
log-returns % 1.69 1.96 2.15 2.03 1.94 1.65
Sharpe ratio 0.39 0.46 0.52 0.48 0.46 0.38
max profit 0.17 0.33 0.33 0.33 0.33 0.17
max loss −0.33 −0.20 −0.08 −0.20 −0.20 −0.33
winning trades % 0.73 0.73 0.71 0.73 0.72 0.71
winning trades up % 0.68 0.79 0.71 0.71 0.71 0.69
winning trades down % 0.77 0.69 0.71 0.75 0.74 0.73

FFA 1M # trades 282 282 282 282 282 282
net gain 2.01 2.12 2.35 1.79 1.81 2.05
log-returns % 0.71 0.75 0.83 0.64 0.64 0.73
Sharpe ratio 0.24 0.25 0.28 0.21 0.21 0.24
max profit 0.14 0.14 0.14 0.14 0.14 0.14
max loss −0.07 −0.09 −0.07 −0.07 −0.09 −0.09
winning trades % 0.55 0.57 0.58 0.56 0.58 0.59
winning trades up % 0.52 0.55 0.51 0.55 0.64 0.54
winning trades down % 0.59 0.59 0.63 0.58 0.53 0.62

FFA 2M # trades 282 282 282 282 282 282
net gain 1.01 1.12 1.23 0.61 1.14 1.72
log-returns % 0.36 0.40 0.44 0.22 0.40 0.61
Sharpe ratio 0.13 0.14 0.16 0.08 0.14 0.22
max profit 0.10 0.10 0.10 0.10 0.10 0.10
max loss −0.08 −0.08 −0.08 −0.07 −0.08 −0.08
winning trades % 0.51 0.54 0.53 0.50 0.57 0.54
winning trades up % 0.52 0.54 0.50 0.54 0.62 0.52
winning trades down % 0.51 0.53 0.56 0.46 0.51 0.56

a The table shows several trading performance measures in the period 17 February 2010 to 1 April
2011.

b RW2 is the last-change random walk, where the actual rate of return is the forecast of the next
period.
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Table F.8: Trading performance for Route TD5
a

Univariate Multivariate

Contract Measure RW2 ARIMA NN VAR VECM NN+

Spot # trades 282 282 282 282 282 282
net gain 5.73 6.45 6.95 7.13 7.15 7.32
log-returns % 2.03 2.29 2.47 2.53 2.54 2.60
Sharpe ratio 0.38 0.43 0.51 0.49 0.49 0.50
max profit 0.23 0.40 0.40 0.40 0.40 0.40
max loss −0.40 −0.11 −0.11 −0.11 −0.11 −0.11
winning trades % 0.73 0.74 0.74 0.73 0.72 0.74
winning trades up % 0.71 0.80 0.73 0.72 0.72 0.75
winning trades down % 0.76 0.69 0.74 0.74 0.72 0.73

FFA 1M # trades 282 282 282 282 282 282
net gain 2.01 2.12 2.35 1.81 1.81 2.24
log-returns % 0.71 0.75 0.83 0.64 0.64 0.79
Sharpe ratio 0.20 0.22 0.27 0.22 0.23 0.28
max profit 0.14 0.11 0.11 0.11 0.11 0.11
max loss −0.07 −0.10 −0.08 −0.09 −0.09 −0.07
winning trades % 0.55 0.59 0.62 0.59 0.59 0.60
winning trades up % 0.52 0.57 0.61 0.58 0.60 0.71
winning trades down % 0.59 0.61 0.62 0.59 0.58 0.49

FFA 2M # trades 282 282 282 282 282 282
net gain 1.01 0.58 1.28 1.40 1.52 1.08
log-returns % 0.36 0.21 0.45 0.49 0.54 0.38
Sharpe ratio 0.16 0.09 0.21 0.23 0.25 0.17
max profit 0.10 0.10 0.10 0.10 0.10 0.10
max loss −0.08 −0.07 −0.07 −0.06 −0.06 −0.07
winning trades % 0.51 0.52 0.56 0.57 0.59 0.56
winning trades up % 0.52 0.47 0.57 0.53 0.60 0.60
winning trades down % 0.51 0.56 0.55 0.60 0.59 0.53

a see notes to table F.7.
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investigations, but we have extended our study to freight rate derivatives for the
most liquid routes in the dirty tanker market TD3 and TD5 and use a wider range of
time series forecasting models. In addition to conventional forecasting performance
measures, we have evaluated our results in a simple trading simulation. This is
achieved by the fact, that trading strategies guided by forecasts on the direction
of price change may be more effective and generate higher profits than statistical
performance measures.

We conclude, that neural networks are suitable for short-term forecasting and
trading of tanker freight rates and derivatives. For the two liquid tanker routes we
implicate that short-term forecasting with neural networks leads to better results
than other traditional time series models. Our forecasting results confirm prior
studies concerning time series models. If the derivatives market is liquid enough
to include some information about future spot rates into the prices, we should
observe cointegration between spot rates and FFA prices, and convergence of spot
rates towards FFA prices, rather than vice versa. Spot freight rates and FFA prices
are indeed cointegrated. But the models suggest that, contrary to our expectations,
forward rates adjust more strongly than spot rates to close the gap between spot and
forward rates. However, out-of-sample forecasting with multivariate forecasting
models show that they are not helpful in predicting FFA prices, but do help predict
spot freight rates. The results of neural networks are in line with these findings.
In our evidence, both VECM and univariate neural networks may generate more
robust trading results for the analyzed time series than the other forecasting models.

For maritime actors like shipowners and charterers our findings are encouraging
in the sense that they suggest that spot freight rates and FFA prices are forecastable.
In addition, the rates offered by FFA help anticipate spot freight rates. For trading
purposes neural networks and time series models like VECM could be a starting
point for building a decision support model for spot freight rate and FFA trading.
Several extensions for further research are also thinkable. On the one hand, it would
be interesting to examine longer investment horizons. On the other hand, we do
not include further exogenous input variables in multivariate models like crude
oil prices, maritime data, which represents the demand and supply of freight rates
or any other variables. Maybe, this inclusion could improve forecasting and/or
trading results. Furthermore, this investigation may be also extended to other
financial freight rate products. Freight rate option prices in the tanker market are
actually rarely analyzed. The challenge is that these financial products are not very
liquid. Empirical data is still scarce.
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1 einleitung

„But, in fact, most of us are nomads, moving between office, home, airplane,
hotel, automobile, branch office, conference room, bedroom, etc. In so doing,
we often find ourselves decoupled from our ’home base’ computing and com-
munications environment.“

Leonard Kleinrock 1997

Klassische Nomaden bewegen sich seit Beginn der Menschheitsgeschichte in
ihrem Wanderungsgebiet und ziehen dabei von Ort zu Ort, wo sie sich jeweils an
neue Umgebungsbedingungen anpassen. Sie bringen ihre Ausrüstung zum Teil
mit; zum Teil finden sie Informationsmedien - z. B. Sonnenstand - zur Bewältigung
der aktuellen Aufgaben und Orientierungsfindung auch vor.1 In der ökonomischen
Realität bestimmt seitdem Mobilität zunehmend Arbeitsabläufe und Prozesse.
Unterwegs benutzen die modernen Nomaden smarte Geräte wie Notebook, PDA
und Mobiltelefone; am Zielpunkt finden sich stationäre Geräte, an denen sie ihre
Aktivitäten fortsetzen können.

Ausgehend von dieser Tatsache erwächst die Vision, die benötigten Informatio-
nen zu jeder Zeit, an jedem Ort, mit jedem möglichen Medium zur Verfügung
gestellt bekommen. Dies ist das Paradigma des Nomadic Computing: der moder-
ne Nomade kann kontinuierlich seine Aufgaben - ob unterwegs oder am Zielort
angekommen - wahrnehmen. Die mobilen und stationären Endgeräte erkennen,
speichern und passen die Profile des Nomaden und seiner Umgebungen an, um
ihn bei seinen privaten oder geschäftlichen Tätigkeiten zu unterstützen. Hinter
der Vision des Nomadic Computing deutet sich bereits die Motivation für einen
kommerziellen Einsatz unter betriebswirtschaftlichen Gesichtspunkten an. Ange-
regt wird diese These durch die Frage, ob Nomadic Computing Nutzenpotentiale
für alle Wirtschaftsakteure ermöglicht. Die geschäftsprozessorientierte Analyse
und Bewertung von Potentialen des Nomadic Computing ist Gegenstand dieses
Diskussionspapieres.

1 Vgl. Oppermann (2003)
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2 konzeptuelle ausgestaltung des nomadic computing

2.1 Nomadic Computing als neues Paradigma

Leonard Kleinrock hat 1995 mit dem Aufkommen des Nomadic Computing einen
Paradigmenwechsel im Gegensatz zum herkömmlichen Computereinsatz angekün-
digt.2 „Anytime-anywhere“ - lauten die neuen Schlagworte, die mit dem Zugang
zu Informationen in Verbindung gebracht werden. Dieser Zugang soll unabhängig
sein vom Aufenthaltsort, vom verwendeten Gerät und der Betriebsplattform, der
Art des Netzzugriffs und der Bandbreite, und davon, ob der Benutzer sich an einem
Ort aufhält oder sich in Bewegung befindet. Unabhängigkeit bedeutet, dass die
Computer-Umgebung von den Applikationen wahrgenommen wird und sich diese
automatisch an die neuen Prozesse, Kommunikationsfähigkeiten und Zugangs-
möglichkeiten anpassen können. Entsprechend der Anforderungen nach Mobilität
müssen Kommunikationssysteme, über welche dem Benutzer mobile Anwendun-
gen angeboten werden, Basisfunktionalitäten einer transparenten Unterstützung
der Mobilität zur Verfügung stellen. In Referenzmodellen werden verschiedene
primäre Mobilitätsformen unterschieden.3

Die Begriffsbestimmung des Nomadic Computing selbst lässt sich in der Lite-
ratur nicht eindeutig eingrenzen. Namensgebend für das Nomadic Computing
ist die Entwicklung ganzer Gesellschaftsschichten zu modernen Nomaden. Ei-
ne genaue Umschreibung ist auch von den verwandten Paradigmen, wie z. B.
dem Ubiquitous Computing, abhängig.4 So trägt Nomadic Computing Züge des
Ubiquitous Computing, betont aber den Menschen als soziales Wesen, der von
überall, auch beim Umherziehen außerhalb des festen Büros, Zugriff auf Daten
und Dienste haben möchte.5 „Dies ist das Wesen nomadischer Informationssysteme: die
Durchgängigkeit der Verfügbarkeit von Informations- und Kommunikationsdiensten über
die ganze Prozesskette mobiler Aktivitäten und die Einbettung der Dienste in den Kontext
der Nutzung.“6 Weitere Begriffsbestimmungen zeigt Tabelle J.1.

Die Bereitstellung von Kommunikationszugängen erfolgt mit einer durchgängig
personalisierten Sicht auf diese Dienste. Im Sinne der drei Mobilitätsformen erhält
der Nutzer zu jeder Zeit Zugriff auf die Informationen und Dienste, die er vor Ort
antrifft. Damit kann eine Definition des Nomadic Computing festgelegt werden.

Definition. Nomadic Computing beschreibt die aus der Sichtweise des Benutzers
kontinuierliche Bereitstellung von Informations- und Kommunikationszugängen
durch eine unabhängige Nutzung eines Engerätes (portabel/stationär), durch eine

2 Vgl. Kleinrock (2001).
3 Vgl. Hess, T. et al. (2005); vgl. auch Roth (2002). Hess et al. stellen zusätzlich eine vierte Form, die

Sitzungsmobilität, vor. Daneben unterscheidet man sekundäre Mobilitätsformen, die systematische
und administrative Aspekte der primären Mobilitätsformen abdecken.

4 Vgl. Mattern (2003); Müller-Schloer (2001).
5 Vgl. Kleinrock (2001); vgl. Kleinrock (1995).
6 Fraunhofer-Institut für Angewandte Informationstechnik FIT (2005a).
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Tabelle J.1: Begriffsbestimmungen Nomadic Computing

Autor Definition

La Porta et al. (1996) „Following the explosive growth of cellular telecommunication and
paging services, there is an increased interest in anywhere, anytime
computing. Often called nomadic computing, the goal is to provide
users with access to popular desktop applications, applications speci-
ally suited for mobile users, and basic communication services in a
mobile, sometimes wireless, environment.“

Kleinrock (1996) „Nomadicity may be defined as the system support needed to provide
a rich set of computing and communication capabilities and services to
nomads as they move from place to place in a transparent, integrated
and convenient form. ... Nomadic Computing means that wherever
and whenever we move around, the underlying system always knows
who we are, where we are, and what services we need.“

Lyytinen and Yoo (2002) „A nomadic information environment is a heterogeneous assemblage
of interconnected technological and organizational elements, which
enables physical and social mobility of computing and communica-
tion services between organizational actors both within and across
organizational borders.“

Nakamura (2001) „Such a nomadic environment is one where you don’t need to carry
various devices with you. Rather, the places you go such as companies,
schools, homes, business trip destinations, hotels and rental offices
are all equiped with information devices available for your use. This
means creating an environment where users can access the same data
regardless of their location, and where applications such as screen-
based desktop environments can be used just like at one’s home or
office.“

Bagrodia et al. (2003) „A nomadic computing application is a program that allows the user
to leverage network connectivity, provided by a wired or wireless
infrastructure, to access an utilise his data productively from any
location, on any platform, and at any time.“

Oppermann (2003) „Die Eigenart nomadischer Systeme liegt in der kontinuierlichen
Bereitstellung von Informations- und Kommunikationszugängen über
verschiedene Arten von Endgeräten, in verschiedenen Umgebungen
mit einer durchgängig personalisierten Sicht auf diese Dienste.“

Fraunhofer-Institut für
Angewandte Informations-
technik FIT (2005a)

„Nomadic Computing reflects the current context of usage defined by
the location of the user, task or interests of the user and knowledge
of the user. Nomadic Computing does not mean to increase mobility
as a value per se but to support occuring mobility driven by tasks or
interests of people.“
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unabhängige Netzanbindung und durch einen räumlich ungebundenen Standort
des Benutzers.

Damit grenzt sich Nomadic Computing von anderen Paradigmen durch eine
stark benutzerorientierte Sichtweise ab. Die nomadischen Systeme erkennen den
Nutzenkontext des Benutzers und passen die bereitgestellten Informationen und
Dienste an das Profil und der Umgebung des Benutzers an.

2.2 Wissenschaftliche Pilotprojekte im Nomadic Computing

Die Vision des Nomadic Computing ist in der Wissenschaft bereits ausführlich dis-
kutiert und an Pilotprojekten in der Realwelt erprobt worden. Grundsätzlich sind
eine Vielzahl von potentiellen Anwendungsszenarien für einen konventionellen Ein-
satz denkbar, welche die Vision des Nomadic Computing in den Consumer-Bereich
tragen könnten. Raumbezogene Handlungssituationen in öffentlichen Räumen
wie Messen, Museen, Flughäfen, Einkaufs- und Erlebniswelten, Verwaltungs- und
Dienstleistungskomplexen kommen als Anwendungsdomänen in Betracht. Bedeu-
tende realisierte Pilotprojekte sind:

• Mit SAiMotion wurde ein Messeführer entwickelt,

• CoolTown7 beschreibt - ähnlich dem Messeführer - ein Museumsführer und

• das Projekt CRUMPET verkörpert ein Tourismusinformationssystem.

Alle drei Anwendungsszenarien bilden eine dynamische Umgebung für den Ein-
satz kontextsensitiver Informationssysteme, die nützliche Anhaltspunkte für eine
betriebswirtschaftliche Nutzenanalyse liefern können. SAiMotion und CRUMPET
sollen in diesem Artikel kurz vorgestellt werden.

SAiMotion(Situation Awareness in Motion)

SAiMotion8 entwickelt und evaluiert ein nomadisches Informationssystem, das
den mobilen Besucher in einer komplexen Umgebung personalisierte und situativ
angepasste Informationen bereitstellt.9 Das Szenario beschreibt einen Messebesuch,
der sowohl durch eine Messevorbereitung als auch durch eine Nachbereitung der
Messe begleitet wird. Die Hauptaufgaben des Systems stellen die Navigation auf
dem Messegelände und die Nutzung personalisierter Gelände- und Hallenpläne
zur räumlichen und inhaltlichen Orientierung sowie zur Planung des Messebe-
suchs dar. Ergänzt werden diese Funktionen um ein Konfliktmanagement bei
Änderungen von Terminen oder Verlegung von Veranstaltungsorten. Ziel ist es,

7 Vgl. Roth (2002); Kindberg and Barton (2001); Kindberg, T. et al. (2002).
8 Das Projekt SAiMotion wurde vom Bundesministerium für Forschung und Bildung im Rahmen

des Programms „Leben und Arbeiten in einer vernetzten Welt“ gefördert; die Laufzeit des Projekts
lief vom April 2001 bis Dezember 2003.

9 Vgl. Bieber et al. (2002); Heidmann and Hermann (2003).
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den Benutzer in seinem Informations-, Zeitmanagement- und Navigationsaufgaben
zu unterstützen. Dazu wertet das System neben Ortsmerkmalen auch Benutzer-,
Aufgaben- und Umgebungsmerkmale der aktuellen Situation aus und leitet daraus
proaktiv geeignete Informations- und Diensteangebote ab.

Die Basis für die Akzeptanz von Informations- und Kommunikations-Systemen
ist eine vereinfachte Informationsdarbietung, die auf die Situation, die Aufgabe
und den Nutzer angepasst ist. In SAiMotion wird versucht, ein erschöpfendes
Situations-Modell zu identifizieren und alle relevanten situativen Parameter für eine
proaktive Informations-Darbietung und Interaktion zu nutzen. Die Abbildung J.1
zeigt vor diesem Hintergrund ein abstraktes Raummodell für kontextsensitive
Interaktion und Kommunikation. Der SAiMotion-Ansatz konzentriert sich hierbei
auf Interaktion und Kommunikation im Blick- und Nahfeldareal des Benutzers: Die
Aufgabe sich in immer kürzeren Zyklen in neuen Raumumgebungen erfolgreich
zu orientieren und spezifische Problemsituationen zielorientiert zu lösen, soll vom
SAiMotion-System gezielt unterstützt werden. Dazu zählt die Modellierung der
Aufgaben und Benutzerprofile sowie deren ablaufbegleitende Unterstützung.

Abbildung J.1: Raummodell kontextsensitiver Interaktion und Kommunikation

Die Benutzermodellierung in SAiMotion versucht ihrerseits, aus der Menge
aller relevanten Informationen diejenigen herauszufiltern, die für den jeweiligen
Benutzer relevant sind. Dieses Modell wird in Zusammenarbeit mit dem Benutzer
und dem System verwaltet. Das System beobachtet den Benutzer, schließt dar-
aus auf seine Interessen und kann auf Basis seiner Beobachtungen dem Benutzer
vorschlagen, sein Interessensprofil zu ändern. Dadurch kann auf Interessensver-
schiebungen reagiert werden. Neben der Filterung von relevanten Informationen
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kann die Interessensmodellierung auch zur Priorisierung der gefilterten, relevanten
Informationen genutzt werden.10

CRUMPET (Creation of user-friendly Mobile Personalised for Tourism)

Das EU-Projekt CRUMPET11 hatte als wesentliches Ziel, Tourismus Services mit
Mehrwert, die den nomadischen Benutzern über mobile und feste Netze bereit-
gestellt werden, zu implementieren und zu evaluieren.12 CRUMPET versucht
pragmatische und indivudualisierte Informationen über das Bestimmungsortgebiet,
einschließlich deren Geschichte, Kultur, Klima und Natur zu berücksichtigen und
stellt Informationen und Dienstleistungen für eine weit heterogenere touristische
Bevölkerung ur Verfügung.

Das CRUMPET-System ist zunächst ein interaktiver Stadtplan im Handy-Format.
Ein Tourist bewegt sich mit einem Handy-ähnlichen Gerät durch die fremde Stadt.
Auf dem Display erkennt er seinen Standort, ruft Informationen in Schrift und Bild
über die umliegenden Sehenswürdigkeiten ab und lässt sich auf dem digitalen
Stadtplan den Weg dorthin zeigen. Wesentliche Eigenschaften des Systems stellen
die Lokalisierung der Benutzer via GPS oder GSM, ein adaptives Benutzermodell,
personalisierte und ortsabhängige Auswahl von Tourismusinformationen sowie
die Anpassung der Informationsausgabe an die Endgeräte dar. CRUMPET be-
tont daher insbesondere die Aspekte der Personifizierung von Dienstleistungen,
die gegenwärtige Position des Benutzers und die persönlichen Interessen eines
Benutzers.

Elektronische Dienste wie z. B. digitale Tourenplaner oder Restaurantführer
existieren schon heute, sind aber nicht miteinander verknüpft. Beschränkungen
liegen in der individuellen Extrahierung von Informationen und der durchgängigen
Verfügbarkeit. CRUMPET kann eine Fülle unterschiedlicher Dienste integrieren und
einem leistungsfähigen Funknetz zur Verfügung stellen. Das System zielt darauf
ab, eine Dienstleistungsumgebung zu entwickeln, die generisch das traditionelle
Internet und die drahtlosen Dienstleistungen integriert.

2.3 Aktuelle Fragestellungen

Für diese Pilotprojekte werden sodann große Chancen für den zukünftigen kom-
merziellen Massenmarkt prognostiziert, wenn sich der Einsatz von Anwendungen
des Nomadic Computing aus betriebswirtschaftlicher Sicht rentiert. Grundsätzlich
zeichnet sich die gegenwärtige Entwicklung und Bereitstellung mobiler Anwendun-
gen und Dienste zeichnet sich dadurch aus, dass nach dem „Trial and Error“-Prinzip

10 Zur technischen Unterstützung vgl. Fraunhofer-Institut für Angewandte Informationstechnik FIT
(2005b).

11 Das Projekt CRUMPET wurde durch das europäische Programm „Information Societies Tech-
nology“ gefördert. Es startete am 1. Oktober 2000 und wurde im November 2002 mit Trials von
Prototypen in Heidelberg, Helsinki, Aveiro und London erfolgreich beendet.

12 Vgl. Specht and Oppermann (1999).
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versucht wird, Killerapplikationen zu entwickeln. Es wird jeder denkbare neuartige
mobile Dienst umgesetzt, ohne dass eine systematische Analyse der Potentiale
durchgeführt wird. Dabei ist zu beobachten, dass bereits vorhandene mobile Diens-
te wie Navigationshilfen nicht oder äußerst langsam vom Markt aufgenommen
werden. Im Widerspruch führen die kürzeren Innovationszyklen zu einer technolo-
giebetriebenen Entwicklung, die einerseits eine systematische Spezifikation eines
mobilen Dienstes erschwert und andererseits der systematischen Vorgehensweise
bei der Potentialanalyse eine immer wichtigere Bedeutung zukommen lässt.13

Für den Bereich der Planung und Umsetzung mobiler Anwendungen existieren
nur wenige Ansätze, die sich mit der Nutzenbewertung durch Prozessoptimierung
beschäftigen. Hanhart et al. bemängeln, dass über die Prozessoptimierung hinaus
weitergehende Nutzen- und Wirtschaftlichkeitsanalysen fehlen.14 Sie führen da-
her eine kennzahlenbasierte Untersuchung durch. Behr führt eine Nutzen- und
Kostenschäftzung für die Einführung eines Geo-Informationssystems auf, in der er
verschiedene Nutzenkategorien bildet.15

Das erklärte Ziel der vorliegenden Arbeit ist es, identifizierte Nutzenpotentia-
le des Nomadic Computing zu analysieren und zu bewerten. Mit dem Ergebnis
soll die Frage beantwortet werden, ob Nomadic Computing entscheidende Mehr-
werte aus technischer und betriebswirtschaftlicher Sichtweise generieren kann.
Der Ausgangspunkt der Untersuchung besteht in der Suche nach Erfolgsfakto-
ren und Treibern dieser neuen Technologie, die einen kommerziellen Einsatz im
Massenmarkt erst begründen. Darauf aufbauend soll sich die Betrachtung von
Nutzenpotentialen des Nomadic Computing schwerpunktmäßig auf den Einsatz in
betrieblichen Prozessen konzentrieren.

3 prozessoptimierung in der wertschöpfungskette

Die mobile Präsenz und Prozessunterstützung einer Unternehmung ist keine
Zukunftsvision mehr, sondern für viele Unternehmen aus den unterschiedlichs-
ten Gründen - seien es Wettbewerbsgründe, geographische Aspekte oder andere
Gründe - unverzichtbar. Erhebliche Rationalisierungschancen bieten häufig mobile
Verfahren und Technologien zur Steuerung und Unterstützung von Geschäftspro-
zessen. Zur Identifikation dieser Potentiale rücken neben technologischen Fragen
folgende Herausforderungen:16

• Welche Geschäftsprozesse können mobil unterstützt werden und wie sollen
die Prozesse und Tätigkeiten nach der Mobilisierung gestaltet sein?

• Welche Steuerungs- und Rationalisierungseffekte können durch die mobile
Unterstützung tatsächlich erzielt werden?

13 Vgl. Amberg et al. (2004).
14 Vgl. Hanhart et al. (2005).
15 Vgl. Behr (2000).
16 Vgl. Krcmar (2003).
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• Wie kann Nomadic Computing dazu beitragen, dass eine Unternehmung am
Markt erfolgreicher agiert und Wettbewerbsvorteile erlangt?

Im betrieblichen Einsatzfeld hingegen steht die Frage nach quantifizierbaren
Optimierungspotentialen von Geschäftsprozessen und dem damit verbundenen
Return-on-Invest- ment im Mittelpunkt des Interesses.17 Für den kommerziellen
Einsatz des Nomadic Computing sind daher betriebswirtschaftliche Kalküle anzu-
stellen.

3.1 Kritische Erfolgsfaktoren für die Kommerzialisierung

Im Rahmen der Leistungserstellung kann Mobilität zur Unterstützung und Opti-
mierung der innerbetrieblichen und unternehmensübergreifenden Wertschöpfung
dienen. Ihre Nutzenpotenziale liegen insbesondere in den Möglichkeiten der nahtlo-
sen unternehmensübergreifenden Integration aller am Geschäftsprozess beteiligten
Partner, insbesondere wenn diese Prozesse verteilt ablaufen.

Dazu sind zunächst die betriebswirtschaftlichen Treiber bzw. erfolgskritische Fak-
toren herauszuarbeiten, die einen erfolgreichen Einsatz des Nomadic Computing
grundsätzlich begründen. Dies soll nicht nur eine widerspruchsfreie Einbettung
eines nomadischen Systems in die strategischen wie auch operativen Ziele ge-
währleisten, sondern auch fundamental abgesicherte Investitionsentscheidungen
ermöglichen.

Lyytinen und Yoo gehen in ihrer Untersuchung nomadischer Umgebungen von
drei grundlegenden Treibern aus. Die wesentlichen Neuerungen einer nomadischen
Umgebung bestehen aus:18

• einem hohen Grad an Mobilität,

• dem konsequent hohen Grad an Skalierbarkeit von Diensten und Infrastruk-
turen sowie

• der Vielseitigkeit von Diensten bei der Datenbearbeitung und -übertragung -
auch als Digitale Konvergenz bezeichnet.

Diese drei technologischen Treiber unterstreichen die hauptsächliche Entwick-
lung der zukünftigen Computertechnologie. Wenn alle drei Treiber ausnahmslos
zusammentreffen, agieren sie als sich wechselseitig beeinflussende Treiber, welche
die Entwicklung zukünftiger Computerumgebungen ausformen. Sie unterschei-
den sich dann auch von dem ursprünglichen Mobile Computing und Pervasive
Computing, die eine hohe Skalierbarkeit und Integration von Diensten sowie
Infrastrukturen eher vernachlässigen.

Aus dem grundsätzlichen Wunsch nach Mobilität erwachsen weitere Bedürfnisse
des Nutzers, die über die Beziehungen der drei Treiber hinausgehen - diese können

17 Vgl. Rannenberg et al. (2005).
18 Vgl. Lyytinen and Yoo (2002).
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als weitere Erfolgsfaktoren einen erfolgreichen Einsatz des Nomadic Computing
erklären. Die Grundbedürfnisse des Individuums können durch mobile Kommu-
nikation effizienter und besser befriedigt werden. Zu diesen Grundbedürfnissen
zählen:19

• Durchgängigkeit von Prozessen: Im Gegensatz zu heutigen Informationssyste-
men besteht der Wunsch nach einer kontinuierlichen Ausführbarkeit von
Prozessen; und war unabhängig vom verwendeten Gerät und Anwendung.

• Ubiquität: Betriebliche Informationssysteme sind innerhalb einer Unterneh-
mung schon heute fast allgegenwärtig. Keine Maschine, kein Arbeitsplatz,
der nicht mit einem Computer ausgestattet ist, um auf alle oder an diesem
Ort besonders benötigte Informationen zugreifen zu können.

• Personalisierung: Der moderne Nomade sehnt sich bei seinen Wanderungen
nach einer intensiven Unterstützung seiner mobilen Systeme. Zugeschnitten
auf seine Persönlichkeit, erfährt er an unbekannten Orten oder Situationen
eine für ihn passende Hilfe.

• Kontextsensivität: Kontextsensivität bedeutet, dass Umfeld eines Benutzers
zu erfassen und auszuwerten, um die für den Benutzer relevanten Dienste
einzugrenzen und aktiv anzubieten.

• Erreichbarkeit: Mobile Nutzer können nicht nur Informationen weltweit und
von jedem Ort aus abrufen, sie sind selbst prinzipiell zu jeder Zeit und an
jedem Ort erreichbar.

Vor dem Hintergrund der erfolgskritischen Faktoren des Nomadic Computing
sind die Anbieter von Kommunikationsdienstleistungen daran interessiert, diese in
Nutzenpotentiale für alle Marktteilnehmer umzumünzen.20 Der in dieser Arbeit
herangezogene Compass-Ansatz (Cooperation Model for Personalized And Situati-
on dependent Services) stellt ein methodengestüztes Verfahren für die kooperative
Bereitstellung situationsabhängiger mobiler Dienste dar - lässt sich also auch auf
das Nomadic Computing übertragen.21

Voraussetzung für eine optimale Ausschöpfung der Potentiale stellen in mobil
verteilten Systemen zum einen ein Situationskonzept, zum anderen ein Nutzungs-
zyklus dar. Das Situationskonzept systematisiert den mobilen Nutzungskontext
und macht die Nutzungssituation für die kooperative Leistungserstellung anwend-
bar. Der Erfolg eines Dienstes und die Akzeptanz der Kunden sind maßgeblich
davon abhängig, wie der Situationsbegriff systematisiert und konkretisiert wird.

19 Vgl. Fleisch et al. (2003).
20 Vgl. Scheer, A.-W. et al. (2001). In einem Interaktionsmodell können generell die zugrundeliegenden

Leistungs- und Informationsbeziehungen zwischen den beteiligten Marktteilnehmern aufgezeigt
werden. Vgl. dazu auch Camponovo and Pigneur (2002) und Pigneur (2002).

21 Vgl. Amberg et al. (2002); Amberg et al. (2003); Amberg et al. (2004).
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Abbildung J.2: Bedürfnisse als Treiber im Nomadic Computing
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Der Nutzungszyklus stellt den Prozessablauf für die Bereitstellung situationsab-
hängiger mobiler Dienste dar und geht auf unterschiedliche Arten von Diensten
ein:

• Individualisierte Dienste sind benutzer-initiierte Dienste, die an seine speziel-
len Bedürfnisse angepasst werden.

• Proaktive Dienste sind automatisch erzeugte Dienste, die durch das Eintreten
von Ereignissen initiiert werden.

• Evolutionäre Dienste sind durch Auswertung und Evaluierung sukzessiv
verbesserte Dienste.

Durch dieses Spektrum an situationsabhängigen mobilen Diensten wird ein
Dienstanbieter in die Lage versetzt, in umfassender Art und Weise seine Dienste
an die Bedürfnisse der mobilen Kunden anzupassen.

3.2 Typische Prozessstrukturen für mobile IT-Unternehmungen

Die erfolgskritischen Faktoren bzw. Treiber des Nomadic Computing machen eine
Anwendung in geschäftsprozessorientierten Unternehmungen zur Unterstützung
betrieblicher Arbeitsprozesse attraktiv. Um attraktive Nutzenpotentiale zu adres-
sieren und damit betriebswirtschaftlichen Nutzen zu generieren, bedarf es eine
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Konzentration auf eine Effizienz- bzw. Effektivitätssteigerung, die das Resultat
erfolgreicher Anwendung von Nomadic Computing-Technologien ist und damit
strategische Ziele im Prozessmanagement verkörpern. Mit Effektivität wird das
Streben nach Produktivität bezeichnet, Effizienz bezeichnet die Wirtschaftlichkeit
als Verhältnis zwischen einer Kostensituation bezüglich einer Bezugsgröße wie
Leistungssituation oder günstigste Kostensituation.22 Es können drei wesentliche
Beurteilungskriterien zur Bewertung von Prozessen identifiziert werden:23

• Qualität: Es ist zu messen, inwieweit das Prozessergebnis einer bestimmten
Zielvorstellung entspricht.

• Zeit (Durchlaufzeit): Zur Beurteilung der Zeiten werden häufig nicht nur
Durchschnittswerte, sondern auch Bandbreiten der zeitlichen Schwankungen
durch die Erfassung von minimalen bzw. maximalen Zeiten berücksichtigt.

• Kosten: Ermittlung der Einzelkosten der einzelnen Prozesselemente (Bearbei-
tungs-, Transport-, Kommunikationskosten).

Ferner kann mit Innovation ein viertes Kriterium ergänzt werden, das die ge-
nerelle Fähigkeit von Prozessen beschreibt, sich ständig weiterzuentwickeln und
neue Entwicklungen zu integrieren.

Die Herausforderung liegt hierbei in der Identifikation dieser Nutzenpotentiale.24

Durch nomadische Technologien können interne Prozesse effizienter und schneller
gesteuert werden. Für den Einsatz des Nomadic Computing ist es daher elementar
wichtig, Mobilität in Geschäftsprozessen zu identifizieren. Hierzu müssen zunächst
klassische Geschäftsprozesse abgegrenzt werden.25

In verteilten Prozessstrukturen weisen Prozesse selten Züge von Routine-Prozessen
auf; Bearbeitungsregeln sind in mobilen Prozessen kaum im voraus definiert, son-
dern ändern sich in solch einem Ad-hoc-Geschäftsprozess dynamisch und werden z.
T. neu erzeugt. Diese Erkenntnis führt zu einer speziellen Begriffsbestimmung mo-
biler Geschäftsprozesse - im Folgendem auch als nomadischer (Geschäfts-)Prozess
bezeichnet - in verteilten Strukturen. Köhler und Gruhn haben bereits Charakteris-
tika mobiler Geschäftsprozesse festgelegt, nach dem sich im Ursprung ein mobiler
Geschäftsprozess derart definiert, dass insbesondere die Unsicherheit des Ortes
herausgestellt wird. Diese Abgrenzung soll als Grundlage für die Entwicklung
eines nomadischen Geschäftsprozess dienen.

Definition. Ein nomadischer Geschäftsprozess beschreibt einen für den Einsatz
für Nomadic Computing potentiell geeigneten Geschäftsprozess, der im Mittel-
punkt den ausführenden Menschen sieht und durch folgende Einschränkungen
eingegrenzt wird:

22 Vgl. Heinrich (2002).
23 Vgl. Krcmar (2003).
24 Vgl. Fleisch et al. (2003).
25 Vgl. zur Definition von Geschäftsprozessen Stahlknecht and Hasenkamp (2001); vgl. auch Scheer,

A.-W. et al. (2001) sowie Hansen and Neumann (2001).
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1. Es liegt eine Unsicherheit des Ausführungsortes und der -zeit vor,

2. diese Einschränkungen sind extern determiniert und

3. am Ort der Ausführung des Teilprozesses ist eine Kooperation mit aus Prozesssicht
externen Ressourcen notwendig.

Die Definition von Mobilität ist abgeleitet von den Eigenschaften der Aufgabe,
welche die prozessausführende Person innerhalb des mobilen Teilprozesses bear-
beitet. Es handelt sich dabei also nicht um Mobilität, die durch das Vorhandensein
mobiler Technologien erzeugt wird. Demnach kann nach der ersten Annahme vor
dem auslösenden Ereignis eines Prozesses der Ort der Ausführung der Aktivität in
unterschiedlichen Geschäftsprozessinstanzen divergieren oder sich der Ort wäh-
rend der Ausführung des Teilprozesses ändern. Weiterhin geht die zweite Annahme
davon aus, dass die Unsicherheit des Ortes von externen Faktoren festgelegt wird
und die prozessausführende Person somit keine Kontrolle hinsichtlich dieses Ortes
hat. Die dritte Annahme schränkt den Begriff des mobilen Geschäftsprozesses
auf die Notwendigkeit einer Kooperation mit externen Ressourcen innerhalb des
betrachteten Teilprozesses ein. Dabei kann es sich um Kommunikations- oder
Koordinationsbedarf mit anderen Personen, um einen maschinellen Informations-
austausch oder um eine Interaktion mit anderen Objekten handeln.

4 analyse und bewertung der potentiale für netzwerke in dyna-
mischen wertschöpfungsketten und mobile it-infrastrukturen

Das ökonomische Entscheidungsproblem für den Einsatz mobiler Technologien
formuliert die Frage nach der Rentabilität einer solchen Investition. Die Basis
zur Lösungsfindung liefert eine Analyse der Geschäftsprozesse und der beste-
henden Systemumgebung. Es besteht deshalb die Notwendigkeit, dass die Un-
ternehmensabläufe in einem Prozessmodell abgebildet werden, um anschließend,
auf Basis der Definition nomadischer Geschäftsprozesse, potentielle Prozesse und
deren Änderungen ausfindig zu machen. Die neu konzipierte Prozessstruktur kann
dann als Fundament für eine Analyse und Bewertung der Nutzenpotentiale dienen.

4.1 Konzeption eines Referenzmodells

Aufgrund des Mangels an vollständig durchgeführten Untersuchungsmethoden
soll in dieser Arbeit ein Referenzmdoell entwickelt werden, das eine modellhaf-
te Vorgehensweise für einen abgegrenzten Problembereich beschreibt und für
mehrere Einzelfälle anwendbar ist.26 Es integriert die Abhängigkeiten zwischen
Geschäftsprozessen und Technologieeinsatz und will die Potentiale des Nomadic
Computing aus betriebswirtschaftlicher Sicht analysieren und bewerten. Die Lö-
sung des Entscheidungsproblems muss dabei im Einklang mit der strategischen
26 Vgl. Stahlknecht and Hasenkamp (2001).
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Zielsetzung stehen. Für dieses Vorgehen sind folgende Schritte notwendig, die in
Abbildung J.3 grafisch aufgezeigt werden:

1. Analyse des Geschäftsprozessmodells und Identifikation sowie Klassifikati-
on nomadischer Geschäfts-prozesse. Anschließend erfolgt ein Redesign der
identifizierten Prozessteile unter der Annahme der Herstellbarkeit einer nicht
näher spezifizierten mobilen Komponente für das Informationssystem und
Spezifikation der mobilen Komponente nach Maßgabe der neuen Prozesse.

2. Analyse und Identifizierung von Nutzenpotentialen und Einordnung in
Nutzenkategorien.

3. Bewertung der Nutzenpotentiale auch unter wirtschaftlichen Aspekten. Die-
ser strukturierte Pool von Nutzenpotentialen wird im Rahmen von Wirt-
schaftlichkeitsbewertungen sowohl unter Risiko- als auch unter betriebswirt-
schaftlichen Gesichtspunkten bewertet. Dieser Punkt kann im Rahmen einer
Investitionsentscheidung als Meilenstein bezeichnet werden. Ziel ist es, eine
Entscheidungsgröße zu ermitteln, die ein weiteres Vorgehen - die technische
Umsetzungsplanung - begründet.

4. Durchführung der Veränderung (tatsächliches Redesign der Prozesse und
Entwicklung der mobilen Komponente) in der Umsetzungsplanung.

Grundlage für die Durchführung ist ein aus fachlicher Sicht erstelltes Ge-
schäftsprozessmodell der zu betrachtenden Unternehmung. Ziel des Vorgehens ist
die Handhabbarkeit von Komplexität und die Beschränkung der Prozessanalyse
auf die potentiell nomadischen Prozessteile von Anfang an. Das Ergebnis der
Analyse kann einerseits als Basis für ein Redesign der Prozesse, andererseits für
das Requirements Engineering mobiler Informationssysteme verwendet werden.

4.2 Prozessstrukturanalyse

In einem ersten Schritt werden die Geschäftsprozesse nach dem Mobilitätspoten-
tial bzw. nomadischen Charakteristika analysiert, um geeignete Geschäftsprozes-
se zu identifizieren, zu klassifizieren und neu zu konzipieren. Darüber hinaus
können auch neue Geschäftsprozesse entstehen.27 Das Redesign berücksichtigt
anschließend in einem fachlichen Konzept die Prozessausrichtung auf nomadische
Technologien.

Für die Identifizierung potentieller Prozesse wird grundsätzlich die Definiti-
on nomadischer Geschäfts-prozesse herangezogen. Eine Lösung, um mit Hilfe
mobilitätsunterstützender Technologien systematisch innerhalb gewachsener Pro-
zessstrukturen betriebswirtschaftliche Nutzenpotentiale aufzudecken, kann mit

27 Vgl. Köhler and Gruhn (2004b).
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Abbildung J.3: Vorgehen im Referenzmodell zur Potentialanalyse und -bewertung
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der Methode des Mobile-Process-Landscaping durchgeführt werden.28 Mit der
Methode des Mobile-Process-Landscaping geschieht ein systematisches Vorgehen,
mit Hilfe dessen mobile Prozessanteile identifiziert und analysiert werden können.
Da Nomadic Computing im besonderen Maße den Nutzenkontext miteinbezieht,
eignen sich Geschäftsprozesse, die zeitlich spontan anfallen und keinen Routine-
Charakter aufweisen.

Gegenstand des Process-Reengineering ist die inhaltliche Analyse der identifi-
zierten nomadischen Prozesse sowie die Planung der Neustrukturierung. Dazu
muss geplant werden, auf welche Weise nomadische Technologien diese Prozesse
unterstützen können, wie z. B. die Prüfung der Möglichkeiten zur Anbindung
an Backend-Systeme, der Online-Zugriff auf die benötigten Daten etc. Zusätzlich

28 Vgl. im folgendem Köhler and Gruhn (2004b). Die Methode wurde am Lehrstuhl für Angewandte
Telematik/E-Business der Universität Leipzig entwickelt. In ihrer Arbeit führen sie auch weitere
Methoden anderer Methoden auf.
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erfolgt eine Schnittstellenspezifikation, welche die Informations- bzw. Datenflüsse
zwischen den Elementen der mobilen und der nicht-mobilen Prozessteile beschreibt,
die über eine direkte Verbindung miteinander verfügen.29

4.3 Analyse und Bewertung der Nutzenpotentiale

4.3.1 Dimensionen der Nutzenpotentiale

Die Schwierigkeit einer exakten Identifizierung sämtlicher Potentiale liegt in der
Tatsache, dass der Untersuchungsraum unbekannt bzw. Ungewissheit über die
Dimension von Potentialen des Nomadic Computing besteht. Dimensionen wer-
den in diesem Zusammenhang als Kategorien verstanden, denen sich sachlich
zugehörige Nutzenpotentiale zuordnen lassen. Die Festlegung dieser Dimensionen
garantiert einen klar abgesteckten Untersuchungsraum, in dem für jede Dimension
sämtliche inhaltlich zugehörige Potentiale identifiziert und analysiert werden kön-
nen. Darüber hinaus könnten Interaktionen und die Möglichkeit der Aggregation
von Potentialen innerhalb und ausserhalb einer Dimension hinzugezogen werden.
Da die Dimensionen ihrerseits zur Zielerreichung beitragen, sollten sie zu den
Zielen des Prozessmanagements - die Prozessoptimierung hinsichtlich Zeit, Kosten,
Qualität und Innovation - eine Verbindung aufweisen. Für die in dieser Arbeit ver-
wandten Ziele werden daher folgende Nutzendimensionen mit den Beziehungen
definiert:

• Strategische Potentiale sind keine direkt ablesbaren Mehrwerte, sondern schla-
gen sich in höheren Unternehmenszielen nieder; z. T. werden sie auch von
anderen Dimensionen beeinflusst. Beispielsweise ermöglichen technologische
Potentiale - angetrieben durch technologische Entwicklungen - bei ihrer Ent-
faltung innovative und neue Prozesse. Ferner wird auch die Möglichkeit der
Integration anderer Technologien als Potential gesehen, wenn sich dadurch
höhere Mehrwerte generieren lassen.

• Leistungsoptimierende bzw. quantitativ-messbare Potentiale sind quantitativ
messbare Eigenschaften, die sich beispielsweise in Kosten oder Zeit nieder-
schlagen können. Damit können sie auch z. T. monetär bewertbar sein. Diese
Form der Potentiale lassen sich relativ leicht als Kennzahlen darstellen.

• Qualitativ-messbare Potentiale tragen zur Leistungserhöhung der Prozesse
bei und sind vorwiegend qualitativer Natur - damit auch schwer messbar. Da
eine Quantifizierung nicht immer gelingt, müssen bisweilen aufwendigere
Methoden für die Erfassung und Erfolgsmessung angewendet werden. Wer-
den alle Mehrwerte optimal im Untersuchungsraum erreicht, so findet eine
maximale Nutzenausschöpfung statt.

29 Vgl. Gruhn (2005); Köhler and Gruhn (2004b).
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4.3.2 Analyse der Nutzenpotentiale

Die in diesem Diskussionspapier definierten Potentialdimensionen legen daher den
Untersuchungsraum für die Analyse von Nutzenpotentialen fest, die im Folgendem
für das Nomadic Computing allgemein herausgearbeitet werden. Im Rahmen der
Bewertung der Potentiale können geeignete Kennzahlen zugeodnet werden, die
eine Bewertung der Potentiale vereinfachen:

Strategische Nutzenpotentiale

Der strategische Nutzen ergibt sich durch die Integration nomadischer Technologien
in das übrige DV-Umfeld der Unternehmung, meist in Anknüpfung an bereits
vorhandene Systeme und Anwendungen. Dabei ist der strategische Nutzen des
Nomadic Computing nicht autonom definierbar, sondern muss aus den Zielen der
Unternehmung abgeleitet werden.

Grundsätzlich beschreiben technologische Innovationen primär den technolo-
gischen Fortschritt, nicht den betriebswirtschaftlichen Nutzen. So ist die techno-
logische Innovation für eine längerfristige, betriebswirtschaftliche Betrachtung
nicht ausreichend. Zur Entwicklung betriebswirtschaftlicher Perspektiven müssen
Wertbeiträge neuer Technologien identifiziert werden, welche die gegenwärtigen
Geschäftsprozesse verändern oder neue Produkte und Dienstleistungen ermögli-
chen.30 Technologische Potentiale sollen bei ihrer Entfaltung innovative und neue
Prozesse ermöglichen, angetrieben durch technologische Erweiterungen. Teilweise
ermöglichen diese wiederum leistungsoptimierende und qualitative Vorteile. Inso-
fern kann ihnen ein strategischer Charakter zugeschrieben werden. Die folgende
Tabelle gibt einen Überblick.

Insbesondere die Mobilität wird dabei durch die Vielfalt mobiler Endgeräte er-
höht. Um diese Vorteile tatsächlich nutzbar zu machen, müssen spezialisierte
Informationssysteme zum Einsatz kommen, die nicht nur den Geschäftsprozess
als solches unterstützen, sondern gegebenenfalls auch mit der Mobilität der pro-
zessausführenden Person zurecht kommen sollten.31 Neuartige Geräteformen wie
sogenannte Wearables optimieren insbesondere schwierige Produktionsprozesse
und werden teilweise schon heute eingesetzt.32

Leistungsoptimierende Nutzenpotentiale

Im Bereich der Kosten lassen sich verschiedene Dimensionen betrachten, die in
eine anschließende Nutzenbewertung einfließen. So existieren:

30 Vgl. Scheer, A.-W. et al. (2001).
31 Vgl. Köhler and Gruhn (2004a).
32 In schwer zugänglichen Bauprojekten, beispielsweise im Schiff- oder Flugzeugbau, werden in

smarten Handschuhen Baupläne und Dokumentationen technisch abrufbar; vgl. Herzog et al.
(2003).
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• Quantitativ messbare Kosten, die sich leicht aus den Kostenarten ermitteln
lassen, wie Investitions- und Instandhaltungskosten (Hardware/Software),
Verbindungsentgelte, Betriebsmittelkosten, etc.

• Intangible Kosten sind schwer messbare Kosten, die aber zu den Kostenarten
hinzugezählt werden müssen.

• Koordinationskosten verkörpern Transaktionskosten, die mit der Anbahnung,
Abwicklung und Kontrolle von Prozessen der Leistungserstellung zu tun
haben.

Die Wirtschaftlichkeitsanalyse klärt die Fragen, welche Kosten zum Beispiel
durch die Neustrukturierung der Prozesse und die Anschaffung technische Geräte
entstehen. Gegengerechnet werden die Einsparungen, die sich aus dem Wegfall
von Teilaktivitäten, Verkürzung von Bearbeitungszeiten oder Erhöhung der Be-
arbeitungsqualität ergeben.33 Im Rahmen der Bewertung kann dann die Frage
beantwortet werden, ob die Durchführung des Projektes aus nutzenorientierter
Sicht sinnvoll ist.34 Das Einsparpotential kann bereits bei der Prozessgestaltung
errechnet werden, da es sich dabei meist um organisatorische Entscheidungen
handelt.

Mit der Fähigkeit, Prozesse auf eine kontinuierliche Weise auszuführen, generiert
das Nomadic Computing Vorteile bei der Bearbeitungszeit im Prozessmanage-
ment und damit eine höhere Effektivität. Insbesondere Schnittstellen führen zu
erhöhten Bearbeitungs- und Liegezeiten, d. h. die Prozessausführung gestaltet
sich als wesentlich langsamer. Mittels Einsatz moderner Technologien wird die
Prozesskette verkürzt, aufgrund der durchgängig elektronischen Verarbeitung ent-
fallen Medienbrüche und die Nutzer erhalten orts- und zeitnahe Informationen am
Einsatzort.

Qualitativ-messbare Nutzenpotentiale

Der operationelle Nutzen liegt in einer wirkungsvollen Unterstützung der Ar-
beitsprozesse und kann als Erhöhung der Leistungsfähigkeit beschrieben werden.
Mit ihnen wird insbesondere die Qualität der Prozessausführung verbunden. Im
Gegensatz zu leistungsoptimierenden Potentialen kristallisieren sich diese Art von
Potentialen als schwer messbar, allenfalls nur subjektiv abschätzbar heraus. Als
sogenannte „weiche“ Faktoren haben diese meist qualitativen Potentiale indirekte
Auswirkungen auf die Prozesskosten und Produktivität. Insbesondere die Berück-
sichtigung von Zeit, Ort und Personalisierung stellt erhebliche Mehrwerte für
die Nutzung nomadischer Technologien dar. Dienste kontextsensitiver Qualität von
Informationen und Dienstleistungen werden schließlich den Ausschlag geben, ob
man bereit ist, für diese Lösung auch zu bezahlen.

33 Vgl. Köhler and Gruhn (2004a); Köhler and Gruhn (2004b).
34 Vgl. zum Transaktionskostenansatz Deinlein (2003).



the »nomadic computing« paper 152

Zusammenfassend weist Nomadic Computing in den drei definierten Nutzen-
dimensionen vielfältige Potentiale aus, die sich unmittelbar und mittelbar auf die
Ziele des Prozessmanagements - Effizienz und Effektivität - und damit auch auf
höhere Unternehmensziele auswirken. Inwiefern die Nutzenpotentiale in unter-
nehmensspezifischen Prozessen erfolgreich zur Entfaltung gelangen, muss in einer
anschließenden Nutzenbewertung analysiert werden. Tabelle J.2 fasst die genannten
Nutzenpotentiale noch einmal zusammen.

4.3.3 Bewertung der Nutzenpotentiale

Die Bewertungsphase endet mit einem Votum für das Investitionsvorhaben. Inner-
halb der gesamten Umsetzungsplanung, welche den anschließenden technischen
Entwurf und die Systemplanung integriert, kann dieser Punkt als ein Meilenstein
bezeichnet werden. Zweck der Wirtschaftlichkeitbewertung ist es, die Ermittlung
der Wirtschaftlichkeit für beliebige Objekte methodisch zu unterstützen. Die Wirt-
schaftlichkeitsabewertung beschäftigt sich nach Heinrich im eigentlichen Sinn
sowohl mit der Analyse der Kostenstruktur, als auch mit der Analyse der Nutzen-
struktur und den Kosten- und Nutzenbeziehungen.35

Da die Entscheidung meist unter Unsicherheit stattfindet, ist eine solche Bewer-
tung risikoorientiert durchzuführen. Risikofaktoren stellen ein mögliches Hindernis
bei der erfolgreichen Einführung oder Betrieb des Nomadic Computing dar.36 Mög-
liche Unsicherheiten ergeben sich dabei in folgenden Punkten:

• Sicherheit, Privatsphäre und Rechtliche Risiken,

• Benutzerakzeptanz und -ergonomie und

• Schwachstellen in der Personalisierungsfunktion.

Für Computer-Nomaden, die von wechselnden Aufenthaltsorten aus Zugang zu
Netzwerkdiensten bekommen möchten, darf eine Zugangsentscheidung nicht allein
auf der Feststellung der Identität getroffen werden, sondern es muss zusätzlich
die jeweilige Situation des Anfordernden einbezogen werden: Authentifizierung
und Autorisierung sind also klar zu trennen. Die Situation muss durch ein von
vertrauenswürdiger Seite ausgestelltes Credential bestätigt werden. Dies kann unter
bestimmten Situationen (z. B. Aufenthalt in einem öffentlichen Internet-Café) den
Zugang zu bestimmten Diensten oder Daten ausschließen, während er in anderen
Situationen (z. B. Aufenthalt bei einem Kooperationspartner) durchaus gestattet
wird.37

35 Vgl. Heinrich (2002).
36 Vgl. Teubner and Terwey (2005).
37 Vgl. Luttenberger (2002). Luttenberger stellt in seinem Aufsatz eine Credential-basierte Zugriffs-

kontrolle für das Nomadic Computing vor, die auf einer erweiterten Jini-Architektur aufbaut. Mit
geeigneten Protokollen zur Authorisierung in einer nomadischen Umgebung beschäftigt sich auch
Zhang and Kindberg (2002).
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Die Hauptschwierigkeit bei Bewertungen unter wirtschaftlichen Gesichtpunkten
besteht allerdings darin, den nicht quantifizierbaren Nutzen in eine Bewertung
einzubeziehen. Dies äußert sich insbesondere in der Auswahl geeigneter Bewer-
tungsmethoden. Sogenannte eindimensionale Methoden, die sich auf die klassi-
schen Investitionsverfahren38 stützen, führen an dieser Stelle zu Schwierigkeiten.
Mehrdimensionale Verfahren versuchen die Schwierigkeiten zu überwinden:

1. Multifaktoren- und Nutzwertanalyse: Diese Analysemethoden bewerten poten-
tiell nomadischen Prozesse anhand eines Kriterienkataloges, ob ein Einsatz
des Nomadic Computing Mehrwerte generieren kann.39

2. Methoden des Prozessmanagements: Diese Methoden unterstützen die optimale
Gestaltung von Geschäftsprozessen. Eine Evaluierung findet insbesondere
durch Kennzahlensysteme und der Prozesskostenrechnung statt.40

Dazu werden sowohl bei der Multifaktoren- als auch bei der Nutzwertanalyse die
Ziele des Prozessmanagements in Teilziele heruntergebrochen und als Zielkriterien
definiert. Anhand dieser Zielkriterien werden nun die Alternativen bewertet. Die
Kriterien können nach einer Präferenzordnung zusätzlich gewichtet werden. Das
Nomadic Computing wird dann mit einer Punktbewertung danach beurteilt, ob
es hinsichtlich der einzelnen Kriterien Verbesserungen oder Verschlechterungen
gegenüber dem Ausgangszustand bringt.

Mit den Methoden des Prozessmanagements kann parallel mit einem Kennzah-
lensystem eine Wirtschaftslichkeitsbewertung erfolgen. Im Rahmen der mehrdi-
mensionalen Verfahren ist es insbesondere mit der Balanced Scorecard möglich,
zum einen qualitative Größen in Kennzahlen zu transformieren und zum anderen
eine laufende Kontrolle während des Betriebs durch die Kennzahlenauswertung
zu garantieren. Gleichzeitig bewertet die Balanced Scorecard die Wirkung von
IT-Investitionen auf die strategischen Unternehmensziele.

4.4 Anwendungsszenarien des Nomadic Computing

Die Grenzen zwischen einzelnen Organisationen werden in Zukunft immer mehr
verwischen, und die Unternehmungen werden versuchen an möglichst vielen
Stellen mit dem Endkunden in Kontakt zu treten. An den Schnittstellen zum
Kunden und externen Partnern können durch das Nomadic Computing neue
Prozessstrukturen auftreten, die schon heute teilweise durch das Mobile Computing

38 Dazu zählen beispielsweise Return-on-Invest- und Kapitalwertmethoden. Total Costs of Ownership,
definiert als Methode zur Identifizierung der Gesamtkosten eines IV-Systems über den gesamten
Lebenszyklus, berücksichtigen in Ansätzen qualitative Kostenaspekte; vgl. hierzu Dobschütz
(2000).

39 Zur Anwendung der Multifaktorenmethode vgl. Stahlknecht and Hasenkamp (2001); zur Nutz-
wertanalyse vgl. Heinrich (2002).

40 Vgl. zu Methoden des Prozessmanagements Heinrich (2002).
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abgedeckt werden. In der Arbeitswelt kann man deshalb innerhalb der Mobilität
des Benutzers drei verschiedene Ausprägungen unterscheiden:

• Travelling: Als Prozess, sich von einem Punkt zum nächsten zu bewegen.

• Visiting: Bedeutet, dass eine längere Zeitperiode an einem Ort verbracht wird,
ehe man sich zu einem weiteren Ort bewegt.

• Wandering: Mit Wandering wird eine lokal begrenzte Mobilität in einem
Gebäude oder begrenztem Gebiet bezeichnet.

Das Untersuchungsfeld „mobile Arbeit“ ist demnach sehr heterogen. Im Folgen-
dem soll die geschäftsprozessorientierte Analyse und Bewertung anhand von zwei
charakteristischen Beispielen erläutert werden.

4.4.1 Vertriebsunterstützung in Dienstleistungsunternehmungen

In der Vertriebsunterstützung spielt die Mobilität der Mitarbeiter eine immer grö-
ßere Rolle. Der persönliche Kundenkontakt ist für die Akquisition und Betreuung
ein strategischer Erfolgsfaktor geworden. Mobile Technologien können daher die
Mobilität des Vertriebsmitarbeiters unterstützen und verkaufsfördernd eingesetzt
werden - aber auch ganz neue Vertriebsprozesse und -organisationen erzwingen.41

Analyse der Prozessstrukturen

Für die Untersuchung werden nun die Geschäftsprozesse des mobilen Beraters
erhoben und abgegrenzt, um potentiell nomadische Geschäftsprozesse herauszufil-
tern.42 Die Prozesse Kundengespräch, Akquisition etc. zeichnen sich intuitiv durch
ihren mobilen Charakter aus. Die Geschäftsbeziehungen zwischen den Organisati-
onseinheiten im Rahmen des Kundengespräches können als Teilprozesse in einer
Prozessmodellierung dargestellt werden.

Aufgabe des Process Reengineering ist nun die inhaltliche Analyse der identifizier-
ten nomadischen Prozesse und die Neuplanung dessen, wie mobile Techniken die
beschriebenen Prozesse unterstützen können.43 Gegebenenfalls werden im Rahmen
des mobile Process Reengineering Teilaktivitäten neu entstehen oder überflüssig
werden. Entsprechend ist eine neue Struktur für den Teilprozess und die an ihn
angrenzenden Vorgänge zu planen. Das Kundengespräch wird deshalb als mobiler
Prozessteil neu definiert - das Ergebnis zeigt exemplarisch Abbildung J.4.

Aufgrund der hohen Mobilität des Benutzers, der sich außerhalb des Firmen-
geländes bewegt, sind neben mobilen Geräten auch kabellose Netztechnologien
miteinzubeziehen. In diesem Zusammenhang sind anschließend - in Abhängigkeit
vom zu übertragenden Datenvolumen und der geforderten Bandbreite - geeignete

41 Mit der technischen Unterstützung mobiler Arbeiten beschäftigen sich auch Kurbel et al. (2003).
42 Die Prozessstrukturanalyse konzentriert sich nach einem Beispiel von Köhler and Gruhn (2004a).
43 Vgl. Gruhn (2005).
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Abbildung J.4: Identifikation von mobilen Prozessteilen nach Köhler and Gruhn (2004b)
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Endgeräte und Netztechnologien auszuwählen. Der Außendienstmitarbeiter ver-
fügt über die Adressdaten des Kunden und sucht ihn mittel Navigationstechnologie
für ein persönliches Beratungsgepräch auf. Vor Ort baut der mobile Berater mit
seinem Notebook eine Mobilfunkverbindung zur Zentrale auf und erhält so die
vollständigen Daten des jeweiligen Kooperationspartners. So kann er sofort ein
verbindliches Angebot berechnen und erstellen, das dann zeitgleich beim Kunden
und bei der Zentrale vorliegt.

Die anschließende Potentialanalyse findet im Rahmen aller identifizierten poten-
tiell nomadischen Prozessen statt. Allein an dem Beispiel des klassischen Vertriebs-
mitarbeiters werden zahlreiche Ineffizienzen erkennbar: Die Belastung anderer
Prozessbeteiligter durch ständige Rückfragen, Doppelarbeit und zusätzliche Feh-
lerquellen durch den Medienbruch und schließlich der Aufwand für den mobilen
Berater selbst. In sämtlichen Prozessen im mobilen Vertriebsbereich ergeben sich
aufgrund der Mobilitätsformen weitere Nutzenpotentiale. Gleichzeitig können
zu den analysierten Mehrwerten zugehörige Kennzahlen ausgewählt werden, die
im Rahmen der mehrdimensionalen Wirtschaftlichkeitsbewertungen eingesetzt
werden. Nomadic Computing ermöglicht nun die Schaffung einer durchgängigen
Prozesskette, in die der mobile Berater vollwertig eingebunden ist.

• Der mobile Berater hat ein mobiles Endgerät mit der Möglichkeit, auf das
entfernte Firmennetz zuzugreifen.

• Der Mitarbeiter erfasst direkt beim Kunden die Vertragsdaten.
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• Die aufgenommene Bestellung wird durch die mobile Lösung in die Un-
ternehmung übertragen. Rahmenbedingungen wie Verfügbarkeit können
umgehend berücksichtigt und dem Kunden mitgeteilt werden.

• Die Auftragsbestätigung erfolgt direkt vom Stammsitz der Unternehmung per
Fax bzw. per eMail an den Kunden, so dass der mobile Berater auch keinen
Drucker bei sich führen muss. Der Auftrag ist damit auch sofort erfasst.

Gleichzeitig werden häufig auftretende Probleme in diesem Szenario beseitigt.
Zum einen erhöht sich die Beratungs- und Datenqualität durch den Einsatz mobiler
Geräte. Die Daten können direkt erfasst werden und damit Übertragungsfehler
durch Medienbrüche vermieden werden.

Potentialbewertung

Die Bewertung der Potentiale aus betriebswirtschaftlicher Sicht orientiert sich ana-
log einem Referenzmodell an mehrdimensionalen Verfahren. Ob die nomadischen
Prozessanteile für Technologien des Nomadic Computing geeignet sind, entscheidet
eine Nutzwertanalyse. Neben dem Kundengespräch, können als Alternativen weite-
re Prozessteile bewertet werden. Zusätzlich kann der in diesem Beispiel erhebliche
Investitionsaufwand für den Aufbau der Infrastruktur im Rahmen gesonderter
Investitionsverfahren ermittelt werden, die in diesem Artikel nicht vertieft werden
können.

4.4.2 Instandhaltung dezentraler Anlagen durch Nomadic Worker

Die Instandhaltung ist ein exemplarisches Beispiel für die Potentiale des Noma-
dic Computing, da sie eine weitgehend mobile Tätigkeit mit einer relativ hohen
Informationsdurchdringung ist.44 Eine Instandhaltung wird mit Daten geplant,
anhand der Pläne durchgeführt, protokolliert und anschließend dokumentiert, doch
die primäre Aufgabe des Instandhaltungspersonals ist die manuelle Arbeit am
Objekt. Hinzu kommt, dass die Umgebungsbedingungen häufig so beschaffen sind,
dass weder Papier und Stift noch traditionelle Informationstechnologie eingesetzt
werden können und die Benutzer darüber hinaus ihre Hände frei haben und ihre
Aufmerksamkeit der realen Welt widmen müssen. Bisher ist diese Inspektion noch
ein manueller Prozess, der mit vielen administrativen Arbeiten verbunden ist.

Speziell im Bereich Facility Management sind zahlreiche Nomadic Worker im Ein-
satz. Eine Vielfalt von Objekt- und Kundeninformationen müssen jederzeit sofort
abrufbar sein und Daten werden direkt vor Ort erfasst und müssen danach in zen-
tralen Systemen weiterverarbeitet werden. Bei derartigen Geschäftsprozessen bietet
Nomadic Computing ein großes Wertschöpfungspotential und kann zur Unter-
stützung mobiler Mitarbeiter und als Managementinstrument eingesetzt werden.45

44 Der Bereich der mobilen Instandhaltung ist auch Gegenstand von Herzog et al. (2003); Teuteberg
(2005); Hanhart et al. (2005) und Habermann (2005).

45 Vgl. Frey (2003).
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Wartungsszenarien werden, in Verbindung mit Wearables, als ein zukunftsträchtiges
Feld für Nomadic Computing gesehen. Durch den Einsatz der Sensortechnolo-
gie können in einer weitergehenden Betrachtung menschliche Einwirkungen in
den Prozess zurückgefahren werden - damit entstehen Berührungspunkte zum
Ubiquitous Computing.

5 zusammenfassung und ausblick

Der dargestellte geschäftsprozessorientierte Einsatz des Nomadic Computing kon-
zentrierte sich schwerpunktmäßig auf Nutzenpotentiale, die aus einer betriebswirtschaft-
lichen Sicht analysiert und bewertet wurden. Aus Sicht der nachfragenden Unter-
nehmungen gilt es zu bewerten, inwiefern ein Einsatz von Nomadic Computing
Mehrwerte entlang der Wertschöpfungskette generieren kann.

Intuitiv betrachtet kann eine Ausstattung von Prozessen und Projekten mit Tech-
nologien, die das Prinzip „Anytime-anywhere“ unterstützen, als nutzungsgewinn
bezeichnet werden. Betriebswirtschaftlich ist die Einbindung von Technologien
differenzierter zu bewerten. Oftmals rechtfertigen die Kosten und Risiken nicht
den Nutzen oder die Implementierung erweist sich als schwierig. Eine vorausge-
hende Analyse und Bewertung, die sämtliche Aspekte des Nomadic Computing
berücksichtigen kann, erscheint daher unabdingbar.

Die methodengestützte Untersuchung anhand eines Referenzmodells bildet dabei
eine transparente Möglichkeit, Nutzenpotentiale in einem festgelegten Rahmen zu
untersuchen. Als Vorteile können genannt werden:

• Eine Einbindung in das strategische Zielsystem und damit eine ganzheitliche
Steuerung ist möglich.

• Die Schwierigkeit der Quantifizierung kann überwunden werden.

• Die Prozessstrukturanalyse erlaubt eine Optimierung von Prozessen.

• Nutzendimensionen erlauben eine spezifischere Nutzenpotentialbetrachtung.

• Risiken und Hemmnisse werden berücksichtigt.

Gleichwohl kann das hier vorgestellte Referenzmodell nicht sämtliche Felder
des Nomadic Computing abdecken. So läßt sich der Untersuchungsrahmen über
die Betrachtung hinaus um weitere Analysebereiche erweitern. Daneben können
auch noch bestehende Herausforderungen die Zukunftschancen des Nomadic
Computing erhöhen.

• Einbeziehung einer soziologischen Perspektive: Die Akzeptanz der Techno-
logie durch die Benutzer garantiert eine weite Verbreitung, die wiederum
Auslöser für weitere Mehrwerte bei den Benutzern darstellt.
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• Technologischer Fortschritt: Leistungsfähige mobile Geräte, Weiterentwick-
lung tragbarer mobiler Sensoren.

• Sicherheit: Festlegung von Sicherheitsstandards im mobilen Bereich bleibt ein
kritischer Erfolgsfaktor.

• Neue Abrechnungssysteme und Kostenmodelle: Anreizorientierte und verur-
sachungsgerechte Abrechnung der Dienste im Nomadic Computinggarantie-
ren Akzeptanz

An den Schnittstellen zu verwandten Technologien - Ubiquitous Computing,
Wearable Computing und Nomadic Computing - zeichnen sich interessante For-
schungsfelder ab: Im Bereich der Benutzerschnittstelle stellt Augmented Reality
(AR) eine neue Technologie dar. Zur interessanten Basistechnologie des AR zählt
unter anderem die Vielfalt der Displays. Die Thematik tragbarer mobiler Sensoren
ist sehr zukunftsträchtig und spannt den Bogen von hochgradiger volumeneffi-
zienter Mikrointegration hin zur Elektronik in Kleidung.46 So helfen im Rahmen
des Wearable Computing neue Geräteformen die Mobilität des Benutzers auch
im Rahmen des Nomadic Computing zu unterstützen. Insbesondere in den Be-
reichen der Wartung von Anlagen helfen Wearables mit neuen Möglichkeiten der
Benutzerschnittstelle, Arbeitsprozesse effizienter zu betreiben.

Um die Akzeptanz der Benutzer aufrecht zu halten, bedarf es geeigneter Kosten-
und Abrechnungssysteme. Diese sollen die Realität der Ausführung von Aktionen
durch den menschlichen Nutzer in der physischen Umwelt widerspiegeln. Im
einzelnen muss untersucht werden, in wie weit dem Nutzer die bereitgestellten
Dienste berechnet werden. Denkbar sind schon Lösungen - ähnlich wie bei den
Satelliten-Positionierungsverfahren - in dem Dienste im Premium-Segment abge-
rechnet werden, während abgestufte Varianten der Masse an Benutzern kostenlos
zur Verfügung gestellt werden.

Der künftige Einsatz des Nomadic Computing wird sich wohl zunächst im
Bereich der Tourismusinformationssysteme und in der Unterstützung mobiler
Wartungsprozesse manifestieren. Studien belegen, dass für Toruismusdienste zah-
lungskräftige Kundschaft akquiriert werden kann. Die Unterstützung von mobilen
Arbeitern bei Wartungs- und Produktionsaufgaben steht im Mittelpunkt des Pro-
jektes SNOW (Service for Nomadic Workers).47 Geplant ist ein multimodales
Interfaces, mit dessen Hilfe Arbeiter über verschiedene Eingabemodi wie Sprache,
Gestik oder Schrift interaktiv auf Dokumentationen vor Ort und über mobile End-
gerätezugreifen können. Sie erhalten damit die Möglichkeit in teils schwierigen
Arbeitsumgebungen ein „multimediales Wartungs- oder Nutzerhandbuch“ zu nut-
zen und auf Unternehmenswissensdatenbanken zuzugreifen. Bislang existieren
allerdings keine Werkzeuge, die die Erstellung mobiler Wartungsdokumentatio-

46 Vgl. Herzog et al. (2003); vgl. auch Becker and Marrón (2005) und Fekete et al. (2005).
47 Vgl. Fraunhofer-Institut für Rechnerarchitektur und Softwaretechnik FIRST (2005). Das Projekt

startete Ende 2004 und wird von der Europäischen Union gefördert.
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nen unterstützen, und es fehlen robuste Interaktionsmöglichkeiten, um solche
Dokumentationen zu nutzen.
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