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Abstract

This thesis investigates the properties of assets’ market betas and the pricing

of aggregate uncertainty in financial markets. Chapter 1 introduces the main

concepts and delivers an overview of the subsequent chapters.

Chapter 2 conducts a comprehensive comparison of market beta

estimation techniques. We study the performance of several historical,

time-series model, and option-implied estimators for realized market beta.

Thereby, we find the hybrid methodology, combining historical return

data and option-implied information, to consistently outperform all other

approaches. In addition, all other approaches, including fully implied and

GARCH-based methods for dynamic conditional beta, are dominated by

a simple beta estimate based on historical (co-) variances and a Kalman

filter based approach. Our conclusions remain unchanged after performing

several robustness checks.

Based on the findings in Chapter 2, in particular that the historical

daily estimator for beta performs notably well, Chapter 3 studies the value

of high-frequency data for beta estimation. Using intra-day high-frequency

return data, we comprehensively analyze the performance of beta estimation

based on such data. We find that, overall, the value of high-frequency data

is limited. From a statistical viewpoint both the historical high-frequency

approach and the hybrid approach using historical returns and options
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prices work more or less equally well, while a combination of both

approaches can improve performance. On the other hand, if we are interested

in the economic implications of beta estimation a positive risk-return

relationship cannot be detected using the high-frequency estimator while

the hybrid approach appears to contain superior information. Our results

extend to the estimation of downside beta.

Motivated by the empirical failure of market beta to fully account for

the variations observable in the cross-section of stock returns, Chapter

4 studies whether further risk factors, in particular aggregate economic

uncertainty, are priced in financial markets. In line with the predictions

of a stylized theoretical model with stochastic volatility, we find that

time-varying aggregate economic uncertainty commands an economically

substantial and statistically significant negative risk premium. Aggregate

uncertainty, marked-off from risk, is proxied with market volatility-of-

volatility measured by the VVIX index. A two-standard deviation increase

in aggregate uncertainty factor loadings is associated with a decrease in

average annual returns ranging from 6.3 % to 18.7 %. This phenomenon

can neither be explained by aggregate volatility, jump risk, and several

other canonical, liquidity, and returns distributions characteristics, nor by

a crisis effect.

Finally, Chapter 5 concludes and outlines possible future directions for

research.

Keywords: Market beta estimation, high-frequency data, aggregate eco-

nomic uncertainty
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Zusammenfassung

Diese Arbeit beschäftigt sich mit den Eigenschaften von und Schätz-

methoden für Marktbetafaktoren verschiedener Aktien. Des Weiteren wird

untersucht, inwiefern gesamtwirtschaftliche ökonomische Unsicherheit in

Kapitalmärkten gepreist ist. Kapitel 1 stellt die Hauptkonzepte vor und

liefert einen Überblick über die nachfolgenden Kapitel.

Kapitel 2 präsentiert eine umfangreiche Analyse von verschiedenen

Möglichkeiten, um Beta zu schätzen. Wir testen verschiedene historische,

Zeitreihenmodell-basierte und optionsimplizite Verfahren für die Beta-

Schätzung und evaluieren diese Verfahren mit dem nachfolgend realisierten

Beta. Unsere Resultate deuten darauf hin, dass das hybride Verfahren

von Buss & Vilkov (2012), das historische und options-implizite Daten

kombiniert, am besten funktioniert. Außerdem sind alle weiteren Verfahren,

unter anderem komplett options-implizite und GARCH-Modellbasierte

Verfahren, einer einfachen historischen Schätzmethode sowie einem Kalman

Filter basierten Verfahren unterlegen. Diese Schlussfolgerungen werden

durch etliche Robustheitsanalysen bestätigt.

Auf Grundlage der Ergebnisse des 2. Kapitels, insbesondere motiviert

durch den Fakt, dass das simple historische Schätzverfahren auf Basis von

täglichen Renditen sehr gut funktioniert, untersuchen wir in Kapitel 3 den

Wert von Intra-Day-Hochfrequenzdaten für die Beta-Schätzung. Unsere
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Ergebnisse zeigen auf, dass Hochfrequenzdaten nur von beschränktem

Wert für die Schätzung von Beta sind. Aus einer statistischen Perspek-

tive betrachtet liefern Hochfrequenzschätzer und das hybride Buss &

Vilkov (2012) Verfahren ungefähr gleich gute Resultate. Dagegen kann

eine simple Kombination beider Verfahren die Schätzgenauigkeit für das

nachfolgend realisierte Beta weiter verbessern. Andererseits ergibt sich

aus der ökonomischen Perspektive, d.h. der Frage, ob Unterschiede in

den Schätzungen für Beta auch Unterschiede in nachfolgenden Renditen

abbilden, ein konträres Bild. Mit historischen Schätzern, die tägliche oder

Hochfrequenzdaten benutzen, lässt sich kein signifikanter Trade-off zwischen

Rendite und Risiko feststellen, während das hybride Verfahren unter

diesem Gesichtspunkt deutlich besser funktioniert. Die hier beschriebenen

Resultate gelten gleichermaßen für die Schätzung von Downside Beta.

Da Marktbeta alleine, wie in zahlreichen empirischen Studien gezeigt,

die Variationen im Querschnitt der Aktienrenditen nicht komplett erklären

kann, untersucht Kapitel 4 welche weiteren Risikofaktoren in Kapitalmärk-

ten, speziell im Aktienmarkt, gepreist sind. Dabei wird der Schwerpunkt vor

allem auf die gesamtwirtschaftliche ökonomische Unsicherheit gelegt. Als

Ausgangspunkt zeigen wir mit einem einfachen theoretischen Modell mit

stochastischer Volatilität, dass gesamtwirtschaftliche Unsicherheit in Kap-

italmärkten potentiell gepreist sein kann. Unsere empirischen Ergebnisse

indizieren, dass zeitvarianter ökonomischer Unsicherheit eine ökonomisch

bedeutsame und statistisch stark signifikante negative Risikoprämie an-

haftet. Wir benutzen die Volatilität der Volatilität des Marktes gemessen

durch den VVIX Index der Chicago Board Options Exchange, um den

Grad an gesamtwirtschaftlicher ökonomischer Unsicherheit, abgegrenzt von

Risiko, der zur jeweiligen Zeit im Markt vorhanden ist, zu bestimmen.

Unsere Ergebnisse zeigen, dass eine um zwei Standardabweichungen höhere

Faktorsensitivität gegenüber der gesamtwirtschaftlichen Unsicherheit mit
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einer im Durchschnitt um 6.3 % bis 18.7 % reduzierten annualisierten

Rendite einzelner Aktien einhergeht. Diese Ergebnisse können weder durch

andere Risikofaktoren, wie z.B. gesamtwirtschaftliches Risiko, dem Risiko

extremer Sprünge in Renditen, sowie vieler weiterer bekannter Faktoren,

noch durch einen distinguierten Kriseneffekt erklärt werden.

Abschließend präsentiert Kapitel 5 Schlussfolgerungen und liefert

Anregungen für mögliche zukünftige Forschungsthemen.

Schlagwörter: Marktbeta-Schätzung, Hochfrequenzdaten, gesamt-

wirtschaftliche ökonomische Unsicherheit
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Chapter 1

Introduction

The development of the Capital Asset Pricing Model (CAPM) by

Sharpe (1964), Lintner (1965), and Mossin (1966) provides an important

cornerstone in modern financial economics. If the assumptions of the CAPM

are fulfilled, the model predicts that all assets can be priced by only one

risk factor, i.e., the market risk premium. Asset’s equilibrium rates of return

then depend on their sensitivity to changes in the market risk premium, i.e.,

their beta factors. These factors, however, are not observable and hence need

to be estimated. Studying the properties of market beta on the one hand is

important to test the model predictions, and, on the other hand, to better

understand the dynamic developments occurring on financial markets.

Chapter 2 makes use of the recent developments made in estimating

beta in various different ways. Beta can be estimated simply from historical

return data (Fama & MacBeth, 1973; Baker, Bradley, & Wurgler, 2010),

based on historical return data specifying a time-series model (Pagan, 1980;

Engle, 2014), or using data implied from options markets either combined

with historical return data (French, Groth, & Kolari, 1983; Buss & Vilkov,

2012) or solely (Chang, Christoffersen, Jacobs, & Vainberg, 2012). Faff,

Hillier, & Hillier (2000) compare historical and time-series models and
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CHAPTER 1. INTRODUCTION

several of the authors mentioned previously compare the approach they

propose to subsets of existing models. Overall, however, these various ways

of estimating beta, thus far, have not been comprehensively examined and

compared.

Chapter 2 of this thesis, to the best of our knowledge, provides the first

comprehensive and thorough empirical study on the performance of a wide

range of market beta estimation techniques, including several historical,

time-series model, and option-implied estimation approaches. Furthermore,

a novel hybrid estimator for beta that corrects option implied volatility for

the volatility risk premium is proposed. We study the information content

of different approaches to estimate subsequent realized beta (based on

daily return data) in univariate and encompassing regressions (Mincer &

Zarnowitz, 1969) and determining the estimation accuracy using the root

mean squared error (RMSE) criterion.

Our empirical evidence suggests that the hybrid approach proposed by

Buss & Vilkov (BV) (2012), which combines option implied with historical

return information, turns out to outperform all other methods. The simple

historical benchmark model as well as an approach based on the Kalman

filter and a random walk (RW) are shown to work comparatively well, while

GARCH-based models of dynamic conditional beta and fully option implied

approaches produce serious errors. We further show that the BV approach

works so well mainly because, in combining historical and option implied

information, it ensures that the estimates are adjusted to be unbiased in

their value-weighted cross-sectional averages.

Motivated by the fact that historical beta, based on daily return data,

works notably well, as well as by recent advances in financial economics

using intra-day high-frequency data, Chapter 3 studies the value of intra-day

high-frequency data for beta estimation. Several authors show that forecasts

for the moments and co-moments of the return distribution can be

2



obtained with greater precision once employing intra-day high-frequency

data (e.g., Andersen & Bollerslev, 1998; Bollerslev & Zhang, 2003; Amaya,

Christoffersen, Jacobs, & Vasquez, 2015). Bollerslev & Zhang (2003),

Barndorff-Nielsen & Shephard (2004), and Andersen, Bollerslev, Diebold,

& Wu (2005, 2006) derive the estimator for realized beta and show that

it delivers a consistent estimate for the true underlying integrated beta.

The use of high-frequency data may enable the researcher to make use of

this consistency without having to rely on the traditionally imposed long

historical windows which entail restrictions on the stability of the underlying

processes and economic conditions. If these restrictions are not satisfied

estimates can attain a lot of noise.

Consequently, Chapter 3 investigates the usefulness of high-frequency

data for estimating beta. To the best of our knowledge, Chapter 3

delivers the first comprehensive and thorough empirical study on the

statistical and economic performance of option-implied and historical

market beta estimation techniques, including high-frequency return data.

We use intra-day data to obtain both a more precise statistical evaluation

of different ex ante estimates as well as presumably more precise estimates

of ex ante historical or hybrid beta. Additionally, we provide evidence

on optimal combinations of estimators and add an economic evaluation

criterion relating ex ante estimates for beta with the cross-section of

subsequent excess returns using Black, Jensen, & Scholes (1972) regressions.

Finally, we provide evidence on the estimation of downside beta. While

conditional risk premia have recently attracted much attention (Ang, Chen,

& Xing, 2006a; Lettau, Maggiori, & Weber, 2014), so far only little work

has been done with regard to the concrete estimation of downside beta.

The results of Chapter 3 indicate that the value of intra-day

high-frequency data for beta estimation is only limited. While on the one

hand, regarding the statistical evaluation especially over short horizons,
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CHAPTER 1. INTRODUCTION

high-frequency estimates are shown to be quite precise, on the other hand,

the estimator fails to create economic value. These results are independent

of the sampling frequency for high-frequency beta (using intervals of 5 up to

130 minutes). From a statistical viewpoint the hybrid estimator of Buss &

Vilkov (2012) works more or less equally well and a simple combination

of the high-frequency and hybrid estimators outperforms the individual

models quite consistently. Regarding economic value, the hybrid model

clearly outperforms historical daily and high-frequency models being the

only approach that is able to detect a significantly positive cross-sectional

relation between beta and subsequent excess returns.

The intertemporal CAPM (ICAPM) by Merton (1973) and the

Arbitrage Pricing Theory (APT) by Ross (1976) provide important

extensions of the classical CAPM. These models predict that equilibrium

rates of return can also be influenced by further factors, especially in

the intertemporal CAPM setting variables ought to be priced in financial

markets that predict changes in the future investment opportunity set. For

example, Fama & French (1993) motivate the introduction of a risk factor

for size and book-to-market with the ICAPM, implying that changes in

these factors are related to changes in expected future market returns or

volatility. In another very important study, Ang, Hodrick, Xing, & Zhang

(2006b) show that there exists a substantial risk premium on aggregate

volatility in financial markets.

Connected to the classical distinction between risk and uncertainty

pioneered by Knight (1921), defining risk as measurable uncertainty that

can be captured using numerical probabilities while anything that cannot

be described by numerical probabilities ought to be defined as uncertainty,

Chapter 4 studies whether time-varying economic uncertainty is priced in

financial markets. Following a large stream in the literature that measures

risk using first-order beliefs, i.e. return volatility, and what Knight called
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“unmeasurable uncertainty” with second-order beliefs, i.e. the variation in

the probability distribution of the payoffs (e.g., Segal, 1987; Nau, 2003;

Seo, 2009; Baltussen, Van Bekkum, & Van Der Grient, 2015), we measure

aggregate uncertainty using the VVIX index.1

Building on a simple stylized theoretical model, based on the standard

ICAPM with recursive preferences and consumption uncertainty, we show

that under these fairly common assumptions aggregate uncertainty is

potentially priced in the cross-section of asset returns. For the empirical

methodology we follow Ang et al. (2006a) and Cremers, Halling, &

Weinbaum (2015) studying the contemporaneous relationship of asset’s

factor loadings on innovations in aggregate uncertainty and realized returns.

The main contribution of Chapter 4 is that, to the best of our knowledge,

we are the first to examine whether aggregate uncertainty, captured by

the natural non-parametric VVIX measure, is priced in financial markets,

particularly in the cross-section of stock returns.

Our results suggest that time-varying aggregate economic uncertainty

commands an economically substantial and statistically significant negative

risk premium. Using single and double portfolio sorts with a battery of

control variables, we find that stocks with high sensitivities to innovations

in aggregate uncertainty underperform those with low sensitivities by about

11.7 % per year. This finding cannot be explained by any of the single control

variables. Using cross-sectional Fama & MacBeth (1973) regressions, we

find that a two-standard deviation increase in aggregate uncertainty factor

loadings is associated with a significant decrease in average annual returns

that ranges from 6.3 % to 18.7 %, depending on the cross-sectional model

specification.

This thesis proceeds as follows. Chapter 2 provides a comprehensive
1The VVIX index represents the 30-day forward-looking option-implied volatility of

the volatility index (VIX), i.e. the volatility-of-volatility.
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CHAPTER 1. INTRODUCTION

empirical study on the estimation of beta. Chapter 3 studies the value

of high-frequency data for beta estimation. Chapter 4 examines whether

aggregate uncertainty is priced in the cross-section of equity returns. Finally,

Chapter 5 summarizes the main findings of this thesis and suggests several

lines for future research.

For reasons of improved readability, especially of the separate parts

constituting the complete thesis, each chapter is self-contained. This means,

variables and acronyms are redefined in each chapter. Whenever possible,

notations are consistent throughout the thesis in order to facilitate the

reading.
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Chapter 2

Estimating Beta∗

2.1 Introduction

Ever since the development of the capital asset pricing model (CAPM) by

Sharpe (1964), Lintner (1965), and Mossin (1966) and the arbitrage pricing

theory (APT) by Ross (1976), the concept of beta (i.e., the covariation

of an asset with the relevant risk factors) plays a crucial role in financial

economics. For many applications such as asset pricing, portfolio choice or

risk management, market beta is the single most important parameter of

interest. However, beta factors are not directly observable and hence they

need to be estimated.

The main contribution of this chapter is that we are, to the best

of our knowledge, the first to provide a comprehensive and thorough

empirical study on the performance of a wide range of market beta

estimation techniques, including several historical, time-series model, and

option-implied estimation approaches. Additionally, we propose a new

estimator for beta that corrects option-implied volatilities for the volatility
∗This chapter is based on the Article “Estimating Beta” authored by Fabian Hollstein

and Marcel Prokopczuk, Journal of Financial and Quantitative Analysis, forthcoming.
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risk premium.

Our main results can be summarized as follows. The approach proposed

by Buss & Vilkov (BV) (2012), combining option-implied with historical

return information, turns out to outperform all other methods in estimating

realized beta (based on daily return data). We determine outperformance

in two dimensions (i) informational efficiency and (ii) estimation accuracy.

The BV approach is both shown to be informationally more efficient in

encompassing regressions compared to all other approaches and it yields the

lowest out-of-sample estimation errors, employing the root mean squared

error (RMSE) criterion. The simple historical benchmark model as well

as an approach based on the Kalman filter and a random walk (RW) are

shown to work comparatively well, while GARCH-based models of dynamic

conditional beta and fully option-implied approaches produce serious errors.

We further show that the BV approach works so well mainly because, in

combining historical and option-implied information, it ensures that the

estimates are adjusted to be unbiased in their value-weighted cross-sectional

averages.

The most basic approach to estimate beta is to simply estimate

covariances and variances from a time-series of historical return data.

However, this approach faces the problem that beta coefficients exhibit

significant time variation (e.g., Blume, 1975; Ferson & Harvey, 1991, 1993).

To adress this concern, several approaches (e.g., GARCH-based) have been

developed to capture this variability. More recently, it has been suggested

that one could incorporate information from the options market, where all

information available to investors should be contained in today’s prices,

thereby overcoming the inertia inherently generated by historical estimates,

even when applying a rolling-window approach.

Regarding volatility estimation, which is closely related to beta estima-

tion, numerous studies have been performed. Examining the performance

9
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of option-implied versus the historical volatility estimation approach the

results of early studies differ (e.g., Canina & Figlewski, 1993; Christensen

& Prabhala, 1998; Fleming, 1998). More recently, there seems to be a

consensus that implied volatility (IV) estimates are to be favored.

Jiang & Tian (2005) show that model-free IV outperforms at-the-

money (ATM) IV and historical volatility. Frijns, Tallau, & Tourani-Rad

(2010) and Taylor, Yadav, & Zhang (2010)1 show a superior performance

of IV compared to different time-series models. Prokopczuk & Wese Simen

(2014a) show that adjusting for the volatility risk premium improves the

performance of IV. Thus, there exists ample evidence on the performance

of volatility estimators.2

Surprisingly, however, the estimation of beta has received considerably

less attention in the literature. Faff et al. (2000) find a superior performance

of time-series models (especially of those using the Kalman filter) over

historical estimators for beta in an in-sample analysis, while not presenting

any out-of-sample evidence.

The relative underrepresentation of research studying beta estimation

in the extant literature might, to some extent, be caused by the fact that

beta requires information on correlations, which is not as easily obtained

from options as is information on volatilities. Only very recently have several

authors developed option-implied approaches to estimate beta.

Chang et al. (2012) develop such an option-implied approach and show

that it often outperforms the historical beta in a cross-sectional analysis.

Baule, Korn, & Saßning (2015) compare various different fully implied beta

estimators. They obtain the best performance using betas based on implied

variances. However, Chang et al. (2012) do not compare their approach
1For the one month horizon estimator.
2Other papers on volatility estimation include Jorion (1995), Guo (1996), Poon &

Granger (2003), Szakmary, Ors, Kyoung Kim, & Davidson III (2003), Martens & Zein
(2004), Agnolucci (2009) or Charoenwong, Jenwittayaroje, & Low (2009).

10



2.2. DATA AND METHODOLOGY

for implied betas directly to other existing approaches and Baule et al.

(2015) only compare the performance of fully implied estimators among

one another and to the simple historical estimator relying on a small Dow

Jones Industrial Average (DJIA) 30 sample.

Buss & Vilkov (2012) propose another implied approach imposing a

correction on historical correlations and compare it to historical, hybrid,

and the Chang et al. (2012) implied beta estimator. However, they do

not examine the performance of time-series models and other fully implied

beta estimation techniques. Furthermore, they limit their attention to a

comparatively long horizon of one year. Very recently, Engle (2014) and

Bali, Engle, & Tang (2015) show that dynamic conditional beta does well

in a cross-sectional analysis.

The remainder of this chapter is organized as follows. Section 2.2

describes our data set and methodology, providing an overview of the

approaches considered. In Section 2.3 we present our empirical results.

Section 2.4 checks the robustness of our results and Section 2.5 finally

presents our conclusions. In the appendix to this chapter, which can be

found in Section A, we present the results of additional analyses.

2.2 Data and Methodology

2.2.1 Data

We base our study on the S&P 500 market index and its constituents

for the sample period between January 01, 1996 and December 31, 2012.3

Additionally, we perform a robustness analysis on a sample based on the
3The starting date of our study is thereby determined by the start of the

OptionMetrics database in January 1996.
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DJIA.4 We obtain daily and monthly price data as well as data on dividend

payments and shares outstanding from the Center for Research in Security

Prices (CRSP) for the period from January 01, 1994 until December 31,

2012.5,6 To be able to compute historical and time-series model estimates

right from the start of our study period and to perform a portfolio sorting

using non-overlapping data, this data starts two years before the main

sample period.

Options data are from the IvyDB OptionMetrics Volatility Surface

that directly provides implied volatilities for standardized delta levels and

maturities.7 We use options with approximately six months to maturity

since we want to obtain six-month estimates for beta. As a robustness check

we also repeat the analysis with options of approximately one, three, and

twelve months to maturity. We select out-of-the-money (OTM) options,

namely puts with deltas larger than -0.5 and calls with deltas smaller than

0.5. Thereby we obtain options data for 438 stocks in 1996 growing to 493

stocks in 2010 out of the 500 contained in the S&P 500 at each respective

date. On average, options data on 472 stocks is available. Data on the

risk-free rate is collected from the IvyDB zero curve file.

2.2.2 Option-Implied Moments

Several of the beta estimation approaches are based on option-implied

moments. Therefore we follow Bakshi, Kapadia, & Madan (BKM) (2003),
4The sample period for the DJIA dataset begins on January 01, 1998 as options on the

DJIA are traded no earlier than October 1997 at the Chicago Board of Options Exchange
(CBOE). We do not start before the beginning of the new year to avoid spurious findings
caused by potentially small initial trading volumes in the new market.

5The data for monthly estimators, that can be found in the appendix to this chapter,
starts on January 01, 1986.

6Data on the DJIA is not available through CRSP, therefore we obtain price data
from the Bloomberg database.

7IvyDB uses a kernel smoothing algorithm and only reports standardized options “if
there exists enough option price data on that date to accurately interpolate the required
values”. For more details refer to the IvyDB technical document.
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who make use of the property that any payoff can be spanned using a

continuum of OTM puts and calls (Bakshi & Madan, 2000) and Jiang &

Tian (2005) to compute model-free option-implied volatility, skewness and

kurtosis.8 For that, we first compute ex-dividend stock prices. Secondly, for

any given stock and trading day, we interpolate implied volatilities using a

cubic spline across moneyness levels (K/S, strike-to-spot), equally spaced

between 0.3 percent and 300 percent, to obtain a grid of 1,000 implied

volatilities (Chang et al., 2012). Implied volatilities outside the range of

available strike prices are extrapolated using the value for the smallest, resp.

largest, available moneyness level (as in Jiang & Tian, 2005 and Chang et al.,

2012). The volatilities are used to compute Black–Scholes option prices for

calls, C(.), if K/S>1 and puts, P (.), if K/S<1. These are used to obtain

the prices of the volatility (QUAD), the CUBIC, and the quartic (QUART)
8Note that Jiang & Tian (2005) compute implied volatility only. The procedure for

skewness and kurtosis, though, is equivalent.
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contract (Jiang & Tian, 2005):

QUAD =

∫ ∞
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The integrals are approximated, following Dennis & Mayhew (2002),

using a trapezoidal rule. The option-implied moments can be computed as:

µQ = er
f
t (T−t) − 1− er

f
t (T−t)

2
QUAD− er

f
t (T−t)

6
CUBIC (2.4)

−e
rft (T−t)

24
QUART,

(σQ)2 = er
f
t (T−t)QUAD− (µQ)2, (2.5)

skewQ =
er
f
t (T−t)CUBIC− 3µQer

f
t (T−t)QUAD + 2(µQ)3

[er
f
t (T−t)QUAD− (µQ)2]3/2

, (2.6)

kurtQ = er
f
t (T−t)QUART−4µQer

f
t (T−t)CUBIC+6(µQ)2er

f
t (T−t)QUAD−3(µQ)4

[er
f
t (T−t)QUAD−(µQ)2]2

,(2.7)

where rft denotes the risk-free rate and T − t the time to maturity of the

contract. (σQ)2, skewQ, and kurtQ are the option-implied variance, skewness,

and kurtosis, respectively. In the following, we use the respective values

obtained to compute beta estimates that require option-implied moments.
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2.2.3 Beta Estimation

Realized Beta Following Andersen et al. (2006) we use daily log-

returns to compute realized beta (RB):9

βR
j,t =

∑N
τ=1 rj,τrM,τ∑N
τ=1 r

2
M,τ

, (2.8)

where rj,τ and rM,τ refer to the (excess) return of asset j and the market

(excess) return at time τ , respectively. N is the number of observations

during the time period under investigation.

Andersen et al. (2006) show that under only weak regularity conditions

is this a consistent measure for the true underlying integrated beta. While

Hansen & Lunde (2006) strongly advise using realized volatility when

evaluating volatility models, we follow that spirit using ex post realized

beta to evaluate all the respective ex ante estimates obtained using the

different beta estimation methods.

Historical Beta Closely related to the above approach, we compute

historical estimates (HIST) in the usual way, following Fama & MacBeth

(FM) (1973) and many others, regressing an asset’s (excess) return on the

market (excess) return:

βj,t =
cov(rj, rM)

var(rM)
. (2.9)

We utilize beta estimated using one year of daily returns as, e.g., in Baker

et al. (2010).10

Dynamic Conditional Beta We estimate both dynamic condi-

tional beta with GARCH models for the (co-) volatilities and AR-type
9We refer to past realized beta as a possible ex ante beta estimation technique as

HIST6.
10We also test the standard FM beta computed using five years of monthly return data.

The results on that (and other montly beta estimators) can be found in the appendix to
this chapter.
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models that impose certain factor dynamics directly on the beta series.

We refer to both types as time-series models.

We consider dynamic conditional beta (Engle, 2014 and Bali et al.,

2015) using a Dynamic Conditional Correlation GARCH model (DCC) as

proposed by Engle (2002) and Cappiello, Engle, & Sheppard (2006), incor-

porating both the empirically well-established leverage effect by allowing for

an asymmetric effect of positive and negative return innovations, as well as

an asymmetric reaction of correlations on innovations in variances.11 First,

univariate volatility models are estimated as GJR GARCH (as proposed by

Glosten, Jagannathan, & Runkle, 1993):

rt = µ+ at (2.10)

at ∼ N(0, σ2
t ) (2.11)

h2t = ω + (α + γIt−1[rt−1 < µ])a2t−1 + βh2t−1, (2.12)

where rt is the daily (monthly) asset return, µ is the mean return, and at

represents the return innovations. It−1[rt−1 < µ] is an indicator function

taking the value of one if rt−1 is lower than µ and zero otherwise.

The return innovation series is assumed to be conditionally (on the

time t− 1 information set, =t−1) normally distributed with mean zero and

conditional covariance matrix Ht, which can be decomposed as shown below

in equation (2.13). Once the univariate models are estimated, standardized

residuals εi,t = ai,t/
√
hi,t (with hi,t being the respective variance element in

Ht) can be used to estimate the correlation parameters (see Cappiello et al.
11See Black (1976), Christie (1982), and many others.
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(2006)):

Ht = DtPtDt, (2.13)

Pt = Q∗−1t QtQ
∗−1
t , (2.14)

Qt = (P̄ − A′P̄A−B′P̄B −G′N̄G) + A′εt−1ε
′
t−1A (2.15)

+G′nt−1n
′
t−1G+B′Qt−1B.

Dt is a diagonal matrix containing the standard deviations of the individual

assets. A, B, and G are k × k parameter matrices, nt = I[εt < 0]◦εt is a k ×

1 indicator function where ◦ denotes the Hadamard product (element-wise

multiplication). Q∗t is a diagonal matrix containing the square roots of the

respective diagonal elements of Qt, ensuring that Pt is a valid correlation

matrix.

We use the model in the bivariate case (i.e., k = 2) for each estimation

including an asset-return series and that of the market index at a rolling

estimation window of one year for daily returns, thereby computing an

estimate for the respective beta in each month of our sample period.12

We choose a rolling window instead of an expanding window to allow

for structural changes to be incorporated more quickly. The estimation

of all time-series models is conducted by maximum likelihood. Using the

parameter estimates, we iteratively estimate the covariances and betas for

all days until the end of the forecast horizon. The time t estimate is then

obtained as the average beta over the forecast horizon.

For robustness, we also test the Constant Conditional Correlation

Model (CCC) of Bollerslev (1990), neither imposing a dynamic structure

on correlations (only on the volatilities) nor an asymmetric effect of return

innovations, thereby leaving more degrees of freedom for the estimation

process.
12For monthly estimators, we use the monthly returns of the past 60 months instead

of the past one year of daily returns. The results on monthly estimators can be found in
the appendix to this chapter.
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Kalman Filter Models We also include approaches directly

imposing a factor structure on beta and using the Kalman filter (see, e.g.,

Pagan, 1980 and Black, Fraser, & Power, 1992). As underlying dynamics,

we consider a random walk (equation (2.16), RW), a random walk with

drift (equation (2.17), RWD), an AR(1) (equation (2.18), AR), and an

ARMA(1,1) (equation (2.19), ARMA) model. In all four cases, the standard

CAPM security market line is taken as the measurement equation and the

transition equation describes the chosen model for the dynamic evolution

of beta in state-space form:

βRW
j,t = βj,t−1 + εj,t, (2.16)

βRWD
j,t = φ0 + βj,t−1 + εj,t, (2.17)

β
AR(1)
j,t = φ1βj,t−1 + εj,t, (2.18)

β
ARMA(1,1)
j,t = φ1βj,t−1 + εj,t + θ1εj,t−1. (2.19)

We estimate the models analogous to those for dynamic conditional beta,

and also use one year of daily returns.

A drawback when using the time-series models (both GARCH and

Kalman) is that stability of the model structure has to be assumed.

Ghysels (1998) shows that if the factor structure hypothesized is inherently

misspecified, the errors made may even increase, compared to a static factor

model, which might be the major concern regarding this class of estimators.

Nevertheless, a superior performance of the time-series model estimators is

certainly possible, if the true dynamics is approximated sufficiently well.

Option-Implied and Hybrid Betas Siegel (1995) points out that

an implicit beta could be obtained directly through the use of exchange

options, an option to exchange the shares of a firm for the shares of a

market index. Unfortunately, however, these exchange options are currently

not traded. Thus, one has to rely on some identifying assumption in

order to obtain an implicit beta and thereby make use of the inherently
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forward-looking information that can be obtained from option prices. It

should be taken into consideration, though, that the implied approaches

yield estimates (at least partially) under the risk-neutral probability

measure which is likely to differ from the actual physical probability measure

if these sources of risk are priced in the market.13

We consider several possibilities for option-implied betas, making use

of the model-free implied moments discussed above. These include the

hybrid approach of French et al. (FGK) (1983), that directly combines

historical correlations and option-implied volatilities, and that of Buss &

Vilkov (2012), who use the property that the implied variance of the market

index has to be the same as the implied variance of the value-weighted

portfolio of all market constituents (first relation) and combine that with

a technical condition for implied correlations to translate from physical

(ρPij,t) to risk-neutral correlations (ρQij,t), namely ρQij,t = ρPij,t − αt(1− ρPij,t).14

Combining the two relations and solving for αt, implied correlations can be

computed. Thus, a beta estimate under the risk-neutral probability measure,

Q, is obtained by:

βQ
j,t =

σQ
j,t

∑N
i=1(ωi,tσ

Q
i,tρ

Q
ji,t)

(σQ
M,t)

2
, (2.20)

where σQ
j,t and σ

Q
M,t denote the implied volatilities obtained in equation (2.5)

for individual stocks and the market index, respectively.15 ωi,t denotes the

weight of the N individual assets in the market index at a certain point in

time. One main disadvantage of this approach is the fact that it requires
13See, e.g., Carr & Wu (2009) and Driessen, Maenhout, & Vilkov (2009) for literature

on the the price of volatility and correlation risk, respectively.
14Making sure both that the matrix is a correlation matrix (all correlations not

exceeding one and the matrix being positive definite) and that it matches with empirical
observations, namely that implied correlations are higher than empirical ones and that
the correlation risk premium is higher for lowly correlated stocks. For more details, refer
to Buss & Vilkov (2012).

15Hereafter, to avoid the notation getting to messy, we suppress the superscript Q for
risk-neutral moments.
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information on all the constituents of the index considered. The estimates

are likely to be biased if implied volatilities are not available for all stocks

of which the market index consists.

Additionally, we investigate the fully implied approach by Chang et al.

(CCJV) (2012) that solely relies on options data. Their estimator is given

by

βCCJV
j,t =

(
skewj,t

skewM,t

)1/3(
σj,t
σM,t

)
, (2.21)

using the identifying assumption that the skewness of the idiosyncratic

shock equals zero with skewj,t and σj,t denoting the implied skewness and

volatility of individual stocks and with j = M those of the market index,

respectively.16 As pointed out by Chang et al. (2012), the first part of

equation (2.21) can be regarded as a correlation proxy.

Further fully implied estimators for beta also rely on certain assump-

tions on the return moments. A first approach makes use of the restriction

made by Skintzi & Refenes (SR) (2005), who impose the assumption that

the return correlation is identical for all stocks in the cross-section. This

yields the estimator

βSR
j,t =

ωj,tσj,t +
∑

i 6=j ωi,tρtσj,tσi,t

σ2
M,t

. (2.22)

Kempf, Korn, & Saßning (2015) propose two further possibilities that

are related to the above approaches. The first approach assumes that the

proportion of idiosyncratic variance is equal for all stocks in the cross-section

(KKS1), resulting in

βKKS1
j,t =

σj,t∑N
i=1 ωi,tσi,t

. (2.23)

16Note that equation (2.21) only yields an estimate if the individual stock’s skewness
is negative given the usually observed negative skewness of the market. This is an obvious
shortcoming, especially for practical purposes.
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Secondly, they propose a beta estimator imposing the restriction that the

proportion of idiosyncratic kurtosis is identical for all stocks in the cross-

section (KKS2). This yields:

βKKS2
j,t =

kurt1/4US,j,t∑N
i=1 ωi,tkurt

1/4
US,i,t

, (2.24)

where kurtUS,j,t is the unscaled kurtosis as obtained in Section II.B, equation

(2.7).17

Risk Premium Adjustment The option-implied approaches

estimate beta under the risk-neutral probability measure. However, in

most situations we are interested in beta under the physical probability

measure. We therefore propose a new hybrid estimator for beta that employs

forward-looking information from option prices and, at the same time,

corrects for volatility risk premia. To obtain this estimator, we follow

the procedure in Prokopczuk & Wese Simen (2014a) to implement an

adjustment for the volatility risk premium. For that, we compute average

variance risk premia for a period of just under two years:18

ARVRP2
j,t =

1

504− τ

t−τ∑
i=t−504

σ2
j,i,i+τ

RV2
j,i,i+τ

. (2.25)

ARV RP 2
j,t denotes the average relative variance risk premium from t− 504

to t − τ , σ2
j,i,i+τ is the model-free implied variance of asset j at time i

for the period until i + τ as obtained in equation (2.5), RV 2
j,i,i+τ is the

realized variance over the time period ranging from i to i + τ , and τ

denotes the estimation horizon. To compute the risk premium adjustment

we require at least one hundred non-missing observations of both σ2
j,i,i+τ

and the corresponding RV 2
j,i,i+τ . We then obtain the risk premium adjusted

17Note that in equation (2.7) the kurtosis is scaled. To obtain the unscaled fourth
moment one has to multiply equation (2.7) by the squared implied variance. The implied
variance is provided in equation (2.5).

18For the risk premium adjustment for evaluation horizons of three months and less,
we compute average variance risk premia for a period of just under one year.
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implied volatility RMFIVj,t,T for each point in time t as:

RMFIVj,t =
σj,t

ARVRPj,t
. (2.26)

The risk premium adjusted beta (RPadj), is then computed by using

the historical correlation ρj,t and risk premium adjusted implied volatilities

for individual assets and the market index:

βRPadj
j,t = ρj,t ∗

RMFIVj,t

RMFIVM,t

. (2.27)

2.3 Empirical Results

2.3.1 Summary Statistics and Correlation Analysis

Panel A of Table 2.1 reports summary statistics on the different beta

estimation techniques. It can be seen that the value-weighted average beta

over all stocks in the S&P 500 (Meanvw), a quantity which theoretically

has to be equal to one, is substantially different from that value in some

cases, suggesting that approaches which experience such deviations likely

yield biased estimates. While the value-weighted average beta of RW is

very close to one, those of RWD, AR, ARMA, and the GARCH DCC and

CCC are far off with values of 1.06, 0.98, 1.04, 0.93, and 1.04, respectively.

Looking at approaches employing information from the options market, we

find that the value-weighted averages of especially the hybrid FGK and the

fully implied CCJV, as well as SR and RPadj also are clearly different from

one, with values of 0.84, 1.15, 1.04, and 1.02, respectively. By construction,

the quantity is exactly equal to one for BV, KKS1, and KKS2, while it

is relatively close for HIST and HIST6. The time-series model betas RW,

RWD, ARMA, and DCC are shown to vary strongly, with minimum values

smaller than −8 and maximum values greater than 16, potentially inducing

large errors for these extreme values. Furthermore, by construction, the fully
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2.3. EMPIRICAL RESULTS

Table 2.1: Summary Statistics and Sample Correlations

This table provides summary statistics on the different beta estimation techniques

in Panel A. All methods utilize (if necessary) daily return data and estimate beta for

six months. The sample period spans from January 1996 (beginning with estimates for

February 1996) until December 2012. Nobs denotes the number of monthly estimates,

Mean and Meanvw are the equal- and value-weighted averages of the estimates over

the entire sample period, respectively. Std. dev., Median, Min, and Max present further

summary statistics on the overall standard deviation, median, minimum, and maximum

estimate, respectively. Panel B presents the sample correlation coefficients among the

different beta estimation techniques on the basis of individual estimates.

Panel A. Summary Statistics

Nobs Mean Meanvw Std. dev. Median Min Max

RW 98,179 1.0036 1.0026 0.5720 0.9313 -29.076 19.833
RWD 98,179 1.0713 1.0618 0.7650 0.9807 -36.212 24.796
AR 98,179 0.9662 0.9753 0.7770 0.8349 -2.0388 20.986
ARMA 98,179 1.0547 1.0369 1.0053 0.8724 -8.6868 48.673
DCC 98,176 0.9511 0.9304 0.8068 0.8648 -13.997 16.734
CCC 98,179 1.0731 1.0430 0.7009 0.9348 -0.6028 17.905
HIST 98,243 1.0022 1.0033 0.4680 0.9360 -0.6675 4.6485
HIST6 98,630 1.0021 1.0015 0.5036 0.9344 -0.9818 7.7906
FGK 94,889 0.8473 0.8436 0.3927 0.7998 -0.8230 5.7060
RPadj 90,190 1.0321 1.0206 0.5208 0.9498 -0.8554 5.5901
BV 95,043 1.0427 1.0000 0.3756 0.9870 -0.4646 6.9280
CCJV 89,530 1.2211 1.1505 0.4706 1.1579 0.0220 6.2420
SR 95,755 1.1077 1.0391 0.3693 1.0297 0.1215 6.2270
KKS1 95,755 1.1074 1.0000 0.3733 1.0260 0.1237 6.2000
KKS2 95,755 1.1038 1.0000 0.3635 1.0258 0.1341 6.3583

Panel B. Sample Correlation Coefficients

RW RW
D

A
R

A
R
M
A

D
C
C

C
C
C

H
IS
T

H
IS
T

6

FG
K

R
P
ad

j

B
V

C
C
JV

SR K
K
S1

K
K
S2

* 0.91 0.76 0.68 0.54 0.64 0.82 0.85 0.79 0.80 0.77 0.52 0.61 0.61 0.61 RW
* 0.79 0.70 0.51 0.60 0.76 0.86 0.74 0.75 0.72 0.49 0.58 0.57 0.57 RWD

* 0.67 0.44 0.52 0.68 0.76 0.66 0.68 0.64 0.43 0.49 0.48 0.48 AR
* 0.41 0.48 0.59 0.68 0.57 0.60 0.57 0.40 0.48 0.47 0.47 ARMA

* 0.71 0.59 0.57 0.56 0.55 0.53 0.39 0.45 0.44 0.44 DCC
* 0.71 0.68 0.66 0.66 0.64 0.48 0.56 0.56 0.56 CCC

* 0.93 0.90 0.92 0.88 0.58 0.69 0.68 0.68 HIST
* 0.87 0.88 0.84 0.57 0.67 0.66 0.66 HIST6

* 0.95 0.89 0.67 0.71 0.70 0.70 FGK
* 0.90 0.64 0.74 0.73 0.73 RPadj

* 0.70 0.88 0.88 0.87 BV
* 0.77 0.77 0.77 CCJV

* 1.00 0.99 SR
* 1.00 KKS1

* KKS2
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implied CCJV, SR, KKS1, and KKS2 cannot adopt negative values, casting

some doubt on their performance.

Panel B of Table 2.1 presents the sample correlation coefficients among

betas obtained with different estimation techniques on the basis of their

estimates for individual assets. We note very high correlations greater

than 0.9 among the fully implied estimates (namely KKS1, KKS2, and

SR), FGK and the risk premium adjusted estimates (RPadj), HIST and

HIST6, as well as among HIST and RPadj. When comparing the remaining

estimators, in many cases the correlations are only moderate or quite low.

The smallest correlation among the estimates of the remaining approaches

is observed between DCC and CCJV, amounting to only 0.39. This shows

that the estimated values vary substantially across the different approaches,

providing evidence for the need to study their performance further.

2.3.2 Information Content

A common way to evaluate the performance of ex ante estimates are Mincer

& Zarnowitz (1969) regressions. We therefore regress the six-month (ex post)

realized beta on the different (ex ante) beta estimates in the following way:

βR
t,T = a+ bζt,T + εt. (2.28)

βRt,T denotes the realized beta in the period ranging from t to T and

ζt,T stands for one beta estimate in univariate regressions or a vector of

several beta estimates in encompassing regressions. With the approach in

equation (2.28) we can test for the informational efficiency and unbiasedness

of the respective estimates.19 As Hansen & Lunde (2006) show, using

logarithmically transformed variables for the regressions, while making the
19While the value-weighted average betas we examine in Section III.A indicate that

some approaches are biased on average, with the portfolio approach we employ here, we
can test for unbiasedness on a rather individual level.
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2.3. EMPIRICAL RESULTS

regression procedure less sensitive to outliers (Pagan & Schwert, 1990), often

leads to inconsistent rankings of the estimation models if an unbiased but

imperfect proxy for the true evaluation variable is used. They further show

that level Mincer–Zarnowitz regressions are robust to (mean zero) errors in

the proxy. Consequently, we stick to levels instead of logs to obtain results

that are more robust.

Unbiasedness is tested in univariate regressions by performing a

Wald test, imposing the joint hypothesis of a being equal to zero

and b being equal to one. For an unbiased model we should not be

able to reject the underlying hypothesis. Informational efficiency can be

tested in encompassing regressions by constraining the slope parameters

of alternative estimators to zero, thereby determining if the respective

approaches contain information beyond that of a baseline model. If, in

encompassing regressions, one estimator is to be more informative it must

have a significant slope estimate and the explanatory power must rise

compared to the restricted model. Additionally, we test the joint hypothesis

of one slope parameter being equal to one and the second slope parameter

being equal to zero. The underlying hypothesis of this test states that one

approach fully subsumes all information contained in the other approach it

is tested with.

To conduct our analysis we follow the approach suggested by Fama &

MacBeth (1973). At the end of each month, we form five value-weighted

portfolios out of the individual stocks in our sample. We sort the stocks

according to their estimate for historical beta (of equation (2.9)) obtained in

an estimation period (sorting period) strictly before the estimation period

of the historical beta serving as one beta estimate in an ascending order

and compute estimates as well as realizations for beta for each of these

25



CHAPTER 2. ESTIMATING BETA

portfolios.20 This approach ensures that we obtain a certain range in the

estimated values and delivers results that are comparable. At the same

time, this avoids a bias in our analyses related to a potential errors-in-the-

variables problem. To keep the analysis comparable, we can only include

those estimates in our sample where all approaches yield an estimate.21

To keep the presentation manageable, we select at least one approach

from each model family to perform our main analysis. We select Historical

(HIST), the Kalman filter random walk (RW), DCC GARCH (DCC), the

hybrid FGK and BV, the fully implied CCJV and KKS1, and the risk

premium adjusted (RPadj) approach, and consider the remaining methods

in the robustness analysis in Section IV. In all analyses, we evaluate the

approaches using realized beta during the subsequent six months. Table 2.2

presents the regression results for daily estimation approaches.22

Panel A of Table 2.2 presents the results of the univariate regressions for

each estimation approach and each of the five portfolios. It can be seen that

in most cases the intercept estimate is significantly (at 5 %)23 different from

zero and the estimate for the slope coefficient is significantly different from

one.24 Only the approaches HIST, RW, KKS1, and BV yield non-significant
20For example, using daily data and estimating beta at the end of January 1996,

evaluating it in the period February – July 1996, the estimation of historical beta uses
return data from February 1995 until the end of January 1996. The portfolio sorting
is carried out according to the estimate for historical beta using return data between
February 1994 and the end of January 1995. If historical return data is not available,
the quantity is set to one. The procedure for monthly analysis is performed accordingly,
starting the first sorting period in February 1986.

21The major cause of reduction results from the impossibility of computing the CCJV
beta in some cases, as pointed out in Section II.C and the general unavailability of
sufficient options and return data (see Section III.A).

22A further analysis on the approaches using monthly return data can be found in the
appendix to this chapter.

23Further mentions of (non-) significance will always refer to the five percent
significance level.

24Note that for univariate regressions the t-statistics of the slope coefficients test the
hypothesis of those being equal to one and not, as is usually done, equal to zero. In the
multivariate regressions, the t-statistics refer to the usual hypothesis that the parameters
are equal to zero.
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CHAPTER 2. ESTIMATING BETA

values for some portfolios. The joint hypothesis of a being equal to zero and

b being equal to one is rejected in any case, suggesting that the approaches

yield biased estimates. HIST and RW obtain the lowest values for the Wald

test, but still the null hypothesis of unbiasedness is strongly rejected. For

each portfolio except the last, BV yields the highest adjusted R2 followed by

RW and HIST, indicating that those three approaches exhibit the highest

explanatory power. RPadj has the highest explanatory power for portfolio

five. Noteworthy are also the particularly poor performances of DCC and

CCJV, yielding very high values for the Wald statistic and obtaining values

for the adjusted R2 that are below 0.35 for all portfolios.

Looking at the results of the encompassing regressions in Panel B of

Table 2.2 we find that DCC obtains a rather poor performance with HIST

and BV being informationally more efficient for all portfolios, meaning

that in bivariate regressions the coefficients for the latter are significantly

different from zero whereas those of DCC are not. The BV approach yields

a significant slope parameter in every case and is informationally more

efficient compared to most other beta estimation approaches. Whenever

the slope parameters of other methods competing with BV are significantly

different from zero, they are economically not very large. Only FGK and

RPadj do yield statistically significant and economically large estimates for

one portfolio in a joint encompassing regression together with BV. The

explanatory power increases in every case when adding the BV beta to all

other models. The hypothesis that one approach subsumes all information

contained in another approach (indicated by the tests Wald1 and Wald2) is

rejected in most cases. There are some cases, though, where the hypothesis

that BV subsumes all information contained in, e.g., HIST, DCC, or KKS1

cannot be rejected. Combining HIST and the fully implied KKS1, the

latter is shown to contain some additional information, making a significant

contribution in three out of five cases and, at least slightly, increasing
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2.3. EMPIRICAL RESULTS

the explanatory power. Comparing FGK and its risk premium adjusted

counterpart, RPadj, the results are not clear. FGK is favored for two

portfolios and RPadj is favored for one, so it remains unclear if the risk

premium adjustment yields an improvement.25 In addition, looking at the

univariate regressions, further analysis shows that the intercept estimates

for FGK and RPadj do not differ significantly. This also conflicts with the

possible view that an uniform bias may consistently be removed.

In contrast, comparing our risk premium adjusted beta estimator with

the BV approach, the latter performs clearly better. While our approach

corrects implied volatilities for the well-established variance risk premium

and therefore obtains an estimate under the physical probability measure,

the BV approach corrects for the risk premium at the level of correlations

in the opposite direction and obtains an estimate under the risk-neutral

probability measure. Given that realizations under the real world probability

measure are of interest, this is somewhat surprising. A potential explanation

is offered by Chang et al. (2012), who show that for certain parameter

constellations the bias caused by the use of risk-neutral moments can be

quite small. In other words, in the case of beta, there are biased moments

in both the numerator and the denominator and the two effects may cancel

out.

Overall, our results on estimators based on daily return data suggest

that Buss & Vilkov (2012) approach yields informationally most efficient

though not entirely unbiased estimates. Furthermore, the random walk

approach, the simple historical estimator, and KKS1 are shown to possess

some informational efficiency, when comparing them to the remaining

approaches.
25However, one has to keep in mind that the regression may not be too informative;

given the very high correlations between the two, serious problems related to
multicollinearity arise.
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2.3.3 Estimation Accuracy

Turning the focus on out-of-sample estimation accuracy, we employ the

loss function most commonly applied in the literature, namely root mean

squared errors (RMSE) to evaluate the performance of the different beta

estimation techniques:

RMSE =

√√√√ 1

n

n∑
t=1

(βR
t,T − ζt,T )2. (2.29)

Here, n is the number of estimation windows, βRt,T again denotes the

realized beta over a period from t until T , and ζt,T is the respective beta

estimate. Patton (2011) shows that only the mean squared errors (MSE)

criterion, as opposed to other commonly used loss functions like mean

average errors (MAE), mean average percentage errors (MAPE), and mean

squared percentage errors (MSPE), is robust to the presence of (mean zero)

noise in the evaluation proxy, so we choose this loss function.26

Table 2.3 summarizes the estimation errors using daily return data.

We observe that BV yields the smallest average RMSE over the five

portfolios (as indicated by italic font), followed by RW and HIST. The fully

implied CCJV and the GARCH DCC achieve the worst and second-worst

performance, respectively. Adjusting for the volatility risk premium clearly

reduces the average estimation error (comparing RPadj to FGK). Overall,

both FGK and RPadj, as well as KKS1, can be found in the mid-range

regarding the estimation accuracy.

To further examine the results, we analyze whether the differences we

observe are statistically significant. The remainder of Table 2.3 presents

the average differences in root mean squared errors in the upper triangular
26We present the results on other loss functions, including MAE, MAPE, and MSPE

in the appendix to this chapter.
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Table 2.3: Estimation Errors: Six-Month Horizon – Daily Data

This table reports the out-of-sample estimation errors of competing estimators, using

daily return data, for realized beta over the horizon of six months for each portfolio.

We build five quintile portfolios into which the stocks are allocated in an ascending

order according to their historical beta in the sorting period (taking place directly before

the estimation period for historical beta without overlap and with equal length). We

determine portfolio betas and returns as value-weighted averages. The first row reports

the average root mean squared errors (RMSE) of the estimation models over the five

portfolios. The lowest errors among all approaches are indicated by italic font. The

remainder of the table reports the differences in estimation errors. The upper triangular

matrix reports the differences in root mean squared estimation errors, averaged over

the five portfolios. Similarly, the lower triangular matrix reports the average median

differences of estimation errors. We compute the difference between the errors of the

model [name in row] and those of the model [name in column]. The absolute numbers

in brackets indicate the share of portfolios for which the difference is significant (e.g., 0.4

indicates that the differences for two out of five portfolios are statistically significant).

If the differences are significant for all five portfolios, the figure is printed in bold font.

Significance is tested by the modified Diebold–Mariano and the Wilcoxon signed rank

tests for the upper and lower triangular matrices, respectively. The sign indicates the

direction of the significant differences.

HIST RW DCC FGK CCJV KKS1 BV RPadj

avg. 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718

HIST 0.0079 -0.1295 -0.0822 -0.1402 -0.0323 0.0217 -0.0337
(0.0) (-1.0) (-0.8) (-0.8) (-0.4) (0.2) (-0.6)

RW 0.0002 -0.1374 -0.0901 -0.1482 -0.0403 0.0138 -0.0416
(-0.4) (-1.0) (-1.0) (-0.8) (-0.2) (0.2) (-0.6)

DCC 0.0639 0.0637 0.0473 -0.0108 0.0972 0.1512 0.0958
(1.0) (1.0) (0.0) (0.0) (0.6) (1.0) (0.8)

FGK 0.1001 0.0999 0.0362 -0.0581 0.0499 0.1039 0.0485
(1.0) (1.0) (0.2) (-0.6) (0.6) (1.0) (0.2)

CCJV 0.1143 0.1141 0.0504 0.0142 0.1079 0.1620 0.1066
(1.0) (1.0) (0.6) (0.4) (0.8) (1.0) (1.0)

KKS1 0.0113 0.0110 -0.0526 -0.0888 -0.1031 0.0541 -0.0013
(0.4) (0.6) (-0.8) (-0.8) (-1.0) (0.8) (-0.2)

BV -0.0111 -0.0113 -0.0750 -0.1112 -0.1254 -0.0224 -0.0554
(-0.6) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0) (-0.6)

RPadj 0.0256 0.0254 -0.0383 -0.0745 -0.0888 0.0143 0.0367
(0.8) (0.8) (-1.0) (-1.0) (-1.0) (0.2) (1.0)
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matrix and the respective median differences in the lower triangular matrix.

We compute the difference between the errors of the model [name in

row] and those of the model [name in column]. The absolute numbers

in parentheses indicate the share of portfolios for which the difference is

statistically significant (e.g., 0.4 indicates that the differences for two out

of five portfolios are significant). If the differences are significant for all

five portfolios, the figure is printed in bold font. Significance is tested by

the modified Diebold–Mariano (Harvey, Leybourne, & Newbold, 1997) and

the Wilcoxon signed rank tests for the upper and lower triangular matrix,

respectively. The sign indicates the direction of the significant differences.

We find that BV always obtains lower average root mean and median

squared errors than the other methods. These differences are statistically

significant for all portfolios compared to DCC, FGK, and CCJV, and at least

three portfolios compared to KKS1 and RPadj, whereas when comparing to

HIST and RW, the RMSE of BV is significantly lower for one portfolio and

the root median SE is significantly lower for three portfolios. HIST and RW

yield significantly lower estimation errors than all other methods, except BV

and KKS1, for at least three out of the five portfolios and than KKS1 for

at least one portfolio. Overall, the evidence indicates that the BV approach

obtains the best out-of-sample accuracy, followed by RW and HIST.

2.4 Robustness

2.4.1 More Portfolios

We test whether the results obtained so far are robust to building more

portfolios. Thus, we build 10, 25, and 50 portfolios and in the limit we also

consider the case of individual stocks. Table 2.4 reports the results, which are

quite similar to our previous findings. We observe that the average errors in
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general increase with the number of portfolios. Independently of the number

of portfolios, BV always obtains the lowest average RMSE, yielding the

lowest error for a minimum of 60 percent when building portfolios. In the

case of estimates for individual stocks, BV also obtains the lowest average

RMSE, though not much can be stated as each approach has its share where

it yields the lowest errors, indicating that all approaches work well for some

stocks. Overall, the BV, HIST, and RW approaches also perform best when

increasing the number of portfolios.

2.4.2 Different Horizons

To further examine the robustness of our results we perform the evaluation

using different time horizons, namely one, three, and twelve months.

We estimate the values for option-implied methods using options with

approximately one (three, twelve) months to maturity and adjust the

horizon for time-series models to the respective time frame, evaluating all

the methods using realized beta over the subsequent one, three, and twelve

months, respectively.

Panel A of Table 2.5 reports the estimation errors of our main methods

and their significance for the one-month evaluation period. We find that

using this evaluation horizon yields the same result with BV, HIST, and

RW being the approaches with the best out-of-sample estimation accuracy.

BV obtains the lowest average RMSE. Comparing the mean and median

differences of the estimation errors, only in relation to KKS1, HIST and

RW do not yield a significantly lower error at least for eighty percent of the

portfolios, while BV always does. For some portfolios, BV yields significantly

lower median errors compared to HIST and RW. The results for three and

twelve months in Panels B and C are qualitatively equal. BV always obtains

the lowest average RMSE, with significantly lower errors in many cases
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Table 2.4: Estimation Errors: More Portfolios

This table reports the root mean squared (RMSE) errors of the competing estimators,

using daily return data, for realized beta over the horizon of six months, for different

counts of portfolios. Each month, we form N portfolios with N amounting to 5, 10, 25,

50, and in the limit we also consider the case of solely individual assets (in this case

we compute the values of the loss functions for each asset in every month of our sample

period individually and average over all errors). The stocks are allocated into N portfolios

in an ascending order according to their historical beta in the sorting period (taking place

directly before the estimation period for historical beta without overlap and with equal

length). The numbers in parentheses denote the count (as proportions) of portfolio series

for which a certain approach yields the lowest error among those presented in the table.

For each loss function, the lowest average errors among all approaches are indicated by

italic font.

HIST RW DCC FGK CCJV KKS1 BV RPadj

5 Portfolios
avg. RMSE 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718

(0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.60) (0.20)

10 Portfolios
avg. RMSE 0.1518 0.1474 0.2868 0.2273 0.2901 0.1854 0.1304 0.1837

(0.00) (0.20) (0.00) (0.00) (0.00) (0.00) (0.80) (0.00)

25 Portfolios
avg. RMSE 0.1735 0.1787 0.3260 0.2397 0.3099 0.2075 0.1540 0.1998

(0.00) (0.12) (0.00) (0.00) (0.00) (0.00) (0.84) (0.04)

50 Portfolios
avg. RMSE 0.1975 0.2131 0.3683 0.2558 0.3323 0.2340 0.1808 0.2198

(0.10) (0.02) (0.00) (0.00) (0.00) (0.00) (0.80) (0.08)

individual assets
avg. RMSE 0.5374 0.5866 0.8309 0.5592 0.6616 0.5826 0.5363 0.5379

(0.09) (0.12) (0.13) (0.17) (0.15) (0.13) (0.08) (0.11)
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Table 2.5: Estimation Errors: Different Horizons – Daily Data

This table reports the out-of-sample estimation errors of competing estimators, using

daily return data, for realized beta over horizons of one (Panel A), three (Panel B),

and twelve (Panel C) months for each portfolio. We build five quintile portfolios into

which the stocks are allocated in an ascending order according to their historical beta

in the sorting period (taking place directly before the estimation period for historical

beta without overlap and with equal length). We determine portfolio betas and returns

as value-weighted averages. In each Panel, the first row reports the average root mean

squared errors (RMSE) of the estimation models over the five portfolios. The lowest errors

among all approaches are indicated by italic font. The remainder of the panels report

the difference in estimation errors. The upper triangular matrices report the differences

in root mean squared estimation errors, averaged over the five portfolios. Similarly, the

lower triangular matrices report the average root median differences of estimation errors.

We compute the difference between the errors of the model [name in row] and those of

the model [name in column]. The absolute numbers in parentheses indicate the share of

portfolios for which the difference is significant (e.g., 0.4 indicates that the differences for

two out of five portfolios are statistically significant). If the differences are significant for

all five portfolios, the figure is printed in bold font. Significance is tested by the modified

Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign indicates the direction of the significant differences.

Panel A. One Month

HIST RW DCC FGK CCJV KKS1 BV RPadj

avg. 0.1637 0.1515 0.2231 0.2193 0.4285 0.2051 0.1483 0.1977

HIST 0.0122 -0.0594 -0.0556 -0.2648 -0.0414 0.0153 -0.0340
(0.0) (-0.8) (-0.8) (-0.8) (-0.2) (0.0) (-0.8)

RW -0.0022 -0.0717 -0.0678 -0.2770 -0.0536 0.0031 -0.0462
(-0.2) (-1.0) (-1.0) (-1.0) (-0.4) (0.0) (-0.8)

DCC 0.0375 0.0397 0.0038 -0.2053 0.0181 0.0748 0.0254
(1.0) (1.0) (0.0) (-0.8) (0.4) (1.0) (0.0)

FGK 0.0525 0.0547 0.0150 -0.2092 0.0142 0.0709 0.0216
(1.0) (1.0) (0.0) (-0.8) (0.4) (1.0) (0.0)

CCJV 0.1550 0.1572 0.1175 0.1025 0.2234 0.2801 0.2308
(1.0) (1.0) (1.0) (0.8) (0.8) (1.0) (0.8)

KKS1 0.0189 0.0211 -0.0186 -0.0336 -0.1361 0.0567 0.0074
(0.4) (0.6) (-0.4) (-0.4) (-1.0) (0.6) (0.0)

BV -0.0041 -0.0020 -0.0417 -0.0567 -0.1592 -0.0231 -0.0493
(-0.4) (-0.2) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8)

RPadj 0.0340 0.0362 -0.0035 -0.0185 -0.1210 0.0151 0.0382
(0.8) (0.8) (0.0) (-0.6) (-1.0) (0.4) (0.8)
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Table 2.5: Estimation Errors: Different Horizons – Daily Data (continued)

Panel B. Three Months

HIST RW DCC FGK CCJV KKS1 BV RPadj

avg. 0.1380 0.1281 0.2259 0.2057 0.3335 0.1771 0.1191 0.1791

HIST 0.0100 -0.0879 -0.0676 -0.1955 -0.0391 0.0189 -0.0411
(0.0) (-1.0) (-0.8) (-0.8) (-0.2) (0.0) (-0.8)

RW -0.0031 -0.0979 -0.0776 -0.2054 -0.0491 0.0089 -0.0511
(-0.4) (-1.0) (-1.0) (-1.0) (-0.2) (0.0) (-0.8)

DCC 0.0494 0.0525 0.0203 -0.1075 0.0488 0.1068 0.0468
(1.0) (1.0) (0.0) (-0.8) (0.4) (1.0) (0.4)

FGK 0.0784 0.0815 0.0289 -0.1278 0.0286 0.0866 0.0265
(1.0) (1.0) (0.2) (-0.8) (0.4) (1.0) (0.0)

CCJV 0.1313 0.1344 0.0818 0.0529 0.1564 0.2144 0.1544
(1.0) (1.0) (0.8) (0.6) (0.8) (1.0) (0.8)

KKS1 0.0151 0.0182 -0.0343 -0.0633 -0.1162 0.0580 -0.0020
(0.6) (0.6) (-0.6) (-0.6) (-0.8) (0.8) (-0.2)

BV -0.0087 -0.0056 -0.0581 -0.0871 -0.1400 -0.0238 -0.0600
(-0.6) (-0.2) (-1.0) (-1.0) (-1.0) (-1.0) (-0.6)

RPadj 0.0305 0.0336 -0.0189 -0.0479 -0.1008 0.0154 0.0392
(0.8) (1.0) (-0.6) (-0.8) (-1.0) (0.4) (1.0)

Panel C. Twelve Months

HIST RW DCC FGK CCJV KKS1 BV RPadj

avg. 0.1488 0.1423 0.3374 0.2307 0.2674 0.1677 0.1227 0.1895

HIST 0.0065 -0.1886 -0.0820 -0.1187 -0.0190 0.0261 -0.0407
(0.0) (-1.0) (-0.8) (-0.8) (0.0) (0.2) (-0.4)

RW -0.0019 -0.1951 -0.0884 -0.1251 -0.0254 0.0196 -0.0471
(0.0) (-1.0) (-1.0) (-1.0) (-0.2) (0.2) (-0.6)

DCC 0.0714 0.0734 0.1067 0.0700 0.1697 0.2147 0.1479
(1.0) (1.0) (0.0) (0.2) (0.8) (1.0) (1.0)

FGK 0.1003 0.1023 0.0289 -0.0367 0.0630 0.1080 0.0413
(1.0) (1.0) (-0.2) (-0.2) (0.8) (1.0) (0.0)

CCJV 0.1188 0.1208 0.0474 0.0185 0.0997 0.1447 0.0780
(1.0) (1.0) (0.2) (0.0) (0.8) (1.0) (0.8)

KKS1 0.0054 0.0073 -0.0660 -0.0950 -0.1135 0.0450 -0.0217
(0.4) (0.4) (-0.8) (-0.8) (-1.0) (0.8) (-0.2)

BV -0.0163 -0.0144 -0.0877 -0.1167 -0.1352 -0.0217 -0.0667
(-0.6) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0) (-0.4)

RPadj 0.0214 0.0234 -0.0500 -0.0789 -0.0974 0.0161 0.0378
(0.8) (1.0) (-1.0) (-1.0) (-1.0) (0.4) (0.6)

38



2.4. ROBUSTNESS

compared to the other approaches.

Summing up, when changing the evaluation period to one, three, or

twelve months, BV, RW and, to a slightly lesser extent, HIST are still the

best approaches.

2.4.3 Further Models for Implied Beta

We examine further possible beta estimators utilizing information from

option prices. Looking at Panel A of Table 2.6, we find KKS2, based on

implied kurtosis, to obtain quite similar results as KKS1, based on implied

volatilities. Both yield a little higher estimation errors than SR, which is

also based on implied volatilities, while all three yield substantially lower

estimation errors compared to CCJV. However, HIST, RW, and BV still

yield even lower errors. To summarize, even the simple historical benchmark

is to be preferred over all the fully implied methods taken into consideration.

The assumptions that have to be made on (co-) moments for the fully

implied estimators therefore seem to be invalid. BV, RW, and HIST,

utilizing correlations from historical return data, consistently outperform

these models.

2.4.4 Option Liquidity

As option-implied approaches strongly rely on precise estimates for the

option-implied moments, the rather poor performance could be caused by

poor quality of the options data, resulting in imprecise moment estimates.

To check for that, we repeat our analysis for all stocks contained in the

DJIA 30.27 The DJIA includes 30 of the largest U.S. companies that both

commonly have more options traded (in terms of strike prices) and exhibit
27Since some methods require information on all members of an index, it is not possible

to just select a subset of stocks from the S&P 500. Thus, we focus on an index that has
significantly fewer members than the S&P 500.
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Table 2.6: Estimation Errors: Six-Month Horizon – Daily Data

(Further Implied and DJIA)

This table reports the out-of-sample estimation errors of competing estimators, using

daily return data, for realized beta over the horizon of six months for each portfolio.

We build five (Panel A), respectively two (Panel B), portfolios into which the stocks are

allocated in an ascending order according to their historical beta in the sorting period

(taking place directly before the estimation period for historical beta without overlap and

with equal length). We determine portfolio betas and returns as value-weighted averages.

In each panel, the first row reports the average root mean squared errors (RMSE)

of the estimation models over the five (two) portfolios. The lowest errors among all

approaches are indicated by italic font. The remainder of the panels report the difference

in estimation errors. The upper triangular matrices report the differences in root mean

squared estimation errors, averaged over the five (two) portfolios. Similarly, the lower

triangular matrices report the average root median differences of estimation errors. We

compute the difference between the errors of the model [name in row] and those of the

model [name in column]. The absolute numbers in parentheses indicate the share of

portfolios for which the difference is significant (e.g., 0.4 indicates that the differences

for two out of five portfolios are statistically significant). If the differences are significant

for all portfolios, the figure is printed in bold font. Significance is tested by the modified

Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign indicates the direction of the significant differences.

Panel A. Further Implied Estimators

HIST RW CCJV SR KKS1 KKS2 FGK RPadj BV

avg. 0.1381 0.1301 0.2783 0.1674 0.1704 0.1720 0.2203 0.1718 0.1164

HIST 0.0079 -0.1402 -0.0293 -0.0323 -0.0339 -0.0822 -0.0337 0.0217
(0.0) (-0.8) (-0.2) (-0.4) (-0.4) (-0.8) (-0.6) (0.2)

RW 0.0002 -0.1482 -0.0372 -0.0403 -0.0419 -0.0901 -0.0416 0.0138
(-0.4) (-0.8) (-0.2) (-0.2) (-0.2) (-1.0) (-0.6) (0.2)

CCJV 0.1143 0.1141 0.1110 0.1079 0.1063 0.0581 0.1066 0.1620
(1.0) (1.0) (0.8) (0.8) (0.8) (0.6) (1.0) (1.0)

SR 0.0153 0.0150 -0.0991 -0.0030 -0.0046 -0.0529 -0.0044 0.0510
(0.6) (0.4) (-1.0) (0.4) (0.4) (-0.6) (0.0) (0.8)

KKS1 0.0113 0.0110 -0.1031 -0.0040 -0.0016 -0.0499 -0.0013 0.0541
(0.4) (0.6) (-1.0) (-0.2) (-0.4) (-0.6) (-0.2) (0.8)

KKS2 0.0135 0.0133 -0.1008 -0.0018 0.0022 -0.0482 0.0003 0.0557
(0.4) (0.6) (-1.0) (-0.2) (0.4) (-0.6) (-0.2) (0.8)

FGK 0.1001 0.0999 -0.0142 0.0849 0.0888 0.0866 0.0485 0.1039
(1.0) (1.0) (-0.4) (0.6) (0.8) (0.8) (0.2) (1.0)

RPadj 0.0256 0.0254 -0.0888 0.0103 0.0143 0.0121 -0.0745 0.0554
(0.8) (0.8) (-1.0) (0.2) (0.2) (0.2) (-1.0) (0.6)

BV -0.0111 -0.0113 -0.1254 -0.0263 -0.0224 -0.0246 -0.1112 -0.0367
(-0.6) (-0.6) (-1.0) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0)
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Table 2.6: Estimation Errors: Six-Month Horizon – Daily Data (Further
Implied and DJIA) (continued)

Panel B. DJIA

HIST RW DCC CCJV SR KKS1 KKS2 FGK RPadj BV

avg. 0.1569 0.1558 0.2356 0.2627 0.2434 0.1798 0.1730 0.2067 0.1965 0.1560

HIST 0.0011 -0.0787 -0.1058 -0.0865 -0.0229 -0.0161 -0.0498 -0.0396 0.0009
(0.0) (-1.0) (-1.0) (-0.5) (-0.5) (-0.5) (-1.0) (-0.5) (0.0)

RW -0.0005 -0.0798 -0.1069 -0.0876 -0.0240 -0.0173 -0.0509 -0.0407 -0.0002
(0.0) (-1.0) (-0.5) (-0.5) (-0.5) (-0.5) (-1.0) (-0.5) (0.0)

DCC 0.0439 0.0444 -0.0271 -0.0078 0.0558 0.0626 0.0289 0.0391 0.0796
(1.0) (1.0) (-0.5) (0.0) (0.5) (0.5) (0.0) (0.0) (0.5)

CCJV 0.0821 0.0826 0.0382 0.0193 0.0829 0.0897 0.0560 0.0662 0.1067
(1.0) (1.0) (0.5) (0.0) (1.0) (1.0) (0.5) (0.5) (1.0)

SR 0.0784 0.0789 0.0344 -0.0037 0.0636 0.0704 0.0367 0.0469 0.0874
(0.5) (0.5) (0.0) (-0.5) (0.5) (0.5) (0.0) (0.5) (0.5)

KKS1 0.0207 0.0212 -0.0232 -0.0614 -0.0577 0.0068 -0.0269 -0.0167 0.0238
(0.5) (0.5) (-0.5) (-1.0) (-0.5) (1.0) (-0.5) (0.0) (0.5)

KKS2 0.0105 0.0110 -0.0334 -0.0716 -0.0679 -0.0102 -0.0337 -0.0235 0.0170
(0.5) (0.5) (-0.5) (-1.0) (-0.5) (-1.0) (-0.5) (-0.5) (0.5)

FGK 0.0650 0.0655 0.0211 -0.0171 -0.0134 0.0443 0.0545 0.0102 0.0507
(1.0) (1.0) (0.0) (0.0) (0.0) (0.5) (0.5) (0.0) (0.5)

RPadj 0.0318 0.0323 -0.0122 -0.0503 -0.0466 0.0111 0.0213 -0.0332 0.0405
(1.0) (1.0) (-0.5) (-0.5) (0.0) (0.5) (0.5) (-0.5) (1.0)

BV 0.0093 0.0098 -0.0347 -0.0728 -0.0691 -0.0114 -0.0012 -0.0557 -0.0225
(0.5) (0.5) (-1.0) (-1.0) (-0.5) (-1.0) (-0.5) (-1.0) (-1.0)

a much higher liquidity compared to smaller stocks in the S&P 500.28

While Chakravarty, Gulen, & Mayhew (2004) find that option market price

discovery is related to trading volume, considering only very liquid options

may yield more precise estimates for the implied approaches.

The results are presented in Panel B of Table 2.6. We find that the fully

implied approaches CCJV, SR, KKS1, and KKS2 still obtain larger errors in

comparison to HIST, RW, and BV.29 The results further show that HIST,

RW, and BV obtain significantly smaller mean and median errors for at

least one of the two portfolios. Thus, even when restricting the sample to the
28Note that although the total turnover on S&P 500 index options is substantially

higher than that on DJIA index options, on average the daily total contract volume
on DJIA index options of about 23,000 should be sufficiently high to obtain accurate
moment estimates, even at the six-month horizon.

29The results for the one-month horizon, where both the options on the index an these
on the individual assets should be more frequently traded, are qualitatively equal.
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DJIA, the fully implied models are inferior to a simple historical estimate.

The adjustment for the volatility risk premium (RPadj), that also may be

better fitted for better-quality options data, yields lower errors compared to

FGK, whereas the differences are not statistically significant in most cases.

Finally, under the presumably better options data, the average RMSE of

HIST, RW, and BV are approximately equal, with RW yielding the lowest

average RMSE. The RMSE of HIST, RW, and BV are significantly lower

than those of the remaining approaches for at least one of the two portfolios.

2.4.5 Further Time-Series Models

We investigate further models imposing a time-varying structure on beta,

namely a random walk with drift, a first-order autoregressive (AR(1))

model, an autoregressive moving average ARMA(1,1) model, and the CCC

Model of Bollerslev (1990), as well as realized beta over the past six months

(HIST6).30 Lewellen & Nagel (2006) argue that the results of short-term

regressions provide conditional parameters without the use of conditioning

variables as long as the parameters are relatively stable within that short

period. Consequently, HIST6 might deliver better conditional estimates than

the simple historical estimator using one year of historical return data.

In Table 2.7 we find RWD, AR, ARMA, and especially HIST6 to

perform quite well, while CCC is clearly outperformed.31 Furthermore, it

can be seen that the less complex structure as in CCC yields a slight

improvement, when comparing the results to those of DCC. HIST6 obtains a

smaller average RMSE compared to the historical estimate over one year, so

short-term conditional estimates may be better fitted. The average RMSE
30Note that adding a drift in models (2.18) and (2.19) for AR and ARMA does

especially affect ARMA adversely for long horizons. Consequently, we only report the
results of the models without drift.

31Note that the values change slightly compared to those in Table 2.3, as we are able
to retain more estimates since CCJV is not included in the analysis.
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Table 2.7: Estimation Errors: Six-Month Horizon – Daily Data

(Further Time-Series Models)

This table reports the out-of-sample estimation errors of competing estimators, using

daily return data, for realized beta over the horizon of six months for each portfolio.

We build five quintile portfolios into which the stocks are allocated in an ascending

order according to their historical beta in the sorting period (taking place directly before

the estimation period for historical beta without overlap and with equal length). We

determine portfolio betas and returns as value-weighted averages. The first row reports

the average root mean squared errors (RMSE) of the estimation models over the five

portfolios. The lowest errors among all approaches are indicated by italic font. The

remainder of the table reports the differences in estimation errors. The upper triangular

matrix reports the differences in root mean squared estimation errors, averaged over

the five portfolios. Similarly, the lower triangular matrix reports the average median

differences of estimation errors. We compute the difference between the errors of the

model [name in row] and those of the model [name in column]. The absolute numbers in

parentheses indicate the share of portfolios for which the difference is significant (e.g., 0.4

indicates that the differences for two out of five portfolios are statistically significant).

If the differences are significant for all five portfolios, the figure is printed in bold font.

Significance is tested by the modified Diebold–Mariano and the Wilcoxon signed rank

tests for the upper and lower triangular matrices, respectively. The sign indicates the

direction of the significant differences.

HIST HIST6 RW RWD AR ARMA DCC CCC BV

avg. 0.1355 0.1283 0.1269 0.1870 0.1865 0.1899 0.2638 0.2572 0.1152

HIST 0.0072 0.0086 -0.0515 -0.0510 -0.0543 -0.1283 -0.1217 0.0203
(0.0) (0.0) (-0.4) (-0.8) (-0.8) (-1.0) (-0.8) (0.2)

HIST6 -0.0041 0.0014 -0.0587 -0.0582 -0.0616 -0.1356 -0.1289 0.0131
(-0.2) (0.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8) (0.2)

RW -0.0022 0.0019 -0.0601 -0.0596 -0.0630 -0.1370 -0.1303 0.0117
(-0.2) (0.0) (-0.8) (-1.0) (-1.0) (-1.0) (-0.8) (0.2)

RWD 0.0394 0.0435 0.0416 0.0005 -0.0029 -0.0769 -0.0702 0.0718
(0.8) (1.0) (1.0) (0.0) (0.0) (-0.8) (0.0) (0.8)

AR 0.0345 0.0385 0.0366 -0.0049 -0.0034 -0.0774 -0.0707 0.0713
(1.0) (1.0) (1.0) (-0.2) (0.2) (-0.8) (0.0) (0.8)

ARMA 0.0369 0.0410 0.0391 -0.0025 0.0024 -0.0740 -0.0673 0.0746
(1.0) (1.0) (1.0) (-0.2) (-0.2) (-0.8) (-0.2) (0.8)

DCC 0.0638 0.0679 0.0660 0.0244 0.0293 0.0269 0.0067 0.1486
(1.0) (1.0) (1.0) (0.8) (0.8) (0.8) (0.0) (1.0)

CCC 0.0338 0.0379 0.0360 -0.0055 -0.0006 -0.0031 -0.0299 0.1420
(1.0) (1.0) (1.0) (0.0) (0.0) (0.2) (-0.8) (0.8)

BV -0.0137 -0.0096 -0.0115 -0.0531 -0.0482 -0.0506 -0.0775 -0.0475
(-0.8) (-0.6) (-0.6) (-0.8) (-1.0) (-0.8) (-1.0) (-0.8)
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of RWD, AR, and ARMA are only moderate, but clearly higher than those

of BV, which overall again yields the lowest average RMSE. Regarding

significance, we find that HIST, HIST6, RW, and BV yield significantly lower

errors than AR, ARMA, DCC and CCC for at least four portfolios. Only in

rare cases are there significant differences among the formerly mentioned,

but in these cases, they are mostly in favor of BV. Overall we find, beside

HIST and RW, HIST6 to be a valuable alternative to the BV approach.32

2.4.6 Bias Removal

As we discuss in Section III.A, some estimators are heavily biased with

their cross-sectional value-weighted average estimate for beta, a quantity

that theoretically has to be equal to one if a full market index is used, being

substantially different from that value. A possible improvement could be to

try and remove the bias implied by these deviations.33

A first simple method we try is to standardize the estimators in

a way that their cross-sectional value-weighted average exactly equals

one. For that, for each approach, we simply divide each estimate by the

cross-sectional value-weighted mean beta of that approach at that time. We

apply the technique on all estimators but those that fulfill the condition

already by construction (e.g., KKS1 and BV). The results are shown in

Panel A of Table 2.8. Indeed, the simple bias removal seems to be working,

in particular for the two hybrid estimators FGK and RPadj, reducing

their RMSE almost to the level of BV with a significant difference for

no portfolio, comparing BV to FGK.34 Consequently, the main benefit
32The results for the one-month horizon, where the conditional estimates of the

time-series approaches are likely much more precise, are qualitatively equal. Overall,
BV delivers lower RMSE compared to all time-series approaches.

33We thank an anonymous referee for suggesting this.
34As can be seen in the appendix to this chapter, further analysis shows that BV still

is informationally more efficient compared to the bias-removed FGK and RPadj.
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of the BV approach seems to be not the adjustment of correlations to

the risk-neutral probability measure but rather the ensurement that the

estimates combining option-implied and historical return information are

approximatively unbiased in their cross-sectional average. For CCJV and

DCC, the bias removal yields a substantial improvement, however these

estimators are still inferior, while the improvement is quite small for HIST

and RW.

We also employ more refined bias-removal techniques in the spirit

of Mincer & Zarnowitz (1969) using regression techniques as in equation

(2.28).35 In a first approach we form portfolios as in Section III.B,

obtain estimates for each approach and then perform the univariate

regression for each approach separately, pooling all 60 (12 months times

5 portfolios) unadjusted ex ante estimates for each approach i as well as the

corresponding ex post realized portfolio beta estimates during the twelve

months t− 17 up to t− 6 (as realized beta with a six-month window is only

available up to t− 6 at time t):

βR = ai,t + bi,tβ
UNADJ
i + εj. (2.30)

βUNADJ
i is the vector of pooled initial portfolio beta estimates of one

approach, while βR denotes the corresponding pooled realized beta vector.

Subsequently, after obtaining the regression coefficients âi,t and b̂i,t, we

manipulate the current estimates, inserting them into the equation

βADJ
i,j,t = âi,t + b̂i,tβ

UNADJ
i,j,t , (2.31)

where βADJ
i,j,t is the adjusted estimate of approach i and asset j at time t.

A second approach could be to try to remove the bias in the same

spirit combining it with the estimate for historical beta (HIST). For that,
35We consider further possibilities to try and remove bias in the appendix to this

chapter.
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we perform a bivariate regression of portfolio realized beta on each approach

and HIST over the twelve months t− 17 up to t− 6. The final adjustment

is then performed as follows:

βADJ
i,j,t = âi,t + b̂βi,tβ

UNADJ
i,j,t + b̂HISTi,t HISTj,t. (2.32)

HISTj,t is the estimate for historical beta at time t and b̂βi,t and b̂HISTi,t are the

regression coefficients on the considered approach and HIST, respectively.

The results on these approaches are presented in Panels B and C

of Table 2.8.36 The results on the adjustment of equation (2.31) indicate

an even slightly higher average RMSE for BV while all other approaches

also yield (in many cases significantly) higher RMSE than the initial BV.

The adjustment of equation (2.32), combining the estimates with HIST,

yields an improvement for DCC and the implied estimators FGK, CCJV,

and RPadj, indicating that not all information on historical returns is

incorporated in these estimators. For all remaining approaches, including

BV, the combination with HIST yields a higher RMSE compared to the

simpler bias removal using equation (2.31).

Consequently, a simple bias removal is shown to be valuable in

particular for hybrid estimators. Furthermore, our results suggest that a

regression-based bias-removal cannot further improve the performance of

BV, HIST, and RW.

2.5 Conclusion

This chapter examines the performance of a wide range of approaches

to estimating an asset’s market beta. Specifically, we investigate several

constant and time-varying models relying on historical return data and
36Note that the results for the uncorrected BVUC differ from those in previous tables

as the bias correction first needs 17 months of data before it starts, delaying the start of
the evaluation period.
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Table 2.8: Bias Removal

This table reports the out-of-sample estimation errors of competing bias-removed

estimators, using daily return data, for realized beta over the horizon of six months for

each portfolio. We build five quintile portfolios into which the stocks are allocated in

an ascending order according to their historical beta in the sorting period (taking place

directly before the estimation period for historical beta without overlap and with equal

length). We determine portfolio betas and returns as value-weighted averages. Panel A

presents the results on a simple bias removal, while Panels B and C present the results on

bias removals using regression techniques. In each panel, the first row reports the average

root mean squared errors (RMSE) of the estimation models over the five portfolios. The

lowest errors among all approaches are indicated by italic font. The remainder of the

tables report the difference in estimation errors. The upper triangular matrix reports

the differences in root mean squared estimation errors, averaged over the five portfolios.

Similarly, the lower triangular matrix reports the average median differences of estimation

errors. We compute the difference between the errors of the model [name in row] and

those of the model [name in column]. The absolute numbers in parentheses indicate

the share of portfolios for which the difference is significant (e.g., 0.4 indicates that the

differences for two out of five portfolios are statistically significant). If the differences are

significant for all five portfolios, the figure is printed in bold font. Significance is tested

by the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrices, respectively. The sign indicates the direction of the significant

differences. BVUC refers to the non-corrected BV estimates.

Panel A. Simple Bias Removal

HIST RW DCC FGK CCJV KKS1 BV RPadj

avg. 0.1304 0.1263 0.1820 0.1200 0.1633 0.1704 0.1164 0.1272

HIST 0.0041 -0.0516 0.0104 -0.0329 -0.0400 0.0141 0.0032
(-0.2) (-0.8) (0.4) (-0.4) (-0.4) (0.2) (0.0)

RW -0.0029 -0.0556 0.0063 -0.0370 -0.0441 0.0100 -0.0009
(0.0) (-1.0) (0.2) (-0.4) (-0.4) (0.2) (0.2)

DCC 0.0169 0.0199 0.0619 0.0187 0.0115 0.0656 0.0548
(1.0) (1.0) (1.0) (0.0) (0.0) (0.8) (0.8)

FGK -0.0135 -0.0106 -0.0305 -0.0433 -0.0504 0.0037 -0.0072
(-0.6) (-0.4) (-1.0) (-0.6) (-0.4) (0.0) (-0.4)

CCJV 0.0150 0.0180 -0.0019 0.0285 -0.0071 0.0470 0.0361
(0.6) (0.6) (-0.4) (1.0) (0.0) (0.8) (0.4)

KKS1 0.0092 0.0122 -0.0077 0.0227 -0.0058 0.0541 0.0432
(0.4) (0.4) (-0.4) (0.6) (-0.2) (0.8) (0.4)

BV -0.0132 -0.0102 -0.0301 0.0004 -0.0282 -0.0224 -0.0108
(-0.6) (-0.6) (-0.8) (0.0) (-1.0) (-1.0) (0.0)

RPadj -0.0093 -0.0064 -0.0263 0.0042 -0.0243 -0.0185 0.0038
(-0.2) (-0.4) (-1.0) (0.0) (-0.8) (-0.6) (0.6)
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Table 2.8: Bias Removal (continued)

Panel B. Regression Technique

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC

avg. 0.1941 0.1630 0.2595 0.1976 0.2461 0.1601 0.1286 0.2066 0.1203

HIST 0.0311 -0.0654 -0.0035 -0.0520 0.0340 0.0655 -0.0125 0.0738
(0.0) (-0.6) (-0.4) (-0.4) (0.0) (0.4) (-0.4) (0.4)

RW -0.0142 -0.0965 -0.0346 -0.0831 0.0029 0.0345 -0.0436 0.0427
(-0.6) (-1.0) (-0.8) (-0.4) (0.0) (0.2) (-0.6) (0.2)

DCC 0.0516 0.0657 0.0619 0.0134 0.0994 0.1310 0.0529 0.1392
(0.8) (1.0) (0.6) (0.0) (0.8) (1.0) (0.4) (1.0)

FGK 0.0207 0.0349 -0.0309 -0.0486 0.0374 0.0690 -0.0091 0.0773
(0.6) (0.8) (-0.6) (-0.2) (0.8) (0.8) (0.0) (0.8)

CCJV 0.0320 0.0462 -0.0195 0.0113 0.0860 0.1176 0.0395 0.1258
(0.4) (1.0) (-0.4) (0.4) (0.6) (0.6) (0.2) (0.6)

KKS1 -0.0148 -0.0006 -0.0663 -0.0354 -0.0468 0.0316 -0.0465 0.0398
(-0.6) (-0.2) (-1.0) (-0.6) (-1.0) (0.0) (-0.8) (0.4)

BV -0.0199 -0.0057 -0.0715 -0.0406 -0.0519 -0.0051 -0.0781 0.0082
(-1.0) (-0.4) (-1.0) (-0.8) (-1.0) (-0.2) (-0.8) (0.0)

RPadj 0.0201 0.0342 -0.0315 -0.0006 -0.0120 0.0348 0.0399 0.0863
(0.6) (0.8) (-0.6) (0.0) (-0.6) (0.8) (1.0) (0.8)

BVUC -0.0317 -0.0175 -0.0833 -0.0524 -0.0637 -0.0169 -0.0118 -0.0517
(-1.0) (-0.8) (-1.0) (-1.0) (-1.0) (-1.0) (-0.4) (-1.0)

Panel C: Regression Technique Combining with HIST

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC

avg. 0.1941 0.1879 0.1998 0.1898 0.1765 0.1716 0.1367 0.1894 0.1203

HIST 0.0062 -0.0057 0.0043 0.0176 0.0224 0.0574 0.0047 0.0738
(0.0) (0.0) (-0.2) (0.0) (0.0) (0.4) (0.0) (0.4)

RW -0.0061 -0.0119 -0.0019 0.0114 0.0162 0.0512 -0.0015 0.0676
(-0.2) (0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.6)

DCC 0.0044 0.0104 0.0099 0.0232 0.0281 0.0630 0.0104 0.0794
(0.2) (0.4) (0.0) (0.0) (0.4) (0.6) (0.0) (0.6)

FGK -0.0011 0.0050 -0.0054 0.0133 0.0182 0.0531 0.0004 0.0695
(0.0) (0.2) (-0.2) (0.0) (0.6) (0.4) (0.0) (0.6)

CCJV 0.0016 0.0077 -0.0027 0.0027 0.0049 0.0398 -0.0129 0.0562
(0.0) (0.0) (-0.4) (-0.2) (0.0) (0.4) (0.0) (0.8)

KKS1 -0.0116 -0.0055 -0.0160 -0.0105 -0.0133 0.0349 -0.0178 0.0513
(-0.8) (-0.4) (-0.8) (-0.8) (-0.2) (0.0) (-0.4) (0.2)

BV -0.0202 -0.0141 -0.0246 -0.0192 -0.0219 -0.0086 -0.0527 0.0164
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.2) (0.0)

RPadj -0.0019 0.0042 -0.0062 -0.0008 -0.0035 0.0098 0.0184 0.0691
(0.0) (0.4) (-0.2) (0.0) (-0.2) (0.8) (1.0) (0.6)

BVUC -0.0317 -0.0256 -0.0360 -0.0306 -0.0333 -0.0201 -0.0115 -0.0298
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8) (-0.2) (-1.0)
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additionally several methods including or solely relying on option-implied

information.

In summary, estimators using historical information only perform well

if they do not make too strong structural assumptions, like the simple

historical beta and the Kalman filter approach with a random walk

parametrization. In contrast, models that make strong assumptions on the

volatility and correlation processes (like the GARCH-based DCC) are shown

to produce very large errors.

Including information from option prices is shown to be valuable

to some extent. Fully implied methods, having the big advantage of

employing the forward-looking information from options markets, nonethe-

less adhere the major shortcoming that they cannot attain negative

values. Consequently, even the models that are on average unbiased by

construction (KKS1 and KKS2) produce substantial errors. Avoiding strong

and seemingly invalid identifying assumptions, the hybrid approaches,

combining historical return data with forward-looking information from

the options market, are shown to produce the lowest errors. In particular,

the hybrid approach of Buss & Vilkov (2012) consistently performs best

regarding informational efficiency as well es estimation accuracy. These

results are shown to be robust both to building more portfolios and different

estimation horizons. Furthermore, we find that the main benefit of BV,

compared to other hybrid approaches, is that it ensures that the estimates

are adjusted to be unbiased in their value-weighted cross-sectional averages.

Overall, although the BV approach appears the method of choice, one

major shortcoming of this method (and other hybrid approaches that try a

simple bias correction) has to be borne in mind. The methodology requires

information on a full market index. Consequently it cannot be employed for

assets that are not included in an index, nor if there is insufficient option-

implied information for all assets in the index. Therefore, whenever the BV
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approach is not applicable, our results indicate that one should rely either

on RW or a simple estimate based on historical returns, since both quite

consistently outperform all other approaches.
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A. APPENDIX

A Appendix

A.1 Information Content – Monthly Data

Monthly Estimators In this section, we repeat the analyses on the

information content of Section 2.3.2 using monthly return data. The results

are reported in Table A.1. Except for KKS1 and BV, the univariate

regressions in Panel A of the Table show all approaches to be biased for

all portfolios, having an intercept significantly different from zero, a slope

parameter significantly different from one, and consequently a strongly

significant Wald test. For BV, the Wald test yields significant values in

only three out of the five cases, while KKS1 is shown to be biased for four

of the five portfolios.37 Throughout all approaches, except KKS1, that does

not rely on return data at all, the adjusted R2 is substantially smaller than

that in the regressions using daily estimates, with most values being close

to zero. The highest adjusted R2 is obtained for the BV approach, being

the only one, except KKS1, that has substantial explanatory power over all

portfolios.

In the encompassing regressions in Panel B of Table A.1, the general

performance is poor and not much can be stated about methods being

informationally more efficient or subsuming one another, except that the

BV approach turns out to be informationally more efficient compared

to all other approaches. For some portfolios, BV even subsumes all

information incorporated in these approaches, while it is also shown to be

informationally more efficient than KKS1, which does not rely on return

data at all. Again, the adjusted R2 substantially increases when adding BV

as an additional explanatory variable in every case.
37Note that the overall results change as the stocks are sorted differently using monthly

historical beta obtained in the sorting period.
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CHAPTER 2. ESTIMATING BETA
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A. APPENDIX

Daily versus Monthly Estimators Table A.2 presents the results

of directly comparing estimators relying on daily versus monthly data. It

can be seen that daily estimators are mostly informationally more efficient

than their monthly counterparts for HIST, RW, and BV when evaluating

the estimates using realized beta computed from six months of daily returns.

Thus, especially when estimating beta for short horizons, relying on daily

data is favorable. Naturally, our study design inherently favors estimators

based on daily data by evaluating the estimations using realized beta, which

is itself based on daily data. Furthermore, the time period, in addition to

only the sampling frequency (daily versus monthly), differs between daily

and monthly estimates (one year versus five years). Consequently, part of the

difference in informational efficiency could also be induced by that. Thus,

caution has to be applied when aiming to generalize these findings.

In summary (including the results of the main part), estimators using

daily instead of monthly return data yield a better performance, and in

both cases the Buss & Vilkov (2012) approach is most favorable regarding

informational efficiency.

A.2 Estimation Accuracy – Additional Loss Functions

We examine three additional loss functions, commonly applied in the

literature, namely mean absolute errors (MAE), mean absolute percentage

errors (MAPE), and mean squared percentage errors (MSPE) to evaluate

the performance of the different beta estimation techniques:

MAE =
1

n

n∑
t=1

| βRt,T − ζt,T |, (A.1)

MAPE =
1

n

n∑
t=1

|
βRt,T − ζt,T

βRt,T
|, (A.2)

MSPE =
1

n

n∑
t=1

(
βRt,T − ζt,T

βRt,T

)2

. (A.3)
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A. APPENDIX

Here, n is the number of estimation windows, βRt,T again denotes the realized

beta over a period from t until T , and ζt,T is the respective beta estimate.38

Patton (2011) shows that only MSE, as opposed to the loss functions

employed here (MAE, MAPE, and MSPE), is robust to the presence of

noise in the evaluation proxy. Thus, further care has to be applied when

interpreting the results presented here.

Daily Data Table A.3 summarizes the estimation errors using daily

return data in more detail. Starting with MAE in Panel A, we observe that

BV yields the smallest estimation error (as indicated by italic font) for four

and RW yields the smallest estimation error for one portfolio(s). On average,

BV obtains the lowest error, followed by RW and HIST. Considering RMSE

in Panel B, the results are quite similar. Regarding MAPE and MSPE

in Panels C and D, the results rather favor RW, but for four and three

portfolios BV still yields the smallest MAPE and MSPE, respectively.

Performing best in the portfolio with lowest historical betas during the

sorting period, RW yields the smallest average MAPE and MSPE. For all

loss functions the fully implied CCJV and the GARCH DCC achieve the

worst and second-worst performance, respectively.

To further examine the results, we analyze whether the differences we

observe in Table A.3 are statistically significant. Table A.4 presents the

mean differences in absolute errors (AE), squared errors (SE), absolute

percentage errors (APE), and squared percentage errors (SPE) in the upper

triangular matrices and the respective median differences in the lower

triangular matrices.

Looking at Panel A in Table A.4 we find that BV always obtains lower

average mean and median absolute errors than the other methods. These
38Note that the percentage loss functions exhibit very high values when realized beta

gets close to zero which, unlike in many other situations such as volatility estimation, is
certainly possible in the case of beta. Thus, MAPE and MSPE must be interpreted with
care.
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Table A.3: Estimation Errors: Six-Month Horizon – Daily Data

This table reports the out-of-sample estimation errors of competing estimators, using

daily return data, for realized beta over the horizon of six months for each portfolio.

We build five quintile portfolios into which the stocks are allocated in an ascending

order according to their historical beta in the sorting period (taking place directly before

the estimation period for historical beta without overlap and with equal length). We

determine portfolio betas and returns as value-weighted averages. Panels A and B report

the mean absolute errors (MAE) and the root mean squared errors (RMSE) of the

estimation models for each portfolio, respectively. Panel C reports the mean absolute

percentage errors (MAPE) and panel D reports the mean squared percentage errors

(MSPE). avg. denotes the respective errors averaged over all five portfolios. For each

portfolio and the average, the lowest errors among all approaches are indicated by italic

font.

Panel A. Mean Absolute Errors (MAE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1114 0.1024 0.1732 0.1592 0.2952 0.1762 0.1104 0.1408
2 0.0873 0.0794 0.1687 0.1771 0.2289 0.1028 0.0693 0.1229
3 0.0679 0.0699 0.1792 0.1636 0.2040 0.0720 0.0512 0.1134
4 0.0621 0.0667 0.1752 0.1757 0.1781 0.0790 0.0549 0.1033
5 0.1780 0.1632 0.2684 0.2599 0.2167 0.1743 0.1407 0.1536

avg. 0.1013 0.0963 0.1929 0.1871 0.2246 0.1209 0.0853 0.1268

Panel B. Root Mean Squared Errors (RMSE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1517 0.1375 0.2283 0.2006 0.3498 0.2252 0.1423 0.1883
2 0.1177 0.1110 0.2293 0.2019 0.2929 0.1592 0.0933 0.1696
3 0.0971 0.0984 0.2511 0.1879 0.2609 0.1141 0.0724 0.1580
4 0.0788 0.0864 0.2636 0.2019 0.2188 0.0999 0.0735 0.1475
5 0.2452 0.2174 0.3656 0.3091 0.2693 0.2537 0.2003 0.1953

avg. 0.1381 0.1301 0.2676 0.2203 0.2783 0.1704 0.1164 0.1718
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Table A.3: Estimation Errors: Six-Month Horizon – Daily Data
(continued)

Panel C. Mean Average Percentage Errors (MAPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 1.0532 0.6647 1.1013 1.0683 2.5807 1.8380 0.9794 1.5415
2 0.1275 0.1171 0.2281 0.2281 0.3479 0.1839 0.1102 0.1925
3 0.0892 0.0886 0.2084 0.1850 0.2547 0.1020 0.0666 0.1478
4 0.0598 0.0640 0.1680 0.1632 0.1694 0.0715 0.0507 0.1006
5 0.1231 0.1141 0.1862 0.1801 0.1589 0.1118 0.0917 0.1104

avg. 0.2905 0.2097 0.3784 0.3649 0.7023 0.4614 0.2597 0.4186

Panel D: Mean Squared Percentage Errors (MSPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 63.482 16.589 49.609 60.094 391.58 187.67 45.473 140.73
2 0.0537 0.0473 0.1181 0.0812 0.3632 0.1838 0.0509 0.1549
3 0.0278 0.0239 0.0919 0.0492 0.1556 0.0489 0.0153 0.0754
4 0.0066 0.0078 0.0685 0.0357 0.0456 0.0084 0.0051 0.0250
5 0.0276 0.0221 0.0614 0.0433 0.0405 0.0212 0.0140 0.0200

avg. 12.719 3.3379 9.9898 12.061 78.436 37.587 9.1116 28.202

differences are statistically significant for all portfolios compared to DCC,

FGK, CCJV, KKS1, and RPadj, whereas when comparing to HIST and

RW, the MAE is significantly lower for two and one portfolio(s) and the

median AE is significantly lower for four and three portfolios, respectively.

HIST and RW outperform all other methods (except KKS1 and BV) for

at least four out of the five portfolios. Examining the other loss functions

SE, APE, and SPE the picture is quite similar, except that RW obtains

the smallest average (mean) errors in both percentage loss functions, but

even so the (net) significance is in favor of BV, which also has the smallest

average median errors over all loss functions including the percentage loss

functions. Nevertheless, the evidence indicates that overall the BV approach

obtains the best out-of-sample accuracy, followed by RW and HIST.

Monthly Data Looking at the estimators using monthly return
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Table A.4: Differences of Estimation Errors: Six-Month Horizon

– Daily Data

This table reports the differences in the out-of-sample estimation errors of competing

estimators, using daily return data, for realized beta over the horizon of six months.

In panel A–C, the upper triangular matrix reports the mean differences of absolute

(AE), as well as differences in mean absolute percentage (APE), and squared percentage

(SPE) estimation errors, respectively, averaged over the five portfolios. Similarly, the

lower triangular matrices report the average median differences of estimation errors. We

compute the difference between the errors of the model [name in row] and those of the

model [name in column]. The absolute numbers in parentheses indicate the share of

portfolios for which the difference is significant (e.g., 0.4 indicates that the differences for

two out of five portfolios are statistically significant). If the differences are significant for

all five portfolios, the figure is printed in bold font. Significance is tested by the modified

Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrices, respectively. The sign indicates the direction of the significant differences.

Panel A. Absolute Errors (AE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST 0.0050 -0.0916 -0.0858 -0.1232 -0.0195 0.0161 -0.0255
(0.0) (-1.0) (-1.0) (-0.8) (-0.2) (0.4) (-0.8)

RW 0.0002 -0.0966 -0.0908 -0.1283 -0.0246 0.0110 -0.0305
(-0.4) (-1.0) (-1.0) (-1.0) (-0.2) (0.2) (-0.8)

DCC 0.0639 0.0637 0.0058 -0.0316 0.0721 0.1076 0.0661
(1.0) (1.0) (0.0) (-0.4) (0.8) (1.0) (1.0)

FGK 0.1001 0.0999 0.0362 -0.0374 0.0662 0.1018 0.0603
(1.0) (1.0) (0.2) (-0.2) (0.8) (1.0) (0.8)

CCJV 0.1143 0.1141 0.0504 0.0142 0.1037 0.1393 0.0978
(1.0) (1.0) (0.6) (0.4) (0.8) (1.0) (1.0)

KKS1 0.0113 0.0110 -0.0526 -0.0888 -0.1031 0.0356 -0.0059
(0.4) (0.6) (-0.8) (-0.8) (-1.0) (1.0) (-0.2)

BV -0.0111 -0.0113 -0.0750 -0.1112 -0.1254 -0.0224 -0.0415
(-0.8) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0) (-0.6)

RPadj 0.0256 0.0254 -0.0383 -0.0745 -0.0888 0.0143 0.0367
(0.8) (0.8) (-1.0) (-1.0) (-1.0) (0.2) (1.0)
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Table A.4: Differences of Estimation Errors: Six-Month Horizon – Daily
Data (continued)

Panel B. Absolute Percentage Errors (APE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST 0.0808 -0.0879 -0.0744 -0.4118 -0.1709 0.0308 -0.1280
(0.0) (-0.8) (-0.8) (-0.6) (0.0) (0.4) (-0.6)

RW -0.0015 -0.1687 -0.1552 -0.4926 -0.2517 -0.0500 -0.2089
(-0.4) (-0.8) (-0.8) (-0.8) (0.0) (0.6) (-0.6)

DCC 0.0643 0.0658 0.0135 -0.3239 -0.0830 0.1187 -0.0402
(1.0) (1.0) (0.0) (-0.2) (0.6) (1.0) (0.4)

FGK 0.1016 0.1032 0.0373 -0.3374 -0.0965 0.1052 -0.0536
(1.0) (1.0) (0.2) (0.0) (0.6) (0.8) (0.4)

CCJV 0.1278 0.1294 0.0635 0.0262 0.2409 0.4426 0.2837
(1.0) (1.0) (0.8) (0.0) (0.8) (0.8) (0.8)

KKS1 0.0187 0.0202 -0.0456 -0.0830 -0.1092 0.2017 0.0429
(0.4) (0.6) (-0.8) (-0.6) (-1.0) (0.8) (-0.2)

BV -0.0083 -0.0068 -0.0726 -0.1099 -0.1361 -0.0270 -0.1588
(-0.8) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0) (-0.6)

RPadj 0.0308 0.0323 -0.0336 -0.0709 -0.0971 0.0121 0.0390
(0.8) (0.8) (-1.0) (-0.8) (-1.0) (0.2) (1.0)

Panel C. Squared Percentage Errors (SPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST 9.3816 2.7297 0.6589 -65.7168 -24.8677 3.6079 -15.4823
(0.0) (-0.8) (-0.6) (-0.6) (0.0) (0.0) (0.0)

RW -0.0003 -6.6519 -8.7227 -75.0984 -34.2492 -5.7737 -24.8639
(-0.4) (-0.8) (-0.8) (-0.6) (0.0) (0.2) (0.0)

DCC 0.0142 0.0145 -2.0708 -68.4465 -27.5973 0.8782 -18.2120
(1.0) (1.0) (0.2) (0.0) (0.4) (0.8) (0.4)

FGK 0.0255 0.0258 0.0113 -66.3757 -25.5265 2.9490 -16.1412
(1.0) (1.0) (0.4) (0.0) (0.4) (0.6) (0.2)

CCJV 0.0435 0.0438 0.0293 0.0180 40.8492 69.3247 50.2345
(1.0) (1.0) (0.6) (0.0) (0.8) (0.8) (0.6)

KKS1 0.0064 0.0067 -0.0079 -0.0192 -0.0371 28.4755 9.3853
(0.4) (0.4) (-0.8) (-0.6) (-1.0) (0.4) (0.0)

BV -0.0008 -0.0005 -0.0150 -0.0263 -0.0442 -0.0071 -19.0902
(-0.8) (-0.6) (-1.0) (-1.0) (-1.0) (-1.0) (0.0)

RPadj 0.0062 0.0065 -0.0081 -0.0194 -0.0373 -0.0002 0.0069
(0.8) (0.8) (-1.0) (-1.0) (-1.0) (0.2) (1.0)
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Table A.5: Estimation Errors: Six-Month Horizon – Monthly
Data

This table reports the out-of-sample estimation errors of competing estimators, using

monthly return data, for realized beta over the horizon of six months for each portfolio.

We build five quintile portfolios into which the stocks are allocated in an ascending

order according to their historical beta in the sorting period (taking place directly before

the estimation period for historical beta without overlap and with equal length). We

determine portfolio betas and returns as value-weighted averages. Panels A and B report

the mean absolute errors (MAE) and the root mean squared errors (RMSE) of the

estimation models for each portfolio, respectively. Panel C reports the mean absolute

percentage errors (MAPE) and panel D reports the mean squared percentage errors

(MSPE). avg. denotes the respective errors averaged over all five portfolios. For each

portfolio and the average, the lowest errors among all approaches are indicated by italic

font.

Panel A. Mean Absolute Errors (MAE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1504 0.1209 0.1818 0.2784 0.2308 0.1104 0.0911 0.2296
2 0.1324 0.1287 0.1799 0.2976 0.2280 0.0593 0.0478 0.2213
3 0.1052 0.1229 0.1762 0.2899 0.2176 0.0608 0.0571 0.2094
4 0.1005 0.1449 0.1850 0.2852 0.1726 0.0619 0.0437 0.1982
5 0.1812 0.1701 0.2156 0.2982 0.2087 0.1036 0.0822 0.1772

avg. 0.1339 0.1375 0.1877 0.2899 0.2115 0.0792 0.0644 0.2071

Panel B. Root Mean Squared Errors (RMSE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.2067 0.1661 0.2311 0.3078 0.2802 0.1392 0.1122 0.2717
2 0.1650 0.1593 0.2279 0.3139 0.2686 0.0784 0.0645 0.2652
3 0.1285 0.1504 0.2366 0.3134 0.2596 0.0872 0.0826 0.2618
4 0.1256 0.1911 0.2275 0.3034 0.2135 0.0756 0.0556 0.2367
5 0.2330 0.2083 0.2997 0.3436 0.2637 0.1713 0.1412 0.2041

avg. 0.1718 0.1751 0.2446 0.3164 0.2571 0.1103 0.0912 0.2479
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Table A.5: Estimation Errors: Six-Month Horizon – Monthly Data

(continued)

Panel C. Mean Average Percentage Errors (MAPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1867 0.1568 0.2283 0.3413 0.3085 0.1617 0.1261 0.3009
2 0.1465 0.1401 0.1941 0.3194 0.2527 0.0668 0.0527 0.2441
3 0.1053 0.1217 0.1739 0.2847 0.2180 0.0592 0.0554 0.2116
4 0.0950 0.1377 0.1707 0.2666 0.1660 0.0569 0.0410 0.1881
5 0.1518 0.1423 0.1743 0.2418 0.1755 0.0780 0.0629 0.1489

avg. 0.1371 0.1397 0.1883 0.2908 0.2241 0.0845 0.0676 0.2187

Panel D. Mean Squared Percentage Errors (MSPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.0625 0.0504 0.0822 0.1346 0.1610 0.0575 0.0301 0.1529
2 0.0350 0.0316 0.0593 0.1127 0.0929 0.0089 0.0056 0.0897
3 0.0166 0.0220 0.0538 0.0927 0.0683 0.0066 0.0057 0.0730
4 0.0147 0.0340 0.0419 0.0801 0.0436 0.0047 0.0028 0.0526
5 0.0375 0.0291 0.0540 0.0723 0.0496 0.0120 0.0085 0.0289

avg. 0.0333 0.0334 0.0582 0.0985 0.0831 0.0179 0.0105 0.0794

data in Tables A.5 and A.6, the picture is even clearer. We find that

BV, computed with the correlations over the past five years of monthly

returns, significantly outperforms all other approaches based on monthly

return data.39 Moreover, BV based on monthly return data seems not to

produce larger outliers compared to the other methods, since the results

from mean and median loss functions are quite similar. While the fully

implied KKS1, that does not rely on return data at all, is the second-best

estimator, the historical estimate (HIST), based on five years of monthly

returns, significantly outperforms all other approaches at least partially
39Note that the even lower average errors compared to the BV approach using daily

return data result from the slightly different sorting approach using five years of monthly
returns, yielding substantially less dispersion in the respective beta estimates for the
portfolios and thereby reducing the probability of large errors (and even more strongly
reducing the probability of high percentage errors, as realized beta only rarely comes
close to zero). When sorting the daily estimates in the same way all, loss functions yield
lower errors when using daily return data.
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Table A.6: Differences of Estimation Errors: Six-Month Horizon
– Monthly Data

This table reports the differences in the out-of-sample estimation errors of competing

estimators, using monthly return data, for realized beta over the horizon of six months.

In panel A–D, the upper triangular matrix reports the mean differences of absolute

(AE), root mean squared (SE), as well as differences in mean absolute percentage

(APE), and squared percentage (SPE) estimation errors, respectively, averaged over

the five portfolios. Similarly, the lower triangular matrices report the average median

differences of estimation errors. We compute the difference between the errors of the

model [name in row] and those of the model [name in column]. The absolute numbers in

parentheses indicate the share of portfolios for which the difference is significant (e.g., 0.4

indicates that the differences for two out of five portfolios are statistically significant).

If the differences are significant for all five portfolios, the figure is printed in bold font.

Significance is tested by the modified Diebold–Mariano and the Wilcoxon signed rank

tests for the upper and lower triangular matrices, respectively. The sign indicates the

direction of the significant differences.

Panel A. Absolute Errors (AE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST -0.0036 -0.0537 -0.1559 -0.0776 0.0547 0.0696 -0.0732
(0.0) (-0.6) (-1.0) (-0.8) (0.8) (1.0) (-0.8)

RW 0.0074 -0.0502 -0.1524 -0.0740 0.0583 0.0731 -0.0696
(0.2) (-0.6) (-1.0) (-0.6) (0.8) (0.8) (-0.8)

DCC 0.0373 0.0300 -0.1022 -0.0238 0.1085 0.1233 -0.0195
(1.0) (0.6) (-1.0) (0.0) (1.0) (1.0) (-0.4)

FGK 0.1695 0.1621 0.1321 0.0783 0.2107 0.2255 0.0827
(1.0) (1.0) (1.0) (0.8) (1.0) (1.0) (1.0)

CCJV 0.0801 0.0727 0.0427 -0.0894 0.1323 0.1472 0.0044
(0.8) (0.8) (0.6) (-1.0) (1.0) (1.0) (0.0)

KKS1 -0.0497 -0.0571 -0.0870 -0.2192 -0.1298 0.0148 -0.1279
(-0.8) (-0.8) (-1.0) (-1.0) (-1.0) (0.8) (-1.0)

BV -0.0590 -0.0664 -0.0963 -0.2285 -0.1391 -0.0093 -0.1428
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8) (-1.0)

RPadj 0.0871 0.0797 0.0498 -0.0823 0.0071 0.1368 0.1461
(0.8) (0.8) (0.6) (-1.0) (0.0) (1.0) (1.0)
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Table A.6: Differences of Estimation Errors: Six-Month Horizon –
Monthly Data (continued)

Panel B. Squared Errors (SE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST -0.0033 -0.0728 -0.1446 -0.0853 0.0614 0.0806 -0.0761
(-0.4) (-0.6) (-1.0) (-0.6) (0.8) (1.0) (-0.8)

RW 0.0074 -0.0695 -0.1414 -0.0821 0.0647 0.0838 -0.0728
(0.4) (-0.8) (-1.0) (-0.6) (0.6) (1.0) (-0.6)

DCC 0.0373 0.0299 -0.0719 -0.0125 0.1342 0.1534 -0.0033
(1.0) (0.6) (-0.8) (0.0) (1.0) (1.0) (0.0)

FGK 0.1695 0.1621 0.1321 0.0593 0.2061 0.2252 0.0685
(1.0) (1.0) (1.0) (0.4) (1.0) (1.0) (0.6)

CCJV 0.0801 0.0727 0.0427 -0.0894 0.1468 0.1659 0.0092
(0.8) (1.0) (0.6) (-1.0) (1.0) (1.0) (0.2)

KKS1 -0.0497 -0.0571 -0.0870 -0.2192 -0.1298 0.0191 -0.1376
(-0.8) (-0.8) (-1.0) (-1.0) (-1.0) (0.6) (-0.8)

BV -0.0590 -0.0664 -0.0963 -0.2285 -0.1391 -0.0093 -0.1567
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.8) (-0.8)

RPadj 0.0871 0.0797 0.0498 -0.0823 0.0071 0.1368 0.1461
(0.8) (0.8) (0.4) (-1.0) (-0.2) (1.0) (1.0)

Panel C. Absolute Percentage Errors (APE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST -0.0026 -0.0512 -0.1537 -0.0871 0.0526 0.0694 -0.0817
(-0.2) (-0.6) (-1.0) (-0.8) (0.8) (1.0) (-0.8)

RW 0.0019 -0.0486 -0.1511 -0.0844 0.0552 0.0721 -0.0790
(0.2) (-0.6) (-1.0) (-0.6) (0.8) (0.8) (-0.8)

DCC 0.0368 0.0349 -0.1025 -0.0359 0.1038 0.1206 -0.0305
(0.8) (0.6) (-1.0) (0.0) (0.8) (1.0) (-0.2)

FGK 0.1697 0.1678 0.1329 0.0666 0.2063 0.2231 0.0720
(1.0) (1.0) (1.0) (0.8) (1.0) (1.0) (0.8)

CCJV 0.0776 0.0757 0.0408 -0.0921 0.1396 0.1565 0.0054
(0.8) (0.8) (0.6) (-1.0) (1.0) (1.0) (0.0)

KKS1 -0.0530 -0.0549 -0.0898 -0.2227 -0.1306 0.0169 -0.1342
(-0.8) (-0.8) (-1.0) (-1.0) (-1.0) (0.8) (-1.0)

BV -0.0616 -0.0635 -0.0984 -0.2312 -0.1392 -0.0086 -0.1511
(-1.0) (-1.0) (-1.0) (-1.0) (-1.0) (-0.4) (-1.0)

RPadj 0.0877 0.0858 0.0509 -0.0820 0.0101 0.1407 0.1493
(0.8) (0.8) (0.6) (-1.0) (0.0) (1.0) (1.0)
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Table A.6: Differences of Estimation Errors: Six-Month Horizon –
Monthly Data (continued 2)

Panel D. Squared Percentage Errors (SPE)

HIST RW DCC FGK CCJV KKS1 BV RPadj

HIST -0.0002 -0.0250 -0.0652 -0.0498 0.0153 0.0227 -0.0461
(-0.2) (-0.4) (-1.0) (-0.8) (0.8) (1.0) (-0.6)

RW 0.0000 -0.0248 -0.0650 -0.0497 0.0155 0.0229 -0.0460
(0.4) (-0.6) (-1.0) (-0.8) (0.8) (0.8) (-0.8)

DCC 0.0097 0.0097 -0.0402 -0.0248 0.0403 0.0477 -0.0212
(0.8) (0.6) (-0.8) (0.0) (0.8) (1.0) (0.2)

FGK 0.0682 0.0682 0.0585 0.0154 0.0805 0.0879 0.0191
(1.0) (1.0) (1.0) (0.2) (1.0) (1.0) (0.4)

CCJV 0.0243 0.0243 0.0146 -0.0439 0.0651 0.0725 0.0037
(0.8) (1.0) (0.6) (-1.0) (1.0) (1.0) (0.2)

KKS1 -0.0093 -0.0094 -0.0190 -0.0776 -0.0336 0.0074 -0.0615
(-0.8) (-0.8) (-1.0) (-1.0) (-1.0) (0.6) (-1.0)

BV -0.0100 -0.0101 -0.0197 -0.0783 -0.0343 -0.0007 -0.0689
(-1.0) (-0.8) (-1.0) (-1.0) (-1.0) (-0.4) (-1.0)

RPadj 0.0296 0.0296 0.0199 -0.0386 0.0053 0.0389 0.0396
(0.8) (0.8) (0.4) (-1.0) (-0.2) (1.0) (1.0)

relying on historical return data, except monthly RW, in at least two of

the five portfolios each, while RW is also frequently outperformed for some

portfolios.

A.3 Detailed Results on Section 2.3

In this section, we present the results of Section 2.3, namely longer horizons,

further models for implied beta, option liquidity, and further time-series

models, in more detail. In Table A.7, we report the RMSE of each of the

individual portfolios, instead of only the averages. The discussion of the

results can be found in Section 2.3.

A.4 Bias Removal

In this section, we provide further insight on the information content of

estimators on which we have performed the simple bias removal, scaling the

66



A. APPENDIX

Table A.7: Portfolio Root Mean Squared Errors (Section 2.3)

This table reports the out-of-sample estimation errors of competing estimators, using

daily return data, for realized beta over the horizon of six months for each portfolio in

Panels D to F and over the horizon indicated in the panel headlines for Panels A to

C. We build five quintile portfolios into which the stocks are allocated in an ascending

order according to their historical beta in the sorting period (taking place directly before

the estimation period for historical beta without overlap and with equal length). We

determine portfolio betas and returns as value-weighted averages. We report the root

mean squared errors (RMSE) of the estimation models for each portfolio. avg. denotes

the errors averaged over all five portfolios. For each portfolio and the average, the lowest

errors among all approaches are indicated by italic font.

Panel A: One-Month Horizon

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1659 0.1520 0.2047 0.2088 0.4956 0.2540 0.1613 0.1883
2 0.1352 0.1293 0.1869 0.1892 0.4499 0.1810 0.1231 0.1634
3 0.1202 0.1112 0.1998 0.1907 0.4135 0.1437 0.1036 0.1815
4 0.1180 0.1098 0.1971 0.1932 0.3700 0.1381 0.1086 0.1826
5 0.2793 0.2550 0.3272 0.3145 0.4134 0.3085 0.2452 0.2726

avg. 0.1637 0.1515 0.2231 0.2193 0.4285 0.2051 0.1483 0.1977

Panel B: Three-Month Horizon

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1417 0.1254 0.1979 0.1885 0.4076 0.2300 0.1344 0.1651
2 0.1176 0.1073 0.1937 0.1867 0.3563 0.1709 0.1026 0.1581
3 0.0978 0.0953 0.2057 0.1766 0.3313 0.1241 0.0800 0.1676
4 0.0909 0.0916 0.2060 0.1872 0.2787 0.1060 0.0813 0.1753
5 0.2421 0.2207 0.3265 0.2894 0.2935 0.2545 0.1973 0.2296

avg. 0.1380 0.1281 0.2259 0.2057 0.3335 0.1771 0.1191 0.1791

Panel C: Twelve-Month Horizon

HIST RW DCC FGK CCJV KKS1 BV RPadj

1 0.1638 0.1532 0.2761 0.2111 0.3387 0.2190 0.1492 0.2038
2 0.1318 0.1269 0.2954 0.2159 0.2643 0.1519 0.0995 0.1842
3 0.1102 0.1068 0.3394 0.1995 0.2325 0.1117 0.0804 0.1623
4 0.0835 0.0920 0.3559 0.2078 0.2073 0.1045 0.0807 0.1505
5 0.2545 0.2327 0.4202 0.3194 0.2942 0.2516 0.2038 0.2465

avg. 0.1488 0.1423 0.3374 0.2307 0.2674 0.1677 0.1227 0.1895
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Table A.7 Portfolio Root Mean Squared Errors (Section 2.3) (continued)

Panel D. Further Implied

HIST RW CCJV SR KKS1 KKS2 FGK RPadj BV

1 0.1517 0.1375 0.3498 0.2383 0.2252 0.2279 0.2006 0.1883 0.1423
2 0.1177 0.1110 0.2929 0.1660 0.1592 0.1598 0.2019 0.1696 0.0933
3 0.0971 0.0984 0.2609 0.1234 0.1141 0.1142 0.1879 0.1580 0.0724
4 0.0788 0.0864 0.2188 0.0900 0.0999 0.1007 0.2019 0.1475 0.0735
5 0.2452 0.2174 0.2693 0.2193 0.2537 0.2575 0.3091 0.1953 0.2003

avg. 0.1381 0.1301 0.2783 0.1674 0.1704 0.1720 0.2203 0.1718 0.1164

Panel E. DJIA

HIST RW DCC CCJV SR KKS1 KKS2 FGK RPadj BV

1 0.1375 0.1274 0.2003 0.3062 0.2985 0.1889 0.1829 0.1771 0.1829 0.1517
2 0.1763 0.1842 0.2710 0.2192 0.1884 0.1708 0.1632 0.2363 0.2102 0.1604

avg. 0.1569 0.1558 0.2356 0.2627 0.2434 0.1798 0.1730 0.2067 0.1965 0.1560

Panel F. Further Time-Series Models

HIST HIST6 RW RWD AR ARMA DCC CCC BV

1 0.1499 0.1347 0.1359 0.1642 0.1879 0.1702 0.2275 0.2047 0.1441
2 0.1144 0.1080 0.1061 0.1593 0.1699 0.1440 0.2266 0.2067 0.0953
3 0.0921 0.0963 0.0950 0.1515 0.1468 0.1237 0.2448 0.2247 0.0699
4 0.0782 0.0800 0.0844 0.1455 0.1400 0.1610 0.2633 0.2549 0.0722
5 0.2430 0.2225 0.2130 0.3144 0.2878 0.3502 0.3570 0.3949 0.1947

avg. 0.1355 0.1283 0.1269 0.1870 0.1865 0.1899 0.2638 0.2572 0.1152

estimates so that the value-weighted cross-sectional average beta of each

estimation techniques equals one (Section 2.4.6). We perform univariate and

encompassing regressions as in equation (2.28). The results are presented in

Table A.8.

For HIST and RW the bias (as can be seen in Table 2.1) is very small

and the removal does not change much. Considering the Wald test, for

only one portfolio the null hypothesis of unbiasedness cannot be rejected

for HIST. DCC and CCJV are still biased, but their explanatory power
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increases substantially compared to the non-bias-removed estimates. The

biggest impact of the bias removal is obtained on FGK and RPadj, leaving

both unbiased for two out of five portfolios after setting their value-weighted

cross-sectional average to one. Nevertheless, in encompassing regressions

together with BV, BV is still shown to be informationally more efficient.

Table A.9 presents the results of further possibilities to try and remove

the bias in the estimates. In particular, we perform the regressions as

described in Section 2.4.6 on the level of individual estimates. This might be

more precise than the portfolio approach considered in the main part. For

Table A.9: Bias Removal – Further Possibilities

This table reports the out-of-sample estimation errors of competing bias-removed

estimators, using daily return data, for realized beta over the horizon of six months for

each portfolio. We build five quintile portfolios into which the stocks are allocated in

an ascending order according to their historical beta in the sorting period (taking place

directly before the estimation period for historical beta without overlap and with equal

length). We determine portfolio betas and returns as value-weighted averages. Panel A

presents the results on a simple bias removal, while Panels B and C present the results on

bias removals using a regression technique. In each panel, the first row reports the average

root mean squared errors (RMSE) of the estimation models over the five portfolios. The

lowest errors among all approaches are indicated by italic font. The remainder of the

tables report the difference in estimation errors. The upper triangular matrix reports

the differences in root mean squared estimation errors, averaged over the five portfolios.

Similarly, the lower triangular matrix reports the average median differences of estimation

errors. We compute the difference between the errors of the model [name in row] and

those of the model [name in column]. The absolute numbers in parentheses indicate

the share of portfolios for which the difference is significant (e.g., 0.4 indicates that the

differences for two out of five portfolios are statistically significant). If the differences are

significant for all five portfolios, the figure is printed in bold font. Significance is tested

by the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrices, respectively. The sign indicates the direction of the significant

differences. BVUC refers to the non-corrected BV estimates.
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Table A.9: Bias Removal – Further Possibilities (continued)

Panel A. Regression Technique – Individual

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC

avg. 0.2034 0.2066 0.1715 0.1791 0.1570 0.1609 0.1699 0.1754 0.1216

HIST -0.0033 0.0318 0.0243 0.0464 0.0425 0.0335 0.0280 0.0818
(0.0) (0.2) (0.0) (0.4) (0.6) (0.2) (0.2) (0.8)

RW 0.0039 0.0351 0.0276 0.0497 0.0458 0.0367 0.0312 0.0851
(0.0) (0.2) (0.0) (0.4) (0.6) (0.2) (0.2) (0.6)

DCC -0.0118 -0.0157 -0.0075 0.0146 0.0106 0.0016 -0.0039 0.0499
(-0.6) (-0.8) (0.0) (0.2) (0.0) (0.0) (0.0) (0.6)

FGK -0.0063 -0.0101 0.0055 0.0221 0.0182 0.0092 0.0037 0.0575
(-0.6) (0.0) (0.0) (0.2) (0.0) (0.0) (0.0) (0.8)

CCJV -0.0127 -0.0166 -0.0009 -0.0064 -0.0039 -0.0129 -0.0184 0.0354
(-0.6) (-0.8) (-0.2) (-0.4) (0.0) (0.0) (-0.2) (0.4)

KKS1 -0.0083 -0.0122 0.0035 -0.0021 0.0043 -0.0090 -0.0145 0.0393
(-0.4) (-0.8) (-0.2) (-0.4) (0.0) (0.0) (0.0) (0.6)

BV -0.0046 -0.0085 0.0072 0.0017 0.0081 0.0038 -0.0055 0.0483
(-0.6) (-0.4) (0.2) (-0.2) (0.4) (0.0) (0.0) (0.6)

RPadj -0.0049 -0.0088 0.0069 0.0013 0.0077 0.0034 -0.0004 0.0538
(-0.6) (-0.4) (0.2) (0.0) (0.4) (0.4) (0.2) (0.6)

BVUC -0.0360 -0.0399 -0.0242 -0.0298 -0.0234 -0.0277 -0.0315 -0.0311
(-0.8) (-0.8) (-0.8) (-0.8) (-0.6) (-0.8) (-0.8) (-0.8)

Panel B. Regression Technique Combining with HIST – Individual

HIST RW DCC FGK CCJV KKS1 BV RPadj BVUC

avg. 0.2034 0.2225 0.2045 0.1950 0.1935 0.1926 0.1808 0.1942 0.1216

HIST -0.0191 -0.0011 0.0083 0.0098 0.0108 0.0225 0.0091 0.0818
(-0.2) (0.0) (0.2) (0.0) (0.0) (0.2) (0.0) (0.8)

RW 0.0063 0.0179 0.0274 0.0289 0.0299 0.0416 0.0282 0.1009
(0.4) (0.2) (0.2) (0.4) (0.6) (0.4) (0.2) (0.6)

DCC -0.0025 -0.0088 0.0095 0.0110 0.0119 0.0237 0.0103 0.0829
(0.0) (-0.4) (0.2) (0.0) (0.0) (0.2) (0.0) (0.8)

FGK 0.0047 -0.0016 0.0072 0.0015 0.0025 0.0142 0.0008 0.0735
(0.2) (-0.2) (-0.4) (0.0) (-0.2) (0.0) (0.0) (0.8)

CCJV -0.0029 -0.0092 -0.0005 -0.0076 0.0009 0.0127 -0.0007 0.0719
(-0.4) (-0.8) (0.2) (-0.4) (0.0) (0.0) (0.0) (0.6)

KKS1 -0.0021 -0.0084 0.0004 -0.0068 0.0008 0.0117 -0.0016 0.0710
(-0.2) (-0.2) (-0.2) (-0.4) (0.0) (0.0) (0.2) (0.8)

BV 0.0009 -0.0054 0.0034 -0.0038 0.0039 0.0030 -0.0134 0.0593
(0.0) (-0.4) (-0.2) (-0.4) (0.2) (-0.2) (0.0) (0.8)

RPadj 0.0032 -0.0031 0.0057 -0.0015 0.0061 0.0053 0.0023 0.0726
(0.2) (-0.4) (0.0) (0.0) (0.2) (0.0) (0.2) (0.8)

BVUC -0.0360 -0.0423 -0.0336 -0.0407 -0.0331 -0.0339 -0.0370 -0.0392
(-0.8) (-0.8) (-0.6) (-0.8) (-0.8) (-0.8) (-0.8) (-0.6)
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each firm, we first regress the six-month ex post realized beta on the ex ante

estimates obtained by each approach using the estimates and realizations

available at time t during the period t − 17 up to t − 6 (as realized beta

with a six-month window is only available up to t− 6 at time t), namely 12

monthly observations. After obtaining the regression coefficients â and b̂β,

we manipulate the current estimates using the following equation:

βADJ
j,t = â+ b̂βUNADJ

j,t , (A.4)

where βADJ
j,t and βUNADJ

j,t are the adjusted and unadjusted estimates,

respectively. In a second approach, analog to the main part, we combine

the estimates with HIST.

In Panel A of Table A.9, we present the results for the individual

regression approach. It can be seen that all approaches produce a

larger average RMSE compared to the uncorrected BVUC. Combining the

estimates with HIST, shown in Panel B, also does not yield an improvement.
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Chapter 3

The Value of High-Frequency

Data for Beta Estimation∗

3.1 Introduction

Despite being regularly challenged in empirical studies, the Capital Asset

Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin

(1966), it appears, has “survived” during the last fifty years and there is

some indication that it is still the most widely used model for applications

in financial economics, especially in practice (Graham & Harvey, 2001). The

major reasons for that may lie in the model’s simplicity and intuitive appeal,

predicting that the equilibrium rates of return are solely determined by one

factor which captures an asset’s exposure to systematic risk, i.e., its beta.

Using high-frequency data has proven useful in many fields of financial

economics. This holds especially for the estimation of volatility. There

is a vast amount of evidence suggesting that using high-frequency data
∗This chapter is based on the Working Paper “The Value of High-Frequency Data for

Beta Estimation” authored by Fabian Hollstein, Marcel Prokopczuk, and Chardin Wese
Simen, 2015.
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significantly improves volatility forecasts as well as value-at-risk calculations

(e.g., Andersen & Bollerslev, 1998; Andersen, Bollerslev, Diebold, &

Labys, 2003; Chen & Ghysels, 2011). There also is evidence that higher

moments, i.e. skewness and kurtosis, can be measured more precisely using

high-frequency data. Amaya et al. (2015) find relations of high-frequency

realized skewness and kurtosis with subsequent returns. Furthermore,

Bollerslev & Zhang (2003) show that, using high-frequency data, the factor

loadings of the twenty-five Fama–French portfolios can be measured with

increased accuracy. Additionally, the use of high-frequency data is beneficial

not only from a statistical but also from an economic perspective. For

instance, Fleming, Kirby, & Ostdiek (2003) establish the economic value

of high-frequency data in an asset allocation setting.

Recent advances in the estimation of beta using high-frequency return

data and data implied from the options market suggest that changes in

beta can be captured more easily compared to classically employed long

historical windows and partially give rise to a possible (empirical) revival of

the conditional version of the classical CAPM. Andersen et al. (2006) show

that, under weak regulatory conditions, realized beta delivers a consistent

measure of the true underlying integrated beta. This finding theoretically

motivates the use of finer grids for sampling return data. To the best of

our knowledge, though, we are the first to provide a comprehensive and

thorough empirical study on the statistical and economic performance of

option-implied and historical market beta estimation techniques, including

high-frequency return data.

Chapter 2 shows that, among many competing approaches, the Buss

& Vilkov (BV) (2012) hybrid estimator, using options prices and daily

return data, adheres a superior performance for estimating beta compared

to several historical, time-series, and option-implied approaches relying on

daily and monthly return data. However, unlike in Chapter 2, in this chapter
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we make use of the potentially superior high-frequency return data.

We make a number of additional contributions examining several

aspects of beta estimation. First, we examine the statistical properties, i.e.

the informational efficiency and estimation accuracy of ex ante estimators

for ex post beta using high-frequency realized beta for both the statistical

examination of beta estimates and as an additional historical estimator

for beta. Additionally, we provide evidence on optimal combinations and

bias-corrections of different estimators to obtain more precise estimates.

We also impose an economic evaluation criterion for the analysis. While

it appears appealing to be able to predict future beta, the most important

property an estimate for beta ought to have is its significance in explaining

securities’ returns. Cross-sectionally, higher beta firms should have higher

expected returns. Consequently, we employ a cross-sectional test to evaluate

the empirical validity of the risk–return trade-off for the historical daily,

high-frequency, and hybrid estimators with various specifications and over

various different time horizons. To the best of our knowledge, we are the

first to compare the cross-sectional implications for the risk–return trade-off

of historical daily, high-frequency, and hybrid estimators.

Furthermore, we provide evidence on the estimation of downside beta.

Downside risk and conditional risk premia have recently attracted much

attention. The use of high-frequency data for downside beta is potentially

very important since the general difficulty in estimating it is the lack

of regular return observations below a certain threshold. However, the

estimation of downside beta, thus far, has received only little attention.

We fill this gap providing an empirical analysis on the estimation accuracy

and the cross-sectional pricing of downside beta employing historical daily,

high-frequency, and hybrid estimation methods.

Our main results can be summarized as follows. The use of high-

frequency data for beta estimation does not in general appear to create
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value. While from a statistical viewpoint the use of high-frequency return

data can be beneficial, the economic value of using high-frequency return

data appears to be limited.

Regarding informational efficiency and estimation accuracy, high-

frequency historical and hybrid estimators work more or less equally well.

Especially over short time horizons of up to three months, the historical

high-frequency estimator is shown to provide proper conditional estimates

superior to those of the hybrid and daily historical models, whereas

over longer time horizons the hybrid BV yields slightly better estimation

accuracy.

For the most important aspect of beta estimation, economic value, the

hybrid BV estimator family turns out to clearly outperform historical daily

and high-frequency models. On average, a significantly positive relation

of beta and subsequent excess returns can be detected, albeit not of

the magnitude predicted by the CAPM. For the historical models with

daily returns, only a weak relation is found, while for the high-frequency

estimators a positive risk–return trade-off cannot be uncovered at all.

Additionally, we show that the main results of Chapter 2 hold

using high-frequency realized beta to evaluate competing estimators. The

approach proposed by Buss & Vilkov (2012), as well as high-frequency

estimators, turns out to be informationally more efficient compared to the

historical estimator and produces lower, though not always significantly

lower, estimation errors.

We also show that, once employing high-frequency returns, the

actual sampling frequency for historical realized beta estimators is of

second-order importance examining sampling intervals of five minutes and

more. Differences in estimation errors among the high-frequency estimators

are typically small and insignificant, while estimation errors generally rise

slightly with decreasing sampling frequency. High-frequency approaches are
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typically informationally more efficient and more accurate compared to

historical estimators relying on daily return data. Using high-frequency

correlations for BV, on the other hand, does not in general improve the

estimation accuracy.

Regarding adjustments and combinations of estimators, we find that

a simple combination of the high-frequency and hybrid BV approaches

quite consistently outperforms the individual approaches from a statistical

evaluation standpoint while its economic value, in turn, is also inferior

compared to that of only using BV.

Lastly, our results extend to the estimation of downside beta. The

estimation accuracy of high-frequency and hybrid estimators is more or less

equally good, while only the hybrid BV estimator has power in explaining

the cross-section of subsequent stock returns.

We show that our results are robust to various alternative specifications.

Building more portfolios, using alternative sampling frequencies, or different

time horizons from one month up to two years for the evaluation of beta

estimates, the results are qualitatively equal. We further show that our

results on the economic value of beta estimation are robust to different

evaluation frequencies also ranging from one month to two years.

Turning the focus on the classical methodology employed for beta

estimation, simply using long historical windows of monthly return data

has the major drawback is that beta coefficients are shown to exhibit

significant time variation (e.g., Blume, 1975; Ferson & Harvey, 1991, 1993).

To obtain conditional estimates of beta, Lewellen & Nagel (2006) suggest

relying on short historical windows. On the other hand, to obtain a reliable

estimate, one needs a large sample of observations, which implies a trade-off

between precision and the need for truly conditional estimates. Recent

developments for estimating beta using high-frequency data may serve to

reconcile these two arguments. Bollerslev & Zhang (2003), Barndorff-Nielsen
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& Shephard (2004), and Andersen et al. (2005, 2006) derive the estimator

for realized beta and examine its properties. The use of high-frequency data

can deliver the observations needed to make use of the results of Andersen

et al. (2006) that realized beta yields a consistent estimate of the true

underlying integrated beta without relying on very long historical windows,

which imposes assumptions on the stability of the underlying processes and

economic conditions which, in reality, may fluctuate heavily over time.

A part of the analysis related to the above argument is the question of

optimal sampling frequency. While realized beta is a consistent measure for

the true underlying integrated beta, on the one hand, it should be optimal

to use time-frames as small as possible to obtain as many observations

as feasible. On the other hand, though, due to microstructure noise and

infrequent trading, this strategy will fail at some point. Already in the

1970s, when daily returns started becoming available for empirical research,

authors argued that covariances were severely underestimated when assets

are infrequently and non-synchronously traded (Scholes & Williams, 1977;

Epps, 1979). Naturally, when using intra-day data, the problem of infrequent

trading becomes even more severe. For example, Bollerslev, Li, & Todorov

(2015) use intervals as long as 75 minutes to account for such concerns.

Since we concentrate on the S&P 500, i.e., the largest companies in the

U.S. that are presumably very liquid and frequently traded, it is likely that

reliable estimates can also be obtained using higher sampling frequencies.

Consequently, we analyze the effects of different sampling schemes on

estimation accuracy.

The major alternative to using historical return data only is to addition-

ally incorporate the inherently forward-looking information incorporated in

option prices. Buss & Vilkov (2012) and Chang et al. (2012) show that beta

estimators employing information from the options market perform well in

predicting the cross-section of stock returns. However, Buss & Vilkov (2012)
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evaluate beta only based on one-month subsequent returns and none of the

two studies compares with the potentially superior high-frequency historical

estimates for beta.

Presenting a comprehensive study comparing market beta estimation

techniques, Chapter 2 shows that the hybrid methodology of BV is

informationally more efficient and has smaller estimation errors compared to

all other approaches examined (including GARCH-based and fully implied

methods) relying on daily return data. However, in Chapter 2 we also

find that the simple historical estimator based on daily returns works

comparatively well, not yielding estimation errors that are significantly

higher than those of BV for all the specifications examined. In particular, the

simple historical estimator is shown to be clearly superior to any estimator

that uses option-implied data only or GARCH-specifications. Therefore, it

appears worthwhile investigating whether the hybrid approach of BV is still

favorable when using beta estimated with high-frequency return data as a

competing estimator.1

Finally, we connect to the literature on downside beta. Ang et al.

(2006a) use the disappointment aversion model of Gul (1991) to demon-

strate that assets with higher betas, conditional on low realizations of the

market return, can be regarded as particularly risky. Lettau et al. (2014)

show that the downside risk CAPM can price the cross-section of returns of

equities, and many other asset classes. However, we use ex ante estimates

for downside beta instead of examining only a contemporaneous relationship

and further study the properties of various different methods to estimate

downside beta.

The remainder of this chapter is organized as follows. Section 3.2
1One argument for why high-frequency data might not yield better estimates is

provided by Gilbert, Hrdlicka, Kalodimos, & Siegel (2014). They argue that for opaque
firms, the market needs longer to understand the implications of news on systematic risk.
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describes our data set and methodology. In Section 3.3 we present our

empirical results. Section 3.4 checks the robustness of our results. Finally,

Section 3.5 concludes. The appendix to this chapter contains details on the

estimation of option-implied moments.

3.2 Data and Methodology

3.2.1 Data

We base our study on the S&P 500 market index and its constituents

for the sample period between January 01, 1996 and December 31, 2014.2

Additionally, we perform a robustness analysis on a sample based on the

Dow Jones Industrial Average (DJIA).3

We obtain daily and monthly price data as well as data on dividend

payments and shares outstanding from the Center for Research in Security

Prices (CRSP) for the period from January 01, 1994 until December 31,

2014. To be able to compute historical estimates right from the start of our

study period and to perform a portfolio sorting using non-overlapping data,

this data starts two years before the main sample period. High-frequency

return data is gathered from the Thomson Reuters Tick History (TRTH)

database. We sample the data at five-minute intervals. Additionally, we

examine different sampling frequencies of up to 130 minutes. To ensure the

reliability of the high-frequency data, we perform the appropriate standard

data cleaning operations as outlined in Barndorff-Nielsen, Hansen, Lunde,

& Shephard (2009).
2The starting date of our study is thereby determined by the start of the

OptionMetrics and Tick History databases in January 1996.
3The sample period for the DJIA dataset begins on January 01, 1998 as options on the

DJIA are traded no earlier than October 1997 at the Chicago Board of Options Exchange
(CBOE). We do not start before the beginning of the new year to avoid spurious findings
caused by potentially small initial trading volumes in the new market.
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Options data are from the IvyDB OptionMetrics Volatility Surface

that directly provides implied volatilities for standardized delta levels and

maturities.4 For the main analysis, we use options with approximately

six months to maturity since we want to obtain six-month estimates for

beta. As a robustness check, we also repeat the analysis with options

of approximately one, three, twelve, eighteen, and twenty-four months to

maturity. We select out-of-the-money (OTM) options, namely puts with

deltas larger than -0.5 and calls with deltas smaller than 0.5. We use the

formulas provided by Bakshi et al. (2003) to compute model-free implied

moments. A more detailed outline of the procedure is presented in Section

B.1 in the appendix to this chapter.

We thereby obtain options and high-frequency return data for 438 and

447 stocks in 1996 growing to 493 and 488 stocks at the respective peaks,

both in 2010, out of the 500 contained in the S&P 500 at each respective

date, respectively.5 On average, options data on 472 stocks and sufficient

high-frequency return data on 478 stocks is available. Data on the risk-free

rate is collected from the IvyDB zero curve file.

3.2.2 Beta Estimation

Realized Beta Following Andersen et al. (2006) we use high-frequency

log-returns to compute realized beta:

βR
j,t =

∑N
τ=1 rj,τrM,τ∑N
τ=1 r

2
M,τ

, (3.1)

4IvyDB uses a kernel smoothing algorithm and only reports standardized options “if
there exists enough option price data on that date to accurately interpolate the required
values”. For more details refer to the IvyDB technical document.

5Note that options data was only available until the end of August 2014 when we
started this study. The first estimate for high-frequency beta is made at the end of June
1996 since we need six months to obtain the estimates and the TRTH database starts no
earlier than January 01, 1996.
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where rj,τ and rM,τ refer to the return of asset j and the market return at

time τ , respectively. N is the number of observations during the time period

under investigation. While Hansen & Lunde (2006) strongly advise using

realized volatility when evaluating volatility models, we follow that spirit

using ex post realized beta to evaluate all the respective ex ante estimates

obtained using the different beta estimation methods. As an additional

estimator, we denote ex ante realized beta by HFfreq,τ mon with freq being

the sampling frequency of the returns and τ mon indicating the length of the

estimation period. Whenever τ mon is missing, the length of the estimation

period matches that of the evaluation period.

Historical Beta Closely related to the above approach, we compute

historical estimates (HIST) in the usual way, following Fama & MacBeth

(1973) and many others, regressing an asset’s excess return on the market

excess return:

βHIST
j,t =

cov(rj, rM)

var(rM)
. (3.2)

The main historical estimator utilizes one year of daily returns as do, e.g.,

Baker et al. (2010).

Hybrid Beta We consider the approach of Buss & Vilkov (2012),

who combine model-free implied volatilities and historical correlations to

estimate beta. The authors use the property that the implied variance of

the market index has to be the same as the implied variance of the value-

weighted portfolio of all market constituents (first relation) and combine

that with a technical condition for implied correlations to translate from

physical (ρPij,t) to risk-neutral correlations (ρQij,t), namely ρQij,t = ρPij,t−αt(1−

ρPij,t).6 Combining these two relations and solving for αt, implied correlations
6Making sure both that the matrix is a correlation matrix (all correlations not

exceeding one and the matrix being positive definite) and that it matches with empirical
observations, namely that implied correlations are higher than empirical ones and that
the correlation risk premium is higher for lowly correlated stocks. For more details, refer
to Buss & Vilkov (2012).

84



3.3. EMPIRICAL RESULTS

can be computed. Thus, a beta estimate under the risk-neutral probability

measure is obtained by:

βBV
j,t =

σQ
j,t

∑N
i=1(ωi,tσ

Q
i,tρ

Q
ji,t)

(σQ
M,t)

2
, (3.3)

where σQ
j,t and σ

Q
M,t denote the implied volatilities for individual stocks and

the market index, respectively. ωi,t denotes the weight of the N individual

assets in the market index at a certain point in time. We utilize the BV

approach in the usual style using daily returns over one year to compute

correlations. We also use different time horizons to estimate correlations

matching the evaluation horizon (denoted by BVτ mon) and high-frequency

correlations (BVfreq) to obtain alternative specifications for BV, where

the variables are as previously defined. The implied volatilities needed for

the approach are extracted from options whose expiration matches the

evaluation horizon, i.e. six months for the main analysis.

3.3 Empirical Results

3.3.1 Summary Statistics and Correlation Analysis

Panel A of Table 3.1 reports summary statistics on the different beta

estimation techniques. It can be seen that the value-weighted average beta

over all stocks in the S&P 500 (Meanvw) is very close or exactly equal

to one for all approaches. Thereby, it can be seen that the problem of

infrequent trading is not severe, since even for the five-minute interval the

value-weighted average beta is only slightly below one. The equally-weighted

average is lower for the high-frequency models compared to the hybrid

models. Consequently, it appears that smaller firms tend to have lower betas

for high-frequency estimators compared to the BV methods. Furthermore, it
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Table 3.1: Summary Statistics and Sample Correlations

This table provides summary statistics on the different beta estimation techniques

(Panel A) and sample correlation coefficients among the different beta estimation

techniques on the basis of pooled individual estimates over the entire sample period

(Panel B). The sample period spans from January 1996 (beginning with estimates for

February 1996) until December 2014. Nobs denotes the number of monthly estimates,

Mean and Meanvw are the equal- and value-weighted averages of the estimates over

the entire sample period, respectively. Std. dev., Median, Min, and Max present further

summary statistics on the overall standard deviation, median, minimum, and maximum

of all individual estimates, respectively.

Panel A. Summary Statistics

Nobs Mean Meanvw Std. dev. Median Min Max

HIST 110,277 1.0073 1.0032 0.4555 0.9461 -0.6675 4.6485
HIST6 mon 110,692 1.0054 1.0012 0.4892 0.9447 -0.9818 7.7906
HF5 106,376 0.9369 0.9874 0.4378 0.8679 -1.5517 4.1109
HF5,1 mon 108,685 0.9387 0.9872 0.4888 0.8608 -8.9032 5.5420
HF15 106,375 0.9567 0.9956 0.4496 0.8837 -1.2501 4.3931
HF30 106,375 0.9662 0.9974 0.4574 0.8938 -2.0210 4.4675
HF75 106,375 0.9820 0.9991 0.4748 0.9086 -2.7018 5.4052
HF130 106,375 0.9814 0.9936 0.4759 0.9104 -2.4115 5.5074
BV 105,811 1.0463 1.0000 0.3680 0.9960 -0.4827 6.6757
BV6 mon 106,233 1.0470 1.0000 0.3776 0.9959 -1.0182 6.7820
BV5 103,542 1.0518 1.0000 0.3606 0.9869 0.0398 6.4297
BV15 103,542 1.0503 1.0000 0.3684 0.9855 -0.2166 6.5612
BV30 103,543 1.0521 1.0000 0.3705 0.9875 -0.3033 6.5797
BV75 103,544 1.0548 1.0000 0.3763 0.9908 -0.3070 6.6407
BV130 103,544 1.0548 1.0000 0.3763 0.9908 -0.3070 6.6407

can be noted that methods relying on historical returns have higher standard

deviations compared to the hybrid models (about 0.45 vs. around 0.37).

Panel B of Table 3.1 presents the sample correlation coefficients among

betas obtained with different estimation techniques on the basis of their

pooled estimates for individual assets during the entire sample period.

Generally, we note very high correlations around 0.9 and higher. The

lowest correlations arise between BV or BV6 mon and HF5,1 mon and BV5
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Table 3.1: Summary Statistics and Sample Correlations (continued)

Panel B. Correlation Coefficients of Different Estimates
H
IS
T

H
IS
T

6
m
o
n
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F
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5
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m
o
n
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F
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5

H
F
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0
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F
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B
V

6
m
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n

B
V

5

B
V

1
5

B
V

3
0

B
V

7
5

B
V

1
3
0

* 0.92 0.87 0.78 0.88 0.89 0.90 0.91 0.88 0.86 0.78 0.80 0.80 0.81 0.81 HIST
* 0.86 0.78 0.88 0.89 0.91 0.92 0.84 0.88 0.76 0.77 0.78 0.79 0.79 HIST6 mon

* 0.90 0.99 0.98 0.95 0.94 0.81 0.81 0.82 0.83 0.82 0.82 0.81 HF5

* 0.89 0.88 0.86 0.85 0.76 0.76 0.77 0.77 0.77 0.77 0.76 HF5,1 mon

* 0.99 0.97 0.96 0.83 0.83 0.83 0.84 0.84 0.84 0.83 HF15

* 0.98 0.97 0.84 0.85 0.83 0.84 0.85 0.84 0.84 HF30

* 0.98 0.85 0.86 0.83 0.84 0.84 0.85 0.84 HF75

* 0.85 0.86 0.82 0.83 0.84 0.84 0.85 HF130

* 0.97 0.94 0.94 0.95 0.95 0.95 BV
* 0.93 0.94 0.94 0.95 0.95 BV6 mon

* 1.00 0.99 0.99 0.99 BV5

* 1.00 0.99 0.99 BV15

* 1.00 0.99 BV30

* 1.00 BV75

* BV130

and HIST6 mon, respectively, amounting to 0.76. The implications of these

high correlations are twofold. First, it may be hard to detect significant

differences between the approaches since, to a large extent, they appear to

carry similar information. Secondly, we have to take care of multicollinearity

issues possibly inflating the standard errors in encompassing regressions

performed in the next section.

3.3.2 Information Content

A common way to evaluate the performance of ex ante estimates is to use

Mincer & Zarnowitz (1969) regressions. We therefore regress the six-month

(ex post) realized beta on the different (ex ante) beta estimates in the

following way:

βR
t,T = a+ bζt,T + εt. (3.4)

βRt,T denotes the realized beta in the period ranging from t to T and ζt,T

stands for one beta estimate in univariate regressions or a vector of several
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beta estimates in encompassing regressions. With the approach in equation

(3.4) we can test for the informational efficiency and unbiasedness of the

respective estimates. As Hansen & Lunde (2006) show, using logarithmically

transformed variables for the regressions, while making the regression

procedure less sensitive to outliers (Pagan & Schwert, 1990), often leads to

inconsistent rankings of the estimation models if an unbiased but imperfect

proxy for the true evaluation variable is used. They further show that

Mincer–Zarnowitz regressions in levels are robust to (mean zero) errors in

the evaluation proxy. Consequently, we stick to levels instead of logs to

obtain results that are more robust.

Unbiasedness is tested in univariate regressions by performing a

Wald test, imposing the joint hypothesis of a being equal to zero

and b being equal to one. For an unbiased model we should not be

able to reject the underlying hypothesis. Informational efficiency can be

tested in encompassing regressions by constraining the slope parameters

of alternative estimators to zero, thereby determining if the respective

approaches contain information beyond that of a baseline model. If, in

encompassing regressions, an estimator is to be more informative it must

have a significant slope estimate and the explanatory power must rise

compared to the restricted model. Additionally, we test the joint hypothesis

of one slope parameter being equal to one and the second slope parameter

being equal to zero. The underlying hypothesis of this test states that one

approach fully subsumes all information contained in the other approach it

is tested with.

To conduct our analysis, we follow the approach suggested by Fama &

MacBeth (1973). At the end of each month, we build five value-weighted

portfolios out of the individual stocks in our sample. To sort the stocks, we

use as an instrument the stocks’ estimate for (daily) historical beta obtained

in an estimation period (sorting period) strictly before the estimation period
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of the historical beta serving as one beta estimate. We sort the stocks in an

ascending order and compute estimates as well as realizations for beta for

each of these portfolios.7 This approach ensures that we obtain a certain

range in the estimated values and delivers results that are comparable

without particularly loading on the measurement errors of one of the

approaches. To keep the analysis comparable, we can only include those

estimates in our sample where all approaches yield an estimate.8

To keep the presentation manageable, we select at least one ap-

proach from each model family to perform our main analysis. We

select historical and six-month historical (HIST6 mon) using daily return

data, five-minute high frequency over six (HF5) and one month(s)

(HF5,1 mon), BV and BV6 mon, as well as the high-frequency hybrid BV5

relying on five-minute return data, and consider the methods estimated

with further sampling frequencies in the robustness analysis in Section IV.

In all analyses, we evaluate the approaches using high-frequency realized

beta during the subsequent six months.

Table 3.2 presents the regression results for the main estimation

approaches employing high-frequency five-minute realized beta to evaluate

the ex ante estimates. Panel A of Table 3.2 presents the results of the

univariate regressions for each of the five portfolios. It can be seen that in

many cases the intercept estimate is significantly (at 5 %)9 different from

zero and the estimate for the slope coefficient is significantly different from
7For example, using daily data and estimating beta at the end of January 1996,

evaluating it in the period February – July 1996, the estimation of historical beta uses
return data from February 1995 until the end of January 1996. The portfolio sorting
is carried out according to the estimate for historical beta using return data between
February 1994 and the end of January 1995. If historical return data for the sorting
period is not available, the sorting beta is set to one.

8Note that, while analyzing the value of high-frequency data for beta estimation,
sorting on past low-frequency beta might be regarded as non-optimal. However, the
sorting is only designed to ensure that the resulting portfolios have a certain spread in
their beta estimates. Each of the portfolios is examined separately.

9Further mentions of (non-)significance in this section will always refer to the 5 %
significance level.
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one.10

For all approaches there are only some portfolios yielding non-

significant values for the intercept and slope coefficients. The joint

hypothesis of a being equal to zero and b being equal to one, however, is

rejected in any case, suggesting that all approaches yield biased estimates.

For three portfolios, BV yields the highest adjusted R2, while the short-

term HF5,1 mon and BV6 mon have the highest adjusted R2 for one portfolio

each. The estimates of these three approaches and HF5 exhibit the highest

explanatory power, which is substantially higher than that of the traditional

historical daily estimators, e.g., for BV, the adjusted R2 is higher by 12 up to

32 percentage points compared to HIST. For the high-frequency approaches

the picture looks similar.

Turning the focus to the results of the encompassing regressions in

Panel B of Table 3.2 we find the high-frequency estimators and BV

to be informationally more efficient than HIST. The adjusted R2 rises

when adding these models to HIST and the slope coefficient on BV,

HF5, and HF5,1 mon is significant as opposed to that on HIST, which

generally yields a non-significant slope coefficient when combined with these

models. The relation of HIST and BV5 is not entirely clear. Comparing the

high-frequency estimators using six months of return data (HF5) to that

employing only the returns during the preceding month (HF5,1 mon), the

shorter-term estimator appears to be favored in the extreme portfolios 1

and 5 where only the latter has a significant slope estimate. However, for

the remaining portfolios none of the two approaches is informationally more

efficient than the other, with significant slope estimates for both.

The picture is also not entirely clear when placing HF5 or HF5,1 mon

10Note that for univariate regressions the t-statistics of the slope coefficients test the
hypothesis of those being equal to one and not, as is usually done, equal to zero. In the
multivariate regressions, the t-statistics refer to the usual hypothesis that the parameters
are equal to zero.
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CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA
ESTIMATION

in a joint regression with BV. In these cases, both models regularly adhere

significant slope coefficients, meaning that the estimators partially contain

complementary information. Based on this insight, a combination of both

approaches could potentially be useful.11

Additionally, BV5 is shown to be quite clearly inferior compared to

BV, with a significant slope parameter for only two portfolios. One of

the two significant slope parameters is even negative, implying a negative

relation between beta estimates and realization when the information in

BV is already given.12 The superiority of BV over the high-frequency BV5

might on the one hand seem surprising since the use of high-frequency

historical data has been shown to improve the informational efficiency of

estimates for beta over the historical approach based on a daily frequency.

On the other hand, however, it has to be noted that BV makes use

of the full correlation matrix of all index constituents, for which the

problem of potential non-synchronous and infrequent trading becomes much

more severe than when just estimating the covariance between an asset’s

return and that of the market, as is done for the historical high-frequency

estimators.

The hypothesis that one approach subsumes all the information

contained in another approach (indicated by the tests Wald1 and Wald2) is

rejected in most cases, meaning that all approaches, to some extent, contain

some information that others have not incorporated and none of the models

is fully perfectly specified.

Overall, using high-frequency realized beta, we first confirm the results

of Chapter 2 that BV is superior in terms of informational efficiency

compared to the historical estimator using daily return data. Secondly,
11We examine the issue of combinations in Section 3.3.5.
12The negative slope estimate on BV5 is most probably caused by the near-

multicollinear relation to BV, which is constructed very similarly, with a correlation
amounting to 0.94. The general conclusion that BV is superior, however, remains valid.
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3.3. EMPIRICAL RESULTS

we show that the high-frequency estimators perform quite well. They are

informationally more efficient compared to the historical estimator using

daily return data. In a joint regression with BV, both models appear to add

valuable information, while none of the two models is distinctly favored.13

3.3.3 Estimation Accuracy

Turning the focus on out-of-sample estimation accuracy, we employ the loss

function most commonly applied in the literature, namely the root mean

squared error (RMSE) criterion, to evaluate the performance of the different

beta estimation techniques:

RMSE =

√√√√ 1

n

n∑
t=1

(βR
t,T − ζt,T )2. (3.5)

Here, n is the number of estimation windows, βRt,T again denotes the

realized beta over a period from t until T , and ζt,T is the respective beta

estimate. Patton (2011) shows that only the mean squared error (MSE)

criterion, as opposed to other commonly employed loss functions, is robust

to the presence of (mean zero) noise in the evaluation proxy, so we choose

this loss function. We test for significance in RMSE using the modified

Diebold–Mariano test proposed by Harvey et al. (1997) and for significance

in root median squared error (RMedSE) with the non-parametric Wilcoxon

signed rank test. For the Wilcoxon signed rank test, we perform the

significance test only on the first series of non-overlapping differences in

errors to account for possible serial correlation (Diebold & Lopez, 1996).
13For the sake of brevity, we do not report further results using different frequencies

to estimate ex post realized beta (e.g., 15, 30, 75, 130 minutes, or daily returns). These
results actually are qualitatively equal and available upon request.
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ESTIMATION

Since for this approach we have to discard observations, the statistical power

of the test is reduced.14 These results should thus be interpreted cautiously.

Table 3.3 summarizes the estimation errors using five-minute return

data. It can be seen that the short-window high-frequency HF5,1 mon yields

the smallest average RMSE over the five portfolios (as indicated by italic

font), followed by HF5 and BV. The differences in RMSE, however, are

hardly ever significant. On the other hand, the differences in RMedSE are

significant in some instances.

Comparing the approaches relying on historical return data, the median

errors are significantly smaller when using high-frequency returns compared

to daily returns in at least two out of the five portfolios, while the RMSEs

are only significantly smaller for one and zero portfolio(s). The mean

and median errors are not significantly different comparing BV to HIST,

delivering only a very weak indication for a superior estimation accuracy. On

the other hand, significant differences between HF5, HF5,1 mon, and BV also

cannot be established, neither in RMSEs nor in RMedSEs. The estimation

errors for BV5 are slightly higher compared to the best models; however,

the differences are significant in few instances only.

Overall, the evidence indicates that the approaches HF5, HF5,1 mon, and

BV obtain the best out-of-sample accuracy, while differences are mostly not

significant, neither between the models mentioned nor compared to other

models.15

14While, strictly speaking the Wilcoxon signed rank test incorporates the joint null
hypothesis of zero median in the loss differentials as well as a symmetric distribution, we
stick to this test instead of an alternative only testing on zero median, like the simple sign
test, since the Wilcoxon signed rank test turns out more powerful in many applications
(Conover, 1999).

15Examining the estimated spread in the beta vs. the realized spread, e.g., of the
5-1 portfolio, the results are qualitatively similar. BV and high-frequency models adhere
more or less equal RMSE for the spread while that of the historical daily models is
significantly higher in most cases.
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Table 3.3: Estimation Errors

This table reports the out-of-sample estimation errors of competing estimators for

five-minute realized beta over the time horizon of six months for each portfolio. We

build five quintile portfolios into which the stocks are allocated in ascending order

according to their historical beta in the sorting period (taking place directly before

the estimation period for historical beta without overlap and with equal length). We

determine portfolio betas as value-weighted averages. The first row reports the average

root mean squared error of the estimation models over the five portfolios. The lowest

error among all approaches is indicated by italic font. The remainder of the table reports

the differences in estimation errors. The upper triangular matrix reports the differences

in root mean squared estimation errors, averaged over the five portfolios. Similarly, the

lower triangular matrix reports the average median differences of estimation errors. We

compute the difference between the errors of the model [name in row] and those of

the model [name in column]. The absolute numbers in parentheses indicate the share

of portfolios for which the difference is significant at 5 % (e.g., 0.4 indicates that the

differences for two out of five portfolios are statistically significant). If the differences are

significant for all five portfolios, the figure is printed in bold font. Significance is tested

by the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrix, respectively. The sign indicates the direction of the significant

differences.

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5

avg. 0.1247 0.1177 0.0907 0.0865 0.0915 0.0932 0.1127

HIST 0.0070 0.0340 0.0382 0.0332 0.0315 0.0120
(0.0) (0.2) (0.0) (0.0) (0.0) (0.0)

HIST6 mon -0.0052 0.0271 0.0312 0.0262 0.0245 0.0050
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

HF5 -0.0160 -0.0108 0.0041 -0.0009 -0.0026 -0.0221
(-0.4) (-0.2) (0.0) (0.0) (0.0) (-0.2)

HF5,1 mon -0.0164 -0.0112 -0.0004 -0.0050 -0.0067 -0.0262
(-0.6) (-0.2) (0.0) (0.0) (-0.2) (-0.2)

BV -0.0113 -0.0061 0.0047 0.0051 -0.0017 -0.0212
(0.0) (0.0) (0.0) (0.2) (0.0) (0.0)

BV6 mon -0.0105 -0.0053 0.0055 0.0059 0.0008 -0.0195
(-0.4) (-0.2) (0.0) (0.2) (0.0) (0.0)

BV5 -0.0068 -0.0016 0.0092 0.0096 0.0045 0.0037
(0.2) (0.0) (0.2) (0.2) (0.4) (0.2)
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3.3.4 Estimation Errors Through Time

A potentially interesting topic lies in the development of estimation errors

over time. Figure 3.1 depicts the cumulative average absolute errors (AEs)

of HF5,1 mon and BV compared to those of HIST over time.16 Business cycle

contractions as reported by the National Bureau of Economic Research

(NBER) are indicated by shaded areas. It can be seen that during the

late 1990s the estimation errors are highest for the hybrid BV model. Later

on, when liquidity in options markets increases, BV performs considerably

better.17 Especially around crisis periods, BV yields a superior estimation

accuracy compared to HIST and, to a lesser extent, HF5,1 mon.18 This is

most likely caused by the fact that during changes in economic conditions,

the option-implied moments can adjust much faster and more frequently

compared to historical covariances. Overall, HF5,1 mon delivers the lowest

cumulative average AEs. Furthermore, since it only needs one month of

historical high-frequency data, differences in crisis times compared to BV

are only moderate. From the year 2001 on, BV yields an estimation accuracy

even slightly better than HF5,1 mon.

3.3.5 Bias-Removal and Combinations

As it is shown in Section 3.3.2, all the estimation techniques are biased

and partially carry complementary information. None of the models
16We plot the differences of the cumulative errors of one model minus those of HIST.

This means that a downward trend indicates the superior estimation accuracy of the
model examined compared to HIST and vice versa.

17E.g., the average daily total contract volume in S&P 500 index options increases
from about 94,200 during the late 1990s to roughly 473,800 for the remainder of our
sample period.

18Note that we are dealing with estimation horizons of up to one year and an evaluation
horizon of six months. Models relying on one year of historical return data are therefore
influenced by the crisis period until eleven months after the end of the contraction period.
Furthermore, all evaluation periods starting five months and less before the beginning of
a contraction period at least partially contain crisis times.

98



3.3. EMPIRICAL RESULTS

F
ig
u
re

3.
1:

C
u
m
u
la
ti
ve

E
rr
or

D
iff
er
en

ce
s
T
h
ro
u
gh

T
im

e

T
hi
s
fig

ur
e
pl
ot
s
th
e
cu

m
ul
at
iv
e
av
er
ag
e
ab

so
lu
te

(o
r,
eq
ui
va
le
nt
ly
,r
oo

t
sq
ua

re
d)

er
ro
r
(A

E
)
di
ffe

re
nc
es

of
H
F
5
,1

m
o
n
(s
ol
id
)
an

d
B
V

(d
as
he
d)

co
m
pa

re
d
to

H
IS
T

ov
er

ou
r
sa
m
pl
e
pe

ri
od

19
96
–2
01
4.

T
he

sh
ad

ed
ar
ea
s
in
di
ca
te

ti
m
e
pe

ri
od

s
m
ar
ke
d
as

bu
si
ne
ss

cy
cl
e
co
nt
ra
ct
io
ns

by
th
e

N
B
E
R
.

99



CHAPTER 3. THE VALUE OF HIGH-FREQUENCY DATA FOR BETA
ESTIMATION

fully subsumes all information contained in another, and in bivariate

encompassing regressions it often occurs that both models yield a significant

slope coefficient. These findings suggest that by removing the bias or

combining estimates it might be possible to further increase the estimation

accuracy. Bates & Granger (1969) note that the combination of estimation

techniques may prove worthwhile, especially when the estimates combined

are based on different sets of information. To investigate this, we try three

basic approaches. The first is just a simple combination of estimators. While

simple ad hoc combinations are easy to implement, the procedure might

not provide the optimal result. On the other hand, Clemen (1989) and

Timmermann (2006) provide evidence that, offering diversification gains,

first of all, combinations of multiple individual estimates can substantially

increase the estimation accuracy. Secondly, they show that such simple

combinations often work reasonably well or even better compared to more

complex approaches of combining estimates. However, with two further

approaches we try to find the (ex ante) optimal correction on individual

methods, trying to remove the bias that is inherent in any of the estimation

techniques (see Section 3.3.2), and optimal combinations of estimators. The

approach may be considered as an ex ante optimal AR(1) model.

Specifically, we employ bias-removal and combining techniques in the

spirit of Mincer & Zarnowitz (1969) using regression techniques as in

equation (3.4). We build portfolios as in Section 3.3.2, obtain estimates

for each approach and then perform the uni- or multivariate regressions,

pooling all unadjusted ex ante estimates for each approach as well as the

corresponding ex post realized portfolio beta estimates up to t − k (since

realized beta with a k-month window is only available up to t−k at time t)
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in separate vectors.19 Since the portfolio characteristics are relatively stable,

we employ an expanding window instead of a rolling window to make use

of a maximum length of history in order to estimate the parameters with

greater precision.20 The regression equation takes the following form:

βR = at + b
(1)
t β(1,unadj) + b

(2)
t β(2,unadj) + ε. (3.6)

β(1,unadj) is the vector of pooled initial portfolio beta estimates of one

approach and, optionally, β(2,unadj) indicates a possible further approach

to be included, while βR denotes the corresponding pooled realized beta

vector. At every point in time the estimation moves forward, five additional

observations are added to each of these vectors. Subsequently, after

obtaining the time-t regression coefficients, we manipulate the current

estimates, inserting them into (3.7):

βADJ
t = ât + b̂

(1)
t β

(1,unadj)
t + b̂

(2)
t β

(2,unadj)
t . (3.7)

βADJ
t is the vector of adjusted estimates at time t and ât, b̂

(1)
t , and b̂(2)t are

the respective estimated regression coefficients.21

The results are presented in Table 3.4. We reexamine the models

HIST, HF5,1 mon, and BV. Additionally, we study simple combinations

of estimators where, e.g., BV_HF25 implies that BV and HF5,1 mon are

combined placing a weight of 25 % in the model formerly mentioned,

and BV_HF_HIST33 refers to a combined estimator placing a weight of

one third to each, BV, HF5,1 mon, and HIST. Furthermore, we have uni-

and multivariate model combinations obtained as described above. These
19We start the procedure after having twelve months of estimates and realizations

(i.e., sixty observations for both the dependent and independent variable) to perform the
bias-removal.

20We also try a rolling window approach. The results, however, suggest that the
expanding window approach is indeed superior.

21Note that now β
(1,unadj)
t and β(2,unadj)

t are assigned a t-subscript, since we only use
the vector of current estimates instead of the pooled vector of all previous estimates.
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estimators are indicated with the superscript “bias”. It can be seen that

the simple ad hoc combination of BV and HF5,1 mon obtains the lowest

average estimation errors. These are significantly lower compared to the

initial models of BV, HF5,1 mon, and HIST for at least one out of the five

portfolios in RMSE and RMedSE, respectively. Looking at the individual

bias-corrected models, the average RMSE can be slightly reduced compared

to the initial models. However, these reductions are mostly insignificant.

Looking at ex ante optimal combinations of estimators, it also appears

that the estimation accuracy can be slightly, but insignificantly, improved

for most possible combinations in relation to their constituents. The ex

ante optimal combination of BV and HF5,1 mon delivers significantly more

precise estimates compared to HIST and HF5,1 mon for at least one portfolio

in RMSE and four portfolios in RMedSE. However, the simple fifty-fifty

combination of both models yields an even lower average RMSE. Although

this difference is not significant, given the simplicity of the approach it can

be regarded as clearly favorable.22

Overall, it appears to be valuable to use a combination of the

high-frequency and BV estimators. An ex ante optimal combination delivers

proper estimation accuracy. However, a simple combination of the two

estimators performs even slightly better.

3.3.6 Beta and Subsequent Returns

In this section, we examine the economic value of beta predictability, namely

the relation of current estimates for beta and subsequent returns. A beta

estimation methodology is favorable if a higher estimate is associated with a
22We also consider the Bayesian shrinkage approach proposed by Diebold & Pauly

(1990) with the empirical Bayes estimator and the prior of equal weights and zero
intercept for all combinations examined. The results differ only slightly from those of
just the regression approach, while the simple ad hoc combination of BV and HF5,1 mon

with equal weights still yields lower average estimation errors.
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higher expected return during the following period. If the CAPM is a valid

asset pricing model, there should be a positive and monotonic relationship

between firms’ betas and their expected returns.23 Motivated by these

theoretical insights, we set out to investigate whether the beta forecasts

are consistent with these predictions.

To perform the analysis, for each approach and at the end of each

month, we sort the stocks into N portfolios according to their current beta

estimate. We compute portfolio betas and excess returns over the subsequent

six months as value-weighted averages. This approach has the advantage

that on the one hand it maximizes the spread in expected beta and on the

other hand keeps the portfolio properties stable, while betas of individual

assets may vary more strongly over time.

For the first part of the analysis, we sort the stocks into five portfolios

and examine their average excess returns, testing whether the pattern

in returns is monotonically increasing with beta. The results are shown

in Panel A of Table 3.5. This table delivers a few insights that appear

noteworthy. First, we can detect, respectively, that the risk–return relation

of the historical estimators employing daily data (HIST, HIST6 mon) are

rather flat or the increments in average portfolio returns appear erratic. The

overall pattern is even slightly negative for the high-frequency estimators,

while for the BV estimators the risk–return relation is increasing on average.

To thoroughly test for a monotonic pattern between portfolio betas and

returns, we employ the monotonicity test of Patton & Timmermann (2010).

To detect a significantly positive beta-return relation, one needs to be able

to reject the null hypothesis of a monotonically decreasing relation, while

not being able to reject the hypothesis of a monotonically increasing pattern.

Overall, we cannot detect a significantly monotonically relationship for any
23Furthermore, if the CAPM is not valid, the market portfolio is still a risk factor in

many models, e.g., Fama & French (1993) or Hou, Xue, & Zhang (2015).
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of the approaches. The lowest p-values of the test for a monotonically

decreasing pattern are obtained for BV and BV6 mon. However, they are still

above 10 %. After all, it might be hard to detect significant monotonicity

since, when doing the empirical examination, the theoretically always

positive relation between beta and expected returns flips around when

applying it to beta vs. realized returns in times of negative realized market

excess returns (Pettengill, Sundaram, & Mathur, 1995). While average

returns ought still be higher for the high-beta portfolio, the monotonically

decreasing pattern during these periods most likely prevents us from being

able to reject the overall hypothesis of a monotonically decreasing pattern.

To further explore the risk–return relation, we examine cross-sectional

regressions in the spirit of Black et al. (1972). Specifically, we build ten,

twenty-five, and fifty portfolios following the procedure outlined above. For

each portfolio and methodology, we compute the averages of the ex ante

portfolio betas and ex post excess returns. Finally, we regress the vector

of average realized portfolio excess returns on the vector of average betas.

For an approach to work well, the intercept estimate should be close to

and indistinguishable from zero. Furthermore, the slope coefficient ought to

be significantly different from zero to indicate a positive relation between

risk and returns. To validate one of the basic CAPM predictions, the slope

coefficient, in magnitude, should also be close to 7.1 % which is the average

annualized market excess return during the period under investigation, using

the S&P 500 total return index as proxy for the market portfolio.

The empirical results can be found in Panel B of Table 3.5. It turns

out that none of the models fully matches the predictions made by the

CAPM. For all approaches and independent of the number of portfolios

formed, the intercept estimate is significantly different from zero. The

intercept parameters for the historical approaches relying on daily return

data are around 5 %. For ten portfolios, none of the slope parameters
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Table 3.5: Return Statistics and Cross-Sectional Regressions

This table reports return statistics and cross-sectional regressions in the manner of

Black et al. (1972). For each methodology, we build five (Panel A), ten, twenty-five, and

fifty (Panel B) portfolios into which the stocks are allocated in ascending order according

to their current beta estimates. We determine portfolio betas and excess returns over

the subsequent six months as value-weighted averages. Excess returns are annualized.

Panel A presents return statistics. The lines exp. beta denote the average expected

portfolio beta, while av. ret indicates the average subsequent portfolio excess return

of each portfolio. p(decr.) and p(incr.) denote the p-values of the monotonicity test of

Patton & Timmermann (2010), with the null hypothesis of monotonically decreasing and

monotonically increasing relation of beta and returns, respectively. In panel B, we regress

the portfolios’ average excess return over rolling six-month windows on the average beta

estimates for the respective portfolios. Const. and Slope denote the regression intercept

and slope, while p-value indicates the respective p-value using Ordinary Least Squares

(OLS) standard errors. The rows adj R2 present the adjusted R2 of the regressions. The

stars indicate significance with one star (*) denoting significance at 10 %, two (**) at 5

%, and three (***) stars at 1 %.

Panel A. Return Statistics

1 2 3 4 5 5 minus 1 p(decr.) p(incr.)

HIST exp. beta 0.52 0.76 0.94 1.17 1.61 1.09
av. ret 0.0658 0.0722 0.0662 0.0721 0.0687 0.0029 (0.353) (0.331)

HIST6 mon exp. beta 0.48 0.74 0.94 1.18 1.65 1.17
av. ret 0.0614 0.0714 0.0684 0.0800 0.0681 0.0067 (0.302) (0.667)

HF5 exp. beta 0.53 0.71 0.85 1.05 1.51 0.98
av. ret 0.0812 0.0739 0.0692 0.0724 0.0682 -0.0129 (0.390) (0.260)

HF5,1 mon exp. beta 0.48 0.69 0.86 1.07 1.58 1.10
av. ret 0.0751 0.0777 0.0682 0.0784 0.0731 -0.0019 (0.637) (0.626)

BV exp. beta 0.64 0.84 0.99 1.17 1.52 0.87
av. ret 0.0680 0.0657 0.0842 0.0838 0.0922 0.0241 (0.241) (0.847)

BV6 mon exp. beta 0.63 0.84 0.99 1.18 1.53 0.89
av. ret 0.0609 0.0688 0.0764 0.0870 0.0891 0.0282 (0.134) (0.561)

BV5 exp. beta 0.68 0.85 0.98 1.15 1.51 0.83
av. ret 0.0687 0.0680 0.0870 0.1007 0.0905 0.0218 (0.278) (0.824)

BV_HF50 exp. beta 0.59 0.78 0.92 1.11 1.51 0.93
av. ret 0.0684 0.0668 0.0713 0.0829 0.0767 0.0083 (0.240) (0.653)
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Table 3.5: Return Statistics and Cross-Sectional Regressions (continued)

Panel B. Cross-Sectional Regressions

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5 BV_HF50

10 Portfolios
Const. 0.0655*** 0.0632*** 0.0836*** 0.0805*** 0.0416*** 0.0432*** 0.0453*** 0.0612***
p-value (0.000) (0.000) (0.000) (0.000) (0.002) (0.000) (0.005) (0.000)
Slope 0.0063 0.0086 -0.0110 -0.0067 0.0374*** 0.0340*** 0.0382*** 0.0138
p-value (0.452) (0.169) (0.119) (0.143) (0.002) (0.001) (0.008) (0.130)
adj R2 0.07 0.22 0.28 0.25 0.72 0.75 0.61 0.26

25 Portfolios
Const. 0.0645*** 0.0659*** 0.0876*** 0.0779*** 0.0544*** 0.0502*** 0.0541*** 0.0596***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0094 0.0086 -0.0145*** -0.0015 0.0263*** 0.0291*** 0.0306*** 0.0176***
p-value (0.192) (0.184) (0.009) (0.722) (0.004) (0.000) (0.000) (0.003)
adj R2 0.07 0.08 0.26 0.01 0.30 0.52 0.45 0.32

50 Portfolios
Const. 0.0661*** 0.0684*** 0.0850*** 0.0799*** 0.0565*** 0.0530*** 0.0593*** 0.0639***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0109* 0.0091 -0.0079* -0.0005 0.0273*** 0.0292*** 0.0271*** 0.0166***
p-value (0.088) (0.114) (0.082) (0.895) (0.001) (0.000) (0.000) (0.001)
adj R2 0.06 0.05 0.06 0.00 0.22 0.38 0.30 0.20

for the historical estimators is significant. However, with the number of

portfolios, significance increases. For fifty portfolios, the slope coefficients

for the one-year historical daily approach is significant at 10 %. For the

high-frequency historical estimators, the intercept estimate is about 8 %

which, together with the usually insignificant or even slightly significantly

negative slope estimates, implies a flat relation of beta and returns. The

result that high-frequency beta is not priced in the cross-section of stock

returns is consistent with recent evidence in Bollerslev et al. (2015) who

show that continuous and total beta, as opposed to discontinous beta, do not

adhere a significant price of risk. Turning the focus on the BV models, the

intercept estimate is typically smaller than that for the historical estimators

with values around 5 %. However, it is still highly significant in all cases,

already contradicting one of the CAPM implications. The slope estimates

for the BV models lie between 2.6 % and 3.8 % in magnitude, which is

too small compared to the average market excess return, contradicting the
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second prediction of the CAPM. On the other hand, the slope coefficients are

highly significant, at least implying a positive risk–return relation, maybe

not with the magnitude desired but substantial nevertheless. As is expected,

given the results outlined before, the combination of the high-frequency

estimator and BV implies a positive, though weaker compared to solely

using BV, relation of beta and subsequent excess returns.

The particularly bad performance of the high-frequency estimators

in detecting a relationship between risk and returns at all may appear

surprising at the first glance, since looking at the statistical examination,

it performs notably well. Overall, however, it seems that BV contains

information about the cross-section of future returns beyond that of

any of the historical approaches. The major reason for that is probably

that BV uses option-implied volatilities over a time period matching

the evaluation horizon. This means that the procedure uses inherently

forward-looking information, whereas all historical approaches have to rely

on the assumption that beta, and hence the risk–return trade-off, is stable

throughout both the estimation and evaluation horizons. Furthermore, the

evaluation approach presented in this section strongly loads on measurement

errors of the individual approaches by sorting according to the respective

current estimates. This means that high measurement error stocks are

likely to be clustered in the extreme portfolios, preventing the errors

from being fully diversified in these portfolios. Consequently, it appears

that measurement errors are stronger in the historical, and particularly

high-frequency, estimators for some stocks. Using the MSE decomposition

suggested by Mincer & Zarnowitz (1969) delivers some support for this

conjecture. While the average RMSE, using the initial specification with

five portfolios sorted by a common instrument, are approximately equal

for BV and the high-frequency models, the bias component for BV is
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substantially higher (about 15 % of total MSE compared to roughly 2 %).24

The inefficiency part is approximately equal around 10 % for each of the

approaches, while the random error part, in turn, is substantially higher for

the high-frequency models (around 88 % vs. 75 % of the total MSE).

3.3.7 Downside Beta

In this section, we examine the estimation accuracy of different models for

downside beta. This is important since several recent studies show that

downside beta is an important factor for pricing the cross-section of returns

for stocks and other asset classes (e.g., Ang et al., 2006a; Lettau et al.,

2014). For the estimation of downside beta, however, one has typically to

rely on long estimation windows in order to get sufficient data points that

provide a reliable estimate. Therefore, the availability of high-frequency data

is potentially crucial, since, for any potential specification, more data points

are available and hence a more precise estimation ought to be possible. To

do the analysis, we have to adjust our main models to estimate downside

beta. Subsequently, we examine the statistical and economic properties of

these estimators.

Since the estimation changes slightly for conditional beta factors, we

quickly outline how we adjust our main models. Realized downside beta is

estimated as follows:

βR,−
j,t =

∑N
τ=1 rj,τrM,τI[rM,τ < θ]∑N
τ=1 r

2
M,τI[rM,τ < θ]

. (3.8)

I[rM,τ < θ] is an indicator function returning the value one if the condition in

brackets is fulfilled and zero otherwise. θ is an exogenously defined threshold.
24The average total RMSE of BV is 0.099 compared to 0.105 for HF5 and 0.132 for

HF5,1 mon, while nothing can be stated about significance since each of the approaches
is sorted differently and therefore the estimates of beta are to be evaluated by different
estimates for realized beta.
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We define the threshold as zero.25 We estimate historical beta with

βHIST,−
j,t =

cov(rj, rM |rM < θ)

var(rM |rM < θ)
. (3.9)

The hybrid downside beta is obtained as

βBV,−
j,t =

σQ,−
j,t

∑N
i=1(ωi,tσ

Q,−
i,t ρ

Q,−
ji,t )

(σQ,−
M,t )

2
, (3.10)

with σQ,−
j,t and σQ,−

M,t being the option-implied downside volatilities while

ρQ,−ji,t is the risk-neutral downside correlation applying the transformation of

physical to risk-neutral correlations suggested by Buss & Vilkov (2012).

For the hybrid approach to be obtainable using the types of options

currently available we need the assumption that the relative variance risk

premium conditional on an asset’s return being below a certain threshold

is the same as that conditional on the market return being below the

corresponding threshold. This implies that the following relation holds:

varP(rj|rj < θ)

varP(rj|rM < θ)
=

varQ(rj|rj < θ)/RV RPj
varQ(rj|rM < θ)/RV RPj

(3.11)

=
varQ(rj|rj < θ)

varQ(rj|rM < θ)
= ν,

where RVRPj = varQ(rj)/varP(rj) denotes the relative variance risk

premium of asset j. Further assuming that the quantity ν obtained with

the conditional variances from the historical relation under P is stable over

short horizons, we can convert the implied variance conditional on the asset’s

return being below θ to the conditional variance, given the market return is

below the corresponding threshold. We obtain ν using the past one year of

daily returns and, subsequently, transform varQ(rj|rj < θ) to varQ(rj|rM < θ)

dividing it by ν.26

25For the sake of brevity we do not report the results on other downside thresholds
as, e.g. the average market return during the sample period (Ang et al., 2006a), or the
average market return during the sample period minus one sample standard deviation
(Lettau et al., 2014). The results using these thresholds are qualitatively similar.

26We further describe the procedure of obtaining the lower partial moments in Section
B.1 in the appendix to this chapter.
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Table 3.6: Estimation Errors: Downside Beta

This table reports the out-of-sample estimation errors of competing estimators for

five-minute realized downside beta over the time horizon of six months for each portfolio.

We define the downside threshold as θ = 0. We build five quintile portfolios into

which the stocks are allocated in ascending order according to their historical downside

beta in the sorting period (taking place directly before the estimation period for

historical downside beta without overlap and with equal length). We determine portfolio

betas as value-weighted averages. The first row reports the average root mean squared

errors of the estimation models over the five portfolios. The lowest error among all

approaches is indicated by italic font. The remainder of the table reports the differences

in estimation errors. The upper triangular matrix reports the differences in root mean

squared estimation errors, averaged over the five portfolios. Similarly, the lower triangular

matrix reports the average root median differences of estimation errors. We compute the

difference between the errors of the model [name in row] and those of the model [name

in column]. The absolute numbers in parentheses indicate the share of portfolios for

which the difference is significant at 5 % (e.g., 0.4 indicates that the differences for two

out of five portfolios are statistically significant). If the differences are significant for all

five portfolios, the figure is printed in bold font. Significance is tested by the modified

Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrix, respectively. The sign indicates the direction of the significant differences.

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5 BV_HF50

avg. 0.1143 0.1140 0.0864 0.0932 0.0848 0.0862 0.0872 0.0697

HIST 0.0003 0.0279 0.0210 0.0294 0.0280 0.0270 0.0445
(0.0) (0.0) (0.0) (0.2) (0.0) (0.0) (0.8)

HIST6 mon -0.0003 0.0276 0.0207 0.0291 0.0277 0.0268 0.0443
(0.0) (0.4) (0.2) (0.2) (0.2) (0.0) (0.8)

HF5 -0.0153 -0.0149 -0.0068 0.0016 0.0002 -0.0008 0.0167
(-0.2) (-0.6) (0.0) (0.0) (0.0) (0.0) (0.0)

HF5,1 mon -0.0139 -0.0136 0.0013 0.0084 0.0070 0.0060 0.0235
(-0.2) (-0.2) (0.0) (0.0) (0.0) (0.0) (1.0)

BV -0.0178 -0.0174 -0.0025 -0.0038 -0.0014 -0.0024 0.0151
(-0.2) (0.0) (0.0) (0.0) (0.0) (0.0) (0.4)

BV6 mon -0.0156 -0.0152 -0.0003 -0.0016 0.0022 -0.0010 0.0165
(-0.2) (0.0) (0.0) (0.2) (0.0) (0.0) (0.4)

BV5 -0.0157 -0.0154 -0.0004 -0.0018 0.0020 -0.0002 0.0175
(-0.2) (0.0) (0.0) (0.0) (0.0) (0.0) (0.2)

BV_HF50 -0.0247 -0.0244 -0.0095 -0.0108 -0.0070 -0.0092 -0.0090
(-0.6) (-0.6) (0.0) (-0.6) (-0.4) (-0.4) (-0.4)
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Table 3.7: Cross-Sectional Regressions: Downside Beta

This table reports cross-sectional regressions in the manner of Black et al. (1972). We

define the downside threshold as θ = 0. For each methodology, we build ten, twenty-five,

and fifty portfolios into which the stocks are allocated in ascending order according

to their current estimates. We determine portfolio betas and excess returns over the

subsequent six months as value-weighted averages. Excess returns are annualized. We

regress the portfolios’ average excess return over rolling six-month windows on the average

beta estimates for the respective portfolios. Const. and Slope denote the regression

intercept and slope, while p-value indicates the respective p-value using OLS standard

errors. The rows adj R2 present the adjusted R2 of the regressions. The stars indicate

significance with one star (*) denoting significance at 10 %, two (**) at 5 %, and three

(***) stars at 1 %.

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5 BV_HF50

10 Portfolios
Const. 0.0865*** 0.0762*** 0.0876*** 0.0756*** 0.0634*** 0.0516*** 0.0653*** 0.0630***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0089 -0.0022 -0.0146* -0.0019 0.0184*** 0.0284*** 0.0193** 0.0132**
p-value (0.196) (0.812) (0.068) (0.762) (0.005) (0.000) (0.018) (0.030)
adj R2 0.20 0.01 0.36 0.01 0.64 0.87 0.52 0.47

25 Portfolios
Const. 0.0839*** 0.0728*** 0.0874*** 0.0759*** 0.0612*** 0.0557*** 0.0672*** 0.0637***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0043 0.0052 -0.0129** 0.0003 0.0227*** 0.0271*** 0.0192*** 0.0149**
p-value (0.531) (0.457) (0.017) (0.942) (0.000) (0.000) (0.003) (0.017)
adj R2 0.02 0.02 0.22 0.00 0.59 0.71 0.33 0.22

50 Portfolios
Const. 0.0840*** 0.0752*** 0.0865*** 0.0767*** 0.0636*** 0.0574*** 0.0713*** 0.0653***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0028 0.0053 -0.0083 0.0027 0.0223*** 0.0282*** 0.0167*** 0.0174***
p-value (0.629) (0.314) (0.109) (0.498) (0.000) (0.000) (0.002) (0.001)
adj R2 0.00 0.02 0.05 0.01 0.42 0.47 0.19 0.22
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Table 3.6 presents the results for estimation accuracy of our main

models. Regarding the individual models, BV yields the lowest average

RMSE while that of HF5 is only slightly higher and the historical models

using daily return data yield the highest estimation errors. However,

the differences among the individual models are insignificant most of

the time. Regarding the cross-sectional relation of downside beta and

subsequent returns, the results are presented in Table 3.7. A significantly

positive relation of downside beta and subsequent returns can be detected

neither for the historical daily nor for the high-frequency models. For the

high-frequency estimators the relation is even significantly negative in two

instances. For the hybrid models, independently of the specification, we

detect a significantly positive relation of downside beta and subsequent

returns. The slope estimates are at around 2–3 % smaller in magnitude

compared to those for “total” beta presented in Table 3.5. Overall, the

results on estimation and cross-sectional pricing of partial downside beta

are qualitatively similar to those of “total” beta.

3.4 Robustness

3.4.1 Long-Run vs. Short-Run Estimation Accuracy

To examine the robustness of our results we perform the evaluation

using different time horizons, namely one, three, twelve, eighteen, and

twenty-four months. We estimate the values for option-implied methods

using options with the appropriate time to maturity (e.g., one month

for the one-month time horizon, etc.) and adjust the estimation horizon

for high-frequency models to the respective time-frame, evaluating all the

methods using realized beta over the subsequent one, three, twelve, eighteen,

and twenty-four months, respectively.
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Table 3.8: Estimation Errors: Different Time Horizons

This table reports the out-of-sample estimation errors of competing estimators, for

realized beta over time horizons of one (Panel A), three (Panel B), twelve (Panel C),

eighteen (Panel D), and twenty-four (Panel E) months for each portfolio. We build five

quintile portfolios into which the stocks are allocated in ascending order according to

their historical beta in the sorting period (taking place directly before the estimation

period for historical beta without overlap and with equal length). We determine portfolio

betas as value-weighted averages. In each Panel, the first row reports the average root

mean squared errors of the estimation models over the five portfolios. The lowest errors

among all approaches are indicated by italic font. The remainder of the panels report

the difference in estimation errors. The upper triangular matrices report the differences

in root mean squared estimation errors, averaged over the five portfolios. Similarly, the

lower triangular matrices report the average root median differences of estimation errors.

We compute the difference between the errors of the model [name in row] and those of

the model [name in column]. The absolute numbers in parentheses indicate the share

of portfolios for which the difference is significant at 5 % (e.g., 0.4 indicates that the

differences for two out of five portfolios are statistically significant). If the differences are

significant for all five portfolios, the figure is printed in bold font. Significance is tested

by the modified Diebold–Mariano and the Wilcoxon signed rank tests for the upper and

lower triangular matrices, respectively. The sign indicates the direction of the significant

differences.

Panel A. One Month

HIST HIST1 mon HF5 BV BV1 mon BV5 BV_HF50

avg. 0.1192 0.1255 0.0798 0.0938 0.1014 0.1026 0.0752

HIST -0.0063 0.0394 0.0254 0.0178 0.0166 0.0440
(-0.2) (1.0) (0.6) (0.4) (0.4) (1.0)

HIST1 mon 0.0076 0.0457 0.0318 0.0241 0.0230 0.0504
(0.4) (1.0) (0.8) (0.6) (0.4) (1.0)

HF5 -0.0169 -0.0244 -0.0140 -0.0216 -0.0228 0.0046
(-0.8) (-1.0) (-0.4) (-0.6) (-0.6) (0.6)

BV -0.0053 -0.0129 0.0115 -0.0076 -0.0088 0.0186
(-0.4) (-1.0) (0.6) (-0.2) (-0.4) (1.0)

BV1 mon -0.0018 -0.0094 0.0150 0.0035 -0.0012 0.0263
(-0.4) (-0.6) (0.8) (0.2) (0.0) (1.0)

BV5 0.0010 -0.0066 0.0178 0.0063 0.0028 0.0274
(0.0) (-0.6) (0.8) (0.6) (0.2) (1.0)

BV_HF50 -0.0197 -0.0272 -0.0028 -0.0143 -0.0178 -0.0206
(-1.0) (-1.0) (-0.2) (-1.0) (-1.0) (-1.0)
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Table 3.8: Estimation Errors: Different Time Horizons (continued)

Panel B. Three Months

HIST HIST3 mon HF5 HF5,1 mon BV BV3 mon BV5 BV_HF50

avg. 0.1174 0.1070 0.0750 0.0796 0.0866 0.0897 0.1032 0.0700

HIST 0.0105 0.0424 0.0379 0.0308 0.0277 0.0142 0.0474
(0.0) (0.6) (0.4) (0.4) (0.4) (0.2) (1.0)

HIST3 mon -0.0043 0.0320 0.0274 0.0203 0.0172 0.0038 0.0370
(0.0) (1.0) (0.6) (0.2) (0.2) (0.2) (1.0)

HF5 -0.0184 -0.0142 -0.0046 -0.0117 -0.0147 -0.0282 0.0050
(-0.8) (-0.8) (-0.4) (-0.2) (-0.6) (-0.6) (0.2)

HF5,1 mon -0.0169 -0.0126 0.0015 -0.0071 -0.0102 -0.0236 0.0096
(-0.6) (-0.6) (0.2) (-0.2) (-0.4) (-0.4) (0.6)

BV -0.0089 -0.0046 0.0096 0.0081 -0.0031 -0.0165 0.0167
(-0.4) (-0.4) (0.2) (0.2) (0.0) (-0.4) (0.8)

BV3 mon -0.0088 -0.0046 0.0096 0.0081 0.0000 -0.0134 0.0198
(-0.4) (-0.4) (0.4) (0.2) (0.0) (-0.2) (0.8)

BV5 -0.0027 0.0016 0.0158 0.0143 0.0062 0.0062 0.0332
(-0.2) (-0.4) (0.4) (0.2) (0.4) (0.4) (0.8)

BV_HF50 -0.0226 -0.0183 -0.0042 -0.0057 -0.0137 -0.0138 -0.0200
(-1.0) (-1.0) (-0.2) (-0.6) (-0.8) (-0.8) (-0.6)

Panel C. Twelve Months

HIST HF5 HF5,1 mon BV BV5 BV_HF50

avg. 0.1405 0.1216 0.1070 0.1045 0.1290 0.0910

HIST 0.0189 0.0335 0.0360 0.0115 0.0495
(0.0) (0.0) (0.0) (0.0) (0.0)

HF5 -0.0080 0.0146 0.0171 -0.0074 0.0306
(-0.2) (0.0) (0.0) (0.0) (0.0)

HF5,1 mon -0.0137 -0.0057 0.0025 -0.0220 0.0160
(0.0) (0.0) (0.0) (0.0) (0.2)

BV -0.0167 -0.0086 -0.0030 -0.0245 0.0135
(0.0) (0.0) (0.0) (0.0) (0.0)

BV5 -0.0143 -0.0062 -0.0006 0.0024 0.0380
(0.0) (0.0) (0.0) (0.2) (0.0)

BV_HF50 -0.0228 -0.0147 -0.0091 -0.0061 -0.0085
(-0.2) (-0.4) (0.0) (0.0) (-0.2)
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Table 3.8: Estimation Errors: Different Time Horizons (continued 2)

Panel D. Eighteen Months

HIST HIST18 mon HF5 HF5,1 mon BV BV18 mon BV5 BV_HF50

avg. 0.1559 0.1620 0.1385 0.1247 0.1154 0.1121 0.1375 0.1038

HIST -0.0061 0.0173 0.0311 0.0404 0.0437 0.0184 0.0521
(0.2) (0.0) (0.0) (0.0) (0.0) (0.0) (0.2)

HIST18 mon 0.0064 0.0235 0.0373 0.0466 0.0499 0.0245 0.0582
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

HF5 -0.0014 -0.0078 0.0138 0.0231 0.0264 0.0010 0.0347
(0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

HF5,1 mon -0.0058 -0.0122 -0.0044 0.0093 0.0126 -0.0128 0.0209
(0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

BV -0.0168 -0.0232 -0.0154 -0.0110 0.0033 -0.0221 0.0116
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

BV18 mon -0.0169 -0.0233 -0.0155 -0.0111 -0.0001 -0.0254 0.0083
(0.0) (0.0) (0.0) (0.0) (0.2) (0.0) (0.0)

BV5 -0.0167 -0.0231 -0.0154 -0.0110 0.0001 0.0002 0.0337
(0.0) (0.0) (0.0) (0.0) (0.0) (-0.2) (0.0)

BV_HF50 -0.0170 -0.0234 -0.0156 -0.0112 -0.0002 -0.0001 -0.0003
(0.0) (-0.2) (0.0) (-0.2) (0.0) (0.0) (0.0)

Panel E. Twenty-Four Months

HIST HIST24 mon HF5 HF5,1 mon BV BV24 mon BV5 BV_HF50

avg. 0.1649 0.1722 0.1458 0.1372 0.1215 0.1201 0.1421 0.1109

HIST -0.0074 0.0191 0.0276 0.0433 0.0448 0.0227 0.0540
(0.2) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

HIST24 mon 0.0254 0.0264 0.0350 0.0507 0.0521 0.0301 0.0614
(0.0) (0.0) (-0.2) (0.2) (0.2) (0.0) (0.2)

HF5 0.0179 -0.0075 0.0086 0.0243 0.0257 0.0037 0.0349
(0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

HF5,1 mon 0.0010 -0.0243 -0.0169 0.0157 0.0171 -0.0049 0.0264
(0.0) (0.0) (0.0) (0.2) (0.2) (0.0) (0.2)

BV -0.0173 -0.0426 -0.0352 -0.0183 0.0014 -0.0206 0.0107
(0.0) (0.0) (-0.2) (0.0) (0.0) (0.0) (-0.2)

BV24 mon -0.0188 -0.0442 -0.0367 -0.0199 -0.0016 -0.0220 0.0093
(0.0) (0.0) (0.0) (0.0) (-0.2) (0.0) (-0.2)

BV5 -0.0163 -0.0416 -0.0342 -0.0173 0.0010 0.0025 0.0313
(0.0) (0.0) (0.0) (0.0) (-0.2) (0.0) (0.0)

BV_HF50 -0.0134 -0.0388 -0.0313 -0.0145 0.0038 0.0054 0.0029
(0.0) (0.0) (-0.2) (0.0) (0.0) (0.0) (0.0)
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Panel A of Table 3.8 reports the estimation errors of our main methods

and their significance for the one-month evaluation period. We find that

using this evaluation horizon the five-minute high-frequency estimator

yields the lowest estimation errors among the individual models. These

are significantly lower compared to those of the historical models relying

on daily return data for at least four of the five portfolios. Compared

to BV, the RMSE is significantly lower for two portfolios. Consequently,

the relation is not entirely clear, but there is strong indication that for

the one-month time horizon one should rely on HF5. The superiority

of the one-month high-frequency estimator indicates that beta is quite

stable over the short term and the argument of Lewellen & Nagel (2006),

that these short-term estimates deliver proper conditional forecasts over

short time horizons, appears to hold. The combined estimator BV_HF50,

however, yields estimation errors that are significantly lower for all portfolios

compared to all other approaches except HF5. Compared to HF5, the RMSE

is significantly lower for three and the RMedSE for one portfolio, so the two

models can be ranked with some but not full confidence.

For the three-month time horizon, shown in Panel B of Table 3.8,

the results are quite similar. The high-frequency estimator, now using a

three-month estimation horizon, appears to deliver the best estimation

accuracy among the individual models. While the one-month high-frequency

estimator yields results that are only slightly worse, the differences in RMSE

compared to BV are mostly not significant for the two approaches. Still, the

combination of HF5,1 mon and BV overall yields the best estimation accuracy,

which is significantly better than that of all models but the high-frequency

estimators.

When looking at longer time horizons, namely twelve, eighteen, and

twenty-four months in Panels C – E of Table 3.8, the ranking of the

high-frequency estimators and the BV models topples slightly towards the
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direction of BV. Either the usual twelve-month BV or the BV model using

daily returns over the time horizon matching the evaluation horizon obtain

the lowest average RMSE of all individual models. Naturally, over longer

horizons, the inherently forward-looking information employed in BV yields

better conditional estimates even compared to short historical windows. The

differences, however, are mostly insignificant. Furthermore, independent of

the evaluation horizon, BV_HF50 yields the best estimation accuracy, but

the differences are at most weakly significant, especially compared to the

BV models.

Summing up, especially over short time horizons up to three months,

the high-frequency estimator works quite well concerning the statistical

evaluation methods, while for the twelve-month and longer time horizon(s)

the results on the estimation accuracy of approaches examined become indis-

tinguishable. Over all time horizons, the combination of the high-frequency

and BV estimators delivers the best estimation accuracy.

3.4.2 Further Models

In this section, we examine further possibilities for the estimation of beta.

In particular, we consider further high-frequency estimators using return

frequencies of 15, 30, 75, and 130 minutes and further BV models employing

high-frequency correlations estimated on the basis of 15-, 30-, 75-, and 130-

minute returns.

The results are presented in Table 3.9. It can be seen that the average

RMSE is higher for lower-frequency HF estimators compared to the five-

minute approach, while these differences are mostly not significant. Turning

the focus on the optimal sampling frequency for BV, the average estimation

errors are slightly lower for lower sampling frequencies, with BV based on

daily returns yielding the lowest average RMSE. However, once more, in
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general the differences are insignificant in the majority of the cases.

3.4.3 More Portfolios and Different Sampling Frequen-

cies

We test whether the results obtained so far are robust to building more

portfolios and different sampling frequencies for realized beta used to

evaluate the ex ante estimates. Thus, for the first part of the analysis, we

build ten, twenty-five, and fifty portfolios and in the limit we also consider

the case of individual stocks. Panel A of Table 3.10 reports the results, which

are quite similar to our previous findings. We observe that the average errors

in general increase with the number of portfolios where the diversification of

idiosyncratic measurement errors works less well. Regarding the individual

models, independently of the number of portfolios, one of the high-frequency

estimators obtains the lowest average RMSE. For five and ten portfolios,

the short-term HF5,1 mon has the lowest estimation errors, while for a larger

number of portfolios the six-month HF5 delivers the most precise estimates

on average. The estimation errors of the BV approaches are generally a

bit higher than those of the high-frequency approaches, but smaller than

those of HIST. Looking at the combined estimate, BV_HF50, it turns out

to yield the best estimation accuracy as long as portfolios are formed. It

thereby has the lowest estimation errors for at least 76 % of the portfolios.

Only for individual assets is the average RMSE for HF5 slightly smaller.

The results for different sampling frequencies for realized beta used

to evaluate the ex ante estimates are presented in Panel B of Table 3.10.

The results are consistent with our previous findings. Among the individual

models HF5,1 mon yields the lowest average RMSE independent of the

sampling frequency in realized beta. BV and HF5 also yield relatively low

average RMSEs. Further analysis reveals that, as hitherto, in most cases the
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Table 3.10: Estimation Errors: More Portfolios and Different

Sampling Frequencies

This table reports the root mean squared errors of the competing estimators for

realized beta over the time horizon of six months, for different counts of portfolios (Panel

A) and different frequencies for the evaluation proxy (Panel B). Each month, we form N

portfolios with N amounting to 5, 10, 25, and 50, and in the limit we also consider the

case of solely individual assets (in this case we compute the values of the loss functions

for each asset in every month of our sample period individually and average over all

errors). The stocks are allocated into N portfolios in ascending order according to their

historical beta in the sorting period (taking place directly before the estimation period

for historical beta without overlap and with equal length). The numbers in parentheses

denote the count (as proportions) of portfolio series for which a certain approach yields

the lowest error among those presented in the table. For each specification, the lowest

average errors among all approaches are indicated by italic font.

Panel A. More Portfolios

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5 BV_HF50

5 Portfolios
avg. RMSE 0.1247 0.1177 0.0907 0.0865 0.0915 0.0932 0.1127 0.0749

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

10 Portfolios
avg. RMSE 0.1358 0.1286 0.1001 0.0999 0.1040 0.1062 0.1245 0.0854

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

25 Portfolios
avg. RMSE 0.1538 0.1503 0.1148 0.1200 0.1270 0.1294 0.1438 0.1029

(0.00) (0.00) (0.00) (0.04) (0.00) (0.00) (0.00) (0.96)

50 Portfolios
avg. RMSE 0.1730 0.1734 0.1289 0.1411 0.1508 0.1539 0.1654 0.1207

(0.00) (0.00) (0.22) (0.00) (0.02) (0.00) (0.00) (0.76)

Individual Assets
avg. RMSE 0.3008 0.3247 0.2252 0.2687 0.2984 0.3066 0.3069 0.2325

(0.11) (0.10) (0.20) (0.21) (0.09) (0.08) (0.11) (0.11)
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Table 3.10: Estimation Errors: More Portfolios and Different Sampling
Frequencies (continued)

Panel B. Different Sampling Frequencies

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5 BV_HF50

5 min
avg. RMSE 0.1247 0.1177 0.0907 0.0865 0.0915 0.0932 0.1127 0.0749

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

15 min
avg. RMSE 0.1234 0.1168 0.0938 0.0897 0.0929 0.0949 0.1164 0.0774

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

30 min
avg. RMSE 0.1248 0.1188 0.0979 0.0928 0.0974 0.0994 0.1221 0.0819

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)

75 min
avg. RMSE 0.1282 0.1232 0.1053 0.1000 0.1046 0.1070 0.1306 0.0903

(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00) (0.80)

130 min
avg. RMSE 0.1285 0.1222 0.1055 0.0998 0.1074 0.1087 0.1333 0.0917

(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00) (0.80)

daily
avg. RMSE 0.1337 0.1250 0.1156 0.1103 0.1125 0.1127 0.1384 0.1005

(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00) (0.80)

differences in RMSE are not statistically significant among the individual

models. On the other hand, the combination of BV and HF5,1 mon yields

the lowest overall average RMSE independent of the sampling frequency for

ex post realized beta. These differences are in general significant for some

portfolios in RMSE and RMedSE.

3.4.4 Option and Stock Liquidity

Since both option-implied and high-frequency approaches strongly rely on

precise and up-to-date measures of option and stock prices, it appears

worthwhile to examine a highly liquid subset of our total sample where

these conditions are most probably are. To do that, we repeat our main

analysis for all stocks contained in the DJIA 30. The DJIA includes 30 of

the largest U.S. companies that commonly have more trading activity in
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both stocks and in options compared to other securities.

The results are presented in Table 3.11. Regarding the individual

models, the six-month high-frequency estimator yields the lowest average

RMSE, followed by HF5,1 mon and the BV models. So, also given the

relatively large magnitude in the differences of 0.013 comparing HF5 and

BV, on first glance the presumably better quality data appears to be

more important for the high-frequency estimators compared to the hybrid

BV estimators. Differences in RMSE, however, are mostly not significant.

Considering median estimation errors, the differences are significant more

often. However, still no fully clear statement on which model is to be

preferred can be made since the estimation errors for the BV models are

significantly higher for at most one of the two portfolios only. Additionally,

turning the focus on the combination of BV and HF5,1 mon, this simple model

once more yields the lowest average estimation errors, which turn out to be

significantly lower mainly in RMedSE compared to all models except the

short-term historical and the high-frequency estimators, while in RMSE the

differences are only significant compared to the BV models.27

Consequently, it turns out that the results appear not to be influenced

strongly by the liquidity of the underlying securities and their derivatives

used to extract information on beta.

3.4.5 Cross-Sectional Robustness

The analysis in Section 3.3.6 suggests that only the BV models and, to some

extent the historical models using daily returns, are able to detect a positive

cross-sectional relation of beta and subsequent excess returns. To examine

whether this finding is specific to the models examined and the six-month

evaluation horizon we perform a robustness test using additional models
27At 10 %, however, the RMSE for BV_HF50 is significantly smaller than those of

HIST for both portfolios.
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Table 3.11: Estimation Errors: DJIA

This table reports the out-of-sample estimation errors of competing estimators for

realized beta over the time horizon of six months for each portfolio. We build two

portfolios into which the stocks are allocated in ascending order according to their

historical beta in the sorting period (taking place directly before the estimation period

for historical beta without overlap and with equal length). We determine portfolio

betas as value-weighted averages. The first row reports the average root mean squared

errors of the estimation models over the two portfolios. The lowest error among all

approaches is indicated by italic font. The remainder of the table reports the differences

in estimation errors. The upper triangular matrix reports the differences in root mean

squared estimation errors, averaged over the two portfolios. Similarly, the lower triangular

matrix reports the average root median differences of estimation errors. We compute the

difference between the errors of the model [name in row] and those of the model [name

in column]. The absolute numbers in parentheses indicate the share of portfolios for

which the difference is significant at 5 % (e.g., 0.5 indicates that the differences for one

out of two portfolios are statistically significant). If the differences are significant for

all portfolios, the figure is printed in bold font. Significance is tested by the modified

Diebold–Mariano and the Wilcoxon signed rank tests for the upper and lower triangular

matrix, respectively. The sign indicates the direction of the significant differences.

HIST HIST6 mon HF5 HF5,1 mon BV BV6 mon BV5 BV_HF50

avg. 0.1003 0.1060 0.0783 0.0860 0.0916 0.0913 0.0951 0.0738

HIST -0.0057 0.0221 0.0143 0.0087 0.0090 0.0052 0.0265
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

HIST6 mon -0.0077 0.0277 0.0200 0.0144 0.0147 0.0109 0.0321
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

HF5 -0.0150 -0.0072 -0.0077 -0.0133 -0.0130 -0.0168 0.0044
(-0.5) (0.0) (-0.5) (0.0) (0.0) (0.0) (0.0)

HF5,1 mon -0.0176 -0.0099 -0.0027 -0.0056 -0.0053 -0.0091 0.0121
(-0.5) (0.0) (0.0) (0.0) (0.0) (0.0) (0.5)

BV -0.0014 0.0063 0.0136 0.0162 0.0003 -0.0035 0.0178
(0.0) (0.0) (0.0) (0.5) (0.0) (0.0) (1.0)

BV6 mon -0.0011 0.0066 0.0138 0.0165 0.0003 -0.0038 0.0175
(0.0) (0.0) (0.0) (0.5) (0.0) (0.0) (1.0)

BV5 -0.0017 0.0061 0.0133 0.0160 -0.0002 -0.0005 0.0213
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0) (0.5)

BV_HF50 -0.0221 -0.0144 -0.0072 -0.0045 -0.0207 -0.0210 -0.0205
(-1.0) (0.0) (0.0) (0.0) (-1.0) (-1.0) (-1.0)
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and various alternative estimation and, accordingly, evaluation horizons.

For each approach and time horizon we perform Black et al. (1972) cross-

sectional regressions of average portfolio excess returns on average portfolio

betas using different counts of portfolios. The results on additional models

are presented in Panel A of Table 3.12. It can be seen that the results

are consistent with our previous findings. For the high-frequency models,

the relation of beta and returns is flat, while for the BV high-frequency

models, there is a significantly positive relation of beta and subsequent

excess returns, while the slope is too small in magnitude to match the main

CAPM predictions. This holds independently of the sampling frequency

used for the estimators. For the high-frequency BV models using 15- up to

130-minute sampling frequencies, the estimates for the slope coefficients are

of similar magnitude compared to the main BV models. Further results on

the main models over different time horizons, using twenty-five portfolios,

are presented in Panel B of Table 3.12. These are qualitatively equal to the

results for the six-month time horizon. For the historical models using daily

data, we find a weakly positive relation of beta and subsequent returns

which is most pronounced for the twelve–month time horizon. For other

time-frames, the relation is regularly insignificant. For the high-frequency

estimators, over short time horizons the beta-return relation is flat, while it

is even significantly negative over long time horizons. For the BV models,

the slope estimate is significantly positive for almost any specification and

time horizon. Just as for the six-month time horizon the slope coefficient is

sizable but not quite as large as the average market excess return, while the

intercept estimate is significant in almost every case.
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Table 3.12: Cross-Sectional Regressions: Robustness

This table reports cross-sectional regressions in the style of Black et al. (1972). For

each methodology, we build N portfolios into which the stocks are allocated in ascending

order according to their current estimates. We determine portfolio betas and excess

returns over the subsequent six months as value-weighted averages. We regress the

portfolios’ annualized average excess return over rolling windows on the average beta

estimates for the respective portfolios. In Panel A, we examine the results using additional

models and in Panel B, we present the results for different time horizons building fifty

portfolios, each. Const. and Slope denote the regression intercept and slope, while p-value

indicates the respective p-value using OLS standard errors. The rows adj R2 present the

adjusted R2 of the regressions. The stars indicate significance with one star (*) denoting

significance at 10 %, two (**) at 5 %, and three (***) stars at 1 %. If one model has

already shown up for a certain time-frame, this is indicated by a “–”-sign in the first row.

We abstain from repeatedly reporting these models.

Panel A. Further Models

HF15 HF30 HF75 HF130 BV15 BV30 BV75 BV130

10 Portfolios
Const. 0.0721*** 0.0712*** 0.0765*** 0.0699*** 0.0442*** 0.0454*** 0.0492*** 0.0492***
p-value (0.000) (0.000) (0.000) (0.000) (0.004) (0.006) (0.003) (0.002)
Slope 0.0013 0.0031 -0.0034 0.0032 0.0392*** 0.0374** 0.0330** 0.0315**
p-value (0.839) (0.570) (0.456) (0.540) (0.005) (0.010) (0.015) (0.015)
adj R2 0.01 0.04 0.07 0.05 0.66 0.58 0.54 0.55

25 Portfolios
Const. 0.0793*** 0.0755*** 0.0792*** 0.0722*** 0.0529*** 0.0531*** 0.0536*** 0.0576***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0050 -0.0007 -0.0033 0.0032 0.0320*** 0.0309*** 0.0307*** 0.0260***
p-value (0.412) (0.896) (0.518) (0.560) (0.000) (0.000) (0.000) (0.005)
adj R2 0.03 0.00 0.02 0.01 0.48 0.42 0.43 0.29

50 Portfolios
Const. 0.0809*** 0.0791*** 0.0802*** 0.0744*** 0.0617*** 0.0594*** 0.0622*** 0.0642***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope -0.0039 -0.0019 -0.0014 0.0036 0.0250*** 0.0260*** 0.0241*** 0.0210***
p-value (0.464) (0.689) (0.747) (0.420) (0.000) (0.000) (0.001) (0.002)
adj R2 0.01 0.00 0.00 0.01 0.25 0.28 0.22 0.19
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Table 3.12: Cross-Sectional Regressions: Robustness (continued)

Panel B. Different Time Horizons

HIST HISTτ mon HF5 HF5,1 mon BV BVτ mon BV5 BV_HF50

One Month
Const. 0.0675*** 0.0760*** 0.0754*** – 0.0545*** 0.0667*** 0.0498*** 0.0584***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0029 -0.0002 -0.0032 0.0240** 0.0118 0.0328*** 0.0148
p-value (0.777) (0.984) (0.732) (0.040) (0.242) (0.001) (0.305)
adj R2 0.00 0.00 0.00 0.08 0.03 0.21 0.02

Three Months
Const. 0.0653*** 0.0629*** 0.0749*** 0.0791*** 0.0605*** 0.0533*** 0.0566*** 0.0657***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0085 0.0162** 0.0002 -0.0038 0.0223*** 0.0281*** 0.0274*** 0.0105
p-value (0.244) (0.011) (0.980) (0.361) (0.009) (0.000) (0.000) (0.122)
adj R2 0.03 0.13 0.00 0.02 0.13 0.24 0.28 0.05

Twelve Months
Const. 0.0594*** – 0.0825*** 0.0736*** 0.0458*** – 0.0439*** 0.0596***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0113** -0.0108*** -0.0015 0.0316*** 0.0355*** 0.0136***
p-value (0.017) (0.010) (0.576) (0.000) (0.000) (0.001)
adj R2 0.11 0.13 0.01 0.46 0.37 0.20

Eighteen Months
Const. 0.0619*** 0.0610*** 0.0803*** 0.0731*** 0.0378*** 0.0421*** 0.0368*** 0.0591***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0053 0.0055 -0.0127*** -0.0059** 0.0330*** 0.0301*** 0.0352*** 0.0094**
p-value (0.136) (0.179) (0.003) (0.016) (0.000) (0.000) (0.000) (0.019)
adj R2 0.05 0.04 0.17 0.12 0.30 0.29 0.29 0.11

Twenty-Four Months
Const. 0.0644*** 0.0672*** 0.0919*** 0.0775*** 0.0483*** 0.0481*** 0.0425*** 0.0674***
p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Slope 0.0004 -0.0038 -0.0268*** -0.0129*** 0.0177** 0.0197** 0.0244*** -0.0023
p-value (0.907) (0.501) (0.000) (0.000) (0.029) (0.012) (0.006) (0.534)
adj R2 0.00 0.01 0.30 0.29 0.10 0.12 0.15 0.01

3.5 Conclusion

This study analyzes whether intra-day high-frequency data adds value for

beta estimation. We find that historical beta estimated with high-frequency

returns delivers relatively precise estimates for ex post realized beta.

Especially over short time horizons, high-frequency estimators appear to

deliver accurate conditional estimates. Regarding informational efficiency

and especially for longer time horizons the hybrid beta of Buss & Vilkov
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(2012) employing information from the options market performs equally well

or slightly better compared to the high-frequency estimator. When aiming

to estimate ex post realized beta with high precision, we further show that

it appears worthwhile to impose a simple method to combine both the

historical high-frequency and the hybrid estimate for beta. This approach

consistently delivers the lowest estimation errors that are significantly

lower compared to any of the individual models, especially over short time

horizons.

On the other hand, when evaluating beta estimates by their economic

value, i.e., the cross-sectional predictability of subsequent excess returns,

the hybrid BV approach is clearly favorable. While the approach cannot

fully reconcile empirical observations with the CAPM predictions, at least

it predicts a highly significant risk–return trade-off using beta to proxy for

risk. Historical models using high-frequency or daily return data mostly

imply a flat relation of beta and subsequent returns.

We further show that these results also hold for downside beta and

employing various robustness tests.
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B Appendix

B.1 Model-Free Option-Implied Volatility

The hybrid beta estimation approach is based on option-implied moments.

Therefore we follow Bakshi et al. (2003), who make use of the property

that any payoff can be spanned using a continuum of OTM puts and calls

(Bakshi & Madan, 2000) and Jiang & Tian (2005) to compute model-free

option-implied volatility. For that, we first compute ex-dividend stock prices.

Secondly, for any given stock and trading day, we interpolate implied

volatilities using a cubic spline across moneyness levels (K/S, strike-to-spot),

equally spaced between 0.3 % and 300 %, to obtain a grid of 1,000 implied

volatilities (Chang et al., 2012). Implied volatilities outside the range of

available strike prices are extrapolated using the value for the smallest, resp.

largest, available moneyness level (as in Jiang & Tian, 2005 and Chang et al.,

2012). The volatilities are used to compute Black–Scholes option prices for

calls, C(.), if K/S>1 and puts, P (.), if K/S<1. These are used to obtain

the prices of the volatility (QUAD), the CUBIC, and the quartic (QUART)

contract (Jiang & Tian, 2005):
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QUAD =

∫ ∞
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])3
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The integrals are approximated, following Dennis & Mayhew (2002),

using a trapezoidal rule. The option-implied moments can be computed as:

µQ = er
f
t (T−t) − 1− er

f
t (T−t)

2
QUAD− er

f
t (T−t)

6
CUBIC (B.4)

−e
rft (T−t)

24
QUART,

(σQ)2 = er
f
t (T−t)QUAD− (µQ)2, (B.5)

where rft denotes the risk-free rate and T − t the time to maturity of the

contract. (σQ)2 is the option-implied variance.

To obtain conditional, respectively partial implied moments, we build

on Andersen & Bondarenko (2013) and Andersen, Bondarenko, & Gonzalez-

Perez (2015) who develop the concept of corridor implied volatility which

can be used to split model-free implied volatility into different parts for
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different intervals of the underlying asset price. Specifically, we follow the

steps outlined above to obtain the grid of OTM option prices. Following

on from that we use the alternative approach to obtain model-free implied

volatility pioneered by Britten-Jones & Neuberger (2000) as:

(σQ)2 = 2

∫ ∞

0

M(τ,K)

K2
dK, (B.6)

with M(τ,K) being the minimum price of put and call with strike K. We

impose the threshold Seθ with θ being equal to zero:

(σQ,−)2 = 2

∫
Seθ

0

M(τ,K)

K2
dK. (B.7)

We employ the discrete approximation of the integral using a trapezoidal

rule as described above.
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Chapter 4

Aggregate Uncertainty Affects

Stock Returns∗

4.1 Introduction

An essential distinction between risk and uncertainty has been emphasized

ever since the seminal work of Knight (1921). He defines risk as measurable

uncertainty that can be represented by numerical probabilities while there

is also unmeasurable uncertainty which cannot be captured as easily. In

another very important contribution, Ellsberg (1961) shows that there is a

strong effect of uncertainty on investors’ decisions while controlling for risk.

Keynes (1936, p. 154) describes the impact of uncertainty on prices as “the

outcome of the mass psychology of a large number of ignorant individuals

[which] is liable to change violently as the result of a sudden fluctuation

of opinion due to factors which do not really make much difference to

the prospective yield”. Particularly, when considering the serious market

distortions caused by the recent financial crisis (and the crises before), one
∗This chapter is based on the Working Paper “Aggregate Uncertainty Affects Stock

Returns” authored by Fabian Hollstein and Marcel Prokopczuk, 2015.
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sees that this “mass psychology” cannot be ignored for applications in asset

pricing. Consequently, taking into account uncertainty (ambiguity1) appears

to be a good starting point.

A simple stylized theoretical model, based on the standard Intertem-

poral Capital Asset Pricing Model (ICAPM) with recursive preferences

and consumption uncertainty predicts that, beside the commonly employed

risk-return trade-off, there exists also an uncertainty-return trade-off.

To this end, aggregate uncertainty surrounding the consumption growth

process can be regarded as a state variable. The intuition behind this is

that time-varying aggregate uncertainty induces changes in the investment

opportunity set, as higher uncertainty may lower the expectation of

future market returns or increase expectations of future volatility of stock

returns and hence worsen the expected risk-return trade-off. Furthermore,

apart from a rational model motivation, uncertainty may also be priced

through the channels of individuals with preferences different to standard

expected utility preferences. Ambiguity-averse investors are likely to

demand compensation for holding stocks with high exposure to such

aggregate uncertainty. In a recent experimental study, Füllbrunn, Rau, &

Weitzel (2014) show that, under certain conditions, ambiguity aversion can

be reflected in capital markets.

Our main contribution is that, to the best of our knowledge, we are the

first to examine the pricing of aggregate uncertainty proxied by the Chicago

Board Options Exchange (CBOE) Volatility of the Volatility Index (VVIX),

a natural non-parametric measure of stock market volatility-of-volatility,

in the cross-section of expected stock returns. We further show that

the uncertainty-return trade-off, predicted by a simple theoretical model
1Previous studies use the terms “uncertainty” and “ambiguity” synonymously. We

mostly stick to the term “uncertainty” here, while referring to widespread terms like
“ambiguity aversion” when talking about attitudes toward uncertainty.
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without clear reference to the sign of the trade-off, is priced negatively.

While risk is commonly represented by first-order beliefs, i.e. return

volatility, we follow a plethora of literature which models what Knight called

“unmeasurable uncertainty” with second-order beliefs, i.e. the variation in

the probability distribution of the payoffs (e.g., Segal, 1987; Nau, 2003; Seo,

2009; Baltussen et al., 2015).

In the empirical methodology, we follow Ang et al. (2006a) and Cremers

et al. (2015). Specifically, we estimate factor loadings on innovations

in aggregate uncertainty on the level of individual stocks using daily

returns. We sort stocks into portfolios according to their contemporaneous

factor loadings and examine the portfolio returns over the same period.

This approach clearly meets the first requirement for a factor risk based

explanation, namely that there have to be contemporaneous patterns

between factor loadings and average returns. The second requirement,

that risk exposures are robust to controlling for stock characteristics and

other factor loadings, is addressed by performing double sorts and Fama &

MacBeth (1973) regressions with respect to a battery of control variables.

Our main result is that aggregate uncertainty is a significantly

priced factor in the cross-section of stock returns. We find that stocks

with high sensitivities to innovations in aggregate uncertainty have low

average returns, while stocks with low sensitivities to innovations in

aggregate uncertainty have significantly higher average returns. Sorting

stocks into quintile portfolios, the hedge portfolio buying stocks with

high and selling stocks with low sensitivities to innovations in aggregate

uncertainty experiences an annual value-weighted return and 4-factor alpha

of approximately −11.68 % and −13.88 %, respectively.

As increasing uncertainty is likely to induce a deterioration in the

investment opportunity set, risk-averse investors are likely to be inclined

to hedge against that by buying stocks with high sensitivity toward
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aggregate uncertainty, i.e., stocks that do well when aggregate uncertainty

rises. Furthermore, another potential explanation for our findings is that

ambiguity-averse investors want to hedge against changes in aggregate

uncertainty. Consequently, both rational investors who feature risk-aversion

and investors that exhibit non-expected utility with ambiguity aversion

potentially demand stocks they anticipate will do well if aggregate

uncertainty rises, lowering the average returns of these stocks.

Using double sorts, we find that our results cannot be explained

by beta, size, book-to-market, aggregate volatility, as well as liquidity,

returns distributions characteristics, and various other control variables. In

accordance to the results of the portfolio sorts, using Fama & MacBeth

(1973) regressions, we find that innovations in aggregate uncertainty

command an economically substantial and statistically significant negative

price of risk, with a two-standard deviation increase in aggregate uncertainty

factor loadings being associated with a significant decrease in average annual

returns that ranges from 6.3 % to 18.7 %. We show that our results are

robust to the incorporation of various control variables. We perform several

additional checks to further examine the robustness of our results. Jointly

estimating various factor sensitivities in multivariate regressions, the effect

of aggregate uncertainty remains significant. We also find the effect to

persist when controlling for effects of the recent financial crisis or when

using realized measures of aggregate uncertainty.

The remainder of this chapter is organized as follows. Section 4.2

presents an overview of the related literature. Section 4.3 presents a simple

model, suggesting a trade-off between aggregate uncertainty and returns.

Section 4.4 describes our dataset and methodology. Section 4.5 presents our

empirical results with portfolio sorts and cross-sectional regressions. Section

4.6 checks the robustness of our results. Finally, Section 4.7 concludes.

Detailed variable definitions are provided in Chapter C.1 in the appendix
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at the end of this chapter. Sections C.2 and C.3 of the appendix provide

further robustness analyses.

4.2 Literature Review

We add to a large body of research in asset pricing, a cornerstone being the

development of the Capital Asset Pricing Model (CAPM) by Sharpe (1964),

Lintner (1965), and Mossin (1966). Several authors (e.g., Banz, 1981; Fama

& French, 1992), though, show that market beta, used alone, fails to explain

the cross-sectional variation in asset returns. Addressing this concern, the

ICAPM by Merton (1973) provides an important extension of the classical

CAPM. It is shown that, once investors act to maximize their expected

utility of lifetime consumption instead of only one period, as in the basic

CAPM, current asset demands are affected by the possibility of uncertain

changes in future investment opportunities. Consequently, if there is a state

variable related to changes in the investment opportunity set, the assets’

sensitivities to this state variable should be priced in the cross-section

of returns. Campbell (1993, 1996) provides important extensions to the

ICAPM framework, imposing a loglinear approximation to the budget

constraint instead of assuming decision intervals as infinitely small, with

which long-run effects can be better studied. Very recently, Campbell,

Giglio, Polk, & Turley (2014) extend the Campbell (1993) framework

allowing for stochastic volatiltiy.

Fama & French (1993), among many others, motivate their findings

of a size and book-to-market risk factor with the ICAPM. Subsequently,

Ang et al. (2006b) and Adrian & Rosenberg (2008) show that market

volatility is a priced risk factor in the cross-section of stock returns, carrying
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a significantly negative risk premium.2 Examining market skewness and

kurtosis, Chang, Christoffersen, & Jacobs (2013) find that market skewness

is a priced factor, while kurtosis is not. Furthermore, adding market

skewness and kurtosis decreases the significance of the market volatility

factor. Cremers et al. (2015) separate the effects of jump and volatility

risk and show that both carry a significantly negative risk premium in the

cross-section of stock returns. Han & Zhou (2012) show that the market

variance risk premium (VRP) carries a significantly negative risk premium

as well. We shed further light on the pricing of these factors studying their

relation to aggregate uncertainty.

This chapter is also related to the literature dealing with uncertainty.

Barsky & De Long (1993) argue that there exists substantial uncertainty

about the structure of the aggregate dividend process in the U.S.. Several

papers introduce a setup in which learning about uncertain probabilities is

required (e.g., Pastor & Veronesi, 2003; Leippold, Trojani, & Vanini, 2008;

Ozoguz, 2009; Cremers & Yan, 2012) while others point to the impossibility

of observing probabilities at all (e.g., Hansen, Sargent, & Tallarini, 1999;

Bossaerts, Ghirardato, Guarnaschelli, & Zame, 2010).

Epstein & Wang (1994) show that when introducing uncertainty

indeterminate equilibria can result which can cause sizable volatility. Cao,

Wang, & Zhang (2005) demonstrate that the presence of uncertainty

can lead to limited market participation, and Zhang (2006) reports that

information uncertainty can impose stock price continuation. Anderson,

Ghysels, & Juergens (2009) examine the effect of risk and uncertainty on

expected returns, measuring aggregate uncertainty with the disagreement

among professional forecasters’ expectations. They find empirical evidence

for an uncertainty-return trade-off. As opposed to Anderson et al. (2009),
2Other papers on volatility and the cross-section of returns are Coval & Shumway

(2001), Goyal & Santa-Clara (2003), Bali & Cakici (2008), and Fu (2009).
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we use a market-based measure of aggregate uncertainty which delivers

day-by-day observations instead of a quarterly measure based on the

forecasts of relatively few agents.

We further build upon the results of Bloom (2009) who provides

a structural framework to analyze the impact of uncertainty shocks. In

this framework, higher uncertainty causes firms to make use of their “real

options”, postponing hiring and investment decisions when uncertainty rises.

Consequently, a sharp rise in uncertainty potentially generates recessions.

While Bloom (2009) measures uncertainty with simple volatility and

concentrates on simultaneous effects of a change in uncertainty on all

firms, we extend this point of view by using a more sophisticated measure

for uncertainty, separating the effects of risk and uncertainty and, more

importantly, by allowing for different exposures to aggregate uncertainty of

different firms. While a rise in aggregate uncertainty has only little impact

on some firms, others are affected much more heavily, making these firms

more “risky”.

In their formulation of a structural model with recursive preference

and consumption uncertainty, Bali & Zhou (2015) also show that there

exists both a risk-return as well as an uncertainty-return trade-off. For their

empirical analysis, they substitute consumption volatility-of-volatility with

the market variance risk premium and find a positive coefficient on the

uncertainty-return trade-off. Building upon a similar model as Bali & Zhou

(2015), we choose to use a more direct and intuitive measure of consumption

volatility-of-volatility, and hence aggregate economic uncertainty, namely

market volatility-of-volatility.

Baltussen et al. (2015) use the smooth ambiguity model of Klibanoff,

Marinacci, & Mukerji (2005) to show that second-order beliefs (represented

by volatility-of-volatility) can, on the one hand, be interpreted as a

proxy for uncertainty and, on the other hand, potentially play an
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important role in investor’s utility functions. They further show that

individual stock’s idiosyncratic volatility-of-volatility carries a significantly

negative risk premium. As opposed to this study, Baltussen et al. (2015)

primarily use idiosyncratic volatility-of-volatility and cannot detect a

significant effect using past sensitivities from aggregate factor specifications

with high-minus-low idiosyncratic volatility-of-volatility portfolios or the

volatility-of-volatility from at-the-money (ATM) S&P 500 options. We, in

turn, examine model-free aggregate market volatility-of-volatility, repre-

sented by the VVIX, as a state variable concentrating on systematic instead

of idiosyncratic effects. Barnea & Hogan (2012) show that there is a negative

variance risk premium in VIX options, meaning that investors, on average,

are willing to accept a negative payoff in order to insure against increasing

aggregate uncertainty. This provides further evidence that investors also

take account of aggregate uncertainty. We shed further light on this.

This chapter is also connected to that of Bollerslev, Tauchen, & Zhou

(2009), who extend the long-run risks model of Bansal & Yaron (2004)

incorporating time-varying volatility-of-volatility. They show that, within

the model, volatility-of-volatility has an effect on the equity premium. An

empirical result of Bollerslev et al. (2009) is that the market variance risk

premium significantly explains the time series variation in the equity risk

premium. Drechsler & Yaron (2011) present another general equilibrium

model, which introduces infrequent jumps in the persistent component of

consumption and dividend growth. In these model surroundings, they show

that the variance risk premium is linked to fluctuating volatility, having a

large predictive power for stock market returns. Barndorff-Nielsen & Veraart

(2012) propose a probabilistic model that allows for stochastic volatility-of-

volatility providing further arguments for a relation between volatility-of-

volatility and the variance risk premium. While these papers concentrate

mostly on the variance risk premium and its implications for the equity
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risk premium we employ a much broader dataset using the cross-section of

equity returns and concentrate on the effect of volatility-of-volatility.

Another paper closely related to ours is Huang & Shaliastovich (2014),

who show that there is a volatility-of-volatility risk premium in the

cross-section of S&P 500 and VIX options. However, we study the pricing of

aggregate uncertainty in the cross-section of equity returns. Chen, Chung, &

Lin (2014) develop a general equilibrium model in which, beside market beta

and variance risk, the variance of the market variance affects asset prices.

They measure volatility-of-volatility using high-frequency index option data

and empirically find volatility-of-volatility to carry a significantly negative

risk premium. Our study differs from theirs both theoretically in the model

framework and empirically in that we directly use the VVIX index provided

by the CBOE, instead of a high frequency intraday realized variance measure

of the VIX index. Consequently, we use a forward-looking volatility measure

of forward-looking volatility instead of past variation in forward-looking

volatility. Several papers show that using implied instead of historical

volatility estimates significantly improves the estimation accuracy (e.g.,

Jiang & Tian, 2005; Prokopczuk & Wese Simen, 2014a). While there is

no direct evidence on second order volatility estimation accuracy, it is

intuitively appealing to use the estimation technique that is shown to work

best for both the first and in succession the second order estimation of

current volatility.

4.3 Model Formulation

We build on the results of Campbell et al. (2014) and Bali & Zhou (2015) im-

posing a stylized intertemporal asset pricing model with stochastic volatility

to motivate the existence of both a risk-return and an uncertainty-return

trade-off.
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The representative agent is assumed to have Epstein & Zin (1989)

preferences with the value function Vt as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
V 1−γ
t+1

]) 1
θ

] θ
1−γ

, (4.1)

where Ct is the consumption at time t, and the preference factors of

the representative agent are denoted by δ, the subjective discount factor,

and γ, the coefficient of relative risk-aversion. As is commonly done, for

convenience we define θ = (1− γ) / (1− 1/ψ), with ψ being the elasticity

of intertemporal substitution. As shown by Epstein & Zin (1991), the

corresponding stochastic discount factor (SDF) can be expressed as

Mt+1 =

(
δ

(
Ct
Ct+1

)1/ψ
)θ (

Wt − Ct
Wt+1

)1−θ

, (4.2)

with Wt being the market value of the agent’s consumption stream. The

logarithm of the SDF is then

mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1) rt+1, (4.3)

with rt+1 = ln (Wt+1/ (Wt − Ct)) being the log return on wealth and

gt+1 = ∆ct+1 being the log consumption growth. We follow Bollerslev et al.

(2009) and Bali & Zhou (2015) assuming the following joint dynamics for

consumption growth and consumption growth volatility

gt+1 = µg + σg,tzg,t+1 (4.4)

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1 (4.5)

qt+1 = aq + ρqqt + ϕq
√
qtzq,t+1. (4.6)

µg is the constant mean growth rate, σ2
g,t denotes the conditional variance of

consumption growth, qt represents the volatility uncertainty process, while

zg,t+1, zσ,t+1, and zq,t+1 describe independent i.i.d. N(0, 1) processes. The

parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1, and ϕq > 0.
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Let ωt denote the logarithm of the price-dividend ratio, or price-

consumption or wealth-consumption ratio, of the asset that pays the

consumption endowment. To find the equilibrium, one can conjecture a

solution for ωt as an affine function of the state variables σ2
g,t and qt,

ωt = A0 + Aσσ
2
g,t + Aqqt. (4.7)

Using the standard Campbell & Shiller (1988) approximation rt+1 =

κ0 + κ1ωt+1 − ωt + gt+1, a solution for the coefficients A0, Aσ < 0, and

Aq < 0 can be obtained. Substituting the Campbell & Shiller (1988)

approximation into Equation (4.3) one obtains a pricing kernel without

reference to consumption growth (Bali & Zhou, 2015; Campbell et al., 2014):

mt+1 = θ ln δ +
θ

ψ
κ0 −

θ

ψ
ωt +

θ

ψ
κ1ωt+1 − γrt+1. (4.8)

Assuming a conditional joint lognormal distribution with time-varying

volatility for the asset returns, the risk premium on any asset is given by

Et(rj,t+1)− rf,t +
1

2
V art(rj,t+1) = −Covt (mt+1, rj,t+1) . (4.9)

Inserting the pricing kernel without reference to consumption growth in

Equation (4.8) into Equation (4.9), one can obtain an ICAPM pricing

relation of the following form:

Et(rj,t+1)−rf,t+
1

2
V art(rj,t+1) = γCovt (rt+1, rj,t+1)−

θ

ψ
κ1Covt (ωt+1, rj,t+1) .

(4.10)

Following Bollerslev et al. (2009) and Bali & Zhou (2015), we

substitute out the consumption growth volatility with V art(rt+1) = σ2
g,t +

κ21
(
A2
σ + A2

qϕ
2
q

)
when inserting Equation (4.7) into Equation (4.10). This
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yields:

Et(rj,t+1)− rf,t +
1

2
V art(rj,t+1) +

θ

ψ
κ1AσCovt (V art+1(rt+2), rj,t+1)

= γCovt (rt+1, rj,t+1)

+
θ

ψ
κ1
[
Aσκ

2
1

(
A2
σ + A2

qϕ
2
q

)
− Aq

]
Covt (qt+1, rj,t+1)

= γV art(rt+1)
Covt (rt+1, rj,t+1)

V art(rt+1)

+
θ

ψ
κ1
[
Aσκ

2
1

(
A2
σ + A2

qϕ
2
q

)
− Aq

]
V art(qt+1)

Covt (qt+1, rj,t+1)

V art(qt+1)

≡ Y · βM
j,t + Z · βV

j,t.

(4.11)

Apart from the variance term V art(rj,t+1), and a trade-off of returns with

future variance indicated by Covt (V art+1(rt+2), rj,t+1), there is the usual

risk-return trade-off Y ≡ γV art(rt+1), and an uncertainty-return trade-off

Z ≡ θ
ψ
κ1
[
Aσκ

2
1

(
A2
σ + A2

qϕ
2
q

)
− Aq

]
V art(qt+1) can be detected from this

formulation. At this stage, we deviate from Bali & Zhou (2015) who

proxy consumption volatility-of-volatility qt with the variance risk premium.

Instead, we directly use the asset market volatility-of-volatility to proxy for

this economic uncertainty.

In the following sections, we empirically examine whether the theo-

retical prediction of an uncertainty-return trade-off derived above holds.

Furthermore, the model does not make a clear prediction on the sign of the

uncertainty-return trade-off, as opposed to the risk-return trade-off which

is clearly signed by the coefficient of relative risk-aversion.
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4.4 Data and Methodology

4.4.1 Data

We base our study on all stocks traded on the New York Stock Exchange

(NYSE), the American Stock Exchange (AMEX), and the National

Association of Securities Dealers Automated Quotations (NASDAQ) that

are classified as ordinary common shares (Center for Research in Security

Prices (CRSP) share codes 10 or 11), excluding closed-end funds and REITS

(SIC codes 6720–6730 or 6798), for the sample period between January 01,

2007 and December 31, 2014. We obtain data on the VIX and the VVIX

from the CBOE. The VIX is constructed so that it represents the model-free

30-day implied volatility of the S&P 500 index. On February 24, 2006,

the CBOE began trading options written on the VIX and recently, with

the time series beginning in 2007, the CBOE started reporting the VVIX,

which represents the model-free 30-day implied volatility of the VIX.3 The

beginning of the reporting of the VVIX on January 01, 2007 restricts the

beginning of our sample period to that date.4 For a robustness check, we

also obtain five-minute intraday high-frequency data on the VIX from the

Thompson Reuters Tick History (TRTH) database.

We obtain daily and monthly price data as well as data on

dividend payments, trading volumes, firm age, and shares outstanding

from the CRSP. Following Amihud (2002) and Zhang (2006), we exclude

“penny stocks” with prices below $ 5. Additionally, we require a market
3For reliable implied moments, option liquidity is an important issue. While the

trading volume of VVIX options in 2006 was quite low, with several thousand contracts
per day, it increased to more than one million contracts per day in 2013. For more
information, refer to the CBOE homepage.

4In principle, we could compute the implied volatility of the VIX prior to that date
using the results of Bakshi et al. (2003). We refrain from that to avoid spurious findings
caused by potentially small initial trading volumes in the newly created VIX options
market.
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capitalization of at least 225 million dollars (D’Avolio, 2002; Baltussen et al.,

2015). These two thresholds serve to eliminate the most illiquid stocks that

exhibit potential microstructure problems and may bias the results (Fama &

French, 2008). Furthermore they ensure that only stocks with relatively low

short-sale constraints are selected (D’Avolio, 2002). We adjust for delisting

returns following Shumway (1997) and Shumway & Warther (1999).

Balance sheet and income statement data is obtained from the

Compustat database. Options data are from the IvyDB OptionMetrics

database.5 Data on the Fama & French (1993) and momentum factors as

well as the risk-free (Treasury Bill) rate are collected from Kenneth French’s

data library. Data on the Pastor & Stambaugh (2003) liquidity factor is

obtained from Robert Stambaugh’s homepage.

Chapter C.1 of the appendix contains a more detailed description of all

variables used in this chapter.

4.4.2 Empirical Framework

Our goal is to test whether the main model prediction holds and stocks

with different sensitivities to innovations in aggregate uncertainty have

different average returns. For that, we follow a large body in the asset

pricing literature, examining the contemporaneous relation between realized

factor loadings and realized returns (e.g., Black et al., 1972; Fama &

MacBeth, 1973; and Fama & French, 1993; among many others). Ang

et al. (2006a) argue that while pre-formation factor loadings reflect both

actual variation in factor loadings and measurement error, post-formation

factor loadings are almost exclusively affected by stock return covariations

with risk factors. Additionally, they point out that if risk exposures, and
5Options data has only been available up to 31 August, 2014 when we started this

project. So, all tests that include options data (e.g., Idio. vol-of-vol and dSkew) are
performed for the sample period January 01, 2007 until August 31, 2014.
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hence factor loadings, are highly time-varying, pre-formation factor loadings

might be poor predictors of ex post risk exposures leaving the analysis with

low power to detect relations between factor loadings and realized returns.

Addressing these concerns, our research design follows Ang et al. (2006a)

and Cremers et al. (2015) by estimating factor loadings for individual stocks

using daily returns over rolling annual periods from the regression:

rj,τ − rf,τ = αj,t + βM
j,t(rM,τ − rf,τ ) + βV

j,tdV V IXτ + εj,τ . (4.12)

rj,τ is the daily return of asset j on day τ , rM,τ is the return of the market

on that day, and rf,τ is the risk-free rate. dV V IXτ is the daily innovation

in the VVIX index.

Beside the fact that further factors like those from Fama & French

(1993) are not predicted to be priced in our simple model, Ang et al. (2006b)

argue that including additional factors in the regression in Equation (4.12)

may add a lot of noise. We control for further factors when performing the

time series and cross-sectional asset pricing tests. As a robustness check,

to account for possible model misspecification we also consider multivariate

joint factor loading estimations controlling for several aggregate risk factors

previously documented in the literature:

rj,τ − rf,τ = αj,t + βM
j,t(rM,τ − rf,τ ) + βV

j,tdV V IXτ + βζj,tζτ + εj,τ . (4.13)

ζτ contains one or more market factors, such as the Fama & French (1993)

and Carhart (1997) factors, the daily change in the volatility index (dVIX)

as described by Ang et al. (2006b), the innovations in market skewness and

kurtosis (dSkew, dKurt) as shown by Chang et al. (2013), the Cremers et al.

(2015) Straddle Vol and Jump factors, or innovations in the market variance

risk premium (Han & Zhou, 2012; dVRP). dVIX is of particular interest as

the model predicts a trade-off of returns and future variance, for which

current implied market variance might, to some extent, be a proper proxy
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for tomorrow’s market variance. For the regressions in Equations (4.12)

and (4.13), we use daily returns over rolling annual periods to estimate

the sensitivities. For each period and stock, we require at least one hundred

non-missing return observations in order to estimate the factor sensitivities.6

Turning the focus on the measurement of innovations in an economic

variable, there generally exists a trade-off between a possible errors-in-

variables problem using simple first differences, if that fails to completely

filter out the expected movement, versus the danger of misspecifying a more

complex equation for the expected movement in a variable (Chen, Roll,

& Ross, 1986). We choose to measure the innovations in the VVIX index

using the daily first differences in the variable because it is highly serially

correlated with a first-order autocorrelation of 0.94 during our sample

period. Therefore, the current value of VVIX appears to be a relatively

good proxy for the tomorrow’s expectation making the first difference

quite adequately capture its innovation. For robustness, we also consider

measuring innovations in aggregate uncertainty by fitting an ARMA(1,1)

model on the complete time series of the VVIX index. This approach results

in a measure of innovations of dV V IXτ = V V IXτ − 0.9989V V IXτ−1 +

0.1063dV V IXτ−1. The results of both approaches are qualitatively equal,

which is further discussed in the next section.
6For the factor loading estimation regressions, potential low explanatory power might

be a concern. In the basic specification, we find the model in Equation (4.12) to exhibit
an average R-squared of 0.28 with median 0.23. Thus, it can be concluded that the
factor loading regressions possess substantial explanatory power. In these regressions,
the coefficient βM

j,t is significant (at 10 %) in 83 % of the cases while the coefficient βV
j,t

is significantly different from zero in about 18 % of the cases.
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Table 4.1: Sample Correlations of Different Aggregate Factors

This table presents the sample correlation coefficients of the aggregate factors dVVIX,

dVIX, Straddle vol, dSkew, dKurt, Jump, dVRP, MKT, SMB, HML, Momentum,

dPol, dVVIXARMA, and dVoVIXARMA. Detailed variable definitions are provided in the

appendix.
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* 0.64 -0.07 -0.05 0.00 0.49 0.37 -0.54 -0.09 -0.16 0.02 -0.04 0.99 0.28 dVVIX
* -0.07 0.00 -0.01 0.45 0.78 -0.84 -0.06 -0.31 0.25 -0.05 0.64 0.21 dVIX

* -0.04 0.03 -0.67 0.01 -0.01 -0.03 -0.03 0.08 -0.05 -0.07 -0.15 Straddle vol
* -0.83 0.02 0.00 -0.01 0.03 0.00 -0.01 0.00 -0.05 0.02 dSkew

* -0.04 0.01 0.00 0.04 -0.03 0.04 -0.03 -0.01 -0.04 dKurt
* 0.21 -0.29 -0.05 -0.09 -0.02 0.02 0.48 0.29 Jump

* -0.64 0.03 -0.24 0.24 -0.06 0.36 0.13 dVRP
* 0.15 0.44 -0.43 0.04 -0.53 -0.14 MKT

* -0.03 0.00 -0.02 -0.09 -0.04 SMB
* -0.58 0.05 -0.16 -0.03 HML

* -0.04 0.02 -0.09 Momentum
* -0.04 0.05 dPol

* 0.30 dVVIXARMA

* dVoVIXARMA

4.5 Empirical Results

4.5.1 Descriptive Statistics

In addition to various firm characteristics, we consider the impact of

several aggregate state variables that have previously been examined in the

literature. In Table 4.1 we report the sample correlations between daily

innovations in aggregate uncertainty (dVVIX), innovations in aggregate

volatility (dVIX; Ang et al., 2006b), the Fama & French (1993) and Carhart

(1997) factors, and also the factors on market skewness and kurtosis of

Chang et al. (2013), stochastic volatility and jump risk of Cremers et al.

(2015), and innovations in the market variance risk premium (Han & Zhou,

2012).

First, we note that whether innovations are measured as simple
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first differences (dVVIX) or as innovations in an ARMA(1,1) model

(dVVIXARMA) in fact does not make a big difference since the correlation

between the two measures is almost perfect with 99 %.

For a factor risk explanation in the sense of the ICAPM, a state

variable must be associated with future deterioration in the investment

opportunity set, so there should be some correlation of factor realizations

with the (future) market excess return. While it is hard to tell which horizon

to choose for future impacts, we can examine current correlations. There,

we find a very high negative correlation of −0.84 of the contemporaneous

market return with the first difference in the VIX and quite high correlations

of−0.64 with dVRP and of around 0.4 and−0.4 with HML and Momentum,

respectively.7 The correlation of dVVIX with MKT is also substantial with

−0.54. Overall, this simple correlation analysis delivers some support for

the view of aggregate uncertainty being a state variable in the sense of the

ICAPM. The linear relation between dVVIX and dVRP, Jump, and dVIX,

to which it might be related by construction, is also quite substantial though

not perfect with values of 0.37, 0.49, and 0.64, respectively. Correlations

of dVVIX with other factors are negligible. Consequently, the factor

representing aggregate uncertainty appears to be distinct from other factors

documented previously.

Further summary statistics are provided in Table 4.2. In Panel

A it can be seen that mean and median innovations in the VVIX

are close to zero. Measuring innovations in the VVIX using the first

difference is shown to result in a factor with very low autocorrelation

(−0.13), whereas using residuals from the fitted ARMA-model reduces

the first-order autocorrelation to practically zero. The remaining factors
7The very high correlation between dVIX and MKT in our sample period between

January 01, 2007 and December 31, 2014 might indicate problems of multicollinearity.
Consequently, our results have to be interpreted with care when dVIX is included.
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Table 4.2: Summary Statistics

Panel A of this table presents summary statistics on the aggregate factors dVVIX,

dVIX, Straddle vol, dSkew, dKurt, Jump, dVRP, MKT, SMB, HML, Momentum,

dPol, dVVIXARMA, and dVoVIXARMA. Detailed variable definitions are provided in

the appendix. Panel B provides yearly summary statistics on the VVIX and Panel

C shows yearly summary statistics on the individual stocks’ sensitivities to aggregate

uncertainty, βV, with the sensitivity estimation starting in the year denoted first in the

first column. Mean, Median, and Std. dev. refer to the sample average, median, and

standard deviation of the factors, respectively. P10 and P90 refer to the 10 % and 90 %

percentiles, respectively. Autocorr(1) presents the first order autocorrelation.

Panel A. Market Factors

Variable Mean Median Std. dev. Autocorr(1) P10 P90

dVVIX 0.00010 -0.00350 0.0452 -0.1117 -0.0454 0.0499
dVIX 0.00004 -0.00110 0.0205 -0.1553 -0.0178 0.0185
Straddle vol -0.00004 0.00105 0.0149 -0.0062 -0.0158 0.0153
dSkew -0.00944 -0.00680 0.1749 -0.0542 -0.2042 0.1729
dKurt 0.01942 -0.01618 0.4852 -0.0512 -0.4282 0.4820
Jump -0.00165 -0.00986 0.0524 -0.0930 -0.0426 0.0408
dVRP 0.00000 0.00001 0.0096 -0.0398 -0.0040 0.0045
MKT 0.00035 0.00100 0.0140 -0.0962 -0.0143 0.0136
SMB 0.00006 0.00015 0.0059 -0.0605 -0.0066 0.0064
HML -0.00004 -0.00010 0.0062 -0.0097 -0.0059 0.0058
Momentum 0.00002 0.00060 0.0110 0.1262 -0.0099 0.0100
dPol 0.00339 -0.00364 0.0532 0.1642 -0.0490 0.0639
dVVIXARMA 0.00100 -0.00276 0.0449 -0.0029 -0.0451 0.0521
dVoVIXARMA 0.00074 -0.00108 0.0161 0.1191 -0.0144 0.0168

Panel B. VVIX Summary Statistics

Year Mean Median Std. dev. P10 P90

2007 0.8768 0.8618 0.1331 0.7194 1.0469
2008 0.8185 0.7741 0.1560 0.6763 1.1088
2009 0.7978 0.7913 0.0863 0.6954 0.9225
2010 0.8836 0.8622 0.1307 0.7538 1.0346
2011 0.9294 0.9146 0.1021 0.8182 1.0491
2012 0.9484 0.9384 0.0838 0.8416 1.0740
2013 0.8052 0.7960 0.0897 0.6967 0.9203
2014 0.8301 0.7991 0.1433 0.6771 0.9990

total 0.8638 0.8456 0.1310 0.7069 1.0393
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Table 4.2: Summary Statistics (continued)

Panel C. βV Summary Statistics

Year Mean Median Std. dev. P10 P90

2007− 2008 0.0171 0.0133 0.0661 -0.0530 0.0951
2008− 2009 0.0563 0.0454 0.1051 -0.0523 0.1812
2009− 2010 0.0147 0.0114 0.0511 -0.0410 0.0751
2010− 2011 0.0162 0.0136 0.0423 -0.0305 0.0663
2011− 2012 0.0122 0.0094 0.0470 -0.0377 0.0674
2012− 2013 0.0082 0.0056 0.0460 -0.0405 0.0618
2013− 2014 0.0151 0.0116 0.0424 -0.0293 0.0643

total 0.0202 0.0134 0.0824 -0.0403 0.0886

are mostly constructed as returns with means close to zero and negligible

autocorrelations.

Panels B and C of Table 4.2 present yearly summary statistics on the

VVIX and βV
j,t factors of individual stocks, respectively. It is quite interesting

to observe that the yearly average level of the VVIX is smallest in the crisis

year 2009. In the years 2011 and 2012 it was substantially higher with

values above 0.9, while there is a sharp decrease in 2013, almost returning

to the 2009 level. The mean and median sensitivities of individual stocks

to innovations in aggregate uncertainty, βV
j,t, presented in Panel C, are

mostly close to 0.01 while the highest average value and standard deviation

among the estimates is observed during the rolling annual estimation periods

starting in 2008.

The time series of VIX and VVIX are plotted in Figure 4.1. The

average level of the VVIX (0.86) is substantially higher than that of the

VIX (0.22). The VVIX exhibits pronounced spikes that correspond with

certain crisis events like the Bear Sterns Hedge Funds Collapse (August

2007), the Lehman Brothers bankruptcy (September 2008), the Freddie Mac

and Fannie Mae crisis (May 2010), or the near collapse of the Russian rouble

(December 2014). Consequently, this stylized evidence provides further
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insights for the VVIX being a proper proxy for economic uncertainty,

as such events, beside increasing risk, impose large shocks on probability

distribution surrounding the aggregate consumption growth process, toward

which the VVIX is shown to be sensitive.

4.5.2 Single Portfolio Sorts and Characteristics

At the beginning of each month, we sort the stocks in ascending order

with respect to their sensitivities to innovations in aggregate uncertainty

(βV
j,t) over the following year. We form quintile portfolios, so that quintile

1 contains the stocks with the lowest exposure to aggregate uncertainty

while quintile 5 contains those with the highest uncertainty factor loadings.

The hedge portfolio (5 minus 1) buys the quintile of stocks with the

highest exposure and simultaneously sells the stocks in the quintile with the

lowest exposure to aggregate uncertainty. The portfolio sorting approach

maximizes the spread in the exposure to aggregate uncertainty and,

thus, differences in average returns can be quite accurately attributed to

differences in the sorting variable. Fama & French (2008) raise concerns that

by building value-weighted portfolios the hedge portfolio can be dominated

by few big stocks, whereas for equally weighted portfolios the hedge portfolio

can be dominated by micro caps. To address these issues, we analyze both

value-weighted and equally weighted portfolios.8 When value-weighting,

within each quintile, we weight the stocks by their relative market value

at the beginning of the estimation period for βV
j,t. When weighting equally,

all stocks adhere the same weight. While our research design involves

successive twelve-month periods employing partly overlapping information,

it introduces moving average effects. To account for that, in all analyses,
8The results on equally weighted portfolios can be found in the appendix to this

chapter.
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Table 4.3: Portfolios Sorted by Exposure to Aggregate
Uncertainty – Value-Weighted

At the beginning of each month, we form value-weighted quintile portfolios based on

the stock’s sensitivities to innovations in aggregate uncertainty (βV
j,t) over the following

year. To obtain the sensitivities, we regress daily excess stock returns on dVVIX,

controlling for MKT as in Equation (4.12). Stocks with the lowest βV
j,t are sorted into

portfolio 1, those with the highest into portfolio 5. The column labeled 5 minus 1 refers to

the hedge portfolio buying the quintile of stocks with the highest βV
j,t and simultaneously

selling the stocks in the quintile with the lowest βV
j,t. We reform the portfolios after one

month. The row labeled Mean return is based on monthly simple returns. CAPM alpha,

FF-3 alpha, 4-factor alpha, and 5-factor alpha refer to the alphas of the CAPM, the Fama

& French (1993) 3-factor, Carhart (1997) 4-factor, and the 5-factor (including liquidity)

models, respectively. The segment NYSE only restricts the sample of stocks to those

that are traded at the NYSE at the beginning of the estimation period. The segment

Factor loadings denotes the average annual factor loadings, where βM, βV, and βdVIX

refer to the factor loadings on the market factor, dVVIX, and dVIX. The segment Stock

characteristics presents average (value-weighted) portfolio characteristics with Mkt. share

denoting the average market share of the portfolios. The remaining variable definitions

are provided in the Appendix. Robust Newey & West (1987) p-values using 12 lags

are reported in parentheses. The stars indicate significance with one star (*) denoting

significance at 10 %, two (**) at 5 %, and three (***) stars at 1 %.

we adjust the standard errors following Newey & West (1987) using twelve

lags.9

Table 4.3 reports various summary statistics for the quintile portfolios

sorted by contemporaneous aggregate uncertainty. We find the average

annual raw return to adhere a strictly monotonically decreasing pattern,

from 12.8 % in quintile 1 to 1.1 % in quintile 5. The difference in raw

returns of −11.7 % between quintiles 5 and 1 is statistically significant at

1 %. Looking at the line labeled CAPM alpha, which reports the results

when controlling for systematic risk, we find an even stronger effect for the
9While theoretically only eleven lags are required, we follow Ang et al. (2006a) and

Cremers et al. (2015) including an additional lag for robustness.
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Table 4.3: Portfolios Sorted by Exposure to Aggregate Uncertainty – Value-Weighted
(continued)

Rank 1 2 3 4 5 5 minus 1

Mean return 0.1281*** 0.1001** 0.0812** 0.0624 0.0113 -0.1168***
(0.009) (0.011) (0.048) (0.217) (0.858) (0.000)

CAPM alpha 0.0298** 0.0188*** -0.0046 -0.0411*** -0.1145*** -0.1443***
(0.010) (0.007) (0.353) (0.002) (0.000) (0.000)

FF-3 alpha 0.0252* 0.0209*** -0.0031 -0.0344** -0.1144*** -0.1396***
(0.100) (0.000) (0.566) (0.042) (0.000) (0.000)

4-factor alpha 0.0262* 0.0192*** -0.0057 -0.0327** -0.1126*** -0.1388***
(0.090) (0.000) (0.134) (0.049) (0.000) (0.000)

5-factor alpha 0.0457*** 0.0210*** -0.0067* -0.0562*** -0.1357*** -0.1814***
(0.000) (0.000) (0.097) (0.000) (0.000) (0.000)

NYSE only
4-factor alpha 0.0123 0.0168** -0.0021 -0.0399*** -0.1119*** -0.1242***

(0.424) (0.013) (0.727) (0.000) (0.000) (0.000)

Factor loadings
βM 0.8734*** 0.8868*** 1.0431*** 1.2425*** 1.5987*** 0.7253***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βV -0.0440*** -0.0072*** 0.015*** 0.0407*** 0.0881*** 0.1321***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βdVIX -0.0843*** -0.0218*** 0.0285*** 0.0930*** 0.1998*** 0.2841***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Return characteristics
Std. deviation 0.2315 0.1853 0.1971 0.2453 0.3111 0.1632
Skewness -0.9567 -1.0053 -0.8500 -0.5373 -0.0324 0.0085
Kurtosis 3.6807 3.4233 3.2257 2.8214 3.0424 2.4601

Stock characteristics
Mkt. share 0.2500 0.2990 0.2269 0.1457 0.0784 -0.1716
Size (∗10−6) 81.541 86.145 70.863 63.085 41.550 -39.991
Book-to-market 0.5197 0.4877 0.5008 0.5427 0.5389 0.0192
Bid-ask spread 0.0007 0.0006 0.0006 0.0008 0.0011 0.0004
Amihud illiquidity (∗106) 4.2099 1.0524 1.9819 3.6976 9.4581 5.2482
Age 39.683 43.020 36.717 30.224 24.820 -14.863
Leverage 0.5495 0.5432 0.5521 0.5634 0.5926 0.0432
MAX 0.0653 0.0543 0.0603 0.0725 0.1030 0.0377
Volatility 0.0227 0.0210 0.0228 0.0250 0.0290 0.0063
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5 minus 1 portfolio of −14.4 % which is also significant at 1 %. Controlling

for the Fama & French (1993) (FF-3) and Carhart (1997) (4-factor) factors

leads to alphas of −14.0 and −13.9 % per year, both being significant at 1

%. Further including the Pastor & Stambaugh (2003) factor in addition to

the factors previously mentioned (5-factor) yields an alpha for the 5 minus 1

portfolio of −18.1 % per year which is also significant at 1 %. Consequently,

accounting for systematic risk factors, the stocks in portfolio 5 in particular

are expected to earn substantially higher returns than realized. For each

factor model specification, the alphas of the portfolio of stocks with the

highest sensitivities to innovations in aggregate uncertainty is significantly

negative at 1 %. Especially, adding the liquidity factor strongly decreases

the alpha of the 5 minus 1 portfolio. Restricting the sample to stocks that

are traded on the NYSE only slightly reduces the underperformance of

stocks with high exposure to aggregate uncertainty while the 4-factor alpha

is −12.4 % and still significant at 1 %.

Both the market betas and the sensitivities to dVIX differ strongly

across the five portfolios. The market beta of the hedge portfolio amounts to

0.72, being significantly different from zero at 1 %. This would, following the

logic of the CAPM, predict a substantially positive excess return, whereas

the return that is realized is significantly negative. While the exposure to

aggregate uncertainty has to be monotonically increasing by construction,

the sensitivity to dVIX also is monotonically increasing from portfolio 1

to 5, with a factor sensitivity of 0.28 for the hedge portfolio, which is

statistically significant at 1 %. Age is often argued to be a good proxy

for uncertainty (Zhang, 2006), so the observation that firms with high

sensitivities to aggregate uncertainty are, on average, substantially younger

is completely in line with this. The portfolios differ also, among other things,

in average Size, Amihud illiquidity, and Kurtosis and so there may be other

factors that can potentially explain the effect of aggregate uncertainty we
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find in univariate sorts.10

4.5.3 Double Sorts

To address the concerns regarding the difference in factor loadings and

characteristics among the different portfolios, we examine the performance

of the portfolios sorted by sensitivities to innovations in aggregate

uncertainty, controlling for different other factors and characteristics that

have been previously shown to explain the cross-section of stock returns.

For that, at the beginning of each month, we first sort the stocks in

ascending order with respect to the characteristic we want to control for.

We form quintile portfolios. Afterwards, within each quintile, we sort stocks

based on their uncertainty-sensitivity into another five quintile portfolios,

which results in a total of 25 portfolios. The five portfolios sorted on the

exposure to aggregate uncertainty are then obtained by averaging over

the respective quintiles within each quintile of the control characteristic.

This means that the uncertainty-sensitivity quintile 1 is the average of

uncertainty-sensitivity quintiles 1 across all quintiles sorted on the control

characteristic, and so on. Thus, we obtain quintile portfolios on the exposure

to aggregate uncertainty controlling for another characteristic without

making assumptions on the parametric form of the relationships. Again, we

obtain the 5 minus 1 hedge portfolio buying the final portfolio 5 and selling

portfolio 1. First, we consider value-weighted portfolios, where within each

of the 25 intermediate step portfolios we weight the stocks by their relative

market value at the beginning of the estimation period for the exposures to

aggregate uncertainty. We then also consider equally weighted portfolios.

The results for value-weighted double sorts are presented in Table
10The results on equally weighted portfolios, presented in the appendix to this chapter,

are qualitatively similar. Returns and alphas of the 5 minus 1 hedge portfolio are all
negative and statistically significant at 1 %.
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Table 4.4: Double Sorts – Value-Weighted

This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the

beginning of each month, we first sort stocks into quintiles based on the characteristics

denoted in the first column. Then, within each quintile, we sort stocks based on their

uncertainty-sensitivity (βV
j,t) into another five quintile portfolios. The five portfolios

sorted on βV
j,t are then obtained by averaging over the respective quintiles within each

quintile of the other characteristic, thus we obtain βV
j,t quintile portfolios controlling

for another characteristic. We reform the portfolios after one month. This procedure

is performed for each of the characteristics. We report the main control variables for

value-weighted returns. The column labeled 5 minus 1 refers to the hedge portfolio

buying the quintile of stocks with the highest βV
j,t and simultaneously selling the stocks

in the quintile with the lowest βV
j,t. Robust Newey & West (1987) p-values using 12 lags

are reported in parentheses. The stars indicate significance with one star (*) denoting

significance at 10 %, two (**) at 5 %, and three (***) stars at 1 %.

Rank 1 2 3 4 5 5 minus 1

Beta 0.0096 -0.0081 -0.0118 -0.0318*** -0.0679*** -0.0776***
(0.586) (0.192) (0.182) (0.004) (0.000) (0.002)

Size 0.0041 0.0118 0.0036 -0.028*** -0.1005*** -0.1047***
(0.751) (0.126) (0.231) (0.000) (0.000) (0.001)

Book-to-market 0.0191 0.0114*** -0.0095** -0.0299*** -0.1036*** -0.1227***
(0.202) (0.005) (0.019) (0.007) (0.000) (0.001)

dVIX -0.0161** -0.0066 -0.0097 -0.0189** -0.0749*** -0.0588**
(0.035) (0.196) (0.110) (0.014) (0.000) (0.019)

Bid-ask spread -0.0516*** -0.0234*** -0.0541*** -0.0816*** -0.1332*** -0.0817***
(0.000) (0.006) (0.000) (0.000) (0.000) (0.007)

Momentum 0.0182 0.0200*** 0.0013 -0.0352*** -0.1127*** -0.1309***
(0.197) (0.000) (0.804) (0.004) (0.000) (0.000)

Short-term reversal 0.0239 0.0146*** -0.0008 -0.0361*** -0.1168*** -0.1406***
(0.100) (0.004) (0.900) (0.001) (0.000) (0.000)

Age 0.0240 0.0197** -0.0040 -0.0359*** -0.1124*** -0.1364***
(0.127) (0.012) (0.269) (0.007) (0.000) (0.001)

Leverage 0.0286** 0.0133*** -0.0104** -0.0214* -0.1010*** -0.1296***
(0.039) (0.000) (0.035) (0.096) (0.000) (0.001)
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4.4. We report Carhart (1997) 4-factor alphas and robust Newey & West

(1987) p-values in brackets. We find the effect of high uncertainty-sensitivity

underperforming low uncertainty-sensitivity stocks to strongly persist.

Controlling for the firm characteristics Size, Book-to-market,11 Momentum,

Short-term reversal, Age, and Leverage also leads to an economically large

effect on the hedge portfolio between −14 and −10 % per year, which

is statistically significant at 1 % in all cases. When controlling for Beta,

the dVIX-sensitivity, and Bid-ask spread, the effect weakens, with 4-factor

alphas of the hedge portfolio of −7.6, −5.9, and −8.2 % per year. Since

the alphas decrease in absolute terms, this means that part of the effect of

aggregate uncertainty can be assigned to those control variables. However,

the 4-factor alphas are still significantly different from zero at least at 5 %.12

Consequently, controlling for various canonical characteristics does not

affect our main result that the uncertainty-return trade-off is priced with a

negative sign.

4.5.4 Regression Tests

The portfolio sorts present strong evidence that sensitivities to innovations

in aggregate uncertainty are related to returns. The double sorts indicate

that the effect cannot be explained by any other factor or firm characteristic

individually. Following on from that, in this section, we estimate Fama

& MacBeth (1973) regressions that simultaneously control for different

variables and test if the stock’s sensitivity to innovations in aggregate

uncertainty contains information about stock returns beyond that of various

other firm characteristics. Lo & MacKinlay (1990) and Lewellen, Nagel,
11As Fama & French (1997, 2008) show that SMB and HML loadings vary over time,

they suggest sticking to current Size and Book-to-market factors as more current proxies.
We follow their advice.

12The results on equally weighted double sorts, shown in the appendix to this chapter,
are qualitatively equal.
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& Shanken (2010) argue against the use of portfolios in cross-sectional

regressions, since the particular method, by which the portfolios are formed

can severely influence the results. Furthermore, Ang, Liu, & Schwarz (2010)

show that creating portfolios ignores important information on individual

factor loadings and leads to higher asymptotic standard errors of risk

premium estimates. Consequently, we utilize this additional information

and, at the same time, avoid the specification of breakpoints, performing

the analysis on individual stocks rather than stock portfolios.

Each month, we perform cross-sectional regressions of stock excess

returns over the following year on stocks’ sensitivities to innovations in

aggregate uncertainty and one or more control variables, adhered over the

same period. We winsorize all regressors at the 1st and 99th percentile to

restrict the effect of outliers (Fama & French, 2008; Baltussen et al., 2015).

For the regressions, we use OLS (equally weighted) or WLS (value-weighted)

with a diagonal weighting matrix, where the inverse of the firm’s market

value at the end of the previous month is along the diagonal, with the

following regression equation:13

rj,t − rf,t = αt + λMt β
M
j,t + λVt β

V
j,t + λζtβ

ζ
j,t + εj,t. (4.14)

rj,t is the annual return of stock j and rf,t is the risk-free rate during that

period. βM
j,t and βV

j,t are the stock’s market beta and sensitivity to innovations

in aggregate uncertainty over the evaluation period, respectively. The term

βζj,t denotes a vector collecting further variables hypothesized to explain

returns. λVt and λζt are the risk premia associated with the respective

variables, while εj,t is the prediction error.

In the next step, we perform tests on the time series averages ᾱ, λ̄M,

λ̄V, and λ̄ζ of the estimated monthly intercept and slope coefficients, α̂t, λ̂Mt ,

λ̂Vt , and
ˆ
λζt . We account for potential autocorrelation, heteroskedasticity, and

13The results for value-weighted regressions can be found in the chapter appendix.
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errors-in-variables concerns, computing robust Newey & West (1987) (again

using twelve lags) and Shanken (1992) adjusted p-values based on the time

series of coefficient estimates.

Table 4.5 reports the results of the basic Fama & MacBeth (1973)

regressions. We report the results of a regression of excess returns on βV
j,t,

βM
j,t, and various other canonical characteristics. In the basic regression

specification suggested by our theoretical model (ii), the yearly market

price of aggregate uncertainty (coefficient on βV
j,t) is −0.9920 with a p-value

smaller than 0.001 which corresponds to a t-statistic of −3.71, clearly

clearing the hurdle defined by Harvey, Liu, & Zhu (2015), who suggest

accounting for potential data mining and publication bias by defining

the critical t-ratio as 3.0 instead of 2.0 for newly discovered risk factors.

Consequently, a two-standard deviation increase across stocks in their

uncertainty-sensitivity is associated with a 16.34 % decrease in average

annual returns.14

Naturally, adding further explanatory variables partly reduces both

the magnitude and significance of the risk premium estimates on aggre-

gate uncertainty, but adding ln(Size), Book-to-market, Bid-ask spread,15

Momentum, and Short-term reversal in models (iii) to (iv) and (vi) to

(viii) does not change much. The coefficient on uncertainty-sensitivity

remains economically large and highly significant at 1 %. Adding dVIX

in model (v) reduces the significance in the risk premium on aggregate

uncertainty, but the p-value is still below 5 %. Consequently, both measures

dVVIX and dVIX appear to carry at least partially similar information.16

14This number is obtained as follows. We need the sample mean of the cross-sectional
standard deviation among the sensitivities to innovations in aggregate uncertainty from
Table 4.2 which amounts to 0.0824. Plugging in yields −0.9920 ∗ (2 ∗ 0.0824) = −0.1634.

15Amihud (2002) argues that the Bid-ask spread is a more precise measure of (il-
)liquidity than the one he develops.

16Note, though, that the correlation between factor loadings on dVVIX and dVIX
amounts to only 47 % (compared to the factor correlation of 64 %), which makes it very
unlikely that severe problems of multicollinearity are caused.
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Thus, particularly when dVIX is included in the regression, the coefficient

denoting the market price of aggregate uncertainty is substantially smaller,

amounting to about −0.5 compared to about −1 when aggregate volatility

is not included as an explanatory variable. In Section 4.6.2 we deliver

further investigations on the relation of aggregate uncertainty and aggregate

volatility.

Adding several canonical characteristics jointly leaves the market price

of aggregate uncertainty negative, with p-values below 5 %. Many of the

risk premium estimates on the other canonical characteristics are not

significantly different from zero, which is consistent with recent evidence

that beta is not priced in the cross-section of stock returns (Frazzini &

Pedersen, 2014) but partly conflicts with the view that prominent return

anomalies have attenuated recently (Chordia, Subrahmanyam, & Tong,

2014). We use model (x) as base specification when adding further variables.

It includes widely accepted characteristics that, except for Beta, empirically

are shown to be connected to average returns during our sample period.

Models (xii) to (xiv) show that adding ln(Age) and Leverage does not have

a big impact on the market price of aggregate uncertainty.17

4.6 Robustness

4.6.1 Further Control Variables

In this section, we include further control variables to perform double

sorts and regression tests. We control for various returns distributions

characteristics (e.g., Co-Skewness, Downside Beta, or Idio. vol-of-vol),

liquidity related characteristics (like Amihud illiquidity or Turnover), and
17The results on value-weighted regressions, shown in the appendix to this chapter,

are qualitatively equal.
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market factors (e.g., dSkew, Straddle vol, or Jump).

Table 4.6: Double Sorts (Further Control Variables) –
Value-Weighted

This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the

beginning of each month, we first sort stocks into quintiles based on the characteristics

denoted in the first column. Then, within each quintile, we sort stocks based on their

uncertainty-sensitivity (βV
j,t) into another five quintile portfolios. Portfolio returns are

value-weighted. The five portfolios sorted on βV
j,t are then obtained by averaging over the

respective quintiles within each quintile of the other characteristic, thus we obtain βV
j,t

quintile portfolios controlling for another characteristic. We reform the portfolios after one

month. This procedure is performed for each of the characteristics. We categorize control

variables into groups of returns distributions characteristics (Panel A), liquidity-related

characteristics (Panel B), and market factors (Panel C). The column labeled 5 minus

1 refers to the hedge portfolio buying the quintile of stocks with the highest βV
j,t and

simultaneously selling the stocks in the quintile with the lowest βV
j,t. Robust Newey

& West (1987) p-values using 12 lags are reported in parentheses. The stars indicate

significance with one star (*) denoting significance at 10 %, two (**) at 5 %, and three

(***) stars at 1 %.

Panel A. Returns Distributions Characteristics

Rank 1 2 3 4 5 5 minus 1

Idio. volatility -0.0086 -0.0345*** -0.0599*** -0.0728*** -0.0974*** -0.0888**
(0.578) (0.000) (0.000) (0.000) (0.000) (0.019)

Co-Skewness 0.0212 0.0193*** -0.0031 -0.0333** -0.1136*** -0.1348***
(0.170) (0.001) (0.438) (0.011) (0.000) (0.001)

Co-Kurtosis 0.0280** 0.0258*** 0.0067 -0.0322** -0.1103*** -0.1383***
(0.034) (0.000) (0.369) (0.018) (0.000) (0.000)

Downside beta 0.0292** 0.0057 -0.0032 -0.0351** -0.0874*** -0.1166***
(0.015) (0.586) (0.590) (0.011) (0.000) (0.000)

MAX 0.0357** 0.0159** -0.0218** -0.0501*** -0.0888*** -0.1244***
(0.016) (0.024) (0.014) (0.000) (0.000) (0.000)

Idio. vol-of-vol 0.0438*** 0.0214*** 0.0193*** 0.0015 -0.0654** -0.1093***
(0.003) (0.000) (0.001) (0.901) (0.011) (0.005)

Volatility 0.0030 -0.0033 -0.0054 -0.0444*** -0.0922*** -0.0952***
(0.819) (0.747) (0.570) (0.000) (0.000) (0.009)

Skewness 0.0200 0.0252*** -0.0012 -0.0309** -0.1046*** -0.1247***
(0.146) (0.000) (0.798) (0.018) (0.000) (0.001)

Kurtosis 0.0207 0.0238*** -0.0088* -0.0368*** -0.0958*** -0.1164***
(0.110) (0.000) (0.079) (0.009) (0.000) (0.002)
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Table 4.6: Double Sorts (Further Control Variables) - Value-Weighted (continued)

Panel B. Liquidity- Related Characteristics

Rank 1 2 3 4 5 5 minus 1

PS liquidity -0.0043 -0.0082 -0.0311* -0.0566*** -0.1362*** -0.1319***
(0.885) (0.700) (0.066) (0.000) (0.000) (0.000)

Amihud illiquidity -0.0485*** -0.0312*** -0.0319*** -0.0608*** -0.1329*** -0.0844***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Volume -0.0302*** -0.0155* -0.0205*** -0.0472*** -0.1234*** -0.0932***
(0.005) (0.087) (0.000) (0.000) (0.000) (0.000)

Turnover 0.0249* 0.0077* -0.0023 -0.0338*** -0.095*** -0.1199***
(0.070) (0.072) (0.619) (0.001) (0.000) (0.000)

Panel C. Market Factors

Rank 1 2 3 4 5 5 minus 1

dSkew 0.0094 -0.0014 -0.0135* -0.0483*** -0.1157*** -0.1251***
(0.627) (0.907) (0.096) (0.000) (0.000) (0.000)

dKurt 0.0136 -0.0041 -0.0162* -0.0470*** -0.1211*** -0.1347***
(0.489) (0.720) (0.065) (0.000) (0.000) (0.000)

Straddle vol -0.0027 -0.0110 -0.0144** -0.0404*** -0.1064*** -0.1037***
(0.881) (0.244) (0.034) (0.000) (0.000) (0.001)

Jump -0.0003 -0.0055 -0.0155** -0.0457*** -0.0965*** -0.0962***
(0.985) (0.574) (0.030) (0.000) (0.000) (0.000)

dVRP -0.0071 0.0032 -0.0054 -0.0331*** -0.0947*** -0.0876***
(0.522) (0.764) (0.396) (0.000) (0.000) (0.007)

dPol 0.0010 -0.0145 -0.0290* -0.0567*** -0.1221*** -0.1232***
(0.972) (0.493) (0.076) (0.000) (0.000) (0.000)

Forec. uncertainty 0.0118 0.0061 -0.0098** -0.0365*** -0.1092*** -0.1210***
(0.354) (0.253) (0.018) (0.001) (0.000) (0.002)

The results on double sorts are presented in Table 4.6. The return-

uncertainty trade-off persists, independently of which variable we control

for and also independently of the return weighting scheme. For most control

variables, the 4-factor alpha of the hedge portfolio amounts to about

12 % (10 %) for value-weighted (equally weighted) returns. However, for

some controls, e.g. Idio. Volatility or Amihud illiquidity the 4-factor alphas

decrease. Thus, it appears that part of the effect of aggregate uncertainty

can be explained by these control variables. Nevertheless, the 4-factor alpha

is highly statistically significant in any case. Controlling for alternative
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variables that are potentially related to uncertainty, policy uncertainty

(dPol), and forecaster uncertainty, the results are still significant.

The results of regression tests can be found in Table 4.7. In Panel

A, we report the results controlling for various returns distributions

characteristics. We find idiosyncratic volatility, MAX, and Skewness to carry

a significant price of risk when adding them to our base model. On the

other hand, neither do Co-Skewness, Downside Beta, Idio. vol-of-vol carry

a significant price of risk.

In all cases, the market price of aggregate uncertainty is statistically

significant, leastwise at 10 %. In Panel B, we control for various

liquidity-related characteristics like the Amihud illiquidity measure or

Turnover, but adding these variables does not change the previous results.

The coefficient on uncertainty-sensitivity is always significant at 10 %.

In Panel C, we control for different market factors that are estimated

separately. Adding dSkew, dKurt, Straddle vol, Jump, dVRP, and dPol

does not change our basic results. While the aggregate market factors

partially carry significant risk premia, this does not affect the estimates on

the market price of aggregate uncertainty that are statistically significant

in every specification. Including Forec. uncertainty, a variable supposedly

to some extent capturing similar information as aggregate uncertainty, the

p-value of the market price of aggregate uncertainty turns out to be slightly

above 10 %. However, the coefficient on Forec. uncertainty is not significant

either, which along with the high adjusted R2 this delivers some indication

a multicollinear relation.18

18Since Forec. uncertainty is measured on a quarterly basis while dVVIX yields daily
notations, estimation of correlations has severe limitations.
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4.6. ROBUSTNESS

Table 4.7: Fama–MacBeth Regressions (Further Control Variables) (continued)

Panel B. Liquidity-Related Characteristics

(xxv) (xxvi) (xxvii) (xxviii)

Constant 0.1712** 0.1862** -0.3321*** 0.1025
(0.021) (0.018) (0.000) (0.152)

dVVIX -0.5547** -0.5755** -0.5129* -0.5679**
(0.033) (0.030) (0.070) (0.027)

Beta 0.0033 0.0291 0.0317 0.0336
(0.964) (0.676) (0.650) (0.620)

ln(Size) -0.0038 -0.0056 -0.0002
(0.214) (0.137) (0.956)

Book-to-market -0.0378** -0.0369** -0.0264* -0.0388**
(0.015) (0.012) (0.069) (0.011)

dVIX -0.2198*** -0.2101*** -0.1759*** -0.2061***
(0.000) (0.000) (0.000) (0.000)

PS liquidity 0.0200
(0.116)

Amihud illiquidity -0.9346***
(0.000)

ln(Volume) 0.0253***
(0.000)

Turnover -0.0027
(0.466)

adj. R2 0.1182 0.1052 0.1099 0.1029

4.6.2 Multivariate Estimation

In this section, we examine the robustness of our results to jointly estimating

the sensitivities to innovations in aggregate uncertainty with those to other

factors, as presented in Equation (4.13). Table 4.8 reports the results of

Fama & MacBeth (1973) regressions when the sensitivities to the different

factors are obtained in a joint multivariate sensitivity estimation regression.

Incorporating the Fama & French (1993) factors (xxxix) leaves the effect of

aggregate uncertainty strongly significant at 1 %. Adding the other market

factors like dVIX, dSkew, dKurt, Straddle vol, Jump, or dVRP (models

(xl) to (xlvii)) does not change much. The price of risk on HML regularly

is significant at 5 % while that on MKT and SMB never is. The coefficient

on uncertainty-sensitivity is statistically significant at 1 % in any case. The

coefficient on dVIX is substantially less significant when estimating the
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4.6. ROBUSTNESS

sensitivities jointly with dVVIX compared to the analysis in which both

are estimated separately. Consequently, although both appear to partly

carry similar information, our measure for aggregate uncertainty seems to

incorporate even more, or more precise, information for stock returns. The

prices of risk on Jump and dVRP are significant, whereas the remaining

factors are only partly significant.

4.6.3 Crisis Effects

Our sample period contains the recent financial crisis that has imposed

large fluctuations on asset markets. Völkert (2015) shows that there was

a considerable change in the shape of the risk-neutral distribution of the

VIX during the crisis. Consequently, our uncertainty explanation could

potentially be imposed by a crisis effect. We check for that by introducing

a crisis dummy taking the value one at every month where half of the

following year or more falls in the period from September 2008 until August

2009 (August 2010), or into months indicated as business cycle contractions

by the National Bureau of Economic Analysis (NBER). Table 4.9 presents

the results. Defining the crisis period as September 2008 until August 2009

in Panel A, we find the crisis dummy of the 5 minus 1 hedge portfolio to take

a value of −13.7 % per annum for value-weighted returns. The negative sign

of the crisis dummy indicates that the uncertainty-return trade-off is even

more pronounced in times of crises. Yet, the crisis dummy is not statistically

significant. Nevertheless, although the 4-factor alphas of the hedge portfolio

is smaller in magnitude, with a value of −11.6 % per annum compared to

the specification without a crisis dummy in Table 4.3, it is still significant

at 1 %. Using a longer crisis period in Panel B does not affect the results

for the 4-factor alphas, but the crisis dummy of the hedge portfolio shrinks

heavily. Directly using the NBER definition for recessions (Panel C), the
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Table 4.9: Crisis Effects

At the beginning of each month, we form quintile portfolios based on the stock’s

sensitivities to innovations in aggregate uncertainty (βV
j,t) over the following year. To

obtain the sensitivities, we regress daily stock returns on dVVIX, controlling for MKT

as in Equation (4.12). Stocks with the lowest βV
j,t are sorted into portfolio 1, those with

the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge portfolio

buying the quintile of stocks with the highest βV
j,t and simultaneously selling the stocks

in the quintile with the lowest βV
j,t. 4-factor alpha refers to the Carhart (1997) 4-factor

alpha, while Crisis dummy is a dummy variable taking the value one if at least half of

the following year falls in the period indicated by the respective panel headlines. Robust

Newey & West (1987) p-values using 12 lags are reported in parentheses. The stars

indicate significance with one star (*) denoting significance at 10 %, two (**) at 5 %,

and three (***) stars at 1 %.

Panel A. Crisis Period September 2008–August 2009

Rank 1 2 3 4 5 5 minus 1

4-factor alpha 0.0163 0.0193*** -0.0067 -0.0211 -0.0993*** -0.1156***
(0.340) (0.000) (0.438) (0.172) (0.000) (0.003)

Crisis dummy 0.0581 -0.0009 0.0061 -0.0686* -0.0786 -0.1367
(0.122) (0.966) (0.865) (0.061) (0.294) (0.153)

Panel B. Crisis Period September 2008–August 2010

Rank 1 2 3 4 5 5 minus 1

4-factor alpha 0.0140 0.0165*** 0.0045 -0.0211 -0.1144*** -0.1283***
(0.425) (0.002) (0.204) (0.219) (0.000) (0.003)

Crisis dummy 0.0516*** 0.0115 -0.0430*** -0.0490 0.0075 -0.0441
(0.007) (0.126) (0.000) (0.155) (0.826) (0.346)

Panel C. Crisis During Recessions Indicated by the NBER

Rank 1 2 3 4 5 5 minus 1

4-factor alpha 0.0435*** 0.0277*** -0.0157** -0.0580*** -0.1218*** -0.1653***
(0.009) (0.000) (0.034) (0.002) (0.000) (0.001)

Crisis dummy -0.0552 -0.0271 0.0319* 0.0802* 0.0291 0.0842
(0.133) (0.114) (0.074) (0.066) (0.729) (0.470)
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4-factor alpha of the hedge portfolio remains highly significant while the

crisis dummy again does not yield a significant coefficient. To summarize,

there is only weak indication for a crisis effect. However, controlling for

crises, the result that stocks with high sensitivity to innovations in aggregate

uncertainty strongly underperform stocks with low exposure to aggregate

uncertainty strongly persists.

4.6.4 Predicting Future Exposure to Aggregate Uncer-

tainty

In the previous sections, we demonstrate a strongly negative relation

between the sensitivities to innovations in aggregate uncertainty and stock

returns. In this section, we examine the cross-sectional relation of several ex

ante firm characteristics and factor sensitivities and the ex post sensitivities

to innovations in aggregate uncertainty. Cross-sectional predictors of the

stock’s uncertainty-sensitivities are measured during the twelve months

directly prior to the twelve-month estimation period for sensitivities to

innovations in aggregate uncertainty. The results are reported in Table

4.10. We find past uncertainty-sensitivities to significantly predict future

relative uncertainty-sensitivities. The coefficient, however, is only 0.1272,

which is far from one, and the explanatory power is very small with 1.5 %.

Consequently, we test further variables that may predict the stock’s future

exposure to aggregate uncertainty. Univariately, in models (ii) to (xx), we

find past Beta, Book-to-market, dVIX, ln(Age), Leverage, MAX, and Jump

to significantly predict future relative exposure to aggregate uncertainty at

1 %, though the explanatory power is negligible for all of these models. In

multivariate regressions of models (xxi) and (xxii), we find past dVVIX,

Beta, dVIX, Momentum, and Volatility to most strongly predict future

relative uncertainty-sensitivities.
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Since we have seen that past uncertainty-sensitivities significantly

predict relative future uncertainty-sensitivities, we examine the relation

of average returns and past sensitivities to innovations in aggregate

uncertainty. Table 4.11 reports the results. Sorting the stocks by past

exposure to aggregate uncertainty is seen to produce a smaller, though

also significant, spread in average returns. For value-weighted returns, the

annual 4-factor alpha amounts to −6.2 %, which is statistically significant

at 1 %. Consequently, the sensitivities to aggregate uncertainty appear to be

somewhat stable over time. However the positive spread in ex post exposures

to aggregate uncertainty, when sorting on ex ante uncertainty-sensitivities,

is substantially smaller than that produced sorting by contemporaneous

factor loadings (see Table 4.3).

Ang et al. (2006a) point out that pre-formation factor loadings,

beside actual variation in exposures toward that factor, additionally reflect

measurement error effects. This measurement error increases during phases

of high return volatility. Consequently, since markets are highly volatile

during our sample period, high variation in the exposures to aggregate

uncertainty may be obtained.19 These theoretical arguments suggest that

pre-formation factor loadings cannot fully capture ex post factor loadings

in an adequate fashion. Consequently, smaller spreads in ex post exposures

to innovations in aggregate uncertainty are obtained.

4.6.5 Realized Measure of Aggregate Uncertainty

The results of this study, so far, could be criticized on the grounds

of a relatively short sample period that may induce spurious findings.

To test for that we use, taking account of the literature on volatility

estimation, an inferior measure of aggregate uncertainty, which is only
19While the average value of the VIX is 19.44, % during the period 1990 until 2006 it

is considerably higher with 21.84 % during our sample period 2007 until 2014.
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RETURNS

Table 4.11: Pre-Formation Factor Loadings

At the beginning of each month, we form value-weighted quintile portfolios based on

the stock’s sensitivities to aggregate uncertainty (βV
j,t) over the past year. To obtain the

sensitivities, we regress daily excess stock returns on dVVIX, controlling for MKT as

in Equation (4.12). Stocks with the lowest βV
j,t are sorted into portfolio 1, those with

the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge portfolio

buying the quintile of stocks with the highest βV
j,t and simultaneously selling the stocks

in the quintile with the lowest βV
j,t. We reform the portfolios after one month. We report

Carhart (1997) 4-factor alphas for portfolios based on returns over the following year.

Robust Newey & West (1987) p-values using 12 lags are reported in parentheses. The

stars indicate significance with one star (*) denoting significance at 10 %, two (**) at 5

%, and three (***) stars at 1 %. The columns ex post βV report the average annual ex

post sensitivities to aggregate uncertainty of the portfolios.

Rank 1 2 3 4 5 5 minus 1

Mean return 0.1270** 0.1203** 0.1287** 0.1223* 0.1266* -0.0004
(0.018) (0.024) (0.025) (0.067) (0.088) (0.990)

CAPM alpha 0.0126 0.0089 -0.0008 -0.0268** -0.0482** -0.0608*
(0.208) (0.455) (0.912) (0.018) (0.044) (0.065)

3-factor alpha 0.0145 0.0165** -0.0055 -0.0405*** -0.0422*** -0.0567***
(0.152) (0.017) (0.485) (0.006) (0.000) (0.001)

4-factor alpha 0.0164* 0.0188*** -0.0063 -0.0424*** -0.0457*** -0.0621***
(0.066) (0.007) (0.377) (0.002) (0.000) (0.000)

ex post βV -0.0011 0.0014 0.0047 0.0087 0.0189 0.0200

partially forward-looking. Specifically, we use five-minute high-frequency

data on the VIX from the TRTH database and estimate intraday realized

volatility for each day. The high-frequency data is available for the period

from January 01, 1996 until December 31, 2014. Thus, the sample period

is extended substantially. We perform standard data cleaning operations

following Rösch, Subrahmanyam, & Van Dijk (2014). Following on from

that, we obtain daily realized volatilities of the VIX and compute the

innovations (dV oV IXt) from a fitted ARMA model with dV oV IXt =
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4.7. CONCLUSION

V oV IXt − 0.9941V oV IXt−1 + 0.6803dV oV IXt−1.20 We estimate factor

sensitivities using Equation (4.12), replacing dVVIX by dVoVIX.

We present the results in Table 4.12. For value-weighted portfolios, the

return differential between stocks with high and those with low sensitivities

to aggregate uncertainty is substantially smaller than when using the VVIX

in Table 4.3 with about −6.3 %. This estimate is significant at 10 %.

The uncertainty-return trade-off persists when controlling for systematic

risk or employing the 3-factor model while a significant alpha cannot be

obtained with the 4-factor and 5-factor models. Even though the portfolio

of stocks with high sensitivities to innovations in aggregate uncertainty has

significantly negative alphas, these cannot be detected in the hedge portfolio

as the alpha of the portfolio with the lowest sensitivities is also negative.

Consequently, when accounting for momentum and liquidity, a significant

effect cannot be found. Furthermore, when restricting the sample to stocks

that are traded on the NYSE or when restricting the sample to the horizon

in which data on the VVIX is available (2007 until 2014), the effect is just

about significant at 10 %. This is fully in line with our motivation of dVVIX

being a superior measure for aggregate uncertainty compared to dVoVIX.

4.7 Conclusion

Using a simple stylized theoretical model we show that, beside the well-

established risk-return trade-off, investors also face an uncertainty-return

trade-off. In our empirical study, we verify this prediction, finding a clear

and very robust negative risk premium on aggregate uncertainty.

We use both uni- and bivariate portfolio sorts and show that the
20To measure innovations of the realized volatility of the VIX, it is indeed necessary to

fit an ARMAmodel, since simple first differences still adhere a substantial autocorrelation
of −0.38. Consequently, this should be considered when estimating tomorrow’s expected
volatility.
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Table 4.12: Realized Measure of Aggregate Uncertainty

At the beginning of each month, we form value-weighted (Panel A) and equally

weighted (Panel B) quintile portfolios based on the stock’s sensitivities to innovations

in aggregate uncertainty (βV
j,t), measured as the realized volatility of the VIX, over the

following year. The extended sample period spans from January 1996 to December 2014.

To obtain the sensitivities, we regress daily excess stock returns on dRVIX, controlling

for MKT as in Equation (4.12). Stocks with the lowest βV
j,t are sorted into portfolio 1,

those with the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge

portfolio buying the quintile of stocks with the highest βV
j,t and simultaneously selling

the stocks in the quintile with the lowest βV
j,t. We reform the portfolios after one month.

The row labeled Mean return is based on monthly simple returns. CAPM alpha, FF-3

alpha, 4-factor alpha, and 5-factor alpha refer to the alphas of the CAPM, the Fama

& French (1993) 3-factor, Carhart (1997) 4-factor, and the 5-factor (including liquidity)

models, respectively. The segment NYSE only restricts the sample of stocks to those

that are traded at the NYSE at the beginning of the estimation period. The segment

Horizon 07-14 presents the results when restricting the sample period to the time frame

between 2007 and 2014. Robust Newey & West (1987) p-values using 12 lags are reported

in parentheses. The stars indicate significance with one star (*) denoting significance at

10 %, two (**) at 5 %, and three (***) stars at 1 %.

Rank 1 2 3 4 5 5 minus 1

Mean return 0.1076** 0.1197*** 0.1133*** 0.0922** 0.0450 -0.0626*
(0.013) (0.000) (0.001) (0.016) (0.407) (0.054)

CAPM alpha 0.0015 0.0308*** 0.0195** -0.0083 -0.0834*** -0.0849**
(0.943) (0.001) (0.018) (0.297) (0.000) (0.015)

FF-3 alpha -0.0157 0.0257*** 0.0138** -0.0102 -0.0694*** -0.0537*
(0.426) (0.001) (0.039) (0.207) (0.000) (0.077)

4-factor alpha -0.0252 0.0264*** 0.0118* -0.0074 -0.0682*** -0.0431
(0.125) (0.000) (0.065) (0.283) (0.000) (0.131)

5-factor alpha -0.0368*** 0.0239*** 0.0141** -0.0072 -0.0559*** -0.0191
(0.009) (0.000) (0.031) (0.323) (0.001) (0.409)

NYSE only
4-factor alpha -0.0217 0.0171** 0.0143** -0.0077 -0.0597*** -0.0380*

(0.141) (0.018) (0.047) (0.248) (0.000) (0.093)

Horizon 07-14
4-factor alpha -0.0398** 0.0210** 0.0230*** -0.0110 -0.0727*** -0.0329*

(0.029) (0.016) (0.000) (0.305) (0.000) (0.100)
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4.7. CONCLUSION

quintile portfolio of stocks with the highest sensitivity toward innovations in

aggregate uncertainty underperforms the quintile of stocks with the lowest

exposure to aggregate uncertainty by about 14 % per annum in terms

of 4-factor alphas. Using regression tests, we estimate the cross-sectional

market price of aggregate uncertainty to be both economically substantial

and statistically highly significant. The estimated risk premium on

aggregate uncertainty cannot be explained by known risk factors. Our

results are also consistent with any multifactor model, in which aggregate

uncertainty is priced with a negative sign if investors relate a positive change

in aggregate uncertainty to future unfavorable shifts in the investment

opportunity set.

183



CHAPTER 4. AGGREGATE UNCERTAINTY AFFECTS STOCK
RETURNS

C Appendix

C.1 Variable Definitions

Main Control Variables

• Age (Zhang, 2006, “Age”) is the number of years up to time t since a

firm first appeared in the CRSP database. In regressions, we take the

natural logarithm to remove the extreme skewness in this variable.

• Aggregate volatility (Ang et al., 2006b, “dVIX”), is denoted by the

coefficient βdV IXj,t in the regression rj,τ − rf,τ = αj,t+βMj,t(rM,τ − rf,τ )+

βdV IXj,t dV IXτ + εj,τ using daily returns over the examination period

(Ang et al., 2006b), where dV IX is defined as the first difference in

the VIX from the Chicago Board Options Exchange (CBOE).

• Beta is the coefficient βMj,t obtained by the regression in Equation

(4.12).

• Bid-ask spread (“Bid-ask spread”) is the stock’s average daily bid-

ask spread over the examination period.

• Book-to-market (Fama & French, 1992, "Book-to-market”) is the

weighted average of book equity divided by market equity over

the examination period. The basic quantity is updated every 12

months for the beginning of the year. Book equity is defined as

stockholder’s equity, plus balance sheet deferred taxes and investment

tax credit, plus post-retirement benefit liabilities, minus the book

value of preferred stock.

• Leverage (Bhandari, 1988, “Leverage”) is defined as the weighted

average of one minus book equity (see “Book-to-market”) divided by
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total assets (Compustat: AT). The basic quantity is updated every 12

months for the beginning of the year.

• Momentum (Jegadeesh & Titman, 1993, “Momentum”) is the

cumulative stock return over the period from t− 12 until t− 1.

• Short-term reversal (Jegadeesh, 1990, “Short-term reversal”) is the

preceding month’s stock return (from t− 1 to t).

• Size (Banz, 1981, “Size”) is the average of firm’s market capitalization

over the examination period. Market Capitalization is computed as

the product of the price times the number of shares outstanding.

In regressions, we take the natural logarithm to remove the extreme

skewness in this variable.

Further Controls

• Amihud illiquidity (Amihud, 2002, “Amhiud illiquidity”) is the

absolute value of the stock’s return divided by the daily dollar volume,

averaged over the examination period. Specifically, it is Illiqt =

1
n

∑n
τ=1

|rj,τ |
V olume$τ

, with the daily dollar volume (V olume$τ , in thousand

dollars) being calculated as last trade price times shares traded on day

τ , while the summation is taken over all n trading days during the

examination period.

• Co-Skewness (Harvey & Siddique, 2000, “Co-Skewness”) is the

coefficient βCj,t on the squared market excess return in the regression

rj,τ−rf,τ = αj,t+β
M
j,t(rM,τ−rf,τ )+βCj,t(rM,τ−rf,τ )2+εj,τ , including the

market excess return and the squared market excess return, estimated

using daily returns over the examination period.
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• Demand for lottery (Bali, Cakici, & Whitelaw, 2011, “MAX”) is

the average of the five highest daily returns during the examination

period.

• Downside beta (Ang et al., 2006a, “Downside beta”) is the coefficient

βDj,t in the regression rj,τ−rf,τ = αj,t+β
D
j,t(rM,τ−rf,τ )+εj,τ , using daily

returns over the examination period only when the market return is

below the average daily market return over that year.

• Forecaster uncertainty (Anderson et al., 2009, “Forc. uncertainty”)

is the coefficient βFj in the regression rj,τ − rf,τ = αj + βFj duncτ +

βMj (rM,τ − rf,τ ) + εj,τ , where duncτ is the quarterly innovation in the

weighted variance of predictions on the market return. The regression

is performed once for each security using quarterly returns over the

whole sample period. We construct the forecasts following Anderson

et al. (2009) using the Survey of Professional Forecasters.

• Idiosyncratic volatility (Ang et al., 2006b, “Idio. volatility”) is the

standard deviation of the residuals εj,τ in the Fama & French (1993)

3-factor model rj,τ−rf,τ = αj,t+β
L
j,tLτ +βMj,t(rM,τ−rf,τ )+βSj,tSMBτ +

βHj,tHMLτ + εj,τ , using daily returns over the examination period.

SMBτ and HMLτ denote the returns on the Fama & French (1993)

factors.

• Idiosyncratic volatility-of-volatility (Baltussen et al., 2015, “Idio.

vol-of-vol”) is the volatility of the at-the-money Black & Scholes (1973)

option implied volatility (IV) over the examination period divided by

the average IV over that period V oVj,t =
σ(IVj,τ )

µ(IVj,τ )
. We use the data

cleaning procedure as described by Baltussen et al. (2015) and require

at least one hundred non-missing IV observations in order to compute

the quantity.
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• Kurtosis (“Kurtosis”) is the stock’s scaled fourth moment, computed

using daily returns over the examination period.

• NYSE only (“NYSE only”) is a dummy variable that takes the value

of one if the stock is traded at the NYSE at time t and zero otherwise.

• Pastor–Stambough liquidity (Pastor & Stambaugh, 2003, “PS

liquidity”) is the coefficient βLj,t in the following regression rj,τ − rf,τ =

αj,t+β
L
j,tLτ+βMj,t(rM,τ−rf,τ )+βSj,tSMBτ+βHj,tHMLτ+εj,τ , where Lτ is

the liquidity factor provided by Lubos Pastor and rM,τ−rf,τ = MKTτ ,

SMBτ , andHMLτ are the Fama–French factors provided by Kenneth

R. French. We run the regression using the monthly returns during

the examination period.

• Skewness (Xu, 2007, “Skewness”) is the stock’s scaled third moment

computed using daily returns over the examination period.

• Stochastic volatility (Cremers et al., 2015, “Straddle vol”), market

skewness and kurtosis (Chang et al., 2013, “dSkew”, “dKurt”),

aggregate jump risk (Cremers et al., 2015, “Jump”), market

variance risk premium (Han & Zhou, 2012, “dVRP”), and policy

uncertainty (Brogaard & Detzel, 2015, “dPol”) are the coefficients

βFj,t in the regression rj,τ − rf,τ = αj,t + βMj,t(rM,τ − rf,τ ) + βFj,tFτ + εj,τ ,

using daily returns over the examination period (Ang et al., 2006b),

where F is one of the following:

– Innovations in implied market skewness and kurtosis

(Chang et al., 2013), which are defined as the difference of

daily implied skewness (kurtosis) computed from S&P 500 index

options using the formulas of Bakshi et al. (2003) and its

expectation, which is obtained fitting an ARMA(1,1) model

on the complete time series of skewness (kurtosis) estimates.
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The resulting measure of innovations in market skewness then

is dSkewτ = Skewτ − 0.9956Skewτ−1 + 0.5707dSkewτ−1, that

of innovations in market kurtosis is dKurtτ = Kurtτ −

0.9981Kurtτ−1 + 0.6231dKurtτ−1.

– Innovations in policy uncertainty (Brogaard & Detzel,

2015) are obtained by fitting an ARMA(1,1) model on the

Baker, Bloom, & Davis (2013) policy uncertainty index using

trading days only. The resulting measure of innovations in policy

uncertainty is dPolτ = Polτ−0.9962Polτ−1 +0.8394dPolτ−1. We

obtain data on the policy uncertainty index from the authors’

webpage.

– Innovations in the market variance risk premium (Han &

Zhou, 2012), where the market variance risk premium is defined

as the difference between the risk-neutral expected variance

(V IX2) and the physical expected variance of the S&P 500

index over a 30-day horizon using daily return data. First, we

compute the expected variance (EVτ̃ ) under the physical measure

by regressing the annualized realized variance (RVτ̃+30) on the

lagged implied (V IX2
τ̃ ) and the lagged annualized historical

(RVτ̃ ) realized variance, using an expanding window of daily data

that is available at time τ , starting with data from January 01,

1996 (τ̃ refers to those dates) RVτ̃+30 = ατ +βτV IX
2
τ̃ + γτRVτ̃ +

ετ̃+30 in a first step and then computing EVτ = α̂τ + β̂τV IX
2
τ̃ +

γ̂τRVτ . The market variance risk premium (V RPτ ) is obtained as

V RPτ = V IX2
τ − EVτ . dV RP is obtained as the first difference

in V RP .

– Market-neutral straddle returns (Cremers et al., 2015), that

are computed by first constructing ATM zero beta straddles.

188



C. APPENDIX

Afterwards the StraddleV ol factor is the return of a gamma

neutral and vega positive portfolio of the two straddles maturing

in the next month and the month after next, while the Jump

factor is the return of a gamma positive and vega neutral portfolio

using the same straddles. To construct the factors, Black &

Scholes (1973) option sensitivities are used.

• Turnover (Datar, Y Naik, & Radcliffe, 1998, “Turnover”) is the

number of shares traded in one month divided by the total shares

outstanding, averaged over all months in the examination period.

• Volatility (Zhang, 2006, “Volatility”) is the stock’s standard deviation

computed using daily returns over the examination period.

• Volume (Gervais, Kaniel, & Mingelgrin, 2001, “Volume”) is the stock’s

average daily dollar trading volume over the examination period. In

regressions, we take the natural logarithm to remove the extreme

skewness in this variable.
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C.2 Equally Weighted Sorts

Single Portfolio Sorts and Characteristics

The results on equally weighted portfolios, presented in Table C.1, are

qualitatively similar to those of the value-weighted portfolios, shown in

Table 4.3. Returns and alphas of the 5 minus 1 hedge portfolio are at about

−11 %, all negative and statistically significant at 1 % for each of the models

we test.

Table C.1: Portfolios Sorted by Exposure to Aggregate
Uncertainty – Equally Weighted

At the beginning of each month, we form equally weighted quintile portfolios based on

the stock’s sensitivities to innovations in aggregate uncertainty (βV
j,t) over the following

year. To obtain the sensitivities, we regress daily excess stock returns on dVVIX,

controlling for MKT. Stocks with the lowest βV
j,t are sorted into portfolio 1, those with

the highest into portfolio 5. The column labeled 5 minus 1 refers to the hedge portfolio

buying the quintile of stocks with the highest βV
j,t and simultaneously selling the stocks

in the quintile with the lowest βV
j,t. We reform the portfolios after one month. The row

labeled Mean return is based on monthly simple returns. CAPM alpha, FF-3 alpha, and

4-factor alpha refer to the alphas of the CAPM, the Fama & French (1993) 3-factor,

Carhart (1997) 4-factor, and the 5-factor (including liquidity) models, respectively. The

segment NYSE only restricts the sample of stocks to those that are traded at the NYSE at

the beginning of the estimation period. The segment Factor loadings denotes the average

annual factor loadings, where βM, βV, and βdVIX refer to the factor loadings on the

market factor, dVVIX, and dVIX. The segment Stock characteristics presents average

(equally weighted) portfolio characteristics with Mkt. share denoting the average market

share of the portfolios. The remaining variable definitions are provided in the appendix.

Robust Newey & West (1987) p-values using 12 lags are reported in parentheses. The

stars indicate significance with one star (*) denoting significance at 10 %, two (**) at 5

%, and three (***) stars at 1 %.
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Table C.1: Portfolios Sorted by Exposure to Aggregate Uncertainty – Equally Weighted
(continued)

Rank 1 2 3 4 5 5 minus 1

Mean return 0.1366** 0.1246*** 0.1100** 0.0879* 0.0284 -0.1081***
(0.016) (0.009) (0.020) (0.082) (0.623) (0.000)

CAPM alpha 0.0230 0.0278*** 0.0137 -0.0152 -0.0873*** -0.1103***
(0.152) (0.008) (0.294) (0.313) (0.000) (0.000)

FF-3 alpha 0.0026 0.0161** 0.0020 -0.0245*** -0.1023*** -0.1048***
(0.821) (0.018) (0.600) (0.000) (0.000) (0.000)

4-factor alpha 0.0039 0.0149** 0.0011 -0.0260*** -0.106*** -0.1099***
(0.735) (0.026) (0.753) (0.000) (0.000) (0.000)

5-factor alpha 0.0205*** 0.0226*** 0.0042 -0.0297*** -0.1163*** -0.1368***
(0.009) (0.000) (0.105) (0.000) (0.000) (0.000)

NYSE only
4-factor alpha 0.0140 0.0203** 0.0053 -0.0077** -0.0791*** -0.0932***

(0.417) (0.021) (0.273) (0.037) (0.000) (0.000)

Factor loadings
βM 1.0236*** 1.0549*** 1.1604*** 1.3134*** 1.6208*** 0.5972***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βV -0.0511*** -0.0071*** 0.0160*** 0.0420*** 0.0987*** 0.1498***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
βdVIX -0.0739*** 0.0042 0.0553*** 0.1180*** 0.2449*** 0.3187***

(0.000) (0.502) (0.000) (0.000) (0.000) (0.000)

Return characteristics
Std. deviation 0.2705 0.2247 0.2245 0.2425 0.2800 0.0903
Skewness -0.4030 -0.4694 -0.3409 -0.2567 -0.2104 0.3806
Kurtosis 2.8357 2.6719 2.6955 2.7900 2.5149 2.9773

Stock characteristics
Mkt. share 0.2500 0.2990 0.2269 0.1457 0.0784 -0.1716
Size (∗10−6) 8.1557 9.5966 7.1994 4.6868 2.5425 -5.6132
Book-to-market 0.5827 0.5916 0.5949 0.6120 0.6288 0.0460
Bid-ask spread 0.0018 0.0013 0.0014 0.0015 0.0019 0.0002
Amihud illiquidity (∗106) 83.487 21.095 27.479 36.389 51.683 -31.804
Age 21.367 24.765 22.933 20.422 17.109 -4.2581
Leverage 0.5133 0.5494 0.5241 0.5127 0.5206 0.0073
MAX 0.0909 0.0739 0.0760 0.0844 0.1105 0.0196
Volatility 0.0299 0.0267 0.0276 0.0295 0.0329 0.0028
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Double Sorts

The results on equally weighted double sorts, controlling for the canonical

characteristics, can be found in Table C.2. Controlling for Beta, dVIX, and

Bid-ask spread, the alphas of the hedge portfolio turn out smaller compared

to single sorts, while it is still at about −11 % for the remaining control

variables. In case of controlling for dVIX, the 4-factor alpha is not significant

with a p-value slightly above 10 %.

Imposing further control variables in Table C.3, the results are not

affected. The uncertainty-return trade-off can clearly be detected in every

case.

C.3 Value-Weighted Regression Tests

Fama–MacBeth Regressions – Value-Weighted

Table C.4 reports the results of value-weighted Fama & MacBeth (1973)

regressions. We report the results of a regression of excess returns on βV
j,t,

βM
j,t, and various other canonical characteristics. In the basic regression

specification suggested by our theoretical model (ii), the yearly price of

aggregate uncertainty risk (coefficient on βV
j,t) is −1.0449 with a p-value

smaller than 0.002, which corresponds to a t-statistic of −3.28, also clearly

clearing the hurdle defined by Harvey et al. (2015). Consequently, a

two-standard deviation increase across stocks in their uncertainty-sensitivity

is associated with a 17.22 % decrease in average annual returns.

Adding ln(Size), Book-to-market, Bid-ask spread, Momentum, and

Short-term reversal in models (iii) to (iv) and (vi) to (viii) does not change

much. The coefficient on uncertainty-sensitivity remains economically large

and highly significant at 1 %. Adding dVIX in model (v) strongly reduces the

significance in the risk premium on aggregate uncertainty, but the p-value
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Table C.2: Double Sorts – Equally Weighted

This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the

beginning of each month, we first sort stocks into quintiles based on the characteristics

denoted in the first column. Then, within each quintile, we sort stocks based on their

uncertainty-sensitivity (βV
j,t) into another five quintile portfolios. The five portfolios

sorted on βV
j,t are then obtained by averaging over the respective quintiles within each

quintile of the other characteristic, thus we obtain βV
j,t quintile portfolios controlling

for another characteristic. We reform the portfolios after one month. This procedure is

performed for each of the characteristics. We report the main control variables for equally

weighted returns. The column labeled 5 minus 1 refers to the hedge portfolio buying the

quintile of stocks with the highest βV
j,t and simultaneously selling the stocks in the quintile

with the lowest βV
j,t. Robust Newey & West (1987) p-values using 12 lags are reported in

parentheses. The stars indicate significance with one star (*) denoting significance at 10

%, two (**) at 5 %, and three (***) stars at 1 %.

Rank 1 2 3 4 5 5 minus 1

Beta -0.0107 -0.0010 -0.0035 -0.0233*** -0.0733*** -0.0626***
(0.371) (0.844) (0.309) (0.000) (0.000) (0.001)

Size 0.0044 0.0114 0.0016 -0.0275*** -0.1020*** -0.1064***
(0.723) (0.139) (0.635) (0.000) (0.000) (0.000)

Book-to-market 0.0086 0.0133** 0.0014 -0.0234*** -0.0981*** -0.1067***
(0.459) (0.017) (0.710) (0.000) (0.000) (0.000)

dVIX -0.0310*** 0.0018 -0.0030 -0.0163*** -0.0636*** -0.0326
(0.001) (0.709) (0.453) (0.000) (0.000) (0.107)

Bid-ask spread 0.0021 -0.0007 -0.0092** -0.0280*** -0.0760*** -0.0780***
(0.870) (0.918) (0.029) (0.000) (0.000) (0.008)

Momentum 0.0101 0.0164** 0.0023 -0.0255*** -0.1024*** -0.1125***
(0.423) (0.016) (0.478) (0.000) (0.000) (0.000)

Short-term reversal 0.0054 0.0136** 0.0031 -0.0298*** -0.1028*** -0.1082***
(0.642) (0.035) (0.381) (0.000) (0.000) (0.000)

Age 0.0089 0.0149** 0.0001 -0.0244*** -0.1010*** -0.1099***
(0.454) (0.036) (0.971) (0.000) (0.000) (0.000)

Leverage 0.0083 0.0129* -0.0043 -0.0241*** -0.0982*** -0.1064***
(0.427) (0.055) (0.248) (0.000) (0.000) (0.000)
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Table C.3: Double Sorts (Further Control Variables) – Equally
Weighted

This table reports Carhart (1997) 4-factor alphas for double-sorted portfolios. At the

beginning of each month, we first sort stocks into quintiles based on the characteristics

denoted in the first column. Then, within each quintile, we sort stocks based on their

uncertainty-sensitivity (βV
j,t) into another five quintile portfolios. Portfolio returns are

equally weighted. The five portfolios sorted on βV
j,t are then obtained by averaging over

the respective quintiles within each quintile of the other characteristic, thus we obtain βV
j,t

quintile portfolios controlling for another characteristic. We reform the portfolios after one

month. This procedure is performed for each of the characteristics. We categorize control

variables into groups of returns distributions characteristics (Panel A), liquidity-related

characteristics (Panel B), and market factors (Panel C). The column labeled 5 minus

1 refers to the hedge portfolio buying the quintile of stocks with the highest βV
j,t and

simultaneously selling the stocks in the quintile with the lowest βV
j,t. Robust Newey

& West (1987) p-values using 12 lags are reported in parentheses. The stars indicate

significance with one star (*) denoting significance at 10 %, two (**) at 5 %, and three

(***) stars at 1 %.

Panel A. Returns Distributions Characteristics

Rank 1 2 3 4 5 5 minus 1

Idio. Volatility 0.0096 -0.0023 -0.0158*** -0.0387*** -0.065*** -0.0746***
(0.407) (0.750) (0.001) (0.000) (0.000) (0.001)

Co-Skewness 0.0085 0.0136* 0.0031 -0.0256*** -0.1039*** -0.1125***
(0.467) (0.057) (0.380) (0.000) (0.000) (0.000)

Co-Kurtosis 0.0095 0.0146** 0.0026 -0.0253*** -0.1057*** -0.1152***
(0.431) (0.013) (0.484) (0.000) (0.000) (0.000)

Downside Beta 0.0043 0.0102* -0.0004 -0.0291*** -0.0968*** -0.1011***
(0.712) (0.061) (0.928) (0.000) (0.000) (0.000)

MAX 0.0030 0.0114* -0.0047 -0.0334*** -0.0881*** -0.0911***
(0.777) (0.088) (0.236) (0.000) (0.000) (0.000)

Idio. Vol-of-Vol 0.0558*** 0.0379*** 0.0243*** 0.0098 -0.0502* -0.1060***
(0.003) (0.000) (0.001) (0.312) (0.083) (0.008)

Volatility 0.0221* 0.0108 0.0086** -0.0266*** -0.0754*** -0.0975***
(0.056) (0.130) (0.013) (0.000) (0.000) (0.000)

Skewness 0.0248** 0.0189*** 0.0049 -0.017*** -0.0921*** -0.1169***
(0.032) (0.001) (0.109) (0.000) (0.000) (0.000)

Kurtosis 0.0240** 0.0178*** 0.0060** -0.0184*** -0.0898*** -0.1138***
(0.034) (0.003) (0.035) (0.000) (0.000) (0.000)
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Table C.3: Double Sorts (Further Control Variables) – Equally Weighted (continued)

Panel B. Liquidity-Related Characteristics

Rank 1 2 3 4 5 5 minus 1

PS liquidity -0.0121 -0.0051 -0.0160 -0.0442*** -0.1181*** -0.1060***
(0.619) (0.793) (0.319) (0.000) (0.000) (0.000)

Amihud illiquidity -0.0485*** -0.0312*** -0.0319*** -0.0608*** -0.1329*** -0.0844***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Volume -0.0020 0.0054 -0.0022 -0.0219*** -0.0914*** -0.0894***
(0.871) (0.512) (0.557) (0.000) (0.000) (0.004)

Turnover 0.0036 0.0114* 0.0018 -0.0297*** -0.0989*** -0.1025***
(0.772) (0.075) (0.592) (0.000) (0.000) (0.000)

Panel C. Market Factors

Rank 1 2 3 4 5 5 minus 1

dSkew -0.0015 0.0059 -0.0052 -0.0328*** -0.1051*** -0.1037***
(0.919) (0.592) (0.504) (0.000) (0.000) (0.000)

dKurt -0.0007 0.0043 -0.0075 -0.0297*** -0.1051*** -0.1045***
(0.964) (0.690) (0.336) (0.000) (0.000) (0.000)

Straddle vol -0.0117 0.0042 -0.0082 -0.0261*** -0.0969*** -0.0853***
(0.388) (0.685) (0.285) (0.000) (0.000) (0.000)

Jump -0.0148 0.0051 -0.0058 -0.0302*** -0.0929*** -0.0781***
(0.207) (0.619) (0.463) (0.000) (0.000) (0.000)

dVRP -0.0183* 0.0060 -0.0027 -0.0222*** -0.0748*** -0.0564**
(0.087) (0.340) (0.426) (0.000) (0.000) (0.014)

dPol -0.0154 -0.0068 -0.0172 -0.0399*** -0.1161*** -0.1007***
(0.514) (0.732) (0.281) (0.002) (0.000) (0.000)

Forec. uncertainty 0.0023 0.0119* -0.0010 -0.0280*** -0.0968*** -0.0991***
(0.831) (0.071) (0.804) (0.000) (0.000) (0.000)

is only slightly above 10 %. Again, particularly when dVIX is included in

the regression, the coefficient denoting the price of aggregate uncertainty

risk is substantially smaller amounting to about −0.5 compared to about

1 when aggregate volatility is not included as an explanatory variable.

Adding several canonical characteristics jointly leaves the price of aggregate

uncertainty risk negative with p-values close to 10 %. Models (xii) to (xiv)

show that adding ln(Age) and Leverage does not have a big impact on the

price of aggregate uncertainty risk.
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CHAPTER 4. AGGREGATE UNCERTAINTY AFFECTS STOCK
RETURNS

Table C.5: Fama–MacBeth Regressions (Further Control Variables) – Value-Weighted
(continued)

Panel B. Liquidity-Related Characteristics

(xxv) (xxvi) (xxvii) (xxviii)

Constant 0.3509*** 0.3094*** 0.0703 0.3054***
(0.000) (0.006) (0.483) (0.006)

dVVIX -0.5345* -0.5540* -0.5520* -0.5571*
(0.054) (0.079) (0.084) (0.078)

Beta -0.0002 0.0164 0.0255 0.0299
(0.998) (0.817) (0.728) (0.658)

ln(Size) -0.0154*** -0.0128** -0.0125**
(0.006) (0.044) (0.042)

Book-to-market -0.0302 -0.0331* -0.0312* -0.0368**
(0.101) (0.072) (0.088) (0.044)

dVIX -0.2886*** -0.2451*** -0.2388*** -0.2425***
(0.000) (0.001) (0.002) (0.001)

PS liquidity 0.0098
(0.491)

Amihud illiquidity -1.1730***
(0.000)

ln(Volume) 0.0009
(0.861)

Turnover -0.0065
(0.209)

adj. R2 0.2397 0.2056 0.2014 0.2141

Multivariate Estimation

Table C.6 reports the results of value-weighted Fama & MacBeth (1973)

regressions when the sensitivities to the different factors are obtained

in a joint multivariate sensitivity estimation regression. The results are

similar to those of the usual regression tests without a weighting scheme.

Incorporating the Fama & French (1993) factors (xxxvii) leaves the effect

strongly significant at 1 %. Adding the other market factors like dVIX,

dSkew, dKurt, Straddle vol, Jump, or dVRP (models (xl) to (xlvii)) does not

change much. The price of risk on HML regularly is significant at 10 % while

that on MKT and SMB never is. The coefficient on uncertainty-sensitivity

is statistically significant at 1 % in any case. The coefficient on dVIX is

substantially less significant when estimating the sensitivities jointly with

dVVIX compared to the analysis in which both are estimated separately.
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CHAPTER 4. AGGREGATE UNCERTAINTY AFFECTS STOCK
RETURNS

The prices of risk on Jump and dVRP are significant, whereas the remaining

factors are only partly significant.
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Chapter 5

Conclusion and Further

Research

5.1 Summary and Conclusion

This thesis investigates the properties of asset’s market beta and the pricing

of aggregate uncertainty in financial markets. Chapter 2 comprehensively

studies the statistical properties of different methods to estimate an asset’s

market beta. We find that the hybrid methodology proposed by Buss

& Vilkov (2012) performs best both in terms of informational efficiency

and estimation accuracy. Furthermore, we find that the simple historical

benchmark model as well as a Kalman filter based approach with a random

walk parametrization perform well in terms of both evaluation criteria. On

the other hand, fully option implied models or GARCH-based time-series

approaches are shown to produce large pricing errors.

Chapter 3 studies the value of intra-day high-frequency data for

beta estimation. We employ high-frequency return data both to obtain

a presumably more precise statistical examination of ex ante estimates
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CHAPTER 5. CONCLUSION AND FURTHER RESEARCH

as well as for an additional historical estimator. Additionally, we present

evidence on optimal combinations of estimators and impose an economical

evaluation criterion in the analysis. We find that the results of Chapter

2 hold using high-frequency data. Furthermore, we find that the value

of intra-day high-frequency data for beta estimation is limited. From the

statistical evaluation viewpoint, especially over short time horizons, the

historical high-frequency estimator is shown to yield precise estimates,

whereas from an economic perspective the approach cannot uncover a

positive risk-return trade-off. Regarding the economic evaluation, the hybrid

approach proposed by Buss & Vilkov (2012) performs clearly best, detecting

a positive risk-return trade-off, albeit not of the magnitude predicted by the

CAPM. Using the statistical examination, the BV approach performs more

or less equally well compared to the high-frequency estimator.

Chapter 4 uses a simple stylized theoretical model to introduce the

possibility of the existence of an uncertainty-return trade-off in financial

markets in addition to the well-established risk-return trade-off. For the

empirical analysis we use uni- and bivariate portfolio sorts as well as

cross-sectional Fama & MacBeth (1973) regressions and find aggregate

uncertainty, measured by the VVIX, to be significantly priced with a

negative sign. Specifically, we find that the quintile portfolio of stocks

with the highest sensitivity toward innovations in aggregate uncertainty

underperforms the quintile of stocks with the lowest exposure to aggregate

uncertainty by about 14 % per annum in terms of 4-factor alphas. In

cross-sectional regressions, a two-standard deviation increase in aggregate

uncertainty factor loadings is associated with a significant decrease in

average annual returns that ranges from 6.3 % to 18.7 %. These findings

cannot be explained by known risk factors or a crisis effect.

The findings presented in this thesis have important implications for

both academics and market participants in practice. First of all, beta
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is important for many applications in asset pricing, portfolio choice or

risk management. Financial managers should estimate beta, if applicable,

using the hybrid method of Buss & Vilkov (2012). This ensures estimates

that perform well from a statistical viewpoint, i.e. are accurate and

informationally efficient, and, more importantly, serve to detect a positive

risk-return trade-off in the cross-section of stock returns. The BV approach,

however, is not applicable for all stocks. It requires options data for all

constituents of a market index and the index itself. This means that for

many assets, the hybrid BV methodology cannot provide an estimate. In

these cases, the asset manager should stick to a simple historical estimate

instead of a GARCH or fully option implied alternative. If the asset manager

has intra-day high-frequency data at hand, this is of limited value. Using

high-frequency data, he obtains more precise estimates compared to the

historical daily estimator, but if the BV approach is feasible he should

stick to that since it is superior from an economic perspective. The findings

presented here also have several implications for the academic literature.

The conclusions drawn above hold in academic applications alike, meaning

that one should stick to the BV approach while using high-frequency data

for beta estimation has only little value.

Lastly, showing that aggregate uncertainty is priced in the stock market

provides another important contribution that may help us understanding

financial markets better. Market participants can decide whether they

want to hedge against increases in aggregate uncertainty or expose their

portfolios to that factor earning the substantial risk premium attached

to it. Showing that once aggregate uncertainty is imposed many of the

previously documented anomalies or risk factors are not priced, this thesis

also contributes to the literature trying to separate “real” risk factors from

those spuriously detected.
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5.2 Suggestions for Further Research

Especially related to the measurement of beta using option-implied data as

well as intra-day high-frequency return data, several potentially interesting

topics for future research arise. Using such data, beta can be obtained on

a day-by-day basis. Building on that there are several fields of potential

future research.

First, given that using the hybrid BV methodology is available for

various time horizons using options data with suitable maturity, we can

study the term structure of beta. The main reason for term-structure effects

in implied beta may be caused by the fact that certain economic shocks

do not affect systematic risk at the short end, but potentially have large

implications at the long end (or vice versa). We can study the implications

of a positive or negative term structure for firms and their future returns.

Secondly, we can test the risk-return trade-off predicted by the CAPM

at the very short end. The CAPM is a one-period model. The exact length

of this period, however, remains unspecified. Consequently, we can test the

model on a daily or weekly basis. Bali et al. (2015) show that dynamic

conditional beta, based on a GARCH-specification, is doing well in a cross-

sectional analysis. However, the results of their study might depend on the

specific model chosen. Using realized or implied betas, we are able to obtain

model-free or semi-parametric daily and weekly conditional estimates for

beta. Employing these estimates of beta, we can test the conditional CAPM

at the very short end following the approaches of Lewellen & Nagel (2006)

and Ang & Kristensen (2012).

Furthermore, using day-by-day estimates, we can study time-variations

and test for jumps in beta. We can study how heavily the systematic

risk of individual assets is fluctuating. We further could examine what
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firm characteristics (e.g., size, book-to-market, industry, age) can explain

time-variations in beta. Moreover, using the non-parametric test of Lee &

Mykland (2008) or a related test and our daily beta estimates, we could

identify jumps in betas of the stocks in the S&P 500. Once we have detected

such movements, we can study their causes. To do this, we can relate them

to scheduled and unscheduled news following the approach in Prokopczuk

& Wese Simen (2014b).

Lastly, using the hybrid beta estimates for different time horizons,

combined with a term structure of risk-free interest rates and an appropriate

estimate for the term-structure of expected returns for the market portfolio

we could examine the term-structure of asset’s expected returns.

Finally, the evidence presented in Chapter 4 may help to develop a

factor model related to fundamentals. The model by Fama & French (1993)

is often criticized on the ground that the size and book-to-market lack a clear

theoretical foundation. Recent developments (e.g., Hou et al., 2015; Fama

& French, 2015) in factor models can also be criticized on that grounds.

Consequently, we could study closer the relation of aggregate uncertainty

and further macroeconomic fundamentals with the factors in existing models

and, finally, maybe develop a new factor model which based on economic

variables, incorporating aggregate uncertainty.
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