

Forschungsverbundprojekt "Entwurf und Modellierung von Antriebssystemen für die Mikrosystemtechnik" MODAN www.modan.org

Abschlußbericht des Teilprojektes "Antriebslösung in 4 Koordinaten für die Flip-Chip-Technologie zur Herstellung von neuartigen mikromechanischen Systemen für Identifikations- und Sensorsysteme"

der INA - Drives & Mechatronics GmbH & Co. oHG

Verbund-Nr.: V2285 Fördermittelgeber: BMBF

Projektträger: VDI/VDE-IT Teltow

Betreuer: Dipl. - Ing. Chr. Breckenfelder / Dipl. - Ing. S. Krüger

Inhaltsverzeichnis

Verbund-Nr.: V2285

1	Ku	rzdars	tellungen	3		
	1.1	Aufg	abenstellung	3		
	1.2	Vora	ussetzungen zur Durchführung des Vorhabens	3		
	1.3	Plan	ung und Ablauf des Vorhabens	3		
	1.4	Ankr	nüpfung an den wissenschaftlichen und technischen Stand	4		
	1.	.4.1	Für das Vorhabens genutzte bekannte Konstruktionen, Verfahren und Schutzrechte	4		
	1.	.4.2	Verwendete Fachliteratur, genutzte Informations- und Dokumentationsdienste	4		
	1.5	Zusa	mmenarbeit mit anderen Stellen	4		
2	Ein	Eingehende Darstellungen				
	2.1	Proje	ektziel	5		
	2.2	Proje	ektdurchführung	6		
	2.3	Erzie	elte Ergebnisse	8		
	2	.3.1	Arbeitspaket Hub-Dreh-System mit integrierter Kraftregelung	8		
	2	.3.2	Arbeitspaket X-Y-System (Baukasten)	10		
	2	.3.3	Arbeitspaket Gesamtsystem	12		
	2.4	Vora	ussichtlicher Nutzen und Verwertbarkeit der Ergebnisse und der			
		Erfal	nrungen	12		
	2	.4.1	Präzisionsachssysteme	12		
	2.4.2		Hub-Dreh-System mit integrierter Kraftregelung	13		
	2	.4.3	Gesamtsysteme	13		
	2.5	Beka	nnt gewordene Fortschritte bei anderen Stellen	13		
	2.6	Erfol	gte oder geplante Veröffentlichungen der Ergebnisse	13		
3	Fo	rtschre	eibung des Verwertungsplans	13		

Anlage 1: Datenblatt Z-Phi VC 25/3

Anlage 2: Motordatenblatt L1F

Anlage 3: Datenblatt LSM-T24

1 Kurzdarstellungen

1.1 Aufgabenstellung

Antriebslösung in 4 Koordinaten für die Flip-Chip-Technologie zur Herstellung von neuartigen mikromechanischen Systemen für Identifikations- und Sensorsysteme. Grundlage ist ein System zur Bewegung in zwei Koordinaten in der horizontalen Ebene, welches Hub-Dreh-Systeme bewegt. Diese Hub-Dreh-Systeme dienen der genauen Aufnahme und Platzierung von Waferchips und mikromechanischen Baugruppen. Zur Erhöhung des Durchsatzes soll der Kreuztisch sehr schnell und genau arbeiten. Im Weiteren sollen die Hub-Dreh-Systeme leicht und kompakt sein, damit der Kreuztisch bis zu fünf solcher Systeme mit einem mal transportieren kann. Ähnlich einem Revolverkopf können dann mehrer Bauteile aus einem Magazin aufgenommen und dann im Zielgebiet abgelegt werden. Die Aufnahme und Ablage erfolgt in verschiedenen Ebenen (innerhalb von 25 mm) und entsprechend einem ermittelten Parameter im Winkel innerhalb von zehn Sekunden. Die Gesamtgenauigkeit in der Summe soll über 300 x 400 mm innerhalb von 5 µm bei 3 Sigma liegen. Eingeschlossen ist dabei die Abweichung durch die z- und φ- Achse. In der z- Achse darf das System max. 2 μm überschwingen. Es ist ein kraftgeregelter Modus für z zum Absetzen der Bauteile zu implementieren, um Beschädigung der Bauelemente zu vermeiden. Die Antriebsmodule haben auch als Einzellbaugruppen einen Markt in der Präzisionslaserbearbeitung. Der Fahrweg soll modular bis 600 x 600 mm erweiterbar sein. Die Antriebsleistung soll skalierbar sein, um unterschiedlichen Arbeitsregimes gerecht zu werden.

Verbund-Nr.: V2285

Systembeschleunigung >20m/s², Geschwindigkeit bis 2m/s.

1.2 Voraussetzungen zur Durchführung des Vorhabens

Know-How bei IDAM

- in feinmechanischen Konstruktionen
- Motorentwicklung und Fertigung
- Magnetkreisauslegung (im Unternehmen und bei Verbundpartnern)
- Feinmechanische Fertigung / Montage
- Inbetriebnahme / Regelungstechnik von Direktantriebssystemen

Meßtechnische Voraussetzung zur Überprüfung der Genauigkeit (Meßraum, Laser) sind gegeben

Simulationsverfahren bei Verbundpartnern vorhanden

Know How zur Entwicklung neuer hochauflösender Meßsysteme bei Verbundpartner vorhanden

1.3 Planung und Ablauf des Vorhabens

September 2001 Beantragung

April 2002 Kooperationsvertrag mit allen Projektpartnern

April 2002 Zuwendungsbescheid

2002 Definition von Arbeitspaketen

Verbund-Nr.	.: V2285
-------------	----------

	Erstellen Projektplan, Abstimmung mit den Verbundpartnern
	Beginn der Abarbeitung der Arbeitspakete
	Evaluierung des Konzeptes
2003	Abarbeitung Arbeitspaket Hub-Schwenk-System
	Neuausrichtung des Projektes hinsichtlich des X-Y-Systemes Erstellung Baukastensystem Linearachsensystem
	Aufbau und Test Demonstrator
2004	Optimierung Hub-Schwenk-System
	Überarbeitung Linearachsensystem
	Verschmelzung der Unternehmen LAT und Prätec zu IDAM
2005	Einarbeitung neuer MA
	Überarbeitung und Optimierung der Konstruktion des Baukastensystemes im neuen 3D-CAD PRO/E
	Abschluß des Projektes

1.4 Anknüpfung an den wissenschaftlichen und technischen Stand

1.4.1 Für das Vorhabens genutzte bekannte Konstruktionen, Verfahren und Schutzrechte

Bekannte Konstruktionen:

Hub-Dreh-Einheit ohne Kraftregelung von IDAM

Schutzrechtproblematik:

Hub-Dreh-Einheit ohne Kraftregelung von SMAC

1.4.2 Verwendete Fachliteratur, genutzte Informations- und Dokumentationsdienste

Messeanalysen, Patentrecherche Depanet

1.5 Zusammenarbeit mit anderen Stellen

2 Eingehende Darstellungen

2.1 Projektziel

Das IDAM-Teilprojekt umfasst eine Antriebslösung in vier Koordinaten für die Flip-Chip -Technologie zur Herstellung von neuartigen mikromechanischen Systemen für Identifikations- und Sensorsysteme. Grundlage ist ein Zweikoordinatensystem für eine horizontale Bewegung mit auf gesetzten Hub-Dreh-Systemen. Diese Hub-Dreh-Systeme dienen der genauen Aufnahme und Platzierung von Waferchips und mikromechanischen Baugruppen. Zur Erhöhung des Durchsatzes soll der Kreuztisch sehr schnell und genau arbeiten. Im weiteren sollen die Hub-Dreh-Systeme leicht und kompakt sein, damit der Kreuztisch bis zu fünf solcher Systeme mit einem mal transportieren kann. Ähnlich einem Revolverkopf können dann mehrer Bauteile aus einem Magazin aufgenommen und dann im Zielgebiet abgelegt werden. Die Aufnahme und Ablage erfolgt in verschiedenen Ebenen (innerhalb von 25 mm) und entsprechend einem ermittelten Parameter im Winkel innerhalb von zehn Sekunden. Die Gesamtgenauigkeit in der Summe soll über 300 x 400 mm innerhalb von 5 µm bei 3 Sigma liegen. Eingeschlossen ist dabei die Abweichung durch die z- und φ- Achse. In der z- Achse darf das System max. 2 µm überschwingen. Es ist ein kraftgeregelter Modus für z zum Absetzen der Bauteile zu implementieren, um Beschädigung der Bauelemente zu vermeiden. Die Antriebsmodule haben auch als Einzellbaugruppen einen Markt in der Präzisionslaserbearbeitung. Der Fahrweg soll modular bis 600 x 600 mm erweiterbar sein. Die Antriebsleistung soll skalierbar sein, um unterschiedlichen Arbeitsregimes gerecht zu werden.

Verbund-Nr.: V2285

Systembeschleunigung >20m/s², Geschwindigkeit bis 2m/s.

- Grundlagenentwicklung (Konzept, Evaluierung, Berechnung, Vorversuche und Optimierung) des X-Y-Systemes als Baukastensystem aus direkt getriebenen Einzelachsen
- Konstruktion, Bau und Test eines Demonstrators einer Einzelachse
- Optimierung der Einzelachse hinsichtlich Funktion und Kosten
- Konzipierung und Entwicklung eines in Z kraftgeregelten Zweikoordinaten Hub-Schwenksystems mit folgenden Eigenschaften:
 - 25 mm Hub und 300° Drehung mit Außenabmessungen von ca. 30 x 100 x 140 mm
 - Abtrieb stirnseitig mit >=5mm Hohlwelle, die gleichzeitig eine Hub- und Drehbewegung realisiert
 - Auflösung Kraftregelung <= 1g (0,01N)
 Positionierzeit für 20mm Hub mit Absetzkraft von 0,5N in 70ms und 0,1N in 200ms
 - Wellenende zur Aufnahme des Bauteils vorbereitet (Vakuum und / oder Mikrogreifer)
 - die Baugruppe sollte auch direkt angetrieben sein
 - die Auflösung soll linear 0,1 µm und rotativ 3" betragen
 - der Gesamtantrieb soll eine Masse kleiner 1100g haben, bewegte Masse
 <150g

- die zu bewegende Nutz-Masse ist kleiner gleich 35 g
- Kraft in linearer Richtung ca. 15 N, Kraft in Drehrichtung ca. 40 bis 60 Nmm
- Beschleunigung in linearer Richtung bis 50m/s² und Vmax=1m/s
- Antriebsberechnung und Optimierung entsprechend dem geforderten Bauraum bei Einhaltung der Parameter
- Entwicklung einer entsprechenden Soft- und Hardware
- Test- und Optimierung des Systems, Vorbereitung der Fertigung
- Entwurf und Konstruktion eines entsprechenden Gesamtkonzeptes aus Achssystemen und Hub-Schwenksystemen
- Aufbau des Gesamtsystems mit 5 Hub- Drehmodulen für einen Fahrweg von 600 x 600 mm inklusive Steuerung und Software (Firmware)

2.2 Projektdurchführung

Verbund-Nr.: V2285

September 2001 Beantragung

April 2002 Keeperationsvertrag mit ellen

April 2002 Kooperationsvertrag mit allen Projektpartnern

April 2002 Zuwendungsbescheid, Projektstartmeeting bei IDAM (vormals LAT)

Jahr 2002 Definition von Arbeitspaketen

Erstellen Projektplan

Abstimmung mit den Verbundpartnern

Evaluierung des Konzeptes

Beginn der Abarbeitung der Arbeitspakete

Bei der Evaluierung des technisches Konzeptes des ursprünglichen X-Y-Systemes, bestehend aus einem X-Y-Planar-Reluktanzantrieb von IDAM gekoppelt mit einem elektrodynamischen Planarantrieb vom Verbundpartner IMMS, stellte sich heraus, daß damit die gewünschten Parameter hinsichtlich Beschleunigung, Endgeschwindigkeit und Nutzlast nicht erreichbar sind. Auch war der erforderliche Überkopfbetrieb nicht mit vertretbarem Aufwand möglich.

Jahr 2003 Abarbeitung Arbeitspaket Hub-Schwenk-System

Neuausrichtung des Projektes hinsichtlich des X-Y-Systemes

Erstellung eines Baukastensystemes von Linearachsen, Aufbau und

Test des Demonstrators

Jahr 2004 Optimierung Hub-Schwenk-System

Verbesserung Soft- und Hardware der Kraftregelung

Verbesserung der mechanischen Genauigkeit in XY

Verbesserung der Fertigbarkeit und des Montageablaufes zur

Senkung der Kosten

Überarbeitung Linearachsensystem

Verwendung neuer effizienter Motoren

Erstellung in 3D-CAD Inventor (statt ACAD 2D), auch als Basis für

CAE-Simulationen)

Verschmelzung der LAT Suhl AG mit der Prätec GmbH zu IDAM Kapazitätsengpaß im Projekt

Verbund-Nr.: V2285

Jahr 2005

Einarbeitung eines neuen MA für das Linearachs- und Gesamtsystem Strategischer Wechsel auf das 3D-CAD-System PRO/E, Neuaufbau der CAD-Modelle und gleichzeitige Überarbeitung der Konstruktion (mit der neuen CAD-Software stehen umfangreiche Simulations- und Optimierungsmöglichkeiten innerhalb des Unternehmensverbundes auch nach Projektende zur Verfügung)

Demonstrator des Gesamtsystemes und der optimierte Linearachsenbaukasten wurden innerhalb der Projektlaufzeit nicht mehr aufgebaut, die Projektaufwände sind entsprechend niedriger ausgefallen.

Abschluß des Projektes

2.3 Erzielte Ergebnisse

Verbund-Nr.: V2285

2.3.1 Arbeitspaket Hub-Dreh-System mit integrierter Kraftregelung

Das Projektziel wurde erreicht:

- 25 mm Hub und 300° Drehung mit Außenabmessungen von ca. 34,5 x 100 x 140 mm, optional Stecker oder Kabelanschluss
- Abtrieb stirnseitig mit 5mm Hohlwelle, die gleichzeitig die Hub- und Drehbewegung realisiert
 - Auflösung Kraftregelung <= 1g (0,01N), kraftgeregeltes Absetzen 0,1N bis 5N
 Positionierzeit für 20mm Hub mit Absetzkraft von 0,5N in 70ms und 0,1N in 200ms werden erreicht
 - Wellenende zur Aufnahme des Bauteiles mit Gewinde M5 oder Toolaufnahme Innendurchmesser 3,175mm
- Direktantrieb Hubachse mit Voice-Coil
- Auflösung linear 0,2 µm (optional bis 0,05µm) und rotativ 0,0225°
- Gesamtantrieb Masse 1100g haben, bewegte Masse 135g
- die zu bewegende Nutz-Masse ist kleiner gleich 35 g
- Spitzenkraft linear 12,5N, Spitzenmoment 60 mNm
- Beschleunigung in linearer Richtung bis 50m/s² und Vmax>1m/s
- Soft- und Hardware zur Ansteuerung im kraftgeregelten Betrieb
- Vorbereitete Fertigung für das System, Montagehilfsmittel, Prüfalgorithmen zur Qualitätssicherung vorbereitet (Hard- und Software)

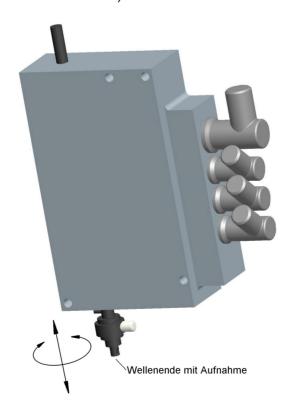
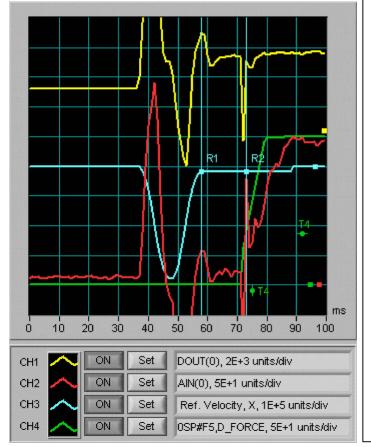



Bild 1 Hub-Dreh-System, Variante mit Steckeranschluß

Bild 2 Demonstrator Hub-Dreh-System

gelb:

Stellgröße (Motorsollstrom)

rot: Kraftsignal 1 Raster = 0,1N

Verbund-Nr.: V2285

blau:

Sollgeschwindigkeit 1 Raster = 100 mm/s (bis "R2" = Start Kraftrege-

lung)

grün: Sollkraft

Hub 4,7mm mit v_{max} ca. 0,5m/s, danach ein Suchweg bis zum Aufsetzen von ca. 300 μ m mit v = 20 mm/s

Bild 3 Hub-Dreh-System, Positioniervorgang mit 0,5N Absetzkraft

2.3.2 Arbeitspaket X-Y-System (Baukasten)

Es entstand ein Baukastensystem von Präzisionslinearachsen mit

- Zwei Breitenvarianten (160 bzw. 195 mm breit, 65mm hoch)
- Jeweils zwei Längenvarianten der Schlitten (160mm bzw. 260mm)
 - o Das ergibt Motorspitzenkräfte von ca. 150-600N
- Vorzugslängenstufungen von 440mm bis 1200 mm im Raster von 190mm
- Kugelumlaufführungen (2 Größen angepasst an die Breitenvarianten)
- Optische inkrementelles Messsystem bis 50nm Auflösung
- Geschwindigkeit bis 3m/s

Verbund-Nr.: V2285

Die CAD-Modelle wurden mit PRO/ Engineer erstellt.

Ein getesteter Demonstrator liegt vor, die Ergebnisse flossen in die optimierte Konstruktion ein.

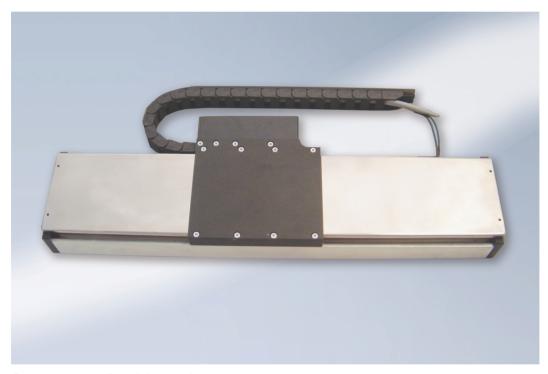
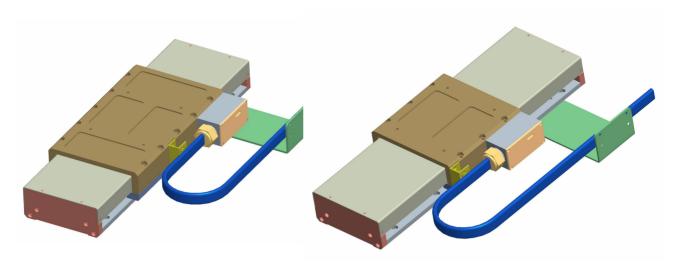



Bild 4 Demonstrator Präzisionsachse

Verbund-Nr.: V2285

Bild 5 Baukasten: 2 Schlittenlängenvarianten 160 mm und 260 mm

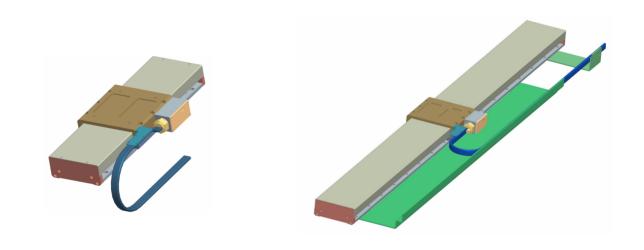


Bild 6 Baukasten: unterschiedliche Längenvarianten, Energiezuführung

2.3.3 Arbeitspaket Gesamtsystem

Verbund-Nr.: V2285

CAD-Entwurf des Gesamtsystemes als X-Y-System mit 4 Befestigungsplätzen für kraftgeregelte Hub-Schwenk-Systeme:

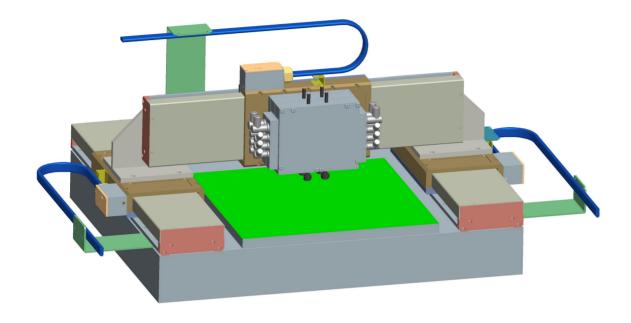


Bild 7 Gesamtsystem für Abdeckbereich 400mm x 400mm mit 4 Hub-Schwenk-Systemen

2.4 Voraussichtlicher Nutzen und Verwertbarkeit der Ergebnisse und der Erfahrungen

2.4.1 Präzisionsachssysteme

Das modulare Präzisions-Achssystem bietet die Basis für antriebstechnische Lösungen in X-Y bei der

- Laserpräzisionsbearbeitung für Nutzen bis 600 x 600 mm
- Mikromontage
- Bio-, Gentechnologie
- Implander f
 ür Chipkartenfertigung
- schnelle Bonder für das direkte Bonden auf großen Nutzen und die Flip Chip -Technologie
- Bestückungsmaschinen (Sonderbestücker für hohe Präzision)
- Leiterplattentester für bestückte und unbestückte Systeme
- schnelle optische Zweikoordinaten Messmaschinen
- Antriebstechnik zur Montageautomatisierung in der Feinwerktechnik

Aufgrund des Baukastensystemes können Angebote sehr schnell erstellt werden und haben eine bessere Qualität. Das technische Risiko ist durch die Tests während des Projektes minimiert.

Verbund-Nr.: V2285

2.4.2 Hub-Dreh-System mit integrierter Kraftregelung

Das Hub-Dreh-System mit integrierter Kraftregelung kann Einsatz finden in den Branchen

- Mikromontage
- Bio-, Gentechnologie
- Implander für Chipkartenfertigung
- schnelle Bonder für das direkte Bonden auf großen Nutzen und die Flip Chip -Technologie
- Bestückungsmaschinen (Sonderbestücker für hohe Präzision)
- Leiterplattentester für bestückte und unbestückte Systeme
- schnelle optische Zweikoordinaten Messmaschinen

2.4.3 Gesamtsysteme

Gesamtsysteme werden in der Regel kundenspezifisch konfiguriert. Durch die Baukastenelemente kann dies deutlich schneller als bisher erfolgen.

2.5 Bekannt gewordene Fortschritte bei anderen Stellen

2.6 Erfolgte oder geplante Veröffentlichungen der Ergebnisse

Projektstatusmeeting am 6/7.10.2004 in Fulda im Rahmen der Tagung "Elektrischmechanische Antriebssysteme"

Baukastensystem Präzisionslinearachse

Hannover Messe Industrie 2003

Baukastensystem Präzisionslinearachse Hub-Dreh-Einheit

Baukastensystem Präzisionslinearachse

Geplant sind Veröffentlichungen in Fachzeitschriften im Bereich Antriebstechnik und Konstruktion.

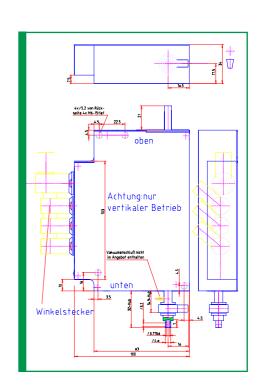
3 Fortschreibung des Verwertungsplans

Absatzerwartung ca. 200 Präzisionsachsen/ Jahr

Absatzerwartung ca. 400 Hub-Dreh-Einheiten/Jahr

Umsatzerwartung ca. 3 Mio € (2006), Ablösung von Altprodukten mit ca. 1 Mio €

Umsatzpotential durch Verkauf von anderen Komponenten und Engineering für Gesamtsysteme ca. 1Mio €



Linear-Rotations-Actuator • ZPhi-VC-25/3

Systemvorteile

- Kompakter Linear-Rotations-Actuator mit geringer Masse (ca. 1.100g)
- Linearer Direktantrieb mit Voice Coil-Motor
- Kraftgeregelte Bewegung Absetzkräfte von 0,1 5,0N
- Vollwelle (mit optionalem Vakuumanschluss) mit Präzisions-Toolaufnahme und Kraftsensor am unteren Wellenende
- Eigenbeschleunigung bis zu 50m/s² möglich
- Hochauflösende Messsysteme zum linearen und rotativen Positionieren
- Luftanschluss für Sperrluft
- Hochflexible Anschlussleitungen mit vibrationsfesten Steckverbindern - wahlweise mit abgewinkelten oder geraden Steckern
- Wartungsarme Arbeitsweise mind. 50 Mio ZPhi-Bewegungen ohne Wartung
- Servomodul für lineare und rotative Achsen mit Analogsignalen für Kraftvorwahl (+10V), Kraftmesssignal und digitaler Messbereichsvorwahl

Anwendungen

- Für sehr schnelle und präzise Pick and Place-Aufgaben
- Präzisionsmontage mit Orientierung kleinster Bauteile, bis ca. 20g

Technische Daten: ZPhi-VC-25/3

Benennung	Maßeinheit	Wert	Bemerkung
Allgemeine Daten			
Außenmaße Gehäuse (HxTxB)	mm	140 × 100 × 34	Steckeranschluss
Gesamtmasse, ca.	g	1.100	
Präzisionswelle	mm	Ø ₅	Vollwelle rechts (SSR) Vollwelle links (SSL)
Vakuumanschluss	mm	Vakuumanschluss am Abtrieb möglich	Wellenende mit Toolaufnahme (TF)
Nutzmasse (sinnvoll bis)	g	20	
Eigenbeschleunigung	m/s²	50	
Linearantrieb			
Motortyp			Voice Coil (VC)
Nutzhub der Z-Achse	mm	25	
Nennkraft des Motors	N	5	
Spitzenkraft des Motors	N	12,5	
Kraftkonstante	N/A	2,5	
Bewegte Masse (insgesamt)	g	135	mit Vakuumadapter / mit Kraftsensor
Messsystemauflösung	μm	0,2	Genauigkeitsklasse 5µm
Wiederholgenauigkeit (Endposition)	μm	±3	bis ±1µm möglich
Führungsgenauigkeit	μm	≤5	Wiederholgenauigkeit der Position
Reibkraft ca.	N	<1,5	typisch 1,3N
Federkraft	N	3,0	Gewichtskompensation
			Rückholung in obere Lage
Max. Geschwindigkeit	m/s	<1,0	abhängig von Auswerteelektronik
Kraftgeregelte Bewegung (Absetzkraft)	N	0,1 - 5,0	einstellbare Kraft (FM) auf das Bauteil
Kurzzeitig realisierbare max. Absetzkraft	N	10	kraftgeregelte Bewegung
Drehantrieb			
Drehwinkel der Phi-Achse	0	ca. 300	ca. ±150° (mit Anschlag)
Nennmoment	mNm	22,4	Riementrieb 2:1
Spitzenmoment	mNm	60	elektronisch begrenzt
Trägheitsmoment	gcm²	46	
Reibmoment	mNm	6	
Messsystemauflösung	Impulse/U	16.000	
Max. Drehzahl der Phi-Achse	U/min	1.500	
Lagerung der Präzisionswelle			
Rundlauffehler	μm	≤20	10µm möglich
Axialfehler bei 180°	μm	≤20	
Wiederholgenauigkeit des Drehwinkels	0	0,06	
5			

Bestellinformation

	Artikel-Nummer
ZPhi-VC-25/3 mit Vollwelle rechts	L9831
ZPhi-VC-25/3 mit Vollwelle links	L11923
Kabelsatz für ZPhi-VC-25/3 mit Steckeranschluss 45° abgewinkelt	L12191
Kabelsatz für ZPhi-VC-25/3 mit Steckeranschluss gerade	L12190
Servomodul für ein ZPhi-VC-25/3	L11924

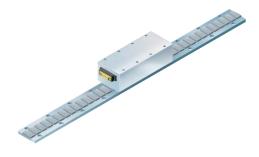
Stand: November 2004 I Änderungen im Sinne des technischen Fortschrittes vorbehalten ohne Vorankündigung. I Fotos: IDAM GmbH & Co. oHG

Übersichtsdatenblatt

Lineare Synchronmotoren • Serie L1-3P

Beschreibung

Die L1-Serie gehört zu den genuteten linearen Synchronmotoren. Dieser dreiphasige Motor wurde speziell für den Einbau in Kleinpositioniersysteme entwickelt. Durch seine kompakte Bauform ist dieser Linearantrieb prädestiniert für kleine und mittlere Positioniereinheiten. Mit einer Einbauhöhe von 30 mm bei der flachen Variante L1F und einer Breite von 48 mm hat dieser Motor eine sehr kompakte Bauform.

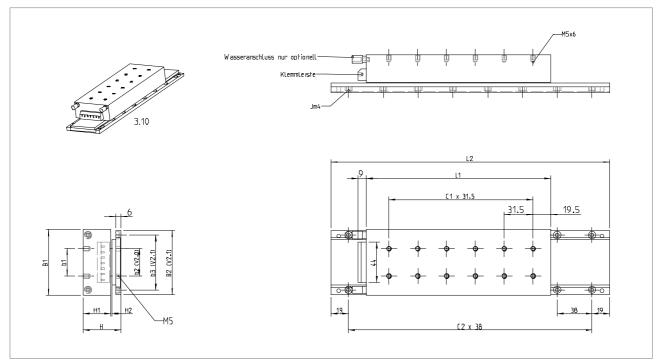

Das Primärteil des Motors hat ein Epoxidharzgehäuse. Der Motor ist für einen Betrieb ohne interne Kühlung vorgesehen, ein zusätzlicher Kühladapter ist möglich.

Die Motorkonstruktion ist einfach und kostensparend.

Auf Wunsch können die Größenverhältnisse natürlich jederzeit entsprechend der kundenspezifischen Anforderungen modifiziert werden.

Anwendungen

- Kleinmaschinen und Module
- Handlingsysteme
- Bewegung von geringen und mittleren Massen
- Anwendungen mit hohen Genauigkeitsanforderungen


Technische Daten: Serie L1H-3P

							P R I	M Ä	R T I	E I L	
Motortyp	Spitzen-	Spitzenkraft	Nennkraft	Nennkraft	Lin. Gre	enz-	Block-	Breite	Höhe	Masse	Gesamt-
	kraft bei I _p	bei I _{pl}	bei I _n	bei l _k	geschw	indig-	länge				höhe
	(Sättigungs-	(lin. Bereich)	(ungekühlt)	(gekühlt)	keit be	i	(im	(im	ohne/mit	ohne	ohne/mit
	bereich)				$U_{ZK} =$	$U_{ZK} =$	Verguss)	Verguss)	Wasser-	Kühl-	H ₂ O-Kühlg.
					300V _{DC}	600V _{DC}			kühlung	adapter	
	F_p	F_{pl}	F _n	F_k	V _{lim}	V _{lim}	L ₁	B ₁	H ₁	m ₁	Н
	[N]	[N]	[N]	[N]	[m/s]	[m/s]	[mm]	[mm]	[mm]	[kg]	[mm]
L1H-3P-100x48	142	121	51	103	6,7	15,4	106	48	28,2/38,2	0,64	39-0,1/49-0,1
L1H-3P-200x48	283	242	103	205	3,1	7,3	201	48	28,2/38,2	1,24	39-0,1/49-0,1
L1H-3P-300x48	436	373	158	316	4,4	10,3	296	48	28,2/38,2	1,82	39-0,1/49-0,1
L1H-3P-100x72	291	248	105	211	3,1	7,3	106	72	28,2/38,2	0,96	39-0,1/49-0,1
L1H-3P-200X72	566	484	205	411	3,4	8,0	201	72	28,2/38,2	1,86	39-0,1/49-0,1
L1H-3P-300x72	849	726	308	616	2,1	5,1	296	72	28,2/38,2	2,76	39-0,1/49-0,1

Technische Daten: Serie L1F-3P

Р						P R I	ΜÄ	R T I	EIL		
Motortyp	Spitzen-	Spitzenkraft	Nennkraft	Nennkraft	Lin. Gre	enz-	Block-	Breite	Höhe	Masse	Gesamt-
	kraft bei I _p	bei I _{pl}	bei I _n	bei I _k	geschw	indig-	länge				höhe
	(Sättigungs-	(lin. Bereich)	(ungekühlt)	(gekühlt)	keit be	i	(im	(im	ohne/mit	ohne	ohne/mit
	bereich)				$U_{ZK} =$	$U_{ZK} =$	Verguss)	Verguss)	Wasser-	Kühl-	H ₂ O-Kühlg.
					300N ^{DC}	600V _{DC}			kühlung	adapter	
	F_p	F_{pl}	F_n	F_k	V _{lim}	V_{lim}	L_{i}	B_1	H ₁	m ₁	Н
	[N]	[N]	[N]	[N]	[m/s]	[m/s]	[mm]	[mm]	[mm]	[kg]	[mm]
L1F-3P-100x48	147	124	39	79	11,7	26,9	106	48	20,2/30,2	0,49	31-0,1/41-0,1
L1F-3P-200x48	294	248	79	157	5,4	13,0	201	48	20,2/30,2	0,95	31-0,1/41-0,1
L1F-3P-300x48	441	373	118	236	3,5	8,7	296	48	20,2/30,2	1,4	31-0,1/41-0,1
L1F-3P-100X72	294	248	79	157	5,6	13,5	106	72	20,2/30,2	0,74	31-0,1/41-0,1
L1F-3P-200x72	588	497	157	314	2,6	6,5	201	72	20,2/30,2	1,43	31-0,1/41-0,1
L1F-3P-300x72	882	745	236	471	1,5	4,1	296	72	20,2/30,2	2,12	31-0,1/41-0,1

Technische Zeichnung: L1x-3P-...

Weitere technische Daten und konstruktive Werte erhalten Sie gern auf Anfrage.

IDAM - Systemkompetenz für Direktantriebstechnik

INA - Drives & Mechatronics GmbH & Co. oHG, ein Unternehmen der INA-Gruppe, ist Spezialist für Direktantriebstechnologie. Zum Portfolio gehören neben den linearen AC-Synchronmotoren rotative und planare Antriebe in einem breiten Größen- und Leistungsspektrum sowie alle zu deren Betrieb erforderlichen Elektronikbaugruppen wie Servoverstärker, Regler und Kompaktsteuerungen. Ein besonderes Augenmerk verdienen die Positionier- und die Multiachs-Systemlösungen.

Das Unternehmen besitzt umfangreiche Erfahrungen in den Branchen Werkzeug- und Produktionsmaschinen, Automatisierungstechnik, Productronic, Mess- und Medizintechnik.

INA - Drives & Mechatronics GmbH & Co. oHG

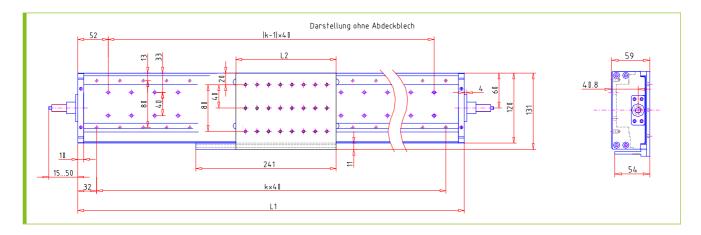
Mittelbergstraße 2 D-98527 Suhl

Telefon +49 (o) 36 81 I 75 74-0 Telefax +49 (o) 36 81 I 75 74-30

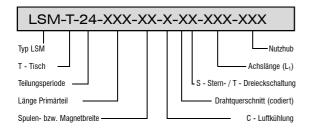
E-Mail info@ina-dam.de Internet www.ina-dam.de

Umschalten auf Vorsprung.

Baureihe LSM-T-24


Systemvorteile

- sehr hohe Dynamik und Regelsteifigkeit durch den Einsatz von Linearmotoren
- zwei Primärteile (Läufer) auf einem Sekundärteil platzierbar
- · keine mechanischen Kraftübertragungsglieder notwendig
- · kompakte, flache Bauform
- praktische Wartungsfreiheit (außer den Führungen gibt es keine Verschleißteile)
- durchgehende Metallabdeckung ohne zusätzliche Reibung
- · integrierte Endlagenschalter und Index
- verschiedene Genauigkeitsklassen bezüglich Positionierung verfügbar
- · Geschwindigkeit bis max. 3 m/s
- Beschleunigung bis max. 50 m/s²
- L-A-T SUHL AG liefert Einzelachsen oder komplette Achssysteme mit anwendungsspezifischen Steuerungssytemen.

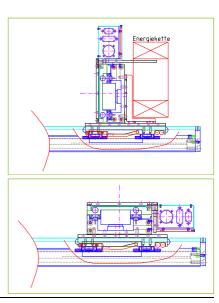

Anwendungen

Anwendungen finden Sie überall, in denen präzise und dynamische Positionierung gefragt ist, so z.B.

- in der Laserfeinbearbeitung
- bei Präzisions-Handlingsystemen
- Portalanwendungen
- Bestückungsautomaten
- automatische Prüfeinrichtungen
- in der Messtechnik

Typenschlüssel

Detaillierte technische Unterlagen zur LSM-P-24-Motorenserie und zum Messsystem auf Anfrage.


Technische Daten

Achstyp	Achslänge L1	Nutzhub	Spitzenkraft	Dauerkraft	Überstandsmaß Stoßdämpfer	k
[siehe Typenschlüssel]	[mm]	[mm]	[N]	[N]	[mm]	
LSM-T-24-110-25-C-XX-304-80 LSM-T-24-110-25-C-XX-544-320 LSM-T-24-110-25-C-XX-784-560 LSM-T-24-110-25-C-XX-1024-800	304 544 784 1024	80 320 560 800	162 162 162 162	61 61 61 61	172 172 172 172	6 12 18 24
LSM-T-24-206-25-C-XX-544-225	544	225	323	115	268	12
LSM-T-24-206-25-C-XX-784-465	784	465	323	115	268	18
LSM-T-24-206-25-C-XX-1024-705	1024	705	323	115	268	24

Optionen

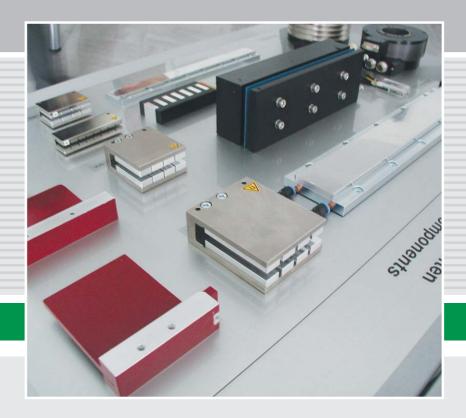
- · Stern- oder Dreieckschaltung
- Anschluss an übergeordnete Steuerung oder autark mit eigenem Controller
- Positionierung über optisches Messsystem mit dynamischer Offsetund Amplitudenregelung; Auflösung bis 50 nm, in Genauigkeitsklassen 3, 2, 1 μm; Wiederholgenauigkeit << 1 μm
- Befestigung der Achse wahlweise von oben über Rasterdurchgangsbohrungen M5 oder von unten über Gewinde M5 im Abstand
- Schlittenplatten mit oder ohne Rasterbohrungen M5 für Applikation
- fertige Konstruktionselemente für X-Y-Systeme, auch in senkrechter Einbaulage (siehe nebenstehende Zeichnungen)
- Stoßdämpfer oder integrierte Anschläge aus Dämpfungsmaterial

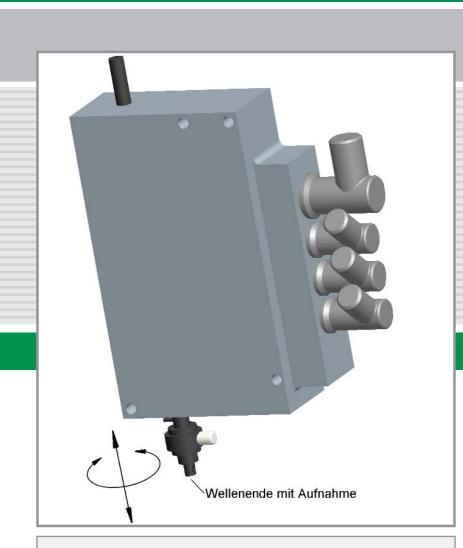
Stand: September 2003 I Änderungen im Sinne des technischen Fortschrittes vorbehalten ohne Vorankündigung.

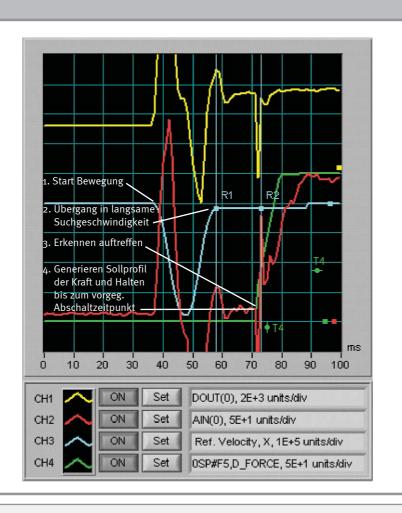
BMBF Forschungsverbundprojekt "Entwurf und Modellierung von Antriebssystemen für die Mikrosystemtechnik" www.modan.org

Ein Unternehmen der INA-Gruppe

www.ina-dam.de

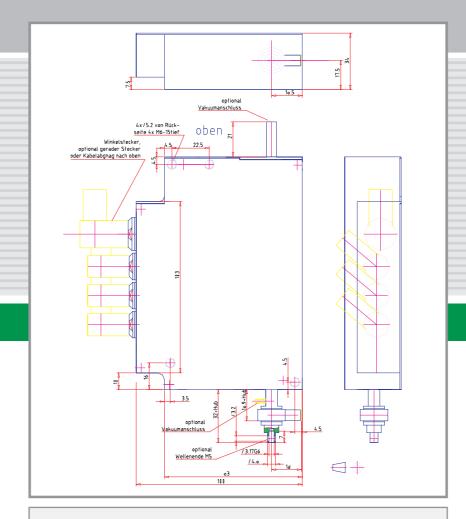

Teilprojekt: "Antriebslösung in vier Koordinaten für die Flip-Chip-Technologie und zur Herstellung von neuartigen mikromechanischen Systemen für Identifikations- und Sensorsysteme"





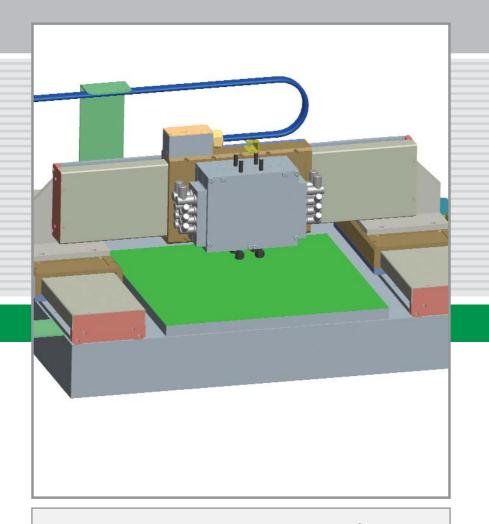
IDAM-Direktantriebe sind technologisch führend und bieten für jede Anwendung die perfekte Lösung. Somit ist IDAM der richtige Partner für Ihr wirtschaftliches Produkt.

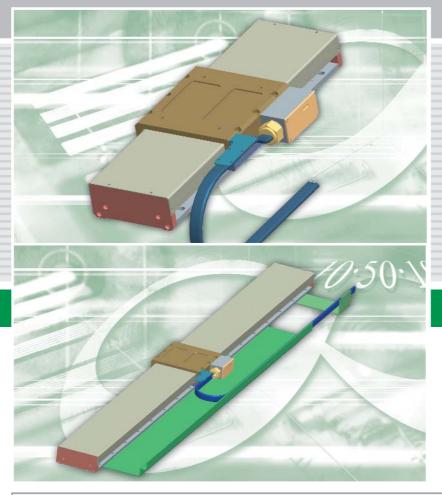
Kraftgeregeltes Zwei-Koordinaten-Hub-Dreh-System



Prinzipbild

Positioniervorgang mit 0,5 N Absetzkraft


- Stellgröße Motorstrom
- Istkraft Raster 0,1 N Sollgeschwindigkeit - Raster 0,1 m/s


Maßskizze

- Kompakter Linear-Rotations-Actuator mit geringer Masse (ca. 1.100 g)
- Linearer Direktantrieb mit Voice Coil-Motor
- Kraftgeregelte Bewegung Absetzkräfte von 0,1 - 5,0 N
- Eigenbeschleunigung bis zu 50 m/s² möglich
- Hub ≤ 25 mm, Drehung ≤ 300°
- Geschwindigkeit Hubbewegung > 1 m/s möglich
- für sehr schnelle und präzise Pick and Place-Aufgaben
- Präzisionsmontage mit Orientierung kleinster Bauteile, bis ca. 20 g

■ Modularer Baukasten: Präzisions-Linear-Achsen

X-Y-System mit 4-Hub-Dreh-Systemen

Beispiele Baukasten

- Zwei Breitenvarianten (160 bzw. 195 mm breit, 65 mm hoch)
- Jeweils zwei Längenvarianten der Schlitten (160 mm bzw. 260 mm) --> das ergibt Motorspitzenkräfte von ca. 150 - 600 N
- Vorzugslängenstufungen von 440 bis 1.200 mm im Raster von 190 mm
- Kugelumlaufführungen (2 Größen angepasst an die Breitenvarianten)
- Optisches inkrementelles Messsystem bis 50 nm Auflösung
- Geschwindigkeit bis 3 m/s