ILK Dresden

15.03.2002 Seitenzahl 76

Ermittlung der Grundlagen zum Entwurf von mechanischen Verdichtern für Kältemaschinen mit Wasser als Kältemittel im Bereich kleiner Kälteleistungen zwischen 50 kW und 300 kW

Auftraggeber BMBF/SMWA

Bearbeiter Dr.-lng. Bodo Burandt, Dr.-lng. Alexander Pietsch, Dipl.-lng. K. Seidel

Deskriptoren Kälteleistung, Kältemittel, Verdichter, Wasser

Kurzreferat

In dem Vorhaben wurden die Grundlagen für die Entwicklung von Verdichtern für den Einsatz von Wasser als Kältemittel im kleinen Leistungsbereich erarbeitet.

Es wurde die Machbarkeit des Einsatzes eines Verdichters für die Verdichtung von Wasserdampf im kleinen Leistungsbereich nachgewiesen. Hierfür wurden drei ausgewählte Verdichtungsprinzipien (Schraubenverdichter, Axial- und Radialverdichter) untersucht. Es zeigte sich, dass von diesen nur der Radialverdichter für den Einsatz im kleinen Leistungsbereich theoretisch einsetzbar ist. Für den Radialverdichter wurde eine detaillierte Simulation und Auslegung durchgeführt und ein Konstruktionsvorschlag erarbeitet.

Inhaltsverzeichnis

Formelzeichen und Indizes	4
1 Einleitung	6
1.1 Allgemeines	6
1.2 Aufgabenstellung, wissenschaftliche und technische Arbeitsziele des Vorhabens	7
1.3 Voraussetzungen für die Durchführung des Vorhabens	8
1.4 Planung und Ablauf des Vorhabens	8
1.5 Stand von Wissenschaft und Technik	9
1.6 Zusammenarbeit mit anderen Stellen	11
2 Definition von Einsatzbedingungen	11
3 Studie zur Einsatzmöglichkeit verschiedener Verdichtungsprinzipien für die	
Wasserdampfverdichtung	13
3.1 Schraubenverdichter	14
3.1.1 Einleitung	14
3.1.2 Funktionsweise des Schraubenverdichters	14
3.1.3 Besonderheiten der Betriebsweise	17
3.1.4 Der Schraubenverdichter als Wasserdampfverdichter	18
3.1.5 Möglichkeiten der konstruktiven Gestaltung von Schraubenverdichtern für	
Wasserdampfverdichtung	28
3.2 Axialverdichter	31
3.2.1 Einleitung	31
3.2.2 Funktionsweise eines Axialverdichters	31
3.2.3 Besonderheiten der Betriebsweise eines Axialverdichters	32
3.2.4 Auslegungskriterien	34
3.2.4.1 Wahl der strömungstechnischen Kriterien	35
3.2.4.2 Wahl der geometrischen Parameter	36
3.2.5 Berechnungen	39
3.2.5.1 Kinematischen Verhältnisse	39
3.2.5.2 Geometrische Daten der Schaufel 3.2.5.3 Kontrollwerte	40 40
3.2.6 Einschätzung der Einsatzmöglichkeit eines Axialverdichters	44
3.3 Radialverdichter	52

10	Literatur	76
9 Zus	ammenfassung	75
8.3	Aufbau des Versuchsstand	74
8.2	Ziele	74
8.1	Modell	73
8 Ent	wurf eines Luftprüfstandes	71
7.3	Direktkondensator	71
7.2	Zwischenkühler	71
7.1	Direktverdampfer	69
7 Ges	taltungskonzeption für Kaltwassersatz mit Wasser als Kältemittel	69
6 Antı	rieb der Radialturboverdichter	65
5.4	Zusammenfassung der Auslegungsdaten	63
5.3	Nachleiteinrichtung	62
5.2	Laufrad	61
5.1	Vorleitrad	60
5 Aus	legung und Entwurf der Vorzugsvariante – Radialverdichter	60
4.4	Schlussfolgerung	59
	Radialverdichter	57
	Axialverdichter	56
4.1	Schraubenverdichter	55
Ver	dichtungsprinzipien für Wasserdampfkälteanlagen kleiner Leistung	55
4 Abs	chließende Beurteilung der Einsatzmöglichkeit der verschiedenen	
;	3.3.3 Einschätzung der Einsatzmöglichkeiten	53
	3.3.2 Allgemeiner Aufbau des Radialverdichters	52
	3.3.1 Einleitung	52
	O. O. A. Eta-Laterran	F.C

Formelzeichen und Indizes

Formelzeichen

Bei mehrfacher Verwendung eines Formelzeichens finden sich im Text entsprechende Erläuterungen.

Bezeichnungen

Symbol	Einheit	Bedeutung .
а	m/s	örtliche Schallgeschwindigkeit
Α	m^2	Fläche
b	m	Breite
С	m/s	Absolutgeschwindigkeit
\mathbf{c}_{w}		Wiederstandsbeiwert
D	m	Durchmesser
ẽ	J/kg	spezifische Laufradarbeit
h	m	Höhe
h	J/kg	Enthalpie
L	m	(Profil) Länge
ṁ	kg/s	Massestrom
M		Machzahl
n	min ⁻¹	Drehzahl
Р	W	mechanische Leistung
Q	W	Kälteleistung
q_{v}	J/m ³	volumetrische Kälteleistung
Ře		Reynoldszahl
\widetilde{r}		Reaktionsgrad
Т	K	absolute Temperatur
Т		Teilung
u	m/s	Umfangsgeschwindigkeit
Ÿ	m³/s	Volumenstrom
vi		Volumenverhältnis
W	m/s	Relativgeschwindigkeit
Z		Schaufelzahl

Griechische Zeichen

Symbol	Einheit	<u>Bedeutung</u>
α	0	Absolutströmungswinkel
Δ		Differenz
δ	m	Schaufeldicke, Vordrallzahl
η		Wirkungsgrad
φ		Durchflusszahl
μ		Minderumlenkung
ν		Nabenverhältnis
π		Druckverhältnis
ρ	kg/m³	Dichte
σ		Schnelllaufzahl
$\boldsymbol{\omega}$	min ⁻¹	Winkelgeschwindigkeit
Ψ		Druckzahl
$\widetilde{\psi}$		Energiedifferenzzahl
ζ		Verlustbeiwert

Indizes und Symbole

а	außen
d	dynamisch
E	Eintritt
fa	frei ausblasend
id	ideal
i	innen
k	Kondensation
kr	kritisch
LR	Laufrad
m	meridionale Richtung
m	mittlere, Meridian
n	Anzahl der Stufen
N	Nabe
NLG	Nachleitgitter
R	Ruhezustand des Gases bei c = 0
S	Saugmund, Schaufel, Spalt
st	Stufe
t	total
V	Verdampfer
VL	Vorleitrad
u	Umfangsrichtung
W	Wasser
0	Verdampfung
1	Eintritt
2	Austritt
*	kritisch

Konstante Größen

\mathbf{c}_p	= 1865	J / (kgK)	spezifische Wärmekapazität
κ	= 1,33		Isentropenexponent für Wasser
R	= 462	J / (kgK)	spezifische Gaskonstante für Wasser