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Abstract

This thesis investigates the properties of assets’ market betas and the pricing
of aggregate uncertainty in financial markets. Chapter 1 introduces the main
concepts and delivers an overview of the subsequent chapters.

Chapter 2 conducts a comprehensive comparison of market beta
estimation techniques. We study the performance of several historical,
time-series model, and option-implied estimators for realized market beta.
Thereby, we find the hybrid methodology, combining historical return
data and option-implied information, to consistently outperform all other
approaches. In addition, all other approaches, including fully implied and
GARCH-based methods for dynamic conditional beta, are dominated by
a simple beta estimate based on historical (co-) variances and a Kalman
filter based approach. Our conclusions remain unchanged after performing
several robustness checks.

Based on the findings in Chapter 2, in particular that the historical
daily estimator for beta performs notably well, Chapter 3 studies the value
of high-frequency data for beta estimation. Using intra-day high-frequency
return data, we comprehensively analyze the performance of beta estimation
based on such data. We find that, overall, the value of high-frequency data
is limited. From a statistical viewpoint both the historical high-frequency

approach and the hybrid approach using historical returns and options
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prices work more or less equally well, while a combination of both
approaches can improve performance. On the other hand, if we are interested
in the economic implications of beta estimation a positive risk-return
relationship cannot be detected using the high-frequency estimator while
the hybrid approach appears to contain superior information. Our results
extend to the estimation of downside beta.

Motivated by the empirical failure of market beta to fully account for
the variations observable in the cross-section of stock returns, Chapter
4 studies whether further risk factors, in particular aggregate economic
uncertainty, are priced in financial markets. In line with the predictions
of a stylized theoretical model with stochastic volatility, we find that
time-varying aggregate economic uncertainty commands an economically
substantial and statistically significant negative risk premium. Aggregate
uncertainty, marked-off from risk, is proxied with market volatility-of-
volatility measured by the VVIX index. A two-standard deviation increase
in aggregate uncertainty factor loadings is associated with a decrease in
average annual returns ranging from 6.3 % to 18.7 %. This phenomenon
can neither be explained by aggregate volatility, jump risk, and several
other canonical, liquidity, and returns distributions characteristics, nor by
a crisis effect.

Finally, Chapter 5 concludes and outlines possible future directions for

research.

Keywords: Market beta estimation, high-frequency data, aggregate eco-

nomic uncertainty
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Zusammenfassung

Diese Arbeit beschiftigt sich mit den FKEigenschaften von und Schétz-
methoden fiir Marktbetafaktoren verschiedener Aktien. Des Weiteren wird
untersucht, inwiefern gesamtwirtschaftliche 6konomische Unsicherheit in
Kapitalmarkten gepreist ist. Kapitel 1 stellt die Hauptkonzepte vor und
liefert einen Uberblick iiber die nachfolgenden Kapitel.

Kapitel 2 présentiert eine umfangreiche Analyse von verschiedenen
Moglichkeiten, um Beta zu schétzen. Wir testen verschiedene historische,
Zeitreihenmodell-basierte und optionsimplizite Verfahren fiir die Beta-
Schétzung und evaluieren diese Verfahren mit dem nachfolgend realisierten
Beta. Unsere Resultate deuten darauf hin, dass das hybride Verfahren
von Buss & Vilkov (2012), das historische und options-implizite Daten
kombiniert, am besten funktioniert. Aufserdem sind alle weiteren Verfahren,
unter anderem komplett options-implizite und GARCH-Modellbasierte
Verfahren, einer einfachen historischen Schéitzmethode sowie einem Kalman
Filter basierten Verfahren unterlegen. Diese Schlussfolgerungen werden
durch etliche Robustheitsanalysen bestétigt.

Auf Grundlage der Ergebnisse des 2. Kapitels, insbesondere motiviert
durch den Fakt, dass das simple historische Schatzverfahren auf Basis von
taglichen Renditen sehr gut funktioniert, untersuchen wir in Kapitel 3 den

Wert von Intra-Day-Hochfrequenzdaten fiir die Beta-Schétzung. Unsere



Ergebnisse zeigen auf, dass Hochfrequenzdaten nur von beschrianktem
Wert fiir die Schidtzung von Beta sind. Aus einer statistischen Perspek-
tive betrachtet liefern Hochfrequenzschitzer und das hybride Buss &
Vilkov (2012) Verfahren ungefahr gleich gute Resultate. Dagegen kann
eine simple Kombination beider Verfahren die Schéitzgenauigkeit fiir das
nachfolgend realisierte Beta weiter verbessern. Andererseits ergibt sich
aus der Okonomischen Perspektive, d.h. der Frage, ob Unterschiede in
den Schitzungen fiir Beta auch Unterschiede in nachfolgenden Renditen
abbilden, ein kontrédres Bild. Mit historischen Schétzern, die tégliche oder
Hochfrequenzdaten benutzen, lasst sich kein signifikanter Trade-off zwischen
Rendite und Risiko feststellen, wéihrend das hybride Verfahren unter
diesem Gesichtspunkt deutlich besser funktioniert. Die hier beschriebenen
Resultate gelten gleichermafsen fiir die Schatzung von Downside Beta.

Da Marktbeta alleine, wie in zahlreichen empirischen Studien gezeigt,
die Variationen im Querschnitt der Aktienrenditen nicht komplett erklaren
kann, untersucht Kapitel 4 welche weiteren Risikofaktoren in Kapitalmérk-
ten, speziell im Aktienmarkt, gepreist sind. Dabei wird der Schwerpunkt vor
allem auf die gesamtwirtschaftliche 6konomische Unsicherheit gelegt. Als
Ausgangspunkt zeigen wir mit einem einfachen theoretischen Modell mit
stochastischer Volatilitdt, dass gesamtwirtschaftliche Unsicherheit in Kap-
italmérkten potentiell gepreist sein kann. Unsere empirischen Ergebnisse
indizieren, dass zeitvarianter ¢konomischer Unsicherheit eine 6konomisch
bedeutsame und statistisch stark signifikante negative Risikoprédmie an-
haftet. Wir benutzen die Volatilitdt der Volatilitdt des Marktes gemessen
durch den VVIX Index der Chicago Board Options Exchange, um den
Grad an gesamtwirtschaftlicher 6konomischer Unsicherheit, abgegrenzt von
Risiko, der zur jeweiligen Zeit im Markt vorhanden ist, zu bestimmen.
Unsere Ergebnisse zeigen, dass eine um zwei Standardabweichungen héhere

Faktorsensitivitdt gegeniiber der gesamtwirtschaftlichen Unsicherheit mit
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einer im Durchschnitt um 6.3 % bis 18.7 % reduzierten annualisierten
Rendite einzelner Aktien einhergeht. Diese Ergebnisse konnen weder durch
andere Risikofaktoren, wie z.B. gesamtwirtschaftliches Risiko, dem Risiko
extremer Spriinge in Renditen, sowie vieler weiterer bekannter Faktoren,
noch durch einen distinguierten Kriseneffekt erklart werden.

Abschliefsend prasentiert Kapitel 5 Schlussfolgerungen und liefert

Anregungen fiir mogliche zukiinftige Forschungsthemen.

Schlagworter:  Marktbeta-Schéatzung, Hochfrequenzdaten, gesamt-

wirtschaftliche okonomische Unsicherheit
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Chapter 1

Introduction

The development of the Capital Asset Pricing Model (CAPM) by
Sharpe (1964), Lintner (1965), and Mossin (1966) provides an important
cornerstone in modern financial economics. If the assumptions of the CAPM
are fulfilled, the model predicts that all assets can be priced by only one
risk factor, i.e., the market risk premium. Asset’s equilibrium rates of return
then depend on their sensitivity to changes in the market risk premium, i.e.,
their beta factors. These factors, however, are not observable and hence need
to be estimated. Studying the properties of market beta on the one hand is
important to test the model predictions, and, on the other hand, to better
understand the dynamic developments occurring on financial markets.
Chapter 2 makes use of the recent developments made in estimating
beta in various different ways. Beta can be estimated simply from historical
return data (Fama & MacBeth, 1973; Baker, Bradley, & Wurgler, 2010),
based on historical return data specifying a time-series model (Pagan, 1980;
Engle, 2014), or using data implied from options markets either combined
with historical return data (French, Groth, & Kolari, 1983; Buss & Vilkov,
2012) or solely (Chang, Christoffersen, Jacobs, & Vainberg, 2012). Faff,

Hillier, & Hillier (2000) compare historical and time-series models and



CHAPTER 1. INTRODUCTION

several of the authors mentioned previously compare the approach they
propose to subsets of existing models. Overall, however, these various ways
of estimating beta, thus far, have not been comprehensively examined and
compared.

Chapter 2 of this thesis, to the best of our knowledge, provides the first
comprehensive and thorough empirical study on the performance of a wide
range of market beta estimation techniques, including several historical,
time-series model, and option-implied estimation approaches. Furthermore,
a novel hybrid estimator for beta that corrects option implied volatility for
the volatility risk premium is proposed. We study the information content
of different approaches to estimate subsequent realized beta (based on
daily return data) in univariate and encompassing regressions (Mincer &
Zarnowitz, 1969) and determining the estimation accuracy using the root
mean squared error (RMSE) criterion.

Our empirical evidence suggests that the hybrid approach proposed by
Buss & Vilkov (BV) (2012), which combines option implied with historical
return information, turns out to outperform all other methods. The simple
historical benchmark model as well as an approach based on the Kalman
filter and a random walk (RW) are shown to work comparatively well, while
GARCH-based models of dynamic conditional beta and fully option implied
approaches produce serious errors. We further show that the BV approach
works so well mainly because, in combining historical and option implied
information, it ensures that the estimates are adjusted to be unbiased in
their value-weighted cross-sectional averages.

Motivated by the fact that historical beta, based on daily return data,
works notably well, as well as by recent advances in financial economics
using intra-day high-frequency data, Chapter 3 studies the value of intra-day
high-frequency data for beta estimation. Several authors show that forecasts

for the moments and co-moments of the return distribution can be



obtained with greater precision once employing intra-day high-frequency
data (e.g., Andersen & Bollerslev, 1998; Bollerslev & Zhang, 2003; Amaya,
Christoffersen, Jacobs, & Vasquez, 2015). Bollerslev & Zhang (2003),
Barndorff-Nielsen & Shephard (2004), and Andersen, Bollerslev, Diebold,
& Wu (2005, 2006) derive the estimator for realized beta and show that
it delivers a consistent estimate for the true underlying integrated beta.
The use of high-frequency data may enable the researcher to make use of
this consistency without having to rely on the traditionally imposed long
historical windows which entail restrictions on the stability of the underlying
processes and economic conditions. If these restrictions are not satisfied
estimates can attain a lot of noise.

Consequently, Chapter 3 investigates the usefulness of high-frequency
data for estimating beta. To the best of our knowledge, Chapter 3
delivers the first comprehensive and thorough empirical study on the
statistical and economic performance of option-implied and historical
market beta estimation techniques, including high-frequency return data.
We use intra-day data to obtain both a more precise statistical evaluation
of different ex ante estimates as well as presumably more precise estimates
of ex ante historical or hybrid beta. Additionally, we provide evidence
on optimal combinations of estimators and add an economic evaluation
criterion relating ex ante estimates for beta with the cross-section of
subsequent excess returns using Black, Jensen, & Scholes (1972) regressions.
Finally, we provide evidence on the estimation of downside beta. While
conditional risk premia have recently attracted much attention (Ang, Chen,
& Xing, 2006a; Lettau, Maggiori, & Weber, 2014), so far only little work
has been done with regard to the concrete estimation of downside beta.

The results of Chapter 3 indicate that the value of intra-day
high-frequency data for beta estimation is only limited. While on the one

hand, regarding the statistical evaluation especially over short horizons,
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high-frequency estimates are shown to be quite precise, on the other hand,
the estimator fails to create economic value. These results are independent
of the sampling frequency for high-frequency beta (using intervals of 5 up to
130 minutes). From a statistical viewpoint the hybrid estimator of Buss &
Vilkov (2012) works more or less equally well and a simple combination
of the high-frequency and hybrid estimators outperforms the individual
models quite consistently. Regarding economic value, the hybrid model
clearly outperforms historical daily and high-frequency models being the
only approach that is able to detect a significantly positive cross-sectional
relation between beta and subsequent excess returns.

The intertemporal CAPM (ICAPM) by Merton (1973) and the
Arbitrage Pricing Theory (APT) by Ross (1976) provide important
extensions of the classical CAPM. These models predict that equilibrium
rates of return can also be influenced by further factors, especially in
the intertemporal CAPM setting variables ought to be priced in financial
markets that predict changes in the future investment opportunity set. For
example, Fama & French (1993) motivate the introduction of a risk factor
for size and book-to-market with the ICAPM, implying that changes in
these factors are related to changes in expected future market returns or
volatility. In another very important study, Ang, Hodrick, Xing, & Zhang
(2006b) show that there exists a substantial risk premium on aggregate
volatility in financial markets.

Connected to the classical distinction between risk and uncertainty
pioneered by Knight (1921), defining risk as measurable uncertainty that
can be captured using numerical probabilities while anything that cannot
be described by numerical probabilities ought to be defined as uncertainty,
Chapter 4 studies whether time-varying economic uncertainty is priced in
financial markets. Following a large stream in the literature that measures

risk using first-order beliefs, i.e. return volatility, and what Knight called



“unmeasurable uncertainty” with second-order beliefs, i.e. the variation in
the probability distribution of the payoffs (e.g., Segal, 1987; Nau, 2003;
Seo, 2009; Baltussen, Van Bekkum, & Van Der Grient, 2015), we measure
aggregate uncertainty using the VVIX index.!

Building on a simple stylized theoretical model, based on the standard
ICAPM with recursive preferences and consumption uncertainty, we show
that under these fairly common assumptions aggregate uncertainty is
potentially priced in the cross-section of asset returns. For the empirical
methodology we follow Ang et al. (2006a) and Cremers, Halling, &
Weinbaum (2015) studying the contemporaneous relationship of asset’s
factor loadings on innovations in aggregate uncertainty and realized returns.
The main contribution of Chapter 4 is that, to the best of our knowledge,
we are the first to examine whether aggregate uncertainty, captured by
the natural non-parametric VVIX measure, is priced in financial markets,
particularly in the cross-section of stock returns.

Our results suggest that time-varying aggregate economic uncertainty
commands an economically substantial and statistically significant negative
risk premium. Using single and double portfolio sorts with a battery of
control variables, we find that stocks with high sensitivities to innovations
in aggregate uncertainty underperform those with low sensitivities by about
11.7 % per year. This finding cannot be explained by any of the single control
variables. Using cross-sectional Fama & MacBeth (1973) regressions, we
find that a two-standard deviation increase in aggregate uncertainty factor
loadings is associated with a significant decrease in average annual returns
that ranges from 6.3 % to 18.7 %, depending on the cross-sectional model
specification.

This thesis proceeds as follows. Chapter 2 provides a comprehensive

!The VVIX index represents the 30-day forward-looking option-implied volatility of
the volatility index (VIX), i.e. the volatility-of-volatility.
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empirical study on the estimation of beta. Chapter 3 studies the value
of high-frequency data for beta estimation. Chapter 4 examines whether
aggregate uncertainty is priced in the cross-section of equity returns. Finally,
Chapter 5 summarizes the main findings of this thesis and suggests several
lines for future research.

For reasons of improved readability, especially of the separate parts
constituting the complete thesis, each chapter is self-contained. This means,
variables and acronyms are redefined in each chapter. Whenever possible,
notations are consistent throughout the thesis in order to facilitate the

reading.






Chapter 2

Estimating Beta®

2.1 Introduction

Ever since the development of the capital asset pricing model (CAPM) by
Sharpe (1964), Lintner (1965), and Mossin (1966) and the arbitrage pricing
theory (APT) by Ross (1976), the concept of beta (i.e., the covariation
of an asset with the relevant risk factors) plays a crucial role in financial
economics. For many applications such as asset pricing, portfolio choice or
risk management, market beta is the single most important parameter of
interest. However, beta factors are not directly observable and hence they
need to be estimated.

The main contribution of this chapter is that we are, to the best
of our knowledge, the first to provide a comprehensive and thorough
empirical study on the performance of a wide range of market beta
estimation techniques, including several historical, time-series model, and
option-implied estimation approaches. Additionally, we propose a new

estimator for beta that corrects option-implied volatilities for the volatility

*This chapter is based on the Article “Estimating Beta” authored by Fabian Hollstein
and Marcel Prokopczuk, Journal of Financial and Quantitative Analysis, forthcoming.
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risk premium.

Our main results can be summarized as follows. The approach proposed
by Buss & Vilkov (BV) (2012), combining option-implied with historical
return information, turns out to outperform all other methods in estimating
realized beta (based on daily return data). We determine outperformance
in two dimensions (i) informational efficiency and (ii) estimation accuracy.
The BV approach is both shown to be informationally more efficient in
encompassing regressions compared to all other approaches and it yields the
lowest out-of-sample estimation errors, employing the root mean squared
error (RMSE) criterion. The simple historical benchmark model as well
as an approach based on the Kalman filter and a random walk (RW) are
shown to work comparatively well, while GARCH-based models of dynamic
conditional beta and fully option-implied approaches produce serious errors.
We further show that the BV approach works so well mainly because, in
combining historical and option-implied information, it ensures that the
estimates are adjusted to be unbiased in their value-weighted cross-sectional
averages.

The most basic approach to estimate beta is to simply estimate
covariances and variances from a time-series of historical return data.
However, this approach faces the problem that beta coefficients exhibit
significant time variation (e.g., Blume, 1975; Ferson & Harvey, 1991, 1993).
To adress this concern, several approaches (e.g., GARCH-based) have been
developed to capture this variability. More recently, it has been suggested
that one could incorporate information from the options market, where all
information available to investors should be contained in today’s prices,
thereby overcoming the inertia inherently generated by historical estimates,
even when applying a rolling-window approach.

Regarding volatility estimation, which is closely related to beta estima-

tion, numerous studies have been performed. Examining the performance
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of option-implied versus the historical volatility estimation approach the
results of early studies differ (e.g., Canina & Figlewski, 1993; Christensen
& Prabhala, 1998; Fleming, 1998). More recently, there seems to be a
consensus that implied volatility (IV) estimates are to be favored.

Jiang & Tian (2005) show that model-free IV outperforms at-the-
money (ATM) IV and historical volatility. Frijns, Tallau, & Tourani-Rad
(2010) and Taylor, Yadav, & Zhang (2010)! show a superior performance
of IV compared to different time-series models. Prokopczuk & Wese Simen
(2014a) show that adjusting for the volatility risk premium improves the
performance of IV. Thus, there exists ample evidence on the performance
of volatility estimators.?

Surprisingly, however, the estimation of beta has received considerably
less attention in the literature. Faff et al. (2000) find a superior performance
of time-series models (especially of those using the Kalman filter) over
historical estimators for beta in an in-sample analysis, while not presenting
any out-of-sample evidence.

The relative underrepresentation of research studying beta estimation
in the extant literature might, to some extent, be caused by the fact that
beta requires information on correlations, which is not as easily obtained
from options as is information on volatilities. Only very recently have several
authors developed option-implied approaches to estimate beta.

Chang et al. (2012) develop such an option-implied approach and show
that it often outperforms the historical beta in a cross-sectional analysis.
Baule, Korn, & Safning (2015) compare various different fully implied beta
estimators. They obtain the best performance using betas based on implied

variances. However, Chang et al. (2012) do not compare their approach

'For the one month horizon estimator.

2QOther papers on volatility estimation include Jorion (1995), Guo (1996), Poon &
Granger (2003), Szakmary, Ors, Kyoung Kim, & Davidson III (2003), Martens & Zein
(2004), Agnolucci (2009) or Charoenwong, Jenwittayaroje, & Low (2009).
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for implied betas directly to other existing approaches and Baule et al.
(2015) only compare the performance of fully implied estimators among
one another and to the simple historical estimator relying on a small Dow
Jones Industrial Average (DJIA) 30 sample.

Buss & Vilkov (2012) propose another implied approach imposing a
correction on historical correlations and compare it to historical, hybrid,
and the Chang et al. (2012) implied beta estimator. However, they do
not examine the performance of time-series models and other fully implied
beta estimation techniques. Furthermore, they limit their attention to a
comparatively long horizon of one year. Very recently, Engle (2014) and
Bali, Engle, & Tang (2015) show that dynamic conditional beta does well
in a cross-sectional analysis.

The remainder of this chapter is organized as follows. Section 2.2
describes our data set and methodology, providing an overview of the
approaches considered. In Section 2.3 we present our empirical results.
Section 2.4 checks the robustness of our results and Section 2.5 finally
presents our conclusions. In the appendix to this chapter, which can be

found in Section A, we present the results of additional analyses.

2.2 Data and Methodology

2.2.1 Data

We base our study on the S&P 500 market index and its constituents
for the sample period between January 01, 1996 and December 31, 2012.3

Additionally, we perform a robustness analysis on a sample based on the

3The starting date of our study is thereby determined by the start of the
OptionMetrics database in January 1996.
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DJIA.* We obtain daily and monthly price data as well as data on dividend
payments and shares outstanding from the Center for Research in Security
Prices (CRSP) for the period from January 01, 1994 until December 31,
2012.%:6 To be able to compute historical and time-series model estimates
right from the start of our study period and to perform a portfolio sorting
using non-overlapping data, this data starts two years before the main
sample period.

Options data are from the IvyDB OptionMetrics Volatility Surface
that directly provides implied volatilities for standardized delta levels and
maturities.” We use options with approximately six months to maturity
since we want to obtain six-month estimates for beta. As a robustness check
we also repeat the analysis with options of approximately one, three, and
twelve months to maturity. We select out-of-the-money (OTM) options,
namely puts with deltas larger than -0.5 and calls with deltas smaller than
0.5. Thereby we obtain options data for 438 stocks in 1996 growing to 493
stocks in 2010 out of the 500 contained in the S&P 500 at each respective
date. On average, options data on 472 stocks is available. Data on the

risk-free rate is collected from the IvyDB zero curve file.

2.2.2 Option-Implied Moments

Several of the beta estimation approaches are based on option-implied

moments. Therefore we follow Bakshi, Kapadia, & Madan (BKM) (2003),

4The sample period for the DJIA dataset begins on January 01, 1998 as options on the
DJIA are traded no earlier than October 1997 at the Chicago Board of Options Exchange
(CBOE). We do not start before the beginning of the new year to avoid spurious findings
caused by potentially small initial trading volumes in the new market.

5The data for monthly estimators, that can be found in the appendix to this chapter,
starts on January 01, 1986.

SData on the DJIA is not available through CRSP, therefore we obtain price data
from the Bloomberg database.

"IvyDB uses a kernel smoothing algorithm and only reports standardized options “if
there exists enough option price data on that date to accurately interpolate the required
values”. For more details refer to the IvyDB technical document.

12



2.2. DATA AND METHODOLOGY

who make use of the property that any payoff can be spanned using a
continuum of OTM puts and calls (Bakshi & Madan, 2000) and Jiang &
Tian (2005) to compute model-free option-implied volatility, skewness and
kurtosis.® For that, we first compute ex-dividend stock prices. Secondly, for
any given stock and trading day, we interpolate implied volatilities using a
cubic spline across moneyness levels (K/S, strike-to-spot), equally spaced
between 0.3 percent and 300 percent, to obtain a grid of 1,000 implied
volatilities (Chang et al., 2012). Implied volatilities outside the range of
available strike prices are extrapolated using the value for the smallest, resp.
largest, available moneyness level (as in Jiang & Tian, 2005 and Chang et al.,
2012). The volatilities are used to compute Black—Scholes option prices for
calls, C(.), if K/S>1 and puts, P(.), if K/S<1. These are used to obtain
the prices of the volatility (QUAD), the CUBIC, and the quartic (QUART)

8Note that Jiang & Tian (2005) compute implied volatility only. The procedure for
skewness and kurtosis, though, is equivalent.
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contract (Jiang & Tian, 2005):

QUAD = / i (1 _ln {gb O(r, K)dK (2.1)
s

K2

D,

K2
K

e [N
|
e i AL I

e [PEEDED
S

The integrals are approximated, following Dennis & Mayhew (2002),

using a trapezoidal rule. The option-implied moments can be computed as:

s el (T=1) ] (T—t)
p = e 1 5—QUAD — CUBIC (2.4)
et UART
- 24 Q )
rf —
(09?2 = e!TIQUAD — (u®)?, (2.5)
{ (T=) CUBIC — 3uQe T-DQUAD + 2(u2)3
skew? = ° 7 £ 9 =20 ) (2.6)
[67’t (T—t)QUAD _ (MQ)2]3/2
kurt® = éng*”QUABI¥4MQ4{kT7“CUBH}+MMQVedkT7”QUAI¥4KMQ%,(2.7)

(e (T=DQUAD—(10)2]?
where rtf denotes the risk-free rate and 1" — ¢ the time to maturity of the
contract. (0©)2, skew?, and kurt? are the option-implied variance, skewness,
and kurtosis, respectively. In the following, we use the respective values

obtained to compute beta estimates that require option-implied moments.
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2.2.3 Beta Estimation

Realized Beta Following Andersen et al. (2006) we use daily log-

returns to compute realized beta (RB):°

R D T
it T TN (2.8)
ZTZI "M
where r;, and 7y, refer to the (excess) return of asset j and the market
(excess) return at time 7, respectively. N is the number of observations
during the time period under investigation.

Andersen et al. (2006) show that under only weak regularity conditions
is this a consistent measure for the true underlying integrated beta. While
Hansen & Lunde (2006) strongly advise using realized volatility when
evaluating volatility models, we follow that spirit using ex post realized
beta to evaluate all the respective ex ante estimates obtained using the
different beta estimation methods.

Historical Beta Closely related to the above approach, we compute
historical estimates (HIST) in the usual way, following Fama & MacBeth
(FM) (1973) and many others, regressing an asset’s (excess) return on the
market (excess) return:

cov(r;, )

var(ryy)

Bix = (2.9)

We utilize beta estimated using one year of daily returns as, e.g., in Baker
et al. (2010).1°
Dynamic Conditional Beta We estimate both dynamic condi-

tional beta with GARCH models for the (co-) volatilities and AR-type

9We refer to past realized beta as a possible ex ante beta estimation technique as
HIST.

10VWe also test the standard FM beta computed using five years of monthly return data.
The results on that (and other montly beta estimators) can be found in the appendix to
this chapter.
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models that impose certain factor dynamics directly on the beta series.
We refer to both types as time-series models.

We consider dynamic conditional beta (Engle, 2014 and Bali et al.,
2015) using a Dynamic Conditional Correlation GARCH model (DCC) as
proposed by Engle (2002) and Cappiello, Engle, & Sheppard (2006), incor-
porating both the empirically well-established leverage effect by allowing for
an asymmetric effect of positive and negative return innovations, as well as
an asymmetric reaction of correlations on innovations in variances.!! First,
univariate volatility models are estimated as GJR GARCH (as proposed by
Glosten, Jagannathan, & Runkle, 1993):

ry = p+a (2.10)
a; ~ N(0,07) (2.11)
hi = w(a+Talren < plai, + Bhiy, (2.12)

where 7, is the daily (monthly) asset return, p is the mean return, and a,
represents the return innovations. I;_1[r;—1 < p] is an indicator function
taking the value of one if r;,_; is lower than p and zero otherwise.

The return innovation series is assumed to be conditionally (on the
time ¢t — 1 information set, ¥;_1) normally distributed with mean zero and
conditional covariance matrix H;, which can be decomposed as shown below
in equation (2.13). Once the univariate models are estimated, standardized
residuals €, = a; ¢/ \/m (with h;; being the respective variance element in

H;) can be used to estimate the correlation parameters (see Cappiello et al.

HSee Black (1976), Christie (1982), and many others.
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(2006)):

H, = D.PD, (2.13)
Pt - :_th :_1, (214)
Qt = (P — A/PA — B/_PB — G,NG) + Alﬁt_ldfilA (215)

+G’nt,1n271G + B/Qtle.

Dy is a diagonal matrix containing the standard deviations of the individual
assets. A, B, and G are k X k parameter matrices, n; = I[e; < 0]oe isa k X
1 indicator function where o denotes the Hadamard product (element-wise
multiplication). @ is a diagonal matrix containing the square roots of the
respective diagonal elements of ();, ensuring that P, is a valid correlation
matrix.

We use the model in the bivariate case (i.e., k = 2) for each estimation
including an asset-return series and that of the market index at a rolling
estimation window of one year for daily returns, thereby computing an
estimate for the respective beta in each month of our sample period.'?
We choose a rolling window instead of an expanding window to allow
for structural changes to be incorporated more quickly. The estimation
of all time-series models is conducted by maximum likelihood. Using the
parameter estimates, we iteratively estimate the covariances and betas for
all days until the end of the forecast horizon. The time ¢ estimate is then
obtained as the average beta over the forecast horizon.

For robustness, we also test the Constant Conditional Correlation
Model (CCC) of Bollerslev (1990), neither imposing a dynamic structure
on correlations (only on the volatilities) nor an asymmetric effect of return
innovations, thereby leaving more degrees of freedom for the estimation

process.

12For monthly estimators, we use the monthly returns of the past 60 months instead
of the past one year of daily returns. The results on monthly estimators can be found in
the appendix to this chapter.
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Kalman Filter Models We also include approaches directly
imposing a factor structure on beta and using the Kalman filter (see, e.g.,
Pagan, 1980 and Black, Fraser, & Power, 1992). As underlying dynamics,
we consider a random walk (equation (2.16), RW), a random walk with
drift (equation (2.17), RWp), an AR(1) (equation (2.18), AR), and an
ARMA(1,1) (equation (2.19), ARMA) model. In all four cases, the standard
CAPM security market line is taken as the measurement equation and the
transition equation describes the chosen model for the dynamic evolution

of beta in state-space form:

it = Bie1t e (2.16)

B ” = o+ Biar + € (2.17)
B = 1Bt + e (2.18)
@ﬁtRMA(Ll) = Q181+ € + 01654 1. (2.19)

We estimate the models analogous to those for dynamic conditional beta,
and also use one year of daily returns.

A drawback when using the time-series models (both GARCH and
Kalman) is that stability of the model structure has to be assumed.
Ghysels (1998) shows that if the factor structure hypothesized is inherently
misspecified, the errors made may even increase, compared to a static factor
model, which might be the major concern regarding this class of estimators.
Nevertheless, a superior performance of the time-series model estimators is
certainly possible, if the true dynamics is approximated sufficiently well.

Option-Implied and Hybrid Betas Siegel (1995) points out that
an implicit beta could be obtained directly through the use of exchange
options, an option to exchange the shares of a firm for the shares of a
market index. Unfortunately, however, these exchange options are currently
not traded. Thus, one has to rely on some identifying assumption in

order to obtain an implicit beta and thereby make use of the inherently
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forward-looking information that can be obtained from option prices. It
should be taken into consideration, though, that the implied approaches
yield estimates (at least partially) under the risk-neutral probability
measure which is likely to differ from the actual physical probability measure
if these sources of risk are priced in the market.!?

We consider several possibilities for option-implied betas, making use
of the model-free implied moments discussed above. These include the
hybrid approach of French et al. (FGK) (1983), that directly combines
historical correlations and option-implied volatilities, and that of Buss &
Vilkov (2012), who use the property that the implied variance of the market
index has to be the same as the implied variance of the value-weighted
portfolio of all market constituents (first relation) and combine that with
a technical condition for implied correlations to translate from physical
(p%4) to risk-neutral correlations (p3,), namely pg: , = p&, — ou(1 — pf;,). 1
Combining the two relations and solving for «;, implied correlations can be

computed. Thus, a beta estimate under the risk-neutral probability measure,

Q, is obtained by:

N
‘7;% Zizl (wi,tagtpg,t)

(U%,t)2 ’
Q

where 0, and U%¢ denote the implied volatilities obtained in equation (2.5)

8y, = (2.20)

for individual stocks and the market index, respectively.'® w;, denotes the
weight of the N individual assets in the market index at a certain point in

time. One main disadvantage of this approach is the fact that it requires

13See, e.g., Carr & Wu (2009) and Driessen, Maenhout, & Vilkov (2009) for literature
on the the price of volatility and correlation risk, respectively.

MMaking sure both that the matrix is a correlation matrix (all correlations not
exceeding one and the matrix being positive definite) and that it matches with empirical
observations, namely that implied correlations are higher than empirical ones and that
the correlation risk premium is higher for lowly correlated stocks. For more details, refer
to Buss & Vilkov (2012).

15Hereafter, to avoid the notation getting to messy, we suppress the superscript Q for
risk-neutral moments.

19



CHAPTER 2. ESTIMATING BETA

information on all the constituents of the index considered. The estimates
are likely to be biased if implied volatilities are not available for all stocks
of which the market index consists.

Additionally, we investigate the fully implied approach by Chang et al.
(CCJV) (2012) that solely relies on options data. Their estimator is given
by

ccyv [ SEEW;t 95t (2.21)
gt skew 4 omi)’ ’

using the identifying assumption that the skewness of the idiosyncratic
shock equals zero with skew,; and o}, denoting the implied skewness and
volatility of individual stocks and with 7 = M those of the market index,
respectively.' As pointed out by Chang et al. (2012), the first part of
equation (2.21) can be regarded as a correlation proxy.

Further fully implied estimators for beta also rely on certain assump-
tions on the return moments. A first approach makes use of the restriction
made by Skintzi & Refenes (SR) (2005), who impose the assumption that
the return correlation is identical for all stocks in the cross-section. This

yields the estimator

SR WitOjt Tt D WitP0j0i 599
gt 2 : ( : )
OMt

Kempf, Korn, & Safning (2015) propose two further possibilities that
are related to the above approaches. The first approach assumes that the
proportion of idiosyncratic variance is equal for all stocks in the cross-section
(KKS1), resulting in

KKS1 9t
it = =5 (2.23)
6Note that equation (2.21) only yields an estimate if the individual stock’s skewness

is negative given the usually observed negative skewness of the market. This is an obvious
shortcoming, especially for practical purposes.
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Secondly, they propose a beta estimator imposing the restriction that the

proportion of idiosyncratic kurtosis is identical for all stocks in the cross-

section (KKS2). This yields:

1/4
KKS2 kurtUS,j,t (2.24)

Jit N 1/4
D im wiikurtUS,@t

where kurtyg ;; is the unscaled kurtosis as obtained in Section I1.B, equation
(2.7).17

Risk Premium Adjustment The option-implied approaches
estimate beta under the risk-neutral probability measure. However, in
most situations we are interested in beta under the physical probability
measure. We therefore propose a new hybrid estimator for beta that employs
forward-looking information from option prices and, at the same time,
corrects for volatility risk premia. To obtain this estimator, we follow
the procedure in Prokopczuk & Wese Simen (2014a) to implement an
adjustment for the volatility risk premium. For that, we compute average
variance risk premia for a period of just under two years:!®

2 1 — U?,i,i+T

ARVRP], = = > I (2.25)

i=t—504 Jbi+T

ARV RP?, denotes the average relative variance risk premium from t — 504

to t — T, aii’i 4+ is the model-free implied variance of asset j at time i

for the period until i + 7 as obtained in equation (2.5), RV}, is the

realized variance over the time period ranging from ¢ to ¢ + 7, and 7
denotes the estimation horizon. To compute the risk premium adjustment
we require at least one hundred non-missing observations of both ¢%, ;.

and the corresponding RVJ?»’Z» +-- We then obtain the risk premium adjusted

5

1"Note that in equation (2.7) the kurtosis is scaled. To obtain the unscaled fourth
moment one has to multiply equation (2.7) by the squared implied variance. The implied
variance is provided in equation (2.5).

I8For the risk premium adjustment for evaluation horizons of three months and less,
we compute average variance risk premia for a period of just under one year.
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implied volatility RM FIV;;r for each point in time ¢ as:

0'.
j7

The risk premium adjusted beta (RPadj), is then computed by using
the historical correlation p;, and risk premium adjusted implied volatilities
for individual assets and the market index:

RMFIV,

RPadj
B = Pit* RMFIV,,

(2.27)

2.3  Empirical Results

2.3.1 Summary Statistics and Correlation Analysis

Panel A of Table 2.1 reports summary statistics on the different beta
estimation techniques. It can be seen that the value-weighted average beta
over all stocks in the S&P 500 (Meanyy ), a quantity which theoretically
has to be equal to one, is substantially different from that value in some
cases, suggesting that approaches which experience such deviations likely
yield biased estimates. While the value-weighted average beta of RW is
very close to one, those of RWp, AR, ARMA, and the GARCH DCC and
CCC are far off with values of 1.06, 0.98, 1.04, 0.93, and 1.04, respectively.
Looking at approaches employing information from the options market, we
find that the value-weighted averages of especially the hybrid FGK and the
fully implied CCJV, as well as SR and RPadj also are clearly different from
one, with values of 0.84, 1.15, 1.04, and 1.02, respectively. By construction,
the quantity is exactly equal to one for BV, KKS1, and KKS2, while it
is relatively close for HIST and HIST¢. The time-series model betas RW,
RWp, ARMA, and DCC are shown to vary strongly, with minimum values
smaller than —8 and maximum values greater than 16, potentially inducing

large errors for these extreme values. Furthermore, by construction, the fully
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Table 2.1: Summary Statistics and Sample Correlations

This table provides summary statistics on the different beta estimation techniques

in Panel A. All methods utilize (if necessary) daily return data and estimate beta for

six months. The sample period spans from January 1996 (beginning with estimates for

February 1996) until December 2012. Nobs denotes the number of monthly estimates,

Mean and Mean,,, are the equal- and value-weighted averages of the estimates over

the entire sample period, respectively. Std. dev., Median, Min, and Max present further

summary statistics on the overall standard deviation, median, minimum, and maximum

estimate, respectively. Panel B presents the sample correlation coefficients among the

different beta estimation techniques on the basis of individual estimates.

Panel A. Summary Statistics

Nobs Mean Meanyy Std. dev. Median Min Max
RW 98,179 1.0036 1.0026 0.5720 0.9313 -29.076 19.833
RWp 98,179 1.0713 1.0618 0.7650 0.9807 -36.212 24.796
AR 98,179 0.9662 0.9753 0.7770 0.8349 -2.0388 20.986
ARMA 98,179 1.0547 1.0369 1.0053 0.8724 -8.6868 48.673
DCC 98,176 0.9511 0.9304 0.8068 0.8648 -13.997 16.734
CCC 98,179 1.0731 1.0430 0.7009 0.9348 -0.6028 17.905
HIST 98,243 1.0022 1.0033 0.4680 0.9360 -0.6675 4.6485
HISTg 98,630 1.0021 1.0015 0.5036 0.9344 -0.9818 7.7906
FGK 94,889 0.8473 0.8436 0.3927 0.7998 -0.8230 5.7060
RPadj 90,190 1.0321 1.0206 0.5208 0.9498 -0.8554 5.5901
BV 95,043 1.0427 1.0000 0.3756 0.9870 -0.4646 6.9280
CCJV 89,530 1.2211 1.1505 0.4706 1.1579 0.0220 6.2420
SR 95,755 1.1077 1.0391 0.3693 1.0297 0.1215 6.2270
KKS1 95,755 1.1074 1.0000 0.3733 1.0260 0.1237 6.2000
KKS2 95,755 1.1038 1.0000 0.3635 1.0258 0.1341 6.3583
Panel B. Sample Correlation Coefficients
< © s
o = 9 o g g x I = 58
Z £ £ 2 B 8 EE £ & B 8 g 2 E
* 091 0.76 0.68 0.54 0.64 0.82 085 079 080 0.77 052 0.61 0.61 0.61 | RW
* 0.79 0.70 0.51 0.60 0.76 086 0.74 0.75 0.72 0.49 0.58 0.57 0.57 | RWp
* 0.67 0.44 0.52 068 0.76 0.66 0.68 0.64 043 0.49 048 048 | AR
* 0.41 048 0.59 0.68 0.57 0.60 0.57 040 0.48 0.47 0.47 | ARMA
* 0.71 0.59 0.57 0.56 055 053 039 045 044 0.44 | DCC
* 0.71 0.68 0.66 0.66 064 048 056 0.56 0.56 | CCC
* 0.93 090 0.92 0.88 0.58 0.69 0.68 0.68 | HIST
* 0.87 0.88 0.84 0.57 0.67 0.66 0.66 | HISTg
* 0.95 0.89 0.67 0.71 0.70 0.70 | FGK
* 0.90 0.64 0.74 0.73 0.73 | RPadj
* 0.70 0.88 0.88 0.87 | BV
* 0.77 0.77 0.77 | CCJV
* 1.00 0.99 | SR
* 1.00 | KKS1
* KKS2
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implied CCJV, SR, KKS1, and KKS2 cannot adopt negative values, casting
some doubt on their performance.

Panel B of Table 2.1 presents the sample correlation coefficients among
betas obtained with different estimation techniques on the basis of their
estimates for individual assets. We note very high correlations greater
than 0.9 among the fully implied estimates (namely KKS1, KKS2, and
SR), FGK and the risk premium adjusted estimates (RPadj), HIST and
HISTg, as well as among HIST and RPadj. When comparing the remaining
estimators, in many cases the correlations are only moderate or quite low.
The smallest correlation among the estimates of the remaining approaches
is observed between DCC and CCJV, amounting to only 0.39. This shows
that the estimated values vary substantially across the different approaches,

providing evidence for the need to study their performance further.

2.3.2 Information Content

A common way to evaluate the performance of ex ante estimates are Mincer
& Zarnowitz (1969) regressions. We therefore regress the six-month (ex post)

realized beta on the different (ex ante) beta estimates in the following way:
BET = a+bGr + €. (2.28)

5{} denotes the realized beta in the period ranging from ¢ to 7' and
Gt stands for one beta estimate in univariate regressions or a vector of
several beta estimates in encompassing regressions. With the approach in
equation (2.28) we can test for the informational efficiency and unbiasedness
of the respective estimates.!” As Hansen & Lunde (2006) show, using

logarithmically transformed variables for the regressions, while making the

19While the value-weighted average betas we examine in Section III.A indicate that
some approaches are biased on average, with the portfolio approach we employ here, we
can test for unbiasedness on a rather individual level.

24



2.3. EMPIRICAL RESULTS

regression procedure less sensitive to outliers (Pagan & Schwert, 1990), often
leads to inconsistent rankings of the estimation models if an unbiased but
imperfect proxy for the true evaluation variable is used. They further show
that level Mincer-Zarnowitz regressions are robust to (mean zero) errors in
the proxy. Consequently, we stick to levels instead of logs to obtain results
that are more robust.

Unbiasedness is tested in univariate regressions by performing a
Wald test, imposing the joint hypothesis of a being equal to zero
and b being equal to one. For an unbiased model we should not be
able to reject the underlying hypothesis. Informational efficiency can be
tested in encompassing regressions by constraining the slope parameters
of alternative estimators to zero, thereby determining if the respective
approaches contain information beyond that of a baseline model. If, in
encompassing regressions, one estimator is to be more informative it must
have a significant slope estimate and the explanatory power must rise
compared to the restricted model. Additionally, we test the joint hypothesis
of one slope parameter being equal to one and the second slope parameter
being equal to zero. The underlying hypothesis of this test states that one
approach fully subsumes all information contained in the other approach it
is tested with.

To conduct our analysis we follow the approach suggested by Fama &
MacBeth (1973). At the end of each month, we form five value-weighted
portfolios out of the individual stocks in our sample. We sort the stocks
according to their estimate for historical beta (of equation (2.9)) obtained in
an estimation period (sorting period) strictly before the estimation period
of the historical beta serving as one beta estimate in an ascending order

and compute estimates as well as realizations for beta for each of these
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portfolios.?? This approach ensures that we obtain a certain range in the
estimated values and delivers results that are comparable. At the same
time, this avoids a bias in our analyses related to a potential errors-in-the-
variables problem. To keep the analysis comparable, we can only include
those estimates in our sample where all approaches yield an estimate.?!

To keep the presentation manageable, we select at least one approach
from each model family to perform our main analysis. We select Historical
(HIST), the Kalman filter random walk (RW), DCC GARCH (DCC), the
hybrid FGK and BV, the fully implied CCJV and KKS1, and the risk
premium adjusted (RPadj) approach, and consider the remaining methods
in the robustness analysis in Section IV. In all analyses, we evaluate the
approaches using realized beta during the subsequent six months. Table 2.2
presents the regression results for daily estimation approaches.??

Panel A of Table 2.2 presents the results of the univariate regressions for
each estimation approach and each of the five portfolios. It can be seen that
in most cases the intercept estimate is significantly (at 5 %)?? different from
zero and the estimate for the slope coefficient is significantly different from

one.?* Only the approaches HIST, RW, KKS1, and BV yield non-significant

29For example, using daily data and estimating beta at the end of January 1996,
evaluating it in the period February — July 1996, the estimation of historical beta uses
return data from February 1995 until the end of January 1996. The portfolio sorting
is carried out according to the estimate for historical beta using return data between
February 1994 and the end of January 1995. If historical return data is not available,
the quantity is set to one. The procedure for monthly analysis is performed accordingly,
starting the first sorting period in February 1986.

21The major cause of reduction results from the impossibility of computing the CCJV
beta in some cases, as pointed out in Section II.C and the general unavailability of
sufficient options and return data (see Section III.A).

22 A further analysis on the approaches using monthly return data can be found in the
appendix to this chapter.

ZFurther mentions of (non-) significance will always refer to the five percent
significance level.

24Note that for univariate regressions the t-statistics of the slope coefficients test the
hypothesis of those being equal to one and not, as is usually done, equal to zero. In the
multivariate regressions, the t-statistics refer to the usual hypothesis that the parameters
are equal to zero.
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values for some portfolios. The joint hypothesis of a being equal to zero and
b being equal to one is rejected in any case, suggesting that the approaches
yield biased estimates. HIST and RW obtain the lowest values for the Wald
test, but still the null hypothesis of unbiasedness is strongly rejected. For
each portfolio except the last, BV yields the highest adjusted R? followed by
RW and HIST, indicating that those three approaches exhibit the highest
explanatory power. RPadj has the highest explanatory power for portfolio
five. Noteworthy are also the particularly poor performances of DCC and
CCJV, yielding very high values for the Wald statistic and obtaining values
for the adjusted R? that are below 0.35 for all portfolios.

Looking at the results of the encompassing regressions in Panel B of
Table 2.2 we find that DCC obtains a rather poor performance with HIST
and BV being informationally more efficient for all portfolios, meaning
that in bivariate regressions the coefficients for the latter are significantly
different from zero whereas those of DCC are not. The BV approach yields
a significant slope parameter in every case and is informationally more
efficient compared to most other beta estimation approaches. Whenever
the slope parameters of other methods competing with BV are significantly
different from zero, they are economically not very large. Only FGK and
RPadj do yield statistically significant and economically large estimates for
one portfolio in a joint encompassing regression together with BV. The
explanatory power increases in every case when adding the BV beta to all
other models. The hypothesis that one approach subsumes all information
contained in another approach (indicated by the tests Wald; and Waldy) is
rejected in most cases. There are some cases, though, where the hypothesis
that BV subsumes all information contained in, e.g., HIST, DCC, or KKS1
cannot be rejected. Combining HIST and the fully implied KKS1, the
latter is shown to contain some additional information, making a significant

contribution in three out of five cases and, at least slightly, increasing
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the explanatory power. Comparing FGK and its risk premium adjusted
counterpart, RPadj, the results are not clear. FGK is favored for two
portfolios and RPadj is favored for one, so it remains unclear if the risk
premium adjustment yields an improvement.?” In addition, looking at the
univariate regressions, further analysis shows that the intercept estimates
for FGK and RPadj do not differ significantly. This also conflicts with the
possible view that an uniform bias may consistently be removed.

In contrast, comparing our risk premium adjusted beta estimator with
the BV approach, the latter performs clearly better. While our approach
corrects implied volatilities for the well-established variance risk premium
and therefore obtains an estimate under the physical probability measure,
the BV approach corrects for the risk premium at the level of correlations
in the opposite direction and obtains an estimate under the risk-neutral
probability measure. Given that realizations under the real world probability
measure are of interest, this is somewhat surprising. A potential explanation
is offered by Chang et al. (2012), who show that for certain parameter
constellations the bias caused by the use of risk-neutral moments can be
quite small. In other words, in the case of beta, there are biased moments
in both the numerator and the denominator and the two effects may cancel
out.

Overall, our results on estimators based on daily return data suggest
that Buss & Vilkov (2012) approach yields informationally most efficient
though not entirely unbiased estimates. Furthermore, the random walk
approach, the simple historical estimator, and KKS1 are shown to possess
some informational efficiency, when comparing them to the remaining

approaches.

25However, one has to keep in mind that the regression may not be too informative;
given the very high correlations between the two, serious problems related to
multicollinearity arise.
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2.3.3 Estimation Accuracy

Turning the focus on out-of-sample estimation accuracy, we employ the
loss function most commonly applied in the literature, namely root mean
squared errors (RMSE) to evaluate the performance of the different beta

estimation techniques:

n

RMSE = > (B = Gr)? (2.29)
t=1

SHNS

Here, n is the number of estimation windows, ﬂﬁT again denotes the
realized beta over a period from ¢ until 7', and (; r is the respective beta
estimate. Patton (2011) shows that only the mean squared errors (MSE)
criterion, as opposed to other commonly used loss functions like mean
average errors (MAE), mean average percentage errors (MAPE), and mean
squared percentage errors (MSPE), is robust to the presence of (mean zero)
noise in the evaluation proxy, so we choose this loss function.?

Table 2.3 summarizes the estimation errors using daily return data.
We observe that BV yields the smallest average RMSE over the five
portfolios (as indicated by italic font), followed by RW and HIST. The fully
implied CCJV and the GARCH DCC achieve the worst and second-worst
performance, respectively. Adjusting for the volatility risk premium clearly
reduces the average estimation error (comparing RPadj to FGK). Overall,
both FGK and RPadj, as well as KKS1, can be found in the mid-range
regarding the estimation accuracy.

To further examine the results, we analyze whether the differences we

observe are statistically significant. The remainder of Table 2.3 presents

the average differences in root mean squared errors in the upper triangular

26We present the results on other loss functions, including MAE, MAPE, and MSPE
in the appendix to this chapter.
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Table 2.3: Estimation Errors: Six-Month Horizon — Daily Data

This table reports the out-of-sample estimation errors of competing estimators, using
daily return data, for realized beta over the horizon of six months for each portfolio.
We build five quintile portfolios into which the stocks are allocated in an ascending
order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We
determine portfolio betas and returns as value-weighted averages. The first row reports
the average root mean squared errors (RMSE) of the estimation models over the five
portfolios. The lowest errors among all approaches are indicated by italic font. The
remainder of the table reports the differences in estimation errors. The upper triangular
matrix reports the differences in root mean squared estimation errors, averaged over
the five portfolios. Similarly, the lower triangular matrix reports the average median
differences of estimation errors. We compute the difference between the errors of the
model [name in row] and those of the model [name in column/. The absolute numbers
in brackets indicate the share of portfolios for which the difference is significant (e.g., 0.4
indicates that the differences for two out of five portfolios are statistically significant).
If the differences are significant for all five portfolios, the figure is printed in bold font.
Significance is tested by the modified Diebold—Mariano and the Wilcoxon signed rank
tests for the upper and lower triangular matrices, respectively. The sign indicates the

direction of the significant differences.

HIST RW DCC  FGK  CCJV  KKSI BV RPadj
avg. 01381 01301  0.2676  0.2203 02783 01704  0.116;  0.1718
HIST 0.0079  -0.1295  -0.0822  -0.1402  -0.0323  0.0217  -0.0337
00)  (-1.0)  (-08) (08  (-04) (0.2) (-0.6)
RW 0.0002 01374 -0.0901  -0.1482  -0.0403  0.0138  -0.0416
(-0.4) (-1.0)  (-1.0)  (-08)  (-0.2) (0.2) (-0.6)
DCC 0.0639  0.0637 0.0473  -0.0108  0.0972  0.1512  0.0958
(1.0) (1.0 (0.0) (0.0) (0.6) (1.0) (0.8)
FGK 0.1001  0.0999  0.0362 20.0581  0.0499 01039  0.0485
(1.0) (1.0 (0.2) (-0.6) (0.6) (1.0) (0.2)
CCJV 0.1143 0.1141 0.0504 0.0142 0.1079 0.1620 0.1066
(1.0) (1.0 (0.6) (0.4) (0.8) (1.0) (1.0
KKS1 00113 00110  -0.0526 -0.0888  -0.1031 0.0541  -0.0013
(0.4) (0.6) (-0.8)  (-08)  (-1.0) (0.8) (-0.2)
BV -0.0111 -0.0113 -0.0750 -0.1112 -0.1254 -0.0224 -0.0554
(-0.6)  (:0.6) (-1.0) (-1.0)  (-1.0)  (-1.0) (-0.6)
RPadj 0.0256 0.0254 -0.0383 -0.0745 -0.0888 0.0143 0.0367
(0.8) 08)  (-1.0)  (-1.0)  (-1.0)  (0.2) (1.0)
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matrix and the respective median differences in the lower triangular matrix.
We compute the difference between the errors of the model [name in
row/ and those of the model [name in column/. The absolute numbers
in parentheses indicate the share of portfolios for which the difference is
statistically significant (e.g., 0.4 indicates that the differences for two out
of five portfolios are significant). If the differences are significant for all
five portfolios, the figure is printed in bold font. Significance is tested by
the modified Diebold-Mariano (Harvey, Leybourne, & Newbold, 1997) and
the Wilcoxon signed rank tests for the upper and lower triangular matrix,
respectively. The sign indicates the direction of the significant differences.
We find that BV always obtains lower average root mean and median
squared errors than the other methods. These differences are statistically
significant for all portfolios compared to DCC, FGK, and CCJV, and at least
three portfolios compared to KKS1 and RPadj, whereas when comparing to
HIST and RW, the RMSE of BV is significantly lower for one portfolio and
the root median SE is significantly lower for three portfolios. HIST and RW
yield significantly lower estimation errors than all other methods, except BV
and KKSI1, for at least three out of the five portfolios and than KKS1 for
at least one portfolio. Overall, the evidence indicates that the BV approach
obtains the best out-of-sample accuracy, followed by RW and HIST.

2.4 Robustness

2.4.1 More Portfolios

We test whether the results obtained so far are robust to building more
portfolios. Thus, we build 10, 25, and 50 portfolios and in the limit we also
consider the case of individual stocks. Table 2.4 reports the results, which are

quite similar to our previous findings. We observe that the average errors in
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general increase with the number of portfolios. Independently of the number
of portfolios, BV always obtains the lowest average RMSE, yielding the
lowest error for a minimum of 60 percent when building portfolios. In the
case of estimates for individual stocks, BV also obtains the lowest average
RMSE, though not much can be stated as each approach has its share where
it yields the lowest errors, indicating that all approaches work well for some
stocks. Overall, the BV, HIST, and RW approaches also perform best when

increasing the number of portfolios.

2.4.2 Different Horizons

To further examine the robustness of our results we perform the evaluation
using different time horizons, namely one, three, and twelve months.
We estimate the values for option-implied methods using options with
approximately one (three, twelve) months to maturity and adjust the
horizon for time-series models to the respective time frame, evaluating all
the methods using realized beta over the subsequent one, three, and twelve
months, respectively.

Panel A of Table 2.5 reports the estimation errors of our main methods
and their significance for the one-month evaluation period. We find that
using this evaluation horizon yields the same result with BV, HIST, and
RW being the approaches with the best out-of-sample estimation accuracy.
BV obtains the lowest average RMSE. Comparing the mean and median
differences of the estimation errors, only in relation to KKS1, HIST and
RW do not yield a significantly lower error at least for eighty percent of the
portfolios, while BV always does. For some portfolios, BV yields significantly
lower median errors compared to HIST and RW. The results for three and
twelve months in Panels B and C are qualitatively equal. BV always obtains

the lowest average RMSE, with significantly lower errors in many cases

35



CHAPTER 2. ESTIMATING BETA

Table 2.4: Estimation Errors: More Portfolios

This table reports the root mean squared (RMSE) errors of the competing estimators,
using daily return data, for realized beta over the horizon of six months, for different
counts of portfolios. Each month, we form N portfolios with N amounting to 5, 10, 25,
50, and in the limit we also consider the case of solely individual assets (in this case
we compute the values of the loss functions for each asset in every month of our sample
period individually and average over all errors). The stocks are allocated into N portfolios
in an ascending order according to their historical beta in the sorting period (taking place
directly before the estimation period for historical beta without overlap and with equal
length). The numbers in parentheses denote the count (as proportions) of portfolio series
for which a certain approach yields the lowest error among those presented in the table.
For each loss function, the lowest average errors among all approaches are indicated by

ttalic font.

HIST RW DCC FGK CCJV KKS1 BV RPadj

5 Portfolios
avg. RMSE 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718
(0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.60) (0.20)

10 Portfolios
avg. RMSE 0.1518 0.1474 0.2868 0.2273 0.2901 0.1854 0.1304 0.1837
(0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.80) (0.00)

25 Portfolios
avg. RMSE 0.1735 0.1787 0.3260 0.2397 0.3099 0.2075 0.1540 0.1998
(0.00) (0.12) (0.00) (0.00) (0.00) (0.00) (0.84) (0.04)

50 Portfolios
avg. RMSE 0.1975 0.2131 0.3683 0.2558 0.3323 0.2340 0.1808 0.2198
(0.10) (0.02) (0.00) (0.00) (0.00) (0.00) (0.80) (0.08)

individual assets
avg. RMSE 0.5374 0.5866 0.8309 0.5592 0.6616 0.5826 0.5363 0.5379
(0.09) (0.12) (0.13) (0.17) (0.15) (0.13) (0.08) (0.11)
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Table 2.5: Estimation Errors: Different Horizons — Daily Data

This table reports the out-of-sample estimation errors of competing estimators, using
daily return data, for realized beta over horizons of one (Panel A), three (Panel B),
and twelve (Panel C) months for each portfolio. We build five quintile portfolios into
which the stocks are allocated in an ascending order according to their historical beta
in the sorting period (taking place directly before the estimation period for historical
beta without overlap and with equal length). We determine portfolio betas and returns
as value-weighted averages. In each Panel, the first row reports the average root mean
squared errors (RMSE) of the estimation models over the five portfolios. The lowest errors
among all approaches are indicated by italic font. The remainder of the panels report
the difference in estimation errors. The upper triangular matrices report the differences
in root mean squared estimation errors, averaged over the five portfolios. Similarly, the
lower triangular matrices report the average root median differences of estimation errors.
We compute the difference between the errors of the model [name in row/ and those of
the model [name in column/. The absolute numbers in parentheses indicate the share of
portfolios for which the difference is significant (e.g., 0.4 indicates that the differences for
two out of five portfolios are statistically significant). If the differences are significant for
all five portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold—Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign indicates the direction of the significant differences.

Panel A. One Month

HIST RW DCC  FGK  CCJV  KKSI BV RPadj
avg. 0.1637  0.1515 02231 02193 04285 02051  0.1483  0.1977
HIST 0.0122  -0.0594  -0.0556  -0.2648  -0.0414  0.0153  -0.0340
(0.0) (-0.8)  (-0.8)  (-0.8)  (-0.2) (0.0) (-0.8)
RW -0.0022 20.0717  -0.0678  -0.2770  -0.0536  0.0031  -0.0462
(-0.2) (-1.0)  (-1.0)  (-1.0)  (-0.4) (0.0) (-0.8)
DCC 0.0375  0.0397 0.0038  -0.2053  0.0181  0.0748  0.0254
(1.0) (1.0 (0.0) (-0.8) (0.4) (1.0) (0.0)
FGK 0.0525  0.0547  0.0150 0.2092 00142 00709  0.0216
(1.0) (1.0) (0.0) (-0.8) (0.4) (1.0) (0.0)
CCIV 01550 01572 01175 0.1025 02234 02801  0.2308
(1.0)  (1.0) (1.0 (0.8) (0.8) (1.0) (0.8)
KKSI 00189 00211 -0.0186 -0.0336  -0.1361 0.0567  0.0074
(0.4) (0.6) (-0.4) (-0.4) (-1.0) (0.6) (0.0)
BV 0.0041  -0.0020  -0.0417  -0.0567  -0.1592  -0.0231 -0.0493
(-04)  (-02)  (-1.0)  (-1.0)  (-1.0)  (-1.0) (-0.8)
RPadj 00340 00362 -0.0035 -0.0185 -0.1210  0.0151  0.0382
(0.8) (0.8) (0.0) (10.6)  (-1.0)  (04) (0.8)
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Table 2.5: Estimation Errors: Different Horizons — Daily Data (continued)

Panel B. Three Months

HIST RW DCC  FGK  CCJV  KKSI BV RPadj
avg. 01380 01281 02259  0.2057  0.3335 01771  0.1191  0.1791
HIST 0.0100  -0.0879  -0.0676  -0.1955  -0.0391  0.0189  -0.0411
0.0)  (-1.0)  (-08)  (-0.8)  (-02) (0.0) (-0.8)
RW -0.0031 0.0979  -0.0776  -0.2054  -0.0491  0.0089  -0.0511
(-0.4) (-1.0)  (-1.0)  (-1.0)  (-0.2) (0.0) (-0.8)
DCC 0.0494  0.0525 0.0203  -0.1075  0.0488  0.1068  0.0468
(1.0) (1.0 (0.0) (-0.8) (0.4) (1.0) (0.4)
FGK 0.0784  0.0815  0.0289 01278 0.0286  0.0866  0.0265
(1.0)  (1.0) (0.2) (-0.8) (0.4) (1.0) (0.0)
CCIV 01313 01344 00818  0.0529 0.1564  0.2144  0.1544
(1.0) (1.0 (0.8) (0.6) (0.8) (1.0) (0.8)
KKSI 00151  0.0182  -0.0343  -0.0633  -0.1162 0.0580  -0.0020
(0.6)  (06)  (06)  (0.6)  (-08) (0.8)  (-0.2)
BV 20.0087  -0.0056  -0.0581  -0.0871  -0.1400  -0.0238 -0.0600
(0.6)  (0.2)  (-1.0)  (-1.0)  (-1.0)  (-1.0) (-0.6)
RPadj 00305 0033  -0.0189 -0.0479  -0.1008  0.0154  0.0392
(0.8) (1.0)  (0.6)  (0.8)  (-1.0)  (0.4) (1.0)

Panel C. Twelve Months

HIST RW DCC  FGK  CCJV  KKSI BV RPadj
avg. 0.1488  0.1423 03374 02307 02674 01677  0.1227  0.1895
HIST 0.0065  -0.1886  -0.0820  -0.1187  -0.0190  0.0261  -0.0407
0.0)  (-1.0)  (-0.8)  (-0.8) (0.0) (0.2) (-0.4)
RW -0.0019 01951  -0.0884 -0.1251  -0.0254  0.0196  -0.0471
(0.0) (-1.0)  (-1.0)  (-1.0)  (-0.2) (0.2) (-0.6)
DCC 0.0714  0.0734 0.1067  0.0700  0.1697  0.2147  0.1479
(1.0) (1.0 (0.0) (0.2) (0.8) (1.0) (1.0
FGK 0.1003  0.1023  0.0289 0.0367  0.0630  0.1080  0.0413
(1.0)  (1.0)  (-0.2) (-0.2) (0.8) (1.0) (0.0)
CCIV 01188 01208  0.0474  0.0185 0.0997  0.1447  0.0780
(1.0)  (1.0) (0.2) (0.0) (0.8) (1.0) (0.8)
KKS1 00054  0.0073  -0.0660 -0.0950  -0.1135 0.0450  -0.0217
(0.4) (0.4) (-0.8)  (-0.8)  (-1.0) (0.8) (-0.2)
BV 0.0163  -0.0144  -0.0877  -0.1167  -0.1352  -0.0217 -0.0667
(:0.6)  (0.6)  (-1.0)  (-1.0)  (-1.0)  (-1.0) (-0.4)
RPadj 00214 00234  -0.0500 -0.0789  -0.0974  0.0161  0.0378
(0.8) (1.0)  (-1.0)  (-1.0)  (-1.0)  (0.4) (0.6)
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compared to the other approaches.
Summing up, when changing the evaluation period to one, three, or
twelve months, BV, RW and, to a slightly lesser extent, HIST are still the

best approaches.

2.4.3 Further Models for Implied Beta

We examine further possible beta estimators utilizing information from
option prices. Looking at Panel A of Table 2.6, we find KKS2, based on
implied kurtosis, to obtain quite similar results as KKS1, based on implied
volatilities. Both yield a little higher estimation errors than SR, which is
also based on implied volatilities, while all three yield substantially lower
estimation errors compared to CCJV. However, HIST, RW, and BV still
yield even lower errors. To summarize, even the simple historical benchmark
is to be preferred over all the fully implied methods taken into consideration.
The assumptions that have to be made on (co-) moments for the fully
implied estimators therefore seem to be invalid. BV, RW, and HIST,
utilizing correlations from historical return data, consistently outperform

these models.

2.4.4 Option Liquidity

As option-implied approaches strongly rely on precise estimates for the
option-implied moments, the rather poor performance could be caused by
poor quality of the options data, resulting in imprecise moment estimates.
To check for that, we repeat our analysis for all stocks contained in the
DJIA 30.2” The DJIA includes 30 of the largest U.S. companies that both

commonly have more options traded (in terms of strike prices) and exhibit

27Since some methods require information on all members of an index, it is not possible
to just select a subset of stocks from the S&P 500. Thus, we focus on an index that has
significantly fewer members than the S&P 500.
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Table 2.6: Estimation Errors: Six-Month Horizon — Daily Data
(Further Implied and DJIA)

This table reports the out-of-sample estimation errors of competing estimators, using
daily return data, for realized beta over the horizon of six months for each portfolio.
We build five (Panel A), respectively two (Panel B), portfolios into which the stocks are
allocated in an ascending order according to their historical beta in the sorting period
(taking place directly before the estimation period for historical beta without overlap and
with equal length). We determine portfolio betas and returns as value-weighted averages.
In each panel, the first row reports the average root mean squared errors (RMSE)
of the estimation models over the five (two) portfolios. The lowest errors among all
approaches are indicated by italic font. The remainder of the panels report the difference
in estimation errors. The upper triangular matrices report the differences in root mean
squared estimation errors, averaged over the five (two) portfolios. Similarly, the lower
triangular matrices report the average root median differences of estimation errors. We
compute the difference between the errors of the model [name in row/ and those of the
model [name in column/. The absolute numbers in parentheses indicate the share of
portfolios for which the difference is significant (e.g., 0.4 indicates that the differences
for two out of five portfolios are statistically significant). If the differences are significant
for all portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold—Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign indicates the direction of the significant differences.

Panel A. Further Implied Estimators

HIST RW CCJV SR KKS1 KKS2 FGK RPadj BV

avg. 0.1381 0.1301 0.2783 0.1674 0.1704 0.1720 0.2203 0.1718 0.1164
HIST 0.0079 -0.1402  -0.0293 -0.0323 -0.0339 -0.0822  -0.0337 0.0217
(0.0) (08  (02)  (04)  (04) (0.8  (0.6)  (0.2)
RW 0.0002 -0.1482  -0.0372  -0.0403  -0.0419 -0.0901 -0.0416 0.0138
(-0.4) ((0.8)  (10.2)  (0.2)  (0.2) (-1.0)  (06)  (0.2)
CCJV 01143 0.1141 01110 01079  0.1063  0.0581  0.1066  0.1620
(1.0)  (1.0) (0.8) (0.8) (0.8) (0.6) (1.0) (1.0
SR 0.0153 0.0150 -0.0991 -0.0030  -0.0046  -0.0529  -0.0044 0.0510
06)  (04)  (-1.0) (04)  (04)  (06)  (00)  (0.8)
KKS1 0.0113 0.0110 -0.1031  -0.0040 -0.0016  -0.0499  -0.0013 0.0541
04)  (0.6) (-1.0)  (-0.2) (:0.4)  (:0.6)  (0.2) (0.8
KKS2 00135 00133 -0.1008 -0.0018  0.0022 0.0482  0.0003  0.0557
04)  (06)  (-1.0)  (02)  (0.4) (:0.6)  (-0.2)  (0.8)
FGK 01001  0.0999 -0.0142 00849  0.0888  0.0866 0.0485  0.1039
(1.0)  (1.0)  (04) (06  (0.8)  (0.8) (02  (1.0)
RPadj 0.0256 0.0254 -0.0888 0.0103 0.0143 0.0121 -0.0745 0.0554
08 (08  (-1.0) (02)  (02)  (02)  (-1.0) (0.6)
BV 00111 -0.0113 -0.1254 -0.0263 -0.0224 -0.0246 -0.1112  -0.0367

(:0.6)  (-0.6) (-1.0)  (-0.6) (-1.0) (-1.0)  (-1.0)  (-1.0)
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Table 2.6: Estimation Errors: Sixz-Month Horizon — Daily Data (Further
Implied and DJIA) (continued)

Panel B. DJIA

HIST RW DCC CCJV SR KKS1 KKS2 FGK RPadj BV

avg. 0.1569 0.1558 0.2356 0.2627 0.2434 0.1798 0.1730 0.2067 0.1965 0.1560
HIST 0.0011 -0.0787  -0.1058 -0.0865 -0.0229 -0.0161 -0.0498 -0.0396 0.0009
(0.0)  (-1.0) (-1.0)  (-0.5)  (05)  (0.5) (-1.0)  (-0.5)  (0.0)
RW  -0.0005 0.0798  -0.1069 -0.0876 -0.0240 -0.0173  -0.0509 -0.0407  -0.0002
(0.0) (-1.0)  (-05) (05 (05 (05  (-L.0) (0.5  (0.0)
DCC  0.0439  0.0444 20.0271  -0.0078  0.0558  0.0626  0.0289  0.0391  0.0796
(1.0) (1.0 (05)  (00) (05 (05  (0.0)  (0.0) (0.5
CCIV  0.0821  0.0826  0.0382 0.0193  0.0829  0.0897  0.0560  0.0662  0.1067
(1.0) (1.0) (0.5) (0.0) (1.0) (1.0) (0.5) (0.5) (1.0)
SR 0.0784  0.0789  0.0344  -0.0037 0.0636  0.0704  0.0367  0.0460  0.0874
05 (05  (0.0)  (-0.5) 05 (05  (0.0) (05 (0.5
KKS1 00207 00212 -0.0232 -0.0614 -0.0577 0.0068  -0.0269 -0.0167  0.0238
(05 (05 (05  (-1.0)  (-0.5) (1.0) (05  (0.0)  (05)
KKS2  0.0105 00110 -0.0334 -0.0716 -0.0679 -0.0102 20.0337  -0.0235  0.0170
(05 (05  (0.5)  (-1.0)  (-0.5)  (-1.0) (-0.5)  (-05)  (0.5)
FGK 0.0650 0.0655 0.0211 -0.0171 -0.0134 0.0443 0.0545 0.0102 0.0507
(1.0)  (1L.0)  (0.0)  (0.0)  (0.0) (0.5  (0.5) 0.0) (0.5
RPadj 0.0318 00323 -0.0122 -0.0503 -0.0466 0.0111  0.0213  -0.0332 0.0405
(1.0)  (1.0) (05 (05  (0.0) (0.5  (05)  (-0.5) (1.0)
BV 0.0093  0.0098 -0.0347 -0.0728 -0.0691 -0.0114 -0.0012 -0.0557 -0.0225

(0.5) (0.5)  (-1.0)  (-1.0)  (-0.5)  (-1.0)  (-05)  (-1.0)  (-1.0)

a much higher liquidity compared to smaller stocks in the S&P 500.28
While Chakravarty, Gulen, & Mayhew (2004) find that option market price
discovery is related to trading volume, considering only very liquid options
may yield more precise estimates for the implied approaches.

The results are presented in Panel B of Table 2.6. We find that the fully
implied approaches CCJV, SR, KKS1, and KKS2 still obtain larger errors in
comparison to HIST, RW, and BV.? The results further show that HIST,
RW, and BV obtain significantly smaller mean and median errors for at

least one of the two portfolios. Thus, even when restricting the sample to the

Z8Note that although the total turnover on S&P 500 index options is substantially
higher than that on DJIA index options, on average the daily total contract volume
on DJIA index options of about 23,000 should be sufficiently high to obtain accurate
moment estimates, even at the six-month horizon.

29The results for the one-month horizon, where both the options on the index an these
on the individual assets should be more frequently traded, are qualitatively equal.
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DJIA, the fully implied models are inferior to a simple historical estimate.
The adjustment for the volatility risk premium (RPadj), that also may be
better fitted for better-quality options data, yields lower errors compared to
FGK, whereas the differences are not statistically significant in most cases.
Finally, under the presumably better options data, the average RMSE of
HIST, RW, and BV are approximately equal, with RW yielding the lowest
average RMSE. The RMSE of HIST, RW, and BV are significantly lower

than those of the remaining approaches for at least one of the two portfolios.

2.4.5 Further Time-Series Models

We investigate further models imposing a time-varying structure on beta,
namely a random walk with drift, a first-order autoregressive (AR(1))
model, an autoregressive moving average ARMA(1,1) model, and the CCC
Model of Bollerslev (1990), as well as realized beta over the past six months
(HISTg).*° Lewellen & Nagel (2006) argue that the results of short-term
regressions provide conditional parameters without the use of conditioning
variables as long as the parameters are relatively stable within that short
period. Consequently, HISTs might deliver better conditional estimates than
the simple historical estimator using one year of historical return data.

In Table 2.7 we find RWp, AR, ARMA, and especially HISTy¢ to
perform quite well, while CCC is clearly outperformed.?! Furthermore, it
can be seen that the less complex structure as in CCC yields a slight
improvement, when comparing the results to those of DCC. HIST¢ obtains a
smaller average RMSE compared to the historical estimate over one year, so

short-term conditional estimates may be better fitted. The average RMSE

30Note that adding a drift in models (2.18) and (2.19) for AR and ARMA does
especially affect ARMA adversely for long horizons. Consequently, we only report the
results of the models without drift.

31Note that the values change slightly compared to those in Table 2.3, as we are able
to retain more estimates since CCJV is not included in the analysis.
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Table 2.7: Estimation Errors: Six-Month Horizon — Daily Data
(Further Time-Series Models)

This table reports the out-of-sample estimation errors of competing estimators, using
daily return data, for realized beta over the horizon of six months for each portfolio.
We build five quintile portfolios into which the stocks are allocated in an ascending
order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We
determine portfolio betas and returns as value-weighted averages. The first row reports
the average root mean squared errors (RMSE) of the estimation models over the five
portfolios. The lowest errors among all approaches are indicated by italic font. The
remainder of the table reports the differences in estimation errors. The upper triangular
matrix reports the differences in root mean squared estimation errors, averaged over
the five portfolios. Similarly, the lower triangular matrix reports the average median
differences of estimation errors. We compute the difference between the errors of the
model [name in row] and those of the model [name in column/. The absolute numbers in
parentheses indicate the share of portfolios for which the difference is significant (e.g., 0.4
indicates that the differences for two out of five portfolios are statistically significant).
If the differences are significant for all five portfolios, the figure is printed in bold font.
Significance is tested by the modified Diebold-Mariano and the Wilcoxon signed rank
tests for the upper and lower triangular matrices, respectively. The sign indicates the

direction of the significant differences.

HIST HISTg RW RWp AR ARMA DCC CCC BV

avg. 0.1355  0.1283  0.1269  0.1870  0.1865  0.1899  0.2638  0.2572  (.1152
HIST 0.0072  0.0086 -0.0515 -0.0510 -0.0543 -0.1283 -0.1217  0.0203
00)  (0.0)  (-04)  (-08)  (0.8) (-1.0)  (0.8)  (0.2)
HISTs  -0.0041 0.0014  -0.0587 -0.0582 -0.0616 -0.1356 -0.1289  0.0131
(:0.2) 00) (-1.0) (-1.0) (-1.0) (-1.0)  (-0.8)  (0.2)
RW  -0.0022  0.0019 0.0601  -0.0596 -0.0630 -0.1370 -0.1303  0.0117
(0.2)  (0.0) ((0.8)  (-1.0) (-1.0) (-1.0) (08  (0.2)
RWp 0.0394 0.0435 0.0416 0.0005 -0.0029 -0.0769  -0.0702 0.0718
08  (1.0)  (1.0) 00)  (00) (0.8  (0.0)  (0.8)
AR 0.0345  0.0385  0.0366  -0.0049 0.0034  -0.0774 -0.0707  0.0713
(1.0)  (1.0)  (1.0)  (-0.2) 02)  (0.8)  (0.0)  (0.8)
ARMA 00369 00410 00391 -0.0025  0.0024 0.0740  -0.0673  0.0746
(1.0)  (1.0) (L0)  (02) (02 (0.8) (02  (0.8)
DCC 0.0638 0.0679 0.0660 0.0244 0.0293 0.0269 0.0067 0.1486
(1.0)  (1.0) (1L.0)  (0.8)  (08)  (0.8) 0.0)  (1.0)
CCC 00338 00379  0.0360 -0.0055 -0.0006 -0.0031 -0.0299 0.1420
(1.0)  (1.0) (LO)  (0.0)  (0.0)  (0.2)  (-0.8) (0.8)

BV -0.0137 -0.0096 -0.0115 -0.0531 -0.0482 -0.0506 -0.0775 -0.0475

(-0.8)  (-06)  (-0.6)  (-0.8)  (-1.0)  (-0.8)  (-1.0)  (-0.8)
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of RWp, AR, and ARMA are only moderate, but clearly higher than those
of BV, which overall again yields the lowest average RMSE. Regarding
significance, we find that HIST, HISTg, RW, and BV yield significantly lower
errors than AR, ARMA, DCC and CCC for at least four portfolios. Only in
rare cases are there significant differences among the formerly mentioned,

but in these cases, they are mostly in favor of BV. Overall we find, beside

HIST and RW, HISTg to be a valuable alternative to the BV approach.3?

2.4.6 Bias Removal

As we discuss in Section III.A, some estimators are heavily biased with
their cross-sectional value-weighted average estimate for beta, a quantity
that theoretically has to be equal to one if a full market index is used, being
substantially different from that value. A possible improvement could be to
try and remove the bias implied by these deviations.??

A first simple method we try is to standardize the estimators in
a way that their cross-sectional value-weighted average exactly equals
one. For that, for each approach, we simply divide each estimate by the
cross-sectional value-weighted mean beta of that approach at that time. We
apply the technique on all estimators but those that fulfill the condition
already by construction (e.g., KKS1 and BV). The results are shown in
Panel A of Table 2.8. Indeed, the simple bias removal seems to be working,
in particular for the two hybrid estimators FGK and RPadj, reducing
their RMSE almost to the level of BV with a significant difference for

no portfolio, comparing BV to FGK.?* Consequently, the main benefit

32The results for the one-month horizon, where the conditional estimates of the
time-series approaches are likely much more precise, are qualitatively equal. Overall,
BV delivers lower RMSE compared to all time-series approaches.

33We thank an anonymous referee for suggesting this.

34As can be seen in the appendix to this chapter, further analysis shows that BV still
is informationally more efficient compared to the bias-removed FGK and RPadj.
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of the BV approach seems to be not the adjustment of correlations to
the risk-neutral probability measure but rather the ensurement that the
estimates combining option-implied and historical return information are
approximatively unbiased in their cross-sectional average. For CCJV and
DCC, the bias removal yields a substantial improvement, however these
estimators are still inferior, while the improvement is quite small for HIST
and RW.

We also employ more refined bias-removal techniques in the spirit
of Mincer & Zarnowitz (1969) using regression techniques as in equation
(2.28).3° In a first approach we form portfolios as in Section III.B,
obtain estimates for each approach and then perform the univariate
regression for each approach separately, pooling all 60 (12 months times
5 portfolios) unadjusted ex ante estimates for each approach i as well as the
corresponding ex post realized portfolio beta estimates during the twelve
months t — 17 up to ¢ — 6 (as realized beta with a six-month window is only

available up to ¢t — 6 at time ¢):

g = ;¢ + bi,tﬁiUNADJ + €;. (2.30)

BUNADJ s the vector of pooled initial portfolio beta estimates of one

approach, while A% denotes the corresponding pooled realized beta vector.
Subsequently, after obtaining the regression coefficients a,; and ZA)Z-Vt, we

manipulate the current estimates, inserting them into the equation

ADJ _ ? AUNADJ
igt iy +biy 9.t ) (2.31)

where 5{?]%] is the adjusted estimate of approach ¢ and asset j at time t.
A second approach could be to try to remove the bias in the same

spirit combining it with the estimate for historical beta (HIST). For that,

35We consider further possibilities to try and remove bias in the appendix to this
chapter.
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we perform a bivariate regression of portfolio realized beta on each approach
and HIST over the twelve months ¢ — 17 up to ¢ — 6. The final adjustment

is then performed as follows:

ADT =y, + 0], BINAPT + BISTHIST,. (2.32)

0,0,t .5t

HIST;, is the estimate for historical beta at time ¢ and b, and b7 are the
regression coefficients on the considered approach and HIST, respectively.

The results on these approaches are presented in Panels B and C
of Table 2.8.36 The results on the adjustment of equation (2.31) indicate
an even slightly higher average RMSE for BV while all other approaches
also yield (in many cases significantly) higher RMSE than the initial BV.
The adjustment of equation (2.32), combining the estimates with HIST,
yields an improvement for DCC and the implied estimators FGK, CCJV,
and RPadj, indicating that not all information on historical returns is
incorporated in these estimators. For all remaining approaches, including
BV, the combination with HIST yields a higher RMSE compared to the
simpler bias removal using equation (2.31).

Consequently, a simple bias removal is shown to be valuable in
particular for hybrid estimators. Furthermore, our results suggest that a

regression-based bias-removal cannot further improve the performance of

BV, HIST, and RW.

2.5 Conclusion

This chapter examines the performance of a wide range of approaches
to estimating an asset’s market beta. Specifically, we investigate several

constant and time-varying models relying on historical return data and

36Note that the results for the uncorrected BVUC differ from those in previous tables
as the bias correction first needs 17 months of data before it starts, delaying the start of
the evaluation period.
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Table 2.8: Bias Removal

This table reports the out-of-sample estimation errors of competing bias-removed
estimators, using daily return data, for realized beta over the horizon of six months for
each portfolio. We build five quintile portfolios into which the stocks are allocated in
an ascending order according to their historical beta in the sorting period (taking place
directly before the estimation period for historical beta without overlap and with equal
length). We determine portfolio betas and returns as value-weighted averages. Panel A
presents the results on a simple bias removal, while Panels B and C present the results on
bias removals using regression techniques. In each panel, the first row reports the average
root mean squared errors (RMSE) of the estimation models over the five portfolios. The
lowest errors among all approaches are indicated by italic font. The remainder of the
tables report the difference in estimation errors. The upper triangular matrix reports
the differences in root mean squared estimation errors, averaged over the five portfolios.
Similarly, the lower triangular matrix reports the average median differences of estimation
errors. We compute the difference between the errors of the model [name in row/ and
those of the model [name in column]. The absolute numbers in parentheses indicate
the share of portfolios for which the difference is significant (e.g., 0.4 indicates that the
differences for two out of five portfolios are statistically significant). If the differences are
significant for all five portfolios, the figure is printed in bold font. Significance is tested
by the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrices, respectively. The sign indicates the direction of the significant

differences. BVUC refers to the non-corrected BV estimates.

Panel A. Simple Bias Removal

HIST RW DCC FGK CCJV  KKSI BV RPadj
avg. 01304 01263 01820  0.1200  0.1633 01704  0.116{  0.1272
HIST 0.0041  -0.0516 00104  -0.0329  -0.0400  0.0141  0.0032
(-0.2) (-0.8) (0.4) (-0.4) (-0.4) (0.2) (0.0)
RW -0.0029 20.0556  0.0063  -0.0370  -0.0441  0.0100  -0.0009
(0.0) (-1.0) (0.2) (-0.4) (-0.4) (0.2) (0.2)
DCC 0.0169  0.0199 0.0619 00187 00115  0.0656  0.0548
(1.0) (1.0) (1.0) (0.0) (0.0) (0.8) (0.8)
FGK 0.0135  -0.0106  -0.0305 0.0433  -0.0504  0.0037  -0.0072
(-0.6) (-0.4) (-1.0) (-0.6) (-0.4) (0.0) (-0.4)
CCJV 00150 00180  -0.0019  0.0285 0.0071  0.0470  0.0361
(0.6) (0.6) (-0.4) (1.0) (0.0) (0.8) (0.4)
KKS1 00092 00122  -0.0077 00227  -0.0058 0.0541  0.0432
(0.4) (0.4) (-0.4) (0.6) (-0.2) (0.8) (0.4)
BV -0.0132 -0.0102 -0.0301 0.0004 -0.0282 -0.0224 -0.0108
(-0.6) (-0.6) (-0.8) (0.0) (-1.0)  (-1.0) (0.0)
RPadj  -0.0093  -0.0064  -0.0263  0.0042  -0.0243  -0.0185  0.0038
(:0.2) (-0.4) (-1.0) (0.0) (-0.8) (-0.6) (0.6)

47



CHAPTER 2. ESTIMATING BETA

Table 2.8: Bias Removal (continued)

Panel B. Regression Technique

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC
avg. 0.1941  0.1630 02595  0.1976 02461  0.1601  0.1286  0.2066  0.1203
HIST 0.0311 -0.0654  -0.0035 -0.0520 0.0340 0.0655 -0.0125 0.0738

(0.0) (-0.6) (-0.4) (-0.4) (0.0) (0.4) (-0.4) (0.4)
RW -0.0142 -0.0965 -0.0346  -0.0831 0.0029 0.0345 -0.0436 0.0427

(-0.6) (-1.0)  (-0.8)  (04)  (0.0)  (0.2)  (-0.6)  (0.2)
DCC 0.0516 0.0657 0.0619 0.0134 0.0994 0.1310 0.0529 0.1392

08  (1.0) 06  (0.0)  (08)  (1.0)  (04)  (1.0)
FGK 0.0207 0.0349 -0.0309 -0.0486 0.0374 0.0690 -0.0091 0.0773

(0.6) (0.8) (-0.6) (-0.2) (0.8) (0.8) (0.0) (0.8)
CCIV 0.0320 0.0462 -0.0195 0.0113 0.0860 0.1176 0.0395 0.1258

04)  (1.0)  (04)  (0.4) 06) (06  (02)  (0.6)
KKS1 -0.0148  -0.0006  -0.0663 -0.0354  -0.0468 0.0316 -0.0465 0.0398

(:0.6)  (02) (-1.0)  (-0.6)  (-1.0) 0.0)  (-0.8)  (0.4)
BV -0.0199  -0.0057 -0.0715 -0.0406 -0.0519 -0.0051 -0.0781 0.0082

(-1.0)  (-0.4)  (-1.0) (08 (-1.0)  (-0.2) (-0.8)  (0.0)
RPadj 0.0201 0.0342 -0.0315  -0.0006  -0.0120 0.0348 0.0399 0.0863

06) (08  (0.6) (0.0)  (-0.6)  (0.8)  (1.0) (0.8)
BVUC -0.0317 -0.0175 -0.0833 -0.0524 -0.0637 -0.0169 -0.0118 -0.0517

(-1.0)  (08) (-1.0) (-1.0) (-1.0) (-1.0)  (-04)  (-1.0)

Panel C: Regression Technique Combining with HIST

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC
avg. 0.1941 0.1879 0.1998 0.1898 0.1765 0.1716 0.1367 0.1894 0.1203
HIST 0.0062 -0.0057 0.0043 0.0176 0.0224 0.0574 0.0047 0.0738

(0.0) (0.0) (-0.2) (0.0) (0.0) (0.4) (0.0) (0.4)
RW -0.0061 -0.0119  -0.0019 0.0114 0.0162 0.0512 -0.0015 0.0676

(-0.2) 00)  (00) (0.0 (020  (02)  (0.00  (0.6)
DCC 0.0044 0.0104 0.0099 0.0232 0.0281 0.0630 0.0104 0.0794

02)  (0.4) 0.0)  (0.0)  (04)  (0.6)  (0.0)  (0.6)
FGK -0.0011 0.0050 -0.0054 0.0133 0.0182 0.0531 0.0004 0.0695

00)  (0.2)  (-02) 0.0)  (0.6)  (04)  (0.0)  (0.6)
CCJvV 0.0016 0.0077 -0.0027 0.0027 0.0049 0.0398 -0.0129 0.0562

(0.0) (0.0) (-0.4) (-0.2) (0.0) (0.4) (0.0) (0.8)
KKS1 -0.0116  -0.0055 -0.0160 -0.0105 -0.0133 0.0349 -0.0178 0.0513

(08)  (0.4) (08 (08  (-0.2) 0.0)  (-0.4)  (0.2)
BV -0.0202 -0.0141 -0.0246 -0.0192 -0.0219 -0.0086 -0.0527 0.0164

(-1.0)  (-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (0.2)  (0.0)
RPadj -0.0019 0.0042 -0.0062  -0.0008  -0.0035 0.0098 0.0184 0.0691

(0.0) (04)  (-02)  (0.0)  (-02) (08  (1.0) (0.6)
BVUC -0.0317  -0.0256  -0.0360  -0.0306  -0.0333 -0.0201 -0.0115 -0.0298

(-1.0)  (-1.0) (-1.0) (-1.0) (-1.0)  (-0.8)  (02)  (-1.0)
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2.5. CONCLUSION

additionally several methods including or solely relying on option-implied
information.

In summary, estimators using historical information only perform well
if they do not make too strong structural assumptions, like the simple
historical beta and the Kalman filter approach with a random walk
parametrization. In contrast, models that make strong assumptions on the
volatility and correlation processes (like the GARCH-based DCC) are shown
to produce very large errors.

Including information from option prices is shown to be valuable
to some extent. Fully implied methods, having the big advantage of
employing the forward-looking information from options markets, nonethe-
less adhere the major shortcoming that they cannot attain negative
values. Consequently, even the models that are on average unbiased by
construction (KKS1 and KKS2) produce substantial errors. Avoiding strong
and seemingly invalid identifying assumptions, the hybrid approaches,
combining historical return data with forward-looking information from
the options market, are shown to produce the lowest errors. In particular,
the hybrid approach of Buss & Vilkov (2012) consistently performs best
regarding informational efficiency as well es estimation accuracy. These
results are shown to be robust both to building more portfolios and different
estimation horizons. Furthermore, we find that the main benefit of BV,
compared to other hybrid approaches, is that it ensures that the estimates
are adjusted to be unbiased in their value-weighted cross-sectional averages.

Overall, although the BV approach appears the method of choice, one
major shortcoming of this method (and other hybrid approaches that try a
simple bias correction) has to be borne in mind. The methodology requires
information on a full market index. Consequently it cannot be employed for
assets that are not included in an index, nor if there is insufficient option-

implied information for all assets in the index. Therefore, whenever the BV
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approach is not applicable, our results indicate that one should rely either
on RW or a simple estimate based on historical returns, since both quite

consistently outperform all other approaches.

20



A. APPENDIX

A Appendix

A.1 Information Content — Monthly Data

Monthly Estimators In this section, we repeat the analyses on the
information content of Section 2.3.2 using monthly return data. The results
are reported in Table A.1. Except for KKS1 and BV, the univariate
regressions in Panel A of the Table show all approaches to be biased for
all portfolios, having an intercept significantly different from zero, a slope
parameter significantly different from one, and consequently a strongly
significant Wald test. For BV, the Wald test yields significant values in
only three out of the five cases, while KKS1 is shown to be biased for four
of the five portfolios.3” Throughout all approaches, except KKS1, that does
not rely on return data at all, the adjusted R? is substantially smaller than
that in the regressions using daily estimates, with most values being close
to zero. The highest adjusted R? is obtained for the BV approach, being
the only one, except KKS1, that has substantial explanatory power over all
portfolios.

In the encompassing regressions in Panel B of Table A.1, the general
performance is poor and not much can be stated about methods being
informationally more efficient or subsuming one another, except that the
BV approach turns out to be informationally more efficient compared
to all other approaches. For some portfolios, BV even subsumes all
information incorporated in these approaches, while it is also shown to be
informationally more efficient than KKS1, which does not rely on return
data at all. Again, the adjusted R? substantially increases when adding BV

as an additional explanatory variable in every case.

37Note that the overall results change as the stocks are sorted differently using monthly
historical beta obtained in the sorting period.
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A. APPENDIX

Daily versus Monthly Estimators Table A.2 presents the results
of directly comparing estimators relying on daily versus monthly data. It
can be seen that daily estimators are mostly informationally more efficient
than their monthly counterparts for HIST, RW, and BV when evaluating
the estimates using realized beta computed from six months of daily returns.
Thus, especially when estimating beta for short horizons, relying on daily
data is favorable. Naturally, our study design inherently favors estimators
based on daily data by evaluating the estimations using realized beta, which
is itself based on daily data. Furthermore, the time period, in addition to
only the sampling frequency (daily versus monthly), differs between daily
and monthly estimates (one year versus five years). Consequently, part of the
difference in informational efficiency could also be induced by that. Thus,
caution has to be applied when aiming to generalize these findings.

In summary (including the results of the main part), estimators using
daily instead of monthly return data yield a better performance, and in
both cases the Buss & Vilkov (2012) approach is most favorable regarding

informational efficiency.

A.2 Estimation Accuracy — Additional Loss Functions

We examine three additional loss functions, commonly applied in the
literature, namely mean absolute errors (MAE), mean absolute percentage
errors (MAPE), and mean squared percentage errors (MSPE) to evaluate

the performance of the different beta estimation techniques:
1 n
MAE = n Z | BET =G |y (A1)

MAPE = —Z | *6”6 TQT k (A2)

MSPE = Z(B”ﬁ QT) . (A.3)
t,T
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A. APPENDIX

Here, n is the number of estimation windows, BET again denotes the realized
beta over a period from ¢ until 7', and ¢, 7 is the respective beta estimate.?®
Patton (2011) shows that only MSE, as opposed to the loss functions
employed here (MAE, MAPE, and MSPE), is robust to the presence of
noise in the evaluation proxy. Thus, further care has to be applied when
interpreting the results presented here.

Daily Data Table A.3 summarizes the estimation errors using daily
return data in more detail. Starting with MAE in Panel A, we observe that
BV yields the smallest estimation error (as indicated by italic font) for four
and RW yields the smallest estimation error for one portfolio(s). On average,
BV obtains the lowest error, followed by RW and HIST. Considering RMSE
in Panel B, the results are quite similar. Regarding MAPE and MSPE
in Panels C and D, the results rather favor RW, but for four and three
portfolios BV still yields the smallest MAPE and MSPE, respectively.
Performing best in the portfolio with lowest historical betas during the
sorting period, RW yields the smallest average MAPE and MSPE. For all
loss functions the fully implied CCJV and the GARCH DCC achieve the
worst and second-worst performance, respectively.

To further examine the results, we analyze whether the differences we
observe in Table A.3 are statistically significant. Table A.4 presents the
mean differences in absolute errors (AE), squared errors (SE), absolute
percentage errors (APE), and squared percentage errors (SPE) in the upper
triangular matrices and the respective median differences in the lower
triangular matrices.

Looking at Panel A in Table A.4 we find that BV always obtains lower

average mean and median absolute errors than the other methods. These

38Note that the percentage loss functions exhibit very high values when realized beta
gets close to zero which, unlike in many other situations such as volatility estimation, is
certainly possible in the case of beta. Thus, MAPE and MSPE must be interpreted with
care.
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Table A.3: Estimation Errors: Six-Month Horizon — Daily Data

This table reports the out-of-sample estimation errors of competing estimators, using
daily return data, for realized beta over the horizon of six months for each portfolio.
We build five quintile portfolios into which the stocks are allocated in an ascending
order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We
determine portfolio betas and returns as value-weighted averages. Panels A and B report
the mean absolute errors (MAE) and the root mean squared errors (RMSE) of the
estimation models for each portfolio, respectively. Panel C reports the mean absolute
percentage errors (MAPE) and panel D reports the mean squared percentage errors
(MSPE). avg. denotes the respective errors averaged over all five portfolios. For each
portfolio and the average, the lowest errors among all approaches are indicated by italic

font.

Panel A. Mean Absolute Errors (MAE)

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 0.1114 0.1024 0.1732 0.1592 0.2952 0.1762 0.1104 0.1408
2 0.0873 0.0794 0.1687 0.1771 0.2289 0.1028 0.0693 0.1229
3 0.0679 0.0699 0.1792 0.1636 0.2040 0.0720 0.0512 0.1134
4 0.0621 0.0667 0.1752 0.1757 0.1781 0.0790 0.0549 0.1033
5 0.1780 0.1632 0.2684 0.2599 0.2167 0.1743 0.1407 0.1536
avg. 0.1013 0.0963 0.1929 0.1871 0.2246 0.1209 0.0853 0.1268

Panel B. Root Mean Squared Errors (RMSE)

HIST RwW DCC FGK CCJV KKS1 BV RPadj
1 0.1517 0.1375 0.2283 0.2006 0.3498 0.2252 0.1423 0.1883
2 0.1177 0.1110 0.2293 0.2019 0.2929 0.1592 0.0933 0.1696
3 0.0971 0.0984 0.2511 0.1879 0.2609 0.1141 0.0724 0.1580
4 0.0788 0.0864 0.2636 0.2019 0.2188 0.0999 0.0735 0.1475
5 0.2452 0.2174 0.3656 0.3091 0.2693 0.2537 0.2003 0.1953
avg. 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718

o8



A. APPENDIX

Table A.3: Estimation Errors: Sixz-Month Horizon — Daily Data
(continued)

Panel C. Mean Average Percentage Errors (MAPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 1.0532 0.6647 1.1013 1.0683 2.5807 1.8380 0.9794 1.5415
2 0.1275 0.1171 0.2281 0.2281 0.3479 0.1839 0.1102 0.1925
3 0.0892 0.0886 0.2084 0.1850 0.2547 0.1020 0.0666 0.1478
4 0.0598 0.0640 0.1680 0.1632 0.1694 0.0715 0.0507 0.1006
5 0.1231 0.1141 0.1862 0.1801 0.1589 0.1118 0.0917 0.1104
avg. 0.2905 0.2097 0.3784 0.3649 0.7023 0.4614 0.2597 0.4186

Panel D: Mean Squared Percentage Errors (MSPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 63.482 16.589 49.609 60.094 391.58 187.67 45.473 140.73
2 0.0537 0.0473 0.1181 0.0812 0.3632 0.1838 0.0509 0.1549
3 0.0278 0.0239 0.0919 0.0492 0.1556 0.0489 0.0153 0.0754
4 0.0066 0.0078 0.0685 0.0357 0.0456 0.0084 0.0051 0.0250
5 0.0276 0.0221 0.0614 0.0433 0.0405 0.0212 0.0140 0.0200
avg. 12.719 3.8379 9.9898 12.061 78.436 37.587 9.1116 28.202

differences are statistically significant for all portfolios compared to DCC,
FGK, CCJV, KKS1, and RPadj, whereas when comparing to HIST and
RW, the MAE is significantly lower for two and one portfolio(s) and the
median AE is significantly lower for four and three portfolios, respectively.
HIST and RW outperform all other methods (except KKS1 and BV) for
at least four out of the five portfolios. Examining the other loss functions
SE, APE, and SPE the picture is quite similar, except that RW obtains
the smallest average (mean) errors in both percentage loss functions, but
even so the (net) significance is in favor of BV, which also has the smallest
average median errors over all loss functions including the percentage loss
functions. Nevertheless, the evidence indicates that overall the BV approach
obtains the best out-of-sample accuracy, followed by RW and HIST.

Monthly Data  Looking at the estimators using monthly return
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Table A.4: Differences of Estimation Errors: Six-Month Horizon

— Daily Data

This table reports the differences in the out-of-sample estimation errors of competing
estimators, using daily return data, for realized beta over the horizon of six months.
In panel A-C, the upper triangular matrix reports the mean differences of absolute
(AE), as well as differences in mean absolute percentage (APE), and squared percentage
(SPE) estimation errors, respectively, averaged over the five portfolios. Similarly, the
lower triangular matrices report the average median differences of estimation errors. We
compute the difference between the errors of the model [name in row] and those of the
model [name in column]. The absolute numbers in parentheses indicate the share of
portfolios for which the difference is significant (e.g., 0.4 indicates that the differences for
two out of five portfolios are statistically significant). If the differences are significant for
all five portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold—Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign indicates the direction of the significant differences.

Panel A. Absolute Errors (AE)

HIST RW DCC  FGK  CCJV  KKSI BV RPadj
HIST 0.0050 -0.0916 -0.0858 -0.1232 -0.0195 0.0161 -0.0255
00)  (-1.0)  (-1.0)  (-08)  (-0.2) (0.4) (-0.8)
RW 0.0002 0.0966  -0.0908  -0.1283  -0.0246  0.0110  -0.0305
(-0.4) (-1.0)  (-1.0)  (-1.0)  (-0.2) (0.2) (-0.8)
DCC 0.0639  0.0637 0.0058  -0.0316  0.0721  0.076  0.0661
(1.0) (1.0 (0.0) (-0.4) (0.8) (1.0) (1.0
FGK 0.1001 0.0999 0.0362 -0.0374 0.0662 0.1018 0.0603
(1.0) (1.0 (0.2) (-0.2) (0.8) (1.0) (0.8)
CCIV 01143 01141 00504  0.0142 0.1037  0.1393  0.0978
(1.0) (1.0 (0.6) (0.4) (0.8) (1.0) (1.0
KKS1 00113 00110  -0.0526 -0.0888  -0.1031 0.0356  -0.0059
(0.4) (0.6) (-0.8)  (-0.8)  (-1.0) (1.0)  (-02)
BV -0.0111 -0.0113 -0.0750 -0.1112 -0.1254 -0.0224 -0.0415
(10.8)  (0.6)  (-1.0)  (-1.0)  (-1.0)  (-1.0) (-0.6)
RPadj 00256  0.0254  -0.0383 -0.0745 -0.0888  0.0143  0.0367
(0.8) 08)  (-1.0)  (-1.0)  (-1.0)  (0.2) (1.0)
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Table A.4: Differences of Estimation Errors: Siz-Month Horizon — Daily
Data (continued)

Panel B. Absolute Percentage Errors (APE)

HIST RW DCC FGK  CCJV  KKS1 BV RPadj
HIST 0.0808  -0.0879  -0.0744  -0.4118  -0.1709  0.0308  -0.1280
(0.0) (-0.8)  (-0.8)  (-0.6) (0.0) (0.4) (-0.6)
RW -0.0015 01687  -0.1552  -0.4926  -0.2517  -0.0500  -0.2089
(-0.4) (-0.8)  (-0.8) (0.8 (0.0) (0.6) (-0.6)
DCC 0.0643  0.0658 0.0135  -0.3239  -0.0830  0.1187  -0.0402
(1.0) (1.0 (0.0) (-0.2) (0.6) (1.0) (0.4)
FGK 0.1016  0.1032  0.0373 0.3374  -0.0965  0.1052  -0.0536
(1.0) (1.0 (0.2) (0.0) (0.6) (0.8) (0.4)
CCIV 01278 01294 0.0635  0.0262 02400 04426  0.2837
(1.0) (1.0 (0.8) (0.0) (0.8) (0.8) (0.8)
KKSI 00187  0.0202  -0.0456 -0.0830  -0.1092 02017 0.0429
(0.4) (0.6) (10.8)  (:0.6)  (-1.0) (0.8) (-0.2)
BV 0.0083  -0.0068  -0.0726  -0.1099  -0.1361  -0.0270 -0.1588
(-0.8)  (-06)  (-1.0)  (-1.0)  (-1.0)  (-1.0) (-0.6)
RPadj 00308 00323 -0.0336 -0.0709 -0.0971  0.0121  0.0390
(0.8) (0.8) (-1.0) (-0.8) (-1.0) (0.2) (1.0)

Panel C. Squared Percentage Errors (SPE)

HIST RW DCC  FGK  CCJV  KKSI BV RPadj
HIST 9.3816 2.7297 0.6589 -65.7168  -24.8677 3.6079 -15.4823
(0.0) (10.8)  (0.6)  (-0.6) (0.0) (0.0) (0.0)
RW -0.0003 -6.6519 -8.7227  -75.0984 -34.2492  -5.7737  -24.8639
(-0.4) (10.8)  (0.8)  (-0.6) (0.0) (0.2) (0.0)
DCC 0.0142 0.0145 -2.0708  -68.4465 -27.5973 0.8782 -18.2120
(1.0)  (1.0) (0.2) (0.0) (0.4) (0.8) (0.4)
FGK 0.0255 0.0258 0.0113 -66.3757  -25.5265 2.9490 -16.1412
(1.0) (1.0 (0.4) (0.0) (0.4) (0.6) (0.2)
CCJvV 0.0435 0.0438 0.0293 0.0180 40.8492 69.3247  50.2345
(1.0) (1.0 (0.6) (0.0) (0.8) (0.8) (0.6)
KKS1 0.0064 0.0067 -0.0079 -0.0192 -0.0371 28.4755 9.3853
(0.4) (0.4) (-0.8)  (:0.6)  (-1.0) (0.4) (0.0)
BV -0.0008 -0.0005 -0.0150 -0.0263 -0.0442 -0.0071 -19.0902
((0.8)  (0.6)  (-1.0)  (-1.0)  (-1.0)  (-1.0) (0.0)
RPadj 0.0062 0.0065 -0.0081 -0.0194 -0.0373 -0.0002 0.0069
(0.8) 08)  (-1.0)  (-1.0)  (-1.0)  (0.2) (1.0)
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Table A.5: Estimation Errors: Six-Month Horizon — Monthly
Data

This table reports the out-of-sample estimation errors of competing estimators, using
monthly return data, for realized beta over the horizon of six months for each portfolio.
We build five quintile portfolios into which the stocks are allocated in an ascending
order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We
determine portfolio betas and returns as value-weighted averages. Panels A and B report
the mean absolute errors (MAE) and the root mean squared errors (RMSE) of the
estimation models for each portfolio, respectively. Panel C reports the mean absolute
percentage errors (MAPE) and panel D reports the mean squared percentage errors
(MSPE). avg. denotes the respective errors averaged over all five portfolios. For each
portfolio and the average, the lowest errors among all approaches are indicated by italic

font.

Panel A. Mean Absolute Errors (MAE)

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 0.1504 0.1209 0.1818 0.2784 0.2308 0.1104 0.0911 0.2296
2 0.1324 0.1287 0.1799 0.2976 0.2280 0.0593 0.0478 0.2213
3 0.1052 0.1229 0.1762 0.2899 0.2176 0.0608 0.0571 0.2094
4 0.1005 0.1449 0.1850 0.2852 0.1726 0.0619 0.0437 0.1982
5 0.1812 0.1701 0.2156 0.2982 0.2087 0.1036 0.0822 0.1772
avg. 0.1339 0.1375 0.1877 0.2899 0.2115 0.0792 0.0644 0.2071

Panel B. Root Mean Squared Errors (RMSE)

HIST RwW DCC FGK CCJV KKS1 BV RPadj
1 0.2067 0.1661 0.2311 0.3078 0.2802 0.1392 0.1122 0.2717
2 0.1650 0.1593 0.2279 0.3139 0.2686 0.0784 0.0645 0.2652
3 0.1285 0.1504 0.2366 0.3134 0.2596 0.0872 0.0826 0.2618
4 0.1256 0.1911 0.2275 0.3034 0.2135 0.0756 0.0556 0.2367
5 0.2330 0.2083 0.2997 0.3436 0.2637 0.1713 0.1412 0.2041
avg. 0.1718 0.1751 0.2446 0.3164 0.2571 0.1103 0.0912 0.2479
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Table A.5: Estimation Errors: Siz-Month Horizon — Monthly Data

(continued)

Panel C. Mean Average Percentage Errors (MAPE)

HIST RwW DCC FGK CCJV KKS1 BV RPadj
1 0.1867 0.1568 0.2283 0.3413 0.3085 0.1617 0.1261 0.3009
2 0.1465 0.1401 0.1941 0.3194 0.2527 0.0668 0.0527 0.2441
3 0.1053 0.1217 0.1739 0.2847 0.2180 0.0592 0.0554 0.2116
4 0.0950 0.1377 0.1707 0.2666 0.1660 0.0569 0.0410 0.1881
5 0.1518 0.1423 0.1743 0.2418 0.1755 0.0780 0.0629 0.1489
avg. 0.1371 0.1397 0.1883 0.2908 0.2241 0.0845 0.0676 0.2187

Panel D. Mean Squared Percentage Errors (MSPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 0.0625 0.0504 0.0822 0.1346 0.1610 0.0575 0.0301 0.1529
2 0.0350 0.0316 0.0593 0.1127 0.0929 0.0089 0.0056 0.0897
3 0.0166 0.0220 0.0538 0.0927 0.0683 0.0066 0.0057 0.0730
4 0.0147 0.0340 0.0419 0.0801 0.0436 0.0047 0.0028 0.0526
5 0.0375 0.0291 0.0540 0.0723 0.0496 0.0120 0.0085 0.0289
avg. 0.0333 0.0334 0.0582 0.0985 0.0831 0.0179 0.0105 0.0794

data in Tables A.5 and A.6, the picture is even clearer. We find that
BV, computed with the correlations over the past five years of monthly
returns, significantly outperforms all other approaches based on monthly
return data.?® Moreover, BV based on monthly return data seems not to
produce larger outliers compared to the other methods, since the results
from mean and median loss functions are quite similar. While the fully
implied KKS1, that does not rely on return data at all, is the second-best
estimator, the historical estimate (HIST), based on five years of monthly

returns, significantly outperforms all other approaches at least partially

39Note that the even lower average errors compared to the BV approach using daily
return data result from the slightly different sorting approach using five years of monthly
returns, yielding substantially less dispersion in the respective beta estimates for the
portfolios and thereby reducing the probability of large errors (and even more strongly
reducing the probability of high percentage errors, as realized beta only rarely comes
close to zero). When sorting the daily estimates in the same way all, loss functions yield
lower errors when using daily return data.
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Table A.6: Differences of Estimation Errors: Six-Month Horizon
— Monthly Data

This table reports the differences in the out-of-sample estimation errors of competing
estimators, using monthly return data, for realized beta over the horizon of six months.
In panel A-D, the upper triangular matrix reports the mean differences of absolute
(AE), root mean squared (SE), as well as differences in mean absolute percentage
(APE), and squared percentage (SPE) estimation errors, respectively, averaged over
the five portfolios. Similarly, the lower triangular matrices report the average median
differences of estimation errors. We compute the difference between the errors of the
model /name in row] and those of the model [name in column/. The absolute numbers in
parentheses indicate the share of portfolios for which the difference is significant (e.g., 0.4
indicates that the differences for two out of five portfolios are statistically significant).
If the differences are significant for all five portfolios, the figure is printed in bold font.
Significance is tested by the modified Diebold-Mariano and the Wilcoxon signed rank
tests for the upper and lower triangular matrices, respectively. The sign indicates the

direction of the significant differences.

Panel A. Absolute Errors (AE)

HIST RW DCC  FGK  CCIV  KKSI BV RPadj
HIST 0.0036  -0.0537 -0.1559  -0.0776  0.0547  0.0696  -0.0732
(0.0) (10.6)  (-1.0)  (-0.8) (0.8) (1.0) (0.8
RW 0.0074 0.0502 01524  -0.0740  0.0583  0.0731  -0.0696
(0.2) (:0.6)  (-1.0)  (-0.6) (0.8) (0.8) (-0.8)
DCC 0.0373  0.0300 01022 -0.0238  0.1085  0.1233  -0.0195
(1.0) (0.6) -1.0)  (0.0) (1.0)  (1.0)  (-0.4)
FGK 0.1695  0.1621  0.1321 00783 02107 02255  0.0827
(1.0)  (1.0) (1.0 (0.8) (1.0)  (1.0) (1.0
CCIV 00801 00727  0.0427  -0.0894 0.1323 01472 0.0044
(0.8) (0.8) 06)  (-1.0) (1.0) (1.0 (0.0)
KKSI  -0.0407  -0.0571  -0.0870  -0.2192  -0.1298 0.0148  -0.1279
((0.8)  (0.8)  (-1.0)  (-1.0)  (-1.0) 08)  (-1.0)
BV 20.0500  -0.0664 -0.0963  -0.2285  -0.1391  -0.0093 -0.1428
(-1.0)  (-1.0)  (-1.0)  (-1.0)  (-1.0)  (-0.8) (-1.0)
RPadj 00871  0.0797  0.0498  -0.0823  0.0071  0.1368  0.1461
(0.8) (0.8) (06)  (-1.0)  (0.0) (1.0) (1.0
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Table A.6: Differences of Estimation Errors: Siz-Month Horizon —

Monthly Data (continued)

Panel B. Squared Errors (SE)

HIST RW DCC FGK CCJV KKS1 BV RPadj
HIST -0.0033  -0.0728  -0.1446  -0.0853 0.0614 0.0806 -0.0761
(04)  (06)  (-1.0)  (0.6)  (0.8)  (L.0)  (-08)
RwW 0.0074 -0.0695  -0.1414  -0.0821 0.0647 0.0838 -0.0728
(0.4) (-08)  (-1.0)  (-0.6)  (0.6)  (1.0)  (-0.6)
DCC 0.0373 0.0299 -0.0719  -0.0125 0.1342 0.1534 -0.0033
(1.0)  (0.6) 0.8)  (0.0)  (1L0)  (1L0) (0.0
FGK 0.1695 0.1621 0.1321 0.0593 0.2061 0.2252 0.0685
(1.0)  (1.0)  (L.0) (04)  (1.0)  (L0)  (0.6)
CCJV 0.0801 0.0727 0.0427 -0.0894 0.1468 0.1659 0.0092
0.8  (1.0)  (06)  (-L.0) (1.0)  (1.0) (02
KKS1 -0.0497  -0.0571  -0.0870  -0.2192  -0.1298 0.0191 -0.1376
(-08)  (0.8)  (-1.0)  (-1.0)  (-1.0) 06)  (-0.8)
BV -0.0590  -0.0664  -0.0963  -0.2285  -0.1391 -0.0093 -0.1567
(-1.0)  (-1.0)  (-L.0)  (-1.0) (-L.0)  (-0.8) (-0.8)
RPadj 0.0871 0.0797 0.0498 -0.0823 0.0071 0.1368 0.1461
(0.8) (0.8) (0.4)  (-1.0)  (02)  (L0) (1.0
Panel C. Absolute Percentage Errors (APE)
HIST RW DCC FGK CCJV KKS1 BV RPadj
HIST -0.0026  -0.0512  -0.1537  -0.0871 0.0526 0.0694 -0.0817
(0.2)  (06)  (-1.0)  (0.8)  (0.8)  (L0)  (-08)
RwW 0.0019 -0.0486  -0.1511 -0.0844 0.0552 0.0721 -0.0790
(0.2) 06)  (-1.0)  (-0.6)  (08)  (0.8)  (-0.8)
DCC 0.0368 0.0349 -0.1025  -0.0359 0.1038 0.1206 -0.0305
(0.8) (0.6) (-1.0)  (0.0) (0.8) (1.0)  (-0.2)
FGK 0.1697 0.1678 0.1329 0.0666 0.2063 0.2231 0.0720
(1.0)  (1.0)  (L.0) 0.8)  (1.0)  (L0)  (0.8)
CCJV 0.0776 0.0757 0.0408 -0.0921 0.1396 0.1565 0.0054
(0.8) (0.8) 0.6)  (-1.0) (1.0)  (1.0)  (0.0)
KKS1 -0.0530  -0.0549  -0.0898  -0.2227  -0.1306 0.0169 -0.1342
08)  (08)  (-1.0)  (-1.0)  (-1.0) 08)  (-1.0)
BV -0.0616  -0.0635  -0.0984  -0.2312  -0.1392  -0.0086 -0.1511
(-1.0)  (-1.0)  (-L.0)  (-1.0)  (-1.0)  (-0.4) (-1.0)
RPadj 0.0877 0.0858 0.0509 -0.0820 0.0101 0.1407 0.1493
(0.8) (0.8) (0.6)  (-1.0)  (0.0)  (L0) (1.0
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Table A.6: Differences of Estimation Errors: Sixz-Month Horizon —
Monthly Data (continued 2)

Panel D. Squared Percentage Errors (SPE)

HIST RW DCC FGK  CCJV  KKS1 BV RPadj
HIST 20.0002  -0.0250  -0.0652  -0.0498  0.0153  0.0227  -0.0461
(02)  (04)  (-1.0)  (-0.8) (0.8) (1.0)  (-0.6)
RW 0.0000 0.0248  -0.0650  -0.0497  0.0155  0.0229  -0.0460
(0.4) (:0.6)  (-1.0)  (-0.8) (0.8) (0.8) (-0.8)
DCC 0.0097  0.0097 0.0402  -0.0248  0.0403  0.0477  -0.0212
(0.8) (0.6) (-0.8) (0.0) (0.8) (1.0) (0.2)
FGK 0.0682  0.0682  0.0585 0.0154  0.0805  0.0879  0.0191
(1.0)  (1.0) (1.0 (0.2) (1.0)  (1.0) (0.4)
CCIV  0.0243 00243 00146  -0.0439 0.0651  0.0725  0.0037
(0.8) (1.0) (0.6)  (-1.0) (1.0) (1.0 (0.2)
KKSI  -0.0093  -0.0094 -0.0190  -0.0776  -0.0336 0.0074  -0.0615
(-0.8)  (-08)  (-1.0)  (-1.0)  (-1.0) 0.6)  (-1.0)
BV 20.0100 -0.0101  -0.0197  -0.0783  -0.0343  -0.0007 -0.0689
(-1.0)  (08)  (-1.0)  (-1.0)  (-1.0)  (-0.4) (-1.0)
RPadj  0.0296  0.0296  0.0199  -0.0386  0.0053  0.0389  0.0396
(0.8) (0.8) (04)  (-1.0)  (0.2)  (1.0) (1.0

relying on historical return data, except monthly RW, in at least two of
the five portfolios each, while RW is also frequently outperformed for some

portfolios.

A.3 Detailed Results on Section 2.3

In this section, we present the results of Section 2.3, namely longer horizons,
further models for implied beta, option liquidity, and further time-series
models, in more detail. In Table A.7, we report the RMSE of each of the
individual portfolios, instead of only the averages. The discussion of the

results can be found in Section 2.3.

A.4 Bias Removal

In this section, we provide further insight on the information content of

estimators on which we have performed the simple bias removal, scaling the
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Table A.7: Portfolio Root Mean Squared Errors (Section 2.3)

This table reports the out-of-sample estimation errors of competing estimators, using
daily return data, for realized beta over the horizon of six months for each portfolio in
Panels D to F and over the horizon indicated in the panel headlines for Panels A to
C. We build five quintile portfolios into which the stocks are allocated in an ascending
order according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We
determine portfolio betas and returns as value-weighted averages. We report the root
mean squared errors (RMSE) of the estimation models for each portfolio. avg. denotes
the errors averaged over all five portfolios. For each portfolio and the average, the lowest

errors among all approaches are indicated by italic font.

Panel A: One-Month Horizon

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 0.1659 0.1520 0.2047 0.2088 0.4956 0.2540 0.1613 0.1883
2 0.1352 0.1293 0.1869 0.1892 0.4499 0.1810 0.1251 0.1634
3 0.1202 0.1112 0.1998 0.1907 0.4135 0.1437 0.1036 0.1815
4 0.1180 0.1098 0.1971 0.1932 0.3700 0.1381 0.1086 0.1826
5 0.2793 0.2550 0.3272 0.3145 0.4134 0.3085 0.2452 0.2726
avg. 0.1637 0.1515 0.2231 0.2193 0.4285 0.2051 0.1483 0.1977

Panel B: Three-Month Horizon

HIST RwW DCC FGK CCJV KKS1 BV RPadj
1 0.1417 0.1254 0.1979 0.1885 0.4076 0.2300 0.1344 0.1651
2 0.1176 0.1073 0.1937 0.1867 0.3563 0.1709 0.1026 0.1581
3 0.0978 0.0953 0.2057 0.1766 0.3313 0.1241 0.0800 0.1676
4 0.0909 0.0916 0.2060 0.1872 0.2787 0.1060 0.0813 0.1753
5 0.2421 0.2207 0.3265 0.2894 0.2935 0.2545 0.1973 0.2296
avg. 0.1380 0.1281 0.2259 0.2057 0.3335 0.1771 0.1191 0.1791

Panel C: Twelve-Month Horizon

HIST RW DCC FGK CCJV KKS1 BV RPadj
1 0.1638 0.1532 0.2761 0.2111 0.3387 0.2190 0.1492 0.2038
2 0.1318 0.1269 0.2954 0.2159 0.2643 0.1519 0.0995 0.1842
3 0.1102 0.1068 0.3394 0.1995 0.2325 0.1117 0.0804 0.1623
4 0.0835 0.0920 0.3559 0.2078 0.2073 0.1045 0.0807 0.1505
5 0.2545 0.2327 0.4202 0.3194 0.2942 0.2516 0.2038 0.2465
avg. 0.1488 0.1423 0.3374 0.2307 0.2674 0.1677 0.1227 0.1895
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Table A.7 Portfolio Root Mean Squared Errors (Section 2.3) (continued)

Panel D. Further Implied

HIST RW CCJV SR KKS1 KKS2 FGK RPadj BV

0.1517  0.15375 03498  0.2383  0.2252  0.2279  0.2006  0.1883  0.1423
0.1177  0.1110  0.2929  0.1660  0.1592  0.1598  0.2019  0.1696  0.0933
0.0971  0.0984  0.2609 0.1234  0.1141  0.1142  0.1879  0.1580  0.0724
0.0788  0.0864  0.2188  0.0900 0.0999  0.1007 0.2019  0.1475  0.0735
0.2452  0.2174  0.2693  0.2193  0.2537  0.2575  0.3091  0.1953  0.2003

avg. 0.1381  0.1301  0.2783  0.1674  0.1704  0.1720 0.2203  0.1718  0.1164

Uk W N =

Panel E. DJIA

HIST RW DCC CCJvV SR KKS1  KKS2 FGK RPadj BV

1 0.1375 0.1274 0.2003 0.3062 0.2985  0.1889  0.1829  0.1771  0.1829  0.1517
0.1763  0.1842 0.2710 0.2192 0.1884 0.1708 0.1632  0.2363  0.2102  0.1604

avg. 0.1569  0.1558 0.2356  0.2627 0.2434 0.1798  0.1730  0.2067  0.1965 0.1560

Panel F. Further Time-Series Models

HIST HISTg RW RWp AR ARMA  DCC CCC BV

0.1499  0.1347 0.1359  0.1642  0.1879  0.1702  0.2275  0.2047  0.1441
0.1144  0.1080  0.1061  0.1593  0.1699  0.1440  0.2266  0.2067  0.0953
0.0921  0.0963  0.0950  0.1515  0.1468  0.1237  0.2448  0.2247  0.0699
0.0782  0.0800  0.0844  0.1455  0.1400  0.1610 0.2633  0.2549  0.0722
0.2430  0.2225  0.2130  0.3144  0.2878  0.3502  0.3570  0.3949  0.1947

avg. 0.1355  0.1283  0.1269  0.1870  0.1865  0.1899  0.2638  0.2572  0.1152

Uk W N =

estimates so that the value-weighted cross-sectional average beta of each
estimation techniques equals one (Section 2.4.6). We perform univariate and
encompassing regressions as in equation (2.28). The results are presented in
Table A.8.

For HIST and RW the bias (as can be seen in Table 2.1) is very small
and the removal does not change much. Considering the Wald test, for
only one portfolio the null hypothesis of unbiasedness cannot be rejected

for HIST. DCC and CCJV are still biased, but their explanatory power
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A. APPENDIX

increases substantially compared to the non-bias-removed estimates. The
biggest impact of the bias removal is obtained on FGK and RPadj, leaving
both unbiased for two out of five portfolios after setting their value-weighted
cross-sectional average to one. Nevertheless, in encompassing regressions
together with BV, BV is still shown to be informationally more efficient.
Table A.9 presents the results of further possibilities to try and remove
the bias in the estimates. In particular, we perform the regressions as
described in Section 2.4.6 on the level of individual estimates. This might be

more precise than the portfolio approach considered in the main part. For

Table A.9: Bias Removal — Further Possibilities

This table reports the out-of-sample estimation errors of competing bias-removed
estimators, using daily return data, for realized beta over the horizon of six months for
each portfolio. We build five quintile portfolios into which the stocks are allocated in
an ascending order according to their historical beta in the sorting period (taking place
directly before the estimation period for historical beta without overlap and with equal
length). We determine portfolio betas and returns as value-weighted averages. Panel A
presents the results on a simple bias removal, while Panels B and C present the results on
bias removals using a regression technique. In each panel, the first row reports the average
root mean squared errors (RMSE) of the estimation models over the five portfolios. The
lowest errors among all approaches are indicated by italic font. The remainder of the
tables report the difference in estimation errors. The upper triangular matrix reports
the differences in root mean squared estimation errors, averaged over the five portfolios.
Similarly, the lower triangular matrix reports the average median differences of estimation
errors. We compute the difference between the errors of the model [name in row] and
those of the model [name in column/. The absolute numbers in parentheses indicate
the share of portfolios for which the difference is significant (e.g., 0.4 indicates that the
differences for two out of five portfolios are statistically significant). If the differences are
significant for all five portfolios, the figure is printed in bold font. Significance is tested
by the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrices, respectively. The sign indicates the direction of the significant

differences. BVYC refers to the non-corrected BV estimates.
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Table A.9: Bias Remowval — Further Possibilities (continued)

Panel A. Regression Technique — Individual

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC

avg. 02034 02066 01715 01791 01570  0.1609  0.1699  0.1754  0.1216

HIST -0.0033  0.0318  0.0243  0.0464 00425 00335  0.0280  0.0818
00)  (02)  (0.0)  (0.4)  (0.6)  (0.2)  (0.2)  (0.8)

RW 0.0039 0.0351  0.0276  0.0497 0.0458  0.0367 0.0312  0.0851
(0.0) 02  (0.0) (04  (06)  (02)  (02)  (0.6)

DCC  -0.0118  -0.0157 20.0075  0.0146  0.0106  0.0016 -0.0039  0.0499
(-0.6)  (-0.8) 00)  (0.2)  (00)  (0.0)  (0.0) (0.6

FGK  -0.0063 -0.0101  0.0055 0.0221 00182  0.0092  0.0037  0.0575
(-0.6)  (0.0)  (0.0) 02 (00  (00)  (00)  (0.8)

CCIV  -0.0127 -0.0166 -0.0009  -0.0064 0.0030  -0.0120 -0.0184  0.0354
(0.6)  (-0.8)  (-02)  (-0.4) 00)  (0.0)  (-02)  (0.4)

KKS1  -0.0083 -0.0122  0.0035 -0.0021  0.0043 20.0090 -0.0145  0.0393
(-0.4)  (-08)  (-02)  (-04)  (0.0) 0.0)  (00)  (0.6)

BV -0.0046  -0.0085  0.0072  0.0017  0.0081  0.0038 0.0055  0.0483
(0.6)  (04) (02  (0.2)  (04)  (0.0) 0.0)  (0.6)

RPadj -0.0049 -0.0088 0.0069  0.0013  0.0077  0.0034  -0.0004 0.0538
(-0.6)  (-04)  (0.2)  (0.0)  (04)  (04)  (0.2) (0.6)

BVYC 00360 -0.0399 -0.0242 -0.0298 -0.0234 -0.0277 -0.0315 -0.0311
(-08)  (-08)  (-08)  (-08)  (-0.6)  (-0.8)  (-0.8)  (-0.8)

Panel B. Regression Technique Combining with HIST — Individual

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC

avg. 02034 02225 02045 01950 01935  0.1926 01808  0.1942  0.1216

HIST 0.0191 -0.0011  0.0083  0.0098  0.0108  0.0225  0.0091  0.0818
(-0.2)  (0.0)  (0.2)  (0.0)  (0.0)  (0.2)  (0.0)  (0.8)

RW 0.0063 00179 00274 00289 00209 0.0416  0.0282  0.1009
(0.4) 02  (02) (04  (06) (04  (02)  (0.6)

DCC  -0.0025  -0.0088 0.0095 00110 00119  0.0237  0.0103  0.0829
0.0)  (-0.4) 02  (00) (00  (02)  (00)  (0.8)

FGK 00047 -0.0016  0.0072 0.0015  0.0025 0.0142  0.0008  0.0735
02 (02  (-04) 00)  (0.2)  (00)  (0.0) (0.8

CCIV  -0.0029 -0.0092 -0.0005 -0.0076 0.0009  0.0127 -0.0007  0.0719
(-0.4)  (08) (02  (-0.4) 00)  (00)  (00)  (0.6)

KKS1 ~ -0.0021 -0.0084  0.0004 -0.0068  0.0008 0.0117  -0.0016  0.0710
(-0.2)  (-0.2)  (:02)  (-04)  (0.0) 00)  (02)  (0.8)

BV 0.0009 -0.0054  0.0034 -0.0038  0.0039  0.0030 20.0134  0.0593
00)  (04) (02  (04) (02  (-0.2) 0.0)  (0.8)

RPadj 00032 -0.0031  0.0057 -0.0015 0.0061  0.0053  0.0023 0.0726
02)  (04)  (00)  (00)  (02)  (0.0)  (0.2) (0.8)

BVUC -0.0360  -0.0423 -0.0336  -0.0407 -0.0331 -0.0339 -0.0370 -0.0392
(10.8)  (0.8)  (0.6)  (0.8) (08 (0.8 (08  (-0.6)
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each firm, we first regress the six-month ex post realized beta on the ex ante
estimates obtained by each approach using the estimates and realizations
available at time ¢ during the period t — 17 up to t — 6 (as realized beta
with a six-month window is only available up to ¢t — 6 at time t), namely 12
monthly observations. After obtaining the regression coefficients a and 135,

we manipulate the current estimates using the following equation:

ADJ ~ | 7 QqUNADJ
j,t - CL+b j,t y (A4)
where ﬁtDJ and ][-ftNADJ are the adjusted and unadjusted estimates,

respectively. In a second approach, analog to the main part, we combine
the estimates with HIST.

In Panel A of Table A.9, we present the results for the individual
regression approach. It can be seen that all approaches produce a
larger average RMSE compared to the uncorrected BVYC. Combining the

estimates with HIST, shown in Panel B, also does not yield an improvement.
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Chapter 3

The Value of High-Frequency

Data for Beta Estimation™

3.1 Introduction

Despite being regularly challenged in empirical studies, the Capital Asset
Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin
(1966), it appears, has “survived” during the last fifty years and there is
some indication that it is still the most widely used model for applications
in financial economics, especially in practice (Graham & Harvey, 2001). The
major reasons for that may lie in the model’s simplicity and intuitive appeal,
predicting that the equilibrium rates of return are solely determined by one
factor which captures an asset’s exposure to systematic risk, i.e., its beta.
Using high-frequency data has proven useful in many fields of financial
economics. This holds especially for the estimation of volatility. There

is a vast amount of evidence suggesting that using high-frequency data

*This chapter is based on the Working Paper “The Value of High-Frequency Data for
Beta Estimation” authored by Fabian Hollstein, Marcel Prokopczuk, and Chardin Wese
Simen, 2015.
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significantly improves volatility forecasts as well as value-at-risk calculations
(e.g., Andersen & Bollerslev, 1998; Andersen, Bollerslev, Diebold, &
Labys, 2003; Chen & Ghysels, 2011). There also is evidence that higher
moments, i.e. skewness and kurtosis, can be measured more precisely using
high-frequency data. Amaya et al. (2015) find relations of high-frequency
realized skewness and kurtosis with subsequent returns. Furthermore,
Bollerslev & Zhang (2003) show that, using high-frequency data, the factor
loadings of the twenty-five Fama—French portfolios can be measured with
increased accuracy. Additionally, the use of high-frequency data is beneficial
not only from a statistical but also from an economic perspective. For
instance, Fleming, Kirby, & Ostdiek (2003) establish the economic value
of high-frequency data in an asset allocation setting.

Recent advances in the estimation of beta using high-frequency return
data and data implied from the options market suggest that changes in
beta can be captured more easily compared to classically employed long
historical windows and partially give rise to a possible (empirical) revival of
the conditional version of the classical CAPM. Andersen et al. (2006) show
that, under weak regulatory conditions, realized beta delivers a consistent
measure of the true underlying integrated beta. This finding theoretically
motivates the use of finer grids for sampling return data. To the best of
our knowledge, though, we are the first to provide a comprehensive and
thorough empirical study on the statistical and economic performance of
option-implied and historical market beta estimation techniques, including
high-frequency return data.

Chapter 2 shows that, among many competing approaches, the Buss
& Vilkov (BV) (2012) hybrid estimator, using options prices and daily
return data, adheres a superior performance for estimating beta compared
to several historical, time-series, and option-implied approaches relying on

daily and monthly return data. However, unlike in Chapter 2, in this chapter
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we make use of the potentially superior high-frequency return data.

We make a number of additional contributions examining several
aspects of beta estimation. First, we examine the statistical properties, i.e.
the informational efficiency and estimation accuracy of ex ante estimators
for ex post beta using high-frequency realized beta for both the statistical
examination of beta estimates and as an additional historical estimator
for beta. Additionally, we provide evidence on optimal combinations and
bias-corrections of different estimators to obtain more precise estimates.

We also impose an economic evaluation criterion for the analysis. While
it appears appealing to be able to predict future beta, the most important
property an estimate for beta ought to have is its significance in explaining
securities’ returns. Cross-sectionally, higher beta firms should have higher
expected returns. Consequently, we employ a cross-sectional test to evaluate
the empirical validity of the risk-return trade-off for the historical daily,
high-frequency, and hybrid estimators with various specifications and over
various different time horizons. To the best of our knowledge, we are the
first to compare the cross-sectional implications for the risk—return trade-off
of historical daily, high-frequency, and hybrid estimators.

Furthermore, we provide evidence on the estimation of downside beta.
Downside risk and conditional risk premia have recently attracted much
attention. The use of high-frequency data for downside beta is potentially
very important since the general difficulty in estimating it is the lack
of regular return observations below a certain threshold. However, the
estimation of downside beta, thus far, has received only little attention.
We fill this gap providing an empirical analysis on the estimation accuracy
and the cross-sectional pricing of downside beta employing historical daily,
high-frequency, and hybrid estimation methods.

Our main results can be summarized as follows. The use of high-

frequency data for beta estimation does not in general appear to create
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value. While from a statistical viewpoint the use of high-frequency return
data can be beneficial, the economic value of using high-frequency return
data appears to be limited.

Regarding informational efficiency and estimation accuracy, high-
frequency historical and hybrid estimators work more or less equally well.
Especially over short time horizons of up to three months, the historical
high-frequency estimator is shown to provide proper conditional estimates
superior to those of the hybrid and daily historical models, whereas
over longer time horizons the hybrid BV yields slightly better estimation
accuracy.

For the most important aspect of beta estimation, economic value, the
hybrid BV estimator family turns out to clearly outperform historical daily
and high-frequency models. On average, a significantly positive relation
of beta and subsequent excess returns can be detected, albeit not of
the magnitude predicted by the CAPM. For the historical models with
daily returns, only a weak relation is found, while for the high-frequency
estimators a positive risk—return trade-off cannot be uncovered at all.

Additionally, we show that the main results of Chapter 2 hold
using high-frequency realized beta to evaluate competing estimators. The
approach proposed by Buss & Vilkov (2012), as well as high-frequency
estimators, turns out to be informationally more efficient compared to the
historical estimator and produces lower, though not always significantly
lower, estimation errors.

We also show that, once employing high-frequency returns, the
actual sampling frequency for historical realized beta estimators is of
second-order importance examining sampling intervals of five minutes and
more. Differences in estimation errors among the high-frequency estimators
are typically small and insignificant, while estimation errors generally rise

slightly with decreasing sampling frequency. High-frequency approaches are
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typically informationally more efficient and more accurate compared to
historical estimators relying on daily return data. Using high-frequency
correlations for BV, on the other hand, does not in general improve the
estimation accuracy.

Regarding adjustments and combinations of estimators, we find that
a simple combination of the high-frequency and hybrid BV approaches
quite consistently outperforms the individual approaches from a statistical
evaluation standpoint while its economic value, in turn, is also inferior
compared to that of only using BV.

Lastly, our results extend to the estimation of downside beta. The
estimation accuracy of high-frequency and hybrid estimators is more or less
equally good, while only the hybrid BV estimator has power in explaining
the cross-section of subsequent stock returns.

We show that our results are robust to various alternative specifications.
Building more portfolios, using alternative sampling frequencies, or different
time horizons from one month up to two years for the evaluation of beta
estimates, the results are qualitatively equal. We further show that our
results on the economic value of beta estimation are robust to different
evaluation frequencies also ranging from one month to two years.

Turning the focus on the classical methodology employed for beta
estimation, simply using long historical windows of monthly return data
has the major drawback is that beta coefficients are shown to exhibit
significant time variation (e.g., Blume, 1975; Ferson & Harvey, 1991, 1993).
To obtain conditional estimates of beta, Lewellen & Nagel (2006) suggest
relying on short historical windows. On the other hand, to obtain a reliable
estimate, one needs a large sample of observations, which implies a trade-off
between precision and the need for truly conditional estimates. Recent
developments for estimating beta using high-frequency data may serve to

reconcile these two arguments. Bollerslev & Zhang (2003), Barndorff-Nielsen
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& Shephard (2004), and Andersen et al. (2005, 2006) derive the estimator
for realized beta and examine its properties. The use of high-frequency data
can deliver the observations needed to make use of the results of Andersen
et al. (2006) that realized beta yields a consistent estimate of the true
underlying integrated beta without relying on very long historical windows,
which imposes assumptions on the stability of the underlying processes and
economic conditions which, in reality, may fluctuate heavily over time.

A part of the analysis related to the above argument is the question of
optimal sampling frequency. While realized beta is a consistent measure for
the true underlying integrated beta, on the one hand, it should be optimal
to use time-frames as small as possible to obtain as many observations
as feasible. On the other hand, though, due to microstructure noise and
infrequent trading, this strategy will fail at some point. Already in the
1970s, when daily returns started becoming available for empirical research,
authors argued that covariances were severely underestimated when assets
are infrequently and non-synchronously traded (Scholes & Williams, 1977;
Epps, 1979). Naturally, when using intra-day data, the problem of infrequent
trading becomes even more severe. For example, Bollerslev, Li, & Todorov
(2015) use intervals as long as 75 minutes to account for such concerns.
Since we concentrate on the S&P 500, i.e., the largest companies in the
U.S. that are presumably very liquid and frequently traded, it is likely that
reliable estimates can also be obtained using higher sampling frequencies.
Consequently, we analyze the effects of different sampling schemes on
estimation accuracy.

The major alternative to using historical return data only is to addition-
ally incorporate the inherently forward-looking information incorporated in
option prices. Buss & Vilkov (2012) and Chang et al. (2012) show that beta
estimators employing information from the options market perform well in

predicting the cross-section of stock returns. However, Buss & Vilkov (2012)
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evaluate beta only based on one-month subsequent returns and none of the
two studies compares with the potentially superior high-frequency historical
estimates for beta.

Presenting a comprehensive study comparing market beta estimation
techniques, Chapter 2 shows that the hybrid methodology of BV is
informationally more efficient and has smaller estimation errors compared to
all other approaches examined (including GARCH-based and fully implied
methods) relying on daily return data. However, in Chapter 2 we also
find that the simple historical estimator based on daily returns works
comparatively well, not yielding estimation errors that are significantly
higher than those of BV for all the specifications examined. In particular, the
simple historical estimator is shown to be clearly superior to any estimator
that uses option-implied data only or GARCH-specifications. Therefore, it
appears worthwhile investigating whether the hybrid approach of BV is still
favorable when using beta estimated with high-frequency return data as a
competing estimator.!

Finally, we connect to the literature on downside beta. Ang et al.
(2006a) use the disappointment aversion model of Gul (1991) to demon-
strate that assets with higher betas, conditional on low realizations of the
market return, can be regarded as particularly risky. Lettau et al. (2014)
show that the downside risk CAPM can price the cross-section of returns of
equities, and many other asset classes. However, we use ex ante estimates
for downside beta instead of examining only a contemporaneous relationship
and further study the properties of various different methods to estimate
downside beta.

The remainder of this chapter is organized as follows. Section 3.2

1One argument for why high-frequency data might not yield better estimates is
provided by Gilbert, Hrdlicka, Kalodimos, & Siegel (2014). They argue that for opaque
firms, the market needs longer to understand the implications of news on systematic risk.
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describes our data set and methodology. In Section 3.3 we present our
empirical results. Section 3.4 checks the robustness of our results. Finally,
Section 3.5 concludes. The appendix to this chapter contains details on the

estimation of option-implied moments.

3.2 Data and Methodology

3.2.1 Data

We base our study on the S&P 500 market index and its constituents
for the sample period between January 01, 1996 and December 31, 2014.2
Additionally, we perform a robustness analysis on a sample based on the
Dow Jones Industrial Average (DJIA).?

We obtain daily and monthly price data as well as data on dividend
payments and shares outstanding from the Center for Research in Security
Prices (CRSP) for the period from January 01, 1994 until December 31,
2014. To be able to compute historical estimates right from the start of our
study period and to perform a portfolio sorting using non-overlapping data,
this data starts two years before the main sample period. High-frequency
return data is gathered from the Thomson Reuters Tick History (TRTH)
database. We sample the data at five-minute intervals. Additionally, we
examine different sampling frequencies of up to 130 minutes. To ensure the
reliability of the high-frequency data, we perform the appropriate standard
data cleaning operations as outlined in Barndorff-Nielsen, Hansen, Lunde,

& Shephard (2009).

2The starting date of our study is thereby determined by the start of the
OptionMetrics and Tick History databases in January 1996.

3The sample period for the DJIA dataset begins on January 01, 1998 as options on the
DJIA are traded no earlier than October 1997 at the Chicago Board of Options Exchange
(CBOE). We do not start before the beginning of the new year to avoid spurious findings
caused by potentially small initial trading volumes in the new market.
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Options data are from the IvyDB OptionMetrics Volatility Surface
that directly provides implied volatilities for standardized delta levels and
maturities. For the main analysis, we use options with approximately
six months to maturity since we want to obtain six-month estimates for
beta. As a robustness check, we also repeat the analysis with options
of approximately one, three, twelve, eighteen, and twenty-four months to
maturity. We select out-of-the-money (OTM) options, namely puts with
deltas larger than -0.5 and calls with deltas smaller than 0.5. We use the
formulas provided by Bakshi et al. (2003) to compute model-free implied
moments. A more detailed outline of the procedure is presented in Section
B.1 in the appendix to this chapter.

We thereby obtain options and high-frequency return data for 438 and
447 stocks in 1996 growing to 493 and 488 stocks at the respective peaks,
both in 2010, out of the 500 contained in the S&P 500 at each respective
date, respectively.® On average, options data on 472 stocks and sufficient
high-frequency return data on 478 stocks is available. Data on the risk-free

rate is collected from the IvyDB zero curve file.

3.2.2 Beta Estimation

Realized Beta Following Andersen et al. (2006) we use high-frequency

log-returns to compute realized beta:

N
R _ ZTzl rjvTerT (3 1)
at N 9 ) :
ZTZI TM,T
4TvyDB uses a kernel smoothing algorithm and only reports standardized options “if
there exists enough option price data on that date to accurately interpolate the required
values”. For more details refer to the IvyDB technical document.
®Note that options data was only available until the end of August 2014 when we
started this study. The first estimate for high-frequency beta is made at the end of June

1996 since we need six months to obtain the estimates and the TRTH database starts no
earlier than January 01, 1996.
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where r; ; and 7, refer to the return of asset j and the market return at
time 7, respectively. IV is the number of observations during the time period
under investigation. While Hansen & Lunde (2006) strongly advise using
realized volatility when evaluating volatility models, we follow that spirit
using ex post realized beta to evaluate all the respective ex ante estimates
obtained using the different beta estimation methods. As an additional
estimator, we denote ex ante realized beta by HF ;¢4 mon With freq being
the sampling frequency of the returns and 7 mon indicating the length of the
estimation period. Whenever 7 mon is missing, the length of the estimation
period matches that of the evaluation period.

Historical Beta Closely related to the above approach, we compute
historical estimates (HIST) in the usual way, following Fama & MacBeth
(1973) and many others, regressing an asset’s excess return on the market

excess return:

HIST _ COV(Tj7 )
Jt var(ray)

(3.2)

The main historical estimator utilizes one year of daily returns as do, e.g.,
Baker et al. (2010).

Hybrid Beta We consider the approach of Buss & Vilkov (2012),
who combine model-free implied volatilities and historical correlations to
estimate beta. The authors use the property that the implied variance of
the market index has to be the same as the implied variance of the value-
weighted portfolio of all market constituents (first relation) and combine
that with a technical condition for implied correlations to translate from
physical (pj;,) to risk-neutral correlations (p%t), namely p%t = pij—ou(1—

py;4)-* Combining these two relations and solving for ay, implied correlations

6Making sure both that the matrix is a correlation matrix (all correlations not
exceeding one and the matrix being positive definite) and that it matches with empirical
observations, namely that implied correlations are higher than empirical ones and that
the correlation risk premium is higher for lowly correlated stocks. For more details, refer
to Buss & Vilkov (2012).
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can be computed. Thus, a beta estimate under the risk-neutral probability

measure is obtained by:

N
BV _ 02% Zi:l(wi,tagtﬂ?;,t) 33
gyt - Q 2 ) ( . )
(UM,t)

where a;% and O'%’t denote the implied volatilities for individual stocks and
the market index, respectively. w;; denotes the weight of the N individual
assets in the market index at a certain point in time. We utilize the BV
approach in the usual style using daily returns over one year to compute
correlations. We also use different time horizons to estimate correlations
matching the evaluation horizon (denoted by BV, .,) and high-frequency
correlations (BVy,.,) to obtain alternative specifications for BV, where
the variables are as previously defined. The implied volatilities needed for
the approach are extracted from options whose expiration matches the

evaluation horizon, i.e. six months for the main analysis.

3.3 Empirical Results

3.3.1 Summary Statistics and Correlation Analysis

Panel A of Table 3.1 reports summary statistics on the different beta
estimation techniques. It can be seen that the value-weighted average beta
over all stocks in the S&P 500 (Mean,y,) is very close or exactly equal
to one for all approaches. Thereby, it can be seen that the problem of
infrequent trading is not severe, since even for the five-minute interval the
value-weighted average beta is only slightly below one. The equally-weighted
average is lower for the high-frequency models compared to the hybrid
models. Consequently, it appears that smaller firms tend to have lower betas

for high-frequency estimators compared to the BV methods. Furthermore, it
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Table 3.1: Summary Statistics and Sample Correlations

This table provides summary statistics on the different beta estimation techniques
(Panel A) and sample correlation coefficients among the different beta estimation
techniques on the basis of pooled individual estimates over the entire sample period
(Panel B). The sample period spans from January 1996 (beginning with estimates for
February 1996) until December 2014. Nobs denotes the number of monthly estimates,
Mean and Mean,,, are the equal- and value-weighted averages of the estimates over
the entire sample period, respectively. Std. dev., Median, Min, and Max present further
summary statistics on the overall standard deviation, median, minimum, and maximum

of all individual estimates, respectively.

Panel A. Summary Statistics

Nobs Mean Mean,,, Std. dev. Median Min Max
HIST 110,277 1.0073 1.0032 0.4555 0.9461 -0.6675 4.6485
HIST6 mon 110,692 1.0054 1.0012 0.4892 0.9447 -0.9818 7.7906
HF5 106,376 0.9369 0.9874 0.4378 0.8679 -1.5517 4.1109
HF5 1 mon 108,685 0.9387 0.9872 0.4888 0.8608 -8.9032 5.5420
HF 5 106,375 0.9567 0.9956 0.4496 0.8837 -1.2501 4.3931
HF3q 106,375 0.9662 0.9974 0.4574 0.8938 -2.0210 4.4675
HF75 106,375 0.9820 0.9991 0.4748 0.9086 -2.7018 5.4052
HF130 106,375 0.9814 0.9936 0.4759 0.9104 -2.4115 5.5074
BV 105,811 1.0463 1.0000 0.3680 0.9960 -0.4827 6.6757
BV mon 106,233 1.0470 1.0000 0.3776 0.9959 -1.0182 6.7820
BVj 103,542 1.0518 1.0000 0.3606 0.9869 0.0398 6.4297
BVys 103,542 1.0503 1.0000 0.3684 0.9855 -0.2166 6.5612
BVj3g 103,543 1.0521 1.0000 0.3705 0.9875 -0.3033 6.5797
BV 103,544 1.0548 1.0000 0.3763 0.9908 -0.3070 6.6407
BVi30 103,544 1.0548 1.0000 0.3763 0.9908 -0.3070 6.6407

can be noted that methods relying on historical returns have higher standard
deviations compared to the hybrid models (about 0.45 vs. around 0.37).
Panel B of Table 3.1 presents the sample correlation coefficients among
betas obtained with different estimation techniques on the basis of their
pooled estimates for individual assets during the entire sample period.
Generally, we note very high correlations around 0.9 and higher. The

lowest correlations arise between BV or BV pon and HF5; pon and BV
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Table 3.1: Summary Statistics and Sample Correlations (continued)

Panel B. Correlation Coefficients of Different Estimates

5 =
£ g :

L Z <3 <3 <5 <3 <3 <3 > > > > > >

= jas) = = = = = = m [as] as] as)] m m m

* 092 087 0.78 0.88 0.89 0.90 091 0.88 0.86 0.78 0.80 0.80 0.81 0.81 | HIST
*

0.86 0.78 0.88 0.89 091 092 084 0838 0.76 0.77 0.78 0.79 0.79 | HIST¢ mon

* 090 099 098 095 094 081 081 0.82 0.83 0.82 0.82 0.81 | HF;
* 089 088 0.86 0.85 0.76 0.76 0.77 0.77 0.77 0.77 0.76 | HF51 mon

* 0.99 097 096 0.83 0.83 083 084 0.84 0.84 0.83 | HFy5

* 0.98 097 0.84 0.85 0.83 084 085 0.84 0.84 | HF3

* 098 085 0.8 0.83 0.84 0.84 0.85 0.84 | HF75

* 0.85 086 0.82 0.83 0.84 0.84 0.85 | HFy30

* 097 094 094 0.95 0.95 0.95 | BV
* 0.93 094 094 0.95 0.95 | BVg mon

* 1.00 0.99 0.99 0.99 | BVjy

* 1.00 0.99 0.99 | BVy5

* 1.00 0.99 | BVyg

* 1.00 | BVys

* ] BViso

and HISTg 00, respectively, amounting to 0.76. The implications of these
high correlations are twofold. First, it may be hard to detect significant
differences between the approaches since, to a large extent, they appear to
carry similar information. Secondly, we have to take care of multicollinearity
issues possibly inflating the standard errors in encompassing regressions

performed in the next section.

3.3.2 Information Content

A common way to evaluate the performance of ex ante estimates is to use
Mincer & Zarnowitz (1969) regressions. We therefore regress the six-month
(ex post) realized beta on the different (ex ante) beta estimates in the

following way:
ﬁtF,{T = a+bGr+ €. (3.4)

BfT denotes the realized beta in the period ranging from ¢ to 7" and (;r

stands for one beta estimate in univariate regressions or a vector of several
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beta estimates in encompassing regressions. With the approach in equation
(3.4) we can test for the informational efficiency and unbiasedness of the
respective estimates. As Hansen & Lunde (2006) show, using logarithmically
transformed variables for the regressions, while making the regression
procedure less sensitive to outliers (Pagan & Schwert, 1990), often leads to
inconsistent rankings of the estimation models if an unbiased but imperfect
proxy for the true evaluation variable is used. They further show that
Mincer—Zarnowitz regressions in levels are robust to (mean zero) errors in
the evaluation proxy. Consequently, we stick to levels instead of logs to
obtain results that are more robust.

Unbiasedness is tested in univariate regressions by performing a
Wald test, imposing the joint hypothesis of a being equal to zero
and b being equal to one. For an unbiased model we should not be
able to reject the underlying hypothesis. Informational efficiency can be
tested in encompassing regressions by constraining the slope parameters
of alternative estimators to zero, thereby determining if the respective
approaches contain information beyond that of a baseline model. If, in
encompassing regressions, an estimator is to be more informative it must
have a significant slope estimate and the explanatory power must rise
compared to the restricted model. Additionally, we test the joint hypothesis
of one slope parameter being equal to one and the second slope parameter
being equal to zero. The underlying hypothesis of this test states that one
approach fully subsumes all information contained in the other approach it
is tested with.

To conduct our analysis, we follow the approach suggested by Fama &
MacBeth (1973). At the end of each month, we build five value-weighted
portfolios out of the individual stocks in our sample. To sort the stocks, we
use as an instrument the stocks’ estimate for (daily) historical beta obtained

in an estimation period (sorting period) strictly before the estimation period
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of the historical beta serving as one beta estimate. We sort the stocks in an
ascending order and compute estimates as well as realizations for beta for
each of these portfolios.” This approach ensures that we obtain a certain
range in the estimated values and delivers results that are comparable
without particularly loading on the measurement errors of one of the
approaches. To keep the analysis comparable, we can only include those
estimates in our sample where all approaches yield an estimate.®

To keep the presentation manageable, we select at least one ap-
proach from each model family to perform our main analysis. We
select historical and six-month historical (HIST§ pon) using daily return
data, five-minute high frequency over six (HFj5) and one month(s)
(HF51 mon), BV and BVg men, as well as the high-frequency hybrid BVj
relying on five-minute return data, and consider the methods estimated
with further sampling frequencies in the robustness analysis in Section IV.
In all analyses, we evaluate the approaches using high-frequency realized
beta during the subsequent six months.

Table 3.2 presents the regression results for the main estimation
approaches employing high-frequency five-minute realized beta to evaluate
the ex ante estimates. Panel A of Table 3.2 presents the results of the
univariate regressions for each of the five portfolios. It can be seen that in
many cases the intercept estimate is significantly (at 5 %)? different from

zero and the estimate for the slope coefficient is significantly different from

"For example, using daily data and estimating beta at the end of January 1996,
evaluating it in the period February — July 1996, the estimation of historical beta uses
return data from February 1995 until the end of January 1996. The portfolio sorting
is carried out according to the estimate for historical beta using return data between
February 1994 and the end of January 1995. If historical return data for the sorting
period is not available, the sorting beta is set to one.

8Note that, while analyzing the value of high-frequency data for beta estimation,
sorting on past low-frequency beta might be regarded as non-optimal. However, the
sorting is only designed to ensure that the resulting portfolios have a certain spread in
their beta estimates. Each of the portfolios is examined separately.

9Further mentions of (non-)significance in this section will always refer to the 5 %
significance level.

89



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA
ESTIMATION

one. 10

For all approaches there are only some portfolios yielding non-
significant values for the intercept and slope coefficients. The joint
hypothesis of a being equal to zero and b being equal to one, however, is
rejected in any case, suggesting that all approaches yield biased estimates.

For three portfolios, BV yields the highest adjusted R?, while the short-
term HF5 1 1on and BVg mon have the highest adjusted R? for one portfolio
each. The estimates of these three approaches and HF5 exhibit the highest
explanatory power, which is substantially higher than that of the traditional
historical daily estimators, e.g., for BV, the adjusted R? is higher by 12 up to
32 percentage points compared to HIST. For the high-frequency approaches
the picture looks similar.

Turning the focus to the results of the encompassing regressions in
Panel B of Table 3.2 we find the high-frequency estimators and BV
to be informationally more efficient than HIST. The adjusted R? rises
when adding these models to HIST and the slope coefficient on BV,
HF5, and HF5; mon is significant as opposed to that on HIST, which
generally yields a non-significant slope coefficient when combined with these
models. The relation of HIST and BVj is not entirely clear. Comparing the
high-frequency estimators using six months of return data (HFj5) to that
employing only the returns during the preceding month (HF5; mon), the
shorter-term estimator appears to be favored in the extreme portfolios 1
and 5 where only the latter has a significant slope estimate. However, for
the remaining portfolios none of the two approaches is informationally more
efficient than the other, with significant slope estimates for both.

The picture is also not entirely clear when placing HF5 or HF5 1 mon

1ONote that for univariate regressions the t-statistics of the slope coefficients test the
hypothesis of those being equal to one and not, as is usually done, equal to zero. In the
multivariate regressions, the t-statistics refer to the usual hypothesis that the parameters
are equal to zero.
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in a joint regression with BV. In these cases, both models regularly adhere
significant slope coefficients, meaning that the estimators partially contain
complementary information. Based on this insight, a combination of both
approaches could potentially be useful.!!

Additionally, BV5 is shown to be quite clearly inferior compared to
BV, with a significant slope parameter for only two portfolios. One of
the two significant slope parameters is even negative, implying a negative
relation between beta estimates and realization when the information in
BV is already given.'? The superiority of BV over the high-frequency BV;
might on the one hand seem surprising since the use of high-frequency
historical data has been shown to improve the informational efficiency of
estimates for beta over the historical approach based on a daily frequency.
On the other hand, however, it has to be noted that BV makes use
of the full correlation matrix of all index constituents, for which the
problem of potential non-synchronous and infrequent trading becomes much
more severe than when just estimating the covariance between an asset’s
return and that of the market, as is done for the historical high-frequency
estimators.

The hypothesis that one approach subsumes all the information
contained in another approach (indicated by the tests Wald; and Wald,) is
rejected in most cases, meaning that all approaches, to some extent, contain
some information that others have not incorporated and none of the models
is fully perfectly specified.

Overall, using high-frequency realized beta, we first confirm the results
of Chapter 2 that BV is superior in terms of informational efficiency

compared to the historical estimator using daily return data. Secondly,

1We examine the issue of combinations in Section 3.3.5.

12The negative slope estimate on BVj is most probably caused by the near-
multicollinear relation to BV, which is constructed very similarly, with a correlation
amounting to 0.94. The general conclusion that BV is superior, however, remains valid.
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we show that the high-frequency estimators perform quite well. They are
informationally more efficient compared to the historical estimator using
daily return data. In a joint regression with BV, both models appear to add

valuable information, while none of the two models is distinctly favored.!?

3.3.3 Estimation Accuracy

Turning the focus on out-of-sample estimation accuracy, we employ the loss
function most commonly applied in the literature, namely the root mean
squared error (RMSE) criterion, to evaluate the performance of the different

beta estimation techniques:

n

> (B — )2 (3.5)

t=1

RMSE =

SRS

Here, n is the number of estimation windows, BET again denotes the
realized beta over a period from ¢ until 7', and (;r is the respective beta
estimate. Patton (2011) shows that only the mean squared error (MSE)
criterion, as opposed to other commonly employed loss functions, is robust
to the presence of (mean zero) noise in the evaluation proxy, so we choose
this loss function. We test for significance in RMSE using the modified
Diebold—Mariano test proposed by Harvey et al. (1997) and for significance
in root median squared error (RMedSE) with the non-parametric Wilcoxon
signed rank test. For the Wilcoxon signed rank test, we perform the
significance test only on the first series of non-overlapping differences in

errors to account for possible serial correlation (Diebold & Lopez, 1996).

13For the sake of brevity, we do not report further results using different frequencies
to estimate ex post realized beta (e.g., 15, 30, 75, 130 minutes, or daily returns). These
results actually are qualitatively equal and available upon request.
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Since for this approach we have to discard observations, the statistical power
of the test is reduced.' These results should thus be interpreted cautiously.

Table 3.3 summarizes the estimation errors using five-minute return
data. It can be seen that the short-window high-frequency HF5 ; 1,00 yields
the smallest average RMSE over the five portfolios (as indicated by italic
font), followed by HF5 and BV. The differences in RMSE, however, are
hardly ever significant. On the other hand, the differences in RMedSE are
significant in some instances.

Comparing the approaches relying on historical return data, the median
errors are significantly smaller when using high-frequency returns compared
to daily returns in at least two out of the five portfolios, while the RMSEs
are only significantly smaller for one and zero portfolio(s). The mean
and median errors are not significantly different comparing BV to HIST,
delivering only a very weak indication for a superior estimation accuracy. On
the other hand, significant differences between HF5, HF5 1 1,on, and BV also
cannot be established, neither in RMSEs nor in RMedSEs. The estimation
errors for BVjy are slightly higher compared to the best models; however,
the differences are significant in few instances only.

Overall, the evidence indicates that the approaches HF5, HF5 1 10n, and
BV obtain the best out-of-sample accuracy, while differences are mostly not
significant, neither between the models mentioned nor compared to other

models.

14While, strictly speaking the Wilcoxon signed rank test incorporates the joint null
hypothesis of zero median in the loss differentials as well as a symmetric distribution, we
stick to this test instead of an alternative only testing on zero median, like the simple sign
test, since the Wilcoxon signed rank test turns out more powerful in many applications
(Conover, 1999).

15Examining the estimated spread in the beta vs. the realized spread, e.g., of the
5-1 portfolio, the results are qualitatively similar. BV and high-frequency models adhere
more or less equal RMSE for the spread while that of the historical daily models is
significantly higher in most cases.
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Table 3.3: Estimation Errors

This table reports the out-of-sample estimation errors of competing estimators for
five-minute realized beta over the time horizon of six months for each portfolio. We
build five quintile portfolios into which the stocks are allocated in ascending order
according to their historical beta in the sorting period (taking place directly before
the estimation period for historical beta without overlap and with equal length). We
determine portfolio betas as value-weighted averages. The first row reports the average
root mean squared error of the estimation models over the five portfolios. The lowest
error among all approaches is indicated by italic font. The remainder of the table reports
the differences in estimation errors. The upper triangular matrix reports the differences
in root mean squared estimation errors, averaged over the five portfolios. Similarly, the
lower triangular matrix reports the average median differences of estimation errors. We
compute the difference between the errors of the model [name in row] and those of
the model [name in column/. The absolute numbers in parentheses indicate the share
of portfolios for which the difference is significant at 5 % (e.g., 0.4 indicates that the
differences for two out of five portfolios are statistically significant). If the differences are
significant for all five portfolios, the figure is printed in bold font. Significance is tested
by the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign indicates the direction of the significant

differences.
HIST HIST§ mon HF5 HF51 mon BV BVs mon BV5
avg. 0.1247 0.1177 0.0907 0.0865 0.0915 0.0932 0.1127
HIST 0.0070 0.0340 0.0382 0.0332 0.0315 0.0120
(0.0) (0.2) (0.0) (0.0) (0.0) (0.0)
HISTg mon -0.0052 0.0271 0.0312 0.0262 0.0245 0.0050
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)
HF5 -0.0160 -0.0108 0.0041 -0.0009 -0.0026  -0.0221
(-0.4) (-0.2) (0.0) (0.0) (0.0) (-0.2)
HF51 mon -0.0164 -0.0112 -0.0004 -0.0050  -0.0067 -0.0262
(-0.6) (-0.2) (0.0) (0.0) (-0.2) (-0.2)
BV -0.0113 -0.0061 0.0047 0.0051 -0.0017  -0.0212
(0.0) (0.0) (0.0) (0.2) (0.0) (0.0)
BV¢ mon -0.0105 -0.0053 0.0055 0.0059 0.0008 -0.0195
(-0.4) (-0.2) (0.0) (0.2) (0.0) (0.0)
BVj -0.0068 -0.0016 0.0092 0.0096 0.0045 0.0037
(0.2) (0.0) (0.2) (0.2) (0.4) (0.2)
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3.3.4 Estimation Errors Through Time

A potentially interesting topic lies in the development of estimation errors
over time. Figure 3.1 depicts the cumulative average absolute errors (AEs)
of HF5 1 mon and BV compared to those of HIST over time.'® Business cycle
contractions as reported by the National Bureau of Economic Research
(NBER) are indicated by shaded areas. It can be seen that during the
late 1990s the estimation errors are highest for the hybrid BV model. Later
on, when liquidity in options markets increases, BV performs considerably
better.!” Especially around crisis periods, BV yields a superior estimation
accuracy compared to HIST and, to a lesser extent, HF5 mon- & This is
most likely caused by the fact that during changes in economic conditions,
the option-implied moments can adjust much faster and more frequently
compared to historical covariances. Overall, HF5; 1on delivers the lowest
cumulative average AEs. Furthermore, since it only needs one month of
historical high-frequency data, differences in crisis times compared to BV
are only moderate. From the year 2001 on, BV yields an estimation accuracy

even slightly better than HF5 1 on.

3.3.5 Bias-Removal and Combinations

As it is shown in Section 3.3.2, all the estimation techniques are biased

and partially carry complementary information. None of the models

16We plot the differences of the cumulative errors of one model minus those of HIST.
This means that a downward trend indicates the superior estimation accuracy of the
model examined compared to HIST and vice versa.

1"E.g., the average daily total contract volume in S&P 500 index options increases
from about 94,200 during the late 1990s to roughly 473,800 for the remainder of our
sample period.

8Note that we are dealing with estimation horizons of up to one year and an evaluation
horizon of six months. Models relying on one year of historical return data are therefore
influenced by the crisis period until eleven months after the end of the contraction period.
Furthermore, all evaluation periods starting five months and less before the beginning of
a contraction period at least partially contain crisis times.
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fully subsumes all information contained in another, and in bivariate
encompassing regressions it often occurs that both models yield a significant
slope coefficient. These findings suggest that by removing the bias or
combining estimates it might be possible to further increase the estimation
accuracy. Bates & Granger (1969) note that the combination of estimation
techniques may prove worthwhile, especially when the estimates combined
are based on different sets of information. To investigate this, we try three
basic approaches. The first is just a simple combination of estimators. While
simple ad hoc combinations are easy to implement, the procedure might
not provide the optimal result. On the other hand, Clemen (1989) and
Timmermann (2006) provide evidence that, offering diversification gains,
first of all, combinations of multiple individual estimates can substantially
increase the estimation accuracy. Secondly, they show that such simple
combinations often work reasonably well or even better compared to more
complex approaches of combining estimates. However, with two further
approaches we try to find the (ex ante) optimal correction on individual
methods, trying to remove the bias that is inherent in any of the estimation
techniques (see Section 3.3.2), and optimal combinations of estimators. The
approach may be considered as an ex ante optimal AR(1) model.
Specifically, we employ bias-removal and combining techniques in the
spirit of Mincer & Zarnowitz (1969) using regression techniques as in
equation (3.4). We build portfolios as in Section 3.3.2, obtain estimates
for each approach and then perform the uni- or multivariate regressions,
pooling all unadjusted ex ante estimates for each approach as well as the
corresponding ex post realized portfolio beta estimates up to t — k (since

realized beta with a k-month window is only available up to t — k at time t)
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3.3. EMPIRICAL RESULTS

in separate vectors.'? Since the portfolio characteristics are relatively stable,
we employ an expanding window instead of a rolling window to make use
of a maximum length of history in order to estimate the parameters with

greater precision.?’ The regression equation takes the following form:
BR = a + bgl)ﬂ(l,unadj) + b§2)6(2,unadj) +e. (36)

punadi) s the vector of pooled initial portfolio beta estimates of one

2unadi) indicates a possible further approach

approach and, optionally, 5
to be included, while A% denotes the corresponding pooled realized beta
vector. At every point in time the estimation moves forward, five additional
observations are added to each of these vectors. Subsequently, after

obtaining the time-t regression coefficients, we manipulate the current

estimates, inserting them into (3.7):

é\DJ _ dt 4 Bgl)ﬂt(l,unadj) + 6%2)5t(2,unadj). (37)

ADJ g the vector of adjusted estimates at time ¢ and a,, 0", and b{* are

the respective estimated regression coefficients.?!

The results are presented in Table 3.4. We reexamine the models
HIST, HF51 mon, and BV. Additionally, we study simple combinations
of estimators where, e.g., BV_HF? implies that BV and HF5; yon are
combined placing a weight of 25 % in the model formerly mentioned,
and BV_HF_ HIST?? refers to a combined estimator placing a weight of
one third to each, BV, HF51 mon, and HIST. Furthermore, we have uni-

and multivariate model combinations obtained as described above. These

19We start the procedure after having twelve months of estimates and realizations
(i.e., sixty observations for both the dependent and independent variable) to perform the
bias-removal.

20We also try a rolling window approach. The results, however, suggest that the
expanding window approach is indeed superior.

21Note that now 5t(1’unadj) and ﬂt@’unadj) are assigned a t-subscript, since we only use
the vector of current estimates instead of the pooled vector of all previous estimates.

101



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA

ESTIMATION

"SEOULILYIP JURDOYIUSIS oY) JO
UOT)ODIIP 97} SJRIIPUT USTS O[T, "A[0A1100dS0I ‘XIIJRWI IR[NSURLI) TomO] pue Ioddn o) I0J $1S9) JURI POUSIS UOXOO[IA\ O} PUR OURLIRIN—P[OGOI(]
poyIpow a9y} AQ Poajse) ST 90UueOYIUSIS *juoj p[oq ul pejulid s 2In3y oY) ‘sol[ojriod oAl [[e I0J JUROYIUSIS oI SeOUSIPIP oY) JI *(Iueoyrusis
Arear)siye)s are so1ojriod 9AT] JO N0 0M] I0] SEOULISJIP 99 et} S9)edIpul () “39) %, G J' JIedyIusIs ST 9dULIJIP oY) YDIYM I0] sorjojirod jo
9IRT[S 1]} 9)BIIPUI sosotjuared Ul SIOQUINT dIN[OSqR O, [uwwn)od ut 2wy [9POU 91} JO 9SOY) PUR [MO.L Ut dWDU] [9POU B1[} JO SIOLIS O1[) USOM)O]
QOURIOPIP o) 9INdUWO0D 9A\ "SIOLI® UOTIRWIIISO JO SOOUSIONPIP URIPOW oFeIoA® o) $110dol XIIjeuwl IR[NSURLI) I9mO[ oY) ‘AlIe[ruurg ‘sorjojprod oAy
9} I9A0 PoJeISAR ‘SIOLID UOIJRUIISO Palenbs weall j00I Ul $eduaIefIp oY) syiodar xuyew renduerry oddn oy ], ‘SIOLI® UOT)RUWIISO Ul SOOUIDYIP
a1} syrodar s[qe) o1} JO IepUIRWILI O], "JU0J 2431 Aq pojesIpul sI saypeordde e Suowre IOl 1S9MO[ O], ‘SOI[0J310d SAT 81} ISAO S[EPOUI
UOT)RII)SO 1) JO I0LI0 Parenbs weour 1001 o3eIoa® oY) s)I10dol MOI JSI1Y o1 ], ‘sorIose PoJYSom-onyes se sejaq orjojprod sururIogep o ([I3us]
renboe 3im pue de[Ieao INOYIIM ®}o( [BOLIO)SIY 0] PoLiod UuoljewI)se o) 910 A10011p o0e[d Surye)) poliod SUIIOS oY) UI ®}o( [BOLIO)SIY IO}
0} SUIPI0%OR I9PIO UIPULISE Ul PAIRIO[[R IR SYD0IS 9} YPIYM ojul sorjojpiod aryumb oAy prmq app ‘o1ojrIod [oes 10J SYIUOUW XIS JO UOZLIO

ouIl} 9(} JI9AO0 B9 PoZI[kal J0] SIOJRUWI)SO PaUIqUIOD PUR PIAOULI-SRI( MQSQQSOU JO SIO.IIo uoTjetr)}so @~QS®W%O|@50 o} mp,HOQQ.H 9[qe} SIy T,

suorjeuIquio,) pue [eAowdy-selq :F'¢ 9[qel,

102



EMPIRICAL RESULTS

3.3.

(0°0) (0°0) (@0-) (0°0) (0°0) (20 (80 (070) (0°0) (@0) (0°0) (0 (00) (9°0-) _
0000 FI000-  LKOO'O-  G000'0-  0S00°0-  S900°0-  6SI0°0-  FE00'0-  PIOO'0-  0S00°0  ©0000  0600°0-  €£00°0-  OFZ00-  seqdH O LAH

(070) (¢°0-) F0-) (0°0) (00) (207 (80 (z0-) (0°0) (@0) (0°0) (20 (0°0) (9°0-) o
€£00°0- 03000~  8S00°0-  0T00°0-  S€00°0- 0000~  S9T0°0-  6€00°0- 610070~  S200°0  €000°0-  G600°0- 86000~ SGPG00" seqLSIH JAH A€
(00) (9°0) (z0) #0) (00) (z0) (8°0) (00) (z0) (z0) (F#0) (z0) (00) (9°0) B
65000 $900°0 €600°0- 01000  GI00°0-  0S00°0-  SFPIO0-  6I00°0- 00000  FPOO'O 91000  9.000-  6100°0- 98300 seiqLSTH JAH
(00) (00) (00) F0) (z0) (z0) (z0) (z0) F0) F0) (z0) (00) (z0) (#0) B
LL000 31100 8¥00°0 Tro0'0 L1000 81000~ EIT00-  €I00°0  €€00°0 22000  6F000  €F00'0-  PIO00  €6T0°0- s LSTH AL
(00) (00) (¥0-) (00) (o) (z0) (80) (#0°) (00) (00) (z0) (#0-) (o) (9°0) B
12000- 98000~ 00100~  8FPT00- 6Z00°0- 09000~  GST0T0- 620070~ 6000°0-  GEOO'0 L0000 G800°0- 83000~ SET00- seiqdH AL
(00) (00) (00) (00) (9°0) (z0) #0-) (00) (00) (z0) (z0) (z0) (00) (9°0)
T000°0-  €800°0  T€00°0-  6L00°0  6900°0 GE00'0-  0ET0°0-  PO00'0-  SI000 09000 GE00'0  0900°0-  €000°0-  TIZ00- seiqH
(00) (z0) (00) (00) (z0) (00) #0-) (z0) (00) (z0) (z0) (z0) (z0) (F0)
0000 LEOO'0  LZ0OO'0-  GLOO'0- €000 F000°0 ¢600°0-  T€00°0  TS00°0  S600°0 29000 §Z000-  ZE000  9LIO0- seigAd
(00) (z0) (z0) (z0) (z0) (00) (¢0) (80) F0) (80) (9°0) (z0) (#0) (00)
TEE0'0 L9EO'0  €0S0'0  GSE0°0  €OPOO  PEEDD  0EE00 93100 SPIO0 681000 19100 69000 9TI00  I800°0- seiq LSTH
(00) (0°0) (0°0) (070) (0°0) (070) (@0-) (z'0-) (0°0) (@0) (@0) (70 (00) (0°1-) o
03000~ FI00°0  0S00°0-  8600°0-  T1G00°0 61000~  €G00°0-  €S€0°0- 61000 9000  9L00°0  9%00°0- 10000  L0Z0°0-  EELSIH JAH Ad
(00) (00) (z0-) (00) (00) (00) (00) (z0-) (00) (z0) (¢0) (90) (00) (0 B
02000~ G100°0-  6.00°0-  1g10°0- 1000 8FO0'0- G000 T8E0'0-  6300°0- PPO0'0 910000 92000 610000~  92Z0°0- SAH AL
(T0-) (0°0) (¥°0-) (00) (0°0) (z0-) (0°0) (o) (00) (z0-) (0°0) (¥0-) (@0 (90) 3
VOTO'0- 690000~  €€10°0-  I8T0°0-  €€00°0-  GOI00- 90100~ 9EK0'0-  €800°0  $G00°0- 82000 03L0°0  €900°0- 0,300 ocdH™ AL
(00) (00) (00) (00) (00) (z0-) (¢0-) (z0) (00) (00) (00) (z0°) (z0-) (9°0)
¢800°0-  LPOO'0-  TITTO0-  6ST0°0-  TI00°0-  0800°0-  ¥800°0-  PIFO'0- 190000 €000~ &Z00'0 36000~ G800~ FG00- SAH AL
(00) (00) (00) (00) (00) (00) (00) (z0-) (¢0) (80) (9:0) (z0) (z0) (F#0)
99000 T0T00 €000 11000 €100 8900°0  ¥900°0  9920°0- L8000  9II00  OLI00  SFIO0 L8000 0S10°0- Ad
(00) (00) (00) (00) (90) (00) (z0) (00) (00) (00) (z0) (80) (00) (9°07)
TI000  9¥00°0  8T000- 990070 €800°0  €I000 600000  TgEOD0-  ELO00 19000  STIO0  €600°0  SS00°0- L020°0~ o ey
(0°0) (z0) (z0) #0) (z0) (00) (z0) (00) (z0) (z0) (z0) (z0) (00) (00)
0TF00  SPRO0 18600 £££0°0 I8P0°0  GIFO0 S0PO'0  8L00°0  IEPO0  09P00  FISO0  @6FO0  FPEO0 86800 LSIH
€L60°0 08600  LPOT'0  T90T°0  ¢880°0 91600 8€60°0  06GT0  6P80'0  LI800 G900 68L0°0 08600  €880°0  8L3T0 “Bae

jar o] = s} s} = es} = s} s} o) os} s} s jasi

H = = = = ! < & = = = = < s Z

g = = = o § g E o o o = = =

g = = = ) ] S} &) = = £

! : H = g ! e 2 s g

o Jos A g @ o

= e E

5 g &

(ponuiu02) SUODPUIQULOL) PUD [DAOWIY-SDI “F°& 219D,

103



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA
ESTIMATION

estimators are indicated with the superscript “bias”. It can be seen that
the simple ad hoc combination of BV and HF5; non obtains the lowest
average estimation errors. These are significantly lower compared to the
initial models of BV, HF51 mon, and HIST for at least one out of the five
portfolios in RMSE and RMedSE, respectively. Looking at the individual
bias-corrected models, the average RMSE can be slightly reduced compared
to the initial models. However, these reductions are mostly insignificant.
Looking at ex ante optimal combinations of estimators, it also appears
that the estimation accuracy can be slightly, but insignificantly, improved
for most possible combinations in relation to their constituents. The ex
ante optimal combination of BV and HF5; yon delivers significantly more
precise estimates compared to HIST and HF5 1 0, for at least one portfolio
in RMSE and four portfolios in RMedSE. However, the simple fifty-fifty
combination of both models yields an even lower average RMSE. Although
this difference is not significant, given the simplicity of the approach it can
be regarded as clearly favorable.??

Overall, it appears to be valuable to use a combination of the
high-frequency and BV estimators. An ex ante optimal combination delivers
proper estimation accuracy. However, a simple combination of the two

estimators performs even slightly better.

3.3.6 Beta and Subsequent Returns

In this section, we examine the economic value of beta predictability, namely
the relation of current estimates for beta and subsequent returns. A beta

estimation methodology is favorable if a higher estimate is associated with a

22We also consider the Bayesian shrinkage approach proposed by Diebold & Pauly
(1990) with the empirical Bayes estimator and the prior of equal weights and zero
intercept for all combinations examined. The results differ only slightly from those of
just the regression approach, while the simple ad hoc combination of BV and HF5 1 mon
with equal weights still yields lower average estimation errors.
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higher expected return during the following period. If the CAPM is a valid
asset pricing model, there should be a positive and monotonic relationship
between firms’ betas and their expected returns.?® Motivated by these
theoretical insights, we set out to investigate whether the beta forecasts
are consistent with these predictions.

To perform the analysis, for each approach and at the end of each
month, we sort the stocks into N portfolios according to their current beta
estimate. We compute portfolio betas and excess returns over the subsequent
six months as value-weighted averages. This approach has the advantage
that on the one hand it maximizes the spread in expected beta and on the
other hand keeps the portfolio properties stable, while betas of individual
assets may vary more strongly over time.

For the first part of the analysis, we sort the stocks into five portfolios
and examine their average excess returns, testing whether the pattern
in returns is monotonically increasing with beta. The results are shown
in Panel A of Table 3.5. This table delivers a few insights that appear
noteworthy. First, we can detect, respectively, that the risk-return relation
of the historical estimators employing daily data (HIST, HISTg yon) are
rather flat or the increments in average portfolio returns appear erratic. The
overall pattern is even slightly negative for the high-frequency estimators,
while for the BV estimators the risk-return relation is increasing on average.
To thoroughly test for a monotonic pattern between portfolio betas and
returns, we employ the monotonicity test of Patton & Timmermann (2010).
To detect a significantly positive beta-return relation, one needs to be able
to reject the null hypothesis of a monotonically decreasing relation, while
not being able to reject the hypothesis of a monotonically increasing pattern.

Overall, we cannot detect a significantly monotonically relationship for any

ZFurthermore, if the CAPM is not valid, the market portfolio is still a risk factor in
many models, e.g., Fama & French (1993) or Hou, Xue, & Zhang (2015).
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of the approaches. The lowest p-values of the test for a monotonically
decreasing pattern are obtained for BV and BVg ,0,. However, they are still
above 10 %. After all, it might be hard to detect significant monotonicity
since, when doing the empirical examination, the theoretically always
positive relation between beta and expected returns flips around when
applying it to beta vs. realized returns in times of negative realized market
excess returns (Pettengill, Sundaram, & Mathur, 1995). While average
returns ought still be higher for the high-beta portfolio, the monotonically
decreasing pattern during these periods most likely prevents us from being
able to reject the overall hypothesis of a monotonically decreasing pattern.

To further explore the risk-return relation, we examine cross-sectional
regressions in the spirit of Black et al. (1972). Specifically, we build ten,
twenty-five, and fifty portfolios following the procedure outlined above. For
each portfolio and methodology, we compute the averages of the ex ante
portfolio betas and ex post excess returns. Finally, we regress the vector
of average realized portfolio excess returns on the vector of average betas.
For an approach to work well, the intercept estimate should be close to
and indistinguishable from zero. Furthermore, the slope coefficient ought to
be significantly different from zero to indicate a positive relation between
risk and returns. To validate one of the basic CAPM predictions, the slope
coefficient, in magnitude, should also be close to 7.1 % which is the average
annualized market excess return during the period under investigation, using
the S&P 500 total return index as proxy for the market portfolio.

The empirical results can be found in Panel B of Table 3.5. It turns
out that none of the models fully matches the predictions made by the
CAPM. For all approaches and independent of the number of portfolios
formed, the intercept estimate is significantly different from zero. The
intercept parameters for the historical approaches relying on daily return

data are around 5 %. For ten portfolios, none of the slope parameters
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Table 3.5: Return Statistics and Cross-Sectional Regressions

This table reports return statistics and cross-sectional regressions in the manner of
Black et al. (1972). For each methodology, we build five (Panel A), ten, twenty-five, and
fifty (Panel B) portfolios into which the stocks are allocated in ascending order according
to their current beta estimates. We determine portfolio betas and excess returns over
the subsequent six months as value-weighted averages. Excess returns are annualized.
Panel A presents return statistics. The lines exp. beta denote the average expected
portfolio beta, while av. ret indicates the average subsequent portfolio excess return
of each portfolio. p(decr.) and p(incr.) denote the p-values of the monotonicity test of
Patton & Timmermann (2010), with the null hypothesis of monotonically decreasing and
monotonically increasing relation of beta and returns, respectively. In panel B, we regress
the portfolios’ average excess return over rolling six-month windows on the average beta
estimates for the respective portfolios. Const. and Slope denote the regression intercept
and slope, while p-value indicates the respective p-value using Ordinary Least Squares
(OLS) standard errors. The rows adj R? present the adjusted R? of the regressions. The
stars indicate significance with one star (*) denoting significance at 10 %, two (**) at 5

%, and three (***) stars at 1 %.

Panel A. Return Statistics

1 2 3 4 5 5 minus 1 p(decr.) p(incr.)

HIST exp. beta  0.52 0.76 0.94 1.17 1.61 1.09
av. ret 0.0658 0.0722 0.0662 0.0721 0.0687 0.0029 (0.353)  (0.331)

HISTg¢ mon exp. beta  0.48 0.74 0.94 1.18 1.65 1.17
av. ret 0.0614 0.0714 0.0684 0.0800 0.0681 0.0067 (0.302)  (0.667)

HF;5 exp. beta  0.53 0.71 0.85 1.05 1.51 0.98
av. ret 0.0812 0.0739 0.0692 0.0724 0.0682 -0.0129 (0.390)  (0.260)

HF51 mon  exp. beta  0.48 0.69 0.86 1.07 1.58 1.10
av. ret 0.0751 0.0777 0.0682 0.0784 0.0731 -0.0019 (0.637)  (0.626)

BV exp. beta  0.64 0.84 0.99 1.17 1.52 0.87
av. ret 0.0680 0.0657 0.0842 0.0838 0.0922 0.0241 (0.241)  (0.847)

BV6 mon exp. beta  0.63 0.84 0.99 1.18 1.53 0.89
av. ret 0.0609 0.0688 0.0764 0.0870 0.0891 0.0282 (0.134)  (0.561)

BV; exp. beta  0.68 0.85 0.98 1.15 1.51 0.83
av. ret 0.0687 0.0680 0.0870 0.1007  0.0905 0.0218 (0.278)  (0.824)

BV_HF®"  exp. beta  0.59 0.78 0.92 1.11 1.51 0.93

av. ret 0.0684 0.0668 0.0713 0.0829 0.0767 0.0083 (0.240)  (0.653)
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Table 3.5: Return Statistics and Cross-Sectional Regressions (continued)

Panel B. Cross-Sectional Regressions

‘ HIST HIST§ mon HF5 HF51 mon BV BVg mon BVj5 BV_HFSO
10 Portfolios
Const. 0.0655%F*%  0.0632%** 0.0836***  0.0805%**  0.0416***  0.0432%¥**  0.0453%**  (.0612***
p-value (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.005) (0.000)
Slope 0.0063 0.0086 -0.0110 -0.0067 0.0374%F%  0.0340***  (.0382*** 0.0138
p-value (0.452) (0.169) (0.119) (0.143) (0.002) (0.001) (0.008) (0.130)
adj R? 0.07 0.22 0.28 0.25 0.72 0.75 0.61 0.26

25 Portfolios
Const. 0.0645%%*  0.0659***  0.0876***  0.0779***  (0.0544*%*F*  (0.0502*¥**  0.0541%**  0.0596***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Slope 0.0094 0.0086  -0.0145%%  -0.0015  0.0263%%* 0.0201%**  0.0306*%*  0.0176***
p-value (0.192) (0.184) (0.009) (0.722)  (0.004)  (0.000)  (0.000) (0.003)
adj R2 0.07 0.08 0.26 0.01 0.30 0.52 0.45 0.32

50 Portfolios
Const. 0.0661***  0.0684***  0.0850***  0.0799***  (0.0565***  0.0530***  0.0593%**  0.0639***

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0109% 0.0091 20.0079%  -0.0005  0.0273%%* 0.0202%%% 0.0271%%*  0.0166***
p-value (0.088) (0.114) (0.082) (0.895) (0.001) (0.000) (0.000) (0.001)
adj R? 0.06 0.05 0.06 0.00 0.22 0.38 0.30 0.20

for the historical estimators is significant. However, with the number of
portfolios, significance increases. For fifty portfolios, the slope coefficients
for the one-year historical daily approach is significant at 10 %. For the
high-frequency historical estimators, the intercept estimate is about 8 %
which, together with the usually insignificant or even slightly significantly
negative slope estimates, implies a flat relation of beta and returns. The
result that high-frequency beta is not priced in the cross-section of stock
returns is consistent with recent evidence in Bollerslev et al. (2015) who
show that continuous and total beta, as opposed to discontinous beta, do not
adhere a significant price of risk. Turning the focus on the BV models, the
intercept estimate is typically smaller than that for the historical estimators
with values around 5 %. However, it is still highly significant in all cases,
already contradicting one of the CAPM implications. The slope estimates
for the BV models lie between 2.6 % and 3.8 % in magnitude, which is

too small compared to the average market excess return, contradicting the
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second prediction of the CAPM. On the other hand, the slope coefficients are
highly significant, at least implying a positive risk—return relation, maybe
not with the magnitude desired but substantial nevertheless. As is expected,
given the results outlined before, the combination of the high-frequency
estimator and BV implies a positive, though weaker compared to solely
using BV, relation of beta and subsequent excess returns.

The particularly bad performance of the high-frequency estimators
in detecting a relationship between risk and returns at all may appear
surprising at the first glance, since looking at the statistical examination,
it performs notably well. Overall, however, it seems that BV contains
information about the cross-section of future returns beyond that of
any of the historical approaches. The major reason for that is probably
that BV uses option-implied volatilities over a time period matching
the evaluation horizon. This means that the procedure uses inherently
forward-looking information, whereas all historical approaches have to rely
on the assumption that beta, and hence the risk—return trade-off, is stable
throughout both the estimation and evaluation horizons. Furthermore, the
evaluation approach presented in this section strongly loads on measurement
errors of the individual approaches by sorting according to the respective
current estimates. This means that high measurement error stocks are
likely to be clustered in the extreme portfolios, preventing the errors
from being fully diversified in these portfolios. Consequently, it appears
that measurement errors are stronger in the historical, and particularly
high-frequency, estimators for some stocks. Using the MSE decomposition
suggested by Mincer & Zarnowitz (1969) delivers some support for this
conjecture. While the average RMSE, using the initial specification with
five portfolios sorted by a common instrument, are approximately equal

for BV and the high-frequency models, the bias component for BV is
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substantially higher (about 15 % of total MSE compared to roughly 2 %).%
The inefficiency part is approximately equal around 10 % for each of the
approaches, while the random error part, in turn, is substantially higher for

the high-frequency models (around 88 % vs. 75 % of the total MSE).

3.3.7 Downside Beta

In this section, we examine the estimation accuracy of different models for
downside beta. This is important since several recent studies show that
downside beta is an important factor for pricing the cross-section of returns
for stocks and other asset classes (e.g., Ang et al., 2006a; Lettau et al.,
2014). For the estimation of downside beta, however, one has typically to
rely on long estimation windows in order to get sufficient data points that
provide a reliable estimate. Therefore, the availability of high-frequency data
is potentially crucial, since, for any potential specification, more data points
are available and hence a more precise estimation ought to be possible. To
do the analysis, we have to adjust our main models to estimate downside
beta. Subsequently, we examine the statistical and economic properties of
these estimators.

Since the estimation changes slightly for conditional beta factors, we
quickly outline how we adjust our main models. Realized downside beta is

estimated as follows:

R,— S eI < 0]
Bii = = : (3.8)
ZT:l 71M,7'[[7n]\/[,7' < 9]

I[ry- < 6] is an indicator function returning the value one if the condition in

brackets is fulfilled and zero otherwise.  is an exogenously defined threshold.

24The average total RMSE of BV is 0.099 compared to 0.105 for HF5 and 0.132 for
HF'5.1 mon, While nothing can be stated about significance since each of the approaches
is sorted differently and therefore the estimates of beta are to be evaluated by different
estimates for realized beta.
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We define the threshold as zero.?® We estimate historical beta with

BHIST,f _ cov(rj, rar|ra < 0) (3.9)
a var(rp|ry < 60) '
The hybrid downside beta is obtained as
[ N Pl y—
ﬁBVﬁ _ 0;% Zz‘:l(wi,tagt p%,t) (3.10)
S (05::)? | |

with a%_ and O’%; being the option-implied downside volatilities while
p%t_ is the risk-neutral downside correlation applying the transformation of
physical to risk-neutral correlations suggested by Buss & Vilkov (2012).
For the hybrid approach to be obtainable using the types of options
currently available we need the assumption that the relative variance risk
premium conditional on an asset’s return being below a certain threshold
is the same as that conditional on the market return being below the

corresponding threshold. This implies that the following relation holds:

var® (r|r; < 6) _ var(r;|r; < 0)/RV RP; (3.11)
varf (r;|ry < 60) varQ(r;|ry < 0)/RVRP; .
~ var(rylr; < 0)
 ovarQ(rylry < 0)
where RVRP; = var(r;)/var®(r;) denotes the relative variance risk

premium of asset j. Further assuming that the quantity r obtained with
the conditional variances from the historical relation under P is stable over
short horizons, we can convert the implied variance conditional on the asset’s
return being below 6 to the conditional variance, given the market return is
below the corresponding threshold. We obtain v using the past one year of
daily returns and, subsequently, transform var®(rj|r; < ) to var®(ri|ry < )

dividing it by v.26

25For the sake of brevity we do not report the results on other downside thresholds
as, e.g. the average market return during the sample period (Ang et al., 2006a), or the
average market return during the sample period minus one sample standard deviation
(Lettau et al., 2014). The results using these thresholds are qualitatively similar.

26We further describe the procedure of obtaining the lower partial moments in Section
B.1 in the appendix to this chapter.
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Table 3.6: Estimation Errors: Downside Beta

This table reports the out-of-sample estimation errors of competing estimators for
five-minute realized downside beta over the time horizon of six months for each portfolio.
We define the downside threshold as ¢ = 0. We build five quintile portfolios into
which the stocks are allocated in ascending order according to their historical downside
beta in the sorting period (taking place directly before the estimation period for
historical downside beta without overlap and with equal length). We determine portfolio
betas as value-weighted averages. The first row reports the average root mean squared
errors of the estimation models over the five portfolios. The lowest error among all
approaches is indicated by italic font. The remainder of the table reports the differences
in estimation errors. The upper triangular matrix reports the differences in root mean
squared estimation errors, averaged over the five portfolios. Similarly, the lower triangular
matrix reports the average root median differences of estimation errors. We compute the
difference between the errors of the model /name in row/ and those of the model /name
in column/]. The absolute numbers in parentheses indicate the share of portfolios for
which the difference is significant at 5 % (e.g., 0.4 indicates that the differences for two
out of five portfolios are statistically significant). If the differences are significant for all
five portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold—Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrix, respectively. The sign indicates the direction of the significant differences.

HIST HIST6 mon  HF5  HFsimen BV BVgmen BVs BV _HF®

avg. 0.1143 0.1140 0.0864 0.0932 0.0848 0.0862 0.0872 0.0697
HIST 0.0003  0.0279 00210 00204 0.0280 0.0270  0.0445
(0.0) (0.0) (0.0) 02 (00)  (0.0) (0.8)
HIST6 mon -0.0003 0.0276 0.0207 0.0291 0.0277 0.0268 0.0443
(0.0) (0.4) (0.2) (0.2) (0.2) (0.0) (0.8)
HF5 -0.0153 -0.0149 -0.0068 0.0016 0.0002 -0.0008 0.0167
(-0.2) (-0.6) (0.0) 00)  (0.0)  (0.0) (0.0)
HF51 mon  -0.0139 -0.0136 0.0013 0.0084 0.0070 0.0060 0.0235
(-0.2) (-0.2) (0.0) (0.0) (0.0) (0.0) (1.0)
BV -0.0178 -0.0174 -0.0025 -0.0038 -0.0014  -0.0024 0.0151
(-0.2) (0.0) (0.0) (0.0) (0.0) (0.0) (0.4)
BVg mon  -0.0156  -0.0152  -0.0003  -0.0016  0.0022 -0.0010  0.0165
(-0.2) (0.0) (0.0) (0.2) (0.0) (0.0) (0.4)
BV; 0.0157  -0.0154  -0.0004  -0.0018  0.0020  -0.0002 0.0175
(-0.2) (0.0) (0.0) (0.0) 0.0)  (0.0) (0.2)
BVﬁHF50 -0.0247 -0.0244 -0.0095 -0.0108 -0.0070  -0.0092  -0.0090
(-0.6) (-0.6) (0.0) (-0.6) (-0.4)  (-04)  (-0.4)
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Table 3.7: Cross-Sectional Regressions: Downside Beta

This table reports cross-sectional regressions in the manner of Black et al. (1972). We
define the downside threshold as § = 0. For each methodology, we build ten, twenty-five,
and fifty portfolios into which the stocks are allocated in ascending order according
to their current estimates. We determine portfolio betas and excess returns over the
subsequent six months as value-weighted averages. Excess returns are annualized. We
regress the portfolios’ average excess return over rolling six-month windows on the average
beta estimates for the respective portfolios. Const. and Slope denote the regression
intercept and slope, while p-value indicates the respective p-value using OLS standard
errors. The rows adj R? present the adjusted R? of the regressions. The stars indicate
significance with one star (*) denoting significance at 10 %, two (**) at 5 %, and three

(¥**) stars at 1 %.

‘ HIST HIST¢ mon HF; HF51 mon BV BV6 mon BV; BV_HF?°
10 Portfolios
Const. 0.0865***  0.0762***  0.0876***  0.0756***  0.0634*** 0.0516%**  0.0653***  0.0630***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0089 -0.0022 -0.0146* -0.0019 0.0184***  (0.0284***  (.0193** 0.0132**
p-value (0.196) (0.812) (0.068) (0.762) (0.005) (0.000) (0.018) (0.030)
adj R? 0.20 0.01 0.36 0.01 0.64 0.87 0.52 0.47
25 Portfolios
Const. 0.0839%**  0.0728%**  0.0874***  0.0759***  (0.0612*¥**  0.0557***  0.0672***  0.0637***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0043 0.0052 -0.0129** 0.0003 0.0227***  0.0271%%*  0.0192*¥**  0.0149**
p-value (0.531) (0.457) (0.017) (0.942) (0.000) (0.000) (0.003) (0.017)
adj R? 0.02 0.02 0.22 0.00 0.59 0.71 0.33 0.22
50 Portfolios
Const. 0.0840%**  0.0752***  0.0865***  0.0767***  (0.0636*** 0.0574**¥*  0.0713***  0.0653***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0028 0.0053 -0.0083 0.0027 0.0223***  (.0282*%%*%  0.0167***  (0.0174***
p-value (0.629) (0.314) (0.109) (0.498) (0.000) (0.000) (0.002) (0.001)
adj R2 0.00 0.02 0.05 0.01 0.42 0.47 0.19 0.22
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Table 3.6 presents the results for estimation accuracy of our main
models. Regarding the individual models, BV yields the lowest average
RMSE while that of HF5 is only slightly higher and the historical models
using daily return data yield the highest estimation errors. However,
the differences among the individual models are insignificant most of
the time. Regarding the cross-sectional relation of downside beta and
subsequent returns, the results are presented in Table 3.7. A significantly
positive relation of downside beta and subsequent returns can be detected
neither for the historical daily nor for the high-frequency models. For the
high-frequency estimators the relation is even significantly negative in two
instances. For the hybrid models, independently of the specification, we
detect a significantly positive relation of downside beta and subsequent
returns. The slope estimates are at around 2-3 % smaller in magnitude
compared to those for “total” beta presented in Table 3.5. Overall, the
results on estimation and cross-sectional pricing of partial downside beta

are qualitatively similar to those of “total” beta.

3.4 Robustness

3.4.1 Long-Run vs. Short-Run Estimation Accuracy

To examine the robustness of our results we perform the evaluation
using different time horizons, namely one, three, twelve, eighteen, and
twenty-four months. We estimate the values for option-implied methods
using options with the appropriate time to maturity (e.g., one month
for the one-month time horizon, etc.) and adjust the estimation horizon
for high-frequency models to the respective time-frame, evaluating all the
methods using realized beta over the subsequent one, three, twelve, eighteen,

and twenty-four months, respectively.
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Table 3.8: Estimation Errors: Different Time Horizons

This table reports the out-of-sample estimation errors of competing estimators, for
realized beta over time horizons of one (Panel A), three (Panel B), twelve (Panel C),
eighteen (Panel D), and twenty-four (Panel E) months for each portfolio. We build five
quintile portfolios into which the stocks are allocated in ascending order according to
their historical beta in the sorting period (taking place directly before the estimation
period for historical beta without overlap and with equal length). We determine portfolio
betas as value-weighted averages. In each Panel, the first row reports the average root
mean squared errors of the estimation models over the five portfolios. The lowest errors
among all approaches are indicated by italic font. The remainder of the panels report
the difference in estimation errors. The upper triangular matrices report the differences
in root mean squared estimation errors, averaged over the five portfolios. Similarly, the
lower triangular matrices report the average root median differences of estimation errors.
We compute the difference between the errors of the model [name in row/ and those of
the model [name in column]. The absolute numbers in parentheses indicate the share
of portfolios for which the difference is significant at 5 % (e.g., 0.4 indicates that the
differences for two out of five portfolios are statistically significant). If the differences are
significant for all five portfolios, the figure is printed in bold font. Significance is tested
by the modified Diebold-Mariano and the Wilcoxon signed rank tests for the upper and
lower triangular matrices, respectively. The sign indicates the direction of the significant

differences.

Panel A. One Month

HIST  HIST; mon  HFs BV BV mon BVs BV _HF?*
avg. 01192 0.1255 0.0798  0.0938 01014 01026  0.0752
HIST 0.0063 00394 00254 00178 00166  0.0440

(-0.2) (1.0) (0.6) (0.4) (0.4) (1.0)
HIST; mon  0.0076 0.0457 00318  0.0241 0.0230  0.0504

(0.4) (1.0) (0.8) (0.6) (0.4) (1.0)
HF; 0.01690  -0.0244 0.0140  -0.0216  -0.0228  0.0046

(-0.8) (-1.0) (-0.4) (-0.6) (-0.6) (0.6)
BV 0.0053  -0.0120  0.0115 0.0076  -0.0088  0.0186

(-0.4) (-1.0) (0.6) (-:0.2) (-0.4) (1.0)
BVimon  -0.0018  -0.0094  0.0150  0.0035 00012 0.0263

(-0.4) (-0.6) (0.8) (0.2) (0.0) (1.0)
BV; 0.0010  -0.0066  0.0178  0.0063  0.0028 0.0274

(0.0) (-0.6) (0.8) (0.6) (0.2) (1.0)
BV _HF® 00197  -0.0272  -0.0028  -0.0143  -0.0178  -0.0206

(-1.0) (-1.0) (-0.2) (-1.0) (-1.0) (-1.0)
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Table 3.8: Estimation Errors: Different Time Horizons (continued)

Panel B. Three Months

HIST  HIST3 mon HFs  HFsimon BV BVspen BVs BV HF®
avg. 0.1174 0.1070 0.0750 0.0796 0.0866 0.0897 0.1032 0.0700
HIST 0.0105 0.0424 0.0379 0.0308 0.0277 0.0142 0.0474
0.0)  (0.6)  (04)  (04)  (0.4)  (02)  (1.0)
HIST3 non  -0.0043 0.0320 0.0274 0.0203 0.0172 0.0038 0.0370
(0.0) 10) (06 (02  (02)  (0.2)  (L0)
HF5 -0.0184  -0.0142 -0.0046  -0.0117  -0.0147  -0.0282 0.0050
(-0.8) (-0.8) (-0.4) (-0.2) (-0.6) (-0.6) (0.2)
HF51 mon -0.0169  -0.0126 0.0015 -0.0071  -0.0102  -0.0236 0.0096
(0.6)  (-0.6)  (0.2) (-0.2)  (-04)  (-04) (0.6
BV -0.0089  -0.0046 0.0096 0.0081 -0.0031  -0.0165 0.0167
(<0.4)  (-04)  (0.2) (02 00)  (-0.4)  (08)
BV3 mon -0.0088  -0.0046 0.0096 0.0081 0.0000 -0.0134 0.0198
(0.4)  (-04)  (04)  (02)  (0.0) (0.2)  (0.8)
BVy -0.0027 0.0016 0.0158 0.0143 0.0062 0.0062 0.0332
(0.2)  (-04)  (04)  (02)  (0.4)  (0.4) (0.8)
BV_HF50 -0.0226  -0.0183 -0.0042 -0.0057 -0.0137 -0.0138  -0.0200
(-1.0)  (-1.0)  (-0.2)  (-0.6)  (-0.8)  (-0.8)  (-0.6)
Panel C. Twelve Months
HIST HF5 HF5. 1 mon BV BV;  BV_HF®
avg. 0.1405 0.1216 0.1070 0.1045 0.1290 0.0910
HIST 0.0189 0.0335 0.0360 0.0115 0.0495
(0.0) (0.0) (0.0) (0.0) (0.0)
HF5 -0.0080 0.0146 0.0171 -0.0074 0.0306
(-0.2) (0.0) (0.0) (0.0) (0.0)
HF5,1 mon -0.0137 -0.0057 0.0025 -0.0220 0.0160
(0.0) (0.0) (0.0) (0.0) (0.2)
BV -0.0167 -0.0086 -0.0030 -0.0245 0.0135
(0.0) (0.0) (0.0) (0.0) (0.0)
BV5 -0.0143 -0.0062 -0.0006 0.0024 0.0380
(0.0) (0.0) (0.0) (0.2) (0.0)
BViHF50 -0.0228 -0.0147 -0.0091 -0.0061 -0.0085
(-0.2) (-0.4) (0.0) (0.0) (-0.2)
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Table 3.8: Estimation Errors: Different Time Horizons (continued 2)

Panel D. Eighteen Months

HIST  HISTi8 mon HFs  HFs51mon BV BVigmon BVs  BV_HF®

avg. 0.1559 0.1620 0.1385 0.1247 0.1154 0.1121 0.1375 0.1038
HIST -0.0061 0.0173 0.0311 0.0404 0.0437 0.0184 0.0521
(0.2) (0.0) (0.0) (0.0) (0.0) (0.0) (0.2)

HIST 8 mon 0.0064 0.0235 0.0373 0.0466 0.0499 0.0245 0.0582
(0.0) 00)  (00)  (00)  (0.0)  (0.0) (0.0)

HF;5 -0.0014  -0.0078 0.0138 0.0231 0.0264 0.0010 0.0347
00)  (0.0) 00) (02 (02 (0.0 (0.2)

HF51 mon -0.0058  -0.0122  -0.0044 0.0093 0.0126 -0.0128 0.0209
00)  (00)  (0.0) 02  (02)  (0.0) (0.2)

BV -0.0168  -0.0232 -0.0154 -0.0110 0.0033 -0.0221 0.0116
00)  (00)  (0.0)  (0.0) 00)  (0.0) (0.0)

BVigs mon -0.0169 -0.0233 -0.0155 -0.0111  -0.0001 -0.0254 0.0083
00)  (00)  (0.0)  (0.0)  (0.2) (0.0) (0.0)

BV5 -0.0167  -0.0231 -0.0154 -0.0110 0.0001 0.0002 0.0337
00)  (00)  (0.0)  (0.0)  (0.0)  (-0.2) (0.0)

BV HF® -0.0170 -0.0234 -0.0156 -0.0112 -0.0002 -0.0001  -0.0003
(0.0) (-0.2) (0.0 (-0.2) (0.0) (0.0) (0.0)

Panel E. Twenty-Four Months

HIST  HIST24 mon HF5 HF51 mon BV BVas mon BVs BV_HF?

avg. 0.1649  0.1722  0.1458  0.1372  0.1215  0.1201  0.1421  0.1109
HIST -0.0074  0.0191  0.0276  0.0433  0.0448  0.0227  0.0540
(0.2) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

HIST24 mon 0.0254 0.0264  0.0350  0.0507 0.0521  0.0301  0.0614
(0.0) (0.0)  (-02) (0.2 (0.2) (0.0) (0.2)

HF; 0.0179  -0.0075 0.0086  0.0243  0.0257  0.0037  0.0349
(0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

HF5 1 mon  0.0010  -0.0243  -0.0169 0.0157  0.0171  -0.0049  0.0264
(0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

BV 0.0173  -0.0426 -0.0352  -0.0183 0.0014  -0.0206  0.0107
(0.0) 0.0)  (-02) (0.0 (0.0) (0.0) (-0.2)

BVas mon -0.0188  -0.0442 -0.0367 -0.0199  -0.0016 0.0220  0.0093
(0.0) (0.0) (0.0) 0.0)  (-0.2) (0.0) (-0.2)

BV; 0.0163 -0.0416 -0.0342 -0.0173  0.0010  0.0025 0.0313
(0.0) (0.0) (0.0) (0.0)  (-02) (0.0 (0.0)

BViHF50 -0.0134  -0.0388 -0.0313  -0.0145 0.0038 0.0054 0.0029
0.0)  (0.0) (02  (00)  (0.0)  (0.0)  (0.0)
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Panel A of Table 3.8 reports the estimation errors of our main methods
and their significance for the one-month evaluation period. We find that
using this evaluation horizon the five-minute high-frequency estimator
yields the lowest estimation errors among the individual models. These
are significantly lower compared to those of the historical models relying
on daily return data for at least four of the five portfolios. Compared
to BV, the RMSE is significantly lower for two portfolios. Consequently,
the relation is not entirely clear, but there is strong indication that for
the one-month time horizon one should rely on HF5. The superiority
of the one-month high-frequency estimator indicates that beta is quite
stable over the short term and the argument of Lewellen & Nagel (2006),
that these short-term estimates deliver proper conditional forecasts over
short time horizons, appears to hold. The combined estimator BV HF?°,
however, yields estimation errors that are significantly lower for all portfolios
compared to all other approaches except HF5. Compared to HF5, the RMSE
is significantly lower for three and the RMedSE for one portfolio, so the two
models can be ranked with some but not full confidence.

For the three-month time horizon, shown in Panel B of Table 3.8,
the results are quite similar. The high-frequency estimator, now using a
three-month estimation horizon, appears to deliver the best estimation
accuracy among the individual models. While the one-month high-frequency
estimator yields results that are only slightly worse, the differences in RMSE
compared to BV are mostly not significant for the two approaches. Still, the
combination of HF5 ; 1,0n and BV overall yields the best estimation accuracy,
which is significantly better than that of all models but the high-frequency
estimators.

When looking at longer time horizons, namely twelve, eighteen, and
twenty-four months in Panels C — E of Table 3.8, the ranking of the
high-frequency estimators and the BV models topples slightly towards the
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direction of BV. Either the usual twelve-month BV or the BV model using
daily returns over the time horizon matching the evaluation horizon obtain
the lowest average RMSE of all individual models. Naturally, over longer
horizons, the inherently forward-looking information employed in BV yields
better conditional estimates even compared to short historical windows. The
differences, however, are mostly insignificant. Furthermore, independent of
the evaluation horizon, BV HF? yields the best estimation accuracy, but
the differences are at most weakly significant, especially compared to the
BV models.

Summing up, especially over short time horizons up to three months,
the high-frequency estimator works quite well concerning the statistical
evaluation methods, while for the twelve-month and longer time horizon(s)
the results on the estimation accuracy of approaches examined become indis-
tinguishable. Over all time horizons, the combination of the high-frequency

and BV estimators delivers the best estimation accuracy.

3.4.2 Further Models

In this section, we examine further possibilities for the estimation of beta.
In particular, we consider further high-frequency estimators using return
frequencies of 15, 30, 75, and 130 minutes and further BV models employing
high-frequency correlations estimated on the basis of 15-, 30-, 75-, and 130-
minute returns.

The results are presented in Table 3.9. It can be seen that the average
RMSE is higher for lower-frequency HF estimators compared to the five-
minute approach, while these differences are mostly not significant. Turning
the focus on the optimal sampling frequency for BV, the average estimation
errors are slightly lower for lower sampling frequencies, with BV based on

daily returns yielding the lowest average RMSE. However, once more, in

119



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA

ESTIMATION

*SOOUDIOYTP
TIeOYIUSIS oY} JO UOIIDAIIP 9} SOIRIIPUI USTIS o], ‘A[A1}00dso1 ‘XIIyewr rendueli) 1omo] pue Ioddn o1} I0J $359) YURI POUSIS UOXOI[IA\ 9} pue
OURLIR]N—P[OQOI(] POYIPOW oY} A Pa3se] ST 9dUROYIUSIS "juoj pioq ut pojurid st oIndy oY) ‘sor[oj)1od oA [[ I0J JUROYIUSIS oIR SOOUDIOPIP o)
J1 " (yueoyrusts A(eorisiye)s are sor[ojpiod AT JO N0 OM] I0] SEOUSIDHIP o1} IR} S91edIpUl °() ©'39) 9 G J' JUROYIUSIS ST 9OULILJIP 1) YOI M I0]
sorjoj310d JO oIRYS ST} 9)RIIPUI SPsJuUaTed Ul SIOQUINU 9IN[OSqR T, ‘[uwnjod ul 2wpu/ [9POUW dY) JO 9sOY) pue [mo. ul 2wpu/ [9pou oY) Jo
SIOLIO O} UOIMIO( SDUDISPIP T} 9NdUWO0D dAN ‘SIOLIS UOTJRUII)SO JO SOOUSIOPIP URIPOUL dFeIoAR 9} S3I0do1 XTLIjewl Ie[NSURLI} JoMO[ oY) ‘A[ITR[TIG
*SO1[0J3110d OAT 97} JOAO PISRIOAR ‘SIOLIO UOIIRUIIISO POIRNDS UL J00I Ul SOOULISPIP oY) sproder xtrjewn remsuerr) oddn oy, 'SI0LI0 UOTIRWI)SO
Ul SOOULIDPIP o) s3I0dol d[qe) 9y} JO IOPUIRWDI 9], "JUOJ 2pjt AQ PojedIpul aIe soyoeoldde [[B SUOWE SIOLId }S9MO[ 9T ], ‘SOI[0j1I0d AT} o1}
IOAO S[OPOW UOTJRUII)Sd 91} JO SIOLI® palenbs weowl 1001 93eIore o1} s3I0dal MOI ISIT O ], ‘SOSRIoAR PIY[SIoM-ON[eA Se S8} O1[0J110d SUIULId)OP
oM (q18ue renbe yym pue de[IeAo JMOYIIM ©I9( [RILIOISIY I0] poliod UOIRWISS o) 910 A[30aIrp ooeld 3uiye)) poured SUIlIOs 9y} UL vI(|
[BOLI09STY 1197} 0} SUIPIOdde IOPIO SUIPUAISE Ul PIIRIO[[e 918 SI03S 9y} YOIym ojul sorjojpiod ofipuinb oAl pring oA\ "orjojiiod yoed I10j Syjuowt

XIS JO UOZLIOY oW} o[} JI9AO ®}9( PIZI[Rol 92)NUIUW-9AL IO SIO}RUII}SO WQEQQEOO JO SIOLID UOIleWI}S9 @~QE@W%O$50 o} mamOQ@.H o[qe} SIyJ,

S[OPOIAl JoY3IN :SIOLIF UOIjewIIsH :6°¢ °[qel

120



ROBUSTNESS

3.4.

(0°0) (z0") (¢0-) (z0°) (z0°) (0°0) (0°0) (00) (0°0) (0°0) (¢0) (¢0) (z0-) (z0-)

11000-  €100°0-  TT00°0- T€00°0- 90000  ¥I000  SZO0'0- 2000~ F000'0-  6T000  €9000  T9000  LPOO'O-  6600°0- 0STAQ
(0°0) (0°0) (z'0-) (¥°0-) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (¢0) (¢0) (¢0-) (z0-)
120070~ €000°0- 00000 61000~  AT00°0  Sg00'0  FI000- 0T00°0- L0000 0000 92000  TL000  9£00°0-  8800°0- LA
(0°0) (0°0) (¢0-) (9°0-) (¢0) (z0) (0°0) (0°0) (0°0) (z0) (z0) (z0) (0°0) (z'0-)
€000°0  0£00°0 g000'0  ST00'0- 61000  Lg0OO'0  €I00'0- 60000 60000  TE00'0  8L000  TLOOO  FE00°0-  9800°0- 0EAq
(00) (0°0) (0°0) (¥0-) (z0) (z'0) (00) (00) (0°0) (z'0) (¢0) (¢0) (0°0) (z0°)
60000 9£00°0  9000°0 0200°0-  LT00°0  SZ00'0  FI000- TITO00- 90000 0000 92000  ©L000  9£00°0-  8800°0- SIAG
(0°0) (0°0) (0°0) (0°0) (¢'0) (¥°0) (0°0) (0°0) (¢0) (¢0) (¢0) (z0) (0°0) (¢0)
$G000 18000 19000  SF00°0 L£00°0  SF00'0 90000 60000  9Z00°0  6F00°0 96000 6000  9T00°0- 89000~ ‘Ad
(0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (z0) (0°0) (¢'0-) (#0°)
IP10°0-  ¥IT0°0-  ¥PI0°0-  0ST0°0-  S6T0°0- 80000  TE00°0- 8200'0- IT00°0-  €I000 69000  GS00°0  €900°0- SOTO0- "™ OAg
(0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) ((0)) (¢0) (0°0) (0°0) (0°0)
6STO0-  TETO0-  T9TO0- L9TO0-  2IZ00-  LT00°0- 6€00°0-  9€00°0-  6T00°0-  S000'0  TS00'0  LFOO'O  T900°0- €IT0°0- Ad
(0°0) (0°0) (0°0) (00) (0°0) (0°0) (0°0) (z0) (0°0) (z'0) (o) (¢0) (0°0) (¥0-)
82000~  T000°0- T€000- LEOO'0- @S000-  €IT0°0  0EI0°0 €000°0 12000  FFOO'0 06000 98000  TZ00'0-  FL000- ST IH
(00) (0°0) (0°0) (00) (00) (0°0) (0°0) (0°0) (z'0) (z'0) (¢0) (00) (¢'0°) (z'0°)
G900°0-  L€00'0-  2900°0- €000~  STTO0- L2000 #6000  9£00°0- L1000 0F00°0 18000  €800°0  GZ00'0-  LLOO'0- SLIH
(0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (¢0°) (0°0) (¢0) (0°0) (0°0) (z'0-)
ZIT00-  €800°0-  CTTO0- TZT00-  99T00- 62000  9¥00°0  ¥S00°0-  8F00°0- €200°0  0L000 99000  TFO0'0-  S600°0- 08 T
(0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (¢'0-) #0°) (0°0) (00) (070) (¢'0-) (¥0°)
LFT0°0-  02T0°0-  0STO0-  99T0°0-  T0Z0'0-  9000°0-  gI000  6TT00- 28000~  SE00°0- 9F00'0  ZF00'0  9900°0-  STITO0- STIH
@o)  (zo) (o) (o) (zo)  (@0)  (00) (0'0) (0°0) (0'0) (0°0) (00)  (@0)  (90) ‘
80200~  TISTO0-  T1Z0°0- LIZ00-  €920°0- L9000~  0S00°0- 0ST0°0- FFI0°0- 96000~  1900°0- $000°0-  TIT00-  ¥910°0- " V4IH
(0°0) (0°0) (0°0) (0°0) (¢0°) (0°0) (0°0) (0°0) (¢0°) (0°0) (0°0) (0°0) (¢'0-) (#0-)
19T0°0-  OFT0°0-  0L10°0-  9L10°0-  T1gg0°0- 92000~ 60000~ 6€T0°0- OTO0-  SS00°0-  0T000-  I¥00°0 80T0°0- 09100 SqH
(00) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (00) (00) (0°0) (0°0) (00) (0°0) (0°0)
70100 TETO0  TOTO'0  S600°0  0S000  SFPG00 @900  TETO'0 89100 91200  1S20°0  &IL00  T.T00 2%00°0- "™ 9ISIH
(0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (0°0) (z'0) (0°0) (¢0) (¢0) (0°0) (z0) (0°0)
€100 10200 TLT00  G9T00  0ZTI00  GIE0'0  GEE0'0  T0TO0  8€T00  9820°0  0ZEO0  TSEO'0  OPED0  0LO00 ISTH
PLOT'0  9FOT'0  9L0T°0  2SOT'0  LZIT'0  2€60°0  SI600  GPOT'O  600T°0 19600 L2600 69800 L0600  LLIT'O  L¥TT'0 ‘Sae
0STAg “Ad RN STAd SAd TMoAd Ad OSTIH S20H 08 TH ST O T SIH "™ 9ISIH  ISIH

(panULIU0D) S]APOJT UOYIIT] SLOLLFT UOYDWISHT 6°E 21D,

121



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA
ESTIMATION

general the differences are insignificant in the majority of the cases.

3.4.3 More Portfolios and Different Sampling Frequen-
cies

We test whether the results obtained so far are robust to building more
portfolios and different sampling frequencies for realized beta used to
evaluate the ex ante estimates. Thus, for the first part of the analysis, we
build ten, twenty-five, and fifty portfolios and in the limit we also consider
the case of individual stocks. Panel A of Table 3.10 reports the results, which
are quite similar to our previous findings. We observe that the average errors
in general increase with the number of portfolios where the diversification of
idiosyncratic measurement errors works less well. Regarding the individual
models, independently of the number of portfolios, one of the high-frequency
estimators obtains the lowest average RMSE. For five and ten portfolios,
the short-term HF'5 ; 1,0, has the lowest estimation errors, while for a larger
number of portfolios the six-month HF5 delivers the most precise estimates
on average. The estimation errors of the BV approaches are generally a
bit higher than those of the high-frequency approaches, but smaller than
those of HIST. Looking at the combined estimate, BV HF", it turns out
to yield the best estimation accuracy as long as portfolios are formed. It
thereby has the lowest estimation errors for at least 76 % of the portfolios.
Only for individual assets is the average RMSE for HF5 slightly smaller.
The results for different sampling frequencies for realized beta used
to evaluate the ex ante estimates are presented in Panel B of Table 3.10.
The results are consistent with our previous findings. Among the individual
models HF5 1 mon yields the lowest average RMSE independent of the
sampling frequency in realized beta. BV and HF5 also yield relatively low

average RMSEs. Further analysis reveals that, as hitherto, in most cases the
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Table 3.10: Estimation Errors: More Portfolios and Different
Sampling Frequencies

This table reports the root mean squared errors of the competing estimators for
realized beta over the time horizon of six months, for different counts of portfolios (Panel
A) and different frequencies for the evaluation proxy (Panel B). Each month, we form N
portfolios with N amounting to 5, 10, 25, and 50, and in the limit we also consider the
case of solely individual assets (in this case we compute the values of the loss functions
for each asset in every month of our sample period individually and average over all
errors). The stocks are allocated into N portfolios in ascending order according to their
historical beta in the sorting period (taking place directly before the estimation period
for historical beta without overlap and with equal length). The numbers in parentheses
denote the count (as proportions) of portfolio series for which a certain approach yields
the lowest error among those presented in the table. For each specification, the lowest

average errors among all approaches are indicated by italic font.

Panel A. More Portfolios

HIST HIST§ mon HF5 HF5.1 mon BV BV6 mon BVs BV _HF%

5 Portfolios
avg. RMSE 0.1247 0.1177 0.0907 0.0865 0.0915 0.0932 0.1127 0.0749
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

10 Portfolios
avg. RMSE 0.1358 0.1286 0.1001 0.0999 0.1040  0.1062  0.1245 0.0854
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

25 Portfolios
avg. RMSE 0.1538 0.1503 0.1148 0.1200 0.1270  0.1294  0.1438 0.1029
(0.00) (0.00) (0.00) (0.04) (0.00) (0.00) (0.00) (0.96)

50 Portfolios
avg. RMSE 0.1730 0.1734 0.1289 0.1411 0.1508  0.1539  0.1654 0.1207
(0.00) (0.00) (0.22) (0.00) (0.02) (0.00) (0.00) (0.76)

Individual Assets
avg. RMSE 0.3008 0.3247 0.2252 0.2687 0.2984 0.3066 0.3069 0.2325
(0.11) (0.10) (0.20) (0.21) (0.09) (0.08) (0.11) (0.11)
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Table 3.10: Estimation Errors: More Portfolios and Different Sampling
Frequencies (continued)

Panel B. Different Sampling Frequencies

HIST HISTG mon HFs  HFs51mon BV BVgmon BVs BV_HF®

5 min
avg. RMSE  0.1247 0.1177 0.0907 0.0865 0.0915 0.0932 0.1127 0.0749
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

15 min
avg. RMSE  0.1234 0.1168 0.0938 0.0897 0.0929 0.0949 0.1164 0.0774
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

30 min
avg. RMSE  0.1248 0.1188 0.0979 0.0928 0.0974  0.0994  0.1221 0.0819
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

75 min
avg. RMSE  0.1282 0.1232 0.1053 0.1000 0.1046  0.1070  0.1306 0.0903
(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00) (0.80)

130 min
avg. RMSE  0.1285 0.1222 0.1055 0.0998 0.1074  0.1087  0.1333 0.0917
(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00) (0.80)

daily
avg. RMSE  0.1337 0.1250 0.1156 0.1103 0.1125  0.1127  0.1384 0.1005
(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00) (0.80)

differences in RMSE are not statistically significant among the individual
models. On the other hand, the combination of BV and HF5; 1on yields
the lowest overall average RMSE independent of the sampling frequency for

ex post realized beta. These differences are in general significant for some

portfolios in RMSE and RMedSE.

3.4.4 Option and Stock Liquidity

Since both option-implied and high-frequency approaches strongly rely on
precise and up-to-date measures of option and stock prices, it appears
worthwhile to examine a highly liquid subset of our total sample where
these conditions are most probably are. To do that, we repeat our main
analysis for all stocks contained in the DJIA 30. The DJIA includes 30 of

the largest U.S. companies that commonly have more trading activity in
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both stocks and in options compared to other securities.

The results are presented in Table 3.11. Regarding the individual
models, the six-month high-frequency estimator yields the lowest average
RMSE, followed by HF5; mon and the BV models. So, also given the
relatively large magnitude in the differences of 0.013 comparing HF5 and
BV, on first glance the presumably better quality data appears to be
more important for the high-frequency estimators compared to the hybrid
BV estimators. Differences in RMSE, however, are mostly not significant.
Considering median estimation errors, the differences are significant more
often. However, still no fully clear statement on which model is to be
preferred can be made since the estimation errors for the BV models are
significantly higher for at most one of the two portfolios only. Additionally,
turning the focus on the combination of BV and HF5 ; 1,0n, this simple model
once more yields the lowest average estimation errors, which turn out to be
significantly lower mainly in RMedSE compared to all models except the
short-term historical and the high-frequency estimators, while in RMSE the
differences are only significant compared to the BV models.?”

Consequently, it turns out that the results appear not to be influenced
strongly by the liquidity of the underlying securities and their derivatives

used to extract information on beta.

3.4.5 Cross-Sectional Robustness

The analysis in Section 3.3.6 suggests that only the BV models and, to some
extent the historical models using daily returns, are able to detect a positive
cross-sectional relation of beta and subsequent excess returns. To examine
whether this finding is specific to the models examined and the six-month

evaluation horizon we perform a robustness test using additional models

2TAt 10 %, however, the RMSE for BV_HF is significantly smaller than those of
HIST for both portfolios.
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Table 3.11: Estimation Errors: DJIA

This table reports the out-of-sample estimation errors of competing estimators for
realized beta over the time horizon of six months for each portfolio. We build two
portfolios into which the stocks are allocated in ascending order according to their
historical beta in the sorting period (taking place directly before the estimation period
for historical beta without overlap and with equal length). We determine portfolio
betas as value-weighted averages. The first row reports the average root mean squared
errors of the estimation models over the two portfolios. The lowest error among all
approaches is indicated by italic font. The remainder of the table reports the differences
in estimation errors. The upper triangular matrix reports the differences in root mean
squared estimation errors, averaged over the two portfolios. Similarly, the lower triangular
matrix reports the average root median differences of estimation errors. We compute the
difference between the errors of the model [name in row/ and those of the model /name
in column/. The absolute numbers in parentheses indicate the share of portfolios for
which the difference is significant at 5 % (e.g., 0.5 indicates that the differences for one
out of two portfolios are statistically significant). If the differences are significant for
all portfolios, the figure is printed in bold font. Significance is tested by the modified
Diebold—-Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrix, respectively. The sign indicates the direction of the significant differences.

HIST  HISTg mon HF5 HF51 mon BV BVg mon  BVs BV_HF50

avg. 0.1003  0.1060  0.0783  0.0860  0.0916  0.0913  0.0951  0.0738
HIST 20.0057  0.0221 00143  0.0087  0.0090  0.0052  0.0265
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

HIST4 mon -0.0077 0.0277  0.0200 0.0144  0.0147  0.0109  0.0321
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

HF5 -0.0150  -0.0072 -0.0077  -0.0133  -0.0130 -0.0168 0.0044
(-0.5)  (0.0) (-05)  (0.0) (0.0) (0.0) (0.0)

HF5.1 mon  -0.0176  -0.0099  -0.0027 0.0056  -0.0053  -0.0091  0.0121
(-0.5)  (0.0) (0.0) (0.0) (0.0) (0.0) (0.5)

BV 0.0014  0.0063  0.0136  0.0162 0.0003  -0.0035  0.0178
(0.0) (0.0) (0.0) (0.5) (0.0) (0.0) (1.0)

BV6 mon -0.0011 0.0066 0.0138 0.0165 0.0003 -0.0038 0.0175
(0.0) (0.0) (0.0) (0.5) (0.0) (0.0) (1.0)

BV; 0.0017  0.0061 00133  0.0160  -0.0002  -0.0005 0.0213
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.5)

BViHF50 -0.0221  -0.0144 -0.0072  -0.0045 -0.0207 -0.0210 -0.0205
(-1.0)  (0.0)  (0.0)  (0.0) (-1.0) (-1.0)  (-1.0)
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and various alternative estimation and, accordingly, evaluation horizons.
For each approach and time horizon we perform Black et al. (1972) cross-
sectional regressions of average portfolio excess returns on average portfolio
betas using different counts of portfolios. The results on additional models
are presented in Panel A of Table 3.12. It can be seen that the results
are consistent with our previous findings. For the high-frequency models,
the relation of beta and returns is flat, while for the BV high-frequency
models, there is a significantly positive relation of beta and subsequent
excess returns, while the slope is too small in magnitude to match the main
CAPM predictions. This holds independently of the sampling frequency
used for the estimators. For the high-frequency BV models using 15- up to
130-minute sampling frequencies, the estimates for the slope coefficients are
of similar magnitude compared to the main BV models. Further results on
the main models over different time horizons, using twenty-five portfolios,
are presented in Panel B of Table 3.12. These are qualitatively equal to the
results for the six-month time horizon. For the historical models using daily
data, we find a weakly positive relation of beta and subsequent returns
which is most pronounced for the twelve-month time horizon. For other
time-frames, the relation is regularly insignificant. For the high-frequency
estimators, over short time horizons the beta-return relation is flat, while it
is even significantly negative over long time horizons. For the BV models,
the slope estimate is significantly positive for almost any specification and
time horizon. Just as for the six-month time horizon the slope coefficient is
sizable but not quite as large as the average market excess return, while the

intercept estimate is significant in almost every case.
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Table 3.12: Cross-Sectional Regressions: Robustness

This table reports cross-sectional regressions in the style of Black et al. (1972). For
each methodology, we build N portfolios into which the stocks are allocated in ascending
order according to their current estimates. We determine portfolio betas and excess
returns over the subsequent six months as value-weighted averages. We regress the
portfolios’ annualized average excess return over rolling windows on the average beta
estimates for the respective portfolios. In Panel A, we examine the results using additional
models and in Panel B, we present the results for different time horizons building fifty
portfolios, each. Const. and Slope denote the regression intercept and slope, while p-value
indicates the respective p-value using OLS standard errors. The rows adj R? present the
adjusted R? of the regressions. The stars indicate significance with one star (*) denoting
significance at 10 %, two (**) at 5 %, and three (***) stars at 1 %. If one model has

w»

already shown up for a certain time-frame, this is indicated by a “~’-sign in the first row.

We abstain from repeatedly reporting these models.

Panel A. Further Models

HFy5 HF30 HF75 HF130 BVis BV3o BV BVi30

10 Portfolios
Const. 0.0721%**  0.0712%%%  0.0765***  0.0699***  0.0442***  (0.0454***  (.0492***  (.0492***
p-value (0.000) (0.000) (0.000) (0.000) (0.004) (0.006) (0.003) (0.002)

Slope 0.0013 0.0031 -0.0034 0.0032  0.0392%%*  0,0374**  0.0330%*  0.0315%*
p-value | (0.839) (0.570) (0.456) (0.540) (0.005) (0.010) (0.015) (0.015)
adj R2 0.01 0.04 0.07 0.05 0.66 0.58 0.54 0.55

25 Portfolios
Const. 0.0793***  0.0755%**  0.0792***  0.0722***  0.0529***  0.0531***  0.0536***  0.0576***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Slope -0.0050  -0.0007  -0.0033  0.0032  0.0320%%* 0.0309%** 0.0307***  0.0260%**
p-value | (0.412) (0.896)  (0.518) (0.560) (0.000)  (0.000) (0.000) (0.005)
adj R2 0.03 0.00 0.02 0.01 0.48 0.42 0.43 0.29

50 Portfolios
Const. 0.0809***  0.0791*%%*  0.0802***  0.0744***  0.0617***  (0.0594***  (.0622***  0.0642***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Slope 20.0039  -0.0019  -0.0014  0.0036  0.0250%%% 0.0260%%F 0.0241%F*F  0.0210%**
pvalue | (0.464)  (0.689)  (0.747)  (0.420)  (0.000)  (0.000)  (0.001)  (0.002)
adj R2 0.01 0.00 0.00 0.01 0.25 0.28 0.22 0.19
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Table 3.12: Cross-Sectional Regressions: Robustness (continued)

Panel B. Different Time Horizons

‘ HIST HIST; mon HF5 HF5.1 mon BV BV mon BV; BV_HF%0
One Month
Const. 0.0675***  0.0760***  0.0754*** - 0.0545%%*%  0.0667***  0.0498***  (.0584***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0029 -0.0002 -0.0032 0.0240** 0.0118 0.0328*** 0.0148
p-value (0.777) (0.984) (0.732) (0.040) (0.242) (0.001) (0.305)
adj R? 0.00 0.00 0.00 0.08 0.03 0.21 0.02
Three Months
Const. 0.0653*%**  0.0629*%**  0.0749***  0.0791***  0.0605***  0.0533***  0.0566***  0.0657***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0085 0.0162** 0.0002 -0.0038 0.0223%F*%  (0.0281*F*%*  (.0274*** 0.0105
p-value (0.244) (0.011) (0.980) (0.361) (0.009) (0.000) (0.000) (0.122)
adj R? 0.03 0.13 0.00 0.02 0.13 0.24 0.28 0.05

Twelve Months

Const. 0.0594%** - 0.0825%%F  0.0736***  .0458%%* - 0.0439%%%  0.0596%**
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0113%* -0.0108***  -0.0015  0.0316%** 0.0355%¥F%  .0136%**
p-value (0.017) (0.010) (0.576) (0.000) (0.000) (0.001)
adj R2 0.11 0.13 0.01 0.46 0.37 0.20

FEighteen Months

Const. 0.0619%%%  0.0610%%*  0.0803%%*  0.0731%%%  0,0378%¥% 0,0421%%%  (.0368%**  0.0591%%*
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0053 0.0055  -0.0127%%*  -0.0059%*  0.0330%¥* 0.0301%** 0.0352%%*  0.0094%*
p-value (0.136) (0.179) (0.003) (0.016) (0.000) (0.000) (0.000) (0.019)
adj R2 0.05 0.04 0.17 0.12 0.30 0.29 0.29 0.11

Twenty-Four Months

Const. 0.0644%F%  0.0672¢%%  0.0919%%F  0.0775%%F  0.0483%%%  0.0481%FF  0.0425%FF  .0674%%*
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0004 20.0038  -0.0268%FF -0.0120%%F  0.0177F%  0.0197%%  0.0244%*F  _0.0023
p-value (0.907) (0.501) (0.000) (0.000) (0.029) (0.012) (0.006) (0.534)
adj R2 0.00 0.01 0.30 0.29 0.10 0.12 0.15 0.01

3.5 Conclusion

This study analyzes whether intra-day high-frequency data adds value for
beta estimation. We find that historical beta estimated with high-frequency
returns delivers relatively precise estimates for ex post realized beta.
Especially over short time horizons, high-frequency estimators appear to
deliver accurate conditional estimates. Regarding informational efficiency

and especially for longer time horizons the hybrid beta of Buss & Vilkov

129



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA
ESTIMATION

(2012) employing information from the options market performs equally well
or slightly better compared to the high-frequency estimator. When aiming
to estimate ex post realized beta with high precision, we further show that
it appears worthwhile to impose a simple method to combine both the
historical high-frequency and the hybrid estimate for beta. This approach
consistently delivers the lowest estimation errors that are significantly
lower compared to any of the individual models, especially over short time
horizons.

On the other hand, when evaluating beta estimates by their economic
value, i.e., the cross-sectional predictability of subsequent excess returns,
the hybrid BV approach is clearly favorable. While the approach cannot
fully reconcile empirical observations with the CAPM predictions, at least
it predicts a highly significant risk-return trade-off using beta to proxy for
risk. Historical models using high-frequency or daily return data mostly
imply a flat relation of beta and subsequent returns.

We further show that these results also hold for downside beta and

employing various robustness tests.
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B Appendix

B.1 Model-Free Option-Implied Volatility

The hybrid beta estimation approach is based on option-implied moments.
Therefore we follow Bakshi et al. (2003), who make use of the property
that any payoff can be spanned using a continuum of OTM puts and calls
(Bakshi & Madan, 2000) and Jiang & Tian (2005) to compute model-free
option-implied volatility. For that, we first compute ex-dividend stock prices.
Secondly, for any given stock and trading day, we interpolate implied
volatilities using a cubic spline across moneyness levels (K /S, strike-to-spot),
equally spaced between 0.3 % and 300 %, to obtain a grid of 1,000 implied
volatilities (Chang et al., 2012). Implied volatilities outside the range of
available strike prices are extrapolated using the value for the smallest, resp.
largest, available moneyness level (as in Jiang & Tian, 2005 and Chang et al.,
2012). The volatilities are used to compute Black—Scholes option prices for
calls, C(.), if K/S>1 and puts, P(.), if K/S<1. These are used to obtain
the prices of the volatility (QUAD), the CUBIC, and the quartic (QUART)
contract (Jiang & Tian, 2005):
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The integrals are approximated, following Dennis & Mayhew (2002),

using a trapezoidal rule. The option-implied moments can be computed as:

r{ (T—t) rf (T—t)
pQ = @ g E 5 QUAD — & CUBIC  (B.4)
ertf(T—t)
— = —QUART,
'I‘f —
(09 = e"T"IQUAD — (u2)?, (B.5)

where 7‘{ denotes the risk-free rate and 7" — ¢ the time to maturity of the
contract. (0@)? is the option-implied variance.

To obtain conditional, respectively partial implied moments, we build
on Andersen & Bondarenko (2013) and Andersen, Bondarenko, & Gonzalez-
Perez (2015) who develop the concept of corridor implied volatility which

can be used to split model-free implied volatility into different parts for
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different intervals of the underlying asset price. Specifically, we follow the
steps outlined above to obtain the grid of OTM option prices. Following
on from that we use the alternative approach to obtain model-free implied

volatility pioneered by Britten-Jones & Neuberger (2000) as:

(09)? = 2 / %d}(, (B.6)

with M (7, K) being the minimum price of put and call with strike K. We
impose the threshold Se? with  being equal to zero:

Se?
(0% = 2 / %d}(. (B.7)

We employ the discrete approximation of the integral using a trapezoidal

rule as described above.
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Chapter 4

Aggregate Uncertainty Affects

Stock Returns™

4.1 Introduction

An essential distinction between risk and uncertainty has been emphasized
ever since the seminal work of Knight (1921). He defines risk as measurable
uncertainty that can be represented by numerical probabilities while there
is also unmeasurable uncertainty which cannot be captured as easily. In
another very important contribution, Ellsberg (1961) shows that there is a
strong effect of uncertainty on investors’ decisions while controlling for risk.
Keynes (1936, p. 154) describes the impact of uncertainty on prices as “the
outcome of the mass psychology of a large number of ignorant individuals
[which] is liable to change violently as the result of a sudden fluctuation
of opinion due to factors which do not really make much difference to
the prospective yield”. Particularly, when considering the serious market

distortions caused by the recent financial crisis (and the crises before), one

*This chapter is based on the Working Paper “Aggregate Uncertainty Affects Stock
Returns” authored by Fabian Hollstein and Marcel Prokopczuk, 2015.
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sees that this “mass psychology” cannot be ignored for applications in asset
pricing. Consequently, taking into account uncertainty (ambiguity!) appears
to be a good starting point.

A simple stylized theoretical model, based on the standard Intertem-
poral Capital Asset Pricing Model (ICAPM) with recursive preferences
and consumption uncertainty predicts that, beside the commonly employed
risk-return trade-off, there exists also an uncertainty-return trade-off.
To this end, aggregate uncertainty surrounding the consumption growth
process can be regarded as a state variable. The intuition behind this is
that time-varying aggregate uncertainty induces changes in the investment
opportunity set, as higher uncertainty may lower the expectation of
future market returns or increase expectations of future volatility of stock
returns and hence worsen the expected risk-return trade-off. Furthermore,
apart from a rational model motivation, uncertainty may also be priced
through the channels of individuals with preferences different to standard
expected utility preferences. Ambiguity-averse investors are likely to
demand compensation for holding stocks with high exposure to such
aggregate uncertainty. In a recent experimental study, Fiillbrunn, Rau, &
Weitzel (2014) show that, under certain conditions, ambiguity aversion can
be reflected in capital markets.

Our main contribution is that, to the best of our knowledge, we are the
first to examine the pricing of aggregate uncertainty proxied by the Chicago
Board Options Exchange (CBOE) Volatility of the Volatility Index (VVIX),
a natural non-parametric measure of stock market volatility-of-volatility,
in the cross-section of expected stock returns. We further show that

the uncertainty-return trade-off, predicted by a simple theoretical model

!Previous studies use the terms “uncertainty” and “ambiguity” synonymously. We
mostly stick to the term “uncertainty” here, while referring to widespread terms like
“ambiguity aversion” when talking about attitudes toward uncertainty.
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without clear reference to the sign of the trade-off, is priced negatively.
While risk is commonly represented by first-order beliefs, i.e. return
volatility, we follow a plethora of literature which models what Knight called
“unmeasurable uncertainty” with second-order beliefs, i.e. the variation in
the probability distribution of the payoffs (e.g., Segal, 1987; Nau, 2003; Seo,
2009; Baltussen et al., 2015).

In the empirical methodology, we follow Ang et al. (2006a) and Cremers
et al. (2015). Specifically, we estimate factor loadings on innovations
in aggregate uncertainty on the level of individual stocks using daily
returns. We sort stocks into portfolios according to their contemporaneous
factor loadings and examine the portfolio returns over the same period.
This approach clearly meets the first requirement for a factor risk based
explanation, namely that there have to be contemporaneous patterns
between factor loadings and average returns. The second requirement,
that risk exposures are robust to controlling for stock characteristics and
other factor loadings, is addressed by performing double sorts and Fama &
MacBeth (1973) regressions with respect to a battery of control variables.

Our main result is that aggregate uncertainty is a significantly
priced factor in the cross-section of stock returns. We find that stocks
with high sensitivities to innovations in aggregate uncertainty have low
average returns, while stocks with low sensitivities to innovations in
aggregate uncertainty have significantly higher average returns. Sorting
stocks into quintile portfolios, the hedge portfolio buying stocks with
high and selling stocks with low sensitivities to innovations in aggregate
uncertainty experiences an annual value-weighted return and 4-factor alpha
of approximately —11.68 % and —13.88 %, respectively.

As increasing uncertainty is likely to induce a deterioration in the
investment opportunity set, risk-averse investors are likely to be inclined

to hedge against that by buying stocks with high sensitivity toward
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aggregate uncertainty, i.e., stocks that do well when aggregate uncertainty
rises. Furthermore, another potential explanation for our findings is that
ambiguity-averse investors want to hedge against changes in aggregate
uncertainty. Consequently, both rational investors who feature risk-aversion
and investors that exhibit non-expected utility with ambiguity aversion
potentially demand stocks they anticipate will do well if aggregate
uncertainty rises, lowering the average returns of these stocks.

Using double sorts, we find that our results cannot be explained
by beta, size, book-to-market, aggregate volatility, as well as liquidity,
returns distributions characteristics, and various other control variables. In
accordance to the results of the portfolio sorts, using Fama & MacBeth
(1973) regressions, we find that innovations in aggregate uncertainty
command an economically substantial and statistically significant negative
price of risk, with a two-standard deviation increase in aggregate uncertainty
factor loadings being associated with a significant decrease in average annual
returns that ranges from 6.3 % to 18.7 %. We show that our results are
robust to the incorporation of various control variables. We perform several
additional checks to further examine the robustness of our results. Jointly
estimating various factor sensitivities in multivariate regressions, the effect
of aggregate uncertainty remains significant. We also find the effect to
persist when controlling for effects of the recent financial crisis or when
using realized measures of aggregate uncertainty.

The remainder of this chapter is organized as follows. Section 4.2
presents an overview of the related literature. Section 4.3 presents a simple
model, suggesting a trade-off between aggregate uncertainty and returns.
Section 4.4 describes our dataset and methodology. Section 4.5 presents our
empirical results with portfolio sorts and cross-sectional regressions. Section
4.6 checks the robustness of our results. Finally, Section 4.7 concludes.

Detailed variable definitions are provided in Chapter C.1 in the appendix
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at the end of this chapter. Sections C.2 and C.3 of the appendix provide

further robustness analyses.

4.2 Literature Review

We add to a large body of research in asset pricing, a cornerstone being the
development of the Capital Asset Pricing Model (CAPM) by Sharpe (1964),
Lintner (1965), and Mossin (1966). Several authors (e.g., Banz, 1981; Fama
& French, 1992), though, show that market beta, used alone, fails to explain
the cross-sectional variation in asset returns. Addressing this concern, the
ICAPM by Merton (1973) provides an important extension of the classical
CAPM. It is shown that, once investors act to maximize their expected
utility of lifetime consumption instead of only one period, as in the basic
CAPM, current asset demands are affected by the possibility of uncertain
changes in future investment opportunities. Consequently, if there is a state
variable related to changes in the investment opportunity set, the assets’
sensitivities to this state variable should be priced in the cross-section
of returns. Campbell (1993, 1996) provides important extensions to the
ICAPM framework, imposing a loglinear approximation to the budget
constraint instead of assuming decision intervals as infinitely small, with
which long-run effects can be better studied. Very recently, Campbell,
Giglio, Polk, & Turley (2014) extend the Campbell (1993) framework
allowing for stochastic volatiltiy.

Fama & French (1993), among many others, motivate their findings
of a size and book-to-market risk factor with the ICAPM. Subsequently,
Ang et al. (2006b) and Adrian & Rosenberg (2008) show that market

volatility is a priced risk factor in the cross-section of stock returns, carrying
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a significantly negative risk premium.? Examining market skewness and
kurtosis, Chang, Christoffersen, & Jacobs (2013) find that market skewness
is a priced factor, while kurtosis is not. Furthermore, adding market
skewness and kurtosis decreases the significance of the market volatility
factor. Cremers et al. (2015) separate the effects of jump and volatility
risk and show that both carry a significantly negative risk premium in the
cross-section of stock returns. Han & Zhou (2012) show that the market
variance risk premium (VRP) carries a significantly negative risk premium
as well. We shed further light on the pricing of these factors studying their
relation to aggregate uncertainty.

This chapter is also related to the literature dealing with uncertainty.
Barsky & De Long (1993) argue that there exists substantial uncertainty
about the structure of the aggregate dividend process in the U.S.. Several
papers introduce a setup in which learning about uncertain probabilities is
required (e.g., Pastor & Veronesi, 2003; Leippold, Trojani, & Vanini, 2008;
Ozoguz, 2009; Cremers & Yan, 2012) while others point to the impossibility
of observing probabilities at all (e.g., Hansen, Sargent, & Tallarini, 1999;
Bossaerts, Ghirardato, Guarnaschelli, & Zame, 2010).

Epstein & Wang (1994) show that when introducing uncertainty
indeterminate equilibria can result which can cause sizable volatility. Cao,
Wang, & Zhang (2005) demonstrate that the presence of uncertainty
can lead to limited market participation, and Zhang (2006) reports that
information uncertainty can impose stock price continuation. Anderson,
Ghysels, & Juergens (2009) examine the effect of risk and uncertainty on
expected returns, measuring aggregate uncertainty with the disagreement
among professional forecasters’ expectations. They find empirical evidence

for an uncertainty-return trade-off. As opposed to Anderson et al. (2009),

2QOther papers on volatility and the cross-section of returns are Coval & Shumway
(2001), Goyal & Santa-Clara (2003), Bali & Cakici (2008), and Fu (2009).
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we use a market-based measure of aggregate uncertainty which delivers
day-by-day observations instead of a quarterly measure based on the
forecasts of relatively few agents.

We further build upon the results of Bloom (2009) who provides
a structural framework to analyze the impact of uncertainty shocks. In
this framework, higher uncertainty causes firms to make use of their “real
options”, postponing hiring and investment decisions when uncertainty rises.
Consequently, a sharp rise in uncertainty potentially generates recessions.
While Bloom (2009) measures uncertainty with simple volatility and
concentrates on simultaneous effects of a change in uncertainty on all
firms, we extend this point of view by using a more sophisticated measure
for uncertainty, separating the effects of risk and uncertainty and, more
importantly, by allowing for different exposures to aggregate uncertainty of
different firms. While a rise in aggregate uncertainty has only little impact
on some firms, others are affected much more heavily, making these firms
more ‘“risky”.

In their formulation of a structural model with recursive preference
and consumption uncertainty, Bali & Zhou (2015) also show that there
exists both a risk-return as well as an uncertainty-return trade-off. For their
empirical analysis, they substitute consumption volatility-of-volatility with
the market variance risk premium and find a positive coefficient on the
uncertainty-return trade-off. Building upon a similar model as Bali & Zhou
(2015), we choose to use a more direct and intuitive measure of consumption
volatility-of-volatility, and hence aggregate economic uncertainty, namely
market volatility-of-volatility.

Baltussen et al. (2015) use the smooth ambiguity model of Klibanoff,
Marinacci, & Mukerji (2005) to show that second-order beliefs (represented
by volatility-of-volatility) can, on the one hand, be interpreted as a

proxy for uncertainty and, on the other hand, potentially play an
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important role in investor’s utility functions. They further show that
individual stock’s idiosyncratic volatility-of-volatility carries a significantly
negative risk premium. As opposed to this study, Baltussen et al. (2015)
primarily use idiosyncratic volatility-of-volatility and cannot detect a
significant effect using past sensitivities from aggregate factor specifications
with high-minus-low idiosyncratic volatility-of-volatility portfolios or the
volatility-of-volatility from at-the-money (ATM) S&P 500 options. We, in
turn, examine model-free aggregate market volatility-of-volatility, repre-
sented by the VVIX, as a state variable concentrating on systematic instead
of idiosyncratic effects. Barnea & Hogan (2012) show that there is a negative
variance risk premium in VIX options, meaning that investors, on average,
are willing to accept a negative payoff in order to insure against increasing
aggregate uncertainty. This provides further evidence that investors also
take account of aggregate uncertainty. We shed further light on this.

This chapter is also connected to that of Bollerslev, Tauchen, & Zhou
(2009), who extend the long-run risks model of Bansal & Yaron (2004)
incorporating time-varying volatility-of-volatility. They show that, within
the model, volatility-of-volatility has an effect on the equity premium. An
empirical result of Bollerslev et al. (2009) is that the market variance risk
premium significantly explains the time series variation in the equity risk
premium. Drechsler & Yaron (2011) present another general equilibrium
model, which introduces infrequent jumps in the persistent component of
consumption and dividend growth. In these model surroundings, they show
that the variance risk premium is linked to fluctuating volatility, having a
large predictive power for stock market returns. Barndorft-Nielsen & Veraart
(2012) propose a probabilistic model that allows for stochastic volatility-of-
volatility providing further arguments for a relation between volatility-of-
volatility and the variance risk premium. While these papers concentrate

mostly on the variance risk premium and its implications for the equity
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risk premium we employ a much broader dataset using the cross-section of
equity returns and concentrate on the effect of volatility-of-volatility.
Another paper closely related to ours is Huang & Shaliastovich (2014),
who show that there is a volatility-of-volatility risk premium in the
cross-section of S&P 500 and VIX options. However, we study the pricing of
aggregate uncertainty in the cross-section of equity returns. Chen, Chung, &
Lin (2014) develop a general equilibrium model in which, beside market beta
and variance risk, the variance of the market variance affects asset prices.
They measure volatility-of-volatility using high-frequency index option data
and empirically find volatility-of-volatility to carry a significantly negative
risk premium. Our study differs from theirs both theoretically in the model
framework and empirically in that we directly use the VVIX index provided
by the CBOE, instead of a high frequency intraday realized variance measure
of the VIX index. Consequently, we use a forward-looking volatility measure
of forward-looking volatility instead of past variation in forward-looking
volatility. Several papers show that using implied instead of historical
volatility estimates significantly improves the estimation accuracy (e.g.,
Jiang & Tian, 2005; Prokopczuk & Wese Simen, 2014a). While there is
no direct evidence on second order volatility estimation accuracy, it is
intuitively appealing to use the estimation technique that is shown to work
best for both the first and in succession the second order estimation of

current volatility.

4.3 Model Formulation

We build on the results of Campbell et al. (2014) and Bali & Zhou (2015) im-
posing a stylized intertemporal asset pricing model with stochastic volatility
to motivate the existence of both a risk-return and an uncertainty-return

trade-off.
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The representative agent is assumed to have Epstein & Zin (1989)

preferences with the value function V; as

0

1—

Vi=[0-607 o (m Vi) (41)

where C; is the consumption at time ¢, and the preference factors of
the representative agent are denoted by ¢, the subjective discount factor,
and ~, the coefficient of relative risk-aversion. As is commonly done, for
convenience we define § = (1 —+) /(1 —1/1), with ¢ being the elasticity
of intertemporal substitution. As shown by Epstein & Zin (1991), the

corresponding stochastic discount factor (SDF) can be expressed as

0
Ct )1/1[) (Wt N Ct)la
My =6 Pezte) 42
. ( (Ct+1 Wt-i—l ( )

with W; being the market value of the agent’s consumption stream. The

logarithm of the SDF is then
0
My = 0Ind — EgtJrl + (0 — 1) rega, (4.3)

with 7.1 = In(Wiy/ (Wi — Cy)) being the log return on wealth and
gir1 = Acyy 1 being the log consumption growth. We follow Bollerslev et al.
(2009) and Bali & Zhou (2015) assuming the following joint dynamics for

consumption growth and consumption growth volatility

Ji+1 = g+ OgtZg i+ (4.4)
Ogis1 = G0+ po0y, + Qo (4.5)
Q1 = Qg+ Pglt + Lo/ Gz 41 (4.6)

ltg is the constant mean growth rate, ait denotes the conditional variance of
consumption growth, ¢; represents the volatility uncertainty process, while
Zg14+1, Zot+1, and 2,41 describe independent ii.d. N(0,1) processes. The

parameters satisfy a, > 0, a, > 0, |p,| < 1, |ps| < 1, and ¢, > 0.
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Let w; denote the logarithm of the price-dividend ratio, or price-
consumption or wealth-consumption ratio, of the asset that pays the
consumption endowment. To find the equilibrium, one can conjecture a

solution for w; as an affine function of the state variables ait and ¢,
wy = Ag + Aoaj’t + Ayq:. (4.7)

Using the standard Campbell & Shiller (1988) approximation r;; =
Ko + Kiwir1 — wy + g1, a solution for the coefficients Ag, A, < 0, and
A, < 0 can be obtained. Substituting the Campbell & Shiller (1988)
approximation into Equation (4.3) one obtains a pricing kernel without
reference to consumption growth (Bali & Zhou, 2015; Campbell et al., 2014):

0
M1 =0Ind + —Kkg — —wy + —K1Wer1 — Yregt (4.8)

(& (8 (&

Assuming a conditional joint lognormal distribution with time-varying

volatility for the asset returns, the risk premium on any asset is given by
1
Et<rj,t+1) — T’fyt + §Vart(7’j,t+1) = —COUt (th, Tj,tJrl) . (49)

Inserting the pricing kernel without reference to consumption growth in
Equation (4.8) into Equation (4.9), one can obtain an ICAPM pricing

relation of the following form:

Et(/’nj,t+]_)_rf7t+%vart(rj7t+1) = vCovy; (1441, rj,Hl)—EmC’ovt (Wet1, Tje41) -
(4.10)

Following Bollerslev et al. (2009) and Bali & Zhou (2015), we
substitute out the consumption growth volatility with Var,(r,11) = 03775 +

K7 (A2 + A202) when inserting Equation (4.7) into Equation (4.10). This
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yields:
1 0
Ey(rjee1) —rpe + §Va7”t(7"j,t+1) + EMAUCOU:% (Varya(rige), miee1)
= ~Couy, (Tt+1, 7°j,t+1)

0
+ @Kl [Agka% (A?, + Aggpg) — Aq] Covy (Gs1,Tjp+1)

Covy (1441, Tj,t-i-l)

= Vardr
v #(Te11) Var(rim)
0 2 (12 2 9 Cov, (Qt+1,7“',t+1>
+ Jﬁl [Aa/fl (AO' + Aquq) — Aq] VaTt(qH_l) Vay"t(thrj)
= Y -Bi+Z-8),
(4.11)

Apart from the variance term Var,(r;,41), and a trade-off of returns with
future variance indicated by Cov, (Varyi1(rite),7j++1), there is the usual
risk-return trade-off Y = yVary(ryy1), and an uncertainty-return trade-off
7 = %/ﬁ [Aori (AZ + Aggpg) — Ay] Vary(qi1) can be detected from this
formulation. At this stage, we deviate from Bali & Zhou (2015) who
proxy consumption volatility-of-volatility ¢; with the variance risk premium.
Instead, we directly use the asset market volatility-of-volatility to proxy for
this economic uncertainty.

In the following sections, we empirically examine whether the theo-
retical prediction of an uncertainty-return trade-off derived above holds.
Furthermore, the model does not make a clear prediction on the sign of the

uncertainty-return trade-off, as opposed to the risk-return trade-off which

is clearly signed by the coefficient of relative risk-aversion.
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4.4 Data and Methodology

4.4.1 Data

We base our study on all stocks traded on the New York Stock Exchange
(NYSE), the American Stock Exchange (AMEX), and the National
Association of Securities Dealers Automated Quotations (NASDAQ) that
are classified as ordinary common shares (Center for Research in Security
Prices (CRSP) share codes 10 or 11), excluding closed-end funds and REITS
(SIC codes 6720—6730 or 6798), for the sample period between January 01,
2007 and December 31, 2014. We obtain data on the VIX and the VVIX
from the CBOE. The VIX is constructed so that it represents the model-free
30-day implied volatility of the S&P 500 index. On February 24, 2006,
the CBOE began trading options written on the VIX and recently, with
the time series beginning in 2007, the CBOE started reporting the VVIX,
which represents the model-free 30-day implied volatility of the VIX.? The
beginning of the reporting of the VVIX on January 01, 2007 restricts the
beginning of our sample period to that date.* For a robustness check, we
also obtain five-minute intraday high-frequency data on the VIX from the
Thompson Reuters Tick History (TRTH) database.

We obtain daily and monthly price data as well as data on
dividend payments, trading volumes, firm age, and shares outstanding
from the CRSP. Following Amihud (2002) and Zhang (2006), we exclude

“penny stocks” with prices below $ 5. Additionally, we require a market

3For reliable implied moments, option liquidity is an important issue. While the
trading volume of VVIX options in 2006 was quite low, with several thousand contracts
per day, it increased to more than one million contracts per day in 2013. For more
information, refer to the CBOE homepage.

4In principle, we could compute the implied volatility of the VIX prior to that date
using the results of Bakshi et al. (2003). We refrain from that to avoid spurious findings
caused by potentially small initial trading volumes in the newly created VIX options
market.
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capitalization of at least 225 million dollars (D’Avolio, 2002; Baltussen et al.,
2015). These two thresholds serve to eliminate the most illiquid stocks that
exhibit potential microstructure problems and may bias the results (Fama &
French, 2008). Furthermore they ensure that only stocks with relatively low
short-sale constraints are selected (D’Avolio, 2002). We adjust for delisting
returns following Shumway (1997) and Shumway & Warther (1999).

Balance sheet and income statement data is obtained from the
Compustat database. Options data are from the IvyDB OptionMetrics
database.® Data on the Fama & French (1993) and momentum factors as
well as the risk-free (Treasury Bill) rate are collected from Kenneth French’s
data library. Data on the Pastor & Stambaugh (2003) liquidity factor is
obtained from Robert Stambaugh’s homepage.

Chapter C.1 of the appendix contains a more detailed description of all

variables used in this chapter.

4.4.2 Empirical Framework

Our goal is to test whether the main model prediction holds and stocks
with different sensitivities to innovations in aggregate uncertainty have
different average returns. For that, we follow a large body in the asset
pricing literature, examining the contemporaneous relation between realized
factor loadings and realized returns (e.g., Black et al., 1972; Fama &
MacBeth, 1973; and Fama & French, 1993; among many others). Ang
et al. (2006a) argue that while pre-formation factor loadings reflect both
actual variation in factor loadings and measurement error, post-formation
factor loadings are almost exclusively affected by stock return covariations

with risk factors. Additionally, they point out that if risk exposures, and

5Options data has only been available up to 31 August, 2014 when we started this
project. So, all tests that include options data (e.g., Idio. vol-of-vol and dSkew) are
performed for the sample period January 01, 2007 until August 31, 2014.
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hence factor loadings, are highly time-varying, pre-formation factor loadings
might be poor predictors of ex post risk exposures leaving the analysis with
low power to detect relations between factor loadings and realized returns.
Addressing these concerns, our research design follows Ang et al. (2006a)
and Cremers et al. (2015) by estimating factor loadings for individual stocks

using daily returns over rolling annual periods from the regression:
Tir = Tpr = Qg+ BNy (raer — 7p0) + B, dVVIX, + €. (4.12)

7 is the daily return of asset j on day 7, ras - is the return of the market
on that day, and 7, is the risk-free rate. dV'VIX, is the daily innovation
in the VVIX index.

Beside the fact that further factors like those from Fama & French
(1993) are not predicted to be priced in our simple model, Ang et al. (2006b)
argue that including additional factors in the regression in Equation (4.12)
may add a lot of noise. We control for further factors when performing the
time series and cross-sectional asset pricing tests. As a robustness check,
to account for possible model misspecification we also consider multivariate
joint factor loading estimations controlling for several aggregate risk factors

previously documented in the literature:
Tiw = The = Qg+ BNy (rare — 1p0) + BLAVVIX, + 55,6 + €5 (4.13)

(¢, contains one or more market factors, such as the Fama & French (1993)
and Carhart (1997) factors, the daily change in the volatility index (dVIX)
as described by Ang et al. (2006b), the innovations in market skewness and
kurtosis (dSkew, dKurt) as shown by Chang et al. (2013), the Cremers et al.
(2015) Straddle Vol and Jump factors, or innovations in the market variance
risk premium (Han & Zhou, 2012; dVRP). dVIX is of particular interest as
the model predicts a trade-off of returns and future variance, for which

current implied market variance might, to some extent, be a proper proxy
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for tomorrow’s market variance. For the regressions in Equations (4.12)
and (4.13), we use daily returns over rolling annual periods to estimate
the sensitivities. For each period and stock, we require at least one hundred
non-missing return observations in order to estimate the factor sensitivities.®

Turning the focus on the measurement of innovations in an economic
variable, there generally exists a trade-off between a possible errors-in-
variables problem using simple first differences, if that fails to completely
filter out the expected movement, versus the danger of misspecifying a more
complex equation for the expected movement in a variable (Chen, Roll,
& Ross, 1986). We choose to measure the innovations in the VVIX index
using the daily first differences in the variable because it is highly serially
correlated with a first-order autocorrelation of 0.94 during our sample
period. Therefore, the current value of VVIX appears to be a relatively
good proxy for the tomorrow’s expectation making the first difference
quite adequately capture its innovation. For robustness, we also consider
measuring innovations in aggregate uncertainty by fitting an ARMA(1,1)
model on the complete time series of the VVIX index. This approach results
in a measure of innovations of dVVIX, = VVIX, — 0.9989VVIX,._ | +
0.1063dVV IX,_1. The results of both approaches are qualitatively equal,

which is further discussed in the next section.

SFor the factor loading estimation regressions, potential low explanatory power might
be a concern. In the basic specification, we find the model in Equation (4.12) to exhibit
an average R-squared of 0.28 with median 0.23. Thus, it can be concluded that the
factor loading regressions possess substantial explanatory power. In these regressions,
the coefficient 3} is significant (at 10 %) in 83 % of the cases while the coefficient 3},
is significantly different from zero in about 18 % of the cases.
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Table 4.1: Sample Correlations of Different Aggregate Factors

This table presents the sample correlation coeflicients of the aggregate factors dVVIX,
dVIX, Straddle vol, dSkew, dKurt, Jump, dVRP, MKT, SMB, HML, Momentum,
dPol, dVVIXarma, and dVoVIXarma . Detailed variable definitions are provided in the

appendix.
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* 064 -0.07 -0.05 0.00 049 037 -0.54 -0.09 -0.16 0.02 -0.04 099 028 | dVVIX
¥ .0.07 000 -0.01 045 0.78 -0.84 -0.06 -0.31 0.25 -0.05 0.64 0.21 | dVIX

* -0.04 0.03 -0.67 0.01 -0.01 -0.03 -0.03 0.08 -0.05 -0.07 -0.15| Straddle vol
* -0.83 0.02 0.00 -0.01 0.03 0.00 -0.01 0.00 -0.05 0.02 | dSkew
* -0.04 0.01 0.00 0.04 -0.03 0.04 -0.03 -0.01 -0.04 | dKurt
* 0.21 -0.29 -0.05 -0.09 -0.02 0.02 048 0.29 | Jump
* -0.64 0.03 -0.24 024 -0.06 036 0.13 | dVRP
* 0.15 0.44 -0.43 0.04 -0.53 -0.14 | MKT
* -0.03 0.00 -0.02 -0.09 -0.04 | SMB
* -0.58 0.05 -0.16 -0.03 | HML
* -0.04 0.02 -0.09 | Momentum
* -0.04 0.05 | dPol
* 0.30 | dVVIXaArMmA
* dVOVIXARMA

4.5 Empirical Results

4.5.1 Descriptive Statistics

In addition to various firm characteristics, we consider the impact of
several aggregate state variables that have previously been examined in the
literature. In Table 4.1 we report the sample correlations between daily
innovations in aggregate uncertainty (dVVIX), innovations in aggregate
volatility (dVIX; Ang et al., 2006b), the Fama & French (1993) and Carhart
(1997) factors, and also the factors on market skewness and kurtosis of
Chang et al. (2013), stochastic volatility and jump risk of Cremers et al.
(2015), and innovations in the market variance risk premium (Han & Zhou,
2012).

First, we note that whether innovations are measured as simple
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first differences (dVVIX) or as innovations in an ARMA(1,1) model
(dVVIXagrma) in fact does not make a big difference since the correlation
between the two measures is almost perfect with 99 %.

For a factor risk explanation in the sense of the ICAPM, a state
variable must be associated with future deterioration in the investment
opportunity set, so there should be some correlation of factor realizations
with the (future) market excess return. While it is hard to tell which horizon
to choose for future impacts, we can examine current correlations. There,
we find a very high negative correlation of —0.84 of the contemporaneous
market return with the first difference in the VIX and quite high correlations
of —0.64 with dVRP and of around 0.4 and —0.4 with HML and Momentum,
respectively.” The correlation of dVVIX with MKT is also substantial with
—0.54. Overall, this simple correlation analysis delivers some support for
the view of aggregate uncertainty being a state variable in the sense of the
ICAPM. The linear relation between dVVIX and dVRP, Jump, and dVIX,
to which it might be related by construction, is also quite substantial though
not perfect with values of 0.37, 0.49, and 0.64, respectively. Correlations
of dVVIX with other factors are negligible. Consequently, the factor
representing aggregate uncertainty appears to be distinct from other factors
documented previously.

Further summary statistics are provided in Table 4.2. In Panel
A it can be seen that mean and median innovations in the VVIX
are close to zero. Measuring innovations in the VVIX using the first
difference is shown to result in a factor with very low autocorrelation
(—0.13), whereas using residuals from the fitted ARMA-model reduces

the first-order autocorrelation to practically zero. The remaining factors

"The very high correlation between dVIX and MKT in our sample period between
January 01, 2007 and December 31, 2014 might indicate problems of multicollinearity.
Consequently, our results have to be interpreted with care when dVIX is included.
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Table 4.2: Summary Statistics

Panel A of this table presents summary statistics on the aggregate factors dVVIX,
dVIX, Straddle vol, dSkew, dKurt, Jump, dVRP, MKT, SMB, HML, Momentum,
dPol, dVVIXarma, and dVoVIXarma. Detailed variable definitions are provided in
the appendix. Panel B provides yearly summary statistics on the VVIX and Panel
C shows yearly summary statistics on the individual stocks’ sensitivities to aggregate
uncertainty, 4V, with the sensitivity estimation starting in the year denoted first in the
first column. Mean, Median, and Std. dev. refer to the sample average, median, and
standard deviation of the factors, respectively. P10 and P90 refer to the 10 % and 90 %

percentiles, respectively. Autocorr(1) presents the first order autocorrelation.

Panel A. Market Factors

Variable Mean Median Std. dev.  Autocorr(l) P10 P90

dVVIX 0.00010 -0.00350 0.0452 -0.1117 -0.0454 0.0499
dVIX 0.00004 -0.00110 0.0205 -0.1553 -0.0178 0.0185
Straddle vol -0.00004 0.00105 0.0149 -0.0062 -0.0158 0.0153
dSkew -0.00944 -0.00680 0.1749 -0.0542 -0.2042 0.1729
dKurt 0.01942 -0.01618 0.4852 -0.0512 -0.4282 0.4820
Jump -0.00165 -0.00986 0.0524 -0.0930 -0.0426 0.0408
dVRP 0.00000 0.00001 0.0096 -0.0398 -0.0040 0.0045
MKT 0.00035 0.00100 0.0140 -0.0962 -0.0143 0.0136
SMB 0.00006 0.00015 0.0059 -0.0605 -0.0066 0.0064
HML -0.00004 -0.00010 0.0062 -0.0097 -0.0059 0.0058
Momentum 0.00002 0.00060 0.0110 0.1262 -0.0099 0.0100
dPol 0.00339 -0.00364 0.0532 0.1642 -0.0490 0.0639
dVVIXARrmA 0.00100 -0.00276 0.0449 -0.0029 -0.0451 0.0521
dVoVIXaArmA 0.00074 -0.00108 0.0161 0.1191 -0.0144 0.0168

Panel B. VVIX Summary Statistics

Year Mean Median Std. dev. P10 P90

2007 0.8768 0.8618 0.1331 0.7194 1.0469
2008 0.8185 0.7741 0.1560 0.6763 1.1088
2009 0.7978 0.7913 0.0863 0.6954 0.9225
2010 0.8836 0.8622 0.1307 0.7538 1.0346
2011 0.9294 0.9146 0.1021 0.8182 1.0491
2012 0.9484 0.9384 0.0838 0.8416 1.0740
2013 0.8052 0.7960 0.0897 0.6967 0.9203
2014 0.8301 0.7991 0.1433 0.6771 0.9990
total 0.8638 0.8456 0.1310 0.7069 1.0393
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Table 4.2: Summary Statistics (continued)
Panel C. BV Summary Statistics

Year Mean Median Std. dev. P10 P90
2007 — 2008 0.0171 0.0133 0.0661 -0.0530 0.0951
2008 — 2009 0.0563 0.0454 0.1051 -0.0523 0.1812
2009 — 2010 0.0147 0.0114 0.0511 -0.0410 0.0751
2010 — 2011 0.0162 0.0136 0.0423 -0.0305 0.0663
2011 — 2012 0.0122 0.0094 0.0470 -0.0377 0.0674
2012 — 2013 0.0082 0.0056 0.0460 -0.0405 0.0618
2013 — 2014 0.0151 0.0116 0.0424 -0.0293 0.0643

total 0.0202 0.0134 0.0824 -0.0403 0.0886

are mostly constructed as returns with means close to zero and negligible
autocorrelations.

Panels B and C of Table 4.2 present yearly summary statistics on the
VVIX and B;ft factors of individual stocks, respectively. It is quite interesting
to observe that the yearly average level of the VVIX is smallest in the crisis
year 2009. In the years 2011 and 2012 it was substantially higher with
values above 0.9, while there is a sharp decrease in 2013, almost returning
to the 2009 level. The mean and median sensitivities of individual stocks
to innovations in aggregate uncertainty, B}ft, presented in Panel C, are
mostly close to 0.01 while the highest average value and standard deviation
among the estimates is observed during the rolling annual estimation periods
starting in 2008.

The time series of VIX and VVIX are plotted in Figure 4.1. The
average level of the VVIX (0.86) is substantially higher than that of the
VIX (0.22). The VVIX exhibits pronounced spikes that correspond with
certain crisis events like the Bear Sterns Hedge Funds Collapse (August
2007), the Lehman Brothers bankruptcy (September 2008), the Freddie Mac
and Fannie Mae crisis (May 2010), or the near collapse of the Russian rouble

(December 2014). Consequently, this stylized evidence provides further
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insights for the VVIX being a proper proxy for economic uncertainty,
as such events, beside increasing risk, impose large shocks on probability
distribution surrounding the aggregate consumption growth process, toward

which the VVIX is shown to be sensitive.

4.5.2 Single Portfolio Sorts and Characteristics

At the beginning of each month, we sort the stocks in ascending order
with respect to their sensitivities to innovations in aggregate uncertainty

(B}

) over the following year. We form quintile portfolios, so that quintile
1 contains the stocks with the lowest exposure to aggregate uncertainty
while quintile 5 contains those with the highest uncertainty factor loadings.
The hedge portfolio (5 minus 1) buys the quintile of stocks with the
highest exposure and simultaneously sells the stocks in the quintile with the
lowest exposure to aggregate uncertainty. The portfolio sorting approach
maximizes the spread in the exposure to aggregate uncertainty and,
thus, differences in average returns can be quite accurately attributed to
differences in the sorting variable. Fama & French (2008) raise concerns that
by building value-weighted portfolios the hedge portfolio can be dominated
by few big stocks, whereas for equally weighted portfolios the hedge portfolio
can be dominated by micro caps. To address these issues, we analyze both

value-weighted and equally weighted portfolios.® When value-weighting,

within each quintile, we weight the stocks by their relative market value

at the beginning of the estimation period for JVt When weighting equally,
all stocks adhere the same weight. While our research design involves
successive twelve-month periods employing partly overlapping information,

it introduces moving average effects. To account for that, in all analyses,

8The results on equally weighted portfolios can be found in the appendix to this
chapter.
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Table 4.3: Portfolios Sorted by Exposure to Aggregate
Uncertainty — Value-Weighted

At the beginning of each month, we form value-weighted quintile portfolios based on

\
Jrt

the stock’s sensitivities to innovations in aggregate uncertainty (5.,) over the following
year. To obtain the sensitivities, we regress daily excess stock returns on dVVIX,
controlling for MKT as in Equation (4.12). Stocks with the lowest 3, are sorted into
portfolio 1, those with the highest into portfolio 5. The column labeled 5 minus 1 refers to
the hedge portfolio buying the quintile of stocks with the highest 6}}@ and simultaneously
selling the stocks in the quintile with the lowest ﬁ;{t. We reform the portfolios after one
month. The row labeled Mean return is based on monthly simple returns. CAPM alpha,
FF-3 alpha, 4-factor alpha, and 5-factor alpha refer to the alphas of the CAPM, the Fama
& French (1993) 3-factor, Carhart (1997) 4-factor, and the 5-factor (including liquidity)
models, respectively. The segment NYSE only restricts the sample of stocks to those
that are traded at the NYSE at the beginning of the estimation period. The segment
Factor loadings denotes the average annual factor loadings, where M, gV, and VX
refer to the factor loadings on the market factor, dVVIX, and dVIX. The segment Stock
characteristics presents average (value-weighted) portfolio characteristics with Mkt. share
denoting the average market share of the portfolios. The remaining variable definitions
are provided in the Appendix. Robust Newey & West (1987) p-values using 12 lags

are reported in parentheses. The stars indicate significance with one star (*) denoting

significance at 10 %, two (**) at 5 %, and three (***) stars at 1 %.

we adjust the standard errors following Newey & West (1987) using twelve
lags.”

Table 4.3 reports various summary statistics for the quintile portfolios
sorted by contemporaneous aggregate uncertainty. We find the average
annual raw return to adhere a strictly monotonically decreasing pattern,
from 12.8 % in quintile 1 to 1.1 % in quintile 5. The difference in raw
returns of —11.7 % between quintiles 5 and 1 is statistically significant at
1 %. Looking at the line labeled CAPM alpha, which reports the results

when controlling for systematic risk, we find an even stronger effect for the

9While theoretically only eleven lags are required, we follow Ang et al. (2006a) and
Cremers et al. (2015) including an additional lag for robustness.
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Table 4.3: Portfolios Sorted by Exposure to Aggregate Uncertainty — Value-Weighted

(continued)
Rank | 1 2 3 4 5 | 5 minus 1
Mean return 0.1281%** 0.1001** 0.0812** 0.0624 0.0113 -0.1168***
(0.009) (0.011) (0.048) (0.217) (0.858) (0.000)
CAPM alpha 0.0298** 0.0188*** -0.0046 -0.0411%%%  _0.1145%%*% | -0.1443%**
(0.010) (0.007) (0.353) (0.002) (0.000) (0.000)
FF-3 alpha 0.0252%* 0.0209%** -0.0031 -0.0344%*%  -0.1144%*%* | -0.1396***
(0.100) (0.000) (0.566) (0.042) (0.000) (0.000)
4-factor alpha 0.0262* 0.0192%** -0.0057 -0.0327*%%  -0.1126*** | -0.1388***
(0.090) (0.000) (0.134) (0.049) (0.000) (0.000)
5-factor alpha 0.0457%%*  0.0210%** -0.0067*%  -0.0562***  -0.1357F%* | -0.1814%**
(0.000) (0.000) (0.097) (0.000) (0.000) (0.000)
NYSE only
4-factor alpha 0.0123 0.0168** -0.0021 -0.0399%%*  _0.1119%*%* | -0.1242%**
(0.424) (0.013) (0.727) (0.000) (0.000) (0.000)
Factor loadings
sM 0.8734%**  (0.8868***  1.0431***  1.2425%**  1.5987*** | (.7253%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
°Ad -0.0440%*%*  _0.0072*%**  0.015*** 0.0407***  0.0881*** 0.1321%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
[IVIX -0.0843%F%  _0,0218%**F  (,0285%**F  (0.0930%**  (.1998**F* | (.2841%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Return characteristics
Std. deviation 0.2315 0.1853 0.1971 0.2453 0.3111 0.1632
Skewness -0.9567 -1.0053 -0.8500 -0.5373 -0.0324 0.0085
Kurtosis 3.6807 3.4233 3.2257 2.8214 3.0424 2.4601
Stock characteristics
Mkt. share 0.2500 0.2990 0.2269 0.1457 0.0784 -0.1716
Size (*10‘6) 81.541 86.145 70.863 63.085 41.550 -39.991
Book-to-market 0.5197 0.4877 0.5008 0.5427 0.5389 0.0192
Bid-ask spread 0.0007 0.0006 0.0006 0.0008 0.0011 0.0004
Amihud illiquidity (*109) 4.2099 1.0524 1.9819 3.6976 9.4581 5.2482
Age 39.683 43.020 36.717 30.224 24.820 -14.863
Leverage 0.5495 0.5432 0.5521 0.5634 0.5926 0.0432
MAX 0.0653 0.0543 0.0603 0.0725 0.1030 0.0377
Volatility 0.0227 0.0210 0.0228 0.0250 0.0290 0.0063
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5 minus 1 portfolio of —14.4 % which is also significant at 1 %. Controlling
for the Fama & French (1993) (FF-3) and Carhart (1997) (4-factor) factors
leads to alphas of —14.0 and —13.9 % per year, both being significant at 1
%. Further including the Pastor & Stambaugh (2003) factor in addition to
the factors previously mentioned (5-factor) yields an alpha for the 5 minus 1
portfolio of —18.1 % per year which is also significant at 1 %. Consequently,
accounting for systematic risk factors, the stocks in portfolio 5 in particular
are expected to earn substantially higher returns than realized. For each
factor model specification, the alphas of the portfolio of stocks with the
highest sensitivities to innovations in aggregate uncertainty is significantly
negative at 1 %. Especially, adding the liquidity factor strongly decreases
the alpha of the 5 minus 1 portfolio. Restricting the sample to stocks that
are traded on the NYSE only slightly reduces the underperformance of
stocks with high exposure to aggregate uncertainty while the 4-factor alpha
is —12.4 % and still significant at 1 %.

Both the market betas and the sensitivities to dVIX differ strongly
across the five portfolios. The market beta of the hedge portfolio amounts to
0.72, being significantly different from zero at 1 %. This would, following the
logic of the CAPM, predict a substantially positive excess return, whereas
the return that is realized is significantly negative. While the exposure to
aggregate uncertainty has to be monotonically increasing by construction,
the sensitivity to dVIX also is monotonically increasing from portfolio 1
to 5, with a factor sensitivity of 0.28 for the hedge portfolio, which is
statistically significant at 1 %. Age is often argued to be a good proxy
for uncertainty (Zhang, 2006), so the observation that firms with high
sensitivities to aggregate uncertainty are, on average, substantially younger
is completely in line with this. The portfolios differ also, among other things,
in average Size, Amihud illiquidity, and Kurtosis and so there may be other

factors that can potentially explain the effect of aggregate uncertainty we
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find in univariate sorts.!°

4.5.3 Double Sorts

To address the concerns regarding the difference in factor loadings and
characteristics among the different portfolios, we examine the performance
of the portfolios sorted by sensitivities to innovations in aggregate
uncertainty, controlling for different other factors and characteristics that
have been previously shown to explain the cross-section of stock returns.
For that, at the beginning of each month, we first sort the stocks in
ascending order with respect to the characteristic we want to control for.
We form quintile portfolios. Afterwards, within each quintile, we sort stocks
based on their uncertainty-sensitivity into another five quintile portfolios,
which results in a total of 25 portfolios. The five portfolios sorted on the
exposure to aggregate uncertainty are then obtained by averaging over
the respective quintiles within each quintile of the control characteristic.
This means that the uncertainty-sensitivity quintile 1 is the average of
uncertainty-sensitivity quintiles 1 across all quintiles sorted on the control
characteristic, and so on. Thus, we obtain quintile portfolios on the exposure
to aggregate uncertainty controlling for another characteristic without
making assumptions on the parametric form of the relationships. Again, we
obtain the 5 minus 1 hedge portfolio buying the final portfolio 5 and selling
portfolio 1. First, we consider value-weighted portfolios, where within each
of the 25 intermediate step portfolios we weight the stocks by their relative
market value at the beginning of the estimation period for the exposures to
aggregate uncertainty. We then also consider equally weighted portfolios.

The results for value-weighted double sorts are presented in Table

10T he results on equally weighted portfolios, presented in the appendix to this chapter,
are qualitatively similar. Returns and alphas of the 5 minus 1 hedge portfolio are all
negative and statistically significant at 1 %.
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Table 4.4: Double Sorts — Value-Weighted

This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the
beginning of each month, we first sort stocks into quintiles based on the characteristics
denoted in the first column. Then, within each quintile, we sort stocks based on their
uncertainty-sensitivity (,Bth) into another five quintile portfolios. The five portfolios
sorted on 5;{15 are then obtained by averaging over the respective quintiles within each
quintile of the other characteristic, thus we obtain B}ft quintile portfolios controlling
for another characteristic. We reform the portfolios after one month. This procedure
is performed for each of the characteristics. We report the main control variables for
value-weighted returns. The column labeled 5 minus 1 refers to the hedge portfolio
buying the quintile of stocks with the highest ﬁ]\{t and simultaneously selling the stocks
in the quintile with the lowest Jvt Robust Newey & West (1987) p-values using 12 lags

are reported in parentheses. The stars indicate significance with one star (*) denoting

significance at 10 %, two (**) at 5 %, and three (***) stars at 1 %.

Rank | 1 2 3 4 5 | 5 minus 1
Beta 0.0096 -0.0081 -0.0118 -0.0318*** -0.0679*** -0.0776%**
(0.586) (0.192) (0.182) (0.004) (0.000) (0.002)
Size 0.0041 0.0118 0.0036 -0.028*** -0.1005%** -0.1047%%*
(0.751) (0.126) (0.231) (0.000) (0.000) (0.001)
Book-to-market 0.0191 0.0114%*** -0.0095%* -0.0299*** -0.1036*** -0.1227%%*
(0.202) (0.005) (0.019) (0.007) (0.000) (0.001)
dVIX -0.0161%* -0.0066 -0.0097 -0.0189** -0.0749%** -0.0588%**
(0.035) (0.196) (0.110) (0.014) (0.000) (0.019)
Bid-ask spread -0.0516%** -0.0234*** -0.0541%%* -0.0816%** -0.1332%** -0.0817%%*
(0.000) (0.006) (0.000) (0.000) (0.000) (0.007)
Momentum 0.0182 0.0200%** 0.0013 -0.0352%** -0.1127%** -0.1309%**
(0.197) (0.000) (0.804) (0.004) (0.000) (0.000)
Short-term reversal 0.0239 0.0146*** -0.0008 -0.0361%%*  _0.1168*** | -0.1406***
(0.100) (0.004) (0.900) (0.001) (0.000) (0.000)
Age 0.0240 0.0197** -0.0040 -0.0359%** -0.1124%** -0.1364%**
(0.127) (0.012) (0.269) (0.007) (0.000) (0.001)
Leverage 0.0286** 0.0133*** -0.0104** -0.0214* -0.1010%** -0.1296%**
(0.039) (0.000) (0.035) (0.096) (0.000) (0.001)
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4.4. We report Carhart (1997) 4-factor alphas and robust Newey & West
(1987) p-values in brackets. We find the effect of high uncertainty-sensitivity
underperforming low uncertainty-sensitivity stocks to strongly persist.
Controlling for the firm characteristics Size, Book-to-market,'! Momentum,
Short-term reversal, Age, and Leverage also leads to an economically large
effect on the hedge portfolio between —14 and —10 % per year, which
is statistically significant at 1 % in all cases. When controlling for Beta,
the dVIX-sensitivity, and Bid-ask spread, the effect weakens, with 4-factor
alphas of the hedge portfolio of —7.6, —5.9, and —8.2 % per year. Since
the alphas decrease in absolute terms, this means that part of the effect of
aggregate uncertainty can be assigned to those control variables. However,
the 4-factor alphas are still significantly different from zero at least at 5 %.12

Consequently, controlling for various canonical characteristics does not
affect our main result that the uncertainty-return trade-off is priced with a

negative sign.

4.5.4 Regression Tests

The portfolio sorts present strong evidence that sensitivities to innovations
in aggregate uncertainty are related to returns. The double sorts indicate
that the effect cannot be explained by any other factor or firm characteristic
individually. Following on from that, in this section, we estimate Fama
& MacBeth (1973) regressions that simultaneously control for different
variables and test if the stock’s sensitivity to innovations in aggregate
uncertainty contains information about stock returns beyond that of various

other firm characteristics. Lo & MacKinlay (1990) and Lewellen, Nagel,

1 As Fama & French (1997, 2008) show that SMB and HML loadings vary over time,
they suggest sticking to current Size and Book-to-market factors as more current proxies.
We follow their advice.

12The results on equally weighted double sorts, shown in the appendix to this chapter,
are qualitatively equal.
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& Shanken (2010) argue against the use of portfolios in cross-sectional
regressions, since the particular method, by which the portfolios are formed
can severely influence the results. Furthermore, Ang, Liu, & Schwarz (2010)
show that creating portfolios ignores important information on individual
factor loadings and leads to higher asymptotic standard errors of risk
premium estimates. Consequently, we utilize this additional information
and, at the same time, avoid the specification of breakpoints, performing
the analysis on individual stocks rather than stock portfolios.

Each month, we perform cross-sectional regressions of stock excess
returns over the following year on stocks’ sensitivities to innovations in
aggregate uncertainty and one or more control variables, adhered over the
same period. We winsorize all regressors at the 1st and 99th percentile to
restrict the effect of outliers (Fama & French, 2008; Baltussen et al., 2015).
For the regressions, we use OLS (equally weighted) or WLS (value-weighted)
with a diagonal weighting matrix, where the inverse of the firm’s market
value at the end of the previous month is along the diagonal, with the

following regression equation:'?

Tj,t — Tf,t = O + )\i\/[ Jl\’/{f + Ay ‘Xt + Agﬁit + 6j,t° (414)

7;+ is the annual return of stock j and rys, is the risk-free rate during that
period. B]Ni and 5;; are the stock’s market beta and sensitivity to innovations
in aggregate uncertainty over the evaluation period, respectively. The term
b’it denotes a vector collecting further variables hypothesized to explain
returns. \Y and )\f are the risk premia associated with the respective
variables, while €, is the prediction error.

In the next step, we perform tests on the time series averages @, AM,
AV, and X¢ of the estimated monthly intercept and slope coefficients, ay, )&VI,

)\Ay, and A§ . We account for potential autocorrelation, heteroskedasticity, and

3The results for value-weighted regressions can be found in the chapter appendix.
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errors-in-variables concerns, computing robust Newey & West (1987) (again
using twelve lags) and Shanken (1992) adjusted p-values based on the time
series of coefficient estimates.

Table 4.5 reports the results of the basic Fama & MacBeth (1973)

\%

regressions. We report the results of a regression of excess returns on 5},

M
j?t’

and various other canonical characteristics. In the basic regression
specification suggested by our theoretical model (ii), the yearly market
price of aggregate uncertainty (coefficient on f},) is —0.9920 with a p-value
smaller than 0.001 which corresponds to a t-statistic of —3.71, clearly
clearing the hurdle defined by Harvey, Liu, & Zhu (2015), who suggest
accounting for potential data mining and publication bias by defining
the critical t-ratio as 3.0 instead of 2.0 for newly discovered risk factors.
Consequently, a two-standard deviation increase across stocks in their
uncertainty-sensitivity is associated with a 16.34 % decrease in average
annual returns.'4

Naturally, adding further explanatory variables partly reduces both
the magnitude and significance of the risk premium estimates on aggre-
gate uncertainty, but adding In(Size), Book-to-market, Bid-ask spread,'®
Momentum, and Short-term reversal in models (iii) to (iv) and (vi) to
(viii) does not change much. The coefficient on uncertainty-sensitivity
remains economically large and highly significant at 1 %. Adding dVIX
in model (v) reduces the significance in the risk premium on aggregate

uncertainty, but the p-value is still below 5 %. Consequently, both measures

dVVIX and dVIX appear to carry at least partially similar information.!®

14This number is obtained as follows. We need the sample mean of the cross-sectional
standard deviation among the sensitivities to innovations in aggregate uncertainty from
Table 4.2 which amounts to 0.0824. Plugging in yields —0.9920 x (2 % 0.0824) = —0.1634.

15 Amihud (2002) argues that the Bid-ask spread is a more precise measure of (il-
)liquidity than the one he develops.

6Note, though, that the correlation between factor loadings on dVVIX and dVIX
amounts to only 47 % (compared to the factor correlation of 64 %), which makes it very
unlikely that severe problems of multicollinearity are caused.
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Thus, particularly when dVIX is included in the regression, the coefficient
denoting the market price of aggregate uncertainty is substantially smaller,
amounting to about —0.5 compared to about —1 when aggregate volatility
is not included as an explanatory variable. In Section 4.6.2 we deliver
further investigations on the relation of aggregate uncertainty and aggregate
volatility.

Adding several canonical characteristics jointly leaves the market price
of aggregate uncertainty negative, with p-values below 5 %. Many of the
risk premium estimates on the other canonical characteristics are not
significantly different from zero, which is consistent with recent evidence
that beta is not priced in the cross-section of stock returns (Frazzini &
Pedersen, 2014) but partly conflicts with the view that prominent return
anomalies have attenuated recently (Chordia, Subrahmanyam, & Tong,
2014). We use model (x) as base specification when adding further variables.
It includes widely accepted characteristics that, except for Beta, empirically
are shown to be connected to average returns during our sample period.
Models (xii) to (xiv) show that adding In(Age) and Leverage does not have

a big impact on the market price of aggregate uncertainty.!”

4.6 Robustness

4.6.1 Further Control Variables

In this section, we include further control variables to perform double
sorts and regression tests. We control for various returns distributions
characteristics (e.g., Co-Skewness, Downside Beta, or Idio. vol-of-vol),

liquidity related characteristics (like Amihud illiquidity or Turnover), and

I"The results on value-weighted regressions, shown in the appendix to this chapter,
are qualitatively equal.
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market factors (e.g., dSkew, Straddle vol, or Jump).

Table 4.6: Double Sorts (Further Control Variables) —
Value-Weighted
This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the
beginning of each month, we first sort stocks into quintiles based on the characteristics
denoted in the first column. Then, within each quintile, we sort stocks based on their
uncertainty-sensitivity ( ]Vt) into another five quintile portfolios. Portfolio returns are

value-weighted. The five portfolios sorted on J\-ft are then obtained by averaging over the

v
Jst

respective quintiles within each quintile of the other characteristic, thus we obtain
quintile portfolios controlling for another characteristic. We reform the portfolios after one
month. This procedure is performed for each of the characteristics. We categorize control
variables into groups of returns distributions characteristics (Panel A), liquidity-related
characteristics (Panel B), and market factors (Panel C). The column labeled 5 minus
1 refers to the hedge portfolio buying the quintile of stocks with the highest ,BJYt and
simultaneously selling the stocks in the quintile with the lowest ]Vt Robust Newey
& West (1987) p-values using 12 lags are reported in parentheses. The stars indicate

significance with one star (*) denoting significance at 10 %, two (**) at 5 %, and three

(***) stars at 1 %.

Panel A. Returns Distributions Characteristics

Rank ‘ 1 2 3 4 5 ‘ 5 minus 1
Idio. volatility -0.0086 -0.0345%** -0.0599%**  _0.0728%**  _0.0974*** -0.0888**
(0.578) (0.000) (0.000) (0.000) (0.000) (0.019)
Co-Skewness 0.0212 0.0193*** -0.0031 -0.0333** -0.1136%** -0.1348%**
(0.170) (0.001) (0.438) (0.011) (0.000) (0.001)
Co-Kurtosis 0.0280%* 0.0258*** 0.0067 -0.0322** -0.1103*** -0.1383%**
(0.034) (0.000) (0.369) (0.018) (0.000) (0.000)
Downside beta 0.0292** 0.0057 -0.0032 -0.0351** -0.0874%** -0.1166%**
(0.015) (0.586) (0.590) (0.011) (0.000) (0.000)
MAX 0.0357** 0.0159** -0.0218%* -0.0501%*%*  -(0.0888*** -0.1244%%%*
(0.016) (0.024) (0.014) (0.000) (0.000) (0.000)
Idio. vol-of-vol 0.0438*** 0.0214*** 0.0193*** 0.0015 -0.0654** -0.1093%**
(0.003) (0.000) (0.001) (0.901) (0.011) (0.005)
Volatility 0.0030 -0.0033 -0.0054 -0.0444%%%  _(0.0922%** -0.0952%**
(0.819) (0.747) (0.570) (0.000) (0.000) (0.009)
Skewness 0.0200 0.0252%** -0.0012 -0.0309** -0.1046%** -0.1247%%*
(0.146) (0.000) (0.798) (0.018) (0.000) (0.001)
Kurtosis 0.0207 0.0238*** -0.0088* -0.0368***  _0.0958*** -0.1164%**
(0.110) (0.000) (0.079) (0.009) (0.000) (0.002)

167



CHAPTER 4. AGGREGATE UNCERTAINTY AFFECTS STOCK

RETURNS

Table 4.6: Double Sorts (Further Control Variables) - Value-Weighted (continued)

Panel B. Liquidity- Related Characteristics

Rank 1 2 3 4 5 | 5 minus 1
PS liquidity -0.0043 -0.0082 -0.0311* -0.0566*** -0.1362%** -0.1319%**
(0.885) (0.700) (0.066) (0.000) (0.000) (0.000)
Amihud illiquidity -0.0485*** -0.0312%** -0.0319%*** -0.0608*** -0.1329%** -0.0844***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
Volume -0.0302%** -0.0155* -0.0205*** -0.0472%** -0.1234%** -0.0932***
(0.005) (0.087) (0.000) (0.000) (0.000) (0.000)
Turnover 0.0249* 0.0077* -0.0023 -0.0338*** -0.095%** -0.1199%***
(0.070) (0.072) (0.619) (0.001) (0.000) (0.000)
Panel C. Market Factors
Rank 1 2 3 4 5 ‘ 5 minus 1
dSkew 0.0094 -0.0014 -0.0135* -0.0483*** -0.1157*** -0.1251%**
(0.627) (0.907) (0.096) (0.000) (0.000) (0.000)
dKurt 0.0136 -0.0041 -0.0162* -0.0470%** -0.1211%** -0.1347%%*
(0.489) (0.720) (0.065) (0.000) (0.000) (0.000)
Straddle vol -0.0027 -0.0110 -0.0144** -0.0404*** -0.1064*** -0.1037***
(0.881) (0.244) (0.034) (0.000) (0.000) (0.001)
Jump -0.0003 -0.0055 -0.0155** -0.0457*** -0.0965*** -0.0962***
(0.985) (0.574) (0.030) (0.000) (0.000) (0.000)
dVRP -0.0071 0.0032 -0.0054 -0.0331%** -0.0947*** -0.0876***
(0.522) (0.764) (0.396) (0.000) (0.000) (0.007)
dPol 0.0010 -0.0145 -0.0290* -0.0567*** -0.1221%** -0.1232%**
(0.972) (0.493) (0.076) (0.000) (0.000) (0.000)
Forec. uncertainty 0.0118 0.0061 -0.0098** -0.0365%**  -0.1092%** | -0.1210%**
(0.354) (0.253) (0.018) (0.001) (0.000) (0.002)

The results on double sorts are presented in Table 4.6. The return-

uncertainty trade-off persists, independently of which variable we control

for and also independently of the return weighting scheme. For most control

variables, the 4-factor alpha of the hedge portfolio amounts to about

12 % (10 %) for value-weighted (equally weighted) returns. However, for

some controls, e.g. Idio. Volatility or Amihud illiquidity the 4-factor alphas

decrease. Thus, it appears that part of the effect of aggregate uncertainty

can be explained by these control variables. Nevertheless, the 4-factor alpha

is highly statistically significant in any case. Controlling for alternative
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variables that are potentially related to uncertainty, policy uncertainty
(dPol), and forecaster uncertainty, the results are still significant.

The results of regression tests can be found in Table 4.7. In Panel
A, we report the results controlling for various returns distributions
characteristics. We find idiosyncratic volatility, MAX, and Skewness to carry
a significant price of risk when adding them to our base model. On the
other hand, neither do Co-Skewness, Downside Beta, Idio. vol-of-vol carry
a significant price of risk.

In all cases, the market price of aggregate uncertainty is statistically
significant, leastwise at 10 %. In Panel B, we control for various
liquidity-related characteristics like the Amihud illiquidity measure or
Turnover, but adding these variables does not change the previous results.
The coefficient on uncertainty-sensitivity is always significant at 10 %.
In Panel C, we control for different market factors that are estimated
separately. Adding dSkew, dKurt, Straddle vol, Jump, dVRP, and dPol
does not change our basic results. While the aggregate market factors
partially carry significant risk premia, this does not affect the estimates on
the market price of aggregate uncertainty that are statistically significant
in every specification. Including Forec. uncertainty, a variable supposedly
to some extent capturing similar information as aggregate uncertainty, the
p-value of the market price of aggregate uncertainty turns out to be slightly
above 10 %. However, the coefficient on Forec. uncertainty is not significant
either, which along with the high adjusted R? this delivers some indication

a multicollinear relation.!®

18Since Forec. uncertainty is measured on a quarterly basis while dVVIX yields daily
notations, estimation of correlations has severe limitations.
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4.6. ROBUSTNESS

Table 4.7: Fama-MacBeth Regressions (Further Control Variables) (continued)

Panel B. Liquidity-Related Characteristics

‘ (xxv) (xxvi) (xxvii) (xxviii)
Constant 0.1712%* 0.1862** -0.3321%%* 0.1025
(0.021) (0.018) (0.000) (0.152)
dVVIX -0.5547%* -0.5755%* -0.5129* -0.5679**
(0.033) (0.030) (0.070) (0.027)
Beta 0.0033 0.0291 0.0317 0.0336
(0.964) (0.676) (0.650) (0.620)
In(Size) -0.0038 -0.0056 -0.0002
(0.214) (0.137) (0.956)
Book-to-market -0.0378** -0.0369** -0.0264* -0.0388**
(0.015) (0.012) (0.069) (0.011)
dVIX -0.2198%** -0.2101%** -0.1759%** -0.2061%**
(0.000) (0.000) (0.000) (0.000)
PS liquidity 0.0200
(0.116)
Amihud illiquidity -0.9346%**
(0.000)
In(Volume) 0.0253***
(0.000)
Turnover -0.0027
(0.466)
adj. R? ‘ 0.1182 0.1052 0.1099 0.1029

4.6.2 Multivariate Estimation

In this section, we examine the robustness of our results to jointly estimating
the sensitivities to innovations in aggregate uncertainty with those to other
factors, as presented in Equation (4.13). Table 4.8 reports the results of
Fama & MacBeth (1973) regressions when the sensitivities to the different
factors are obtained in a joint multivariate sensitivity estimation regression.
Incorporating the Fama & French (1993) factors (xxxix) leaves the effect of
aggregate uncertainty strongly significant at 1 %. Adding the other market
factors like dVIX, dSkew, dKurt, Straddle vol, Jump, or dVRP (models
(x1) to (xlvii)) does not change much. The price of risk on HML regularly
is significant at 5 % while that on MKT and SMB never is. The coefficient
on uncertainty-sensitivity is statistically significant at 1 % in any case. The

coefficient on dVIX is substantially less significant when estimating the
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sensitivities jointly with dVVIX compared to the analysis in which both
are estimated separately. Consequently, although both appear to partly
carry similar information, our measure for aggregate uncertainty seems to
incorporate even more, or more precise, information for stock returns. The
prices of risk on Jump and dVRP are significant, whereas the remaining

factors are only partly significant.

4.6.3 Crisis Effects

Our sample period contains the recent financial crisis that has imposed
large fluctuations on asset markets. Volkert (2015) shows that there was
a considerable change in the shape of the risk-neutral distribution of the
VIX during the crisis. Consequently, our uncertainty explanation could
potentially be imposed by a crisis effect. We check for that by introducing
a crisis dummy taking the value one at every month where half of the
following year or more falls in the period from September 2008 until August
2009 (August 2010), or into months indicated as business cycle contractions
by the National Bureau of Economic Analysis (NBER). Table 4.9 presents
the results. Defining the crisis period as September 2008 until August 2009
in Panel A, we find the crisis dummy of the 5 minus 1 hedge portfolio to take
a value of —13.7 % per annum for value-weighted returns. The negative sign
of the crisis dummy indicates that the uncertainty-return trade-off is even
more pronounced in times of crises. Yet, the crisis dummy is not statistically
significant. Nevertheless, although the 4-factor alphas of the hedge portfolio
is smaller in magnitude, with a value of —11.6 % per annum compared to
the specification without a crisis dummy in Table 4.3, it is still significant
at 1 %. Using a longer crisis period in Panel B does not affect the results
for the 4-factor alphas, but the crisis dummy of the hedge portfolio shrinks
heavily. Directly using the NBER definition for recessions (Panel C), the
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Table 4.9: Crisis Effects

At the beginning of each month, we form quintile portfolios based on the stock’s
sensitivities to innovations in aggregate uncertainty ( jvt) over the following year. To
obtain the sensitivities, we regress daily stock returns on dVVIX, controlling for MKT
as in Equation (4.12). Stocks with the lowest ﬂ]\-’/t are sorted into portfolio 1, those with
the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge portfolio
buying the quintile of stocks with the highest ﬁj\{t and simultaneously selling the stocks
in the quintile with the lowest B}ft. 4-factor alpha refers to the Carhart (1997) 4-factor
alpha, while Crisis dummy is a dummy variable taking the value one if at least half of
the following year falls in the period indicated by the respective panel headlines. Robust
Newey & West (1987) p-values using 12 lags are reported in parentheses. The stars
indicate significance with one star (*) denoting significance at 10 %, two (**) at 5 %,

and three (***) stars at 1 %.

Panel A. Crisis Period September 2008—August 2009

Rank \ 1 2 3 4 5 | 5 minus 1

4-factor alpha | 0.0163  0.0193***  -0.0067 -0.0211  -0.0993*** | -0.1156***
(0.340) (0.000) (0.438) (0.172) (0.000) (0.003)

Crisis dummy | 0.0581 -0.0009 0.0061 -0.0686* -0.0786 -0.1367
(0.122) (0.966) (0.865) (0.061) (0.294) (0.153)

Panel B. Crisis Period September 2008—August 2010

Rank \ 1 2 3 4 5 | 5 minus 1

4-factor alpha 0.0140 0.0165%** 0.0045 -0.0211 -0.1144%%% | -0.1283***
(0.425)  (0.002) (0.204) (0.219) (0.000) (0.003)

Crisis dummy | 0.0516%** 0.0115 -0.0430%** -0.0490 0.0075 -0.0441
(0.007)  (0.126) (0.000) (0.155) (0.826) (0.346)

Panel C. Crisis During Recessions Indicated by the NBER

Rank \ 1 2 3 4 5 | 5 minus 1

4-factor alpha | 0.0435%**  0.0277%%%  -0.0157**  -0.0580***  -0.1218*%* | -0.1653***
(0.009) (0.000) (0.034) (0.002) (0.000) (0.001)

Crisis dummy | -0.0552  -0.0271 0.0319* 0.0802* 0.0291 0.0842
(0.133) (0.114) (0.074) (0.066) (0.729) (0.470)
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4-factor alpha of the hedge portfolio remains highly significant while the
crisis dummy again does not yield a significant coefficient. To summarize,
there is only weak indication for a crisis effect. However, controlling for
crises, the result that stocks with high sensitivity to innovations in aggregate
uncertainty strongly underperform stocks with low exposure to aggregate

uncertainty strongly persists.

4.6.4 Predicting Future Exposure to Aggregate Uncer-
tainty

In the previous sections, we demonstrate a strongly negative relation
between the sensitivities to innovations in aggregate uncertainty and stock
returns. In this section, we examine the cross-sectional relation of several ex
ante firm characteristics and factor sensitivities and the ex post sensitivities
to innovations in aggregate uncertainty. Cross-sectional predictors of the
stock’s uncertainty-sensitivities are measured during the twelve months
directly prior to the twelve-month estimation period for sensitivities to
innovations in aggregate uncertainty. The results are reported in Table
4.10. We find past uncertainty-sensitivities to significantly predict future
relative uncertainty-sensitivities. The coefficient, however, is only 0.1272,
which is far from one, and the explanatory power is very small with 1.5 %.
Consequently, we test further variables that may predict the stock’s future
exposure to aggregate uncertainty. Univariately, in models (ii) to (xx), we
find past Beta, Book-to-market, dVIX, In(Age), Leverage, MAX, and Jump
to significantly predict future relative exposure to aggregate uncertainty at
1 %, though the explanatory power is negligible for all of these models. In
multivariate regressions of models (xxi) and (xxii), we find past dVVIX,
Beta, dVIX, Momentum, and Volatility to most strongly predict future

relative uncertainty-sensitivities.
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Since we have seen that past uncertainty-sensitivities significantly
predict relative future uncertainty-sensitivities, we examine the relation
of average returns and past sensitivities to innovations in aggregate
uncertainty. Table 4.11 reports the results. Sorting the stocks by past
exposure to aggregate uncertainty is seen to produce a smaller, though
also significant, spread in average returns. For value-weighted returns, the
annual 4-factor alpha amounts to —6.2 %, which is statistically significant
at 1 %. Consequently, the sensitivities to aggregate uncertainty appear to be
somewhat stable over time. However the positive spread in ex post exposures
to aggregate uncertainty, when sorting on ex ante uncertainty-sensitivities,
is substantially smaller than that produced sorting by contemporaneous
factor loadings (see Table 4.3).

Ang et al. (2006a) point out that pre-formation factor loadings,
beside actual variation in exposures toward that factor, additionally reflect
measurement error effects. This measurement error increases during phases
of high return volatility. Consequently, since markets are highly volatile
during our sample period, high variation in the exposures to aggregate
uncertainty may be obtained.'® These theoretical arguments suggest that
pre-formation factor loadings cannot fully capture ex post factor loadings
in an adequate fashion. Consequently, smaller spreads in ex post exposures

to innovations in aggregate uncertainty are obtained.

4.6.5 Realized Measure of Aggregate Uncertainty

The results of this study, so far, could be criticized on the grounds
of a relatively short sample period that may induce spurious findings.
To test for that we use, taking account of the literature on volatility

estimation, an inferior measure of aggregate uncertainty, which is only

19While the average value of the VIX is 19.44, % during the period 1990 until 2006 it
is considerably higher with 21.84 % during our sample period 2007 until 2014.
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Table 4.11: Pre-Formation Factor Loadings

At the beginning of each month, we form value-weighted quintile portfolios based on
the stock’s sensitivities to aggregate uncertainty ( ]Vt) over the past year. To obtain the
sensitivities, we regress daily excess stock returns on dVVIX, controlling for MKT as
in Equation (4.12). Stocks with the lowest ﬁj\-ft are sorted into portfolio 1, those with
the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge portfolio
buying the quintile of stocks with the highest 6]\-,/75 and simultaneously selling the stocks
in the quintile with the lowest ]\/t We reform the portfolios after one month. We report
Carhart (1997) 4-factor alphas for portfolios based on returns over the following year.
Robust Newey & West (1987) p-values using 12 lags are reported in parentheses. The
stars indicate significance with one star (*) denoting significance at 10 %, two (**) at 5
%, and three (***) stars at 1 %. The columns ex post 3V report the average annual ex

post sensitivities to aggregate uncertainty of the portfolios.

Rank 1 2 3 4 5 | 5 minus 1
Mean return 0.1270%*  0.1203**  0.1287** 0.1223* 0.1266* -0.0004
(0.018)  (0.024)  (0.025) (0.067) (0.088) (0.990)
CAPM alpha 0.0126 0.0089 -0.0008  -0.0268**  -0.0482** -0.0608*
(0.208)  (0.455)  (0.912) (0.018) (0.044) (0.065)
3-factor alpha | 0.0145 0.0165** -0.0055  -0.0405%**  -0.0422*¥** | -0.0567***
(0.152)  (0.017)  (0.485) (0.006) (0.000) (0.001)
4-factor alpha | 0.0164*  0.0188***  _0.0063  -0.0424***  _0.0457*** | -0.0621***
(0.066)  (0.007)  (0.377) (0.002) (0.000) (0.000)
ex post 3V ‘ -0.0011 0.0014 0.0047 0.0087 0.0189 ‘ 0.0200

partially forward-looking. Specifically, we use five-minute high-frequency
data on the VIX from the TRTH database and estimate intraday realized
volatility for each day. The high-frequency data is available for the period
from January 01, 1996 until December 31, 2014. Thus, the sample period
is extended substantially. We perform standard data cleaning operations
following Rosch, Subrahmanyam, & Van Dijk (2014). Following on from
that, we obtain daily realized volatilities of the VIX and compute the
innovations (dVoVIX;) from a fitted ARMA model with dVoVIX, =
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VoVIX, — 0.9941VoVIX, 1 + 0.6803dVoVIX,_1.2° We estimate factor
sensitivities using Equation (4.12), replacing dVVIX by dVoVIX.

We present the results in Table 4.12. For value-weighted portfolios, the
return differential between stocks with high and those with low sensitivities
to aggregate uncertainty is substantially smaller than when using the VVIX
in Table 4.3 with about —6.3 %. This estimate is significant at 10 %.
The uncertainty-return trade-off persists when controlling for systematic
risk or employing the 3-factor model while a significant alpha cannot be
obtained with the 4-factor and 5-factor models. Even though the portfolio
of stocks with high sensitivities to innovations in aggregate uncertainty has
significantly negative alphas, these cannot be detected in the hedge portfolio
as the alpha of the portfolio with the lowest sensitivities is also negative.
Consequently, when accounting for momentum and liquidity, a significant
effect cannot be found. Furthermore, when restricting the sample to stocks
that are traded on the NYSE or when restricting the sample to the horizon
in which data on the VVIX is available (2007 until 2014), the effect is just
about significant at 10 %. This is fully in line with our motivation of dVVIX

being a superior measure for aggregate uncertainty compared to dVoVIX.

4.7 Conclusion

Using a simple stylized theoretical model we show that, beside the well-
established risk-return trade-off, investors also face an uncertainty-return
trade-off. In our empirical study, we verify this prediction, finding a clear
and very robust negative risk premium on aggregate uncertainty.

We use both uni- and bivariate portfolio sorts and show that the

20To measure innovations of the realized volatility of the VIX, it is indeed necessary to
fit an ARMA model, since simple first differences still adhere a substantial autocorrelation
of —0.38. Consequently, this should be considered when estimating tomorrow’s expected
volatility.
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Table 4.12: Realized Measure of Aggregate Uncertainty

At the beginning of each month, we form value-weighted (Panel A) and equally
weighted (Panel B) quintile portfolios based on the stock’s sensitivities to innovations
in aggregate uncertainty (B;{t), measured as the realized volatility of the VIX, over the
following year. The extended sample period spans from January 1996 to December 2014.
To obtain the sensitivities, we regress daily excess stock returns on dRVIX, controlling
for MKT as in Equation (4.12). Stocks with the lowest BXt are sorted into portfolio 1,
those with the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge
portfolio buying the quintile of stocks with the highest B;{t and simultaneously selling
the stocks in the quintile with the lowest Jvt We reform the portfolios after one month.
The row labeled Mean return is based on monthly simple returns. CAPM alpha, FF-3
alpha, 4-factor alpha, and 5-factor alpha refer to the alphas of the CAPM, the Fama
& French (1993) 3-factor, Carhart (1997) 4-factor, and the 5-factor (including liquidity)
models, respectively. The segment NYSE only restricts the sample of stocks to those
that are traded at the NYSE at the beginning of the estimation period. The segment
Horizon 07-14 presents the results when restricting the sample period to the time frame
between 2007 and 2014. Robust Newey & West (1987) p-values using 12 lags are reported
in parentheses. The stars indicate significance with one star (*) denoting significance at

10 %, two (**) at 5 %, and three (***) stars at 1 %.

Rank 1 2 3 4 5 5 minus 1

Mean return  0.1076%%  0.1197%%%  0.1133%** 0.0922**  0.0450  -0.0626*
(0.013) (0.000) (0.001)  (0.016)  (0.407) (0.054)

CAPM alpha 0.0015 0.0308***  (0.0195** -0.0083  -0.0834***  _0.0849**
(0.943)  (0.001)  (0.018)  (0.297)  (0.000)  (0.015)
FF-3 alpha -0.0157 0.0257***  (0.0138** -0.0102  -0.0694***  -0.0537*
(0.426)  (0.001)  (0.039)  (0.207)  (0.000)  (0.077)
4-factor alpha -0.0252 0.0264***  0.0118* -0.0074  -0.0682***  -0.0431
(0.125)  (0.000)  (0.065)  (0.283)  (0.000)  (0.131)
5-factor alpha -0.0368***  (0.0239***  0.0141** -0.0072  -0.0559*** -0.0191
(0.009)  (0.000)  (0.031)  (0.323)  (0.001)  (0.409)

NYSE only
4-factor alpha -0.0217 0.0171%%  0.0143**  -0.0077  -0.0597***  -0.0380*
(0.141) (0.018) (0.047) (0.248) (0.000) (0.093)

Horizon 07-14
4-factor alpha  -0.0398** 0.0210**  0.0230***  -0.0110 -0.0727***  -0.0329*
(0.029) (0.016) (0.000) (0.305) (0.000) (0.100)
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quintile portfolio of stocks with the highest sensitivity toward innovations in
aggregate uncertainty underperforms the quintile of stocks with the lowest
exposure to aggregate uncertainty by about 14 % per annum in terms
of 4-factor alphas. Using regression tests, we estimate the cross-sectional
market price of aggregate uncertainty to be both economically substantial
and statistically highly significant. The estimated risk premium on
aggregate uncertainty cannot be explained by known risk factors. Our
results are also consistent with any multifactor model, in which aggregate
uncertainty is priced with a negative sign if investors relate a positive change
in aggregate uncertainty to future unfavorable shifts in the investment

opportunity set.
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C Appendix

C.1 Variable Definitions

Main Control Variables

e Age (Zhang, 2006, “Age”) is the number of years up to time ¢ since a
firm first appeared in the CRSP database. In regressions, we take the

natural logarithm to remove the extreme skewness in this variable.

e Aggregate volatility (Ang et al., 2006b, “dVIX”), is denoted by the

: dVIX : : _ M
coeflicient it in the regression Tjir—Tfr = Q¢+ ﬁj’t (rMﬁT — Tfﬂ—) +

BJC-{YIX dVIX, + €, using daily returns over the examination period
(Ang et al., 2006b), where dVIX is defined as the first difference in

the VIX from the Chicago Board Options Exchange (CBOE).

e Beta is the coefficient ﬁ% obtained by the regression in Equation

(4.12).

e Bid-ask spread (“Bid-ask spread”) is the stock’s average daily bid-

ask spread over the examination period.

e Book-to-market (Fama & French, 1992, "Book-to-market”) is the
weighted average of book equity divided by market equity over
the examination period. The basic quantity is updated every 12
months for the beginning of the year. Book equity is defined as
stockholder’s equity, plus balance sheet deferred taxes and investment
tax credit, plus post-retirement benefit liabilities, minus the book

value of preferred stock.

e Leverage (Bhandari, 1988, “Leverage”) is defined as the weighted

average of one minus book equity (see “Book-to-market”) divided by
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total assets (Compustat: AT). The basic quantity is updated every 12
months for the beginning of the year.

e Momentum (Jegadeesh & Titman, 1993, “Momentum”) is the

cumulative stock return over the period from ¢t — 12 until ¢ — 1.

e Short-term reversal (Jegadeesh, 1990, “Short-term reversal”) is the

preceding month’s stock return (from ¢t — 1 to t).

e Size (Banz, 1981, “Size”) is the average of firm’s market capitalization
over the examination period. Market Capitalization is computed as
the product of the price times the number of shares outstanding.
In regressions, we take the natural logarithm to remove the extreme

skewness in this variable.

Further Controls

e Amihud illiquidity (Amihud, 2002, “Ambhiud illiquidity”) is the
absolute value of the stock’s return divided by the daily dollar volume,
averaged over the examination period. Specifically, it is [Illigz =
) #;,;L&, with the daily dollar volume (Volume$,, in thousand
dollars) being calculated as last trade price times shares traded on day

7, while the summation is taken over all n trading days during the

examination period.

e Co-Skewness (Harvey & Siddique, 2000, “Co-Skewness”) is the
coefficient Bft on the squared market excess return in the regression
Pje—Ttr = Qs+ BN (Parr —75.2)+ B85 (Pasr —75.7)? €., including the
market excess return and the squared market excess return, estimated

using daily returns over the examination period.
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e Demand for lottery (Bali, Cakici, & Whitelaw, 2011, “MAX") is
the average of the five highest daily returns during the examination

period.

e Downside beta (Ang et al., 2006a, “Downside beta”) is the coefficient
ft in the regression r; . —7rs, = aj7t+ﬁﬂ(rM7T —7,)+€; -, using daily
returns over the examination period only when the market return is

below the average daily market return over that year.

e Forecaster uncertainty (Anderson et al., 2009, “Forc. uncertainty”)
is the coefficient Sf in the regression r;, — ry, = a; + 3f dunc. +
BJM (rar —757) + €., where dunc, is the quarterly innovation in the
weighted variance of predictions on the market return. The regression
is performed once for each security using quarterly returns over the
whole sample period. We construct the forecasts following Anderson

et al. (2009) using the Survey of Professional Forecasters.

e Idiosyncratic volatility (Ang et al., 2006b, “Idio. volatility”) is the
standard deviation of the residuals €;, in the Fama & French (1993)
3-factor model rj . — 7, = ayy +ﬂﬁtLT + %(TM,T —Tfr) —i—ﬁftSMBT +
BﬂH ML, + €, using daily returns over the examination period.

SMB, and HM L, denote the returns on the Fama & French (1993)

factors.

e Idiosyncratic volatility-of-volatility (Baltussen et al., 2015, “Idio.
vol-of-vol”) is the volatility of the at-the-money Black & Scholes (1973)

option implied volatility (IV) over the examination period divided by

o(IVj.r)

WV We use the data

the average IV over that period VoV, =
cleaning procedure as described by Baltussen et al. (2015) and require
at least one hundred non-missing IV observations in order to compute

the quantity.

186



C. APPENDIX

e Kurtosis (“Kurtosis”) is the stock’s scaled fourth moment, computed

using daily returns over the examination period.

e NYSE only (“NYSE only”) is a dummy variable that takes the value
of one if the stock is traded at the NYSE at time ¢ and zero otherwise.

e Pastor—-Stambough liquidity (Pastor & Stambaugh, 2003, “PS
liquidity”) is the coefficient ﬂjﬂ in the following regression 7, — 7y, =
Oéj’t_'_,BﬁtLT"i_ %(TMJ —Tr) —l—ﬁftSMBT—l— ﬂHMLT—i-ej,T, where L, is
the liquidity factor provided by Lubos Pastor and ry;, —7f, = M KT,
SMB,, and HM L. are the Fama—French factors provided by Kenneth

R. French. We run the regression using the monthly returns during

the examination period.

e Skewness (Xu, 2007, “Skewness”) is the stock’s scaled third moment

computed using daily returns over the examination period.

e Stochastic volatility (Cremers et al., 2015, “Straddle vol”), market
skewness and kurtosis (Chang et al., 2013, “dSkew”, “dKurt”),
aggregate jump risk (Cremers et al., 2015, “Jump”), market
variance risk premium (Han & Zhou, 2012, “dVRP”), and policy
uncertainty (Brogaard & Detzel, 2015, “dPol”) are the coefficients

¥, in the regression 7, — 75, = iy + B (P — Tr) + BE Fr +€5r
using daily returns over the examination period (Ang et al., 2006b),

where F' is one of the following:

— Innovations in implied market skewness and kurtosis
(Chang et al., 2013), which are defined as the difference of
daily implied skewness (kurtosis) computed from S&P 500 index
options using the formulas of Bakshi et al. (2003) and its
expectation, which is obtained fitting an ARMA(1,1) model

on the complete time series of skewness (kurtosis) estimates.
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The resulting measure of innovations in market skewness then
is dSkew, = Skew,; — 0.9956Skew,_1 + 0.5707dSkew,_1, that
of innovations in market kurtosis is dKwurt, = Kurt, —

0.9981Kurt,— + 0.6231dKurt,_;.

Innovations in policy uncertainty (Brogaard & Detzel,
2015) are obtained by fitting an ARMA(1,1) model on the
Baker, Bloom, & Davis (2013) policy uncertainty index using
trading days only. The resulting measure of innovations in policy
uncertainty is dPol, = Pol, —0.9962Pol,_, +0.8394dPol,_,. We
obtain data on the policy uncertainty index from the authors’

webpage.

Innovations in the market variance risk premium (Han &
Zhou, 2012), where the market variance risk premium is defined
as the difference between the risk-neutral expected variance
(VIX?) and the physical expected variance of the S&P 500
index over a 30-day horizon using daily return data. First, we
compute the expected variance (E'V;) under the physical measure
by regressing the annualized realized variance (RVz,30) on the
lagged implied (VIX2) and the lagged annualized historical
(RV;) realized variance, using an expanding window of daily data
that is available at time 7, starting with data from January 01,
1996 (7 refers to those dates) RVz, 30 = o, + 3, VIXZ +~,RV: +
€7130 in a first step and then computing FV, = a, + @VI X2+
~-RV-. The market variance risk premium (V RP;) is obtained as
VRP, = VIX?— EV,. dVRP is obtained as the first difference
in VRP.

Market-neutral straddle returns (Cremers et al., 2015), that

are computed by first constructing ATM zero beta straddles.
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Afterwards the StraddleVol factor is the return of a gamma
neutral and vega positive portfolio of the two straddles maturing
in the next month and the month after next, while the Jump
factor is the return of a gamma positive and vega neutral portfolio
using the same straddles. To construct the factors, Black &

Scholes (1973) option sensitivities are used.

e Turnover (Datar, Y Naik, & Radcliffe, 1998, “Turnover”) is the
number of shares traded in one month divided by the total shares

outstanding, averaged over all months in the examination period.

e Volatility (Zhang, 2006, “Volatility”) is the stock’s standard deviation

computed using daily returns over the examination period.

e Volume (Gervais, Kaniel, & Mingelgrin, 2001, “Volume”) is the stock’s
average daily dollar trading volume over the examination period. In
regressions, we take the natural logarithm to remove the extreme

skewness in this variable.
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C.2 Equally Weighted Sorts

Single Portfolio Sorts and Characteristics

The results on equally weighted portfolios, presented in Table C.1, are
qualitatively similar to those of the value-weighted portfolios, shown in
Table 4.3. Returns and alphas of the 5 minus 1 hedge portfolio are at about
—11 %, all negative and statistically significant at 1 % for each of the models

we test.

Table C.1: Portfolios Sorted by Exposure to Aggregate
Uncertainty — Equally Weighted

At the beginning of each month, we form equally weighted quintile portfolios based on

\%
Jst

the stock’s sensitivities to innovations in aggregate uncertainty (8.,) over the following
year. To obtain the sensitivities, we regress daily excess stock returns on dVVIX,
controlling for MKT. Stocks with the lowest 5;@ are sorted into portfolio 1, those with
the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge portfolio
buying the quintile of stocks with the highest ﬁj\-ft and simultaneously selling the stocks
in the quintile with the lowest B;{t. We reform the portfolios after one month. The row
labeled Mean return is based on monthly simple returns. CAPM alpha, FF-3 alpha, and
4-factor alpha refer to the alphas of the CAPM, the Fama & French (1993) 3-factor,
Carhart (1997) 4-factor, and the 5-factor (including liquidity) models, respectively. The
segment NYSE only restricts the sample of stocks to those that are traded at the NYSE at
the beginning of the estimation period. The segment Factor loadings denotes the average
annual factor loadings, where M, BV, and SIVIX refer to the factor loadings on the
market factor, dVVIX, and dVIX. The segment Stock characteristics presents average
(equally weighted) portfolio characteristics with Mkt. share denoting the average market
share of the portfolios. The remaining variable definitions are provided in the appendix.
Robust Newey & West (1987) p-values using 12 lags are reported in parentheses. The

stars indicate significance with one star (*) denoting significance at 10 %, two (**) at 5

%, and three (***) stars at 1 %.
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Table C.1: Portfolios Sorted by Exposure to Aggregate Uncertainty — Equally Weighted

(continued)
Rank ‘ 1 2 3 4 5 ‘ 5 minus 1
Mean return 0.1366** 0.1246***  0.1100** 0.0879* 0.0284 -0.1081%**
(0.016) (0.009) (0.020) (0.082) (0.623) (0.000)
CAPM alpha 0.0230 0.0278%** 0.0137 -0.0152 -0.0873%** | -0.1103***
(0.152) (0.008) (0.294) (0.313) (0.000) (0.000)
FF-3 alpha 0.0026 0.0161** 0.0020 -0.0245%*%*%  _0.1023*** | -0.1048%**
(0.821) (0.018) (0.600) (0.000) (0.000) (0.000)
4-factor alpha 0.0039 0.0149** 0.0011 -0.0260**%*  -0.106*** | -0.1099***
(0.735) (0.026) (0.753) (0.000) (0.000) (0.000)
5-factor alpha 0.0205%**  (0.0226*** 0.0042 -0.0297FF*%  -0.1163*%** | -0.1368***
(0.009) (0.000) (0.105) (0.000) (0.000) (0.000)
NYSE only
4-factor alpha 0.0140 0.0203** 0.0053 -0.0077*%  -0.0791*** | -0.0932%**
(0.417) (0.021) (0.273) (0.037) (0.000) (0.000)
Factor loadings
sM 1.0236*%F*%  1.0549%**  1.1604***  1.3134***  1.6208*** | (.5972%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
BY -0.0511%%%  -0.0071*%%*  0.0160***  0.0420%**  0.0987*** | (.1498%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
[IVIX -0.0739%** 0.0042 0.0553%*F*  (0.1180%**  (0.2449%** | (.3187***
(0.000) (0.502) (0.000) (0.000) (0.000) (0.000)
Return characteristics
Std. deviation 0.2705 0.2247 0.2245 0.2425 0.2800 0.0903
Skewness -0.4030 -0.4694 -0.3409 -0.2567 -0.2104 0.3806
Kurtosis 2.8357 2.6719 2.6955 2.7900 2.5149 2.9773
Stock characteristics
Mkt. share 0.2500 0.2990 0.2269 0.1457 0.0784 -0.1716
Size (x107%) 8.1557 9.5966 7.1994 4.6868 2.5425 -5.6132
Book-to-market 0.5827 0.5916 0.5949 0.6120 0.6288 0.0460
Bid-ask spread 0.0018 0.0013 0.0014 0.0015 0.0019 0.0002
Amihud illiquidity (*109) 83.487 21.095 27.479 36.389 51.683 -31.804
Age 21.367 24.765 22.933 20.422 17.109 -4.2581
Leverage 0.5133 0.5494 0.5241 0.5127 0.5206 0.0073
MAX 0.0909 0.0739 0.0760 0.0844 0.1105 0.0196
Volatility 0.0299 0.0267 0.0276 0.0295 0.0329 0.0028
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Double Sorts

The results on equally weighted double sorts, controlling for the canonical
characteristics, can be found in Table C.2. Controlling for Beta, dVIX, and
Bid-ask spread, the alphas of the hedge portfolio turn out smaller compared
to single sorts, while it is still at about —11 % for the remaining control
variables. In case of controlling for dVIX, the 4-factor alpha is not significant
with a p-value slightly above 10 %.

Imposing further control variables in Table C.3, the results are not
affected. The uncertainty-return trade-off can clearly be detected in every

case.

C.3 Value-Weighted Regression Tests

Fama—MacBeth Regressions — Value-Weighted

Table C.4 reports the results of value-weighted Fama & MacBeth (1973)

\%

regressions. We report the results of a regression of excess returns on 3},

le\fi, and various other canonical characteristics. In the basic regression
specification suggested by our theoretical model (ii), the yearly price of
aggregate uncertainty risk (coefficient on Jvt) is —1.0449 with a p-value
smaller than 0.002, which corresponds to a t-statistic of —3.28, also clearly
clearing the hurdle defined by Harvey et al. (2015). Consequently, a
two-standard deviation increase across stocks in their uncertainty-sensitivity
is associated with a 17.22 % decrease in average annual returns.

Adding In(Size), Book-to-market, Bid-ask spread, Momentum, and
Short-term reversal in models (iii) to (iv) and (vi) to (viii) does not change
much. The coefficient on uncertainty-sensitivity remains economically large

and highly significant at 1 %. Adding dVIX in model (v) strongly reduces the

significance in the risk premium on aggregate uncertainty, but the p-value
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Table C.2: Double Sorts — Equally Weighted

This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the
beginning of each month, we first sort stocks into quintiles based on the characteristics
denoted in the first column. Then, within each quintile, we sort stocks based on their
uncertainty-sensitivity (,Bth) into another five quintile portfolios. The five portfolios
sorted on 5;{15 are then obtained by averaging over the respective quintiles within each
quintile of the other characteristic, thus we obtain B}ft quintile portfolios controlling
for another characteristic. We reform the portfolios after one month. This procedure is
performed for each of the characteristics. We report the main control variables for equally
weighted returns. The column labeled 5 minus 1 refers to the hedge portfolio buying the
quintile of stocks with the highest ﬁ]\{t and simultaneously selling the stocks in the quintile
with the lowest 6;-;. Robust Newey & West (1987) p-values using 12 lags are reported in
parentheses. The stars indicate significance with one star (*) denoting significance at 10

%, two (**) at 5 %, and three (***) stars at 1 %.

Rank | 1 2 3 4 5 | 5 minus 1
Beta -0.0107 -0.0010 -0.0035 -0.0233%** -0.0733%** -0.0626%**
(0.371) (0.844) (0.309) (0.000) (0.000) (0.001)
Size 0.0044 0.0114 0.0016 -0.0275%** -0.1020%** -0.1064***
(0.723) (0.139) (0.635) (0.000) (0.000) (0.000)
Book-to-market 0.0086 0.0133** 0.0014 -0.0234*** -0.0981%** -0.1067%+*
(0.459) (0.017) (0.710) (0.000) (0.000) (0.000)
dVIX -0.0310%** 0.0018 -0.0030 -0.0163*** -0.0636*** -0.0326
(0.001) (0.709) (0.453) (0.000) (0.000) (0.107)
Bid-ask spread 0.0021 -0.0007 -0.0092%* -0.0280*** -0.0760%** -0.0780%**
(0.870) (0.918) (0.029) (0.000) (0.000) (0.008)
Momentum 0.0101 0.0164** 0.0023 -0.0255%** -0.1024*** -0.1125%%*
(0.423) (0.016) (0.478) (0.000) (0.000) (0.000)
Short-term reversal 0.0054 0.0136** 0.0031 -0.0298**F*%  _0.1028*** | -0.1082%**
(0.642) (0.035) (0.381) (0.000) (0.000) (0.000)
Age 0.0089 0.0149** 0.0001 -0.0244*** -0.1010%** -0.1099%**
(0.454) (0.036) (0.971) (0.000) (0.000) (0.000)
Leverage 0.0083 0.0129* -0.0043 -0.0241%** -0.0982%** -0.1064%+*
(0.427) (0.055) (0.248) (0.000) (0.000) (0.000)
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Table C.3: Double Sorts (Further Control Variables) — Equally
Weighted
This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the
beginning of each month, we first sort stocks into quintiles based on the characteristics

denoted in the first column. Then, within each quintile, we sort stocks based on their

\

uncertainty-sensitivity ( j’t) into another five quintile portfolios. Portfolio returns are

equally weighted. The five portfolios sorted on B]\{t are then obtained by averaging over

\%
Jst

the respective quintiles within each quintile of the other characteristic, thus we obtain
quintile portfolios controlling for another characteristic. We reform the portfolios after one
month. This procedure is performed for each of the characteristics. We categorize control
variables into groups of returns distributions characteristics (Panel A), liquidity-related
characteristics (Panel B), and market factors (Panel C). The column labeled 5 minus
1 refers to the hedge portfolio buying the quintile of stocks with the highest B;{t and
simultaneously selling the stocks in the quintile with the lowest B]\-ft. Robust Newey
& West (1987) p-values using 12 lags are reported in parentheses. The stars indicate

significance with one star (*) denoting significance at 10 %, two (**) at 5 %, and three

(¥**) stars at 1 %.

Panel A. Returns Distributions Characteristics

Rank ‘ 1 2 3 4 5 ‘ 5 minus 1
Idio. Volatility 0.0096 -0.0023 -0.0158%*F*  -0.0387*** -0.065%** -0.0746%**
(0.407) (0.750) (0.001) (0.000) (0.000) (0.001)
Co-Skewness 0.0085 0.0136* 0.0031 -0.0256*%*%*%  -0.1039*** -0.1125%**
(0.467) (0.057) (0.380) (0.000) (0.000) (0.000)
Co-Kurtosis 0.0095 0.0146** 0.0026 -0.0253%*F*%  _0.1057*** -0.1152%%*
(0.431) (0.013) (0.484) (0.000) (0.000) (0.000)
Downside Beta 0.0043 0.0102* -0.0004 -0.0291%%%  -0.0968*** -0.1011%**
(0.712) (0.061) (0.928) (0.000) (0.000) (0.000)
MAX 0.0030 0.0114* -0.0047 -0.0334*%*%*%  _0.0881*** -0.0911%**
(0.777) (0.088) (0.236) (0.000) (0.000) (0.000)
Idio. Vol-of-Vol 0.0558*** 0.0379*** 0.0243*** 0.0098 -0.0502* -0.1060***
(0.003) (0.000) (0.001) (0.312) (0.083) (0.008)
Volatility 0.0221* 0.0108 0.0086** -0.0266*%**  -0.0754*** -0.0975%**
(0.056) (0.130) (0.013) (0.000) (0.000) (0.000)
Skewness 0.0248** 0.0189*** 0.0049 -0.017%*%* -0.0921%** -0.1169***
(0.032) (0.001) (0.109) (0.000) (0.000) (0.000)
Kurtosis 0.0240** 0.0178*** 0.0060** -0.0184%**  _0.0898*** -0.1138%**
(0.034) (0.003) (0.035) (0.000) (0.000) (0.000)
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Table C.3: Double Sorts (Further Control Variables) — Equally Weighted (continued)

Panel B. Liquidity-Related Characteristics

Rank \ 1 2 3 4 5 | 5 minus 1
PS liquidity -0.0121 -0.0051 -0.0160  -0.0442%**  _0.1181%%*% | -0.1060%**
(0.619) (0.793) (0.319) (0.000) (0.000) (0.000)
Amihud illiquidity | -0.0485%%*  -0.0312***  -0.0319%**  -0.0608%**  -0.1320%** | -0.0844%**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
Volume -0.0020 0.0054 -0.0022  -0.0219%**  -0.0914%F*F | -0.0894%**
(0.871) (0.512) (0.557) (0.000) (0.000) (0.004)
Turnover 0.0036 0.0114* 0.0018 -0.0297%%*%  -0.0989%** | -0.1025%**
(0.772) (0.075) (0.592) (0.000) (0.000) (0.000)

Panel C. Market Factors

Rank ‘ 1 2 3 4 5 ‘ 5 minus 1
dSkew -0.0015 0.0059 -0.0052 -0.0328*** -0.1051%%* -0.1037%**
(0.919) (0.592) (0.504) (0.000) (0.000) (0.000)
dKurt -0.0007 0.0043 -0.0075 -0.0297*** -0.1051%** -0.1045%**
(0.964) (0.690) (0.336) (0.000) (0.000) (0.000)
Straddle vol -0.0117 0.0042 -0.0082 -0.0261%** -0.0969%** -0.0853***
(0.388) (0.685) (0.285) (0.000) (0.000) (0.000)
Jump -0.0148 0.0051 -0.0058 -0.0302%** -0.0929%** -0.0781%**
(0.207) (0.619) (0.463) (0.000) (0.000) (0.000)
dVRP -0.0183* 0.0060 -0.0027 -0.0222%** -0.0748%** -0.0564**
(0.087) (0.340) (0.426) (0.000) (0.000) (0.014)
dPol -0.0154 -0.0068 -0.0172 -0.0399*** -0.1161%** -0.1007***
(0.514) (0.732) (0.281) (0.002) (0.000) (0.000)
Forec. uncertainty 0.0023 0.0119* -0.0010 -0.0280*F*%  -0.0968*** | -0.0991%***
(0.831) (0.071) (0.804) (0.000) (0.000) (0.000)

is only slightly above 10 %. Again, particularly when dVIX is included in
the regression, the coefficient denoting the price of aggregate uncertainty
risk is substantially smaller amounting to about —0.5 compared to about
1 when aggregate volatility is not included as an explanatory variable.
Adding several canonical characteristics jointly leaves the price of aggregate
uncertainty risk negative with p-values close to 10 %. Models (xii) to (xiv)
show that adding In(Age) and Leverage does not have a big impact on the

price of aggregate uncertainty risk.
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CHAPTER 4. AGGREGATE UNCERTAINTY AFFECTS STOCK
RETURNS

Table C.5: Fama—MacBeth Regressions (Further Control Variables) — Value-Weighted
(continued)

Panel B. Liquidity-Related Characteristics

‘ (xxv) (xxvi) (xxvii) (xxviii)
Constant 0.3509*** 0.3094*** 0.0703 0.3054***
(0.000) (0.006) (0.483) (0.006)
dVVIX -0.5345* -0.5540* -0.5520* -0.5571*
(0.054) (0.079) (0.084) (0.078)
Beta -0.0002 0.0164 0.0255 0.0299
(0.998) (0.817) (0.728) (0.658)
In(Size) ~0.0154%%* -0.0128%* -0.0125%*
(0.006) (0.044) (0.042)
Book-to-market -0.0302 -0.0331* -0.0312* -0.0368%*
(0.101) (0.072) (0.088) (0.044)
dVIX -0.2886%** -0.2451%%* -0.2388%** -0.2425%**
(0.000) (0.001) (0.002) (0.001)
PS liquidity 0.0098
(0.491)
Amihud illiquidity -1.1730%**
(0.000)
In(Volume) 0.0009
(0.861)
Turnover -0.0065
(0.209)
adj. R? 0.2397 0.2056 0.2014 0.2141

Multivariate Estimation

Table C.6 reports the results of value-weighted Fama & MacBeth (1973)
regressions when the sensitivities to the different factors are obtained
in a joint multivariate sensitivity estimation regression. The results are
similar to those of the usual regression tests without a weighting scheme.
Incorporating the Fama & French (1993) factors (xxxvii) leaves the effect
strongly significant at 1 %. Adding the other market factors like dVIX,
dSkew, dKurt, Straddle vol, Jump, or dVRP (models (x1) to (xlvii)) does not
change much. The price of risk on HML regularly is significant at 10 % while
that on MKT and SMB never is. The coefficient on uncertainty-sensitivity
is statistically significant at 1 % in any case. The coefficient on dVIX is
substantially less significant when estimating the sensitivities jointly with

dVVIX compared to the analysis in which both are estimated separately.
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The prices of risk on Jump and dVRP are significant, whereas the remaining

factors are only partly significant.
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Chapter 5

Conclusion and Further

Research

5.1 Summary and Conclusion

This thesis investigates the properties of asset’s market beta and the pricing
of aggregate uncertainty in financial markets. Chapter 2 comprehensively
studies the statistical properties of different methods to estimate an asset’s
market beta. We find that the hybrid methodology proposed by Buss
& Vilkov (2012) performs best both in terms of informational efficiency
and estimation accuracy. Furthermore, we find that the simple historical
benchmark model as well as a Kalman filter based approach with a random
walk parametrization perform well in terms of both evaluation criteria. On
the other hand, fully option implied models or GARCH-based time-series
approaches are shown to produce large pricing errors.

Chapter 3 studies the value of intra-day high-frequency data for
beta estimation. We employ high-frequency return data both to obtain

a presumably more precise statistical examination of ex ante estimates
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as well as for an additional historical estimator. Additionally, we present
evidence on optimal combinations of estimators and impose an economical
evaluation criterion in the analysis. We find that the results of Chapter
2 hold using high-frequency data. Furthermore, we find that the value
of intra-day high-frequency data for beta estimation is limited. From the
statistical evaluation viewpoint, especially over short time horizons, the
historical high-frequency estimator is shown to yield precise estimates,
whereas from an economic perspective the approach cannot uncover a
positive risk-return trade-off. Regarding the economic evaluation, the hybrid
approach proposed by Buss & Vilkov (2012) performs clearly best, detecting
a positive risk-return trade-off, albeit not of the magnitude predicted by the
CAPM. Using the statistical examination, the BV approach performs more
or less equally well compared to the high-frequency estimator.

Chapter 4 uses a simple stylized theoretical model to introduce the
possibility of the existence of an uncertainty-return trade-off in financial
markets in addition to the well-established risk-return trade-off. For the
empirical analysis we use uni- and bivariate portfolio sorts as well as
cross-sectional Fama & MacBeth (1973) regressions and find aggregate
uncertainty, measured by the VVIX, to be significantly priced with a
negative sign. Specifically, we find that the quintile portfolio of stocks
with the highest sensitivity toward innovations in aggregate uncertainty
underperforms the quintile of stocks with the lowest exposure to aggregate
uncertainty by about 14 % per annum in terms of 4-factor alphas. In
cross-sectional regressions, a two-standard deviation increase in aggregate
uncertainty factor loadings is associated with a significant decrease in
average annual returns that ranges from 6.3 % to 18.7 %. These findings
cannot be explained by known risk factors or a crisis effect.

The findings presented in this thesis have important implications for

both academics and market participants in practice. First of all, beta
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is important for many applications in asset pricing, portfolio choice or
risk management. Financial managers should estimate beta, if applicable,
using the hybrid method of Buss & Vilkov (2012). This ensures estimates
that perform well from a statistical viewpoint, i.e. are accurate and
informationally efficient, and, more importantly, serve to detect a positive
risk-return trade-off in the cross-section of stock returns. The BV approach,
however, is not applicable for all stocks. It requires options data for all
constituents of a market index and the index itself. This means that for
many assets, the hybrid BV methodology cannot provide an estimate. In
these cases, the asset manager should stick to a simple historical estimate
instead of a GARCH or fully option implied alternative. If the asset manager
has intra-day high-frequency data at hand, this is of limited value. Using
high-frequency data, he obtains more precise estimates compared to the
historical daily estimator, but if the BV approach is feasible he should
stick to that since it is superior from an economic perspective. The findings
presented here also have several implications for the academic literature.
The conclusions drawn above hold in academic applications alike, meaning
that one should stick to the BV approach while using high-frequency data
for beta estimation has only little value.

Lastly, showing that aggregate uncertainty is priced in the stock market
provides another important contribution that may help us understanding
financial markets better. Market participants can decide whether they
want to hedge against increases in aggregate uncertainty or expose their
portfolios to that factor earning the substantial risk premium attached
to it. Showing that once aggregate uncertainty is imposed many of the
previously documented anomalies or risk factors are not priced, this thesis
also contributes to the literature trying to separate “real” risk factors from

those spuriously detected.
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5.2 Suggestions for Further Research

Especially related to the measurement of beta using option-implied data as
well as intra-day high-frequency return data, several potentially interesting
topics for future research arise. Using such data, beta can be obtained on
a day-by-day basis. Building on that there are several fields of potential
future research.

First, given that using the hybrid BV methodology is available for
various time horizons using options data with suitable maturity, we can
study the term structure of beta. The main reason for term-structure effects
in implied beta may be caused by the fact that certain economic shocks
do not affect systematic risk at the short end, but potentially have large
implications at the long end (or vice versa). We can study the implications
of a positive or negative term structure for firms and their future returns.

Secondly, we can test the risk-return trade-off predicted by the CAPM
at the very short end. The CAPM is a one-period model. The exact length
of this period, however, remains unspecified. Consequently, we can test the
model on a daily or weekly basis. Bali et al. (2015) show that dynamic
conditional beta, based on a GARCH-specification, is doing well in a cross-
sectional analysis. However, the results of their study might depend on the
specific model chosen. Using realized or implied betas, we are able to obtain
model-free or semi-parametric daily and weekly conditional estimates for
beta. Employing these estimates of beta, we can test the conditional CAPM
at the very short end following the approaches of Lewellen & Nagel (2006)
and Ang & Kristensen (2012).

Furthermore, using day-by-day estimates, we can study time-variations
and test for jumps in beta. We can study how heavily the systematic

risk of individual assets is fluctuating. We further could examine what
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firm characteristics (e.g., size, book-to-market, industry, age) can explain
time-variations in beta. Moreover, using the non-parametric test of Lee &
Mykland (2008) or a related test and our daily beta estimates, we could
identify jumps in betas of the stocks in the S&P 500. Once we have detected
such movements, we can study their causes. To do this, we can relate them
to scheduled and unscheduled news following the approach in Prokopczuk
& Wese Simen (2014b).

Lastly, using the hybrid beta estimates for different time horizons,
combined with a term structure of risk-free interest rates and an appropriate
estimate for the term-structure of expected returns for the market portfolio
we could examine the term-structure of asset’s expected returns.

Finally, the evidence presented in Chapter 4 may help to develop a
factor model related to fundamentals. The model by Fama & French (1993)
is often criticized on the ground that the size and book-to-market lack a clear
theoretical foundation. Recent developments (e.g., Hou et al., 2015; Fama
& French, 2015) in factor models can also be criticized on that grounds.
Consequently, we could study closer the relation of aggregate uncertainty
and further macroeconomic fundamentals with the factors in existing models
and, finally, maybe develop a new factor model which based on economic

variables, incorporating aggregate uncertainty.
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