BMBF - Verbundforschungsvorhaben

Komforterhöhung durch verbesserte Vorhersagen von lokalen und globalen Schwingungen in Schiffsaufbauten

- VibKom -

Teilprojekt 1 Förderkennzeichen 03SX214

Vorhersage des dynamischen Verhaltens globaler und lokaler Schiffsstrukturen

Arbeitskomplex I

Globale Schiffsschwingungen

Schlussbericht

Bearbeiter:	DiplIng. Sven-Erik Rosenow
Projektleiter:	Prof. DrIng. Günther Schlottmann

Rostock, September 2008

Universität Rostock

Fakultät für Maschinenbau und Schiffstechnik Lehrstuhl für Technische Mechanik / Maschinendynamik Prof. Dr.-Ing. habil Günther Schlottmann Albert Einstein Str. 2 18059 Rostock Tel.: 0381-4989380, Fax: -4989382 guenther.schlottmann@uni-rostock.de

InhaltsverzeichnisI		
0.	Zielstellung und Lösungsweg im Gesamtvorhaben VibKom	V
1.	Einleitung	1
2.	Dynamisches Verhalten schiffbaulicher Strukturen	3
2.	.1 Beschreibung des Schwingungsverhaltens	3
2.	.2 Vorhersage des Schwingungsverhaltens	4
	2.2.1 Globale Schiffsstrukturen	5
	2.2.1.1 Rechnerische Ermittlung des Eigenschwingungsverhaltens	5
	2.2.1.2 Rechnerische Ermittlung erzwungener Schwingungen	6
	2.2.2 Lokale Schiffsstrukturen	8
2.	.3 Dämpfungsverhalten schiffbaulicher Strukturen	8
2.	.4 Experimentelle Untersuchungen zum Dämpfungsverhalten schiffbaulicher	
	Strukturen in der Fachliteratur	10
	2.4.1 Angewandte Verfahren zur Dämpfungsidentifikation	10
	2.4.2 Identifizierte Dämpfungsparameter	12
	2.4.2.1 Globale Schiffsschwingungen	12
	2.4.2.2 Lokale Schiffsschwingungen	18
	2.4.2.3 Zusammenfassung zur Dämpfungsidentifikation	20
3.	Zielstellung, Objekte und Vorgehensweise	. 22
3.	.1 Zielstellung der Untersuchung	22
3.	.2 Objekte der Untersuchung	23
3.	.3 Vorgehensweise	24
4.	Mathematische Modellierung mechanischer Systeme	. 27
4.	.1 Dynamische Grundgleichungen	27
	4.1.1 Das gedämpfte System	27
	4.1.2 Das ungedämpfte System	28
4.	.2 Die modale Entkopplung der Systemgleichungen	29
	4.2.1 Die modale Entkopplung des proportional gedämpften Systems	29
	4.2.2 Die modale Entkopplung des allgemein gedämpften Systems im	
	Zustandsraum	31
4.	.3 Beschreibung der Dämpfung	32
	4.3.1 Modelle der Dämpfung	32
	4.3.1.1 Viskose Dämpfung	33

4.	3.1.2	Strukturelle Dämpfung	. 33	
4.	3.1.3	Vergleich von viskoser und struktureller Dämpfung	. 34	
4.3.2	Verte	eilung der Dämpfung	.34	
4.	3.2.1	Proportionale Dämpfungsverteilung	. 35	
4.	3.2.2	Nicht-proportionale Dämpfungsverteilung	. 36	
4.	3.2.3	Vergleich proportionaler und nicht-proportionaler		
		Dämpfungsverteilung	.39	
4.4 Das Übertragungsverhalten mechanischer Systeme				
4.4.1 Das Übertragungsverhalten im Frequenzbereich für determinierte				
	Eing	angsgrößen	.48	
4.	4.1.1	Das Übertragungsverhalten des ungedämpften Systems	.49	
4.	4.1.2	Das Übertragungsverhalten des allgemein gedämpften Systems	.49	
4.	4.1.3	Das Übertragungsverhalten des proportional gedämpften Systems	. 50	
4.4.2 Das Übertragungsverhalten im Frequenzbereich für stochastische				
	Eing	angsgrößen	.51	
4.	4.2.1	Kennfunktionen stochastischer Signale	.51	
4.	4.2.2	Übertragungsverhalten im Frequenzbereich	.53	

5. Ermittlung des dynamischen Verhaltens mechanischer

S	ysteme)	54
5.1	Experime	entelle Modalanalyse	56
5.1.1 Klassische Modalanalyse56			
	5.1.1.1	Experimentelle Ermittlung der Frequenzgangmatrix	56
	5.1.1.2	Parameteridentifikation	59
5.1.2 Operative Modalanalyse62			
	5.1.2.1	Experimentelle Ermittlung von Strukturantworten	62
	5.1.2.2	Parameteridentifikation	64
5.2	Rechner	ische Modalanalyse	70
5.3	Vergleich	n rechnerischer und experimenteller Modalanalyse	70
5.4	Berechn	ung erzwungener Schwingungen	74
5.5	Zusätzlic	he Möglichkeiten des Modellvergleiches	75

6.1	Rec	hnerische Ermittlung des Eigenschwingungsverhaltens	76
6.	1.1	Containerschiff Typ CV2500	76
6.	1.2	RoRo-Schiff FSG**0	79
6.	1.3	RoRo-Schiff FSG**1	81

6.	6.2 Anwendbarkeit von experimentellen Identifikationsverfahren in			
	Ab	ohängig	keit von Untersuchungsbedingungen	82
6.	3 Ar	nwendu	ing der klassischen Modalanalyse unter Werftbedingungen	83
	6.3.1	Durc	hführung der experimentellen Untersuchungen	83
	6.3.2	Erge	bnisse der klassischen Modalanalyse	86
	6	6.3.2.1	Containerschiffe Typ CV2500	86
	6	5.3.2.2	RoRo-Schiff FSG**0	91
6.	4 Ar	nwendu	ing der operativen Modalanalyse unter Werftbedingungen	94
	6.4.1	Durc	hführung der experimentellen Untersuchungen	94
	6.4.2	Erge	bnisse der operativen Modalanalyse unter Werftbedingungen	96
	6	6.4.2.1	Containerschiffe Typ CV2500	96
	6	6.4.2.2	RoRo-Schiff FSG**0	100
6.	5 Ar	nwendu	ing der operativen Modalanalyse bei Probefahrt	102
	6.5.1	Durc	hführung der experimentellen Untersuchungen	102
	6.5.2	Erge	bnisse der operativen Modalanalyse unter Probefahrtbedingungen	105
	6	6.5.2.1	Containerschiffe Typ CV2500	105
	6	6.5.2.2	RoRo-Schiff FSG**0	108
	6	6.5.2.3	RoRo-Schiff FSG**1	110
6.	6 Ar	nwendu	ing der operativen Modalanalyse im Liniendienst	112
	6.6.1	Durc	hführung der experimentellen Untersuchungen	112
	6.6.2	Erge	bnisse der operativen Modalanalyse im Liniendienst	113
	6	6.6.2.1	Containerschiff Typ CV2500	113
6.	7 Αι	Jswertu	ing von Hochfahrvorgängen, Containerschiffe Typ CV2500	115
	6.7.1	Prob	efahrt	115
	6.7.2	Linie	ndienst	117
6.	8 Zı	usamm	enfassung und Bewertung schiffsspezifischer Ergebnisse	119
	6.8.1	Däm	pfung	119
	6.8.2	Eige	nfrequenzen	122
6.	9 Be	ewertur	ng der Umgebungsbedingungen	127
6.	10 Be	ewertur	ng der verwendeten Verfahren der Modalanalyse	127
6.	11 Re	echneri	sche Vorhersage des Zwangsschwingungsverhaltens	128
	6.11.	1 Stoß	anregung klassische Modalanalyse	129
	6.11.	2 Erre	gung durch die Hauptmaschine	130
	6.11.	3 Prop	elleranregung	133
	6.11.	4 Struł	xturmodifikation FE-Modell	134

7.	. Z	Zusammenfassung138		
8.	. L	Literaturverzeichnis14		
A	A	Anhang		
	A4	Anhang zum Kapitel 4	147	
	A6	Anhang zum Kapitel 6	147	

0. Zielstellung und Lösungsweg im Gesamtvorhaben VibKom

Eine verbesserte Vorhersage von Schwingungserscheinungen im Schiffsbetrieb bildet die Grundlage zur Sicherung zunehmender Komfortanforderungen im Schiffbau. Somit war es das Gesamtziel des Vorhabens, die Aussagegenauigkeit von Berechnungsmodellen im Projektstadium zu erhöhen. Zu diesem Zweck wurden experimentelle und numerische Untersuchungen zu globalen und lokalen Schwingungen ausgeführt. Durch die Kopplung von Fluid- und Strukturmodellen wurde die Erfassung der Propellererregung verbessert und eine Vorhersage von im Schiffsbetrieb auftretenden Schwingungsamplituden ermöglicht.

Ausgangssituation und Gesamtziel des Vorhabens

Die Anforderungen an den Komfort von Schiffen seitens der Reeder und Klassifikationsgesellschaften werden im Bezug auf das Vibrationsverhalten zunehmend höher. Diese Anforderungen stehen im Konflikt zum Trend der Gewichtsreduktion und der Erhöhung des Ladevolumens, der zu tendenziell weicheren und damit in Hinblick auf das Schwingungsverhalten als problematisch anzusehenden Schiffsstrukturen führt. Der deutsche Schiffbau, der sich durch hochwertige Schiffe auszeichnet und im Passagierschiffbau überproportional stark vertreten ist, ist von dieser Entwicklung naturgemäß besonders betroffen.

Moderne Containerschiffe zeichnen sich aus Gründen maximaler Ladekapazität durch immer schlankere und damit weichere Deckshäuser aus. Eine ähnliche Problematik ist bei RoRo-Schiffen gegeben. Hier werden die Deckshäuser zur Optimierung der Ladekapazität oft freitragend gebaut. Dadurch ergeben sich Verbindungen zwischen Deckshaus und Rumpf, die nur geringe Steifigkeiten aufweisen. Diese vom Markt geforderten Konstruktionsformen sind anfällig für Schwingungsprobleme und bedürfen daher einer genauen Berechnung. Die **globalen Schwingungen** von Deckshäusern sind zum Teil mit den Schiffskörperschwingungen gekoppelt und werden unter anderem auch durch die Art der Lagerung und Abstützung der Hauptantriebsanlage beeinflusst.

Für die Schwingungsberechnung ist strukturseitig die Kenntnis von Massen, Steifigkeiten und Dämpfungen nötig. Die Massen- und Steifigkeitsberechnung für globale Schwingungen ist durch die große Anzahl von Einflussfaktoren mit Unsicherheiten behaftet. Die Ansätze für die Dämpfung zur Berechnung von Zwangsschwingungen beruhen meist auf empirischen Daten und zeigen hohe Streuungen. Des Weiteren liegen nur unzureichende Daten bezüglich des dynamischen Verhaltens des Schiffes im realen Betrieb, also mit wechselnder Beladung und Ballast sowie im Tiefwasser vor.

Lokale Schwingungen von Decks, Wänden, Tanks u. a. werden sowohl auf Grundlage von Näherungsverfahren als auch mit modernen numerischen Verfahren, hauptsächlich Finite-Elemente-Verfahren, vorausberechnet. Lokale Schwingungen werden aber durch Schweißeigenspannungen und geometrische Imperfektionen, die in heutigen Berechnungsmethoden nicht berücksichtigt werden, wesentlich beeinflusst. Bei Untersuchungen eines Schiffsdecksausschnittes an der Universität Rostock wurden Abweichungen von über 30% in den Eigenfrequenzen sowie stark geänderte Eigenformen gemessen, die durch Spannungsarmglühen auf Schweißeigenspannungen zurückgeführt werden konnten.

Diese Streuungen der Eigenfrequenzen lokaler Schwingungen liegen höher als üblicherweise während der Auslegung verwendete Sicherheiten gegenüber den Erregerfrequenzen.

Für seegehende Schiffe stellt der **Propeller** eine wesentliche Haupterregerquelle für Vibrationen dar. Zur Abschätzung der vom Propeller induzierten Druckimpulse auf der Außenhaut werden heute meist empirische Prognoseverfahren, wie z.B. das Verfahren von Holden, herangezogen. Diese auf Erfahrung beruhenden Methoden haben ihre Grenzen, wenn moderne Schiffsentwürfe mit ungewöhnlichen Achterschiffsformen oder neuen Propellergeometrien bewertet werden sollen. Dies ist umso kritischer, als die Anforderungen der Reedereien an die Vibrationsarmut von Schiffen erheblich zunehmen. So muss die Werft schon vor Vertragsabschluß das Schwingungsverhalten der Schiffe durch direkte Berechnungen auf eine abgesicherte Basis stellen.

Moderne hydrodynamische Berechnungsverfahren (CFD) ermöglichen die Bestimmung von Druckimpulsen für nahezu beliebige Rumpf- und Propellerformen. Des weiteren wird die Berechnungsgenauigkeit gesteigert, da neben dem Druckverlauf auch die örtliche Verteilung des Druckfeldes auf der Außenhaut in eine zeitliche Abhängigkeit gebracht werden kann. Um die CFD Ergebnisse für erzwungene Schwingungsberechnungen nutzen zu können, müssen die hydrodynamischen bestimmten Druckimpulse in dynamische Finite-Elemente-Lasten umgewandelt werden. An dieser Stelle fehlen derzeit effiziente Schnittstellen, die neben der geforderten Genauigkeit dem modernen Schiffsentwurf durch hohe Geschwindigkeit und Prozesssicherheit gerecht werden. Nur so kann die Berechnungsqualität gesteigert werden. Für Produktwechsel und damit verbundene B. aus neuen Hinterschiffs- oder Propulsionskonzepten, neue Anforderungen, z. wird dadurch überhaupt erst eine qualifizierte Aussage zum Schwingungsverhalten in der Entwurfsphase ermöglicht.

Ziel des Projektes ist es, die Vorhersagegenauigkeit der dynamischen Berechnungen in der Projektierungsphase der Schiffe zu verbessern. Das Ziel liegt sowohl in einer genaueren Vorhersage globaler als auch lokaler Schwingungen, um so bereits in der frühen Konstruktionsphase die zu erwartenden Schwingungsamplituden berechnen zu können.

Dazu soll die experimentelle Ermittlung von Dämpfungsdaten aus Messungen im Schiffsbetrieb sowie die Verbesserung von FE-Modellen globaler Strukturen zur Erhöhung der Berechnungsqualität beitragen. Bei lokalen Schwingungen stehen die Erfassung von Vorverformungen sowie Eigenspannungen infolge des Schweißprozesses und ihr Einfluss auf das Schwingungsverhalten von Deckspaneelen im Vordergrund der Untersuchungen. Eine Verbesserung der schiffsspezifischen Modellierung der Propellererregung bildet die Grundlage für eine zielsichere Berechnung von Betriebsschwingungsamplituden.

Durch die Verbesserung ergibt sich eine höhere Qualität der Modelle, die es ermöglicht, die Schiffskonstruktion nach Komfortgesichtspunkten zu beurteilen und Konstruktionsänderungen in Hinsicht auf Komforterhöhungen einzuschätzen.

Wissenschaftliche und technische Arbeitsziele

Aus dem Gesamtziel der Untersuchungen, die Aussagegenauigkeit von FE-Modellen zur Vorhersage globaler und lokaler Schwingungen von Schiffen im Projektierungsstadium zu verbessern, ergeben sich die nachfolgend genannten einzelnen wissenschaftlichen und technischen Arbeitsziele:

Untersuchungsbereich - Globale Schwingungen

> Erhöhung der Qualität von FE-Berechnungen von Deckshausstrukturen

Die experimentelle Ermittlung von Eigenfrequenzen und Eigenformen erlaubt eine Überprüfung der Vorhersagegenauigkeit von Finite-Element-Modellen. Durch eine Korrelationsanalyse von Ergebnissen aus experimenteller Untersuchung und Berechnung können gezielt Schwachstellen in der Finite-Element-Modellierung aufgedeckt und durch modelupdating-Verfahren behoben werden. Model-updating-Verfahren werden in zunehmendem Maße in der Automobil- und Luftfahrtindustrie eingesetzt, haben aber im Bereich des Schiffbaus bislang noch keine Anwendung gefunden.

Im Rahmen der experimentellen Untersuchungen werden weiterhin Dämpfungsparameter der untersuchten Schiffstrukturen identifiziert, die sich einer rechnerischen Ermittlung entziehen. Die Einbeziehung von experimentell ermittelten Dämpfungsparametern in die Berechnungsmodelle ermöglicht die Durchführung realitätsnaher Zwangsschwingungsrechnungen und führt zu einer verbesserten Vorhersage des Schwingungsverhaltens durch die FE-Modelle.

Prüfung der operativen Modalanalyse auf Anwendbarkeit im Schiffsbetrieb

Klassische Modalanalyse-Verfahren basieren auf der experimentellen Bestimmung von Übertragungsfunktionen, gebildet aus den Spektren von Kraftanregung und Systemantworten. Hinsichtlich der Kraftanregung sind den klassischen Verfahren allerdings Grenzen gesetzt. So gibt es einerseits Schwierigkeiten bei der Anregung sehr großer Strukturen (Brücken, Staudämme usw.) sowie andererseits Schwierigkeiten bei der richtigen Erfassung der Erregerkräfte, wenn zusätzliche Erregermechanismen wirken (Wellenanregung, laufende Maschinen).

Der Einsatz der klassischen Modalanalyse zur Identifikation dynamischer Parameter von Schiffsstrukturen bleibt zur richtigen Erfassung der Erregerkräfte somit auf Messungen unter Werftbedingungen beschränkt, wobei eine Minimierung von störenden Einflüssen (Vibrationen aller Art) notwendig und nur in arbeitsfreien Zeiten sicherzustellen ist. Die Anregbarkeit von größeren Schiffsstrukturen mit Hilfe eines großen Massependels (600kg) konnte hingegen in Vorversuchen und einem abgeschlossenen Forschungsprojekt nachgewiesen werden. Die Anwendung dieser Methode der Erregung während des Schiffsbetriebes ist aber aus Sicherheitsgründen und aufgrund zusätzlicher, nicht erfassbarer Erregerquellen nicht praktikabel. Die Ermittlung veränderter dynamischer Parameter von Schiffsstrukturen unter Einsatzbedingungen, beeinflusst durch Tiefwasser- und Beladungszustand, ist daher mit dem Verfahren der klassischen Modalanalyse kaum möglich.

Mit ständiger Verbesserung von Mess- und Rechentechnik wurden in letzter Zeit die Verfahren der operativen Modalanalyse zur Anwendungsreife weiterentwickelt und auch zunehmend zur experimentellen Untersuchung sehr großer Strukturen (z.B. Brücken, Staudämme usw.) eingesetzt. Die Anregung der Strukturen erfolgt dabei durch natürliches Rauschen (z.B. Wind, Wellen usw.), die Strukturantwort wird dabei mit hochempfindlichen Messaufnehmern aufgezeichnet und die Parameteridentifikation erfolgt auf Grundlage von Methoden der Zustandsraumanalyse und der Frequenzbereichsdekomposition.

Für experimentelle Untersuchungen an Schiffsstrukturen wurden diese Verfahren nach Kenntnisstand des Antragstellers bislang nicht eingesetzt. Wie in Voruntersuchungen der Universität Rostock aber bereits gezeigt werden konnte, besitzen diese fortgeschrittenen Methoden ein großes Potential hinsichtlich der Ermittlung des dynamischen Verhaltens von Schiffsstrukturen und anderen meerestechnischen Konstruktionen.

Es soll daher geprüft werden, inwieweit die operative Modalanalyse für die Ermittlung der dynamischen Parameter von Schiffsstrukturen unter Einsatzbedingungen geeignet ist.

Ermittlung des dynamischen Verhaltens von Deckshausstrukturen unter Einsatzbedingungen

Stand der Technik ist heutzutage die Ermittlung der dynamischen Parameter von Schiffsstrukturen im Auslieferungszustand. Der Kenntnisstand zum dynamischen Verhalten in Form einer parametrischen Systemidentifikation unter Einsatzbedingungen ist zum heutigen Zeitpunkt als nicht zufrieden stellend anzusehen. Bedingt durch die im Beladungszustand wirkenden zusätzlichen Massen und Dämpfungen sowie die entsprechend der Wassertiefe veränderlichen effektiven hydrodynamische Massen sind beträchtliche Veränderungen hinsichtlich der Eigenfrequenzen und Dämpfungsparameter zu erwarten. Die angestrebten Untersuchungen führen daher zu einem erheblichen Erkenntnisgewinn bzgl. dynamischer Parameter im realen Schiffsbetrieb.

Untersuchungsbereich - Lokale Schwingungen

Entwicklung eines Berechnungsmodells mit möglichst einfacher Erfassung des Einflusses von Schweißeigenspannungen

Durch die Weiterentwicklung eines an der Universität Rostock schon existierenden Berechnungsmodells zur Erfassung der Schweißeigenspannungen wird ein Werkzeug zur Verfügung gestellt, das eine Berechnung des Einflusses der Schweißeigenspannungen auf das Schwingungsverhalten ermöglicht. Es wird besonders auf eine Tauglichkeit in der typischen Werftpraxis geachtet, die durch eine einfache Modellierung erreicht wird. Es wird daher bewusst auf die Verwendung thermischer Berechnungen verzichtet. Ein wesentliches Augenmerk liegt auf der Eignung des Modells, den Einfluss der Schweißeigenspannungen auf das dynamische Verhalten trotz Einfachheit in genügend hoher Qualität abzubilden.

> Untersuchung des Einflusses der Schweißeigenspannungen

Die an der Universität Rostock durchgeführten Untersuchungen zum Einfluss der Schweißeigenspannungen werden fortgesetzt. Dadurch entsteht ein tieferer Einblick in das Schwingungsverhalten unter dem Einfluss der Schweißeigenspannungen, der nach heutigem Stand der Technik nicht berücksichtigt wird. Durch die Einbeziehung mehrerer Strukturen, bereitgestellt von den Werften in Flensburg, Wismar und Stralsund, zeigt sich, inwieweit die Ergebnisse gemäß den eingesetzten Fertigungsbedingungen streuen. Des Weiteren wird durch die Untersuchung von lasergeschweißten Strukturen (bereitgestellt durch IMAWIS Wismar, auch Untersuchungen der Uni Rostock für die Meyer-Werft Papenburg sind einbezogen) die Auswirkung der Fertigungstechnologie auf das Schwingungsverhalten untersucht. Durch Messungen der durch den Schweißprozess verursachten Eigenspannungen wird die Eignung des verwendeten Eigenspannungsquellmodells abgesichert.

Untersuchung des Einflusses von im Schiffbau typischen Vorverformungen unter dem Einfluss von Schweißeigenspannungen

Unter Berücksichtigung von gemessenen, schiffbaulich typischen Vorverformungen, die von den Werften bereitgestellt werden, werden die Eigenfrequenzen unter dem Einfluss der Schweißeigenspannungen berechnet. Die Ergebnisse zeigen die durch Vorverformungen und Schweißeigenspannungen verursachten Streuungen der Eigenfrequenzen auf. Es wird erwartet, dass diese Ergebnisse künftig in der Projektierungsphase genutzt werden können, um eine Bandbreite der Eigenfrequenzen abschätzen zu können. Dadurch ergeben sich Erfahrungswerte für Frequenzabweichungen, die besonders in der frühen Projektierungsphase von hohem Nutzen sind.

Untersuchung rationeller Methoden bei der Fertigung versteifter Platten zur Minderung des Eigenspannungseinflusses auf die Absenkung der Eigenfrequenzen

Basierend auf den gewonnenen Erkenntnissen erfolgen numerische Untersuchungen zur Minderung des Schweißeigenspannungseinflusses auf die Eigenfrequenzen. Ziel ist es, rationelle Fertigungsmethoden zu entwickeln, die die unerwünschte Absenkung der Eigenfrequenzen minimieren. Dies soll durch das gezielte Einbringen von Eigenspannungen bzw. dem Abbau von Eigenspannungen durch geänderte Schweißreihenfolgen oder lokales Spannungsarmglühen erfolgen. Besonderer Wert wird – neben den Kosten und der notwendigen Arbeitszeit - auf Automatisierbarkeit der Verfahren gelegt, die eine Anwendung im Werftbetrieb erlauben. Die theoretisch entwickelten Verfahren werden in Zusammenarbeit mit den Werften auf ihre Wirksamkeit und Praxistauglichkeit getestet.

Untersuchungsbereich - Propellererregung sowie Kopplung von CFD/FEM

> CFD Prognose für Propellerdrücke

Basierend auf den von den Werften zur Verfügung gestellten Daten werden die Druckimpulse des Propellers mit Hilfe von CFD Methoden für Container- und RoRo-Schiffe berechnet. Dabei sollen verschiedene Betriebspunkte der Schiffe, wie z. B. Design-Punkt (Nenndrehzahl, Nennsteigung) und Off-Design Punkte (z.B. Manövermode) analysiert werden. Dadurch werden qualifizierte Aussagen über das Schwingungsverhalten der Schiffe über den gesamten Betriebsbereich ermöglicht. Die errechneten Druckimpulse sollen, soweit vorhanden, mit Ergebnissen aus Schlepptankversuchen oder Ergebnissen aus Messungen an Grossausführungen validiert werden.

> Erstellen einer Schnittstelle CFD / FEM

Es wird eine Schnittstelle zwischen der Vortex Lattice Methode (CFD) zur Prognose der Propellerdruckimpulse an der Außenhaut und Finite Elemente Modellen entwickelt. So soll die Übertragung der Außenhautdrücke auf FE Modelle schnell und sicher ermöglicht werden. Neben der eigentlichen Datenkonvertierung sind bei der Schnittstelle insbesondere Anstrengungen zur Überwindung der extrem unterschiedlichen Berechnungsnetze von Hydrodynamik und Strukturmechanik erforderlich. Besonderes Augenmerk wird auf die "Robustheit" der Schnittstelle im Bezug auf die Eingabedaten gelegt, um ihren Einsatz schon in der frühen Projektphase des Schiffsentwurfes auf den Werften zu ermöglichen. Ein- und Ausgabeseiten der Schnittstelle werden in modularer Form erstellt. Dies ermöglicht den Einsatz der Schnittstelle in anderen oder neuen CFD- / FEM-Umgebungen.

> Berechnung erzwungener Schwingungen und Validierung der Ergebnisse

Unter Berücksichtigung aller im Vorhaben erarbeiteten Ergebnisse werden globale FE-Modelle der Container- und RoRo-Schiffe generiert bzw. überarbeitet. Mit Hilfe der entwickelten CFD/FEM Schnittstelle werden die Propellerlasten aufgebracht. Die Ergebnisse der Berechnung der erzwungenen Schwingungen werden den Messergebnissen gegenübergestellt. So wird die Praxistauglichkeit der entwickelten Methoden und die Qualität der erarbeiteten Ansätze für das Dämpfungsverhalten der Schiffstruktur überprüft.

Die Arbeitsziele des Vorhabens sind zusammenfassend in folgender Abbildung illustriert und wurden als 3 Arbeitskomplexe im Teilprojekt 1 durch die Universität Rostock (AK I und II) und im Teilprojekt 2 durch die Flensburger Schiffbau-Gesellschaft (AK III) in enger Kooperation aller Projektpartner bearbeitet.

Als Ergebnis liegen 3 Abschlussberichte vor:

- 1. Vorhersage des dynamischen Verhaltens globaler und lokaler Schiffsstrukturen - Globale Schiffsschwingungen (AK I)
- 2. Vorhersage des dynamischen Verhaltens globaler und lokaler Schiffsstrukturen - Lokale Schiffsschwingungen (AK II)
- 3. Schiffsspezifische Vorhersage der Anregung durch den Propeller (AK III)

Leitung und Projektpartner/-bearbeiter

Projektleitung: Prof. Dr.-Ing. habil. G. Schlottmann **Projektpartner:**

- **1. Universität Rostock** (Prof. Schlottmann, Dipl.-Ing. Rosenow, Dipl.-Ing. Hanke, Dipl.-Ing. Lebahn, Dipl.-Ing. Ritzke)
- 2. Flensburger Schiffbau-Gesellschaft mbH & Co.KG (Dipl.-Ing. Gosch, Dipl.-Ing. Werner, Dipl.-Ing. Kürten)
- 3. Aker Ostsee Wismar (Dipl.-Ing. Kirste)
- 4. Volkswerft Stralsund GmbH (Dr. Pohl)
- 5. IMAWIS Maritime Wirtschafts- und Schiffbauforschung GmbH (Dr. Lemke, Dr. Nikolay)

1. Einleitung

Schwingungen schiffbaulicher Konstruktionen sind die natürliche Folge aus dem Zusammenwirken von elastischem System und der vorwiegenden Erregung durch den Schiffsantrieb. Die Regelung von Schwingungsaspekten bei Schiffsneubauten als Vertragsbestandteil ist in den zurückliegenden Jahren weitestgehend zum Standard geworden. Grundlage bilden hierbei in der Regel nationale und internationale Normen, die Grenzwerte bezüglich der Auswirkungen von Schwingungen auf den Menschen, auf strukturelle Komponenten sowie auf Maschinen und Anlagen festlegen. Darum muss von der Werft sichergestellt werden, dass die während des Schiffsbetriebes auftretenden Schwingungspegel diese festgelegten Grenzwerte nicht überschreiten. Die dynamischen Eigenschaften der Schiffsstruktur werden dabei hauptsächlich in der frühen Projektierungsphase festgelegt, was eine treffsichere rechnerische Vorhersage des Schwingungsverhaltens notwendig macht.

Die hier vorgestellte Untersuchung zur Identifikation des dynamischen Verhaltens schiffbaulicher Strukturen soll einen Beitrag zur Verbesserung dieser Vorhersagegenauigkeit liefern. Die Bewertung sowie Verbesserung von Vorhersageergebnissen basiert in der Regel auf experimentellen Untersuchungen an der realen Struktur. So bilden experimentelle Untersuchungen zum dynamischen Verhalten lokaler Schiffsstrukturen einen Schwerpunkt dieser Arbeit.

Neben der allgemeinen experimentellen Ermittlung von dynamischen Parametern globaler Schiffsstrukturen an ausgewählten Beispielschiffen stehen die Bewertung der Anwendbarkeit unterschiedlicher experimenteller Identifikationsverfahren, die Erweiterung der Datenbasis für experimentell ermittelte Dämpfungsparameter sowie Aspekte zu Modellierung der Dämpfung im Vordergrund. Der experimentelle Teil der Arbeit umfasst 17 verschiedene Untersuchungen von globalen Schiffsstrukturen unter Werft- und Probefahrt- und Einsatzbedingungen an insgesamt 9 Schiffen.

Gegenübergestellt werden die experimentellen Untersuchungen der Strukturen numerischen Analysen zum Eigen- und Zwangsschwingungsverhalten auf Grundlage bereitgestellter Finite-Element-Modelle der Schiffsstruktur. Basierend auf den Ergebnissen einer Eigenschwingungsrechnung ist ein Vergleich von experimentell ermittelten und berechneten Eigenschwingungsgrößen (Eigenfrequenzen und dazugehörigen Eigenschwingformen) möglich. Die Ergebnisse von Zwangsschwingungsrechnungen unter Einbeziehung experimentell ermittelter Dämpfungsparameter können mit entsprechenden experimentell ermittelten Frequenzgangfunktionen verglichen werden. Ein derartiger Vergleich ermöglicht sowohl eine Bewertung der Modellierung von Masse und Steifigkeit als auch der implementierten Dämpfungsmodelle und -parameter. Somit ist eine vollständige Bewertung der Vorhersagegenauigkeit der verwendeten Berechnungsmodelle möglich.

In vielen Fällen ist eingangs nur eine ungenügende Übereinstimmung von Messung und Rechnung gegeben. Ursachen können hierbei Fehler bei der experimentellen Bestim-

1

mung der Systemparameter, Strukturfehler im Finite-Element-Modell, oft aber fehlerhafte Annahmen von Modellparametern im Rechenmodell sein. Verfahren der Modellanpassung (model updating) ermöglichen auf Grundlage der experimentell ermittelten Systemparametern eine Anpassung fehlerhafter Modellparameter zur Minimierung der Unterschiede zwischen Rechnung und Messung.

Vorhersage und experimenteller Nachweis des dynamischen Verhaltens haben in der zurückliegenden Zeit vor allem im Fahrzeugbau, in der Luftfahrtindustrie aber auch im Bauwesen besonders an Bedeutung gewonnen und sich so einem größeren Anwenderkreis erschlossen. Die Zunahme der Aktivitäten auf diesem Gebiet führte zu einer Weiterentwicklung sowohl im Bereich Mess- und Rechentechnik als auch der experimentellen Identifikationsverfahren. Seitens der Identifikationsverfahren ist in diesem Zusammenhang die operative Modalanalyse zu nennen. Das hauptsächlich zur Identifikation von dynamischen Parametern großer Bauwerke (Staudämme, Brücken, Hochhäuser) genutzte Verfahren basiert im Gegensatz zu den klassischen Verfahren ausschließlich auf den ermittelten Systemantworten, hervorgerufen durch eine Anregung aus den auf die Struktur einwirkenden Umgebungsbedingungen. Dieses Verfahren kam im Rahmen der hier vorgestellten Untersuchungen erstmalig an schiffbaulichen Strukturen zum Einsatz.

Im Bereich der Messtechnik haben sich bei den in der Schwingungsmesstechnik bevorzugten piezoelektrischen Beschleunigungsaufnehmern Aufnehmer mit integrierten Impedanzwandlern durchgesetzt, die eine Signalweiterleitung über großen Strecken ermöglichen. In Verbindung mit sehr hohen Empfindlichkeiten sind sie besonders geeignet zur Aufzeichnung von Antwortsignalen der globalen Schiffsstruktur. Datenerfassungssysteme mit einer erhöhten Auflösung verbessern die Qualität der aufgezeichneten Messsignale, was insbesondere für Messungen während des Schiffsbetriebes von Bedeutung ist. Die unaufhaltsame Entwicklung in der Rechentechnik unterstützt zum einen die Aufzeichnung und Verarbeitung großer Messdatensätze als auch die Verwendung von Berechnungsmodellen mit einer großen Anzahl von Freiheitsgraden.

Vor diesem Hintergrund sollen die im Rahmen dieser Arbeit ermittelten Ergebnisse den vorhandenen Kenntnisstand zum dynamischen Verhalten schiffbaulicher Strukturen bestätigen, ggf. korrigieren und nach Möglichkeit erweitern.

2. Dynamisches Verhalten schiffbaulicher Strukturen

Bevor im darauf folgenden Kapitel Zielstellung und Vorgehensweise der Untersuchung abgeleitet werden, sollen in diesem Kapitel eine allgemeine Beschreibung des Schwingungsverhaltens von globalen und lokalen Schiffsstrukturen sowie eine Darstellung des Standes der Technik zu Vorhersage erfolgen. Insbesondere wird außerdem auf das Dämpfungsverhalten sowie auf Angaben zu dessen experimenteller Ermittlung aus der Fachliteratur eingegangen.

2.1 Beschreibung des Schwingungsverhaltens

Aus Gründen der Zweckmäßigkeit werden Schiffsschwingungen je nach Ausbreitung und Festlegung der Systemgrenzen in globale und lokale Schwingungen unterteilt. Globale Schwingungen beschreiben das Schwingungsverhalten des Schiffskörpers in einem Frequenzbereich zwischen 0.5 und etwa 10 Hz. Sie sind hauptsächlich bestimmt durch die Membransteifigkeit der schiffbaulichen Verbände, die Massenverteilung von Schiffsstruktur, Ladung, Ballast und hydrodynamischen Massen (abhängig von Tiefgang, Wassertiefe und Schwingform) sowie auch durch die Größe und Verteilung der Dämpfung. Eigenschwingungen größerer Substrukturen, wie z.B. von besonders ausgeprägten Hinterschiffsbereichen oder von Deckshäusern, liegen in einem etwas höherem Frequenzbereich zwischen 5 und 15 Hz. Abgesehen von sehr lokal ausgeprägten Schwingformen sind sie allerdings derart mit dem Schwingungsverhalten des Schiffskörpers gekoppelt, dass eine isolierte Betrachtung nicht zweckmäßig ist. Schwingungen von Schiffskörper, Hinterschiffsbereichen und Deckshäusern können somit im Allgemeinen zu globalen Schiffsschwingungen zusammengefasst werden. Als Haupterregerquellen sind hierbei der Propeller, hauptsächlich durch Druckimpulse mit erster und zweiter Blattfrequenz, sowie die Hauptantriebsmaschine mit Erregerfrequenzen entsprechend den halben und / oder ganzen Vielfachen der Motordrehzahl für 4-Takt bzw. 2-Takt Motoren anzusehen.

Lokale Schwingungen beschränken sich auf kleinere Bereiche der Schiffsstruktur, die durch relativ starre Systemränder abgegrenzt sind. Ein charakteristisches Beispiel hierfür sind, neben Schotten, Tankwänden u.ä., Decksstrukturen, wie sie im Aufbautenbereich von Frachtschiffen anzutreffen sind. Decksstrukturen auf RoRo- sowie Kreuzfahrtschiffen können sich aber auch über größere Bereiche der Schiffsstruktur erstrecken. Decksstrukturen bestehen im Allgemeinen aus einer tragenden Rahmenstruktur und versteiften Plattenfeldern. Relevante Schwingungserscheinungen der Rahmenstruktur liegen je nach Größe in einem Frequenzbereich zwischen ca. 5 und 20 Hz, Schwingungen der Plattenfelder allgemein zwischen 10 und 50 Hz. Das Schwingungsverhalten der lokalen Strukturen wird dabei ebenfalls durch die Parameter Steifigkeit, Masse und Dämpfung sowie durch die Art der Erregung bestimmt. Die Steifigkeiten lokaler Bereiche ergeben sich aus den Steifigkeiten von Plattenfeldern und Rahmenstruktur sowie den Anschlusssteifigkeiten benachbarter Strukturen. Neben den Steifigkeiten bestimmt auch die Massebelegung

dieser Flächentragwerke entscheidend das dynamische Verhalten. Ausgehend von der Masseverteilung der Stahlstruktur kommt es während der Ausrüstung des Schiffes zu einer fortschreitenden Massebelegung durch Decksbeläge und Einrichtungsgegenstände. Eine zusätzliche, versteifende Wirkung dieser Komponenten kann zudem nicht ausgeschlossen werden. Ähnlich der Erhöhung der Massebelegung erfolgt mit zunehmendem Ausrüstungszustand auch eine Zunahme der Dämpfung, die in ihrer Wirkung nur schwer zu erfassen ist.

Die Erregung lokaler Strukturen resultiert in den meisten Fällen, ausgehend von den globalen Schiffsschwingungen, aus einer sekundären Wegerregung an den Rändern der Flächentragwerke, wobei Frequenz, Amplitude und Phasenlage die wesentlichen Parameter sind. So ist für eine vollständige Erfassung des dynamischen Verhaltens lokaler Strukturen auch das Schwingungsverhalten der sie führenden globalen Struktur in die Betrachtung mit einzubeziehen. Im Schiffsbetrieb auftretende Schwingungspegel werden somit durch einer Überlagerung globaler und lokaler Komponenten bestimmt. Zusammenfassend sind in Abbildung 2.1 die beschriebenen Strukturelemente sowie die dazugehörigen charakteristischen Frequenzbereiche (entnommen aus [1]) dargestellt.

Abbildung 2.1: Schiffbauliche Strukturelemente und deren charakteristische Eigenfrequenzen

2.2 Vorhersage des Schwingungsverhaltens

Bei der rechnerischen Vorhersage des Schwingungsverhaltens schiffbaulicher Strukturen hat sich die Anwendung der Finite-Elemente-Methode [2] durchgesetzt. Die Treffsicherheit dieses Berechnungsverfahrens hat vor allem durch die Steigerung der räumlichen Auflösung der Rechenmodelle ständig zugenommen. Unsicherheiten bei der Auswahl und Festlegung notwendiger Berechnungsparameter setzen der Genauigkeit bei der Voraus-

berechnung des Eigen- und insbesondere des Zwangsschwingungsverhaltens schiffbaulicher Konstruktionen aber Grenzen.

2.2.1 Globale Schiffsstrukturen

2.2.1.1 Rechnerische Ermittlung des Eigenschwingungsverhaltens

Berechnungsmodelle zur Ermittlung des globalen Schwingungsverhaltens von Schiffsstrukturen besitzen in der Regel 20- bis 40-tausend Freiheitsgrade [1], weisen eine an die Hauptstruktur angepasste räumliche Auflösung auf und ermöglichen die Vorhersage von Eigenfrequenzen bis ca. 20 Hz. Die Steifigkeit der Schiffsstruktur wird dabei unter Verwendung von Schalen- und Balkenelementen modelliert. Neben der Masse der Schiffsstruktur ist es notwendig, zusätzliche Massen zu berücksichtigen. Hierzu zählen Massen von Ausrüstung, Tankfüllung, Beladung sowie hydrodynamische Massen. Die Masse der Schiffsstruktur wird mit Hilfe der geometrischen Informationen des FE-Modells und entsprechenden Werkstoffparametern über die Elementmassen festgelegt, kann aber auch auf die Elementknoten kondensiert und mit Hilfe von Masseelementen implementiert werden. Massen von Ausrüstungsgegenständen, Tankfüllungen sowie Beladung werden durch Masseelemente an den Elementknoten des FE-Modells berücksichtigt.

Die hydrodynamischen Massen erfassen den Trägheitswiderstand des Wassers an den benetzten Außenflächen des Schiffskörpers. Die wirksamen hydrodynamischen Massen sind dabei abhängig von Tiefgang, Wassertiefe sowie Schwingform bzw. Frequenz. Im Schiffbau war es lange Jahre üblich, hydrodynamische Massen nach der Methode von LEWIS [3] zu ermitteln. Bei dieser 2-dimensionalen Methode ist es u. a. notwendig, die wirksamen Massen zu verschiedener Schwingformen durch Korrekturfaktoren anzupassen. Ein Rechenmodell liefert somit genau genommen nur für die der Korrektur zugrunde liegende Schwingform (meist 5-Knoten Biegeschwingung vertikal) die richtigen Ergebnisse. Auch stößt dieses Verfahren bei speziellen Vor- und Hinterschiffsgeometrien an seine Grenzen. Der große Vorteil der Methode von Lewis ist aber die einfache rechentechnische Handhabbarkeit, da die Hydromassen ebenfalls in Form von Massenelementen an den Elementknoten implementiert werden können. In letzter Zeit kommen verstärkt Verfahren zum Einsatz, die die hydrodynamischen Massen auf Grundlage einer gekoppelten Fluid-Struktur-Analyse ermitteln [4]. Vorteile dieses Verfahrens sind das Nichtvorhandensein von Einschränkungen bezüglich Schwingform bzw. Frequenz sowie die Möglichkeit der Berücksichtigung von z.B. Flachwassereinflüssen. Rechentechnisch führt dieses Verfahren allerdings zu einem erhöhten Aufwand, da die resultierenden Massenmatrizen meist voll besetzt sind.

Da das dynamische Verhalten der globalen Schiffsstruktur wesentlich von Massebelegung und resultierendem Tiefgang beeinflusst wird, werden in der Regel verschiedene Varianten der Massebelegung bei den Berechnungen berücksichtigt. Liegt abschließend ein Strukturmodell vor, welches die Steifigkeits- und Masseeigenschaften ausreichend beschreibt, ist es möglich, Eigenwerte und Eigenvektoren über das Lösen des Eigenwertproblems zu ermitteln. Die Lösung erfolgt unter Verwendung von Näherungsverfahren, wie z.B. der Methode von Lanczos (siehe [2]).

2.2.1.2 Rechnerische Ermittlung erzwungener Schwingungen

Generell besteht das Bestreben, Resonanzen der Schiffsstruktur mit potentiellen Erregerquellen zu vermeiden. Aufgrund der mit steigender Frequenz zunehmenden Modendichte ist dies im höheren Frequenzbereich praktisch kaum möglich. Daher ist neben der Kenntnis von Resonanzfrequenzen der Schiffsstruktur auch die Kenntnis von Schwingungsamplituden bei verschiedenen Betriebszuständen (Wellendrehzahl) von großem Interesse. Die Ermittlung von Schwingungsamplituden bei vorgegebener Erregung kann mit Hilfe einer Zwangsschwingungsanalyse durchgeführt werden. Neben einer realitätsnahen Beschreibung der Struktur durch Steifigkeits- und Massenmatrix sind zusätzliche Kenntnisse der erregenden Kräfte und Momente sowie des Dämpfungsverhaltens notwendig (Abbildung 2.2).

Abbildung 2.2: Vorgehensweise zur Berechnung erzwungener Schwingungen

Wie bereits im vorherigen Abschnitt beschrieben, erfolgt die Anregung der Schiffsstruktur hauptsächlich durch die Antriebsmaschine und den Propeller. Die von der Hauptmaschine ausgehenden Erregungen können mit ausreichender Genauigkeit ermittelt und in das Berechnungsmodell implementiert werden. Im Fall der häufig eingesetzten starr gelagerten 2-Takt Dieselmotoren müssen sowohl externe als auch interne Erregermomente berücksichtigt werden [5,6]. Während externe Erregermomente direkt in die Fundamentierung

eingeleitet werden, führen interne Erregermomente zu einer Deformation des Motors und werden aufgrund einer endlichen Steifigkeit des Maschinengehäuses in die Fundamentierung eingeleitet. Zur realitätsnahen Einleitung dieser Erregermomente in die Schiffsstruktur ist darum die Einbeziehung eines Motormodells in das Gesamtmodell notwendig. Die Einbeziehung des Motormodells ermöglicht es außerdem, das Eigenschwingungsverhalten der Hauptmaschine im Schiffsverband zu berücksichtigen. Charakteristische Eigenfrequenzen liegen hierfür in einem Bereich zwischen 5 und 15 Hz, charakteristische Schwingformen sind die H-, L- und X-Form des Motors [7]. Das Eigenschwingungsverhalten der Hauptmaschine kann bei der Einleitung der Erregung wesentlich sein.

Die Erfassung propellerinduzierter Druckimpulse erfolgt oft unter Verwendung empirischer Prognoseverfahren [8, 9], ist aber insbesondere bei neuen Hinterschiffsformen und Propellergeometrien mit Unsicherheiten behaftet. Verbesserungen sind diesbezüglich von einer Ermittlung der zeitlichen und örtlichen Druckverläufe bei Anwendung moderner CFD-Verfahren und einer anschließenden Übertragung auf das Strukturmodell zu erwarten [10].

Die Dämpfung ist ein weiterer wesentlicher Parameter bei der Ermittlung von Zwangsschwingungsamplituden. Im Gegensatz zu den Parametern Masse und Steifigkeit, welche auf Grundlage von Geometrie und Werkstoffkennwerten bestimmt werden können, ist die Ermittlung von Dämpfungsparametern auf theoretischem Weg nicht möglich. Grundlage für die Ermittlung von Dämpfungsparametern bilden im Allgemeinen experimentelle Untersuchungen. Diese Art der Parameterermittlung bleibt allerdings auf Einzelfälle beschränkt, so dass die Verwendung von verallgemeinerten Annahmen gängige Praxis ist. Solche Annahmen über Dämpfungsparameter sind aber zum Teil mit großen Unsicherheiten behaftet. Aufgrund des großen Einfußes der Dämpfung auf die Amplituden erzwungener Schwingungen erfolgt eine ausführlichere Betrachtung über das Dämpfungsverhalten schiffbaulicher Strukturen in den Abschnitten 2.3 und 2.4 sowie über Dämpfung allgemein im Abschnitt 4.3.

Bei der Berechnung von Zwangsschwingungen wird grundsätzlich zwischen Lösungen im Zeitbereich und Lösungen im Frequenzbereich unterschieden. Da Schwingungserscheinungen im Schiffbau häufig durch Erregungen hervorgerufen werden, die harmonisch sind oder sich durch harmonische Reihen darstellen lassen, ist eine Lösung im Frequenzbereich zweckmäßig. Wegen der numerischen Effektivität der Methode der modalen Überlagerung kann diese Methode auch auf Rechenmodelle schiffbaulicher Strukturen mit einer sehr großen Zahl an Freiheitsgraden angewendet werden. So ist es möglich, das Schwingungsniveau für große Systeme in einem großen Frequenzbereich mit moderatem Aufwand zu berechnen. Lösungen im Zeitbereich hingegen werden bei Untersuchungen von Schiffsstrukturen nur in speziellen Fällen durchgeführt.

2.2.2 Lokale Schiffsstrukturen

Ausführliche Untersuchungen zum dynamischen Verhalten globaler Schiffsstrukturen enthält der zweite Teil dieses Forschungsberichtes. Der Vollständigkeit halber soll hier kurz auf wesentliche Aspekte eingegangen werden.

Die Erregung lokaler Strukturen erfolgt, ausgehend von den globalen Schiffsschwingungen, hauptsächlich durch eine sekundäre Wegerregung. Das Ziel ist es, eine Überhöhung von Schwingungsamplituden gegenüber dem globalen Pegel zu begrenzen. Grundlage dafür ist eine Vermeidung von Resonanzen der lokalen Struktur. Beispielsweise gibt es für Bereiche in Deckshäusern diesbezüglich die Empfehlungen [1], dass die niedrigste Eigenfrequenz der lokalen Struktur größer sein sollte als Faktor 1.2 multipliziert mit der doppelten Propellerblattfrequenz bzw. der Zündfrequenz der Hauptmaschine. Die Vorhersage des Schwingungsverhaltens lokaler Strukturen bleibt also auf die Ermittlung von Eigenschwingungen beschränkt. Für Strukturbereiche mit einfacher Geometrie, regelmäßiger Anordnung von Versteifungen, gleichmäßiger Masseverteilung usw. werden oft einfache analytische Verfahren zur Ermittlung der niedrigsten Eigenfrequenz verwendet. Für komplexere Decksstrukturen ist eine Berechnung mit Hilfe der Finite-Elemente-Methode notwendig. Die Modellbildung erfolgt in der Regel unter Verwendung von Schalen- und Balkenelementen. Schwierigkeiten bereiten hierbei die Festlegung von mittragenden Plattenbereiten bei der Ermittlung von Querschnittskennwerten (Flächenträgheitsmomente) der Balkenelemente sowie die Festlegung von Randbedingungen (z.B. Einspannsteifigkeiten) an den Systemgrenzen. Schweißeigenspannungen können das dynamische Verhalten wesentlich beeinflussen [11]. Decksstrukturen sind im Allgemeinen mit zusätzlichen Massen in Form von Decksbelägen, Installationen, Einrichtungsgegenständen usw. beaufschlagt, die bei der Berechnung berücksichtigt werden müssen. Aufgrund von Unsicherheiten in der Modellbildung wird versucht, durch konservative Annahmen eine ausreichende Sicherheit bei der Grundschwingung bezüglich Resonanz zu garantieren. Dies ist teilweise durch den Einfluss von Schweißeigenspannungen auf das Schwingungsverhalten problematisch. Eine treffsichere Vorhersage von Eigenfrequenzen höheren Grades und somit eine Vermeidung von Resonanzerscheinungen mit Erregerfrequenzen höherer Ordnung ist im Allgemeinen nicht möglich. Zur Sicherstellung festgelegter Zwangsschwingungsamplituden ist ebenfalls die Kenntnis des Dämpfungsverhaltens lokaler Strukturen, insbesondere unter Berücksichtigung von Decksbelägen und Ausrüstungsgegenständen, wichtig.

2.3 Dämpfungsverhalten schiffbaulicher Strukturen

Für die Dämpfung von Schiffsschwingungen ist in [1, 12, 13, 14, 15] ein Überblick über die physikalischen Ursachen und mögliche mathematische Ansätze für verschiedene Arten der Dämpfung gegeben. So tragen eine Vielzahl von physikalischen Mechanismen zur Dämpfung bei.

<u>Materialdämpfung</u> oder Hysteresedämpfung ist verursacht durch dissipierte Energie bei der Verformung des Materials. Dieser Dämpfungsanteil ist an Materialproben gut erforscht [16, 17] und insbesondere für Stahl klein und über weite Frequenzbereiche konstant. Gemessene Dämpfungsgrade sind nach [18] für Stahl: $\vartheta = 0.16 - 0.5$ % und Aluminium: $\vartheta = 0.5 - 0.7$ %.

<u>Strukturdämpfung</u> oder Konstruktionsdämpfung ist verursacht durch dissipative Effekte an festen und verschieblichen Verbindungen (Niet-, Schraub- oder Schweißverbindungen). Aber auch Vorspannungen können zu einer Zunahme der Dämpfung führen [16]. Den weitaus größten Anteil bei schiffbaulichen Strukturen haben aber Decksbeläge, Installationen (Rohrleitungen, Kabelbäume etc.) sowie Inneneinrichtungen. In [1] sind hierfür etwa $\vartheta = 4 - 10\%$ angegeben.

<u>Hydrodynamische Dämpfung</u> oder Abstrahlungsdämpfung erfolgt hauptsächlich über eine Energiedissipation durch Oberflächenwellen und Grenzschichtenreibung. Dabei kann angenommen werden, dass bei den Strukturschwingungen im gegebenen Frequenzbereich der Effekt der Grenzschichtenreibung gegenüber der Dissipation durch Oberflächenwellen vernachlässigt werden kann [14]. Insgesamt sind die hydrodynamischen Dämpfungseffekte im untersuchten Frequenzbereich eher als gering einzuschätzen. Eine Trennung und Bewertung von strukturellen und hydrodynamischen Dämpfungsanteilen ist nur in Modellversuchen möglich.

<u>Ladungsdämpfung</u> ist stark abhängig von der Ladungsart (Container, flüssige Ladung, Stückgut u.a.) und wenig untersucht. Eine Zunahme der Dämpfung ist nur dann möglich, wenn es zu einer Relativbewegung zwischen Schiff und Ladung bzw. innerhalb der Ladung kommt. Allgemein wird angenommen, dass Ladung die Dämpfung vergrößert. Aufgrund der schwierigen Quantifizierung wird diese Dämpfung oft als eine zusätzliche Sicherheit betrachtet [13]. In [19] wird für Container bei harmonischer Anregung ein mittlerer Dämpfungsgrad von $\vartheta = 10,4$ % angegeben.

<u>Mechanische Dämpfung</u> oder konzentrierte Dämpfung tritt z.B. auf in Torsions- oder Längsschwingungsdämpfern von Kurbelwellen sowie Hydraulik- oder Reibquerabstützungen von Motoren. Angaben zu Dämpfungseigenschaften diskreter Dämpfer sind meist gesichert möglich.

Neben den Wirkmechanismen der Dämpfung ist außerdem die <u>Verteilung der Dämpfung</u> ein viel diskutierter Aspekt [15, 20, 21]. Ein weit verbreiteter Standard ist die Annahme einer massen- und steifigkeitsproportionalen Dämpfungsverteilung. Sie ermöglicht die Anwendung des effektiven Verfahrens der modalen Überlagerung bei der Berechnung erzwungener Schwingungen. Diese Proportionalität der Dämpfungsverteilung ist bei lokalen Dämpfungskonzentrationen, wie sie z.B. bei ausgerüsteten Decksstrukturen (Kabinen, Kabelbäume etc.) oder lokalen Dämpfern (Motorquerabstützung) auftreten können, nicht mehr gegeben. Hieraus ergeben sich Besonderheiten bei der Belegung der Dämpfungsmatrix, die bei einer Nichtberücksichtigung zu Abweichungen zwischen berechnetem und gemessenem Systemverhalten führen können. Bei Berücksichtigung nicht-proportionaler Dämpfungseffekte ist die Anwendung des Verfahrens der modalen Überlagerung problematisch. Vertiefend werden das Problem der Dämpfungsverteilung sowie die Möglichkeiten zur mathematischen Beschreibung des Dämpfungsverhaltens im Abschnitt 4.3 behandelt.

2.4 Experimentelle Untersuchungen zum Dämpfungsverhalten schiffbaulicher Strukturen in der Fachliteratur

Die Dämpfung von Schiffsschwingungen ist seit mehr als 40 Jahren Gegenstand von Untersuchungen. Dabei wurden in den meisten Fällen für die niedrigsten Grade vertikaler Schiffskörperschwingungen die Dämpfungsgrade 9 ermittelt. In den letzten Jahren wurden zunehmend auch Dämpfungskennwerte für höherfrequente Schiffskörperschwingungen sowie für lokale Strukturen bestimmt. Die Untersuchungen basieren dabei auf unterschiedlichen experimentellen Vorgehensweisen sowie auf nachfolgend dargestellten Identifikationsverfahren.

2.4.1 Angewandte Verfahren zur Dämpfungsidentifikation

Die Identifikation dynamischer Parameter beruht im Allgemeinen auf einer Auswertung experimentell ermittelter Strukturantworten. In Abhängigkeit der verwendeten Verfahren kann auch die Anregung der Struktur mit einbezogen werden. Vorraussetzung ist dafür dann die zusätzliche Ermittlung der entsprechenden Erregerkräfte. Generell ist aber eine Anregung der Schiffsstruktur auf geeignete Weise durchzuführen. In [22] ist eine Übersicht zu den verschiedenen Arten von möglichen Erregersignalen gegeben. Für schiffbauliche Strukturen werden unterschiedliche Arten der Anregung verwendet. Das Ziel sollte dabei immer eine optimale Anregung der Struktur bei minimalem zeitlichem und materiellem Aufwand sein, um durch eine Vielzahl von Untersuchungen eine gesicherte Datenbasis zu erhalten.

Bei der <u>harmonischen Anregung</u> wird die Struktur in festgelegten Frequenzschritten durch eine harmonische Erregerkraft schrittweise erregt und die Strukturantwort jeweils nach dem Einstellen des eingeschwungenen Zustandes ermittelt. Die harmonischen Erregerkräfte können unterschiedlich realisiert werden. Zur Ermittlung globaler Schiffsschwingungen können Unwuchterreger sowie hydraulische Erreger (Hydropulszylinder mit Erregermasse) eingesetzt werden. Bei Unwuchterregern nimmt die Erregerkraft quadratisch mit der Drehzahl (bzw. Erregerfrequenz) zu, was insbesondere die Erregung im unteren Frequenzbereich einschränkt. Der Einsatz von großen harmonischen Erregern ist immer mit hohen Kosten verbunden. Auch ist der zeitliche Aufwand bei großen Frequenzbereichen und hohen Frequenzauflösungen erheblich und kann z.B. auf Probefahrten kaum noch realisiert werden. In den meisten Fällen ist die Erregung auch auf einen Strukturpunkt begrenzt, was die vollständige Anregung aller interessierenden Eigenschwingungen einschränken kann. Hervorzuheben ist aber der vergleichsweise hohe Energieeintrag in die einzelnen Frequenzlinien bei dieser Art der Anregung. Für lokale Strukturen ist der Einsatz kostengünstigerer elektrodynamischer Erreger möglich. Eine weitere, oft angewendete Möglichkeit der harmonischen Erregung, jedoch meist mit beschränkter Aussagekraft bzgl. der dynamischen Parameter, bieten Hochfahrvorgänge der Hauptmaschine.

Die Impulsanregung ist eine Form der <u>transienten Anregung</u> und ist im Bereich des Maschinenbaus weit verbreitet [23, 24]. Werden die Erregerkräfte bei der Parameteridentifikation mit berücksichtig ist durch Anwendung von z.B. der Fouriertransformation eine Analyse im Frequenzbereich notwendig. Die Impulsanregung bietet den Vorteil von geringem zeit- und gerätetechnischem Aufwand. Durch begrenzte Erregermassen (zur Impulsanregung) ist der Energieeintrag in die Struktur vergleichsweise gering. Zur Realisierung von messbaren Strukturantworten globaler Schiffsstrukturen müssen entweder die Erregermasse vergrößert oder entsprechend empfindliche Sensoren verwendet werden. Letzteres ist praktisch erst in der jüngeren Zeit möglich. Sehr geeignet ist diese Anregung für lokale Strukturen. Einfache Formen der transienten Anregung sind außerdem z.B. Slammingstöße durch Seegang, Ankerfallversuche usw., die meist eine Anwendung einfacher Auswerteverfahren zur Folge haben.

Eine <u>stochastische Anregung</u> kann durch Umgebungsbedingungen wie z.B. Wind und Wellen erfolgen. Diese aus den Umgebungsbedingungen resultierenden Erregerkräfte sind zeitlich und örtlich stochastisch verteilt und können als gefiltertes weißes Rauschen angesehen werden [25, 26]. Eine Ermittlung von Erregerkräften ist dabei nicht möglich. Solche Untersuchungen erfordern lange Messzeiten sowie spezielle Auswerteverfahren [26] (siehe auch Kapitel 5 und 6). Eine stochastische Anregung kann ebenfalls unter Verwendung servohydraulischer Erreger realisiert werden. Im Vergleich zur harmonischen Anregung führt dies zur Verringerung des Zeitaufwandes bei allerdings gleichzeitig reduziertem Energieeintrag.

In Abhängigkeit von der verwendeten Art der Anregung und der Berücksichtigung von Erregerkräften sind unterschiedliche Arten der Dämpfungsidentifikation anwendbar. Eine Zusammenfassung verschiedener Verfahren kann [14] entnommen werden, detaillierte Erläuterungen werden z.B. in [22] gegeben. Im einfachsten Fall erfolgt die Ermittlung der Dämpfung über die Auswertung des Abklingverhaltens einer aufgezeichneten Ausschwingkurve oder bei erzwungenen Schwingungen über das Verfahren der Halbwertsbreite (siehe auch [27]). Erfolgt eine zusätzliche Messung der Erregerkräfte, können die Dämpfungsparameter auf Grundlage von Übertragungsfunktionen ermittelt werden. Vertiefende Informationen zur experimentellen Ermittlung der dynamischen Parameter sind im Kapitel 5 dargestellt.

2.4.2 Identifizierte Dämpfungsparameter

2.4.2.1 Globale Schiffsschwingungen

Experimentelle Untersuchungen zur Identifikation von Dämpfungsparametern globaler Schiffsstrukturen wurden vielfältig ausgeführt. Eine Zusammenstellung früher Untersuchungen findet sich z.B. in [13, 14] darin enthalten sind Arbeiten von [28, 29, 30, 31, 32] Die Untersuchungen wurden auf Grundlage von Abklingkurven oder Vergrößerungsfunktionen (Schiffsbetrieb oder Erregermessung) ausgeführt. Die bekannten Messungen zeigen sehr starke Streuungen, die sowohl Ursachen in verschiedenen Schiffstypen und Ladungen haben, aber auch durch die unterschiedlichen Mess- und Auswertemethoden verursacht sein können [14].

Abbildung 2.3: Dämpfungsgrade globaler Schiffskörperschwingungen von Schwingungsmessungen an unterschiedlichen Frachtschiffen, aus [33]

In Abbildung 2.3 sind die von SCHMITZ [33] für zehn Frachtschiffe (Länge ca. 100 –180 m) aus Messungen ermittelten Dämpfungsgrade 9 zwischen 0.5 und 2.5 % im Frequenzbereich 1.5 bis 7 Hz angegeben. Die Dämpfungsparameter wurden auf Grundlage von Vergrößerungsfunktionen bestimmt, die während des Hochfahrvorganges der Hauptmaschine an unterschiedlichen Messstellen aufgezeichnet wurden. In der Abbildung mit enthalten sind die in [13] zusammengefassten Näherungsformeln verschiedener Autoren. Die Frequenzabhängigkeit der globalen Dämpfung bestätigt sich in diesen Ergebnissen, die Dämpfungswerte im Bereich unterhalb 3 bis 4 Hz von SCHMITZ sind allerdings größer als die Prognosen der anderen Autoren. Für den Bereich der Aufbautenschwingungen (10 bis 18 Hz) werden von SCHMITZ in [34] für zwei Schiffe Dämpfungsgrade 9 zwischen 2 und 6 % angegeben.

Von GEßNER werden in [35] Untersuchungen zur Ermittlung von Dämpfungskennwerten an LoRo- und Containerschiffen vorgestellt. Die Untersuchungen wurden im Rahmen von Probefahrten (Wassertiefe: 4 - 5facher Tiefgang) unter Verwendung eines elektro-servohydraulischen Schwingungserregers (Hydropulszylinder: 63 kN, Masse: 800 kg) ermittelt. Der Erreger war für die Untersuchungen am LoRo-Schiff (Abbildung 2.4) in der Propellerebene positioniert, erregt wurde in vertikaler und horizontaler Richtung.

Am Containerschiff (Abbildung 2.5) wurde der Erreger am Heckspiegel aufgestellt, die Erregung erfolgte in Vertikalrichtung. Die Frequenzschrittweite und somit die Frequenzauflösung der ermittelten Frequenzgänge lag zwischen 0.1 und 0.3 Hz. Die Parameteridentifikation erfolgte auf Grundlage der Theorie des Einmasseschwingers (Einfreiheitsgrad-Verfahren). Da die Frequenzauflösung von 0.3 Hz zu hoch für eine korrekte Dämpfungsidentifikation war, konnten nicht für alle identifizierten Eigenfrequenzen Dämpfungsparameter bestimmt werden. Eine höhere Frequenzauflösung war aber aufgrund des eingeschränkten Zeitangebots im Rahmen der Probefahrt nicht realisierbar. Eine Auswahl an ermittelten Dämpfungsparametern ist in den Abbildungen 2.4 und 2.5 dargestellt. In den Diagrammen mit enthalten ist auch ein Vorschlag des ISSC [36] zur Dämpfung von Schiffskörperschwingungen. Abschließend wird in [35] geschlussfolgert, dass die große Streubreite der ermittelten und aus der Literatur bekannten Dämpfungskennwerte der Genauigkeit von Zwangsschwingungsprognosen Grenzen setzt. Methodische Streuungen lassen sich durch eine Vervollkommnung experimenteller Techniken verringern, Unsicherheiten bei der Übertragung auf andere Schiffstypen werden bleiben.

WILLICH [14] ermittelte Dämpfungskennwerte an Binnenfrachtschiffen unter Verwendung der Stoßanregung mittels eines Fallhammers (Masse 120 kg). Die Erregerkraft wurde durch eine DMS-Kraftmessplatte, die Systemantworten mit piezoelektrischen Beschleunigungsaufnehmern gemessen. Aus den aufgezeichneten Kraftverläufen am Anregungspunkt und den Beschleunigungsantworten an ausgewählten Strukturpunkten wurden Übertragungsfunktionen ermittelt. Die Identifikation der modalen Parameter (Eigenfrequenzen, Dämpfungen) erfolgte unter Verwendung von Mehrfreiheitsgrad-Verfahren (Phasentrennungstechnik). Die Messungen der Schubleichter erfolgten im Hafen und ohne Ladung, Festmacher wurden weitestgehend gelockert. Das Binnentankschiff war halb beladen. Informationen über die Empfindlichkeit der Aufnehmer, Frequenzauflösungen oder Anzahl und Verteilung von Messstellen liegen nicht vor. Die identifizierten Dämpfungskennwerte für die 4 Schiffe sind in Abbildung 2.6 zusammengefasst. Auch hier kann eine Zunahme der Dämpfung mit steigender Frequenz festgestellt werden.

Abbildung 2.4: Dämpfungsgrade globaler Schiffskörperschwingungen aus Schwingungsmessungen an einem LoRo-Schiff, aus [35]

Abbildung 2.5: Dämpfungsgrade globaler Schiffskörperschwingungen aus Schwingungsmessungen an einem Containerschiff, aus [35]

Abbildung 2.6: Dämpfungsgrade vertikaler Schiffskörperschwingungen von Binnenfrachtschiffen, aus [14]

THORBECK und LANGECKER [37] führten experimentelle Untersuchungen zu Identifikation des Dämpfungsverhaltens globaler Schiffsstrukturen ebenfalls unter Verwendung eines servohydraulischen Schwingungserregers an einem Containerschiff (Länge: 152 m) durch (siehe auch GESSNER [35]). Aufgrund des außerordentlichen Zeitaufwandes bei der Anwendung einer harmonischen Erregung wurde hier eine Pseudo-Zufallserregung angewendet. Zur Optimierung der Anregung wurde der Frequenzbereich in verschiedene Frequenzbänder unterteilt, in denen jeweils verschiedene Erregersignale mit einer Zeitdauer zwischen 256 und 58 sec genutzt wurden. Die Übertragungsfunktionen (Frequenzgänge) wurden auf Grundlage der gemessenen Erregerkräfte und der Schwinggeschwindigkeiten an 12 ausgewählten Messstellen ermittelt. Die Frequenzauflösung lag zwischen 0.02 und 0.08 Hz. Von Vorteil waren die stark reduzierten Messzeiten bei erhöhter Frequenzauflösung, nachteilig wirkte sich aber der reduzierte Energieeintrag aus. So konnte für den Frequenzbereich unter 5 Hz aufgrund des Seegangseinflusses keine zufrieden stellende Auswertung durchgeführt werden. Für höhere Frequenzen wurde eine zunehmende Streuung der identifizierten Dämpfungsparameter registriert. Ursachen dafür könnten die zunehmende spektrale Dichte der Eigenfrequenzen, eine abnehmende Frequenzauflösung, die zunehmende modale Kopplung sowie Effekte nicht-proportionaler Dämpfungsverteilung sein.

Von THORBECK und LANGECKER [37] wurden ebenfalls Untersuchungen unter Verwendung der Random-Decrement (RD)-Technik als mögliche Alternative zur Frequenzgangmessung angewendet. Die RD-Technik [38] nutzt die Schwingungsantworten der Struktur auf eine Zufallsanregung durch z.B. Seegang, Ankerfall oder Wind. Es wird davon ausgegangen, dass sich die Strukturantwort aus einem zufälligem (stochastischen) und einem de-

terministischem Anteil (Impulsantwort) zusammensetzt. Der erste Anteil kann durch Mittelungen entfernt, aus dem Zweiten können die dynamischen Parameter bestimmt werden. Die besten Ergebnisse wurden während einer Probefahrt bei treibendem Schiff im Seegang (Stärke 5) mit Slamming-Stößen am Heck sowie Ankerkettenfall ermittelt. Die Messzeit betrug 150 Sekunden. Es konnte festgestellt werden, dass die Random-Decrement-Technik eine wirtschaftlich sehr vorteilhafte Methode zur Bestimmung von Eigenfrequenzen und modalen Dämpfungen ist. Die Tatsache, dass dieses Verfahren keine Absolutwerte für die modalen Nachgiebigkeiten liefert (unskalierte Eigenvektoren) kann in vielen praktischen Anwendungen toleriert werden. Als das Hauptproblem bei der Anwendung im Schiffbau wurde das Fehlen typischer Zufallserregungen (wie z.B. Strömungen in der Luftfahrt) beschrieben. Slamming-Stöße und kurzwelliger Seegang regen nur die niedrigeren Eigenfrequenzen an und sind nicht planbar. Zum Nachweis höherer Eigenfrequenzen wird auch die Aufzeichnung von Beschleunigungssignalen empfohlen. Nachgedacht wurde ebenfalls über den zusätzlichen Einsatz kostengünstiger elektrodynamischer Erreger zur stochastischen Anregung. In Abbildung 2.7 sind die aus den unterschiedlichen Versuchen identifizierten Dämpfungsgrade dargestellt. Für den Frequenzbereich bis ca. 5 Hz wurden die Ergebnisse unter Anwendung der Random-Decrement-Technik ermittelt, für Frequenzen größer 5 Hz mit Hilfe der Pseudozufalls-Erregung. Bemerkenswert sind die relativ niedrigen Werte für den Dämpfungsgrad 9 zwischen 0.2 und 5 %.

Abbildung 2.7: Zusammenstellung von identifizierten Eigenfrequenzen und modalen Dämpfungsgraden (Mittelwerte ausgeprägter Resonanzen) eines Containerschiffes, aus [20] In [20, 37] werden ebenfalls Überlegungen zur Erfassung nichtproportionaler Dämpfung und zu den Möglichkeiten der Gewinnung nichtmodaler Dämpfungsparameter aus Messungen angestellt. Es ist aber zu erwarten, dass globale Schiffskörperschwingungen für verschiedene Schiffstypen trotz verbesserter Dämpfungsmodelle und numerischem Fortschritt wegen fehlender Dämpfungsparameter aus Experimenten in den nächsten Jahren überwiegend auf Grundlage frequenzabhängiger modaler Dämpfungsgrade ermittelt werden.

Von CABOS und IHLENBURG ist in [15] ein Konzept zur Erfassung der Dämpfung globaler Schwingungen mit Hilfe der Finite-Elemente-Methode (FEM) angegeben. Es wird ein allgemeiner Dämpfungsansatz für eine FE-basierte Schwingungsanalysen hergeleitet, mit dem neben globalen Dämpfungseffekten (modale Dämpfung) auch lokal (auf Elementebene) sowohl innere als auch äußere Dämpfungseffekte erfasst werden können. Dieser Ansatz führt zu einer nicht-proportionalen Verteilung der Dämpfung im Rechenmodell (siehe auch Abschnitt 4.3) und erfordert für eine effektive Lösung spezielle Lösungsverfahren. Es wird gezeigt, dass die üblichen Dämpfungsmodelle der proportionalen oder modalen Dämpfung sich als Spezialfälle dieser verallgemeinerten Dämpfung ergeben. Grundlage für die Ermittlung der Dämpfungsparameter bildeten experimentelle Untersuchungen an drei Beispielschiffen (Containerschiffe mit einer Länge zwischen 200 und 255 m). Die Messungen wurden auf Ladungsreisen in Tiefwasser bei ruhiger See und abgeschalteter Hauptmaschine durchgeführt. Die Erregung erfolgte mit einem Unwuchterreger (DF5I der Fa. Schenck) in vertikaler und horizontaler Richtung im Hinterschiffsbereich. Die Antwortsignale wurden am Deckshaus und im Hinterschiffsbereich aufgezeichnet. Die Frequenzauflösungen lagen zwischen 0.1 und 1 Hz in einem Frequenzbereich von 5 bis 25 Hz.

Die ermittelten Systemantworten dienten als Basis für die Anpassung von Dämpfungsparametern in den Berechnungsmodellen. Dazu wurden zahlreiche Variantenrechnungen durchgeführt, wobei die hydrodynamische Massenmatrix mit Hilfe der Boundary-Element-Methode (BEM) [4] ermittelt wurde. Die Berechnungen zeigen in Verbindung mit experimentellen Untersuchungen, in welchen Bereichen und in welcher Relation von lokaler zu globaler Dämpfung, eine deutlich bessere Übereinstimmung von Prognose- und Messwerten erreichbar ist. Beispielsweise konnte durch die Überlagerung schwacher globaler Dämpfung von $\vartheta = 1$ % mit starker lokaler Dämpfung von $\vartheta = 10$ % im Deckshaus im oberen Frequenzbereich ab 10 Hz eine verbesserte Übereinstimmung zwischen Rechnung und Messung erzielt werden. Im unteren Frequenzbereich werden lokale Ansätze kaum wirksam. Weiterhin wurde festgestellt, dass Berechnungen mit einer konstanten globalen Dämpfung von ϑ = 3% die globalen Schiffskörperschwingungen ausreichend erfassen, aber Schwingungen bei Frequenzen größer 10 Hz zu stark gedämpft werden, was insbesondere die Aufbautenschwingungen betrifft. Die Einbeziehung von Ladungsdämpfung hatte keinen erkennbaren Einfluss auf das Schwingungsverhalten. Erwähnt werden sollen auch die im Zusammenhang mit den Dämpfungsuntersuchungen ausgeführten Untersuchungen zur Anwendung verschiedener Verfahren zur Ermittlung hydrodynamischer Massen [3, 4] und Untersuchungen zum Einfluss von Modellstruktur (Elementtypen, Netz) und Modellparametern (z.B. E-Modul).

Abbildung 2.8: Annahmen zum frequenzabhängigen modalen Dämpfungsgrad für die Berechnung erzwungener globaler Schiffschwingungen, verwendet von den Klassifikationsgesellschaften Germanischer Lloyd (GL) und Lloyd's Register (LR)

Unter Verwendung der in Abbildung 2.8 dargestellten Dämpfungsannahmen werden vom Germanischen Lloyd [1] gesicherte Ergebnisse für die Vorausberechnung erzwungener, globaler Schwingungen von Containerschiffen mit unterschiedlichen Beladungszuständen erhalten. Diese Vorgehensweise stellt eine Verwendung frequenzabhängiger modaler Dämpfungsgrade in FE-Modellen dar und führt zu proportionalem Dämpfungsverhalten. Die Klassifikationsgesellschaft Lloyd's Register verwendet zur Vorhersage erzwungener Schwingungen von Schiffsstrukturen, wie ebenfalls in Abbildung 2.8 dargestellt, eine qualitativ ähnliche Annahme zum Dämpfungsverhalten, jedoch mit geringeren Beträgen der Dämpfungskennwerte [39]. Auch wird nicht zwischen unterschiedlichen Beladungszuständen unterschieden.

2.4.2.2 Lokale Schiffsschwingungen

Lokale Schwingungen auf Schiffen können an sehr unterschiedlichen Strukturen auftreten, wie z.B. an starr oder elastisch gelagerten Motoren, Wellenleitungen im Achterschiff, Masten, Tanks oder Decks in Aufbauten. Im Folgenden soll die Erfassung von Dämpfungsparametern bei Decksschwingungen betrachtet werden. Maßgebend für die Dämpfung von Decksbereichen ist insbesondere die Strukturdämpfung, in geringerem Maße auch die Materialdämpfung. Experimentelle Untersuchungen sind, wie bei globalen Schwingungen, vorwiegend auf die Gewinnung von modalen Dämpfungsgraden 9 ausgerichtet, um diese nachfolgend in FE-Berechnungen zu verwenden. Von GROTH sind in [40], als Ergebnis experimenteller Untersuchungen auf Schiffen, Dämpfungsgrade für Decks ohne Einbauten von $\vartheta = 2 - 4$ % und für Decks mit Einbauten von $\vartheta = 4 - 8$ % angegeben.

Von SCHMITZ und SCHLOTTMANN [34] wurden aus Messungen (Auswertung von Resonanzkurven aus Schiffsbetrieb und mittels Erregermaschine) für Decks von vier Schiffen im Frequenzbereich zwischen 8 - 40 Hz Dämpfungsgrade von $\vartheta = 1 - 4,5$ % ermittelt. Die Streubreite der Ergebnisse von ca. 40 Messpunkten ist groß. Dabei sind die Dämpfungskennwerte der Decks vor und nach Ausrüstung im Mittel nicht wesentlich unterschiedlich und nicht mit der Frequenz ansteigend. Außerdem zeigte der Vergleich von Amplituden aus der FE-Rechnung mit einer Dämpfung von = 3 % und Erregermessung für ein Aufbautendeck, dass die berechneten Amplituden wesentlich zu groß waren. Verursacht ist diese Abweichung sicher durch das Herauslösen des Decks aus der Gesamtstruktur für die FE- Rechnung, während bei der Messung mit Erreger aber die Gesamtstruktur angeregt wurde, also ein Energieabfluss über die Ränder der Teilstruktur erfolgte. Deshalb sollten experimentelle Dämpfungsuntersuchungen an Strukturen mit definierten Systemgrenzen erfolgen, um Fehler bei der Übertragung auf andere Strukturen zu vermeiden.

Nach [18] wurden für einen Schiffsboden Dämpfungsgrade zwischen 9 = 6.4 - 9.4 % angegeben. Nicht nur Decks- und Wandbeläge unterschiedlicher Art erhöhen die Strukturdämpfung, wesentlichen Anteil haben auch Anbauten wie Rohrleitungen, Kabelbäume und Inneneinrichtungen.

Von THORBECK und LANGECKER [37] wurden zur Ermittlung des Dämpfungsverhaltens lokaler Strukturen zwei Aufbautendecks (Bootsdeck, 1. Brückendeck, Decksfläche jeweils ca. 8 x 10 m) eines Containerschiffes untersucht. Die Anregung der Deckstrukturen erfolgte durch einen Impulshammer (Masse 27 kg) mit eingebautem Kraftsensor. Die Impulsdauer wurde durch die Steifigkeit der Schlagkalotte so eingestellt, dass ein Frequenzbereich bis 40 Hz angeregt werden konnte. Die Strukturantworten wurden mit Beschleunigungsaufnehmern aufgezeichnet und aus den resultierenden Frequenzgängen die modalen Parameter ermittelt. Die Untersuchungen erfolgten für unterschiedliche Ausrüstungszustände der Decks. Abbildung 2.9 zeigt die Mittelwerte der identifizierten Dämpfungsgrades 3 von jeweils 9 Messstellen auf den Decks für die Eigenschwingungen zwischen 16 und 40 Hz für jeweils 3 Ausrüstungszustände (Rohbau, mit Decksbelag, ausgerüstet). Aus der Abbildung 2.9 ist ebenfalls ersichtlich, dass das Dämpfungsverhalten wesentlich durch Installationen wie Kabelbäume und Rohrleitungen beeinflusst wird. Entsprechendes kann den Dämpfungsparametern des ersten Brückendecks im Rohbau entnommen werden, das zum Messzeitpunkt bereits mit Installationen versehen war. Auch wurde festgestellt, dass das Wirken nicht-proportionaler Dämpfungen bei lokalen Strukturen auffälliger ist als bei globalen.

Abbildung 2.9: Mittelwerte modaler Dämpfungsgrade von zwei Aufbautendecks in verschiedenen Fertigungszuständen, aus [20]

2.4.2.3 Zusammenfassung zur Dämpfungsidentifikation

Zur den ermittelten Dämpfungsparametern von sowohl lokalen als auch globalen Schiffsstrukturen kann abschließend die allgemeine Aussage getroffen werden, dass:

- besonders im höheren Frequenzbereich wegen der zunehmenden Modendichte die Eigenschwingungen nicht mehr genau separiert und modale Dämpfungsparameter nur schwer ermittelt werden können,
- die Dämpfung im Allgemeinen mit steigender Frequenz zunimmt.

Weiterhin kann festgestellt werden, dass, vom Standpunkt der experimentellen Identifikation, die Untersuchungen von THORBECK und LANGECKER die fortschrittlichsten sind. Insbesondere im Hinblick auf die globalen Schwingungen ist der Zusammenhang zwischen einer hohen Frequenzauflösung der ermittelten Frequenzgänge und den vergleichsweise sehr niedrigen identifizierten Dämpfungskennwerten sehr interessant. Wie bereits erwähnt, können in diesem Zusammenhang eine zu geringe Frequenzauflösung und die Zunahme der modalen Dichte im höheren Frequenzbereich zu Problemen bei der Identifikation gekoppelter Moden und letztlich zu einer fehlerhaften Ermittlung von Dämpfungskennwerten führen. Die Anwendung der Random-Dekrement-Technik durch die Autoren als ein Verfahren der operativen Modalanalyse (OMA) im Bereich des Schiffbaus ist neuartig. Allerdings erscheinen die Messdauern vom heutigen Stand der Technik als zu kurz.

Die Vorgehensweise von CABOS und IHLENBURG umgeht bewusst die Probleme der experimentellen Identifikation modaler Dämpfungsparameter und versucht die Abweichung zwischen gemessenen und berechneten Frequenzgängen zu minimieren. Hierbei ist nicht nur eine Anpassung von Dämpfungskennwerten sondern auch eine Beurteilung der Modellierung von Steifigkeit und Masse möglich.

Wie aus der Zusammenfassung der Fachliteratur zu den bisherigen Arbeiten auf diesem Gebiet entnommen werden kann, bestand der Fokus hauptsächlich auf einer Ermittlung von Dämpfungsparametern. Wenige Autoren (z.B. THORBECK und LANGECKER [37], CABOS und IHLENBURG [15]) führten neben experimentellen auch rechnerische Untersuchungen auf Grundlage von Finite-Element-Modellen durch, um Experiment und rechnerische Vorhersage zu vergleichen. Dieser Vergleich ist aber wesentlich, da eine richtige Annahme des Dämpfungsverhaltens erst im Zusammenwirken mit einer entsprechenden Modellierung von Masse und Steifigkeit eine genaue Vorhersage des dynamischen Verhaltens ermöglicht.

3. Zielstellung, Objekte und Vorgehensweise

3.1 Zielstellung der Untersuchung

Das allgemeine Ziel des hier vorgestellten Teils des Projektes ist es, einen Beitrag zur Verbesserung der Vorhersagegenauigkeit von globalen Schwingungsniveaus auf Schiffen zu leisten. Zu diesem Zweck wurden experimentelle und rechnerische Untersuchungen an globalen Schiffsstrukturen durchgeführt.

Wie einleitend beschrieben, sind strukturseitig für eine treffsichere Vorhersage von Schwingungsamplituden im Schiffsbetrieb eine realitätsnahe Modellierung von Masse und Steifigkeit sowie realitätsnahe Annahmen zum Dämpfungsverhalten der globalen Schiffsstruktur erforderlich. Zur Überprüfung der Genauigkeit der Modellierung sowie zur Ermittlung von Dämpfungsparametern sind experimentelle Untersuchungen an der realen Schiffsstruktur notwendig. Im Rahmen dieses Projektes standen hierfür zwei grundsätzlich unterschiedliche experimentelle Verfahren, die klassische und die operative Modalanalyse, zur Verfügung. Experimentelle Untersuchungen konnten sowohl unter Werftbedingungen als auch während der Probefahrt durchgeführt werden.

Die Anwendung der klassischen Modalanalyse zur Ermittlung des dynamischen Verhaltens allgemeiner Strukturen kann als Stand der Technik eingeschätzt werden. Sie beruht auf einer messtechnischen Erfassung der Anregung und der Systemantworten. Bei der Anwendung dieses Verfahrens auf sehr große Strukturen treten jedoch Probleme bezüglich der realisierbaren Systemantworten auf Grundlage einer künstlichen Anregung auf. Deshalb kam bei diesen Untersuchungen eine sehr große Erregermasse zur Stoßanregung in Kombination mit hochempfindlichen piezoelektrischen Beschleunigungsaufnehmern zum Einsatz.

Die operative Modalanalyse stellt eine Alternative zu dem klassischen Verfahren dar. Sie beruht auf einer stochastischen Anregung der Struktur durch die Umgebungsbedingungen und einer ausschließlichen Erfassung der Systemantworten, was insbesondere bei großen, künstlich nur schwer erregbaren Strukturen von Vorteil sein kann. Eine Anwendung der operativen Modalanalyse auf Schiffsstrukturen wurde bislang noch nicht durchgeführt (mit Ausnahme einer Anwendung der Random-Decrement-Technik von THORBECK und LANGECKER [37]). Die Bewertung der beiden Verfahren erfolgt zum einen im Hinblick auf die Anregbarkeit der Schiffsstruktur sowie zum anderen hinsichtlich der Identifizierbarkeit der modalen Parameter. Die Grundlagen der klassischen und der operativen Modalanalyse werden im Kapitel 5 näher erläutert.

Experimentelle Untersuchungen mit dem geringsten Aufwand lassen sich unter Werftbedingungen durchführen. Die Aussagefähigkeit der ermittelten Ergebnisse bzw. deren Eignung zur Bewertung der Modellierung können dabei aber u. a. durch die rechnerisch nur schwer zu erfassenden Einflüsse des Flachwassers sowie der Kaibegrenzung gemindert werden. Diese Einschränkungen treten bei Untersuchungen während einer Probefahrt bzw. unter Einsatzbedingungen nicht auf, auch sind für diesen charakteristischen Beladungszustand Rechenmodelle vorhanden. Einschränkungen treten hingegen bei der Anwendbarkeit der klassischen Modalanalyse im Rahmen der Probefahrt bzw. des Einsatzes auf (siehe auch Abschnitt 6.2). Hieraus können somit folgende Zielstellungen für die experimentellen Untersuchungen an globalen Schiffsstrukturen abgeleitet werden:

- Experimentelle Identifikation von Dämpfungsparametern unterschiedlicher Schiffstypen zur Erweiterung der vorhandenen Datenbasis,
- Experimentelle Ermittlung von Eigenfrequenzen und dazugehörigen Eigenschwingformen sowie des Übertragungsverhaltens zur Bewertung der Vorhersagegenauigkeit der Rechenmodelle (Ergebnisse von Eigen- und Zwangsschwingungsrechnung),
- Bewertung der Anwendbarkeit der unterschiedlichen Verfahren der experimentellen Modalanalyse (klassisch und operativ),
- Bewertung der unterschiedlichen Untersuchungsbedingungen (Werft, Probefahrt).

Ziel von rechnerischen Untersuchungen ist es, rechnerische Vorhersagen für einen Vergleich mit den experimentell ermittelten Eigenschwingungen und Zwangsschwingungsamplituden zur Bewertung der Vorhersagegenauigkeit bereitzustellen. Die für die numerischen Untersuchungen verwendeten Berechnungsmodelle wurden von den jeweiligen Werften zur Verfügung gestellt. Einen weiteren wichtigen Aspekt bei der Vorhersage des Schwingungsverhaltens im Schiffsbetrieb stellt eine realistische Implementierung der Erregermechanismen im Berechnungsmodell dar. Berücksichtigt werden in den hier vorgestellten Untersuchungen die Erregung durch die Hauptmaschine sowie die Propellererregung als hauptsächliche Erregerquellen während des Schiffsbetriebs sowie zusätzlich die im Rahmen der klassischen Modalanalyse eingebrachte Stoßanregung.

3.2 Objekte der Untersuchung

Die Untersuchungen zum globalen dynamischen Verhalten von Schiffsstrukturen wurden an drei unterschiedlichen Schiffstypen durchgeführt. Dabei handelte es sich um 7 Containerschiffe gleicher Bauart (Typ CV2500) und zwei unterschiedliche RoRo-Schiffe. Sie werden in den Abbildungen 3.1 bis 3.3 vorgestellt.

Länge: 208.0 m Breite: 29.8 m Hauptmaschine: 2-Takt Diesel, 7 (8*) Zylinder Propeller: 5 Blatt Festpropeller Nenndrehzahl: 113(108*) U/min

Abbildung 3.1: Schiff 1: Containerschiff CV2500, Aker MTW Werft Wismar und Volkswerft Stralsund*

Länge: 199.8 m Breite: 26.5 m Hauptmaschine: 2-Takt Diesel, 9 Zylinder Propeller: 4 Blatt Verstellpropeller Nenndrehzahl: 123 U/min

Abbildung 3.2: Schiff 2: RoRo-Schiff FSG**0, Flensburger Schiffbaugesellschaft (FSG)

Länge: 203.0 m Breite: 32.8 m Hauptmaschine: 2×4-Takt Diesel, 12 Zylinder Propeller: 4 Blatt Verstellpropeller Nenndrehzahl: 103 U/min

Abbildung 3.3: Schiff 3: RoRo-Schiff FSG**1, Flensburger Schiffbaugesellschaft (FSG)

3.3 Vorgehensweise

Zum Erreichen der im Abschnitt 3.1.1 beschriebenen Zielstellungen wurde eine Vielzahl von experimentellen Untersuchungen an den unterschiedlichen Schiffstypen durchgeführt. Hauptsächlich erfolgte die Anwendung der klassischen und der operativen Modalanalyse unter Werftbedingungen und während der Probefahrt. Zusätzlich wurden im Rahmen der Probefahrten von zwei Containerschiffen sowie während einer Einsatzfahrt Schwingungsamplituden bei Hochfahrvorgängen der Hauptantriebsanlage aufgezeichnet und ausgewertet. Neben den experimentellen Untersuchungen wurden Berechnungen zum Eigenund Zwangsschwingungsverhalten mit den von den Werften bereitgestellten Finite-Element-Modellen durchgeführt. Berechnungen zum Zwangsschwingungsverhalten umfassten die Einbeziehung sowohl der Stoßanregung (entsprechend der klassischen Modalanalyse) als auch der Erregung durch die Hauptmaschine und Propeller.

Dynamische Kennwerte wurden für die unterschiedlichen Schiffstypen bei unterschiedlichen Umgebungsbedingungen aus allen zur Verfügung stehenden experimentellen Untersuchungen ermittelt. Auf Grundlage der vorhandenen Ergebnisse aus Experiment und Berechnung waren umfangreiche Vergleiche und Bewertungen möglich. So konnten die unter Werftbedingungen ermittelten Ergebnisse der klassischen und der operativen Modalanalyse zur Bewertung der Eignung der beiden experimentellen Verfahren genutzt werden. Ein Vergleich der unter Werftbedingungen ermittelten Ergebnisse mit denen der

Probefahrt ermöglichte eine Bewertung der unterschiedlichen Untersuchungsbedingungen. Vergleiche von experimentell ermittelten Ergebnissen mit Berechnungsergebnissen dienten zum einen der Bewertung der Vorhersagegenauigkeit der verwendeten Berechnungsmodelle aber auch der Bewertung der verwendeten experimentellen Verfahren hinsichtlich der Identifizierbarkeit von Eigenschwingungen der Schiffsstruktur. Zu diesem Zweck erfolgten eine Zuordnung und ein Vergleich zwischen experimentell ermittelten Eigenfrequenzen und dazugehörigen Eigenschwingformen und den Ergebnissen von Eigenschwingungsberechnungen. Ein Vergleich zwischen experimentell ermittelten Freguenzgängen (klassische Modalanalyse) und Ergebnissen von Zwangsschwingungsrechnungen bei Simulation der Stoßanregung ermöglichte eine erweiterte Bewertung der Modellierung von Masse und Steifigkeit als auch der Modellierung der Dämpfung (siehe auch Abschnitt 5.5). Zusätzlich wurden Ordnungsanalysen an aufgezeichneten Hochfahrvorgängen durchgeführt. Die Ergebnisse dienten ergänzend der Bewertung der Untersuchungsbedingungen, da sie zum Teil den auf Probe- bzw. Einsatzfahrten auswertbaren Frequenzbereich erweiterten. Die Strukturantworten von separierten Erregerordnungen wurden aber auch mit Ergebnissen von Zwangsschwingungsrechnungen bei Einbeziehung der entsprechenden Erregerordnungen verglichen. Als besonders geeignet erwies sich dabei das H-Moment der Hauptantriebsanlagen, da dieses bei 2-Takt Motoren im Allgemeinen eine der Haupterregerguellen darstellt und als einzige Komponente in der entsprechenden Erregerordnung auftritt. Der Verlauf dieser Erregermomente in Abhängigkeit von der Drehzahl zur Implementierung in die Berechnung wurde dabei vom Motorhersteller bereitgestellt. Ein solcher Vergleich bot die Möglichkeit, die Vorhersagegenauigkeit von Schwingungsamplituden im Schiffsbetrieb, hier allerdings beschränkt auf eine Erregerkomponente, zu bewerten. Erregerordnungen des Propellers (z.B. 5. Ordnung bei 5-Blatt-Propeller (Propellerordnung)) sind im Allgemeinen nicht von den Erregerordnungen der Hauptmaschine separierbar. Liegen diese dann zusätzlich nicht in Frequenzbereichen ausgeprägter Eigenschwingungen der Schiffsstruktur, kann die Aussagefähigkeit der Untersuchung allerdings eingeschränkt sein. In Abbildung 3.4 ist die Vorgehensweise noch einmal zusammenfassend dargestellt.

Aufgrund organisatorischer und anderer spezifischer Gegebenheiten war es nicht möglich, den gesamten Umfang der Untersuchungen auf alle Schiffe anzuwenden. Insbesondere an den Containerschiffen konnten zum Teil nur einzelne Untersuchungen durchgeführt werden. Auch konnten z.B. auf Probefahrten nicht immer Hochfahrvorgänge realisiert werden. Ebenso wurden Zwangsschwingungsrechnungen nur durchgeführt, wenn entsprechendes experimentelles Datenmaterial für einen Vergleich vorhanden war. Eine Übersicht zum Umfang der Untersuchungen kann Tabellen 3.1 entnommen werden.

Abbildung 3.4: Durchgeführte experimentelle und rechnerische Untersuchungen sowie Möglichkeiten des Vergleichs der ermittelten Ergebnisse

Tabelle 3.1: Übersicht der durchgeführten experimentellen und rechnerischen Untersuchungen zu globalen Schiffsschwingungen an verschiedenen Schiffen

Schiff		E	Experiment	telle Unters	suchungen	l	FE-Berechnungen			
		KI. MA (Werft)	OMA (Werft)	OMA (Probe- fahrt)	OMA (Ein- satz)	Hoch- fahr HM	Eigen.	Zwang (Stoß)	Zwang (Motor)	Zwang (Prop.)
	Aker0*2	×					×			
000	Aker0*4	×					×			
CV25	Aker0*5	×					×			
r Typ	Aker**5		×				×			
ntaine	Aker**6		×				×			
C	Aker**9	×	×	×	×	×	×	×	×	×
	VWS**8	×		×		×	×			
Ro	FSG**0	×	×	×			×			
Ro	FSG**1			×			×			

4. Mathematische Modellierung mechanischer Systeme

In diesem Abschnitt werden die mathematischen Grundlagen zur Beschreibung des dynamischen Verhaltens mechanischer Systeme zusammengefasst. Nach einer kurzen Vorstellung der dynamischen Grundgleichungen erfolgt eine Darstellung zu deren Entkopplung. Diese Entkopplung ist sowohl für die effektive rechnerische Vorhersage des Schwingungsverhaltens durch die Anwendung der modalen Superposition als auch für die experimentelle Identifikation der Systemparameter von großer Wichtigkeit. Die Beschreibung des Dämpfungsverhaltens innerhalb der Systemgleichungen ist für die Entkopplung der Systemgleichungen, für die Genauigkeit der Vorhersage von Zwangsschwingungsamplituden sowie für die experimentelle Identifikation der dynamischen Parameter von Bedeutung. Darum folgt auch hierzu ein gesonderter Abschnitt. Daraus abgeleitet wird abschließend eine Darstellung des Übertragungsverhaltens mechanischer Systeme gegeben.

4.1 Dynamische Grundgleichungen

4.1.1 Das gedämpfte System

Ein mechanisches Kontinuum kann im allgemeinen Fall mit Hilfe eines diskreten mechanischen Systems von n Freiheitsgraden beschrieben werden. Für die physikalische Koordinaten $\mathbf{q}(t)$ erhält man dabei ein System von n gewöhnlichen Differentialgleichungen zweiter Ordnung in der Form

$$\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{D}\dot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) = \mathbf{f}(t).$$
(4.1)

Die Massenmatrix **M** und die Steifigkeitsmatrix **K** beschreiben darin die Massen- und Steifigkeitsverteilung (physikalische Größen) des diskreten Systems. Die Matrix **D** der geschwindigkeitsproportionalen Dämpfungskräfte ist auf theoretischem Weg im Allgemeinen nicht bestimmbar und wird darum oft vereinfacht (steifigkeits- und massenproportionale Dämpfungsverteilung) oder vernachlässigt. Die Erregerkräfte sind im Kraftvektor **f**(*t*) zusammengefasst. Alle Systemmatrizen sind symmetrisch und von der Dimension n. Im Fall freier Schwingungen kann durch Einführen eines Expotentialansatzes

$$\mathbf{q}(t) = \Psi e^{\lambda t}$$
, $\lambda \in \mathbf{C}$ (C - Menge der komplexen Zahlen) (4.2)

das homogene Gleichungssystem (4.1) in ein Eigenwertproblem der Form

$$(\lambda^2 \mathbf{M} + \lambda \mathbf{D} + \mathbf{K})\Psi = \mathbf{0}$$
(4.3)

überführt werden. Die charakteristische Gleichung des Eigenwertproblems lautet

$$\det(\lambda^2 \mathbf{M} + \lambda \mathbf{D} + \mathbf{K}) = 0.$$
(4.4)

Für den Fall schwach gedämpfter Systeme erhält man als Lösung (Nullstellen von 4.4) n konjugiert komplexe Eigenwerte λ_k in der Form

$$\lambda_k, \overline{\lambda}_k = -\delta_k \pm j\omega_k, \text{ für } k = 1, 2, ..., n.$$
(4.5)

Darin ist der Realteil die Abklingkonstante δ_k , sie beschreibt das Abklingverhalten des dazugehörigen k-ten komplexen Eigenvektors. Der Imaginärteil der Lösung ist die Eigenkreisfrequenz des gedämpften Systems $\omega_k = \omega_{0k} \sqrt{1 - g_k^2}$ mit der Eigenkreisfrequenz des ungedämpften Systems ω_{0k} und dem dimensionslosen Dämpfungsgrad g_k . Zu jedem Paar der konjugiert komplexen Eigenwerte gehört ein Paar konjugiert komplexer Eigenvektoren Ψ_k , $\overline{\Psi}_k$, k = 1, 2, ..., n, das die Gleichung

$$(\lambda_k^2 \mathbf{M} + \lambda_k \mathbf{D} + \mathbf{K}) \mathbf{\psi}_k = \mathbf{0}$$
(4.6)

erfüllt. Die n Paare konjugiert komplexer Eigenvektoren des allgemein, viskos gedämpften Systems bilden die Modalmatrix Ψ in der Form.

$$\Psi = \left[\Psi_1 \Psi_2 \dots \Psi_n \mid \overline{\Psi}_1 \overline{\Psi}_2 \dots \overline{\Psi}_n \right]$$
(4.7)

Aufgrund der konjugiert komplexen Eigenwerte und Eigenvektoren lautet die allgemeine Lösung für q(t) entsprechend des Ansatzes (4.2)

$$\mathbf{q}(t) = \sum_{k=1}^{n} (A_k \mathbf{\psi}_k e^{\lambda_k t} + \overline{A}_k \overline{\mathbf{\psi}}_k e^{\lambda_k t})$$
(4.8)

mit den von den Anfangsbedingungen des Systems abhängigen Konstanten A_k und \overline{A}_k . Unter Anwendung von Gleichung (4.5) und der EULERschen Formel lässt sich Gleichung (4.8) auch in der Form

$$\mathbf{q}(t) = \sum_{k=1}^{n} A_k e^{\delta_k t} (\mathbf{\psi}_k^{re} \cos(\omega_k t + \varphi_k) + (\mathbf{\psi}_k^{im} \sin(\omega_k t + \varphi_k))$$
(4.9)

darstellen. Aus dieser Darstellung (4.9) kann abgeleitet werden, dass in einem allgemein (viskos) gedämpften System die Komponenten Ψ_{ik} und Ψ_{jk} des komplexen Eigenschwingungsvektors nicht in Phase bzw. in Gegenphase schwingen müssen. Für das diskrete Modell bedeutet dieses, dass bei komplexen Eigenschwingungen (allgemein gedämpfter Fall) die verschiedenen Koordinaten ihre maximale Auslenkung zu verschiedenen Zeitpunkten erreichen können und somit zeitlich veränderliche Eigenschwingformen auftreten. Bei reellwertigen Eigenschwingungsvektoren (ungedämpfter bzw. steifigkeitsund massenproportional gedämpfter Fall) treten hingegen Eigenschwingformen auf, bei denen alle Koordinaten entweder in Phase (0°) oder Gegenphase (180°) schwingen.

4.1.2 Das ungedämpfte System

Für weitere Betrachtungen des dynamischen Verhaltens diskreter Systeme sind die Eigenschaften des zugeordneten ungedämpften Gleichungssystems

$$\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) = \mathbf{f}(t) \tag{4.10}$$

von Bedeutung. Die Lösung des dazugehörigen Eigenwertproblems ergibt für das ungedämpfte System rein imaginäre Eigenwertpaare

$$\lambda_k, \overline{\lambda_k} = \pm j\omega_k, \quad \text{für } k = 1, 2, ..., n. \tag{4.11}$$

Ihnen können rein reellwertige Eigenvektoren $\tilde{\Psi}_k$ zugeordnet werden. Sie sind in der reellwertigen Modalmatrix $\tilde{\Psi}$ zusammengefasst und bilden eine Basis für den modalen

Raum. Die Modaltransformation der physikalischen Koordinaten **q** in modale Koordinaten **x** lässt sich somit ausdrücken durch

$$\mathbf{q}(t) = \sum_{k=1}^{n} \widetilde{\mathbf{\Psi}}_{k} \mathbf{x}_{k}(t) = \widetilde{\mathbf{\Psi}} \mathbf{x}(t) .$$
(4.12)

Anwendung dieser Transformation auf Gleichung (4.10) und Multiplikation von links mit der transponierten Modalmatrix $\tilde{\Psi}^{T}$ führt auf das Gleichungssystem in generalisierten Koordinaten **x**(*t*)

$$\widetilde{\Psi}^{T}\mathbf{M}\,\widetilde{\Psi}\,\ddot{\mathbf{x}}(t) + \widetilde{\Psi}^{T}\mathbf{K}\,\widetilde{\Psi}\mathbf{x}(t) = \widetilde{\Psi}^{T}\mathbf{f}(t).$$
(4.13)

Aufgrund der Orthogonalität der Eigenvektoren ergeben die Ausdrücke $\tilde{\Psi}^T \mathbf{M} \tilde{\Psi}$ und $\tilde{\Psi}^T \mathbf{K} \tilde{\Psi}$ Matrizen, die nur auf der Hauptdiagonalen mit den modalen Massen m_k bzw. modalen Steifigkeiten k_k besetzt sind. Man spricht von generalisierter bzw. modaler Massen- und Steifigkeitsmatrix. Durch diese Transformation wird das gekoppelte Ausgangsgleichungssystem (4.10) mit Hilfe der Modalmatrix $\tilde{\Psi}$ der Eigenvektoren des ungedämpften Systems in n entkoppelte Differentialgleichungen

$$m_k \ddot{x}_k(t) + k_k x_k(t) = f_k(t)$$
, für k = 1, 2, ..., n, (4.14)

in generalisierten Koordinaten x(t) überführt. Das entkoppelte System entspricht somit n entkoppelten ungedämpften Einmasseschwingern. Aus der Superposition der Lösungen der n Einmasseschwinger mit den generalisierten Koordinaten x(t) ergibt sich dann die Lösung in physikalischen Koordinaten q(t) in der Form von Gleichung (4.12).

Das Verfahren der modalen Entkopplung der Systemgleichungen hat besondere Bedeutung sowohl für die Parameteridentifikation unter Verwendung der experimentellen Modalanalyse als auch für die rechnerische Vorhersage erzwungener Schwingungen (modale Superposition). Daher besteht die Forderung, auch die Systemgleichungen gedämpfter Systeme zu entkoppeln.

4.2 Die modale Entkopplung der Systemgleichungen

4.2.1 Die modale Entkopplung des proportional gedämpften Systems

Unter einer bestimmten Voraussetzung ist es möglich, die Modalmatrix $\tilde{\Psi}$ des ungedämpften Systems zu benutzen, um auch das gedämpfte System (4.1) zu entkoppeln. Hierfür ist es notwendig, dass die Dämpfungsmatrix **D** sich als Linearkombination aus Massenmatrix **M** und Steifigkeitsmatrix **K** in der Form

$$\mathbf{D} = \alpha \,\mathbf{M} + \beta \,\mathbf{K} \tag{4.15}$$

darstellen lässt. Diese vom physikalischen Standpunkt aus nicht zu begründende Annahme des massen- und steifigkeitsproportionalen Dämpfungsverhaltens wird häufig auch als "Bequemlichkeitshypothese" bezeichnet. Es ist ein weit verbreiteter Dämpfungsansatz und liefert im Allgemeinen ausreichend genaue Ergebnisse. Unter Anwendung der Modaltransformation (4.12) und einer Multiplikation des Ausgangsgleichungssystems (4.1) von links mit der transponierten Modalmatrix $\tilde{\Psi}^{T}$ folgt die Gleichung

$$\widetilde{\Psi}^{T}\mathbf{M}\widetilde{\Psi}\ddot{\mathbf{x}}(t) + \widetilde{\Psi}^{T}\mathbf{D}\widetilde{\Psi}\dot{\mathbf{x}}(t) + \widetilde{\Psi}^{T}\mathbf{K}\widetilde{\Psi}\mathbf{x}(t) = \widetilde{\Psi}^{T}\mathbf{f}(t).$$
(4.16)

Bei einer Zusammensetzung der Dämpfungsmatrix **B** entsprechend der Form (4.15) ergibt der Ausdruck $\tilde{\Psi}^T \mathbf{D} \tilde{\Psi}$ eine diagonal besetzte modale Dämpfungsmatrix, die mit den modalen Dämpfungswerten d_k belegt ist.

Unter Annahme einer proportionalen Dämpfungsverteilung lässt sich somit auch das gedämpfte System entkoppeln. Jede einzelne der n Gleichungen beschreibt in modalen Koordinaten das Schwingungsverhalten eines gedämpften Einmassenschwingers.

Durch eine entsprechende Skalierung der Eigenvektoren $\tilde{\psi}$ kann eine Normierung der modalen Massenmatrix zur Einheitsmatrix erfolgen. Die Systemmatrizen erhalten dann die Form

$$\widetilde{\boldsymbol{\Psi}}^{T} \mathbf{M} \widetilde{\boldsymbol{\Psi}} = \delta_{ij}, \quad \widetilde{\boldsymbol{\Psi}}^{T} \mathbf{D} \widetilde{\boldsymbol{\Psi}} = 2 \vartheta_{k} \omega_{0k} \delta_{ij},$$

$$\widetilde{\boldsymbol{\Psi}}^{T} \mathbf{K} \widetilde{\boldsymbol{\Psi}} = \omega_{0k}^{2} \delta_{ij}, \quad \text{mit } i, j, k = 1, 2, \dots, n$$
(4.17)

Somit lauten die resultierenden n entkoppelten Gleichungen der gedämpften Einmasseschwinger in generalisierten Koordinaten

$$\ddot{x}_{k}(t) + 2\vartheta_{k}\omega_{0k}\dot{x}_{k}(t) + \omega_{0k}^{2}x_{k}(t) = f_{k}(t) \quad \text{für } k = 1, 2, ..., n.$$
(4.18)

Die Eigenvektoren des gedämpften Systems mit massen- und steifigkeitsproportionaler Dämpfungsverteilung sind reell und identisch den Eigenvektoren des dazugehörigen ungedämpften Systems. Die Phasendifferenz zwischen den einzelnen Komponenten $\tilde{\psi}_{ij}$ eines Eigenschwingungsvektors beträgt somit 0° bzw. 180°.

Erfüllt die Dämpfungsmatrix **D** die so genannte Bequemlichkeitshypothese (4.15) der massen- und steifigkeitsproportionalen Dämpfungsverteilung nicht (nicht-proportionale Dämpfungsverteilung), ist eine gleichzeitige Diagonalisierung der Systemmatrizen mit Hilfe der Modalmatrix $\tilde{\Psi}$ und damit eine Entkopplung des Differentialgleichungssystems (4.1) nicht möglich. In diesem Fall treten in der modalen Dämpfungsmatrix außerhalb der Hauptdiagonalen stehende Kopplungselemente auf, wobei die modale Dämpfungsmatrix massen- und steifigkeitsproportionaler Dämpfungsverteilung durchaus voll besetzt sein kann. Diese Kopplungselemente bewirken, dass die Schwingungsenergie zusätzlich auch über die gekoppelten Eigenschwingungsvektoren abgebaut wird.

4.2.2 Die modale Entkopplung des allgemein gedämpften Systems im Zustandsraum

Um bei einer nicht-proportionalen Verteilung der Dämpfung im System ebenfalls eine Entkopplung des Differentialgleichungssystems (4.1) durchführen zu können, ist es notwendig, das Gleichungssystem (4.1) um einen Identität entsprechend Gleichung (4.19) zu erweitern.

$$\mathbf{M}\ddot{\mathbf{q}}(t) + \mathbf{D}\dot{\mathbf{q}}(t) + \mathbf{K}\mathbf{q}(t) = \mathbf{f}(t)$$

$$\mathbf{M}\dot{\mathbf{q}}(t) = \mathbf{M}\dot{\mathbf{q}}(t)$$
(4.19)

Mit dieser Erweiterung wird das Differentialgleichungssystem zweiter Ordnung in ein Zustandsraumsystem erster Ordnung mit

$$\begin{bmatrix} \mathbf{D} & \mathbf{M} \\ \mathbf{M} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{q}}(t) \\ \ddot{\mathbf{q}}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{K} & \mathbf{0} \\ \mathbf{0} & -\mathbf{M} \end{bmatrix} \begin{bmatrix} \mathbf{q}(t) \\ \dot{\mathbf{q}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{f}(t) \\ \mathbf{0} \end{bmatrix}$$
(4.20)

bzw. in Kurzform

$$\mathbf{A}\dot{\mathbf{w}}(t) + \mathbf{B}\mathbf{w}(t) = \mathbf{u}(t) \tag{4.21}$$

überführt. Durch die Überführung in den Zustandsraum wird die Ordnung des Ausgangssystems (4.1) auf 2n vergrößert. Ziel des weiteren Vorgehens ist es, die Systemmatrizen **A** und **B** zu diagonalisieren, um das Zustandsraumsystem zu entkoppeln. Ausgangspunkt ist hierbei ebenfalls das homogene Zustandsgleichungssystem

$$\mathbf{A}\dot{\mathbf{w}}(t) + \mathbf{B}\mathbf{w}(t) = \mathbf{0} \tag{4.22}$$

mit den dazugehörigen Eigenwerten, die als n konjugiert komplexe Paare in der Form

$$\lambda_k, \ \overline{\lambda_k} = \alpha_k \pm j\beta_k, \ \ k = 1, 2, ..., n$$
(4.23)

auftreten. Ihnen zugeordnet sind n konjugiert komplexe Paare von Eigenvektoren $\varphi_k, \overline{\varphi}_k$, die mit der Diagonalmatrix der Eigenwerte $\Lambda = diag[\lambda_1, \lambda_2, ..., \lambda_n]$ bzw. $\overline{\Lambda} = diag[\overline{\lambda_1}, \overline{\lambda_2}, ..., \overline{\lambda_n}]$ zu einer Modalmatrix Φ des Zustandsraumes mit

$$\Phi = \begin{bmatrix} \phi & \overline{\phi} \\ \phi \Lambda & \overline{\phi}\overline{\Lambda} \end{bmatrix}$$
(4.24)

zusammengefasst werden. Zwischen den Eigenvektoren des Zustandsraumes und den Eigenvektoren des Ausgangssystems besteht der Zusammenhang, dass die obere Hälfte der Modalmatrix Φ des Zustandsraumes (4.24) der Modalmatrix Ψ des Ausgangssystems (4.7) entspricht.

$$\Psi = \begin{bmatrix} \varphi, \ \overline{\varphi} \end{bmatrix} \tag{4.25}$$

Somit kann die Modalmatrix des Zustandsraumes in Anlehnung an die bisherige Darstellung des allgemein gedämpften Systems auch in der Form

$$\hat{\Psi} = \begin{bmatrix} \Psi \\ \Psi \Lambda \end{bmatrix}$$
(4.26)

$$\mathbf{w}(t) = \hat{\mathbf{\Psi}} \mathbf{g}(t) \tag{4.27}$$

erhält man das Zustandsraumsystem in der Form

$$\hat{\Psi}^T \mathbf{A} \hat{\Psi} \dot{\mathbf{g}}(t) + \hat{\Psi}^T \mathbf{B} \hat{\Psi} \mathbf{g}(t) = \hat{\Psi}^T \mathbf{u}(t) .$$
(4.28)

Für den Fall verschiedener Eigenwerte (4.23) ist die Matrix $\hat{\Psi}$ der Eigenvektoren des Systems (4.21) orthogonal bezüglich der Systemmatrizen **A** und **B** woraus folgt, dass auch die Matrizen

$$\hat{\Psi}^{T} \mathbf{A} \hat{\Psi} = \mathbf{I}$$

$$\hat{\Psi}^{T} \mathbf{B} \hat{\Psi} = -\mathbf{\Lambda}$$
(4.29)

diagonalisiert werden können und somit auch das Zustandsgleichungssystem (4.21) entkoppelbar ist. Die Entkopplung im Zustandsraum ist unabhängig von der Art der Dämpfungsverteilung im System und damit auch anwendbar bei einer nicht-proportionalen Dämpfungsverteilung (siehe auch [21]).

4.3 Beschreibung der Dämpfung

Dämpfungseffekte treten in allen realen Strukturen auf und bewirken ein zeitliches Abklingen freier Schwingungen bzw. reduzieren im Fall von erzwungenen Schwingungen die Antwortamplituden des schwingungsfähigen Systems. Allgemein werden Dämpfungseffekte hervorgerufen durch die Wirkung innerer Verformungswiderstände (Werkstoffdämpfung) sowie äußerer Bewegungswiderstände (Reibung in Lagern und Fügestellen, Strömungswiderstände des umgebenden Mediums, lokale viskose Dämpfer usw.). Ausführliche Erläuterungen zum Stoffgebiet sind z.B. in [17] zu finden.

4.3.1 Modelle der Dämpfung

Ziel bei der Beschreibung der Dämpfung ist es, mit Hilfe verschiedener mechanischer und mathematischer Modelle alle unterschiedlichen Dämpfungsquellen, die summarisch die Gesamtdämpfung einer Struktur ergeben, so zu erfassen, dass ihre Wirkung hinreichend genau beschrieben wird. Aufgrund der Vielzahl von Dämpfungseffekten, die die Dämpfung eines realen Systems bewirken, ist die Festlegung einer vorherrschenden Dämpfungsart nicht möglich. In den meisten Fällen kann das Dämpfungsverhalten beschrieben werden durch eine Kombination aus viskoser, struktureller und COULOMB'scher Dämpfung.

Wie im vorangegangenen Abschnitt 4.1 bereits ausgeführt, erfolgt die Beschreibung schwingungsfähiger Systeme meist mit Hilfe diskreter Modelle. Aus Gründen der analytischen Einfachheit werden in der experimentellen und theoretischen Modalanalyse innerhalb des Differentialgleichungssystems (4.1) die Dämpfungskräfte $\mathbf{f}_{D} = \mathbf{D}\dot{\mathbf{q}}$ als Produkt

aus Dämpfungsmatrix **D** und Geschwindigkeitsvektor **q** in Form geschwindigkeitsproportionaler Dämpfung dargestellt. Durch diese Annahme werden sowohl innere als auch äußere Dämpfungen global approximiert. Von diesem allgemeinen linearen Modell der geschwindigkeitsproportionalen Dämpfung sind in der Strukturdynamik hauptsächlich zwei Variationen bekannt, die in vielen Systembeschreibungen genutzt werden. Die Modelle unterscheiden sich in speziellen Annahmen bezüglich der Dämpfungsmatrix **D** und erhalten ihre Berechtigung weniger aus physikalischen Begründungen als vielmehr aus guten Übereinstimmungen zwischen dem Modell und dem realen Verhalten von Strukturen.

Im Folgenden werden diese zwei linearen Dämpfungsmodelle beschrieben und einander gegenübergestellt. Nichtlineare Dämpfungseffekte (z.B. COULOMB'sche Reibung) werden im Rahmen dieser Arbeit nicht berücksichtigt, so dass entsprechende Modelle nicht näher erläutert werden. Unter entsprechenden Umständen kann es aber notwendig sein, Dämpfungs-Nichtlinearitäten mit in die Betrachtungen einzubeziehen.

4.3.1.1 Viskose Dämpfung

Eine Möglichkeit, die linear-viskose Dämpfung zu beschreiben, ist die Betrachtung eines Einmasseschwingers mit einem masselosen Dämpfungselement (Dämpfungskonstante *d*), wobei die Dämpfungskraft f_D proportional zur Schwinggeschwindigkeit \dot{q} ist (KELVIN-VOIGT-Modell). Unter dieser Annahme und einem harmonischen Ansatz $q = \hat{q} \sin \Omega t$ ist die pro Schwingungszyklus dissipierte Energie:

$$E_{d} = \int_{0}^{2\pi/\Omega} d\dot{q}^{2} dt = \pi \, d\,\Omega\,\hat{q}^{2} \,. \tag{4.30}$$

Der Energieverlust pro Schwingungsperiode eines gedämpften Einmasseschwingers mit der Dämpfungskonstante *d* ist damit proportional zur Anregungsfrequenz Ω und dem Quadrat der Verformungsamplitude \hat{q} . Bei einer Erweiterung des Einmasseschwingers auf ein System mit mehreren Freiheitsgraden erhält man die viskose Dämpfungsmatrix **D** des Differentialgleichungssystems (4.1).

Für harmonische Schwingungen mit konstanter Amplitude und Frequenz führt die viskose Dämpfung auf Dämpfungskräfte $\mathbf{f}_D = \mathbf{D}\dot{\mathbf{q}}$ bzw. mit $\mathbf{q}(t) = \hat{\mathbf{q}}\sin\Omega t$ auf Dämpfungskraftamplituden $\hat{\mathbf{f}}_D = \Omega \mathbf{D}\hat{\mathbf{q}}$. Somit prognostiziert das Modell der viskosen Dämpfung, dass Schwingungen im höheren Frequenzbereich stärker gedämpft werden als die im niedrigen.

4.3.1.2 Strukturelle Dämpfung

Ist diese Frequenzabhängigkeit der Dämpfung nicht gegeben, wird das strukturelle Dämpfungsmodell verwendet. Dabei wird die Dämpfungskonstante *d* des KELVIN-VOIGT-Modells durch den Ausdruck d/Ω ersetzt. Die pro Schwingungszyklus dissipierten Energie ist in diesem Fall

$$E_{d} = \int_{0}^{2\pi/\Omega} \frac{d}{\Omega} \dot{q}^{2} dt = \pi d \, \hat{q}^{2} \,. \tag{4.31}$$

Hierdurch ist die dissipierte Energie frequenzinvariant und proportional zum Quadrat der Verformungsamplitude. Für ein Mehrfreiheitsgradsystem folgt daraus die Bewegungsgleichung mit der strukturellen Dämpfungsmatrix D_s und der hieraus resultierenden komplexen Steifigkeitsmatrix $[\mathbf{K} + j\mathbf{D}_s]$ mit

$$\mathbf{M}\ddot{\mathbf{q}}(t) + \left[\mathbf{K} + j\mathbf{D}_{\mathbf{S}}\right]\mathbf{q}(t) = \mathbf{f}(t)$$
(4.32)

Das Modell der Strukturdämpfung enthält eine Mischung von Operationen aus Zeit- und Frequenzbereich und ist daher nur im Frequenzbereich anwendbar. Es ist auf harmonische Schwingungen einer Struktur beschränkt. Die physikalische Interpretation der Eigenvektoren ist problematisch [21].

4.3.1.3 Vergleich von viskoser und struktureller Dämpfung

Beide Dämpfungsmodelle können aufgrund ihres energetischen Gleichgewichts ineinander überführt werden. Im Gegensatz zum viskos gedämpften System sind beim strukturell gedämpften System die Eigenfrequenzen des gedämpften Systems gleich denen des ungedämpften. Weitere Unterschiede treten im tieffrequenten Bereich auf [21].

In [14, 21] sind zahlreiche Quellen angegeben, die die Anwendbarkeit beider Modelle (Gleichung (4.1 bzw. 4.32)) bestätigen. Es kann aber festgestellt werden, dass das viskose Dämpfungsmodell für eine Vielzahl strukturdynamischer Problemstellungen hinreichend genaue Ergebnisse liefert und gegenüber dem Modell der Strukturdämpfung den Vorteil einer geschlossenen mathematischen Lösung sowohl im Zeit- als auch Frequenzbereich besitzt. Ein weiterer wichtiger Vorteil des viskosen Dämpfungsmodells ist die experimentelle Bestimmbarkeit von entsprechenden physikalischen und modalen Dämpfungsparametern. Der Nachteil der Frequenzabhängigkeit des viskosen Dämpfungsmodells tritt besonders bei der Anwendung des (steifigkeits- und massen-) proportionalen Dämpfungsansatzes nach RAYLEIGH in Erscheinung (siehe Abschnitt 4.3.2.1).

4.3.2 Verteilung der Dämpfung

Annahmen über die Verteilung der Dämpfung in strukturdynamischen Systemen können sowohl bei viskoser als auch bei struktureller Dämpfungsmodellierung berücksichtigt werden und beeinflussen neben den Vorhersageergebnissen auch die Art und Weise bzw. den Aufwand bei der Lösung der Systemgleichungen. Die Annahmen über die Verteilung der Dämpfung werden in der Konstruktion sowohl der strukturellen Dämpfungsmatrix D_s als auch der viskosen Dämpfungsmatrix D in ähnlicher Weise berücksichtigt. Die folgenden Ausführungen sind zum Teil allgemeingültig, beziehen sich aber im speziellen auf die Anwendung des Modells der viskosen Dämpfung.

4.3.2.1 Proportionale Dämpfungsverteilung

In schwach gedämpften Strukturen, z.B. einer Platte mit visko-elastischem Werkstoffverhalten und allenfalls geringen lokalen Dämpfungskonzentrationen, kann eine Verteilung der Dämpfung angenommen werden, die überwiegend proportional zur Steifigkeitsverteilung ist. Da Dämpfungseffekte z.B. infolge von Umgebungsluft auch Merkmale der Massenverteilung zeigen können, erfolgt eine Erweiterung dieser Annahme um einen Anteil massenproportionaler Dämpfungsverteilung. Die Auswirkungen diese Hypothese der masse- und steifigkeitsproportionalen Dämpfungsverteilung auf die Eigenschaften der Systemgleichungen wurde bereits im Abschnitt 4.2.1 erläutert. Eine Möglichkeit der Beschreibung dieses Dämpfungsverhaltens ist der nach RAYLEIGH benannte Dämpfungsansatz $\mathbf{D} = \alpha \mathbf{M} + \beta \mathbf{K}$ (Gleichung (4.15)). Er führt zu einer Diagonalisierung der modal transformierten Dämpfungsmatrix, einer Entkopplung der Systemgleichungen des gedämpften Systems und damit z.B. zur Anwendbarkeit des effektiven Berechnungsalgorithmus der modalen Superposition bei der rechnerischen Vorhersage von Zwangsschwingungen.

Die massen- und streifigkeitsbezogenen Proportionalitätsfaktoren (RAYLEIGH-Parameter) α und β aus Gleichung (4.15) liefern hierbei für *k*=1 und 2 zwei Gleichungen aus der Beziehung

$$\mathcal{G}_{k} = \frac{1}{2} \left(\frac{\alpha}{\omega_{k}} + \beta \, \omega_{k} \right). \tag{4.33}$$

Ausgangspunkt bei der Bestimmung der Proportionalitätsfaktoren α und β bilden wie aus Gleichung (4.33) ersichtlich letztlich zwei zu verschiedenen Eigenfrequenzen gehörende experimentell bestimmbare bzw. auf Erfahrungswerten vergleichbarer Strukturen basierende Dämpfungsparameter (modale Dämpfungsgrade). Darin liegt allerdings auch der Hauptmangel dieses proportionalen Dämpfungskonzeptes, denn für andere Schwingformen als für die, aus denen die Dämpfungsparameter gewonnen oder angenommen wurden, gibt der Dämpfungsansatz nicht zwangsläufig das Verhalten der realen Struktur zuverlässig wieder. Damit wird also die zumindest für zwei Schwingformen physikalisch begründete Beschreibung der Dämpfung in den anderen Schwingformen einem mathematischen Formalismus unterworfen, der die Effekte der Dämpfung unter Umständen nur sehr ungenau beschreiben kann. Für diesen Ansatz wird oft auch die Bezeichnung "Bequemlichkeitshypothese" verwendet, da er eine Reihe von Vereinfachungen gegenüber dem allgemein viskos gedämpften System mit nicht-proportionaler Dämpfungsverteilung enthält. Die auf dem RAYLEIGH'schen Ansatz beruhende Dämpfungsmatrix besitzt allerdings auch im physikalischen Raum eine für numerische Berechnungsverfahren vorteilhafte Bandstruktur.

Stehen mehr als nur zwei Dämpfungsparameter zur Verfügung ist es möglich, die Dämpfungsmatrix und dadurch die Beschreibung der Dämpfung gegenüber dem Dämpfungsansatz nach RAYLEIGH zu verbessern. Die Dämpfungsmatrix **D** kann hierbei unter Anwendung der CAUGHEY'schen Reihe (siehe [2]) mit

$$\mathbf{D} = \mathbf{M} \sum_{i=1}^{n} z_i \left[\mathbf{M}^{-1} \mathbf{K} \right]^{i-1}$$
(4.34)

bestimmt werden. Die Koeffizienten z_i , i = 1, 2, ..., n, werden aus dem folgenden System von n Gleichungen bestimmt:

$$\mathcal{G}_{k} = \frac{1}{2} \left(\frac{z_{1}}{\omega_{k}} + z_{2} \omega_{k} + z_{3} \omega_{k}^{3} + \dots + z_{i} \omega_{k}^{2i-3} \right)$$
(4.35)

Bei der Verwendung von zwei Koeffizienten (z_1, z_2) reduziert sich Gleichung (4.35) auf den Dämpfungsansatz nach RAYLEIGH. Bei Verwendung von mehr als zwei Koeffizienten z_i ist die Dämpfungsmatrix **D** eine im Allgemeinen voll besetzte Matrix, die aber nach Anwendung der Modaltransformation ebenfalls nur Hauptdiagonalelemente besitzt und zu einer Entkopplung der Systemgleichungen führt. Die Anzahl der richtig dargestellten Elemente der Hauptdiagonale entspricht der Anzahl der zur Konstruktion der Dämpfungsmatrix verwendeten Koeffizienten z_i . Bei Kenntnis aller Dämpfungsparameter ist es somit möglich, die vollständige Dämpfungsmatrix unter der Annahme proportionalen Dämpfungsverhaltens zu bestimmen. Bei Anwendung der modalen Superposition zur Berechnung des Systemverhaltens ist der Umweg über die Bildung der Dämpfungsmatrix nicht notwendig. Die bekannten Dämpfungsparameter (modale Dämpfungsgrade) können direkt in den entkoppelten Systemgleichungen verwendet werden. Diese Form der Berücksichtigung der Dämpfung wird auch als modale Dämpfung bezeichnet. Werden hingegen direkte Lösungsverfahren im Frequenzbereich oder direkte Integrationsverfahren zur Berechnung von transienten Vorgängen im Zeitbereich angewendet, ist das explizite Aufstellen der Dämpfungsmatrix **D** notwendig.

An einem 5-Massen-Systems (Abbildung 4.1) werden im weiteren Verlauf des Abschnittes u.a. die Auswirkungen dieser unterschiedlichen Möglichkeiten der Beschreibung des massen- und steifigkeitsproportionalen Dämpfungsverhaltens verdeutlicht.

4.3.2.2 Nicht-proportionale Dämpfungsverteilung

Theoretische Betrachtungen und Ergebnisse aus der Anwendung der experimentellen Modalanalyse an realen Strukturen in Form von identifizierten komplexen Eigenvektoren (siehe Abschnitt 4.1.1) machen deutlich, dass die Annahme einer proportionalen Dämpfungsverteilung nicht immer erfüllt sein muss. Hervorgerufen wird eine solche nichtproportionalen Dämpfungsverteilung u.a. durch lokal veränderliche Dämpfung bzw. Dämpfungskonzentration. Im Fall einer nicht-proportionalen Dämpfungsverteilung ist die modal transformierte Dämpfungsmatrix $\tilde{\mathbf{D}}$ im Allgemeinen voll besetzt. Sie kann als eine Summe

$$\widetilde{\mathbf{D}} = diag\left[\widetilde{\mathbf{D}}\right] + \mathbf{D}^* \tag{4.36}$$

der Diagonalelemente der Dämpfungsmatrix $\tilde{\mathbf{D}}$ und einer Matrix \mathbf{D}^* der Außerdiagonalelemente dargestellt werden. Im Fall einer auch außerhalb der Diagonalen besetzten Dämpfungsmatrix kommt es zu einer Dämpfungskopplung im mechanischen System und somit zur Beteiligung von mehr als einer Eigenschwingung an der Energiedissipation. Als Folge treten die bereits beschriebenen komplexen Eigenschwingformen auf, bei denen die unterschiedlichen Strukturpunkte nicht nur eigene Amplituden sondern auch jeweils eigene Phase haben können (in reellen Schwingformen treten hingegen nur Phasen von 0° bzw. 180° auf). Eine Vernachlässigung der Koppelglieder in der modalen Dämpfungsmatrix verursacht Abweichungen zwischen dem angenommenen und dem realen Strukturverhalten, deren Größenordnung abzuschätzen ist.

In diesem Zusammenhang muss bemerkt werden, dass neben einer nicht-proportionalen Dämpfungsverteilung auch gyroskopische Effekte und Effekte von Fluid-Struktur-Interaktionen zur Ausbildung komplexer Moden führen können [41]. Bei ausreichender Kenntnis des dynamischen Systems sollte ein entsprechender Ausschluss dieser Effekte möglich sein. Ebenso können aber auch nicht-lineares Strukturverhalten, Messrauschen oder eine fehlerbehaftete Parameteridentifikation die Ursache für das Auftreten komplexer Moden sein. Können z.B. bei einer experimentellen Identifikation modal gekoppelte Schwingformen nicht voneinander getrennt werden, was bei hohen Modendichten durchaus vorkommen kann, ist der resultierende Eigenvektor im Allgemeinen auch komplex.

Die Entscheidung, ob das Auftreten komplexer Eigenschwingungsvektoren durch Nichtlinearitäten im System, durch die Mess- und Identifikationsverfahren oder tatsächlich durch die nicht-proportionale Dämpfungsverteilung verursacht wird, dürfte hingegen schwierig sein. Vor diesem Hintergrund muss davon ausgegangen werden, dass eine direkte Rückführung von experimentell identifizierten komplexen Eigenschwingungsvektoren auf nichtproportionales Dämpfungsverhalten stets fehlerbehaftet sein kann. Diese Problematik wird aber bei der Untersuchung des Zusammenhangs von nicht-proportionaler Dämpfung, der Komplexität von Eigenvektoren und der Vorhersage des Systemverhaltens nicht weiter verfolgt.

Ein weiterer wichtiger Sachverhalt ist, dass eine nicht-proportionale Dämpfungsverteilung eine notwendige aber für sich nicht ausreichende Voraussetzung für das Auftreten signifikant komplexer Schwingformen ist. Eine ebenfalls wichtige Bedingung ist das Auftreten von im Frequenzbereich eng benachbarten Eigenschwingformen. Als eng benachbart können hierfür nach [24] Schwingformen angenommen werden, deren Eigenfrequenzdifferenzen den jeweiligen modalen Dämpfungsgraden entsprechen (z.B. $f_1 = 100 Hz$, $f_2 = 105 Hz$, $\theta \ge 5 \%$). Ähnliche Aussagen können aus einem in [42] vorgeschlagenen Kriterium zur Vernachlässigung der Dämpfungskopplung abgeleitet werden, wonach die Dämpfungskopplung zwischen dem Hauptdiagonalelement d_{kk} der modalen Dämpfungsmatrix und dem Außerdiagonalelement d_{kl} vernachlässigt werden kann, wenn

$$\left|\frac{\widetilde{d}_{kl}}{\widetilde{d}_{kk}}\right| \left[\frac{\left|2j\omega_k^2\mathcal{G}_k\right|}{\left|\left(\omega_l^2 - \omega_k^2\right) + 2j\mathcal{G}_l\omega_k\omega_l\right|}\right]^{\frac{1}{2}} << 1, \quad k, l = (1, 2, ..., n) \text{ und } \omega_l / \omega_k > 1.$$

$$(4.37)$$

Aus (4.37) ist ersichtlich, dass die Größe der Kopplung nicht nur vom Verhältnis der Außerdiagonalelemente zu den Diagonalelementen der modalen Dämpfungsmatrix sondern

auch vom Dämpfungsgrad der betrachteten Moden und ihrem Frequenzabstand abhängt. Diese Art der Bewertung der Dämpfungskopplung setzt allerdings eine Kenntnis der vollständigen Dämpfungsmatrix voraus und hat darum in den meisten Fällen nur theoretische Relevanz.

Eine weitere Möglichkeit der Bewertung des Einflusses nicht-proportionalen Dämpfungsverhaltens wird in [24] durch die Ermittlung der Komplexität der Eigenvektoren vorgeschlagen. Dieses Maß für die Größe der modalen Komplexität (*MCF2*, Modal Complexity Factor 2, in Erweiterung von *MCF1*) entspricht dem Verhältnis der Fläche der konvexen Hülle, die die Elemente eines komplexen Eigenvektors aufspannen, und der Fläche eines Kreises mit einem Radius entsprechend der größten Vektorkomponente bzw.

$$MCF2_{k} = \frac{A_{konvHille}(\Psi_{k})}{\pi \psi_{ik}^{2}}.$$
(4.38)

Dieses Maß der Dämpfungskopplung ist unter ausdrücklicher Berücksichtigung der zuvor beschriebenen Probleme bei der Rückführung komplexer Moden auf das nichtproportionale Dämpfungsverhalten auch bei experimentellen Untersuchungen anwendbar.

Nach Bewertung und Feststellung der Vernachlässigbarkeit der Dämpfungskopplung ist eine einfache Möglichkeit der Diagonalisierung einer voll besetzten modalen Dämpfungsmatrix und damit einer Entkopplung des dynamischen Systems im modalen Raum, die Dämpfungskopplungsmatrix \mathbf{D}^* Null zu setzen. Bei dieser Vorgehensweise ist es dann möglich, die verbleibenden Diagonalelemente der modalen Dämpfungsmatrix mit Hilfe der in Abschnitt 4.3.2.1 beschriebenen Methoden zu bestimmen (siehe auch Abschnitt 5.1).

Erweist sich diese Vereinfachung im Hinblick auf die Vorhersagegenauigkeit als nicht zulässig, sind die Koppelglieder der modal transformierten Dämpfungsmatrix bzw. die vollständige Dämpfungsmatrix zu bestimmen. Eine indirekte Ermittlung der vollständigen Dämpfungsmatrix über die Ermittlung der Elemente der modal transformierten Dämpfungsmatrix und folgender Rücktransformation ist schwierig, da keine geeigneten Verfahren zur Identifikation der außerhalb der Hauptdiagonalen stehenden Elemente der modalen Dämpfungsmatrix existieren und sich rechnerische Vorschläge [43] dafür kaum messtechnisch umsetzten lassen. Zur direkten Ermittlung einer vollständigen Dämpfungsmatrix bei nicht-proportionaler Dämpfungsverteilung sind Verfahren im Zeit- und Frequenzbereich bekannt. So können zur Identifikation der Dämpfungsmatrix z.B. Korrekturverfahren im Frequenzbereich angewendet werden. Sie basieren auf der Ermittlung der Systemmatrizen M, D, K durch eine Anpassung eines Grundmodells (Gleichung(4.1)) an ein experimentell bestimmtes Übertragungsverhalten. Beispielhaft sei hier das Verfahren von FEL-GENHAUER [43] genannt. Ein Beispiel für ein Zeitbereichsverfahren zur direkten Identifikation ist das Verfahren nach IBRAHIM [44]. Bei Kenntnis der Massenmatrix (Rechenmodell) ist eine direkte Identifizierung von massennormierter Dämpfungs- und Steifigkeitsmatrix möglich. Allgemein kann festgestellt werden, dass die Verfahren störanfällig gegenüber unvermeidbarem Messrauschen sind und aus einer Vielzahl von Gründen inkonsistente Schätzungen der Dämpfungsmatrix zur Folge haben können. Von PIETRZKO [21] wurde

38

ein weiteres Verfahren zur Identifikation der vollständigen Dämpfungsmatrix vorgeschlagen. Es setzt allerdings voraus, dass das dynamische Verhalten des Systems mit einem Ersatzmodell in Form eines Kettenschwingers beschrieben werden kann.

4.3.2.3 Vergleich proportionaler und nicht-proportionaler Dämpfungsverteilung

Im folgendem sollen an einem diskreten Fünf-Massen-System die Auswirkungen der verschiedenen Dämpfungsannahmen auf das dynamische Verhalten beispielhaft untersucht werden. Der gewählte Aufbau des Systems und die dazugehörigen physikalische Parameter können Abbildung 4.1 bzw. Tabelle 4.1 entnommen werden.

Abbildung 4.1: Modell eines diskreten Fünf-Massen-Systems

i	Masse m _i [kg]	Steifigkeiten c _i [N/m]	Dämpfer d _i [Ns/m]	i	Steifigkeiten c _i [N/m]	Dämpfer d _i [Ns/m]
1	35.0	350000	35.0	6	16000	1.6
2	1.8	30000	3.0	7	14000	14.0
3	3.5	40000	4.0	8	12000	12.0
4	2.8	30000	3.0	9	16000	1.6
5	1.2	12000	1.2	10	14000	14.0

Tabelle 4.1: Physikalische	Parameter de	s diskreten	Fünf-Massen-Sys	stems
----------------------------	--------------	-------------	-----------------	-------

In Anlehnung an ein schiffbauliches Flächentragwerk repräsentieren die Masse m_1 und die Steifigkeit c_1 die relativ steife und massereiche Trägerstruktur, wohingegen die geringeren Massen und Steifigkeiten stellvertretend für z.B. lokale Plattenfelder stehen können. Die Kennwerte der meisten Dämpfungselemente sind proportional den entsprechenden Steifigkeiten. Den Elementen d_7 , d_8 und d_{10} sind erhöhte Dämpfungskonstanten zugeordnet, so dass für das Gesamtsystem keine steifigkeits- bzw. massenproportionale Dämpfungsverteilung vorliegt.

Die Systemmatrizen M, D, K ergeben sich direkt aus den Zahlenwerten der physikalischen Parameter. Aufgrund der nichtproportionalen Dämpfungsverteilung sind die Eigenwerte und Eigenvektoren des Systems komplex. Sie ergeben sich aus der Lösung des Eigenwertproblems nach Gleichung (4.4) und sind in den Tabellen 4.2 und 4.3 dargestellt.

Eigenwert $\lambda_k = -\delta \pm j\omega_k$	Eigenfrequenz f_k [Hz]	Dämpfungsbeiwert $artheta_{_k}$ [%]	
-0.38 - 84.60i	13.46	0.45	
-0.85 - 111.59i	17.76	0.76	
-7.39 - 162.08i	25.77	4.56	
-9.03 - 166.83i	26.64	5.39	
-4.38 - 282.58i	44.98	1.55	

Tabelle 4.2: Komplexe Eigenwerte des diskreten Fünf-Massen-Systems

Tabelle 4.3: Komplexe Eigenvektoren o	des diskreten Fünf-Massen-Systems
---------------------------------------	-----------------------------------

f_k [Hz]	13	.46	17	.76	25	.77	26	.64	44	.98
i	$ \mathbf{\Psi}_1 $	\angle_1	$ \Psi_2 $	\angle_2	$ \Psi_3 $	\angle_3	$ \Psi_4 $	\angle_4	$ \Psi_5 $	\angle_5
1	0.28	-0.4	0.55	-181.6	0.02	-37.8	0.04	-154.4	0.00	-359.9
2	0.99	-0.0	0.54	-3.9	1.00	0.0	1.00	0.0	0.04	-19.1
3	0.85	-0.5	0.44	-4.3	0.86	-199.0	0.35	-316.8	0.21	-181.8
4	1.00	0.0	1.00	0.0	0.42	-45.4	0.79	-164.2	0.08	-179.8
5	0.64	-0.3	0.47	-2.3	0.52	-195.5	0.12	-254.2	1.00	0.0

Die komplexe Form der Eigenschwingungsvektoren wird im gegebenen dynamischen System ausschließlich durch die nicht-proportionale Dämpfungsverteilung verursacht. In Abbildung 4.2 sowie Tabelle 4.4 erfolgt eine grafische Darstellung der komplexen Eigenvektoren (1 und 3) und der ermittelten modalen Komplexität (*MCF2*) entsprechend Gleichung (4.38). Sowohl aus den dargestellten Eigenvektoren als auch aus den konvexen Hüllen ist zu erkennen, dass die Eigenvektoren eins und fünf nahezu reellwertig sind. Den größten Grad an Komplexität weist Eigenform drei auf, gefolgt von vier und zwei. Der höchste Modal Complexity Factor (*MCF2*) für die Eigenform drei wurde mit einem Wert von 0.127 berechnet. Das theoretisch mögliche Maximum beträgt hierbei 1 (100%) und wird erreicht, wenn die konvexe Hülle des Eigenvektors bei entsprechender Größe der Elemente des Eigenvektors und Verteilung von Phase einen Kreis aufspannt. Aus der Literatur sind aber keine Zahlenangaben zum Zusammenhang von modaler Komplexität und ihrer Auswirkungen auf das dynamische Verhalten bekannt.

Tabelle 4.4: Komplexität der Eigenvektoren nach Gleichung (4.38), MCF2

Eigenvektor Nr.	1	2	3	4	5
Komplexität (MCF2) [%]	0,08	0,10	12,66	9,32	0,34

In Tabelle 4.5 ist die Bewertung der modalen Kopplung entsprechend Gleichung (4.37) dargestellt. In Übereinstimmung mit der modalen Komplexität (4.38) ist ersichtlich, dass eine Kopplung der Dämpfung im modalen Raum zwischen den Eigenformen vier und zwei sowie vier und drei zu berücksichtigen ist, da das Bewertungskriterium (Wert << 1) hier nicht erfüllt wird.

Abbildung 4.2: Komplexe Eigenvektoren eins und drei des diskreten Fünf-Massen-Systems und Bewertung der Komplexität nach Gleichung (4.38)

Mode <i>l</i> Mode <i>k</i>	1	2	3	4	5
1	-	0.0155	0.0516	0.0194	0.0063
2	-	-	0.0464	0.1518	0.0037
3	-	-	-	0.1450	0.0438
4	-	-	-	-	0.0126

Tabelle 4.5: Bewertung der modalen Kopplung des Systems nach Gleichung (4.37)

Neben einer Ermittlung von Maßzahlen für die Größe der Dämpfungskopplung sind natürlich die Auswirkungen der Berücksichtigung bzw. Vernachlässigung dieser Dämpfungseffekten auf die Vorhersagegenauigkeit von großem Interesse. Die dynamischen Parameter sind hierbei Eigenfrequenzen, Eigenformen und ihre Zuordnung, Dämpfungsgrade, sowie Zwangsschwingungsamplituden. Die durch eine nicht-proportionale Dämpfungsverteilung verursachten Veränderungen in den Eigenfrequenzen sind im Beispiel sehr gering und betragen maximal 0.2 % für die Eigenform vier. In der Literatur beschriebene Abweichungen von über 9 % [45] sind eher theoretischer Natur und treten nur auf, wenn die Koppelglieder in der Dämpfungsmatrix größer sind als die Hauptdiagonalelemente. Die Zuordnung von komplexen und reellen Eigenformen (siehe auch Abschnitt 5.3) ist ebenfalls nur mit geringen Abweichungen behaftet. Den größten Einfluss hat die Dämpfung naturgemäß auf die Schwingungsamplituden. Aus diesem Grund wird im Folgenden das Zwangsschwingungsverhalten des Fünf-Massen-Systems bei Erregung am Freiheitsgrad drei betrachtet. Hierbei werden die bereits vorgestellten Dämpfungsannahmen:

- Nichtproportionale Dämpfung, vollständige Dämpfungsmatrix,
- Modale Dämpfung, Berücksichtigung der Hauptdiagonalelemente,
- Rayleigh-Dämpfung, näherungsweise Bestimmung der Hauptdiagonalelemente anhand bekannter Dämpfungsparameter

berücksichtigt. Während die Massen- und Steifigkeitsmatrizen während dieses Simulationsexperimentes unverändert bleiben und auf Grundlage von Abbildung 4.1 und Tabelle 4.1 basieren, werden die Dämpfungsmatrizen entsprechend den unterschiedlichen Modellannahmen jeweils neu ermittelt. Für den Fall der Berücksichtigung der nichtproportionalen Dämpfungsverteilung kann entsprechend Abbildung 4.1 und Tabelle 4.1 die vollständige Dämpfungsmatrix ermittelt werden. Die vollständige Dämpfungsmatrix kann nach erfolgter Modaltransformation dargestellt werden als

 $\tilde{\boldsymbol{\Psi}}^{T} \mathbf{D} \tilde{\boldsymbol{\Psi}} = \tilde{\mathbf{D}} = \begin{bmatrix} 0.764 & -0.107 & 0.677 & 0.266 & 0.162 \\ -0.107 & 1.709 & -0.676 & -2.354 & -0.120 \\ 0.677 & -0.676 & 14.909 & -2.570 & 3.079 \\ 0.266 & -2.354 & -2.570 & 17.911 & -0.935 \\ 0.162 & -0.120 & 3.079 & -0.935 & 8.766 \end{bmatrix}.$

Aufgrund der vollen Besetzung dieser Matrix geht der Effekt der Entkoppelung im modalen Raum verloren. Werden entsprechend Gleichung 4.36 die Elemente außerhalb der Hauptdiagonalen vernachlässigt, ist diese Entkopplung möglich, wobei nun aber eine steifigkeits- und massenproportionale Verteilung der Dämpfung im System angenommen wird. Diese diagonalisierte Dämpfungsmatrix hat dann die Form

$$diag[\tilde{\mathbf{D}}] = \begin{bmatrix} 0.764 & 0 & 0 & 0 & 0 \\ 0 & 1.709 & 0 & 0 & 0 \\ 0 & 0 & 14.909 & 0 & 0 \\ 0 & 0 & 0 & 17.911 & 0 \\ 0 & 0 & 0 & 0 & 8.766 \end{bmatrix}$$

und beinhaltet die mit der experimentellen Modalanalyse bestimmbaren modalen Dämpfungsparameter. Sind von einem dynamischen System alle modalen Dämpfungsparameter z.B. aus einer experimentellen Modalanalyse bekannt, so kann diese Dämpfungsmatrix aufgestellt werden. Sind nicht alle Parameter bekannt, so kann die Dämpfungsmatrix (physikalischer Raum) z.B. mit Hilfe der CAUGHEY'schen Reihe (4.34) oder durch einfache Interpolation im modalen Raum näherungsweise bestimmt werden.

Abbildung 4.3: Ermittelte RAYLEIGH-Parameter, daraus prognostizierte Dämpfungen als Funktion der Frequenz unter Verwendung von Mode eins und fünf (Variante 1) und Mode eins und drei (Variante 2) nach (4.33) sowie tatsächlich geforderte modale Dämpfung

Sind hingegen nur zwei Dämpfungsparameter bekannt, kann der nach RAYLEIGH benannte Dämpfungsansatz verwendet werden. Unter Verwendung von Gleichung (4.15) und der ermittelten Parameter α und β (4.33) kann die Dämpfungsmatrix aufgestellt werden, die nach Anwendung der Modaltransformation ebenfalls nur auf der Hauptdiagonale besetzt ist. Somit ist eine Entkopplung des Differentialgleichungssystems ebenfalls möglich. Im Vergleich zur modalen Dämpfungsmatrix des proportional gedämpften Systems mit den exakten Diagonalelementen sind, ausgenommen von zwei Elementen, die anderen Diagonalelemente dem Formalismus nach Gleichung (4.15) unterworfen.

Für das Beispiel des Fünf-Massen-System werden zwei unterschiedliche Dämpfungsmatrizen nach dem RAYLEIGH'schen Dämpfungsansatz generiert. Die RAYLEIGH -Parameter werden hierfür jeweils auf Grundlage von Mode eins und fünf sowie eins und drei ermittelt. Die daraus resultierenden Annahmen zum Zusammenhang zwischen Eigenfrequenz und Dämpfungsgrad sind in Abbildung 4.3 dargestellt. Abweichungen, die durch diesen Ansatz verursacht werden, sind anhand der angenommenen RAYLEIGH-Dämpfung (Kurve) und der tatsächlichen modalen Dämpfungsparameter deutlich zu erkennen. Während in Variante 1 die Dämpfung der Moden drei und vier nur sehr schlecht angenähert wird, ist dies in Variante 2 für Mode fünf der Fall. Die aus beiden Varianten ableitbaren Dämpfungsmatrizen lauten:

$$\tilde{\boldsymbol{\Psi}}^{T} \boldsymbol{D}_{R(1)} \tilde{\boldsymbol{\Psi}} = \begin{bmatrix} 0.764 & 0 & 0 & 0 & 0 \\ 0 & 1.347 & 0 & 0 & 0 \\ 0 & 0 & 2.862 & 0 & 0 \\ 0 & 0 & 0 & 3.060 & 0 \\ 0 & 0 & 0 & 0 & 8.766 \end{bmatrix}, \quad \tilde{\boldsymbol{\Psi}}^{T} \boldsymbol{D}_{R(2)} \tilde{\boldsymbol{\Psi}} = \begin{bmatrix} 0.764 & 0 & 0 & 0 & 0 \\ 0 & 4.689 & 0 & 0 & 0 \\ 0 & 0 & 14.909 & 0 & 0 \\ 0 & 0 & 0 & 16.244 & 0 \\ 0 & 0 & 0 & 0 & 54.718 \end{bmatrix}$$

Anhand berechneter Frequenzgangfunktionen (Gleichung (4.55)) können die Auswirkungen der unterschiedlichen Dämpfungsannahmen auf die Vorhersage von Zwangsschwingungsamplituden beurteilt werden. Abbildung 4.4 zeigt die Frequenzgänge aller Freiheitsgrade bei Erregung am Freiheitsgrad drei unter Berücksichtigung des nicht-proportionalen Dämpfungsverhaltens. In den Abbildungen 4.5a bis 4.5d sind die Übertragungsfunktionen für den Freiheitsgrad drei (Driving-Point) im Bereich der einzelnen Eigenfrequenzen (Moden) bei den unterschiedlichen Dämpfungsannahmen dargestellt.

Abbildung 4.4: Übertragungsfunktionen des nicht-proportional gedämpften Fünf-Massen-Systems bei Erregung am Freiheitsgrad drei

In Tabelle A4.1 (Anhang) sind die prozentualen Abweichungen der auf den drei vereinfachten Dämpfungsannahmen (modale Dämpfung, RAYLEIGH-Dämpfung (Varianten 1 und 2)) basierenden Übertragungsfunktionen zum Übertragungsverhalten bei Berücksichtigung der vollständigen (nicht-proportionalen) Dämpfungsmatrix für alle Freiheitsgrade dargestellt. Aus Abbildung 4.5 und der erweiterten Darstellung in Tabelle A4.1 wird ersichtlich, dass bei Anwendung des modalen Dämpfungskonzeptes, d.h. bei Kenntnis aller Diagonalelemente der modaltransformierten Dämpfungsmatrix, im Bereich der Resonanzen Amplitudenfehler von maximal 21 % auftreten können. Bei der Anwendung des auf weiteren Vereinfachungen beruhenden Konzeptes der RAYLEIGH-Dämpfung sind bei einzelnen, nicht für die Parameterermittlung (α und β) verwendeten Moden in Variante 1 z.B. Amplitudenfehler größer 600 % festzustellen. Die auf den RAYLEIGH-Parametern aus Variante 2 basierende Dämpfungsmatrix gibt das vorliegende Dämpfungsverhalten insgesamt besser wieder (siehe auch Abbildung 4.3), der maximale Fehler beträgt hier ca. 80 %. Phasenfehler treten bei allen vereinfachten Dämpfungsannahmen ebenfalls auf, werden in der Auswertung aber nicht weiter berücksichtigt.

Verallgemeinert kann der Zusammenhang zwischen fehlerbehafteten Dämpfungsannahmen und resultierenden Amplitudenfehlern am Beispiel eines Ein-Freiheitsgrad-Systems betrachtet werden. Die Schwingungsamplitude \hat{q} eines Ein-Freiheitsgrad-Systems kann leicht mit der Beziehung

$$\hat{q} = \frac{\hat{f}}{2m\omega_0^2 \,\mathcal{G}\sqrt{1-\mathcal{G}^2}} \tag{4.39}$$

ermittelt werden. Der relative Amplitudenfehler ε der Schwingungsamplituden \hat{q} in Abhängigkeit von Abweichungen der Dämpfungsparameter $\Delta \mathcal{G}$ ergibt sich dabei aus

$$\varepsilon = \frac{\hat{q}(\vartheta + \Delta\vartheta) - \hat{q}(\vartheta)}{\hat{q}(\vartheta)} \quad .$$
(4.40)

Grafisch wird der Zusammenhang zwischen dem relativen Amplitudenfehler ε , dem Dämpfungsgrad ϑ und der Abweichung $\Delta \vartheta$ in Abbildung 4.6 dargestellt

Abbildung 4.6: Relativer Amplitudenfehler bei fehlerbehafteter Annahme des Dämpfungsgrades

Die Festlegung einer zulässigen Fehlergröße bei der Vorhersage von Schwingungsamplituden ist im Wesentlichen abhängig von Problemstellung und Anwendungsgebiet. Für die Vorhersage des dynamischen Verhaltens schiffbaulicher Konstruktionen erscheint in Anbetracht von Unsicherheiten, z.B. bei der Beschreibung der Erregung, eine Vorhersagegenauigkeit von etwa 20 Prozent als durchaus akzeptabel. Diese Vorhersagegenauigkeit wird im dargestellten Beispiel durch die Anwendung der modalen Dämpfung erreicht. Aus der Literatur sind Berechnungsbeispiele mit ähnlichen Abweichungen bei einer näherungsweisen Annahme proportionaler Dämpfungsverteilung bekannt. Diese Vorhersagegenauigkeit kann unter einigen Umständen, z.B. bei der Wirkung diskreter Dämpfer auf lokale Schwingungsamplituden (Motorabstützungen), nicht erreicht werden. Für solche Problemstellungen und andere Anwendungen mit erhöhten Genauigkeitsanforderungen aus z.B. der Luft- und Raumfahrt, ist der Einsatz des proportionalen Dämpfungskonzeptes in Frage zu stellen.

Wie bereits beschrieben, ist die experimentelle Ermittlung nicht-proportionaler Dämpfungsparameter kaum möglich. Mit der experimentellen Modalanalyse ist lediglich eine Bestimmung der Diagonalelemente der modalen Dämpfungsmatrix möglich, anwendbare Verfahren zur Bestimmung der Außerdiagonalelemente der modalen Dämpfungsmatrix sind nicht verfügbar. Verfahren zur Bestimmung der vollständigen physikalischen Dämpfungsmatrix sind fehleranfällig und zum Teil an vereinfachende Annahmen gebunden.

Bei einer theoretischen Vorhersage des dynamischen Verhaltens können Masse- und Steifigkeitsparameter im Wesentlichen aus der Geometrie und den Materialeigenschaften abgeleitet werden. Die Beschreibung der Dämpfung als werkstoffabhängige Relativdämpfung in Form von Verlustfaktoren stellt erfahrungsgemäß aber nicht den Hauptanteil der Dämpfungswirkung dar. Dieser wird verursacht durch eine Summe von Dämpfungswirkungen in z.B. Fügestellen, Verbundkonstruktionen, Beschichtungen, Einrichtungen usw. und ist theoretisch nicht erfassbar. Die Erfassung nicht-proportionaler Dämpfungseffekte aufgrund von z.B. diskreten Dämpfern bei einer Überlagerung mit modaler Dämpfung ist bei der rechnerischen Vorhersage hingegen möglich.

Aufgrund der vorausgegangenen Darstellungen erscheint die Anwendung des modalen Dämpfungskonzeptes eine praktikable und hinreichend genaue Möglichkeit zu Berücksichtigung von Dämpfungseffekten im Bereich schiffbaulicher Strukturen. Ziel muss es daher sein, auf experimentellem Weg eine umfassende Datenbasis von modalen Dämpfungsparametern zu ermitteln. Anzustreben ist dann die Verwendung einer vollständigen modalen Dämpfungsmatrix. Da dies nicht immer möglich sein wird, sollten auf Grundlage dieser experimentell ermittelten Datenbasis modale Dämpfungsmatrizen näherungsweise aufgestellt werden. Dies kann z.B. im modalen Raum durch eine Interpolation zwischen bekannten modalen Dämpfungsgraden, der Anwendung der CAUGHEY'schen Reihe oder auch durch frequenzabhängige RAYLEIGH-Parameter erfolgen. Je mehr modale Dämpfungskennwerte für diese Näherungen bekannt sind, umso genauer wird auch das Vorhersageergebnis sein. Neben einer Ermittlung von Dämpfungskennwerten kann die Bestimmung der Komplexität der dazugehörigen Eigenvektoren Aufschluss über die Eignung des proportionalen Dämpfungskonzeptes geben bzw. auf eine fehlerbehaftete Identifikation der Parameter aufmerksam machen.

4.4 Das Übertragungsverhalten mechanischer Systeme

Das Ziel einer experimentellen Systemanalyse ist eine mathematische Beschreibung des dynamischen Systemverhaltens (modales Modell) auf Grundlage experimentell ermittelter Systemeingangs- und Ausgangsbeziehungen. Systemeingänge sind die auf das mechanische System einwirkenden Erregerkräfte, Systemausgänge die daraus resultierenden Schwingungsantworten (Abbildung 4.7). Die aus dem Verhältnis von Ein- und Ausgängen resultierende komplexe Frequenzgangmatrix (bzw. Übertragungsmatrix) nimmt bei der Systemidentifikation eine bedeutende Stellung ein. So können aus den Elementen der Frequenzgangmatrix die modalen Kennwerte des mechanischen Systems bestimmt werden.

Abbildung 4.7: Systemeingangs- / Systemausgangsbeziehung

Die Art der verwendeten Eingangsgrößen ist dabei ein wichtiges Kriterium bei der Ermittlung der Übertragungsmatrix. Eingangsgrößen können determiniert, dass heißt explizit analytisch beschreibbar und vorhersagbar oder stochastisch, also regellos und nur über ihre statistischen Eigenschaften beschreibbar sein (siehe auch [22]). Im Zusammenhang mit den hier verwendeten Identifikationsverfahren interessieren von den deterministischen Eingangsgrößen die transienten und harmonischen sowie von den stochastischen Eingangsgrößen die stationären. Die sich daraus ergebenden unterschiedlichen Beschreibungen des Übertragungsverhaltens im Frequenzbereich für determinierte und stochastische Sche Prozesse werden im Folgenden dargestellt.

4.4.1 Das Übertragungsverhalten im Frequenzbereich für determinierte Eingangsgrößen

Bei determinierten Eingangsgrößen kann das Übertragungsverhalten eines mechanischen Systems im Frequenzbereich mit Hilfe einer komplexen Frequenzgangmatrix $\mathbf{H}(j\Omega)$ in der Form

$$\mathbf{H}(j\Omega) = \frac{\mathbf{q}(j\Omega)}{\mathbf{f}(j\Omega)}$$
(4.41)

dargestellt werden, wobei $\mathbf{f}(j\Omega)$ und $\mathbf{q}(j\Omega)$ die Fourier-Transformierten von $\mathbf{f}(t)$ und $\mathbf{q}(t)$ entsprechend der Transformationsgleichung

$$x(j\Omega) = \int_{-\infty}^{\infty} x(t) \ e^{-j\Omega t} dt \tag{4.42}$$

sind, unter der Voraussetzung, dass die Signale folgende Bedingung erfüllen:

$$\int_{-\infty}^{\infty} x(t)dt < \infty .$$
(4.43)

Erfüllen die Signale die Forderung der Beschränktheit entsprechend Gleichung (4.43) nicht, wird allgemein die Laplace-Transformation angewendet. Der Übergang von der daraus resultierenden allgemeinen Beschreibung des Übertragungsverhaltens unter Verwendung der Übertragungsmatrix $\mathbf{H}(s)$ (Laplace-Transformation) zur Frequenzgangmatrix $\mathbf{H}(j\Omega)$ (Fourier-Transformation) kann u.a. [22] entnommen werden. Zur experimentellen Ermittlung (Schätzung) der Frequenzgangmatrix wird auf Abschnitt 5.1 verwiesen.

Werden die Gleichung des mechanischen Systems (**M**, **D**, **K**) mit dem Eingangsvektor $\mathbf{f}(t)$ und dem Ausgangsvektor $\mathbf{q}(t)$ (Gleichung (4.1)) durch Anwendung der Fourier-Transformation in den Frequenzbereich transformiert, so ergibt sich

$$(-\mathbf{M}\Omega^{2} + j\Omega\mathbf{D} + \mathbf{K}) \cdot \mathbf{q}(j\Omega) = \mathbf{f}(j\Omega) .$$
(4.44)

Durch Umstellen von Gleichung (4.44) und einem Vergleich mit Gleichung (4.41) kann die komplexe Frequenzgangmatrix $\mathbf{H}(j\Omega)$ geschrieben werden als

$$\mathbf{H}(j\Omega) = (-\mathbf{M}\Omega^2 + j\Omega\mathbf{D} + \mathbf{K})^{-1}.$$
(4.45)

Die Kehrmatrix von $\mathbf{H}(j\Omega)$ wird als dynamische Steifigkeitsmatrix bezeichnet.

4.4.1.1 Das Übertragungsverhalten des ungedämpften Systems

Die Anwendung der Fourier-Transformation auf die Bewegungsgleichung (4.10) eines ungedämpften Systems (**M**, **D**=**0**, **K**) ergibt

$$(-\Omega^2 \mathbf{M} + \mathbf{K})\mathbf{q}(\Omega) = \mathbf{f}(\Omega) \tag{4.46}$$

oder umgestellt nach dem Vektor $\mathbf{q}(\Omega)$

$$\mathbf{q}(\Omega) = (-\Omega^2 \mathbf{M} + \mathbf{K})^{-1} \mathbf{f}(\Omega) .$$
(4.47)

Nach dem Einsetzen der Modaltransformation $\mathbf{q}(\Omega) = \widetilde{\Psi} \mathbf{x}(\Omega)$ (siehe Gl. 4.12) und den Orthogonalitätsbeziehungen (siehe Gl. 4.13) erhalten wir als Antwort des Systems auf eine harmonische Erregung $\mathbf{f}(\Omega)$ in physikalischen Koordinaten

$$\mathbf{q}(\Omega) = \sum_{k=1}^{n} \frac{\widetilde{\mathbf{\Psi}}_{k} \widetilde{\mathbf{\Psi}}_{k}^{T}}{m_{k} (\omega_{k}^{2} - \Omega^{2})} \mathbf{f}(\Omega)$$
(4.48)

Im Zähler von (4.48) steht das Produkt der beiden Eigenschwingungsvektoren, die reellen Konstanten m_k sind die Elemente der diagonalen modalen Massenmatrix. Aus einem Vergleich der Gleichungen (4.48) und (4.44) erhalten wir die Frequenzgangmatrix des ungedämpften Systems als Superposition der Frequenzgänge ungedämpfter Einmassenschwinger mit

$$\widetilde{\mathbf{H}}(\Omega) = \sum_{k=1}^{n} \frac{\widetilde{\mathbf{\Psi}}_{k} \widetilde{\mathbf{\Psi}}_{k}^{T}}{m_{k} (\omega_{k}^{2} - \Omega^{2})}.$$
(4.49)

Das Element $\tilde{h}_{ij}(\Omega)$ der Frequenzgangmatrix stellt den Frequenzgang zwischen der Antwort am Systempunkt *i* infolge der Krafterregung am Systempunkt *j* dar und hat die Form

$$\widetilde{h}_{ij}(\Omega) = \sum_{k=1}^{n} \frac{\widetilde{\psi}_{ik} \widetilde{\psi}_{jk}}{m_k (\omega_k^2 - \Omega^2)}.$$
(4.50)

4.4.1.2 Das Übertragungsverhalten des allgemein gedämpften Systems

Ausgehend von der Zustandsgleichung in generalisierten Koordinaten (4.28) der Form $\hat{\Psi}^T A \hat{\Psi} \dot{g}(t) + \hat{\Psi}^T B \Psi g(t) = \hat{\Psi}^T u(t)$, der Koordinatentransformation (4.27) und den Orthogonalitätsbeziehungen (4.29) erhält man nach Übergang in den Frequenzbereich ein System von 2n entkoppelten Gleichungen erster Ordnung in den Zustandskoordinaten $w(j\Omega)$ mit

$$\mathbf{w}(j\Omega) = \hat{\Psi}[j\Omega \mathbf{I} - \Lambda]^{-1} \hat{\Psi}^T \mathbf{u}(j\Omega) (\hat{\Psi}^T \mathbf{A} \hat{\Psi})^{-1}.$$
(4.51)

Die Lösungen von Gleichung (4.51) treten konjugiert komplex auf. Werden die konjugiert komplexen Anteile separiert, so erhält man als Frequenzgangmatrix des Systems mit

$$\mathbf{H}(j\Omega) = \sum_{k=1}^{n} \left[\frac{\Psi_k \Psi_k^T}{a_k (j\Omega - \lambda_k)} + \frac{\overline{\Psi}_k \overline{\Psi}_k^T}{a_k (j\Omega - \overline{\lambda}_k)} \right]$$
(4.52)

den Teil von (4.51), der den Verschiebungsvektor $\mathbf{q}(j\Omega)$ mit dem Erregervektor $\mathbf{f}(j\Omega)$ direkt verknüpft (siehe Gleichung (4.20)) [21]. Die komplexen Konstanten a_k (komplexe modale Masse) sind darin die Elemente der diagonalen Matrix $\hat{\Psi}^T \mathbf{A} \hat{\Psi}$. Aus den komplexen Eigenschwingungsvektoren Ψ_k , Ψ_k^T und der komplexen Konstante a_k kann die komplexe Residuumsmatrix der k-ten Eigenschwingung in der Form

$$\mathbf{R}_{k} = \frac{\boldsymbol{\Psi}_{k} \boldsymbol{\Psi}_{k}^{T}}{a_{k}} \quad \text{bzw.} \quad \overline{\mathbf{R}}_{k} = \frac{\overline{\boldsymbol{\Psi}}_{k} \overline{\boldsymbol{\Psi}}_{k}^{T}}{a_{k}} \tag{4.53}$$

gebildet werden. Die Elemente der Residuumsmatrix r_{ijk} werden als Residuen oder zutreffender als modale Konstanten bezeichnet, da sie für jedes Paar von Punkten *i* und *j* und jede Eigenform *k* eine eindeutig skalierte Konstante darstellen. Sie haben eine große Bedeutung speziell bei der experimentellen Parameteridentifikation. Unter Verwendung der Residuumsmatrizen (4.53) folgt damit für die Frequenzgangmatrix

$$\mathbf{H}(j\Omega) = \frac{\mathbf{R}_k}{j\Omega - \lambda_k} + \frac{\overline{\mathbf{R}}_k}{j\Omega - \overline{\lambda_k}} \quad .$$
(4.54)

Der Frequenzgang h_{ij} zwischen den Systempunkten *i* und *j* bei Krafterregung in *j* als Element der Frequenzgangmatrix hat die Form

$$h_{ij}(j\Omega) = \sum_{k=1}^{n} \left[\frac{r_{ijk}}{j\Omega + \vartheta \omega_{0k} - j\omega_{0k}\sqrt{1 - \vartheta^2}} + \frac{\overline{r}_{ijk}}{j\Omega + \vartheta \omega_{0k} + j\omega_{0k}\sqrt{1 - \vartheta^2}} \right].$$
 (4.55)

4.4.1.3 Das Übertragungsverhalten des proportional gedämpften Systems

Ausgangspunkt für die Darstellung des Übertragungsverhaltens proportional gedämpfter Systeme bilden die durch die Modaltransformation (4.12) in modale Koordinaten überführten entkoppelten n Differentialgleichungen zweiter Ordnung (4.18). Ähnlich wie beim ungedämpften System erhält man die Frequenzgangmatrix $\widetilde{\mathbf{H}}(j\Omega)$ des proportional gedämpften Systems unter Einbeziehung der Dämpfungsmatrix aus der Superposition der Produkte $\widetilde{\psi}_k \widetilde{\psi}_k^T$ der reellen Eigenvektoren $\widetilde{\psi}_k$ des dazugehörigen ungedämpften Systems mit

$$\widetilde{\mathbf{H}}(j\Omega) = \sum_{k=1}^{n} \left[\frac{\widetilde{\mathbf{\Psi}}_{k} \widetilde{\mathbf{\Psi}}_{k}^{T}}{m_{k} (\omega_{0k}^{2} - \Omega^{2} + 2j \vartheta_{k} \omega_{0k} \Omega)} \right].$$
(4.56)

Die Frequenzgänge als Elemente der Frequenzgangmatrix die Form haben

$$\widetilde{h}_{ij}(j\Omega) = \sum_{k=1}^{n} \left[\frac{\widetilde{\psi}_{ik} \widetilde{\psi}_{jk}}{m_k (\omega_{0k}^2 - \Omega^2 + 2j \vartheta_k \omega_{0k} \Omega)} \right].$$
(4.57)

Der Frequenzgang (4.57) kann auch mit Einführen einer reellen modalen Konstante (Residuum) $\tilde{r}_{ik} = \tilde{\psi}_{ik} \tilde{\psi}_{ik}^{T} / m_{k}$ dargestellt werden als

$$\widetilde{h}_{ij}(j\Omega) = \sum_{k=1}^{n} \left[\frac{\widetilde{r}_{ijk}}{(\omega_{0k}^2 - \Omega^2 + 2j\vartheta_k\omega_{0k}\Omega)} \right].$$
(4.58)

Werden auch beim proportional gedämpften System die konjugiert komplexen Anteile wie beim allgemein gedämpften System (4.52) separiert, so ergibt sich für die Frequenzgangmatrix die oft verwendete Form

$$\widetilde{\mathbf{H}}(j\Omega) = \sum_{k=1}^{n} \left[\frac{\widetilde{\mathbf{\Psi}}_{k} \widetilde{\mathbf{\Psi}}_{k}^{T}}{2 j m_{k} \omega_{k} (j\Omega - \lambda_{k})} - \frac{\widetilde{\mathbf{\Psi}}_{k} \widetilde{\mathbf{\Psi}}_{k}^{T}}{2 j m_{k} \omega_{k} (j\Omega - \overline{\lambda}_{k})} \right].$$
(4.59)

Durch einen Vergleich von (4.52) und (4.59) kann die komplexe Residuenmatrix des proportional gedämpften Systems bestimmt werden. Sie ist rein imaginär und hat die Form

$$\mathbf{R}_{k} = \frac{\widetilde{\mathbf{\Psi}}_{k}\widetilde{\mathbf{\Psi}}_{k}^{T}}{2jm_{k}\omega_{k}} \quad \text{bzw.} \quad \overline{\mathbf{R}}_{k} = -\frac{\widetilde{\mathbf{\Psi}}_{k}\widetilde{\mathbf{\Psi}}_{k}^{T}}{2jm_{k}\omega_{k}}. \tag{4.60}$$

Ein Frequenzgang des proportional gedämpften Systems kann somit unter Verwendung von (4.60) analog zu Gleichung (4.55) wie folgt geschrieben werden:

$$\widetilde{h}_{ij} = \sum_{k=1}^{n} \left[\frac{r_{ijk}}{j\Omega + \vartheta \omega_{0k} - j\omega_{0k}\sqrt{1 - \vartheta^2}} + \frac{\overline{r}_{ijk}}{j\Omega + \vartheta \omega_{0k} + j\omega_{0k}\sqrt{1 - \vartheta^2}} \right].$$
(4.61)

4.4.2 Das Übertragungsverhalten im Frequenzbereich für stochastische Eingangsgrößen

Können Signale nicht explizit analytisch beschrieben werden, dann müssen statistische Aussagen zur Beschreibung des Verhaltens verwendet werden. Diese Art der Beschreibung von Signalen hat wiederum einen Einfluss auf die Ermittlung des Übertragungsverhaltens (Frequenzgangmatrix) der mechanischen Systeme. Zunächst sollen aber einige Kennfunktionen stochastischer Signale erläutert werden.

4.4.2.1 Kennfunktionen stochastischer Signale

Autokorrelationsfunktionen:

Die Autokorrelationsfunktion beschreibt den statistischen Zusammenhang eines Signals x(t) zu verschiedenen Zeiten und ist für ergodische, stationär stochastische Signale definiert als

$$R_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t+\tau) dt = \overline{x(t) x(t+\tau)}, \qquad (4.62)$$

wobei τ eine zeitliche Verschiebung sowie *T* die Länge des betrachteten Zeitfensters ist. Die Autokorrelationsfunktion kann als Verallgemeinerung der Definition des quadratischen Mittelwertes angesehen werden, nur mit dem Unterschied, dass die Funktion *x*(*t*) nicht mit sich selbst, sondern mit der auf der Zeitachse um den Betrag τ verschobenen Funktion *x*(*t*+ τ) multipliziert und dann der Mittelwert gebildet wird. An der Stelle $\tau = 0$ entspricht der Wert der Autokorrelationsfunktion dem quadratischen Mittelwert.

Die Autokorrelationsfunktion beschränkt sich nicht nur auf stationäre stochastische Signale sondern kann auch auf determinierte Signale angewendet werden. So können z.B. bei überlagerten Signalen periodische Anteile des Signals erkannt und von stochastischen getrennt werden.

Kreuzkorrelationsfunktionen:

In vielen Fällen ist nicht nur die Autokorrelation sondern auch die statistische Verwandtschaft zwischen zwei verschiedenen Signalen x(t) und y(t) von Interesse. Es können die Signale unterschiedlicher Messstellen oder die Messung von Systemein- und Systemausgängen sein. Die Kreuzkorrelationsfunktion ist in diesem Fall definiert als

$$R_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) y(t+\tau) dt = \overline{x(t) y(t+\tau)}.$$
(4.63)

Bisher wurden nur Kennwerte stochastischer Signale im Zeitbereich beschrieben. Analog zur Vorgehensweise bei deterministischen Signalen ist es sinnvoll, auch die stochastischen Kenngrößen als Funktion der Frequenz zu definieren. Die spektralen Leistungsdichten werden dabei über die Fouriertransformierten der Korrelationsfunktionen gebildet. Diese Transformation wird als Wiener-Khintchine-Transformation bezeichnet.

Autoleistungdichtespektrum:

Das (zweiseitige) Autoleistungsdichtespektrum ist für ergodische stationär stochastische Signale definiert als

$$S_{xx}(\Omega) = \int_{-\infty}^{+\infty} R_{xx}(\tau) e^{-j\Omega\tau} d\tau .$$
(4.64)

In der Praxis wird auch oft das einseitige Autoleistungsdichtespektrum G_{xx} verwendet. Es folgt aus der einseitigen Fouriertransformation und ist definiert als

$$G_{\rm rr}(\Omega) = 2 S_{\rm rr}(\Omega) \qquad \text{für} \qquad 0 \le \Omega < \infty \,. \tag{4.65}$$

Die Funktionen $S_{xx}(\Omega)$ und $G_{xx}(\Omega)$ sind positiv reell und enthalten keine Phaseninformationen.

Kreuzleistungdichtespektrum:

Das (zweiseitige) Kreuzleistungsdichtespektrum ist für ergodische stationär stochastische Signale ist analog zu Gleichung (4.64) definiert als

$$S_{xy}(j\Omega) = \int_{-\infty}^{+\infty} R_{xy}(\tau) e^{-j\Omega\tau} d\tau .$$
(4.66)

Entsprechend Gleichung (4.65) kann auch das einseitige Kreuzleistungsdichtespektrum G_{xx} ermittelt werden. Es folgt aus der einseitigen Fouriertransformation und ist definiert als

$$G_{yy}(j\Omega) = 2S_{yy}(j\Omega) \quad \text{für} \quad 0 \le \Omega < \infty.$$
(4.67)

Die Funktionen $S_{xy}(j\Omega)$ und $G_{xy}(j\Omega)$ sind komplex und enthalten Phaseninformationen. Zur praktischen Ermittlung (Schätzung) der Leistungsdichtespektren wird auf Abschnitt 5.1 verwiesen.

Kohärenzfunktion:

Als Maß für die statistische Abhängigkeit zweier Signale im Frequenzbereich wird in der Praxis häufig die reelle Kohärenzfunktion verwendet. Sie ist definiert als

$$\gamma_{xy}^{2}(\Omega) = \frac{\left|S_{xy}(j\Omega)\right|^{2}}{S_{xx}(\Omega) S_{yy}(\Omega)} \qquad \text{mit} \qquad 0 \le \gamma_{xy}^{2}(\Omega) \le 1.$$
(4.68)

4.4.2.2 Übertragungsverhalten im Frequenzbereich

Für den Fall einer stationär stochastischen Erregung f(t) des mechanischen Systems (Gleichung (4.1)) gelten nach [22] die folgenden Beziehungen:

$$\mathbf{S}_{qq}(\Omega) = \overline{\mathbf{H}}(j\Omega) \ \mathbf{S}_{ff}(\Omega) \ \mathbf{H}^{T}(j\Omega) \qquad \text{sowie}$$
(4.69)

$$\mathbf{S}_{fq}(j\Omega) = \mathbf{S}_{ff}(\Omega) \mathbf{H}^{T}(j\Omega).$$
(4.70)

Für die Frequenzgangmatrix $H(j\Omega)$ bestehen die gleichen Zusammenhänge wie bereits in Abschnitt 4.4.1 dargestellt.

5. Ermittlung des dynamischen Verhaltens mechanischer Systeme

Die Ermittlung des dynamischen Systemverhaltens kann sowohl unter Verwendung experimenteller als auch rechnerischer Verfahren erfolgen. Beide Verfahren haben ihren Ausgangspunkt in unterschiedlichen Arten der Modellbeschreibung. Wie Abbildung 5.1 entnommen werden kann (siehe auch Abschnitt 4), gibt es diesbezüglich drei Möglichkeiten der Beschreibung des Systemverhaltens. Es sind die Beschreibung des Systems im physikalische Raum auf Grundlage der Parametermatrizen **M**, **D**, **K**, die Beschreibung durch ein modales Modell auf Grundlage der Eigenwerte λ_k und der Eigenvektoren Ψ_k (Eigenschwingungsgrößen) sowie die Beschreibung des Systems durch das Antwortverhalten bei z.B. Einheitserregung auf Grundlage von Frequenzgängen h_{ij} . Die Beschreibungsformen sind dabei einander äquivalent. Die Vorgehensweisen bei der experimentellen und der rechnerischen Ermittlung sind in der Regel gegenläufig.

Experimentelle Ermittlung des Systemverhaltens

Abbildung 5.1: Vorgehensweisen bei der Ermittlung des dynamischen Systemverhaltens

Die Modalanalyse ist allgemein ein Verfahren zur Bestimmung systembeschreibender modaler Parameter diskretisierter mechanischer Schwingungssysteme mit n Freiheitsgraden. Sie liefert als Ergebnis die Eigenschwingungsgrößen einer Struktur, wobei aus der Superposition der einzelnen n Eigenschwingungen das mögliche Schwingungsverhalten des Systems dargestellt werden kann. Jede Eigenschwingung kann dabei durch vier Eigenschwingungsgrößen vollständig beschrieben werden: Eigenfrequenz, Dämpfungskonstante, generalisierte Masse sowie Eigenschwingungsvektor.

Die Lösung des Eigenwertproblems der diskretisierten Bewegungsgleichung auf Grundlage der Parametermatrizen **M**, **D**, **K** (4.1) liefert die Eigenschwingungsgrößen des dynamischen Systems und wird als theoretische oder rechnerische Modalanalyse bezeichnet. Die Beschreibung des Systemverhaltens unter Verwendung von Eigenschwingungsgrößen ist äquivalent der Beschreibung unter Verwendung der Systemparametermatrizen (**M**, **D**, **K**). In der Regel wird die rechnerische Modalanalyse auf Grundlage der Systemgleichungen des dazugehörigen ungedämpften Systems (4.10) durchgeführt, als Ergebnis werden Eigenfrequenzen und dazugehörige Eigenschwingungsvektoren ermittelt. Grundlage für die Durchführung der rechnerischen Modalanalyse ist daher zumindest die Kenntnis der Massenmatrix **M** und der Steifigkeitsmatrix **K**.

Steht das dynamische System als reales Objekt zur Verfügung, können die Eigenschwingungsgrößen mit Hilfe der experimentellen Modalanalyse ermittelt werden. Die Experimentelle Modalanalyse nimmt im Rahmen dieser Arbeit eine hervorgehobene Stellung ein, da insbesondere auch Dämpfungsparameter ermittelt werden können. Für die experimentelle Ermittlung der Systemeigenschaften können unterschiedliche Verfahren der Modalanalyse angewendet werden.

Eine Möglichkeit ist die Anwendung der klassischen Modalanalyse. Die Struktur wird dabei künstlich angeregt (z.B. transiente oder harmonische Erregersignale). Die Zeitverläufe von Erregung sowie der resultierenden Strukturantworten (Beschleunigungssignale) werden aufgezeichnet. Basierend auf den aufgezeichneten Zeitverläufen werden Schätzungen der Frequenzgänge $h_{ij}(j\Omega)$ ermittelt (zusammengefasst in der Frequenzgangmatrix $H(j\Omega)$), aus denen unter Anwendung unterschiedlicher Identifikationsverfahren (Zeit- und Frequenzbereichsverfahren) die modalen Parameter des zugrunde gelegten mathematischen Modells (z.B. (4.52) oder (4.59)) ermittelt werden können.

Eine andere Möglichkeit ist die Anwendung der operativen Modalanalyse. Im Gegensatz zur klassischen Modalanalyse basiert die operative Modalanalyse ausschließlich auf den aufgezeichneten Strukturantworten. Die Erregung erfolgt durch natürliche Umgebungsbedingungen wie z.B. Wind, Wellen, Betriebszustände etc.). Eine Aufzeichnung von Erregerkräften ist dabei nicht notwendig. Die Ermittlung der modalen Parameter kann im Zeitsowie im Frequenzbereich erfolgen. Aufgrund der fehlenden Informationen bezüglich der Anregung sind die identifizierten Eigenschwingungsvektoren unskaliert. Dieses Verfahren ist besonders geeignet für große, künstlich schwer erregbare Strukturen (Bauwerke, Schiffe) oder für Strukturen, die ständig einer nicht erfassbaren, natürlichen Erregung (in nicht zu vernachlässigender Größenordnung) ausgesetzt sind (z.B. schwimmende Stegsysteme).

Im Allgemeinen gibt es Abweichungen und Unterschiede zwischen den Ergebnissen von experimenteller und rechnerischer Modalanalyse. Anhand der Abweichungen ist eine Bewertung der Qualität der Vorhersagemodelle (meist Finite-Element-Modelle) möglich. Basierend auf den experimentellen Ergebnissen kann außerdem eine zielgerichtete Anpassung von Modellparametern innerhalb der FE-Modelle vorgenommen werden, um so die Vorhersagegenauigkeit zu verbessern [46, 47, 48, 49, 11].

Auf der Grundlage von Eigenfrequenzen und dazugehörigen Eigenschwingungsvektoren ist ein vollständiger Modellvergleich nur unter der Annahme einer richtigen Modellierung

55

entweder von Masse oder Steifigkeit möglich. In [50] werden daher Methoden vorgestellt, die die modalen Massen und modalen Steifigkeiten in diesen Vergleich mit einbeziehen.

Auf ähnliche Weise lässt sich dieser Modellvergleich auch durch die Gegenüberstellung von experimentell und auf Grundlage einer Zwangsschwingungsrechnung (Erregung durch eine Einheitskraft von 1N) rechnerisch ermittelten Übertragungsfunktionen vervollständigen. Zwangsschwingungsrechnungen erfolgen durch die Lösung des diskretisierten inhomogenen Bewegungsgleichungssystems (4.1) z.B. durch Verfahren der modalen Superposition unter Verwendung der im Experiment ermittelten Dämpfungsparameter. Durch den Vergleich können außerdem auch die Annahmen zur Dämpfung im Modell überprüft werden. Im Folgenden werden die einzelnen Verfahren näher erläutert.

5.1 Experimentelle Modalanalyse

5.1.1 Klassische Modalanalyse

Die hier dargestellte Vorgehensweise zu Ermittlung der modalen Parameter entspricht dem Phasentrennungsverfahren. Nach [22] ist dies die rechnerische Ermittlung der Eigenschwingungsgrößen eines Mehrfreiheitsgrad-Systems basierend auf der Zusammensetzung der dynamischen Antworten aus den Eigenvektoren. Im Gegensatz zum Phasenresonanzverfahren (siehe [22, 23]), bei dem mittels harmonischer Mehrpunktanregung die Eigenschwingungen jeweils isoliert angeregt werden, ist der experimentelle Aufwand relativ gering.

5.1.1.1 Experimentelle Ermittlung der Frequenzgangmatrix

Die Grundlage für die Bestimmung der modalen Parameter bilden experimentell ermittelte komplexe Frequenzgänge h_{ij} ($j\Omega$), die in einer komplexen Frequenzgangmatrix $\mathbf{H}(j\Omega)$ zusammengefasst werden. Die systemtheoretische Beschreibung der Zusammensetzung der komplexen Frequenzgänge in Abhängigkeit verschiedener Modellannahmen kann dem Abschnitt 4.4.1 entnommen werden.

Sollen die Frequenzgänge eines Systems bestimmt werden, so muss das System im Vorfeld in n geeignete Messpunkte diskretisiert werden. Es kann gezeigt werden, dass zur Bestimmung der modalen Parameter die Kenntnis einer Zeile oder einer Spalte der Frequenzgangsmatrix ausreichend ist. Bei der Ermittlung einer Spalte wird das System an einem Punkt *j* erregt, und die zugehörigen Antworten an allen n Systempunkten gemessen. Anders wird bei der Zeilenmessung der Erregerpunkt variiert, während der Messort *i* der Antwort konstant gehalten wird. Die Übertragungsfunktion für einen identischen Anregungs- und Antwortpunkt wird als "Drivingpoint"-Frequenzgang bezeichnet. Aus den Elementen der komplexen Frequenzgangmatrix $H(j\Omega)$ können dann unter Anwendung unterschiedlicher Identifikationsverfahren die Eigenschwingungsgrößen ermittelt werden. Zur Ermittlung der Frequenzgänge werden Zeitsignale von Erregung und Antwort durch die schnelle FOURIER-Transformation (FFT) in den Frequenzbereich transformiert. Das Ergebnis sind Amplituden- und Phasenspektren. Da in der Praxis die Zeitfunktionen nur über eine endliche Zeitdauer T gemessen werden können (vgl. Gleichung (4.42)), sind die experimentell ermittelten Frequenzgänge als Schätzungen der Amplitudendichtespektren entsprechend

$$\ddot{x}(j\Omega,T) = \int_0^T x(t) \ e^{j\Omega t} \ dt$$
(5.1)

aufzufassen. Werden die so ermittelten Spektren von Erregung und Strukturantwort ins Verhältnis gesetzt, ergibt sich die Schätzung des komplexe Frequenzgang $\check{h}_{ii}(j\Omega)$ mit

$$\widetilde{h}_{ij}(j\Omega,T) = \frac{\widetilde{q}_i(j\Omega,T)}{\widetilde{f}_j(j\Omega,T)}.$$
(5.2)

Dabei ist $\breve{q}_i(j\Omega,T)$ die Schätzung des Amplitudendichtespektrum einer Antwort des Systems am Punkt *i* und $\breve{f}_j(j\Omega,T)$ die Schätzung des Spektrums der Erregung am Punkt *j* jeweils in Bezug auf eine Messdauer T. In der Praxis sind den gemessenen Signalen von Anregung und Antwort im Allgemeinen Störsignale überlagert. Um ihren Einfluss bei der Ermittlung der Frequenzgänge zu reduzieren, können verschiedene Bildungsvorschriften angewendet werden. Wird die Gleichung (5.2) durch den konjugiert komplexen Term $\overline{\breve{f}}_i(j\Omega,T)/T$ erweitert, so ergibt sich

$$\breve{h}_{ij}(j\Omega) = \breve{h}_{ij1}(j\Omega) = \frac{\breve{\breve{f}}_{j}(j\Omega)}{T} \frac{T}{\breve{\breve{f}}_{j}(j\Omega)} \frac{\breve{q}_{i}(j\Omega)}{\breve{\breve{f}}_{j}(j\Omega)} = \frac{\breve{\breve{S}}_{fq_{ji}}(j\Omega)}{\breve{\breve{S}}_{ff_{jj}}(\Omega)}.$$
(5.3)

Wird die Gleichung (5.2) hingegen durch den Term $\overline{\check{q}}_i(j\Omega,T)/T$ erweitert, so ergibt sich

$$\breve{h}_{ij}(j\Omega) = \breve{h}_{ij2}(j\Omega) = \frac{\breve{q}_i(j\Omega)}{T} \frac{T}{\breve{q}_i(j\Omega)} \frac{T}{\breve{f}_j(j\Omega)} = \frac{S_{qq_{ii}}(\Omega)}{\breve{S}_{qf_{ij}}(j\Omega)} \quad .$$
(5.4)

Die Größen \breve{S}_{qq} , \breve{S}_{ff} , \breve{S}_{fq} , \breve{S}_{qf} sind dabei Schätzungen der Auto- bzw. Kreuzleistungsdichtespektren der Signale von Anregung und Antwort (siehe Gleichungen (4.64) und (4.66)). Schätzungen auf Grundlage von Gleichung (5.3) werden auch als H₁- Schätzung, auf Grundlage von Gleichung (5.4) als H₂-Schätzung bezeichnet. Es kann gezeigt werden [22], dass bei einer zunehmenden Anzahl von Mittelungen bei Anwendung der H₁-Schätzung Störungen der Antwortsignale, bzw. bei Anwendung der H₂- Schätzung Störungen der Erregersignale verschwinden. Die Schätzung H₁ stellt dabei eine untere, die Schätzung H₂ eine obere Schranke des zu ermittelnden Frequenzganges dar. Der Vergleich der Kohärenzfunktion entsprechend Gleichung (4.68) mit den Gleichungen (5.3) und (5.4) führt zu dem Ergebnis, dass

$$\gamma_{xy}^{2}(\Omega) = \frac{\left|S_{xy}(j\Omega)\right|^{2}}{S_{xx}(\Omega) S_{yy}(\Omega)} = \frac{\breve{h}_{ij1}(j\Omega)}{\breve{h}_{ij2}(j\Omega)}.$$
(5.5)

Die Kohärenzfunktion kann somit als Maß für die Größe des von beiden Schätzungen aufgespannten Raumes angesehen werden. Für $\gamma^2(\Omega) = 1$ sind die Schätzungen $\check{h}_{ij1}(j\Omega)$ und $\check{h}_{ij2}(j\Omega)$ identisch. Für die praktische Anwendung sollte eine Kohärenz $\gamma^2(\Omega) = 0.95$ im interessierenden Frequenzbereich angestrebt werden [51].

Entsprechend den Untersuchungsbedingungen kann eine der beiden Schätzungen ausgewählt werden. Auch ist wichtig, dass Mittelungen über mehrere Einzelmessungen die Schätzungen der Frequenzgänge im Allgemeinen verbessern. Durch die Berechnung der Kohärenz kann die Qualität der ermittelten Frequenzgänge bestimmt werden, was aber nur bei Mittelung über mehrere Einzelmessungen sinnvoll ist (bei Einzelmessung $\gamma^2(\Omega) = 1$, siehe [51]).

Bei der klassischen Modalanalyse gibt es hinsichtlich der Wahl der Erregersignale keine Einschränkungen. Die Anregung kann beispielsweise durch ein transientes Signal (Impulssignal eines Hammerschlages) oder auch durch ein harmonisches Kraftsignal (bei schrittweiser Änderung der Frequenz) erfolgen. Als Antwortsignale werden bei der Modalanalyse häufig die gemessenen Beschleunigungen genutzt. Das prinzipielle Vorgehen bei der experimentellen Modalanalyse ist in Abbildung 5.2 gezeigt.

Da die Zeitsignale nur durch Werte zu diskreten Zeitpunkten im Abstand der Abtastzeit (reziproke Abtastfrequenz) gegeben sind, ergibt auch die FOURIER-Transformation nur Spektren diskreter Spektrallinien. Der Frequenzbereich der gemessenen Spektren ist durch die Abtastfrequenz festgelegt. Die Anzahl und somit der Abstand der Spektrallinien wird weiterhin von der Messdauer bestimmt. Bei der Aufnahme der Signale und der Durchführung der FFT muss beachtet werden, dass Frequenzen oberhalb der halben Abtastfrequenz herauszufiltern sind und eventuell Fensterfunktionen verwendet werden müssen, um Fehler durch Aliasing oder Abbruchfehler zu vermeiden (siehe z.B. [52]).

Abbildung 5.2: Prinzip der Durchführung der experimentellen Modalanalyse

5.1.1.2 Parameteridentifikation

Grundlage für die Identifikation von Eigenschwingungsgrößen aus experimentell ermittelten Frequenzgängen ist die Vorgabe der Gleichungsstruktur eines mathematischen Modells, um die Eigenschwingungsgrößen in ihrer entsprechenden Umgebung identifizieren zu können. Ausgehend von Gleichung (4.1) können dies in Abhängigkeit der verwendeten Dämpfungsmodelle z.B. die Ansätze (4.55) oder (4.61) sein. Die Verwendung des Ansatzes (4.55) auf Grundlage allgemeiner viskoser Dämpfung ermöglicht im Unterschied zum Ansatz (4.61) auf Grundlage proportionaler viskoser Dämpfung die Identifikation komplexer Eigenvektoren. Wie bereits im Abschnitt 4.3 dargestellt, können komplexe Eigenvektoren Ausdruck für eine nicht-proportionale Dämpfungsverteilung im System sein. Mit Hilfe des Ansatzes auf Grundlage allgemeiner viskoser Dämpfung ist jedoch auch nur eine Identifikation der Hauptdiagonalelemente der modalen Dämpfungsmatrix möglich.

Aus den gemessenen Frequenzgängen werden als modale Parameter die Eigenfrequenzen ω_{0k} , die modalen Dämpfungsgrade β_k sowie die modalen Konstanten r_{ijk} und daraus abgeleitet die Elemente der Eigenvektoren ψ_{ik} ermittelt. Allgemein erfolgt die Bestimmung der modalen Parameter indem die Modellparameter aus z.B. Gleichung (4.55) bzw. (4.61) so ermittelt werden, dass der daraus resultierende Funktionsverlauf dem experimentell ermittelten Verlauf möglichst weit angenähert wird (Kurvenanpassung). Hierzu gibt es verschiedene Verfahren, um anhand der gemessenen Frequenzgangfunktionen die passenden modalen Parameter und Komponenten der Eigenvektoren zu identifizieren.
Identifikationsverfahren:

Verfahren zur Identifikation modaler Parameter können auf unterschiedliche Weise klassifiziert werden. Ein erstes Unterscheidungsmerkmal ist der Arbeitsbereich der Verfahren. Die Parameteridentifikation kann dabei im Zeit- oder Frequenzbereich erfolgen. Frequenzbereichsverfahren ermitteln die modalen Parameter direkt aus den gemessenen Frequenzgängen entsprechend den Modellvorgaben (z.B. Gleichung (4.55) bzw. (4.61)). Zeitbereichsverfahren hingegen arbeiten auf Grundlage von Impulsantwort-Funktionen *g_{ij}*, gebildet z.B. durch die inverse Fouriertransformation der ermittelten Frequenzgänge. Impulsantwort-Funktionen sind ebenfalls charakteristische Funktionen eines dynamischen Systems und beschreiben die Antwort (freie Schwingungen) auf einen Einheitsimpuls im Zeitbereich. Für ein allgemein gedämpftes System (Gleichung (4.55)) lassen sich die Impulsantwort-Funktionen bei gegebenen Anfangsbedingungen nach [24] auch darstellen als

$$g_{ij} = \sum_{k=1}^{n} \left(r_{ijk} \ e^{\lambda t} + \overline{r}_{ijk} \ e^{\overline{\lambda} t} \right).$$
(5.6)

Die Ermittlung der modalen Parameter bei Anwendung von Zeitbereichsverfahren erfolgt im Allgemeinen auf Grundlage von Gleichung (5.6).

Ein weiteres Unterscheidungsmerkmal von Identifikationsverfahren ist die Größe des Frequenzbereiches, auf den die Kurvenanpassung zur Parameteridentifikation angewendet wird, bzw. ob die modalen Größen einer Eigenschwingung oder mehrerer Eigenschwingungen gleichzeitig ermittelt werden. Die Identifikationsverfahren werden dann als SDOF (Single Degree of Freedom) –Verfahren bzw. MDOF (Multi Degree of Freedom) – Verfahren bezeichnet. Die SDOF-Verfahren basieren auf der Theorie des Einmassenschwingers und können nur zur Analyse von modal nicht gekoppelten Eigenformen verwendet werden.

Liegen zwei oder mehrere Eigenfrequenzen so dicht zusammen, dass die Eigenform beim schwingen in einer Eigenfrequenz von den Eigenformen der benachbarten Eigenschwingung überlagert wird, sind die Eigenschwingungen modal gekoppelt. Zur Identifikation der modalen Parameter müssen somit alle zu berücksichtigenden Eigenschwingungen unter Verwendung von MDOF-Verfahren gleichzeitig angepasst werden. Der Begriff der modalen Kopplung lässt sich z.B. am Beispiel des Übertragungsverhaltens eines Systems mit proportionaler Dämpfung (4.44) veranschaulichen. Die Gleichung kann hierzu auch in folgender Form geschrieben werden

$$h_{ij} = \sum_{k=1}^{l-1} \left[\frac{\psi_{ik} \psi_{jk}}{m_k (\omega_{0k}^2 - \Omega^2 + 2j \mathcal{G}_k \omega_{0k} \Omega)} \right] + \frac{\psi_{il} \psi_{jl}}{m_l (\omega_{0l}^2 - \Omega^2 + 2j \mathcal{G}_l \omega_{0l} \Omega)} + \sum_{k=l+1}^{n} \left[\frac{\psi_{ik} \psi_{jk}}{m_k (\omega_{0k}^2 - \Omega^2 + 2j \mathcal{G}_k \omega_{0k} \Omega)} \right].$$
(5.7)

Wird das System nun in seiner I-ten Eigenfrequenz mit $\Omega = \omega_{0l}$ angeregt, so ergibt sich aus Gleichung (5.7)

$$h_{ij} = \frac{\psi_{il}\psi_{jl}}{2jm_l \theta_l \omega_{0l}^2} + \text{Rest}(\Omega = \omega_{0l}) .$$
(5.8)

Für den Fall, dass entsprechend Gleichung (5.8) gilt: $\text{Rest}(\Omega = \omega_{01}) \approx 0$, ist die I-te Eigenschwingung nicht modal gekoppelt. Trifft dies allerdings nicht zu, muss von modal gekoppelten Eigenschwingungen ausgegangen werden.

Ein letztes wesentliches Unterscheidungsmerkmal bezieht sich auf die Anzahl von experimentell ermittelten Frequenzgängen, die gleichzeitig zur Parameteridentifikation im Rahmen einer Analyse verwendet werden. Es existieren Verfahren, die nur einen Frequenzgang zur Identifikation der modalen Parameter verwenden. Häufig bietet sich hierzu die Übertragungsfunktion am "Drivingpoint" an. Die ermittelten Parameter können demzufolge als lokale Schätzungen der Systemparameter aufgefasst werden. Andere Verfahren verwenden zur Parameteridentifikation gleichzeitig mehrere Frequenzgänge oder auch mehrere Frequenzgänge unterschiedlicher Referenzen (bei Ermittlung mehrerer Spalten oder Zeilen der Übertragungsmatrix). Die so ermittelten modalen Parameter stellen dann eine globale Schätzung dar.

Im Folgenden sollen einige der verwendeten Identifikationsverfahren kurz vorgestellt werden. Vertiefende Informationen sowie Herleitungen der verschiedenen Verfahren sind der Literatur (z.B. [22, 24, 53] zu entnehmen.

Das "SDOF-Polynomial-Verfahren" sowie "Peak-Amplitudenverfahren-Verfahren" sind Beispiele für einfache Einfreiheitsgradverfahren und arbeiten im Frequenzbereich. Es werden unter Verwendung eines Frequenzganges jeweils die Parameter einer Eigenschwingung anhand des Kurvenverlaufes in Resonanznähe bestimmt. Es ist aber darauf hinzuweisen, dass diese einfachen Verfahren in zweierlei Hinsicht Einschränkungen unterliegen. Zum einen ist ihre Genauigkeit (Dämpfung und modale Konstante) abhängig von der genauen messtechnischen Erfassung der Frequenzgänge im Bereich der Resonanz (insbesondere beim Peak-Amplituden-Verfahren). Zum anderen können nicht berücksichtigte Anteile benachbarter Moden (Annahme der modalen Entkopplung nicht zutreffend) die Schätzungen der modalen Parameter beeinflussen.

Das "Circle-Fit-Verfahren" ist ebenfalls ein Einfreiheitsgradverfahren, das unter Verwendung eines Frequenzganges die modalen Parameter im Frequenzbereich abschätzt. Real- und Imaginärteil der Übertragungsfunktion werden dabei als Ortskurve dargestellt und in Resonanznähe durch einen Kreis approximiert. Durch einen Algorithmus zur Minimierung des mittleren quadratischen Fehlers kann die Genauigkeit des angenäherten Kreises erhöht werden. Im Gegensatz zu den zuvor vorgestellten Verfahren kann auch der Einfluss benachbarter Moden bis zu einem gewissen Grade isoliert werden [24, 53].

Das "Komplex-Exponential-Verfahren" ist ein Mehrfreiheitsgrad-Verfahren, arbeitet im Zeitbereich (siehe Gleichung (5.6)) und ermittelt die modalen Parameter auf Grundlage einer Übertragungsfunktion. Es können somit auch modal gekoppelte Eigenschwingungen identifiziert werden, wobei die Schätzungen lokalen Charakter haben.

Das "Polyreferenz"-Verfahren ist ebenfalls ein Mehrfreiheitsgrad-Verfahren. Es arbeitet im Zeitbereich und verwendet mehrere Frequenzgänge mehrerer Referenzen (bei erfolgter experimenteller Bestimmung mehrerer Spalten bzw. Zeilen der Übertragungsmatrix) gleichzeitig zum Schätzen der Parameter der Eigenschwingungen im betrachteten Frequenzbereich. Zur Kurvenanpassung werden Matrizen mit Polynomfunktionen gebildet, deren Parameter durch ein Fehlerquadratminimum-Verfahren aus den FOURIER-Rücktransformierten der Frequenzgänge ermittelt werden. Die ermittelten modalen Parameter stellen eine globale Schätzung des Systemverhaltens dar.

In vielen praktischen Anwendungsfällen, so auch bei schiffbaulichen Strukturen, ist die Annahme modal entkoppelten Systemverhaltens nicht zutreffend, so dass, insbesondere bei einer hohen modalen Dichte, die Anwendung von Mehrfreiheitsgrad-Verfahren (MDOF) zur Identifikation der modalen Parameter notwendig wird. Zu empfehlen sind dabei Verfahren, die eine globale Schätzung der modalen Parameter ermöglichen (Polyreferenz-Verfahren). Sind globale Schätzungen nicht möglich, so können unter Anwendung z.B. des Complex-Expotential-Verfahrens einzelne, "gut ausgeprägte" Frequenzgänge (z.B. "Drivingpoint"-Frequenzgang) ausgewertet werden. Die Schätzungen haben dann aber nur lokalen Charakter. Für ausgewählte Moden, die den Annahmen der modalen Entkopplung genügen, ist die Anwendung des Circle-Fit-Verfahrens möglich.

Die Vorgabe des einer Identifikation zugrunde liegenden mathematischen Modells, insbesondere bezüglich der Modellierung (bzw. Identifikation) der Dämpfung, erfolgt unabhängig von den beschriebenen Identifikationsverfahren. Die Verfahren ermitteln im Allgemeinen die modalen Parameter, je nach Modellvorgabe ((4.55) bzw. (4.61)) sowohl auf Grundlage allgemeiner als auch proportionaler viskoser Dämpfung. Da die Festlegung der Modellvorgabe vor einer Parameteridentifikation erfolgt, sind die getroffenen Annahmen nachträglich zu prüfen und gegebenenfalls zu ändern. Fehlerhafte Annahmen zur Dämpfungsmodellierung können die Identifikation der modalen Parameter (nicht nur der Dämpfungsparameter) beeinflussen. Nochmals sei hier auch auf die Problematik der reellen und komplexen Eigenvektoren hingewiesen (siehe auch Abschnitt 5.3).

5.1.2 Operative Modalanalyse

5.1.2.1 Experimentelle Ermittlung von Strukturantworten

Die Ermittlung modaler Parameter bei Anwendung der operativen Modalanalyse basiert auf der messtechnischen Erfassung ausschließlich von Strukturantworten, hervorgerufen durch die auf die Struktur einwirkenden natürlichen Erregungen wie z.B. Wind und Wellen. Eine künstliche Anregung der Struktur sowie eine messtechnische Erfassung von Erregerkräften sind darum nicht notwendig. Eine Anregung durch Umgebungsbedingungen kann idealer Weise als unkorreliertes, stationäres, mittelwertfreies, GAUSS-verteiltes weißes Rauschen ($S_{ff}(\Omega) = konst$. für $0 < \Omega < \infty$), also allgemein als eine zeitlich zufällig verteilte Erregungen, angenommen werden. Für eine effektive Anwendung der Identifikationsverfahren, insbesondere zur Identifikation gekoppelter Eigenschwingungen, ist außerdem eine Mehrpunktanregung sicherzustellen. Die Erregung sollte also nicht nur zeitlich sondern auch örtlich zufällig verteilt sein (Bereiche "örtlich korrelierender" Erregungen wesentlich kleiner als die Strukturabmessungen).

Dies ist bei der Untersuchung großer Schiffsstrukturen als gegeben anzusehen, da Wind und Wellenlasten im betrachteten Größenmaßstab eine zufällige örtliche Verteilung aufweisen. Einschränkungen gibt es bezüglich der spektralen Eigenschaften der Wellenanregung, da mit abnehmender Wellenlänge auch die Wellenhöhen abnehmen. Die Anregung kann daher als tiefpassgefiltertes weißes Rauschen angenommen werden. Somit ist auch der erfass- und auswertbare Frequenzbereich der Strukturantworten spektral begrenzt.

Werden Strukturen in ihrer natürlichen Umgebung (z.B. Betriebszustand) untersucht, so können auch zusätzliche Erregungen durch den Betrieb von Maschinen und Aggregaten auf die Struktur einwirken, die oft harmonische sind. Die Spektren der Anregung und daraus resultierend auch die der Strukturantworten können somit harmonische Anteile enthalten, die im Verlauf der Parameteridentifikation von den strukturellen Moden separiert werden müssen. Hierfür existieren verschiedene Verfahren bzw. Vorgehensweisen (siehe Abschnitt 6.5).

Die in den letzten Jahren zunehmende Anwendung der operativen Modalanalyse ist nicht zuletzt auf die beschleunigte Entwicklung von Sensorik und Messdatenerfassung zurückzuführen. Strukturantworten infolge natürlicher Erregung sind im Allgemeinen sehr klein, was zu erhöhten Anforderungen an die Empfindlichkeit und die dynamische Bandbreite (hohe dynamische Auflösung, geringer Rauschpegel) von Sensoren führt. Harmonische Anteile des Antwortspektrums infolge im Betrieb befindlicher Maschinen und Aggregate können unter Umständen die Anteile infolge der natürlichen, stochastischen Anregung um ein Vielfaches übersteigen und führen zu erhöhten Anforderungen an die dynamische Auflösung (geringes digitales Rauschen) des Datenerfassungssystems.

Neben der Qualität der aufgezeichneten Daten sind die erforderlichen Messdauern sicherzustellen. Die Korrelationsdauer für einen ausgewählten Mode bei stochastischer Anregung beträgt nach [25] $(\mathcal{G}_k \omega_k)^{-1}$. Ein Datensegment sollte mindestens diese Zeitdauer aufweisen, um den Einfluss von Abbruchfehlern (Leakage) bei der Ermittlung der Leistungsdichtespektren (siehe auch Abschnitt 5.1.2.1) deutlich zu minimieren. Bei der Annahme, dass für eine zuverlässige Schätzung der spektralen Leistungsdichten 100 Mittelungen notwendig sind, ergibt sich die Gesamtmessdauer aus

$$T = \max\left[\frac{100}{\vartheta_k \omega_k}\right] \tag{5.9}$$

Analog zur klassischen Modalanalyse müssen die Systemantworten an unterschiedlichen Orten der Struktur aufgenommen werden. Dabei sind die Anzahl, die Position sowie die Orientierung der zu messenden Freiheitsgrade festzulegen, um die interessierenden Eigenschwingformen eindeutig unterscheidbar aufzulösen. Sind mehrere Messreihen notwendig, um alle Datensätze aufzuzeichnen, ist die Verwendung von Referenzsensoren erforderlich, die ihre Positionen während der gesamten Untersuchung beibehalten.

Abbildung 5.3: Zusammensetzung der aufgezeichneten Strukturantworten

Als Ergebnis des messtechnischen Teils der Untersuchung liegen Zeitdatensätze von verschiedenen Messstellen vor, die sich, wie in Abbildung 5.3 dargestellt, aus unterschiedlichen Anteilen zusammensetzen.

Die weitere Aufgabe besteht nun darin, unter Anwendung geeigneter Identifikationsverfahren die strukturellen Moden aus dem zusammengesetzten Antwortspektrum zu separieren, sowie deren modale Parameter zu bestimmen. Als modale Parameter können Eigenkreisfrequenzen ω_{0k} , Dämpfungsgrade ϑ_k sowie Eigenschwingungsvektoren ψ_k ermittelt werden. Aufgrund fehlender Informationen über die Erregung ist die Ermittlung modaler Konstanten bzw. skalierter Eigenschwingungsvektoren in der Regel nicht möglich. Auf spezielle Verfahren der Ermittlung skalierter Eigenschwingungsvektoren auf Grundlage wiederholter Messungen mit Zusatzmassen (z.B. [54, 55]) soll hier nicht eingegangen werden.

5.1.2.2 Parameteridentifikation

Verfahren zur Identifikation modaler Parameter auf Grundlage gemessener Strukturantworten bei stochastischer Anregung existieren sowohl für den Zeit- als auch den Frequenzbereich. Einen Überblick über die unterschiedlichen Verfahren wird z.B. in [25, 26] gegeben. Für Abbildung 5.4 wurde aus [26] eine Darstellung übernommen, die Zusammenhänge veranschaulicht und einzelne Verfahren sowie deren zugrunde liegenden Techniken vorstellt.

Numerical techniques used:

FFT	fast Fourier transformation	SVD	singular value decomposition
LS	least squares fitting	EVD	eigenvector decomposition
QR	orthogonal decomposition		

Abbildung 5.4: Identifikationsverfahren der operativen Modalanalyse, aus [26]

Frequenzbereichsverfahren sind in der Regel nicht-parametrische Identifikationsverfahren. Ihnen liegen Schätzungen der Leistungsdichtespektren der Strukturantworten zugrunde (siehe auch [22, 56]). Ausgangspunkt für die Anwendung parametrischer Zeitbereichsverfahren können zum einen Schätzungen der Korrelationsfunktionen aber auch direkt die aufgezeichneten Zeitdatensätze sein. Im Rahmen der durchgeführten Untersuchungen wurden die Enhanced Frequency Domain Decomposition Technik (EFDD) als Frequenzbereichsverfahren sowie die Stochastik Subspace Identification Technik (SSI) als Zeitbereichsverfahren, direkt basierend auf gemessenen Zeitdatensätzen, angewendet. Im Folgenden sollen beide Verfahren kurz erläutert werden.

Frequenzbereichsverfahren: Frequency Domain Decomposition Technique (FDD)

Ausgangspunkt dieses von Brinker et al [57, 58, 59] im Jahre 2000 vorgestellten Verfahrens bildet die Darstellung des Übertragungsverhaltens mechanischer Systeme im Frequenzbereich bei stochastischer Anregung entsprechend Gleichung (4.69).

Erfolgt die Erregung des Systems durch zeitlich und örtlich unkorreliertes weißes Rauschen, was bedeutet, dass die dazugehörige Leistungsdichtematrix im Idealfall eine ausschließlich diagonal besetzte Matrix $\mathbf{S}_{ff}(j\Omega) = \mathbf{S}_{diag}$ ist, so kann zusammen mit der Darstellung der Übertragungsmatrix des allgemein gedämpften Systems entsprechend Gleichung (4.54) die Systemantwort beschrieben werden mit

$$\mathbf{S}_{qq}(j\Omega) = \sum_{k=1}^{n} \sum_{l=1}^{n} \left[\frac{\mathbf{R}_{k}}{-j\Omega - \lambda_{k}} + \frac{\overline{\mathbf{R}}_{k}}{-j\Omega - \overline{\lambda_{k}}} \right] \mathbf{S}_{diag} \left[\frac{\mathbf{R}_{l}}{j\Omega - \lambda_{l}} + \frac{\overline{\mathbf{R}}_{l}}{j\Omega - \overline{\lambda_{l}}} \right]^{T}.$$
 (5.10)

Das Leistungsdichtespektrum der Systemantworten lässt sich somit unter Berücksichtigung unbekannter Skalierungsfaktoren (Diagonalelemente der Matrix S_{diag}) als eine modale Superposition darstellen bzw. in modale Komponenten zerlegen. Die Diagonalelemente der Matrix S_{diag} können dabei frequenzinvariant (ideal weißes Rauschen) oder in Abhängigkeit der realen Gegebenheiten frequenzveränderlich sein ($S_{diag}(j\Omega)$). Nach [57, 59] ist die Darstellung der Systemantworten als Überlagerung modaler Komponenten auch dann möglich, wenn die Matrix S_{ff} einen Rangabfall aufweist, die Erregung also zum Teil örtlich korreliert und die Matrix nicht ausschließlich diagonal besetzt ist. Voraussetzung ist, dass bei einer beliebigen Frequenz Ω nur wenige Moden (meist ein oder zwei) einen signifikanten Anteil an der Systemantwort haben. Generell können aber bei einer zunehmend örtlich unkorrelierten Anregung (unabhängige natürliche Anregung an einer zunehmenden Anzahl von Freiheitsgraden) verbesserte Ergebnisse erzielt werden.

Die Leistungsdichtematrix der Systemantworten S_{qq} beschreibt das Antwortverhalten der Struktur in physikalischen Koordinaten **q**. Auch hier ist es möglich, entsprechend der Transformationsbeziehung (4.12), die Leistungsdichtematrix in modale Koordinaten **x** zu transformieren. Es folgt somit

$$\mathbf{S}_{qq}(j\Omega) = \mathbf{\Psi} \, \mathbf{S}_{xx}(j\Omega) \, \mathbf{\Psi}^T \,. \tag{5.11}$$

Die Matrizen in physikalischen und modalen Koordinaten sind über die Modalmatrix miteinander verknüpft. Da die einzelnen Moden in der Regel nicht miteinander korrelieren, ist die Spektralmatrix in modalen Koordinaten eine Diagonalmatrix. Die in der Modalmatrix zusammengefassten Eigenvektoren sind orthogonal. Gleichung (5.11) entspricht somit einer Singulärwertzerlegung der spektralen Leistungsdichtematrix. Wird die Singulärwertzerlegung für jeden aufgenommenen Frequenzschritt durchgeführt, so erhält man den Verlauf der Singularwerte über der Frequenz. Im Bereich der Resonanz wird der erste Singulärwert maximal und entspricht dem Verlauf des Autoleistungsdichtespektrums. Bei Resonanz ist der dazugehörige Singulärvektor gleich dem Eigenvektor. Für den Fall gekoppelter Moden werden auch die nachfolgenden Singulärwerte groß. Erfüllt die Anregung die bereits genannten Anforderungen, so ergibt der Verlauf der Singulärwerte eine Darstellung der Autoleistungsdichtefunktionen der entkoppelten Moden des Systems. Beispielhaft wird in Abbildung 5.5 eine Singulärwertzerlegung der spektralen Leistungsdichtematrizen der Systemantworten eines diskreten Schwingungssystems (Abbildung 4.1) dargestellt, wobei der Vorgang von Erregung und Datenerfassung rechnerisch simuliert wurde.

Eigenfrequenzen und Dämpfungen können anhand des durch die Singulärwertzerlegung ermittelten Autoleistungsdichtespektrums bestimmt werden (*Enhanced* Frequency Domain Decomposition, EFDD). Hierzu wird der Verlauf der Singulärwerte im Bereich der

Resonanz in den Zeitbereich transformiert. Die Größe des Bereiches wird über die Orthogonalitätseigenschaften (MAC-Kriterium, siehe Gleichung (5.14)) der dazugehörigen Singulärvektoren festgelegt. Bei gekoppelten Moden kann auch der Verlauf des zweiten Singulärwertes in den zu transformierenden Bereich mit einbezogen werden, wie in Abbildung 5.6 zu sehen ist. Als Ergebnis einer Transformation in den Zeitbereich liegt die Autokorrelationsfunktion der betrachteten Eigenschwingung vor. Aus ihr lassen sich mit Hilfe einfacher Verfahren Eigenfrequenz und Dämpfung bestimmen (siehe Abbildung 5.7).

Abbildung 5.5: Verlauf der Singulärwerte am Beispiel eines diskreten Schwingungssystems (rechnerische Simulation)

Abbildung 5.6: Ausgewählter Verlauf der Singulärwerte zur Transformation in den Zeitbereich bei gekoppelten Moden (Berücksichtigung der ersten und zweiten Singulärwerte)

Abbildung 5.7: Ermittelte Autokorrelationsfunktion und daraus resultierende Bestimmung der Dämpfung über das logarithmische Dekrement sowie der Eigenfrequenz über die Periodendauer

Zeitbereichsverfahren: Stochastic Subspace Identifikation (SSI)

Bei herkömmlichen Zeitbereichsverfahren erfolgt die Schätzung der modalen Parameter durch eine Anpassung expotentiell abklingender Ansatzfunktionen entsprechend Gleichung (5.6). Bei der klassischen Modalanalyse bilden die Impulsantwortfunktionen die Datenbasis für diese Anpassung. Werden die Systemantworten durch eine stochastische Anregung hervorgerufen, beschränkt sich die zugrunde liegende Datenbasis auf Korrelationsfunktionen (siehe Abschnitt 4.4.2.1). Aufgrund der gleichen Vorgehensweise finden einzelne Anpassungsverfahren sowohl in der operativen als auch der klassischen Modalanalyse Anwendung. Bei den herkömmlichen Zeitbereichsverfahren erfolgt keine zusätzlich Modellierung des Rauschens. Bei der Anpassung wird das vorhandene Rauschen durch zusätzliche Moden, so genannte Rausch-Moden, berücksichtigt. Im Unterschied dazu wird bei den SSI-Verfahren die Modellierung des Rauschens mit in die Anpassung einbezogen, was im Anpassungsergebnis zu einer reduzierten Anzahl von Rausch-Moden führt.

Die hier verwendeten SSI-Verfahren basieren direkt auf den Zeitdatensätzen der Systemantworten und nutzen die Vorteile der Zustandsraumdarstellung. In der zeitdiskreten Formulierung kann das Zustandsraum-Modell beschrieben werden mit

$$\mathbf{x}_{t+1} = \mathbf{A}_{\mathbf{D}} \mathbf{x}_t + \mathbf{w}_t$$

$$\mathbf{y}_t = \mathbf{C} \mathbf{x}_t + \mathbf{v}_t$$
 (5.12)

Die erste Modellgleichung wird als Zustandsgleichung bezeichnet und beschreibt das dynamische Verhalten des mechanischen Systems. Die zweite Gleichung ist die Beobachtungs- oder Messgleichung. Sie legt fest, welche Teile (Freiheitsgrade) des mechanischen Systems beobachtet bzw. gemessen werden können. Die gemessene Antwort des Systems \mathbf{y}_t wird von den zwei stochastischen Prozessen \mathbf{w}_t und \mathbf{v}_t generiert. Das Prozessrauschen \mathbf{w}_t ist die Anregung des mechanischen Systems, wohingegen das Messrauschen \mathbf{v}_t eine direkte Störung der Systemantworten darstellt. Das dynamische Verhalten des Systems wird durch die Zustandsmatrix $\mathbf{A}_{\mathbf{D}}$ beschrieben, der Vektor \mathbf{x}_t ist der Zustandsvektor des Systems. Im Verlauf der Identifikation erfolgt die Ermittlung der Zustandsvariablen \mathbf{x}_t (Projektion) sowie der Matrizen $\mathbf{A}_{\mathbf{D}}$ und \mathbf{C} (Regression) aus denen abschließend die modalen Parameter ermittelt werden können. Eine ausführliche Darstellung zur Theorie der SSI-Verfahren kann [60] entnommen werden.

Abbildung 5.9: Synthetisiertes Autoleistungsdichtespektrum am Freiheitsgrad 1

Im Rahmen der Untersuchungen wurden drei unterschiedliche SSI-Algorithmen angewendet: der Unweighted Principal Component Algorithmus (UPC), der Principal Component Algorithmus (PC) sowie der Canonical Variate Analysis Algorithmus (CVA). Die Auswahl eines Algorithmus in Abhängigkeit von den Anregungsbedingungen kann die Qualität der Parameterschätzung erhöhen. In der praktischen Anwendung des Verfahrens werden die Moden (bzw. Modelle) aus einem auch für die klassische Modalanalyse typischen Stabilitätsdiagramm ausgewählt. Die Dimension des Zustandsmodells sollt dabei doppelt so groß sein wie die Anzahl der berücksichtigten Moden. In Abhängigkeit von festgelegten Kriterien kann die Stabilität der Moden bei unterschiedlichen Modellordnungen (Dimensionen) die Auswahl des optimalen Modells unterstützen. Stabilitätsdiagramm und ein synthetisiertes Leistungsdichtespektrum für das bereits beschriebene diskrete Schwingungssystem sind beispielhaft in den Abbildungen 5.8 und 5.9 dargestellt.

5.2 Rechnerische Modalanalyse

Wie in Abbildung 5.1 dargestellt sind die Vorgehensweisen bei der experimentellen und rechnerischen Ermittlung des Systemverhaltens unterschiedlich. Während die experimentelle Modalanalysen ausgehend von experimentell ermittelten Frequenzgängen die modalen Parameter eines dynamischen Systems im allgemeinen mit Hilfe von Kurvenanpassungsverfahren bestimmt, basiert die rechnerische Modalanalyse auf der Lösung des Eigenwertproblems der Bewegungsgleichungen entsprechend Gleichung (4.1).

In den meisten Fällen wird die rechnerische Modalanalyse unter Verwendung der Finite-Elemente-Methode durchgeführt. Voraussetzung ist hierfür die Vorgabe bzw. Kenntnis von Masse-, Steifigkeits- und Dämpfungsverteilung.

Aufgrund der oft ungenügenden Vorabkenntnis des Dämpfungsverhaltens beschränkt man sich in diesem Stadium der Untersuchungen meist ausschließlich auf eine Modellierung von Masse und Steifigkeit und somit auf eine Ermittlung der (dazugehörigen) ungedämpften Bewegungsgleichungen (4.10) des diskretisierten dynamischen Systems. Das zu lösende Eigenwertproblem ist somit ein reelles Eigenwertproblem, als Ergebnis werden rein imaginäre Eigenwertpaare (4.11) und reelle Eigenvektoren ermittelt. Die Berücksichtigung einer proportionalen (z.B. RAYLEIGH'SCHEN) Dämpfung führt ebenfalls auf ein reelles Eigenwertproblem, wobei die ermittelten Eigenfrequenzen und Eigenvektoren identisch denen des ungedämpften Systems sind.

Zur Lösung des Eigenwertproblems können verschiedene Verfahren angewendet werden. Am gebräuchlichsten ist hierbei die LANCZOS'SCHE Methode. Weiterführende Informationen zu den Lösungsverfahren sind der Literatur z.B. [2] zu entnehmen.

5.3 Vergleich rechnerischer und experimenteller Modalanalyse

Sowohl die rechnerische als auch die experimentelle Modalanalyse führen zu einer Beschreibung des Systemverhaltens auf Grundlage des modalen Modells. Somit können die rechnerisch (theoretisch) und die experimentell ermittelten Modellparameter miteinander verglichen werden. Bei einem Vergleich werden in den meisten Fällen Unterschiede zwischen der rechnerischen Vorhersage und der experimentellen Identifikation auftreten. Ursachen können zum einen im Bereich der experimentellen Modalanalyse liegen und resultieren aus Mess- und Auswertefehlern. Diese Fehler können jedoch nach dem heutigen Stand der Technik weitestgehend vermieden werden. Es ist aber anzumerken, dass es nicht immer möglich ist, experimentelle Untersuchungen unter entsprechend idealen Bedingungen durchzuführen. Insbesondere bei komplexen Strukturen mit einer hohen Modendichte können z.B. Einschränkungen bei der Wahl geeigneter Erregerpunkte oder Einschränkungen bei der Anzahl der zu messenden Strukturpunkte zu Problemen bei der nachfolgenden Identifikation bezüglich der vollständigen Erfassung aller Eigenschwingungen eines festgelegten Frequenzbereiches führen.

Eine weitere Ursache für Unterschiede zwischen Rechnung und Experiment können Fehler in der Finite-Element-Modellierung sein. Mögliche Fehlerquellen bei der Modellierung werden häufig in Modellstruktur-Fehler und in Modellparameter-Fehler unterteilt. Zu den Modellstruktur-Fehlern zählen fehlerhafte Annahmen bei der Beschreibung des strukturmechanischen Verhaltens (z.B. Verwendung eines ungeeigneten Elementtyps) sowie Diskretisierungsfehler (zu geringe Netzdichte). Ebenso zählen hierzu Probleme, die bei der Abschätzung von Systemrandbedingungen auftreten können, insbesondere wenn ein aus einem Gesamtsystem herausgelöstes Rechenmodell betrachtet wird. Modellparameter-Fehler werden hingegen durch fehlerbehaftete Annahmen von Modellparametern wie z.B. E-Modul, Flächenträgheitsmomenten usw. verursacht. Eine weitere Fehlerquelle des theoretischen Modellierens sowie auch der experimentellen Identifikation kann eine durchgeführte Linearisierung eines möglichen nichtlinearen Strukturverhaltens durch Vorgabe der linearen Gleichungsstruktur (4.1) sein.

Doch nicht nur die beschriebenen Fehler haben einen Einfluss auf den Vergleich von Experiment und Berechnung. Auch haben berechnete und experimentell ermittelte Eigenvektoren "naturgemäß" unterschiedliche Eigenschaften. So ist die Ordnung p des experimentell ermittelten modalen Modells normalerweise kleiner als die Anzahl n der auf dem System verteilten Messpunkte (p>n). Man spricht hierbei auch von einem unvollständigen experimentellen Modell. Weiterhin ist die Ordnung m des aus der Finite-Element-Methode resultierenden Rechenmodells in der Regel viel größer als die des experimentellen Modells, woraus folgt, dass m>n>p. Für die modale Betrachtungsweise folgt daraus, dass die Eigenschwingungsvektoren nicht identisch sind und somit die des Rechenmodells in geeigneter Weise reduziert oder die experimentell identifizierten erweitert werden müssen.

Auch können im Gegensatz zu den berechneten Eigenvektoren experimentell identifizierte Eigenschwingungsvektoren in Abhängigkeit vom zugrundeliegenden Anpassungsmodell komplex sein und müssen so für einen Vergleich auf "äquivalente reelle Eigenvektoren" transformiert werden. Eine sehr einfache Möglichkeit dieser Transformation ist die Berechnung des Betrages jedes Elementes des komplexen Eigenvektors multipliziert mit dem Vorzeichen des Realteils des entsprechenden Elementes. Obwohl dieses Vorgehen eine sehr grobe Approximation darstellt, wird es insbesondere bei leicht gedämpften Strukturen mit nur geringen Streuungen des Phasenwinkels oft angewendet. Andere Verfahren (z.B. [61]) benutzen eine globale Transformationsmatrix für alle Eigenvektoren, um die äquivalenten reellen Eigenvektoren zu ermitteln. In [41] wird eine Methode vorge-

schlagen, nach der für die einzelnen Eigenvektoren jeweils unterschiedliche Transformationen durchgeführt werden. Dabei ist der passendste äquivalente reelle Eigenvektor $\tilde{\Psi}_k$ derjenige, der die maximale Korrelation mit dem dazugehörigen komplexen Eigenvektor Ψ_k aufweist. Abgeleitet vom Modal Assurance Criterion (MAC) kann dieses dargestellt werden in der Form

$$\frac{\left|\widetilde{\boldsymbol{\Psi}}_{k}^{T}\boldsymbol{\Psi}_{k}\right|}{\left\|\widetilde{\boldsymbol{\Psi}}_{k}\right\|^{2}\left\|\boldsymbol{\Psi}_{k}\right\|^{2}} = \max, \text{ wobei } \widetilde{\boldsymbol{\Psi}}_{k} = \widetilde{\boldsymbol{\Psi}}_{k0} + \varepsilon \boldsymbol{\rho} \qquad .$$
(5.13)

Der Vektor $\tilde{\Psi}_{k0}$ ist dabei eine Ausgangsschätzung für den äquivalenten reellen Vektor, ρ ist ein frei wählbarer Vektor. Die skalare Größe ε wird dann im Verlauf der Maximierung von (5.13) ermittelt. In [62] wird gezeigt, dass die Maximumforderung in (5.13) wie folgt erreicht werden kann: der gesuchte äquivalente reelle Eigenvektor $\tilde{\Psi}_k$ ergibt sich aus dem Realteil des derart gedrehten komplexen Eigenvektors Ψ_k , dass die Norm seines Realteils maximal wird.

Es ist zu bemerken, dass so die ermittelten "äquivalenten reellen Eigenvektoren" den Eigenvektoren des dazugehörigen ungedämpften bzw. proportional gedämpften Systems nur annähernd entsprechen. Im Rahmen der hier vorgestellten Untersuchungen wird die einfache Form der Umwandlung von komplexen in reelle Eigenvektoren (Betrag der Elemente des komplexen Vektors mit Vorzeichen des Realteils) angewendet.

Nach erfolgter Bearbeitung von rechnerisch und experimentell ermittelten Eigenvektoren können beide miteinander verglichen werden. Bei der Korrelation der modalen Daten kommt diesem Vergleich eine große Bedeutung zu. Nur auf Grundlage dieses Vergleiches ist eine Zuordnung von Eigenfrequenzen und Dämpfungsgraden von Experiment und Berechnung möglich. Eigenvektoren besitzen eine Vielzahl von Komponenten und sind normierungsabhängig. So gibt es verschiedene Methoden, die einen normierungsunabhängigen Wert für die Übereinstimmung reeller Eigenvektoren ermitteln. Die am häufigsten verwendete Methode zum Vergleich von Eigenvektoren ist das Modal Assurance Criterion (MAC). Der MAC-Wert beschreibt den Winkel zwischen zwei Vektoren und prüft damit die Orthogonalitätseigenschaften eines Eigenvektorpaares in der Form

$$MAC(k,l) = \frac{\left(\boldsymbol{\Psi}_{ek}^{T}\boldsymbol{\Psi}_{al}\right)^{2}}{\left(\boldsymbol{\Psi}_{ek}^{T}\boldsymbol{\Psi}_{ek}\right)\left(\boldsymbol{\Psi}_{al}^{T}\boldsymbol{\Psi}_{al}\right)} \quad .$$
(5.14)

Darin sind ψ_{ek} der k-te experimentell ermittelte und ψ_{al} der l-te analytisch (rechnerisch) ermittelte Eigenvektor. Sind die zuzuordnenden experimentell und analytisch ermittelten Eigenvektoren annähernd identisch und haben die gleiche Position in der Modalmatrix, so ist die Hauptdiagonale der MAC-Matrix mit Elementen $MAC(k,k) \approx 1$ belegt, die Außerdiagonalelemente haben Werte nahe Null. Anhand der Belegung der MAC-Matrix ist eine Zuordnung von experimentell bestimmten und berechneten Eigenvektoren möglich, insbesondere wenn experimentell und rechnerisch ermittelte Eigenvektoren bezüglich der zugeordneten Eigenfrequenzen nicht in der gleichen Reihenfolge auftreten. Ist die Massenmatrix des dynamischen Systems bekannt, kann auch durch die Anwendung der Normalised Cross Orthogonality (NCO) eine Zuordnung von Eigenvektoren erfolgen. Dieses Verfahren nutzt die Eigenschaften der verallgemeinerten Orthogonalität von Eigenvektoren bezüglich der Massenmatrix.

Sind die Eigenvektoren aus Messung und Rechnung einander zugeordnet, so kann mit dem Coordinate Modal Assurance Criterion (COMAC) die Übereinstimmung in den einzelnen Koordinaten des zugeordneten Eigenvektorpaares ermittelt werden. Dieses Kriterium ermöglicht somit eine Bewertung der örtlichen Modellabweichung.

Die mit Hilfe der beschriebenen Methoden (MAC, NCO) erfolgte Zuordnung von experimentell und rechnerisch ermittelten Eigenvektoren bildet die Grundlage für den Vergleich der entsprechenden rechnerisch und experimentell ermittelten Eigenfrequenzen und die Zuordnung der experimentell ermittelten modalen Dämpfungsgrade.

In [50] werden Methoden vorgeschlagen, die die modalen Massen und Steifigkeiten in der Modellkorrelation mit berücksichtigt und somit einen vollständigen Vergleich des rechnerisch und experimentell ermittelten modalen Modells ermöglicht. Durch die Betrachtung der globalen modalen Parameter, modale Masse und modale Steifigkeit, wird ein direkter Bezug zu den Frequenzgängen und damit zu den Systemmatrizen geschaffen.

Eine weitere Möglichkeit des Modellvergleiches ist eine Zuordnung von berechneten Eigenvektoren und den aus experimentellen Frequenzgängen für jede Frequenzlinie ermittelten Operating Deflection Shapes (ODS). Dieser Vergleich basiert auf dem Modal Assurance Criterion (MAC) (Gleichung (5.14)) und überprüft die Orthogonalitätseigenschaften zwischen den berechneten Eigenvektoren und den "Betriebsschwingungsvektoren" (ODS) (Abbildung 5.10). Besonders beim Auftreten gekoppelter Moden wird dieser Vergleich durch Einfluss benachbarter modaler Anteile auf die ermittelte "Betriebsschwingform" gestört. Dieser Vergleich ist aber durchaus praktikabel, um bei komplexen Systemen mit unsicheren Zuordnung einen Überblick über mögliche Übereinstimmungen zu erhalten, welche die Grundlage für weiterführende Vergleiche bilden können.

Operational Deflection Shapes (ODS)

Abbildung 5.10: Vergleich berechneter Eigenschwingungsvektoren und experimentell ermittelter Betriebsschwingungsvektoren auf Grundlage des MAC-Wertes

5.4 Berechnung erzwungener Schwingungen

Ausgehend von der Zuordnung und dem Vergleich von Eigenschwingungsvektoren und Eigenfrequenzen auf Grundlage von MAC-Werten kann eine Erweiterung des Modellvergleiches durch den Vergleich von experimentell bestimmten und berechneten Frequenzgängen (Übertragungsfunktionen) erfolgen. Während die gemessenen Frequenzgänge nach einer experimentellen Untersuchung vorliegen, müssen die entsprechenden berechneten Frequenzgänge mit Hilfe einer Finite-Elemente-Berechnung ermittelt werden.

Grundlage bildet dabei die Bewegungsgleichung in Form von Gleichung (4.44) unter Einbeziehung von Dämpfungseffekten (siehe auch Abschnitt 4.3) und der Erregung. Die Erregung wird zur rechnerischen Ermittlung des Frequenzganges als Einheitserregung (1N) im zu berechnenden Frequenzbereich am Ort der Erregung im Experiment implementiert. Zur Modellierung der Dämpfungseffekte werden oft die experimentell ermittelten modalen Dämpfungsgrade verwendet. Wie bereits beschrieben ermöglicht die Verwendung des modalen Dämpfungskonzeptes wie auch der RAYLEIGH'SCHEN Dämpfung eine Entkopplung der Bewegungsgleichungen und somit die Anwendung des effektiven Berechnungsverfahrens der modalen Superposition [2]. Die Gesamtlösung resultiert dabei aus einer Summation der einzelnen modalen Anteile entsprechend den Gleichungen (4.41) und (4.56). Erfolgt hingegen eine Modellierung nicht-proportionaler Dämpfungseffekte, müssen andere Lösungsverfahren angewendet werden. In vielen Finite-Element-Berechnungsprogrammen ist hierfür ein direkter Löser implementiert, der die Lösung des Gleichungssystems (4.44) für die einzelnen Frequenzschritte auf Grundlage komplexer Matrizenalgebra ermittelt. Insbesondere bei großen Rechenmodellen und einer großen Anzahl an zu berechnenden Frequenzschritten (vorwiegend im unteren Frequenzbereich) ist diese Methode aber weitaus kostenintensiver als die Methode der modalen Superposition. Für die Lösung von Systemgleichungen mit nicht-proportionaler Dämpfung wurde in [15] ein effektives Berechnungsverfahren auf Grundlagen einer Entkopplung im Zustandsraum (siehe auch Abschnitt 4.2.2) entwickelt und in einem Finite-Element-Programm implementiert. Ausgangspunkt für diese Entwicklung war die Berechnung erzwungener Schwingungen von Gesamtschiffsstrukturen unter Annahme nicht-proportionaler Dämpfungsverteilung.

5.5 Zusätzliche Möglichkeiten des Modellvergleiches

Experimentell und rechnerisch ermittelte Frequenzgänge können in einfachster Form visuell miteinander verglichen werden. Hauptaugenmerk ist dabei auf die Schwingungsamplituden zu richten. Diese werden neben der Modellierung der Dämpfung auch durch die Modellierung von Masse und Steifigkeit beeinflusst. Stimmen berechnete und experimentell ermittelte Eigenfrequenzen (Bewertung nach erfolgter Zuordnung der Eigenvektoren) überein, kann ein Vergleich der Frequenzgänge in Resonanznähe bezüglich Dämpfung, Masse und Steifigkeit aussagekräftig sein. Bei größeren Abweichungen in den Eigenfrequenzen ist dieser Vergleich nur eingeschränkt möglich. Sinnvoll ist dann ein erneuter Vergleich nach erfolgter Anpassung des Berechnungsmodells (siehe z.B. [46, 47, 48, 49]).

Bei einem Vergleich von Frequenzgängen ist auf die örtliche Übereinstimmung der Strukturpunkte in Messung und Rechnung zu achten. Schon geringe örtliche Abweichungen haben einen großen Einfluss auf das dargestellte Übertragungsverhalten. Bei Anwendung der Methode der modalen Superposition ist außerdem der Einfluss der Anzahl der berücksichtigten Eigenschwingungen auf das berechnete Übertragungsverhalten zu beachten.

6. Untersuchungen globaler Schiffsstrukturen

In diesem Kapitel werden die Ergebnisse der Untersuchungen zum dynamischen Verhalten globaler Schiffsstrukturen am Beispiel von drei unterschiedlichen Schiffstypen vorgestellt. Die Zielstellungen und Vorgehensweisen wurden bereits im Abschnitt 3.1 beschrieben. Das Kapitel umfasst die Darstellung von Ergebnissen der rechnerischen Modalanalyse (Eigenschwingungsberechnungen), der experimenteller Modalanalyse bei Anwendung klassischer und operativer Verfahren sowohl unter Werft- als auch unter Probefahrtsbedingungen, der Auswertung von Hochfahrvorgängen sowie von Ergebnissen aus Zwangsschwingungsberechnungen. Die Ergebnisse werden abschließend verfahrensund schiffsspezifisch zusammengefasst und bewertet.

Die Grundlage für die Bewertung der experimentellen Identifizierbarkeit der Eigenschwingungsgrößen in Abhängigkeit der verwendeten Verfahren und der Umgebungsbedingungen bilden die rechnerisch ermittelten Eigenschwingungsgrößen. Deshalb soll mit der Darstellung dieser Ergebnisse begonnen werden.

6.1 Rechnerische Ermittlung des Eigenschwingungsverhaltens

Die rechnerische Ermittlung des Eigenschwingungsverhaltens erfolgte auf Grundlage von Finite-Element-Modellen der globalen Schiffsstrukturen, die von den Werften für diese Untersuchungen bereitgestellt wurden. Aus Gründen der besseren Vergleichbarkeit werden die Eigenschwingformen in den im Rahmen der experimentellen Untersuchungen erfassten Freiheitsgraden dargestellt. Zur Ansicht der vollständigen berechneten Eigenschwingformen wird auf den Anhang verwiesen.

6.1.1 Containerschiff Typ CV2500

Das für die Berechnungen verwendete Finte-Element-Modell wurde von der Aker MTW Werft zur Verfügung gestellt und stimmt prinzipiell mit den auf der Wismarer Werft gefertigten Schiffen überein. Die dem Berechnungsmodell zugrunde liegende (zusätzliche) Massenverteilung von Tankinhalt und Ballast entspricht dem Zustand bei Probefahrt. Die wirksamen hydrodynamischen Massen wurden mit dem Verfahren von Lewis [3] berechnet und auf die entsprechenden FE-Knotenpunkte aufgebracht. Da diese Zusatzmassen schwingformabhängig sind, ist die Modellierung streng genommen nur für eine Schwingform korrekt. In der Regel werden die vertikal mitschwingenden Wassermassen auf den vierten Schwingungsgrad (5-Knoten Biegeschwingung, vertikal) bezogen. Da mit zunehmendem Schwingungsgrad die Wirkung der hydrodynamischen Massen abnimmt, sind die für die Schwingungsgrade eins bis drei berücksichtigten hydrodynamischen Massen zu klein und für alle höheren Schwingungsrade zu groß. In [63] ist eine Vorgehensweise zur Korrektur der berechneten Eigenfrequenzen für die vertikalen Biegeschwingungen vorgeschlagen. In Tabelle 6.1 sind die ersten acht berechneten Eigenfrequenzen ohne und mit Korrektur für die vertikalen Schwingungsgrade dargestellt. Die Berechnung der Korrekturparameter kann im Anhang Tabelle A6.1 entnommen werden. Die Tabelle 6.1 enthält weiterhin die auf Grundlage einer Fluid-Struktur-Kopplung (BEM) berechneten Eigenfrequenzen, die bezüglich der hydrodynamischen Massen für alle Schwingformen korrekt sind. Diese Berechnungen wurden vom Germanischen Lloyd für das Containerschiff VWS**8 (Stralsund) durchgeführt, die Ergebnisse sind einem entsprechenden GL-Bericht [64] entnommen. Trotz unterschiedlicher konstruktiver Detaillösungen auf beiden Werften, ist von einem sehr ähnlichen dynamischen Verhalten auszugehen. Darum scheint eine Gegenüberstellung der Grundschwingungen des Schiffskörpers gerechtfertigt.

Die dazugehörigen berechneten Eigenschwingformen, reduziert auf die Freiheitsgrade der experimentellen Untersuchungen, werden in Abbildung 6.1 gezeigt. In Abbildung 6.2 sind zusätzlich zwei Eigenschwingformen aus dem höheren Frequenzbereich dargestellt. Es sind die niedrigsten elastischen Moden der Substruktur Deckshaus (Verwindung) und für die Bewertung des Schwingungsverhaltens hinsichtlich des Einflusses auf den Menschen (da Aufenthalts- und Arbeitsbereich) besonders wichtig. Die berechneten Eigenschwingformen, dargestellt am vollständigen FE-Modell, können im Anhang zum Kapitel 6 den Abbildungen A6.1 und A6.2 entnommen werden.

Mada Na	Desekasikuma	Eigenfrequenzen [Hz]					
wode-nr.	Beschreibung	FEM	FEM (korr.)	BEM			
1	Torsion (1-Knoten)	0.92	0.92	1.01			
2	Biegung vert. (2-Knoten)	1.16	1.07	1.05			
3	Biegung horiz. (2-Knoten)	1.53	1.53	1.50			
4	Biegung vert. (3-Knoten)	2.28	2.16	2.08			
5	Biegung horiz. (3-Knoten)	2.96	2.96	2.90			
6	Torsion (2-Knoten)	3.10	3.10	3.10			
7	Biegung vert. (4-Knoten)	3.30	3.22	3.14			
8	Biegung vert. (5-Knoten)	3.99	3.99	4.15			

Tabelle 6.1: Rechnerisch ermittelte Eigenfrequenzen für das Containerschiff TypCV2500

 bei unterschiedlicher Berücksichtigung der hydrodynamischen Massen

Abbildung 6.1: Rechnerisch ermittelte Eigenschwingformen des Containerschiffes Typ CV2500, Darstellung in den Freiheitsgraden des Messmodells bei klassischer Modalanalyse (Abbildung 6.5)

Abbildung 6.2: Rechnerisch ermittelte Eigenschwingformen des Containerschiffes Typ CV2500 im höheren Frequenzbereich mit elastischer Verformung des Deckshauses

6.1.2 RoRo-Schiff FSG**0

Das für die Berechnungen verwendete Finite-Element-Modell wurde von der Flensburger Schiffbau Gesellschaft (FSG) zur Verfügung gestellt und entspricht dem Zustand bei Probefahrt. Die Berücksichtigung der hydrodynamischen Massen basiert auf dem Verfahren nach LEWIS [3]. Auf einen Korrektur der Eigenfrequenzen der vertikalen Schwingungsgrade wurde verzichtet.

Mode-Nr.	Beschreibung	Eigenfrequenz [Hz]
1	Biegung vert. (2-Knoten)	1.56
2	Biegung horiz. (2-Knoten)	1.84
3	Biegung vert. (3-Knoten)	2.87
4	Torsion (1-Knoten)	2.99
5	Torsion (1-Knoten)+ Biegung horiz.	3.52
6	Biegung horiz. (3-Knoten)	3.65
7	Torsion (2-Knoten)	4.08
8	Biegung vert. (4-Knoten)	4.29
9	Torsion (2-Knoten), + Biegung horiz.	4.50
10	Biegung vert. (5-Knoten)	5.37

In Tabelle 6.2 sind die ersten 10 berechneten Eigenfrequenzen dargestellt. Abbildung 6.3 zeigt die dazugehörigen Eigenschwingformen in den Messfreiheitsgraden. Die berechneten vollständigen Eigenschwingformen können Abbildung A6.3 (Anhang zum Kapitel 6) entnommen werden.

Abbildung 6.3: Berechnete Eigenschwingformen des RoRo-Schiffes FSG**0, Darstellung in den Freiheitsgraden des im Rahmen der Werftmessung verwendeten Messmodells (Abbildung 6.6)

6.1.3 RoRo-Schiff FSG**1

Bezüglich der Berechnung des Eigenschwingungsverhaltens dieses Schiffes gelten die gleichen Angaben wie für des Schiff FSG**0 (siehe Abschnitt 6.1.2). In Tabelle 6.3 sind die ersten fünf berechneten Eigenfrequenzen dargestellt.

Mode-Nr.	Beschreibung	Eigenfrequenz [Hz]
1	Biegung vert. (2-Knoten)	1.78
2	Biegung horiz. (2-Knoten)	2.26
3	Biegung horiz. (2-Knoten) + Torsion	2.61
4	Biegung vert. (3-Knoten)	3.02
5	Torsion (1-Knoten)	3.07

Abbildung 6.4: Finite-Element-Modell und berechnete Eigenschwingformen des RoRo-Schiffes FSG**1, Darstellung in den Freiheitsgraden des bei Probefahrt verwendete des Messmodells Abbildung 6.4 zeigt sowohl das verwendete Finite-Element-Modell als auch die dazugehörigen Eigenschwingformen in den Freiheitsgraden der experimentellen Untersuchung während der Probefahrt. Da bei diesem Schiffstyp die globalen Eigenschwingungen des Schiffskörpers stark mit den Eigenschwingungen der großen, freitragenden Decksstrukturen gekoppelt sind, erfolgt aus Gründen der Anschaulichkeit keine Darstellung der Eigenschwingungen im vollständigen Finite-Element-Modell.

6.2 Anwendbarkeit von experimentellen Identifikationsverfahren in Abhängigkeit von Untersuchungsbedingungen

Wie allgemein bei mechanischen Systemen beeinflussen auch bei den globalen Schiffsstrukturen variable Systemgrößen die dynamischen Eigenschaften. Variable Systemgrößen sind bei Schiffen vorwiegend die wirksame Gesamtmasse sowie ihre Verteilung. Hierzu zählen die Ladung, Ballast (Ballastwasser und Treibstoff) sowie die hydrodynamischen Massen. Werden Untersuchungen unter Werftbedingungen durchgeführt, so ist diese Massebelegung meist nicht näher definiert, da Ballastwasser und Treibstoffe je nach technischen Erfordernissen vorhanden sind und verteilt werden. Bedingt durch die geringe Wassertiefe und den Einfluss der Uferbefestigung (Werftkai) ist auch die Bestimmung von hydrodynamischen Massen unsicher. Rechenmodelle, die diese besonderen Gegebenheiten berücksichtigen, sind meist nicht verfügbar. So ist in der Regel auch nur ein eingeschränkter Vergleich zwischen Rechnung und Messung möglich, da insbesondere Abweichungen in den Eigenfrequenzen auftreten können. Die dazugehörigen Schwingformen werden weniger beeinflusst. Einflüsse der Vertäuung des Schiffes auf identifizierte Dämpfungsparameter sind möglich. Obwohl Werftbedingungen stark von realen Einsatzbedingungen abweichen, eignen sich Messungen unter diesen Gegebenheiten dennoch, um die Anwendbarkeit von Mess- und Identifikationsverfahren zu testen, da insbesondere zu arbeitsfreien Zeiten die Bedingungen für experimentelle Untersuchungen ideal sind. Experimentelle Untersuchungen im Rahmen von Probefahrten ermöglichen einen Vergleich von experimentellen und rechnerischen Ergebnissen, da für diese definierten Bedingungen (Ballastzustand) entsprechende Rechenmodelle vorhanden sind. Somit ist eine Bewertung der Vorhersagegenauigkeit der Rechenmodelle möglich. Der Einfluss von Ladung insbesondere auf das Dämpfungsverhalten kann nur unter realen Einsatzbedingungen (Liniendienst) ermittelt werden.

Im Rahmen der hier vorgestellten Untersuchungen kamen zwei experimentelle Verfahren zum Einsatz, die hinsichtlich ihrer Anwendbarkeit Unterschiede aufweisen. Die klassische Modalanalyse basiert auf einer messtechnischen Erfassung von Anregung und Strukturantwort und erfordert eine künstliche Erregung der Struktur. Diese wurde in den hier vorgestellten Untersuchungen durch eine große Erregermasse (ca. 650 kg) realisiert, die als Massependel oder auf Schienen rollend zur Anregung genutzt wurde. In beiden Fällen war die Unterstützung durch einen Kran erforderlich, so dass die Anwendung dieses Verfahrens auf Untersuchungen unter Werftbedingungen beschränkt blieb. Zusätzliche Gründe für diese Beschränkung waren Bedenken vom Standpunkt der Sicherheit sowie die verstärkte zusätzliche Wellenanregung der Struktur im Schiffsbetrieb, welche durchaus in der Größenordnung der künstlich eingebrachten Erregung liegen kann und damit die Qualität der ermittelten Frequenzgänge beeinträchtigt.

Die operative Modalanalyse basiert auf der experimentellen Ermittlung ausschließlich der Systemantworten bei natürlicher Anregung, hauptsächlich durch Wind und Wellen. Somit gab es hinsichtlich des Einsatzes keine Einschränkungen, so dass das Verfahren für die Untersuchungen unter Werft- und Einsatzbedingungen angewendet wurde. Somit war es möglich, sowohl die Anwendbarkeit dieses Verfahrens im Vergleich zur klassischen Modalanalyse zu untersuchen, als auch dynamische Kennwerte der Schiffsstruktur unter Betriebsbedingungen zu ermitteln. Die Wahrscheinlichkeit einer intensiveren stochastischen Anregung ist unter Einsatzbedingungen jedoch höher als unter Werftbedingungen.

6.3 Anwendung der klassischen Modalanalyse unter Werftbedingungen

6.3.1 Durchführung der experimentellen Untersuchungen

Ist es für die experimentelle Bestimmung von Eigenfrequenzen und Dämpfungsparametern ausreichend, einzelne Frequenzgänge zu ermitteln, so müssen zur Ermittlung der dazugehörigen Eigenschwingformen (Eigenvektoren) zusätzliche Frequenzgänge an in einem Messmodell festgelegten Strukturpunkten aufgenommen werden. Anzahl und Verteilung dieser Messstellen werden mit dem Ziel festgelegt, Eigenschwingformen räumlich so aufzulösen, dass eine eindeutige Unterscheidbarkeit im betrachteten Frequenzbereich gewährleistet ist und ein Vergleich mit berechneten Eigenschwingungen somit möglich wird. Auf Grundlage des MAC-Kriteriums (siehe Gleichung (5.14)) sowie berechneter Eigenschwingformen ist es möglich, die Messstellen bzw. die benötigten Komponenten des Eigenvektors rechnerisch so zu ermitteln, dass eine optimale Anordnung der Messstellen bei einer bekannten (meist begrenzten) Anzahl an Sensoren realisiert werden kann. Die hierzu durchgeführten Untersuchungen sowie Anwendungen am Beispiel eines Containerschiffes sind in [65] beschrieben.

Die klassische Modalanalyse wurde insgesamt an 5 Containerschiffen und einem RoRo-Schiff durchgeführt (siehe auch Tabelle 3.1). Die Abbildungen 6.5 und 6.6 zeigen die verwendeten Messmodelle für das Containerschiff Aker**9 und für das RoRo-Schiff FSG**0. Das Messmodell von Aker**9 war das umfangreichste der untersuchten Containerschiffe. Die Systemantworten wurden am Schiffskörper in y- und z-Richtung sowie am Deckshaus zusätzlich in x-Richtung ermittelt. Beim Containerschiff VWS**8 konnten am Schiffskörper an einer reduzierten Anzahl an Messstellen nur Systemantworten in z-Richtung ermittelt werden. Bei den Containerschiffen Aker0*2, Aker0*4 sowie Aker0*5 wurden Antwortsignale nur im Bereich des Deckshauses aufgezeichnet. Die Anregung der Containerschiffe erfolgte wie in Abbildung 6.5 dargestellt am oberen, äußeren Punkt des Deckshauses. Bei Aker**9 wurde ein zusätzlicher Erregerpunkt an der Hauptmaschine genutzt. Das RoRo-Schiff FSG**0 wurde ebenfalls am Deckshaus angeregt (siehe Abbildung 6.6), wobei der Erregerpunkt im Vergleich zu den Containerschiffen nur bedingt geeignet war, die Eigenschwingungen möglichst vollständig anzuregen.

Abbildung 6.5: Messmodell mit Anregungspunkten des Containerschiffes Aker**9 (Typ CV2500)

Abbildung 6.6: Messmodell mit Anregungspunkten des RoRo-Schiffes FSG**0

Die Anregung der Schiffsstrukturen erfolgte durch eine Erregermasse (Masse ca. 650 kg), welche in Abhängigkeit der örtlichen Gegebenheiten auf Schienen geführt oder als Massependel eingesetzt wurde (siehe Anhang, Abbildung A6.4). Über ein Gummielement wurde der Kraftimpuls in die Schiffsstruktur eingeleitet, wobei die Steifigkeit des Gummielementes den angeregten Frequenzbereich bestimmte. Der Kraftverlauf wurde mit einem piezoelektrischen Kraftaufnehmer aufgezeichnet. Die maximale Erregerkraft betrug ca. 30kN bei einem angeregten Frequenzbereich bis ca. 15 Hz. Ein charakteristischer Kraftverlauf und das dazugehörige Amplitudenspektrum sind im Anhang zum Kapitel 6 in den Abbildungen A6.5 und A6.6 dargestellt.

Zur messtechnischen Erfassung der Systemantworten wurden hochempfindliche (seismische) piezoelektrische Beschleunigungsaufnehmer (Empfindlichkeit 10V/g) verwendet. Die Signale wurden mit einer Abtastfrequenz von 128 Hz über eine Zeitdauer von ca. 83 s aufgezeichnet. Die resultierende Auflösung im Frequenzbereich betrug 0.012 Hz. Der auswertbare Frequenzbereich wurde durch das Erregerspektrum (siehe Abbildung A6.6) begrenzt. Das Antwortsignal setzte sich aus der Antwort der Struktur auf den Kraftimpuls sowie der nicht zu vermeidenden Strukturantwort auf die stochastische Anregung durch die Umgebungsbedingungen (Wellenanregung) zusammen. Um den Einfluss dieser Störungen auf die zu ermittelnden Frequenzgänge zu minimieren, wurde ein Exponentialfenster auf die Antwortsignale angewendet. Die besten Ergebnisse konnten bei einer exponentiellen Abnahme von 90% erzielt werden. Diese durch die Signalverarbeitung eingefügte zusätzliche Dämpfung wurde bei der späteren Identifikation der modalen Dämpfungsparameter berücksichtigt. Im Anhang zum Kapitel 6 in der Abbildung A6.7 ist beispielhaft eine Systemantwort vor und nach Anwendung der Fensterfunktion dargestellt.

Aus den Zeitverläufen von Anregung und Systemantworten wurden unter Anwendung der H1-Schätzung entsprechend Gleichung (5.3) aus jeweils 10 Einzelmessungen die Frequenzgänge bestimmt.

Die Ermittlung der modalen Parameter (Eigenfrequenzen, Eigenschwingformen, Dämpfungsparameter) erfolgte unter Anwendung der im Abschnitt 5.1.1.2 beschriebenen Identifikationsverfahren unter Verwendung der Modalanalyse-Software IDEAS-Test (SDRC Inc.). Bei komplexen Strukturen mit modal gekoppelten Schwingformen ist das Polyreferenz-Verfahren (Mehrfreiheitsgrad-Verfahren unter Verwendung mehrerer Frequenzgänge) ein geeignetes Verfahren zur Ermittlung der modalen Parameter. Es bietet den Vorteil einer sicheren Identifikation eng benachbarter Schwingformen sowie der Ermittlung globaler Schätzungen der modalen Parameter. Dieses Verfahren wurde im speziellen Fall jedoch nur eingeschränkt angewendet, da die Güte der Parameteridentifikation nicht immer ausreichend war. Bedingt durch die lange Dauer (ca. 12 h) der experimentellen Untersuchung (Verwendung mehrerer Erregerpunkte (Referenzen) sowie die Notwendigkeit des Umsetzens von Aufnehmern) waren geringfügige Veränderungen des Systemverhaltens (z.B. Veränderungen in der Verankerung durch Wind, Wellen etc.) nicht auszuschließen, so dass im Zusammenhang mit dem Polyreferenzverfahren Probleme bei der Verwendung mehrerer (zeitlich auseinander liegender) Frequenzgänge auftraten. Alternativ kam das Komplex-Exponential-Verfahren (Mehrfreiheitsgrad-Verfahren unter Verwendung eines Frequenzganges) an ausgewählten Frequenzgängen zur Anwendung. Dieses Vorgehen lieferte im Allgemeinen sehr gute Ergebnisse. Für einzelne, modal nicht gekoppelte Eigenschwingungen konnte auch das Circle-Fit-Verfahren (Einfreiheitsgrad-Verfahren) angewendet werden. Beispielhaft ist die Anwendung der verschiedenen Verfahren im Anhang in den Abbildungen A6.8 bis A6.10 dargestellt.

6.3.2 Ergebnisse der klassischen Modalanalyse

Im folgenden Abschnitt werden die durch die klassische Modalanalyse ermittelten modalen Parameter von zwei Containerschiffen Typ CV2500 und einem RoRo-Schiff (FSG**0) vorgestellt. Die Darstellung der Ergebnisse erfolgt dabei in der Reihenfolge der zugeordneten Berechnungsergebnisse!

6.3.2.1 Containerschiffe Typ CV2500

Im Rahmen der Anwendung der klassischen Modalanalyse an Containerschiffen wurden insgesamt fünf Schiffe vom Typ CV2500 untersucht. Die Ergebnisse der Untersuchungen an zwei dieser Schiffe (VWS**8 und Aker**9) werden in diesem Abschnitt dargestellt. Die für diese Schiffe verwendeten Messgitter erlaubten durch ihre örtliche Auflösung eine Zuordnung der experimentell ermittelten Eigenfrequenzen und Eigenschwingformen zu den berechneten Größen, wobei die umfassendsten Untersuchungen am Schiff Aker**9 durchgeführt wurden. Die Untersuchungen an den Containerschiffen Aker0*2, Aker0*4 und Aker0*5 stellten erste Versuche zur Anwendung der klassischen Modalanalyse an globalen Schiffsstrukturen dar und beschränkten sich ausschließlich auf das Deckshaus. Dass heißt, die Schiffsstruktur wurde am Deckshaus angeregt und die Systemantworten ausschließlich am Deckshaus aufgezeichnet. Abgesehen von lokalen Schwingformen des Deckshauses (z.B. Verwindung) konnten somit keine Aussagen zu den globalen Schwingformen des Schiffskörpers getroffen werden. Verwendung fanden die ermittelten Frequenzgänge aber für die Identifikation von Dämpfungsparametern (siehe Abschnitt 6.7.1). Ausgewählte Frequenzgänge und Kohärenzfunktionen sowie das verwendete Messgitter können im Anhang zum Kapitel 6 den Abbildungen A6.11 bis A6.15 entnommen werden.

Für die experimentellen Untersuchungen an VWS**8 wurden in Erweiterung zu den drei Vorgängerschiffen zusätzliche Messpunkte am Schiffskörper verwendet. Aus organisatorischen Gründen (Werftablauf) sowie aufgrund einer zu diesem Zeitpunkt noch eingeschränkten Anzahl von Sensoren konnten am Schiffskörper nur Schwingungsantworten in vertikaler Richtung aufgezeichnet werden. Die Anregung erfolgte am Deckshaus in Schiffslängsrichtung, andere Erregerkonfigurationen konnten nicht realisiert werden. Dies hatte zur Folge, dass zum einen nicht alle Eigenschwingungen im auszuwertenden Frequenzbereich angeregt wurden und zum anderen eine Zuordnung von berechneten und experimentell ermittelten Eigenfrequenzen auf Grundlage der dazugehörigen Eigenschwingformen nur eingeschränkt möglich war. In Abbildung 6.7 ist der ermittelte Drivingpoint-Frequenzgang (Anregung und Systemantwort am gleichen Ort) dargestellt. Die Abbildung enthält außerdem das verwendete Messmodell sowie eine Kennzeichnung von identifizierten Eigenfrequenzen. Im Anhang in den Abbildungen A6.16 und A6.17 sind ergänzend weitere Frequenzgänge und dazugehörigen Kohärenzfunktionen dargestellt.

Die Tabelle 6.4 beinhaltet die identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie identifizierte Dämpfungsparameter. Aufgrund der beschriebenen Einschränkungen konnten nicht alle Eigenschwingungen (Moden) identifiziert und den berechneten Größen zugeordnet werden. Auch war eine sichere Identifikation der Dämpfungsparameter nicht für alle experimentell ermittelte Eigenschwingungen möglich. Trotz dieser Einschränkungen werden die ermittelten Ergebnisse in diesem Zusammenhang vorgestellt, da an diesem Schiff weitere experimentelle Untersuchungen im Rahmen einer Probefahrt durchgeführt wurden und ein Vergleich der Ergebnisse wichtige Schlussfolgerungen zulässt.

Abbildung 6.7: Experimentell ermittelter Drivingpoint-Frequenzgang am Containerschiff VWS**8

Tabelle 6.4: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (klassische MA) zu den berechneten Eigenschwingungen am Containerschiff VWS**8

Mode-Nr. (FEM)	1	2	3	4	5	6	7	8
Frequenz [Hz]	1.00	0.88	1.47	1.49	-	-	2.14	2.56
Dämpfung ϑ [%]	-	-	-	0.74	-	-	0.51	0.61

Die Anwendung der klassischen Modalanalyse am Containerschiff Aker**9 erfolgte auf Grundlage des in Abbildung 6.5 gezeigten umfangreichen Messmodells. Die Systemantworten wurden am Schiffskörper in y- und z-Richtung sowie am Deckshaus zusätzlich in x-Richtung ermittelt. Die Anregung erfolgte am Deckshaus in x- und in y-Richtung sowie an der Hauptmaschine in y-Richtung. Dadurch war es möglich, im betrachteten Frequenzbereich alle Eigenschwingungen zu identifizieren. In Abbildung 6.8 sind die ermittelten Drivingpoint-Frequenzgänge am Deckshaus dargestellt sowie die identifizierten Eigenfrequenzen gekennzeichnet. Im Anhang in den Abbildungen A6.18 bis A6.26 sind weitere ausgewählte Frequenzgänge und dazugehörigen Kohärenzfunktionen des Schiffes Aker**9 dargestellt.

Abbildung 6.8: Experimentell ermittelte Drivingpoint-Frequenzgänge am Containerschiff Aker**9 bei Anregung am Deckshaus in einem Frequenzbereich bis 6 Hz (vgl. Tabelle 6.5, Abbildung 6.9)

Tabelle 6.5: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (klassische MA) zu den berechneten Eigenschwingungen am Containerschiff Aker**9

Mode-Nr.	1	2	3	4	5	6	7	8
Frequenz [Hz]	1.07	0.89	1.55	1.58	2.88	2.80	2.26	2.68
Dämpfung ϑ [%]	0.87	-	1.27	0.45	0.80	0.51	0.62	0.67

Die Tabelle 6.5 beinhaltet die identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie die identifizierten Dämpfungsparameter. Die vertikale 2-Knoten Biegeschwingung (Mode 2) konnte nur ungenügend angeregt werden, so dass eine sichere Dämpfungsidentifikation nicht möglich war.

In der Abbildung 6.9 ist eine Auswahl der ersten acht experimentell identifizierten Eigenschwingformen dargestellt. Auch über diesen Frequenzbereich hinaus war es möglich, globale Eigenschwingungen zu identifizieren und den berechneten Ergebnissen zuzuordnen. Beispielhaft sind dafür in Abbildung 6.10 Eigenschwingungen mit vorwiegender Beteiligung des Deckshauses in einem Frequenzbereich bis ca. 13 Hz dargestellt. Die Abbildung 6.11 enthält die dazugehörigen Frequenzgänge in dem entsprechenden Frequenzbereich. Die Darstellung aller ermittelten Dämpfungsparameter erfolgt im Abschnitt 6.7.1 im Rahmen der schiffsspezifischen Auswertungen.

Abbildung 6.9: Auswahl an experimentell identifizierten Eigenschwingformen (klassische MA) des Containerschiffes Aker**9 in einem Frequenzbereich bis ca. 3 Hz (siehe auch Abbildung 6.1)

Abbildung 6.10: Experimentell identifizierte Eigenschwingformen (klassische MA) des Containerschiffes Aker**9 mit hauptsächlicher Beteiligung des Deckshauses in einem Frequenzbereich bei ca. 12 Hz (siehe auch Abbildung 6.2)

Abbildung 6.11: Experimentell ermittelte Drivingpoint-Frequenzgänge am Containerschiff Aker**9 bei Anregung am Deckshaus in einem Frequenzbereich bis 16 Hz (vgl. Abbildung 6.10)

Abbildung 6.12: Experimentell identifizierte Eigenschwingformen (klassische MA) der Hauptmaschine des Containerschiffes Aker**9

Abbildung 6.13: Experimentell ermittelte Frequenzgänge an der Hauptmaschine des Containerschiff Aker**9 (vgl. Abbildung 6.12)

Durch die Verwendung eines Anregungspunktes am Motor war es zum einen möglich, das Eigenschwingungsverhalten der Hauptmaschine experimentell zu ermitteln. Die charakteristischen H-, L-, und X-Formen sind in der Abbildung 6.12 dargestellt, die entsprechenden Frequenzgänge mit den gekennzeichneten Frequenzen in Abbildung 6.13 (bzw. A6.22 und A6.26 im Anhang). Außerdem lieferten die Frequenzgänge zwischen dem Motor als (einer) Haupterregerquelle und anderen Punkten der Schiffstruktur, z.B. dem Deckshaus, wichtige Zusatzinformationen für das dynamische Verhalten.

6.3.2.2 RoRo-Schiff FSG**0

Die Anwendung der klassischen Modalanalyse am RoRo-Schiff FSG**0 erfolgte auf Grundlage des in Abbildung 6.6 gezeigten Messmodells. Die Systemantworten wurden an der gesamten Schiffsstruktur in y- und z-Richtung ermittelt. Im Unterschied zu den Containerschiffen wurde auf die Aufzeichnung von Antwortsignalen am Deckshaus in x-Richtung (Schiffslängsrichtung) verzichtet, da aufgrund der Bauart kein signifikanter Anteil dieser Komponenten an den Eigenschwingungsvektoren zu erwarten war. Die Anregung erfolgte am Deckshaus in x- und in y-Richtung. Der verfügbare Anregungspunkt erwies sich für eine vollständige Anregung der globalen Eigenschwingungen im unteren Frequenzbereich als ungeeignet. Das Ziel, die vertikalen Eigenschwingungen durch eine Anregung am Deckshaus in x-Richtung (siehe Abbildung 6.6) anzuregen, konnte, bedingt durch die kompakte Bauweise, die geringe Bauhöhe sowie die Lage relativ zum Schiffskörper, nicht erreicht werden. Aus konstruktiven Gründen stand aber kein anderer Strukturpunkt für eine verbesserte Anregung zur Verfügung. Nachteilig wirkte sich auch der Umstand aus, dass während der experimentellen Untersuchungen die Heckklappe des Schiffes aufgrund eines technischen Defektes nicht geschlossen werden konnte und somit Veränderungen im dynamischen Verhalten der Schiffsstruktur nicht auszuschließen waren.

In Abbildung 6.14 ist der experimentell ermittelte Drivingpoint-Frequenzgang (Anregung und Antwort am Deckshaus in Schiffsquerrichtung) dargestellt sowie die identifizierten Eigenfrequenzen gekennzeichnet. Weitere ausgewählte Frequenzgänge und dazugehörigen Kohärenzfunktionen des Schiffes FSG**0 können den Abbildungen A6.27 bis A6.31 des Anhanges zum Kapitel 6 entnommen werden. Aus den Abbildungen A6.30 und A6.31 ist dabei ersichtlich, dass bei einer Anregung der Schiffsstruktur am Deckshaus in Schiffslängsrichtung im betrachteten (unteren) Frequenzbereich keine Eigenschwingungen angeregt wurden.

Abbildung 6.14: Experimentell ermittelter Drivingpoint-Frequenzgang am RoRo-Schiff FSG**0 bei Anregung am Deckshaus in einem Frequenzbereich bis 10 Hz (vgl. Tabelle 6.6, Abbildung 6.15)

Tabelle 6.6: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (klassische MA) zu den berechneten Eigenschwingungen am RoRo-Schiff FSG**0

Mode-Nr.	1	2	3	4	5	6	7	8	9	10
Frequenz [Hz]	-	-	-	3.09	3.63	4.67	4.19	-	5.75	-
Dämpfung ϑ [%]	-	-	-	1.40	1.08	2.55	2.29	-	1.65	-

Die Tabelle 6.6 beinhaltet die identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.3) sowie die identifizierten Dämpfungsparameter. Die vertikalen Biegeschwingungen (Moden 1, 3, 8 und 10) konnten ebenso wie die horizontale 2-Knoten Biegung (Mode 2) nicht angeregt und somit nicht identifiziert werden. In der Abbildung 6.15 sind als Auswahl die experimentell identifizierten Eigenschwingformen mit Torsionsanteilen dargestellt. Für einen Vergleich mit den berechneten Eigenschwingformen wird auf die Abbildung 6.3 verwiesen.

Wie auch beim bereits vorgestellten Containerschiff konnten mehr lokal ausgeprägte Schwingformen der Schiffsstruktur im höheren Frequenzbereich angeregt und identifiziert werden. In Abbildung 6.16 ist der Drivingpoint-Frequenzgang in einem Frequenzbereich bis 20 Hz dargestellt. Gut zu erkennen sind darin die lokal begrenzten Eigenschwingungen an einer erhöhten Inertanz (Beschleunigbarkeit) der Struktur. Dazugehörige Schwingformen können Abbildung 6.17 entnommen werden. Es handelt sich dabei um lokale Schwingungen des Deckshauses in Kopplung mit der seitlichen Berandung einer Rampe.

Die Darstellung aller ermittelten Dämpfungsparameter des RoRo-Schiffes FSG**0 erfolgt im Abschnitt 6.7.1 im Rahmen der schiffsspezifischen Auswertungen.

Abbildung 6.15: Auswahl an experimentell identifizierten Eigenschwingformen (klassische MA) des RoRo-Schiffes FSG**0 in einem Frequenzbereich bis ca. 6 Hz (siehe auch Abbildung 6.3)

Abbildung 6.16: Experimentell ermittelter Drivingpoint-Frequenzgang am RoRo-Schiff FSG**0 bei Anregung am Deckshaus in einem Frequenzbereich bis 20 Hz (vgl. Abbildung 6.17)

Abbildung 6.17: Experimentell identifizierte Eigenschwingformen (klassische MA) des RoRo-Schiffes FSG**0 mit hauptsächlicher Beteiligung des Deckshauses und einer Rampenberandung

6.4 Anwendung der operativen Modalanalyse unter Werftbedingungen

6.4.1 Durchführung der experimentellen Untersuchungen

Im Rahmen der Anwendung der operativen Modalanalyse unter Werftbedingungen wurden zwei Containerschiffe vom Typ CV2500 (Aker**6 und Aker**9) auf der Aker MTW Werft in Wismar sowie das RoRo-Schiff FSG**0 auf dem Werftgelände der Flensburger Schiffbaugesellschaft untersucht. Im Gegensatz zur klassischen Modalanalyse beschränkt sich der experimentelle Teil der operativen Modalanalyse ausschließlich auf die messtechnische Erfassung der Strukturantworten. Die Anregung erfolgt durch die Umgebungsbedingungen, bei den Schiffsstrukturen hauptsächlich durch eine Wellenanregung. Da die Werftgewässer im Allgemeinen eine geschützte Lage aufweisen, war die Intensität dieser stochastischen Anregung vergleichsweise gering. Die während aller Untersuchungen vorherrschenden ruhigen Wetterverhältnisse führten zu einer weiteren Verringerung der stochastischen Anregung. Eine Darstellung der örtlichen Gegebenheiten sowie der Wellensituationen während der Untersuchungen der Schiffe Aker**9 sowie FSG**0 sind den Abbildungen A6.32 und A6.33 des Anhanges zu entnehmen.

Wie auch bei der klassischen Modalanalyse war es notwendig, geeignete Strukturpunkte für die Messwerterfassung in Form eines Messmodells festzulegen. Während die Messmodelle von Aker**6 und FSG**0 den im Rahmen der klassischen Modalanalyse verwendeten Modellen entsprachen (siehe Abbildungen 6.5 und 6.6), wurde für das Containerschiff Aker**9 ein verfeinertes Messmodell mit zusätzlichen Messpunkten verwendet. Da für die Aufzeichnung der Strukturantworten insgesamt nur 16 Messkanäle zur Verfügung standen, mussten die Messungen mit einer jeweils veränderten Sensorpositionierung mehrfach wiederholt werden. Um diese einzelnen Messreihen miteinander in Beziehung zu setzen, war es notwendig, mindestens drei Referenzsensoren an ausgewählten Strukturpunkten unverändert zu belassen. Die daraus resultierenden Sensoranordnungen für die drei untersuchten Schiffe können im Anhang den Abbildungen A6.34 bis A6.36 entnommen werden. Zur Verringerung des zufälligen Fehlers und zur Minimierung von Abschneideeffekten (Leakage) bei der Auswertung der Messsignale ist eine ausreichend lange Messdauer entsprechend Gleichung (5.9) zu wählen. Für die Untersuchungen an den Containerschiffen (Aker**6 und Aker**9) wurde eine Messdauer von 60 Minuten gewählt, beim RoRo-Schiff FSG**0 wurde die Messdauer auf 90 Minuten erweitert. Die Abtastfrequenz betrug einheitlich 128 Hz. Die Erfassung der Strukturantworten erfolgte wie schon bei der klassischen Modalanalyse unter Verwendung hochempfindlicher piezoelektrischer Beschleunigungsaufnehmer mit einer Empfindlichkeit von 10V/g.

Die Auswertung der vorliegenden Datensätze erfolgte entsprechend den im Abschnitt 5.1.2.2 beschriebenen Verfahren unter Verwendung der Software ARTeMIS Extractor (SVIBS). Die modalen Parameter der Schiffstrukturen wurden sowohl unter Anwendung der Enhanced Frequency Domain Decomposition Technik (EFDD) als auch der Stochastic Subspace Identifikation (SSI) ermittelt. Im Allgemeinen erfolgte eine erste Auswertung unter Anwendung der EFDD. Anschließend wurden mit Hilfe der SSI-Verfahren die modalen Parameter erneut bestimmt. Der Zeitaufwand war bei der Anwendung dieses modellbasierten Verfahrens deutlich erhöht, da begrenzte Frequenzbereiche separiert und einzeln ausgewertet werden mussten. In den meisten Fällen konnten mit beiden Verfahren gleiche Ergebnisse erzielt werden. Die SSI-Verfahren lieferten aber bei modal stark gekoppelten Eigenschwingungen, insbesondere im Hinblick auf die Dämpfungsparameter, die zuverlässigeren Ergebnisse. Am Beispiel von am Schiff Aker**9 aufgezeichneten Daten ist im Anhang die Vorgehensweise bei der Parameteridentifikation unter Anwendung beider Verfahren dargestellt. Die Abbildungen A6.37 bis A6.41 stellen schrittweise die Vorgehensweise bei der Anwendung der EFDD zur Parameteridentifikation dar. Den Ausgangspunkt bildet dabei die Ermittlung der spektralen Leistungsdichtematrizen, bestehend aus den Auto- und Kreuzleistungsdichten (Abbildungen A6.37 und A6.38). Durch Anwendung der Singulärwertzerlegung auf die Leistungsdichtematrizen kann anschließend der spektrale Verlauf der Singulärwerte ermittelt werden (Abbildungen A6.39 und A6.40). Durch Separation des Verlaufes des ersten (bzw. bei gekoppelten Moden auch zweiten) Singulärwertes im Bereich einer Eigenschwingung und Rücktransformation des ausgewählten Bereiches in den Zeitbereich kann die Autokorrelationsfunktion der betrachteten Eigenschwingung ermittelt und zur Identifikation der modalen Parameter verwendet werden (siehe Abbildung A6.41). Die SSI-Verfahren basieren direkt auf den gemessenen Zeitdatensätzen. Die Generierung von parametrisierten Modellen unterschiedlicher Ordnungen zur analytischen Beschreibung des Schwingungsverhaltens führt auf auch aus der klassischen Modalanalyse bekannte Stabilitätsdiagramme, dargestellt im Anhang in Abbildung A6.42. Anhand festgelegter Stabilitätskriterien erfolgte die Auswahl eines Modells. Durch eine Gegenüberstellung von z.B. experimentell ermittelten und analytisch generierten Auto- und Kreuzleistungsdichten, dargestellt im Anhang in Abbildung A6.43, kann die Güte des Modells und damit der identifizierten modalen Parameter bewertet werden.
6.4.2 Ergebnisse der operativen Modalanalyse unter Werftbedingungen

In den folgenden Abschnitten sind die Ergebnisse der Anwendung der operativen Modalanalyse unter Werftbedingungen an den drei genannten Schiffen dargestellt. Trotz der geringen Intensität der stochastischen Anregung bei allen drei Untersuchungen war die Qualität der experimentellen Identifikationen entgegen den Erwartungen zum Teil sehr gut. Die traf insbesondere für einen Frequenzbereich bis ca. 6 Hz zu. Aufgrund der spektralen Charakteristik der Wellenanregung war mit zunehmender Frequenz eine Abnahme der Intensität der stochastischen Anregung und somit eine Abnahme der Identifizierbarkeit modaler Parameter zu verzeichnen.

6.4.2.1 Containerschiffe Typ CV2500

Die Ergebnisse der operativen Modalanalyse am Containerschiffen Typ CV2500 werden anhand von Untersuchungen an den Schiffen Aker**9 und Aker**6 dargestellt. Die baugleichen Schiffe unterschieden sich nur im Hinblick auf die vorhandenen Ballastmassen und resultierenden Tiefgänge (siehe auch Abschnitt 6.7.2). Am Schiff Aker**9 waren außerdem zum Zeitpunkt der Messungen die Motorquerabstützungen noch nicht angebracht, was anhand rechnerischer Untersuchungen insbesondere einen Einfuß auf das Schwingungsverhalten der Deckshausstruktur hatte.

In Abbildung 6.18 sind die experimentell ermittelten Eigenschwingformen aller in diesem Frequenzbereich betrachteten Eigenschwingungen dargestellt. Die Tabelle 6.7 beinhaltet die dazugehörigen identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie die identifizierten Dämpfungsparameter.

Tabelle 6.7: Zuordnung von experimentell identifizierten Eigenfrequenzen u	und	Dämp-
fungsgraden (operative MA, Werft) zu den berechneten Eigenschwingungen	am	Contai-
nerschiff Aker**9		

Mode-Nr.	1	2	3	4	5	6	7	8
Frequenz [Hz]	1.21	0.93	1.72	1.69	3.29	2.96	2.41	2.87
Dämpfung ϑ [%]	1.40	0.61	0.92	0.56	1.54	0.63	0.86	0.87

Abbildung 6.18: Experimentell identifizierte Eigenschwingformen (operative MA, Werft) des Containerschiffes Aker**9 in einem Frequenzbereich bis ca. 3 Hz (siehe auch Abbildung 6.1)

Der Abbildung 6.19 kann der Verlauf der gemittelten Singulärwerte sowie die Kennzeichnung der ausgewählten Eigenschwingungen entnommen werden. Anhand des Verlaufes der Singulärwerte ist die gute Anregung bzw. Identifizierbarkeit der untersten Eigenschwingungen ersichtlich.

Abbildung 6.19: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am Schiff Aker**9 aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.7)

Abbildung 6.20: Spektrale Autoleistungsdichte, ermittelt am Deckshaus Schiff Aker**9 (steuerbord, Schiffslängsrichtung) mit markierten Deckshausmoden (siehe auch Abbildung 6.11)

Bedingt durch die geringe Anregungsintensität im höheren Frequenzbereich war eine Identifikation der ersten elastischen Moden der Substruktur Deckshaus schwierig, aber trotzdem möglich. Besonders deutlich wird die spektrale Charakteristik der Deckshausstruktur am Autoleistungsdichtespektrum einer am Deckshaus aufgezeichneten Strukturantwort (Abbildung 6.20). Die dazugehörigen Eigenschwingformen sind in Abbildung 6.21 dargestellt. Die Frequenzverschiebungen im Vergleich zu den Untersuchungen mit der klassischen Modalanalyse (vgl. Abbildungen 6.10 und 6.11 sowie 6.2) resultieren aus unterschiedlichen Bauzuständen. Die hier dargestellte operative Modalanalyse erfolgte zu einem früheren Zeitpunkt in einem Bauzustand ohne installierte Motorquerabstützungen.

Abbildung 6.21: Experimentell identifizierte Eigenschwingformen (operative MA) des Containerschiffes Aker**9 mit hauptsächlicher Beteiligung des Deckshauses (siehe auch Abbildung 6.2 und 6.10)

Die Anwendung der operativen Modalanalyse am Containerschiff Aker**6 erfolgte in einem Zustand nach Probefahrt (Ballastzustand). Veränderungen von Massenverteilung und Tiefgang führten im Vergleich zu den anderen Untersuchungen zu Veränderungen im dynamischen Verhalten, auf die im Abschnitt 6.7.2 näher eingegangen wird. Abbildung 6.22 zeigt den Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichtematrizen aller am Schiff Aker**6 aufgezeichneten Datensätze sowie die Kennzeichnung der ausgewählten Eigenschwingungen. In Tabelle 6.8 sind die identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie die identifizierten Dämpfungsparameter dargestellt. Eine Identifikation von Mode 8 war nicht möglich. Auf die Darstellung der experimentell ermittelten Schwingformen wird verzichtet, sie entsprechen denen aus Abbildung 6.18.

Abbildung 6.22: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am Schiff Aker**6 aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.8)

Tabelle 6.8: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (operative MA, Werft) zu den berechneten Eigenschwingungen am Containerschiff Aker**6

Mode-Nr.	1	2	3	4	5	6	7	8
Frequenz [Hz]	1.15	0.88	1.50	1.48	2.83	2.71	2.25	-
Dämpfung ϑ [%]	1.65	0.41	1.26	2.40	1.28	0.93	1.95	-

6.4.2.2 RoRo-Schiff FSG**0

Die Anwendung der operativen Modalanalyse am Schiff FSG**0 erfolgte zeitgleich mit der Anwendung der klassischen Modalanalyse. Aus diesem Grund ist ein direkter Vergleich der mit den verschiedenen Verfahren ermittelten modalen Parameter möglich. Eingeschränkt wird dieser Vergleich aber durch eine nur unvollständige Identifikation der Eigenschwingungen im betrachteten Frequenzbereich. Zwar konnten bei der Anwendung der operativen Modalanalyse die untersten zwei Eigenschwingungen (Mode 1 und 2) zusätzlich identifiziert werden, eine Identifikation insbesondere der höheren vertikalen Biegeeigenschwingungen (Mode 3, 8 und 10) war aber ebenfalls nicht möglich. Gründe für diese Einschränkungen liegen wahrscheinlich in einer begrenzten stochastischen Anregung der Schiffsstruktur bedingt durch die sehr geschützte Lage des Liegeplatzes (siehe Anhang, Abbildung A6.32).

In Abbildung 6.23 sind die experimentell ermittelten Eigenschwingformen von FSG**0 dargestellt. Die Tabelle 6.9 beinhaltet die dazugehörigen identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.3) sowie die identifizierten Dämpfungsparameter. Der Abbildung 6.24 kann der Verlauf der gemittelten Singulärwerte sowie die Kennzeichnung der ausgewählten Eigenschwingungen entnommen werden.

Abbildung 6.23: Experimentell identifizierten Eigenschwingformen (operative MA, Werft) des RoRo-Schiffes FSG**0 in einem Frequenzbereich bis ca. 6 Hz (siehe auch Abbildung 6.3)

Tabelle 6.9: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (operative MA, Werft) zu den berechneten Eigenschwingungen am RoRo-Schiff FSG**0

Mode-Nr.	1	2	3	4	5	6	7	8	9	10
Frequenz [Hz]	1.50	2.47	-	3.09	3.63	-	4.19	-	5.78	-
Dämpfung ϑ [%]	3.52	2.18	-	1.66	1.25	-	2.37	-	2.30	-

Abbildung 6.24: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am Schiff FSG**0 aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.9)

6.5 Anwendung der operativen Modalanalyse bei Probefahrt

6.5.1 Durchführung der experimentellen Untersuchungen

Die Anwendung der operativen Modalanalyse unter Probefahrtsbedingungen erfolgte an zwei Containerschiffe vom Typ CV2500 (Aker**9 und VWS**8) sowie an den RoRo-Schiffen FSG**0 und FSG**1. Aufgrund eines begrenzten Zeitrahmens zur Durchführung der Untersuchungen während einer Probefahrt war es notwendig, die örtliche Auflösung der verwendeten Messmodelle zu reduzieren, um die Anzahl der notwendigen Messreihen zur Erfassung aller Messfreiheitsgrade auf zwei zu begrenzen. Die daraus abgeleiteten Messmodelle sowie die resultierenden Sensoranordnungen können im Anhang der Darstellung A6.44 entnommen werden.

Während des Schiffsbetriebes wirkten neben der natürlichen stochastischen Anregung zusätzliche harmonische Anregungen auf die Schiffstruktur ein, hauptsächlich verursacht durch die Hauptmaschine mit ihren unterschiedlichen Erregerordnungen sowie durch den Schiffspropeller mit vorwiegend ein- und zweifacher Propellerblattfrequenz. Diese Art der Anregung hatte ein zusammengesetztes Antwortspektrum der Schiffsstruktur, bestehend aus strukturellen Moden und harmonischen Komponenten, zur Folge (siehe auch Abbildung 5.3). Beispielhaft ist ein solches Antwortspektrum anhand des Verlaufes der Singularwerte in Abbildung 6.25 dargestellt.

Abbildung 6.25: Verlauf der Singulärwerte der Strukturantworten bei stochastischer und harmonischer Anregung der Schiffstruktur im Betrieb (FSG**0)

Im Allgemeinen unterscheidet sich die Anwendung der operativen Modalanalyse in Anwesenheit harmonischer Erregerordnungen nicht von dem Fall bei alleiniger stochastischer Anregung. Folgende Besonderheiten sind aber zu berücksichtigen.

Bei Schiffsbetrieb übersteigen die harmonischen Anteile des Antwortspektrums die Anteile infolge der natürlichen stochastischen Anregung zum Teil um ein Vielfaches und führen zu erhöhten Anforderungen an die dynamische Auflösung des Datenerfassungssystems. So wurde im Rahmen der Untersuchungen ein Datenerfassungssystem mit einer 2*24 Bit A/D-Wandlung (*Dyn-X, Bruel&Kjær*) verwendet, um auch den auf stochastischer Erregung basierenden Anteil der Strukturantworten in einer guten Qualität aufzuzeichnen. Auch sind längere Messzeiten bei Vorhandensein harmonischer Erregerordnungen zu empfehlen [66].

Im Rahmen der Parameteridentifikation ist es im weiteren Verlauf notwendig, harmonische Komponenten zu erkennen und von den gesuchten strukturellen Moden zu trennen. Hierfür sind verschiedene Vorgehensweisen möglich [66, 67]. So können harmonische Komponenten im Antwortspektrum visuell am Verlauf der Singulärwerte erkannt werden, da im Bereich dieser Komponente alle Singulärwerte deutlich erhöht sind (siehe Abbildung 6.25). Weiterhin ist es möglich, harmonische Komponenten von strukturellen Moden durch ihre signifikant unterschiedlichen Verteilungsdichtefunktionen [22] zu unterscheiden. Auch werden für harmonische Komponenten in der Regel deutlich geringere Dämpfungskennwerte identifiziert, so dass diese ebenfalls als Indikator verwendet werden können. Harmonische Erregerordnungen können aber auch bekannt sein oder durch separate Messungen ermittelt werden. So erfolgte während der Probefahrten parallel zur Aufzeichnung der Strukturantworten die Erfassung der Wellendrehzahl durch einen zusätzlichen Sensor. Da im Schiffsbetrieb alle Haupterregerordnungen Vielfache der Drehzahl der Propellerwelle sind, konnten diese für jeden Betriebszustand auf einfache Weise ermittelt werden. Sind die harmonischen Komponenten identifiziert, können die modalen Parameter der verbleibenden strukturellen Moden ermittelt werden. Liegen die harmonischen Komponenten außerhalb des Resonanzbereiches struktureller Moden, ist eine Parameteridentifikation problemlos möglich. Schwierigkeiten treten auf, wenn die Resonanzbereiche durch harmonische Erregerlinien gestört werden. Während die SSI-Verfahren auch strukturelle Moden mit dicht benachbarten harmonischen Erregerlinien sicher identifizieren können, ist eine direkte Anwendung der EFDD nicht möglich. In [66] wurde ein Verfahren vorgeschlagen und in der verwendeten Software umgesetzt, das die harmonischen Komponenten über ihre charakteristische Verteilungsdichtefunktion identifiziert und anschließend aus dem Bereich der strukturellen Moden durch Interpolation eliminiert, so dass eine Parameteridentifikation auch unter Anwendung der EFDD möglich wird. Untersuchungen zur Anwendbarkeit der verschiedenen Verfahren zur Parameteridentifikation bei zusätzlicher harmonischer Anregung wurden am Beispiel von Messdaten des RoRo-Schiffes FSG**0 durchgeführt. Messdaten standen dabei für zwei geringfügig unterschiedliche Drehzahlzustände sowie für einen Zustand ohne harmonische Erregung (Inspektion der Hauptmaschine) zur Verfügung. So war es möglich, für einen ausgewählten strukturellen Mode die ermittelten modalen Parameter bei den drei Zuständen: harmonische Erregerordnung identisch mit dem strukturellen Mode, eng benachbart oder ohne harmonische Erregung zu ermitteln und zu vergleichen. Dabei konnte festgestellt werden, dass nur im Fall einer mit dem strukturellen Mode identischen harmonischen Erregerordnung die ermittelten Dämpfungsparameter fehlerbehaftet waren. Für den Zustand der eng benachbarten harmonischen Erregerordnung konnte die Dämpfung sicher identifiziert werden. Eigenfrequenzen und dazugehörige Eigenschwingformen konnten bei allen Zuständen ermittelt werden. Ausführlich sind diese Untersuchungen in [67] beschrieben. Auszugsweise wird im Anhang in den Abbildungen A6.45 und A6.46 die Parameteridentifikation in Gegenwart harmonischer Erregerordnungen bei Anwendung der EFDD mit dem Verfahren der harmonischen Identifikation sowie eines SSI-Verfahrens dargestellt.

Problematisch erwies sich die Separation höherer Erregerordnungen, da diese auf Grund vorhandener Frequenz- und Amplitudenmodulationen der harmonischen Komponenten teilweise einen größeren Frequenzbereich überdeckten. Somit wurde auch eine Identifikation struktureller Moden im höheren Frequenzbereich (>8 Hz) erschwert, was besonders die Deckshausschwingungen bei Containerschiffen betraf. Gleichzeitig war im Schiffsbetrieb aber auch eine erhöhte Intensität der natürlichen Anregung durch Wind und vorwiegend Wellen festzustellen (siehe Anhang, Abbildung A6.47), die die Identifikation insbesondere der unteren Eigenschwingungen verbesserte. Als besonders geeignet haben sich Messungen unter konstanten Betriebsbedingungen (konstante Wellendrehzahl) erwiesen, um den Einfluss der harmonischen Erregung bestmöglich eliminieren zu können. Bei den RoRo-Schiffen war dieser Zustand fast immer gegeben, da diese Schiffe mit einem Verstellpropeller ausgerüstet waren und die Hauptmaschine mit konstanter Drehzahl lief. Bei Containerschiffen hingegen wurden die Schiffsgeschwindigkeiten über die Wellendrehzahl reguliert. Messungen bei unterschiedlichen (im Rahmen einer Einzelmessung aber kon-

stanten) Wellendrehzahlen ermöglichten aber auch eine sehr einfache Elimination harmonischer Erregerlinien, indem unterschiedliche Messungen zur Parameteridentifikation beeinflusster struktureller Moden verwendet wurden.

Die für die Auswertungen nutzbaren Datensatzlängen (Messdauern) waren abhängig von den vorliegenden Betriebszuständen. Da nur Zeitbereiche konstanter Wellendrehzahlen verwendet wurden, variierte die Länge der verwendeten Zeitdatensätze zwischen 60 und 180 Minuten.

6.5.2 Ergebnisse der operativen Modalanalyse unter Probefahrtbedingungen

In den folgenden Abschnitten sind die Ergebnisse der Anwendung der operativen Modalanalyse unter Probefahrtsbedingungen an den Schiffen Aker**9, VWS**8, FSG**0 sowie FSG**1 dargestellt. Aufgrund von in dem betrachteten Frequenzbereich vorliegenden kinematischen Zwangsbedingungen wurden einzelne Freiheitsgrade der Messgitter messtechnisch nicht erfasst (siehe Abbildung A6.44 im Anhang). So erfolgte z.B. bei den Ro-Ro-Schiffen die Erfassung der Querkomponenten der Schiffskörperschwingungen nur auf der Steuerbord-Seite. Zur Darstellung der Eigenschwingformen wurden die entsprechenden Werte dann für die Backbord-Seite übernommen.

6.5.2.1 Containerschiffe Typ CV2500

In Abbildung 6.26 sind die während der Probefahrt des Schiffes Aker**9 experimentell ermittelten Eigenschwingformen dargestellt. Die Tabelle 6.10 beinhaltet die dazugehörigen identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie die identifizierten Dämpfungsparameter. Der Abbildung 6.27 kann der Verlauf der gemittelten Singulärwerte sowie die Kennzeichnung der ausgewählten Eigenschwingungen entnommen werden. In der Darstellung enthalten ist außerdem die Kennzeichnung der harmonischen Erregerordnungen bei einer Wellendrehzahl von 81,7 min⁻¹ (entspricht einer ersten Erregerordnung von 1.36 Hz).

Abbildung 6.26: Experimentell identifizierte Eigenschwingformen (operative MA, Probefahrt) des Containerschiffes Aker**9 in einem Frequenzbereich bis ca. 3 Hz (siehe auch Abbildung 6.1)

Tabelle 6.10: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (operative MA, Probefahrt) zu den berechneten Eigenschwingungen am Containerschiff Aker**9

Mode-Nr.	1	2	3	4	5	6	7	8
Frequenz [Hz]	1.08	0.99	1.53	1.93	2.91	3.06	2.74	3.56
Dämpfung ϑ [%]	3.30	0.80	1.41	1.34	0.84	0.61	0.59	1.09

Abbildung 6.27: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am Schiff Aker**9 aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.10)

Die Abbildung 6.28 stellt den Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen vom Schiff VWS**8 während der Probefahrt dar. Die Tabelle 6.11 beinhaltet die identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie die identifizierten Dämpfungsparameter. Für die ermittelten Eigenschwingformen des Schiffes VWS**8 wird auf die Darstellungen vom Schiff Aker**9 (Abbildung 6.26) verwiesen.

Abbildung 6.28: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am Schiff VWS**8 aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.11)

Tabelle 6.11: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (operative MA, Probefahrt) zu den berechneten Eigenschwingungen am Containerschiff VWS**8

Mode-Nr.	1	2	3	4	5	6	7	8
Frequenz [Hz]	1.04	1.02	1.51	2.00	2.82	3.00	2.88	3.65
Dämpfung ϑ [%]	2.41	1.45	1.37	1.43	0.80	1.10	1.67	1.35

6.5.2.2 RoRo-Schiff FSG**0

In Abbildung 6.29 ist der Verlauf der gemittelten Singulärwerte der während der Probefahrt am RoRo-Schiff FSG**0 ermittelten spektralen Leistungsdichte-Matrizen dargestellt. Zu entnehmen ist dieser Darstellung auch die Kennzeichnung der ausgewählten Eigenschwingungen sowie der harmonischen Erregerordnungen bei einer Wellendrehzahl von 122,4 min⁻¹ (entspricht einer ersten Erregerordnung von 2,04 Hz). Die Tabelle 6.12 beinhaltet die dazugehörigen identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.3) sowie die identifizierten Dämpfungsparameter.

Abbildung 6.29: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am RoRo-Schiff FSG**0 während der Probefahrt aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.12)

Tabelle 6.12: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (operative MA, Probefahrt) zu den berechneten Eigenschwingungen am Ro-Ro-Schiff FSG**0

Mode-Nr.	1	2	3	4	5	6	7	8	9	10
Frequenz [Hz]	1.32	2.04	2.26	2.95	3.33	3.96	3.83	3.47	5.01	4.29
Dämpfung ∂ [%]	1.34	1.15	1.58	1.04	1,20	0.65	1.49	-	1.19	0.70

Abbildung 6.30: Experimentell identifizierte Eigenschwingformen (operative MA, Probefahrt) des RoRo-Schiffes FSG**0 in einem Frequenzbereich bis ca. 6 Hz (siehe auch Abbildung 6.3)

In Abbildung 6.30 sind die während der Probefahrt des RoRo-Schiffes FSG**0 experimentell ermittelten Eigenschwingformen dargestellt. Eine sichere Identifikation von Mode 8 (4-Knoten Biegung, vertikal) war nicht möglich, anhand ausgewählter Leistungsdichte-Spektren konnte nur die entsprechende Eigenfrequenz ermittelt werden.

6.5.2.3 RoRo-Schiff FSG**1

Ein charakteristisches Merkmal des RoRo-Schiffes FSG**0 war eine speziell geformte, weit ausladende Achterschiffsstruktur. Diese Konstruktion hatte zur Folge, dass die benetzte Fläche der Außenhaut in diesem Bereich und somit auch die wirksame hydrodynamische Masse eine Abhängigkeit von der Schiffsgeschwindigkeit aufwiesen. Dieser Sachverhalt ist in einer rechnerischen Vorhersage nur schwer zu berücksichtigen. Aus diesem Grund wurden Untersuchungen bei unterschiedlichen Schiffsgeschwindigkeiten durchgeführt. Da die Regelung der Schiffsgeschwindigkeit bei konstanter Wellendrehzahl über einen Verstellpropeller erfolgte, wurden als geschwindigkeitsäquivalente Bezugswerte die prozentualen Leistungen der Antriebsanlage verwendet. So erfolgten die Untersuchungen bei Leistungen von 100 %, 80 % sowie 0 % (Antriebsanlage ausgeschaltet). Die Auswertung beschränkt sich dabei auf die ersten fünf Eigenschwingungen. In Abbildung 6.31 ist der Verlauf der gemittelten Singulärwerte der ermittelten spektralen Leistungsdichte-Matrizen bei abgeschalteter Antriebsanlage (Leistung 0 %) sowie die Kennzeichnung der ausgewählten Eigenschwingungen dargestellt. Der Verlauf der Singulärwerte für die weiteren Fahrtzustände kann im Anhang der Abbildung A6.48 entnommen werden.

Abbildung 6.31: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am RoRo-Schiff FSG**1 während der Probefahrt aufgezeichneten Datensätze mit ausgewählten Moden (siehe Tabelle 6.13) bei abgeschalteter Antriebsanlage (Leistung 0 %)

Die Tabelle 6.13 beinhaltet die experimentell identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.4) in Abhängigkeit der Leistung der Antriebsanlage. Deutlich werden darin die Frequenzverschiebungen, insbesondere der vertikalen Biegemoden, hauptsächlich verursacht durch Veränderungen in Größe und Verteilung der hydrodynamischen Massen im Achterschiffsbereich. Die Tabelle 6.14 stellt die aus den Datensätzen bei 100 % und 0 % Antriebsleistung identifizierten Dämpfungsparameter dar. Auffällig ist die Zunahme der Dämpfung bei voller Antriebsleistung für die Mode 1 und 3 (vertikale Biegeschwingungen). Dieser nicht strukturell, sondern messtechnisch verursachte Effekt ist eine Folge von leichten Verschiebungen in den Resonanzfrequenzen innerhalb einer Messung aufgrund der bereits beschriebenen Sensitivität der vertikalen Biegeschwingungen auf Veränderungen der benetzten Fläche der Achterschiffsstruktur. In Abbildung 6.32 sind die während der Probefahrt des RoRo-Schiffes FSG**1 experimentell ermittelten Eigenschwingformen dargestellt.

Tabelle 6.13: Experimentell identifizierte Eigenfrequenzen des RoRo-Schiffes FSG**1 (operative MA, Probefahrt) in Bezug auf die berechneten Eigenschwingungen (siehe auch Abbildung 6.4) in Abhängigkeit von der Leistung der Antriebsanlage.

Mode-Nr.		1	2	3	4	5
zu	Antriebsleistung 100 %	1.27	1.93	2.10	2.50	2.90
equei	Antriebsleistung 80 %	1.30	1.94	2.27	2.51	2.90
Fre [Hz	Antriebsleistung 0 %	1.52	2.03	2.51	2.58	3.00

Tabelle 6.14: Experimentell identifizierte Dämpfungsparameter am RoRo-Schiff FSG**1 aus den Datensätzen bei 100 % und 0 % Antriebsleistung

Mode-Nr.		1	2	3	4	5
fung	Antriebsleistung 100 %	1.94	0.72	2.79	0.85	1.09
Dämp v [%]	Antriebsleistung 0 %	0.73	0.53	0.52	0.63	0.93

Abbildung 6.32: Experimentell identifizierte Eigenschwingformen (operative MA, Probefahrt) des RoRo-Schiffes FSG**1 in einem Frequenzbereich bis ca. 3 Hz (siehe auch Abbildung 6.4)

6.6 Anwendung der operativen Modalanalyse im Liniendienst

6.6.1 Durchführung der experimentellen Untersuchungen

Die Anwendung der operativen Modalanalyse im Liniendienst erfolgte an dem bereits unter Werft- und Probefahrtbedingungen untersuchten Containerschiff Aker**9 vom Typ CV2500 während einer Fahrt von Rotterdam nach Hamburg. Folgende Ladungs- und Tiefgangsbedingungen lagen vor (siehe auch Abbildung A6.51):

Ladung (Container):	17 331 t	Tiefgänge:	10,4 m aft
Ballastwasser:	6 751 t		10,2 m fore
Treibstoffe:	2 550 t.		

Die Aufzeichnung der Strukturantworten mittels piezoelektrischer Beschleunigungsaufnehmer erfolgte an identischen Punkten der Schiffsstruktur, welche für die operative Modalanalyse unter Probefahrtbedingungen verwendet wurden (siehe Abbildung A6.44). Aufgezeichnet wurden 2 Datensätze mit einer Messdauer von jeweils 90 Minuten. Eine zusätzliche Messung erfolgte während des Beladungsvorganges im Hafen, wobei die Anzahl der zur Verfügung stehenden Sensoren sowie Messdauer aus organisatorischen Gründen eingeschränkt war.

6.6.2 Ergebnisse der operativen Modalanalyse im Liniendienst

6.6.2.1 Containerschiffe Typ CV2500

In den Abbildungen 6.33 und 6.34 sind die Verläufe der gemittelten Singulärwerte für die aufgezeichneten Datenreihen während des Beladungsvorganges im Hafen sowie während des Schiffsbetriebes. Die Qualität der während des Beladungsvorganges aufgezeichneten Messwerte ist viel versprechend. Leider war es aus Gründen einer relativ kurzen Hafenliegezeit sowie des Zeitbedarfs bei der Installation des Messaufbaus nicht möglich, die notwendige örtliche Auflösung des Messmodells (Umsetzen von Sensoren) sowie eine ausreichende Messzeiten zu realisieren. In zukünftige Untersuchungen könnten solche Messungen gute Ergebnisse liefern, wobei der Einfluss des Flachwassers auf Dynamik des Schiffes berücksichtigt werden muss.

Abbildung 6.33: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen der am Schiff Aker**9 aufgezeichneten Datensätze während des Beladungsvorganges

Die Ermittlung der Eigenschwingungsgrößen des beladenen Schiffes erfolgte auf Grundlage des in Abbildung 6.34 dargestellten Verlaufes der Singulärwerte, ermittelt aus den Zeitdatensätzen während des Schiffsbetriebes. In Bezug auf die Auswertung der Signale erwies sich der leistungsgesteuerte Schiffsbetrieb als ungünstig, da daraus bedingte Drehzahlschwankungen teilweise größere Bereiche des Frequenzspektrums überdeckten und so eine Auswertung zum Teil nicht zuließen. Die Ermittlung der Dämpfungskennwerte wurde teilweise erschwert, da durch die ladungsbedingte Absenkung einzelner Eigenfrequenzen die modale Dichte im unteren Frequenzbereich sehr hoch war.

Abbildung 6.34: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen der am Schiff Aker**9 aufgezeichneten Datensätze während des Liniendienstes mit ausgewählten Moden (siehe Tabelle 6.15)

In Abbildung 6.35 sind die im Liniendienst des Schiffes Aker**9 experimentell ermittelten Eigenschwingformen dargestellt. Die Tabelle 6.15 beinhaltet die dazugehörigen identifizierten Eigenfrequenzen in Bezug auf die berechneten Schwingformen (siehe auch Abbildung 6.1) sowie die identifizierten Dämpfungsparameter.

Tabelle 6.15: Zuordnung von experimentell identifizierten Eigenfrequenzen und Dämpfungsgraden (operative MA, Liniendienst) zu den berechneten Eigenschwingungen am Containerschiff Aker**9

Mode-Nr.	1	2	3	4	5	6	7	8
Frequenz [Hz]	0.72	0.75	0.92	1.51	-	2.26	-	-
Dämpfung ϑ [%]	2.90	2.00	2.20	1.01	-	3.50	-	-

Abbildung 6.35: Experimentell identifizierte Eigenschwingformen (operative MA, Liniendienst) des Containerschiffes Aker**9 in einem Frequenzbereich bis ca. 3 Hz (siehe auch Abbildung 6.1)

6.7 Auswertung von Hochfahrvorgängen, Containerschiffe Typ CV2500

6.7.1 Probefahrt

Bedingt durch die geringere Bandbegrenzung höherer harmonischer Erregerordnungen (Amplituden- und Frequenzmodulationen) sowie durch die mit zunehmender Frequenz abnehmende stochastische Anregungsintensität, ist eine Identifikation modaler Parameter unter Probefahrtbedingungen bei Anwendung der operativen Modalanalyse in der Regel nur bis zu einer Frequenz von ca. 8 Hz möglich. So konnten die modalen Parameter der insbesondere bei Containerschiffen wichtigen Deckshausstrukturen nicht unter Betriebsbedingungen identifiziert werden. Alternativ wurden hierfür Datensätze ausgewertet, die im Rahmen von Hochfahrvorgängen der Hauptmaschine auf den Containerschiffen Aker**9 sowie VWS**8 aufgezeichnet wurden. Die daraus resultierenden Spektogramme für eine Position am Deckshaus (Schiffslängsrichtung) sind im Anhang in den Abbildungen A6.49 und A6.50 dargestellt. Unter Anwendung einer Ordnungsanalyse war es möglich, die Antworten der Struktur auf eine ausgewählte Erregerordnung zu separieren. Im Hinblick auf den interessierenden Frequenzbereich wurden darum die 7. Erregerordnung der Hauptmaschine beim Schiff Aker**9 sowie die 8. Erregerordnung bei VWS**8 (Zündfrequenzen der entsprechenden Motoren) für weitere Untersuchungen ausgewählt.

Abbildung 6.36: Überlagerte Darstellung von Ordnungsfunktion (7. Ordnung Hauptmaschine, Hochfahrvorgang 65 – 113 min⁻¹) und Frequenzgang (klassische MA, Werft) vom Deckshaus des Schiffes Aker**9 (steuerbord, Schiffslängsrichtung)

Abbildung 6.37: Überlagerte Darstellung von Ordnungsfunktion (8. Ordnung Hauptmaschine, Hochfahrvorgang 50 – 108 min⁻¹) und Frequenzgang (klassische MA, Werft) vom Deckshaus des Schiffes VWS**8 (steuerbord, Schiffslängsrichtung)

Diese so genannten H-Momente stellten eine der Hauptkomponenten der Motorerregung dar, waren die einzigen in dieser Ordnung wirkenden Erregerquellen und durchliefen während des Hochfahrvorganges Resonanzbereiche der Deckshausstrukturen. Die daraus resultierenden Ordnungsfunktionen (Frequenzauflösung ca. 0,06 Hz) sind für das Schiff Aker**9 in Abbildung 6.36 und für das Schiff VWS**8 in Abbildung 6.37 dargestellt. In diesen Abbildungen mit enthalten sind die im Rahmen der klassischen Modalanalyse (Werft) experimentell an den entsprechenden Positionen am Deckshaus ermittelten Frequenzgänge. Anhand der Frequenzcharakteristik von Ordnungsfunktion und Frequenzgang ist für beide Schiffe ersichtlich, dass das während der Werftmessung ermittelte dynamische Verhalten der Deckshausstrukturen nahezu identisch mit dem Verhalten im Schiffsbetrieb (bei zusätzlichem Ballast, erhöhtem Tiefgang sowie Tiefwasserbedingungen) ist.

6.7.2 Liniendienst

Analog den Auswertungen der gemessenen Strukturantworten während eines Hochfahrvorganges der Hauptmaschine im Rahmen der Probefahrt konnten gleiche Messungen bzw. Auswertungen während des Liniendienstes durchgeführt werden.

Abbildung 6.38: Vergleichende Darstellung der Ordnungsfunktionen (7. Ordnung Hauptmaschine) der Antworten am Deckshaus des Schiffes Aker**9 (steuerbord und backbord, Schiffslängsrichtung) während der Probefahrt (oben) sowie während des Liniendienstes (unten)

Ausgewertet wurden zwei Sensorpositionen am Deckshaus (Schiffslängsrichtung, stb, bb) sowie ein zusätzlich angebrachter Sensor an der Hauptmaschine. Die daraus resultierenden Spektogramme für die Positionen am Deckshaus und der Hauptmaschine sind im Anhang in den Abbildungen A6.52 und A6.53 dargestellt. Unter Anwendung einer Ordnungsanalyse war es wiederum möglich, die Antworten der Struktur auf eine ausgewählte Erregerordnung zu separieren. Vergleichend sind in der Abbildung 6.38 die Antworten des Deckshauses (steuer- und backbord)) auf die 7. Erregerordnung der Hauptmaschine während der Probefahrt sowie im Liniendienst dargestellt. Abgesehen von dem während des Liniendienstes nur einschränkt realisierbaren Drehzahlbereiches ist zu erkennen, dass das Antwortverhalten der Deckshausstruktur nur geringfügig vom Beladungszustand abhängig ist. Die Ergebnisse der Ordnungsanalyse an der Hauptmaschine sind, wie in Abbildung 6.39 dargestellt (siehe auch Abb. 6.13), für Vergleichszwecke weniger aussagekräftig, da im Betrieb keine ausgeprägten Resonanzen durchfahren bzw. angeregt werden. Enthalten in dieser Darstellung sind außerdem theoretisch ermittelte Größen der wirkenden Erregerordnungen, um die unterschiedlichen Erregungsniveaus und die daraus resultierenden Antworten zu verdeutlichen.

Abbildung 6.39: Vergleichende Darstellung der Ordnungsfunktionen der Antwort an der Hauptmaschine des Schiffes Aker**9 (1.-10. Erregerordnungen der Hauptmaschine) beim Hochfahrvorgang während des Liniendienstes (oben) und der durch klassische Modalanalyse ermittelten Drivingpoint-Frequenzgangfunktion an der Hauptmaschine (unten)

6.8 Zusammenfassung und Bewertung schiffsspezifischer Ergebnisse

In diesem Abschnitt erfolgen eine Zusammenfassung und Bewertung von Ergebnissen der unterschiedlichen experimentellen Untersuchungen an den einzelnen Schiffen bzw. Schiffstypen im Hinblick auf experimentell identifizierte Dämpfungsparameter sowie ermittelte Eigenfrequenzen.

6.8.1 Dämpfung

Die Darstellung der Dämpfungsparameter erfolgt in einem erweiterten Frequenzbereich bis 14 Hz und beschränkt sich nicht, wie in der bisherigen Ergebnisdarstellung, auf die unteren Eigenschwingungen. In allen Diagrammen sind zusätzlich die Dämpfungsannahmen von Germanischem Lloyd (GL) für den Ballastzustand und Lloyd's Register (LR) (siehe auch Abbildung 2.8) gekennzeichnet. Weiterhin ist in die Diagramme eine aus allen im Rahmen dieser Untersuchung identifizierten Dämpfungsparametern ermittelte Regressionsgerade der Form ϑ [%] = 1.24 - 0.0019*f [Hz] (siehe Abbildung A6.54 im Anhang) eingefügt. Die durchschnittlich ermittelten Dämpfungsparameter liegen in einem Bereich zwischen 1,0 % und 1,3 % (Mittelwert gesamt: ϑ = 1.13 %) mit leicht abnehmender Tendenz für höhere Frequenzen. Die im Rahmen dieser Untersuchung ermittelten Dämpfungsparameter entsprechen somit mehr den von der Klassifizierungsgesellschaft Lloyd's Register verwendeten Annahmen, wobei aber eine Zunahme der Dämpfung mit steigender Frequenz nicht ermittelt wurde. Da es sich bei den Eigenschwingungen im höheren Frequenzbereich vorwiegend um die untersten elastischen Moden der Substruktur Deckshaus handelt, kann dieses experimentelle Ergebnis aber durchaus als plausibel angesehen werden. Wie aus den folgenden Diagrammen ersichtlich ist, können zum Teil recht große Abweichungen von der ermittelten durchschnittlichen Dämpfung auftreten. Identifikationsbedingte Fehler bei der Ermittlung von Dämpfungsparametern sind auf Grund der Vielzahl von Einflussfaktoren nur schwer zu guantifizieren. Sie haben ihren Ausgangspunkt weniger bei der Anwendung der jeweiligen Identifikationsverfahren als vielmehr bei der Auswahl der Frequenzgänge bzw. Datensätze, die einer Identifikation zu Grunde liegen. Der geschätzte maximale Fehler beträgt dabei ca. 50 %.

In den folgenden Diagrammen sind die aus unterschiedlichen Untersuchungen experimentell ermittelten Dämpfungskennwerte der Containerschiffe vom Typ CV2500 sowie vom RoRo-Schiff FSG**0 dargestellt.

In Abbildung 6.40 sind alle an den Schiffen Aker0*4, Aker0*5, Aker0*2, Aker**5 sowie Aker**6 unter Werftbedingungen ermittelten Dämpfungskennwerte zusammengefasst. Abbildung 6.41 enthält alle Dämpfungsparameter, die bei verschiedenen Untersuchungen unter Werft und Probefahrtsbedingungen am Schiff Aker**9 ermittelt wurden. In Abbildung 6.42 sind die unter Werft- und Probefahrtsbedingungen am Schiff VWS**8 ermittelten Dämpfungsparameter dargestellt. Experimentell ermittelte Dämpfungskennwerte des Ro-Ro-Schiffes FSG**0 sind in Abbildung 6.43 zusammengefasst. Auf die Darstellung der

Kennwerte des RoRo-Schiffes FSG**1 wird hier verzichtet, da sich die Identifikation von Dämpfungsparametern auf den bereits in Tabelle 6.14 gezeigten Umfang beschränkte.

Abbildung 6.40: Dämpfungsparameter, ermittelt an verschiedenen Schiffen vom Typ CV2500

Abbildung 6.41: Dämpfungsparameter, ermittelt am Containerschiff Aker**9 (Typ CV2500)

Abbildung 6.42: Dämpfungsparameter, ermittelt am Containerschiff VWS**8 (Typ CV2500)

Abbildung 6.43: Dämpfungsparameter, ermittelt am RoRo-Schiff FSG**0

Abbildung 6.44: Dämpfungsparameter, ermittelt am beladenen Containerschiff Aker**9 (Typ CV2500) während des Liniendienstes

Dämpfungsparameter für ein beladenes Schiff (Aker**9, Typ CV2500) sind im Vergleich zum unbeladenen Zustand in der Abbildung 6.44 dargestellt. Die Dämpfungsparameter konnten nur für den unteren Frequenzbereich ermittelt werden (siehe Abschnitt 6.6). Sie sind leicht erhöht, liegen aber in einer auch bei anderen Schiffen (Abbildungen 6.40 bis 6.43) ermittelten Größenordnung.

6.8.2 Eigenfrequenzen

Eine vergleichende Darstellung von Eigenfrequenzen der einzelnen Schiffstypen erfolgt auf Grundlage von experimentellen Ergebnissen, die bei unterschiedlichen Zuständen (Ballast-, Wasser- bzw. Fahrtzustände) (siehe Abschnitte 6.3, 6.4 und 6.5) ermittelt wurden und Ergebnissen von Finite-Element-Berechnungen (siehe Abschnitte 6.1).

Tabelle 6.15: Zusammenstellung von Tiefgängen, Verdrängung, Schiff, Messumgebung und experimentellem Verfahren bei verschiedenen Untersuchungen am Containerschiff vom Typ CV2500

Schiff / Ort	Aker**9 / Werft	Aker**9 / Werft	Aker**6 / Werft	Aker**9 / Probef.
Verdrängung [m ³]	13971	16032	17776	19140
Tiefgang (v / a) [m]	4,5 / 4,6	4,8 / 5,4	4,6 / 6,5	4,5 / 7,0
exp. Verfahren	operative MA	klassische MA	operative MA	operative MA

Abbildung 6.45: Eigenfrequenzen der ersten acht Schwingformen des Containerschiffs Typ CV2500 in Abhängigkeit von Ballastzustand und Messumgebung (Flach- oder Tiefwasser)

Am Containerschiff vom Typ CV2500 wurden Untersuchungen auf der Wismarer Werft (Flachwasserbedingungen) sowie während der Probefahrt (Tiefwasserbedingungen) bei unterschiedlichen Ballastzuständen (Ballastwasser und Kraftstoffe) durchgeführt. Die Untersuchungen erstreckten sich vom Zeitpunkt nach Ausdockung bis zum Zeitpunkt nach Probefahrt. Die über diesem Zeitraum veränderlichen Zusatzmassen führten zu veränderlichen Tiefgängen und Verdrängungen, dargestellt in Tabelle 6.15. Die experimentell, unter Anwendung von klassischer und operativer Modalanalyse (siehe Tabelle 6.15), für die verschiedenen Zustände ermittelten Eigenfrequenzen sind in Abbildung 6.45 zusammengefasst. Deutlich zu erkennen ist die Abnahme der Eigenfrequenzen bei zunehmendem Gesamtgewicht unter Werft- bzw. Flachwasserbedingungen (Zustand 1-3 in Abbildung 6.45). Trotz weiterer Zunahme des Gesamtgewichtes bei Probefahrt bzw. Tiefwasserbedingungen, kommt es insbesondere bei den vertikalen Eigenschwingformen zu einer Erhöhung der Eigenfrequenzen. Verursacht wird dieses Verhalten durch eine flachwasserbedingte Erhöhung der wirksamen hydrodynamischen Massen. In [4] wurde der Flachwassereinfluss auf das Schwingungsverhalten von Schiffen rechnerisch untersucht. Veränderungen im dynamischen Verhalten wurden nachgewiesen. Beispielhaft ist die Absenkung der Eigenfrequenz einer vertikalen Biegeschwingform als Auszug aus dieser Arbeit im Anhang in Abbildung A6.55 dargestellt. Am in Abschnitt 6.11 beschriebenen Modell wurde der Einfluss des Flachwassers ebenfalls rechnerisch unter Verwendung einer gekoppelten Fluid-Strukturanalyse (Nastran) nachgewiesen. Die Ergebnisse sind im Anhang

in Abbildung A6.56 dargestellt (weiteres siehe auch Abschnitt 6.10). Experimentell wurden diese Effekte ebenfalls beim Containerschiff VWS**8 beobachtet. Die entsprechenden Eigenfrequenzen, ermittelt unter Werft- und Probefahrtsbedingungen, sind in Tabelle 6.16 dargestellt. Am RoRo-Schiff FSG**0 konnten diese Effekte nicht nachgewiesen werden, da unter Werftbedingungen keine vertikalen Biege-Eigenschwingungen identifiziert wurden.

Tabelle 6.16: Eigenfrequenzen und zugeordnete Eigenschwingformen (siehe Abbildung6.1) in Abhängigkeit von den umgebenden Wasserbedingungen ermittelt am Container-
schiff VWS**8

Mode-Nr. (FEM)		1	2	3	4	5	6	7	8
f [Hz]	Flachwasser	1.00	0.88	1.47	1.49	-	-	2.14	2.56
	Tiefwasser	1.04	1.02	1.51	2.00	2.82	3.00	2.88	3.65

Abbildung 6.46: Experimentell ermittelte Eigenfrequenzen der ersten acht Schwingformen der Containerschiffe Aker**9 uns VWS**8 bei Probefahrt sowie Ergebnisse der Vorhersage

In Abbildung 6.46 sind die experimentell während der Probefahrt ermittelten Eigenfrequenzen der Containerschiffe Aker**9 sowie VWS**8 den Ergebnissen der rechnerischen Vorhersagen gegenübergestellt. Die größten Unterschiede beim Vergleich sowohl der experimentell ermittelten Kennwerte untereinander als auch von Experiment und Rechnung treten demnach bei den vertikalen Biege-Eigenschwingungen auf.

Tabelle 6.17: Zuordnung von berechneten (FEM, BEM) und experimentell (Liniendienst) ermittelten Eigenfrequenzen und dazugehörigen Eigenschwingformen des Containerschiffes CV2500 im beladenen Zustand

Mode-Nr. (FEM)		1	2	3	4	5	6	7	8
f [Hz]	Rechnung	0.76	0.79	1.08	1.65	-	2.45	-	-
	Messung	0.72	0.75	0.92	1.51	-	2.26	-	-

Um die im beladenen Zustand (Liniendienst Rotterdam-Hamburg) experimentell ermittelten Eigenfrequenzen und Eigenschwingformen des Schiffer Aker**9 mit berechneten Kennwerten zu vergleichen, wurde auf Grundlage des Beladungsplanes das vorliegende FEM-Modell des CV2500 um die entsprechenden Containermassen erweitert. Die Berücksichtigung der hydrodynamischen Massen erfolgte durch die Kopplung von FEM und BEM (Fluid-Struktur Interaktion) im FEM-Progammpacket Nastran. Unsicherheiten bestanden bei der Berücksichtigung der Verteilung der Ballastmassen. Die Ergebnisse von Berechnung und Experiment sind in Tabelle 6.17 dargestellt.

In Abbildung 6.47 sind die experimentell unter Werft- und Probefahrtbedingungen ermittelten Eigenfrequenzen sowie die Ergebnisse der rechnerischen Vorhersage des RoRo-Schiffes FSG**0 einander gegenübergestellt. Für alle identifizierten Eigenschwingungen kann eine Absenkung der Eigenfrequenzen unter Probefahrtbedingungen gegenüber den Werten im Werftzustand festgestellt werden. Verursacht wird dieser Effekt durch die Zunahme der Gesamtmasse infolge zusätzlichen Ballasts. Der Einfluss der Flachwasserbedingungen auf die hydrodynamischen Massen konnte wie bereits erwähnt an diesem Schiff nicht nachgewiesen werden, da unter Werftbedingungen keine höheren vertikalen Biege-Eigenschwingungen identifiziert werden konnten. Beim Vergleich der während der Probefahrt ermittelten Eigenfrequenzen und den berechneten Kennwerte ist ersichtlich, dass insbesondere die genaue Vorhersage der vertikalen Biege-Eigenschwingungen problematisch ist. Unsicherheiten bei der Ermittlung der wirksamen hydrodynamischen Masse könnten die Ursache für diese Abweichungen sein. Ähnliche Aussagen können auch auf Grundlage von Abbildung 6.48 getroffen werden. Hier sind die experimentell während der Probefahrt bei verschiedenen Schiffsgeschwindigkeiten ermittelten Eigenfrequenzen des RoRo-Schiffes FSG**1 den Ergebnissen der rechnerischen Vorhersage gegenübergestellt. Der Einfluss der Schiffsgeschwindigkeit wurde bereits im Abschnitt 6.5.2.3 diskutiert. Die Messwerte deuten auf einen großen Einfluss der hydrodynamischen Masse und ihrer örtlichen Verteilung auf das dynamische Verhalten der Schiffsstruktur. Die daraus resultierenden Unsicherheiten werden auch in den Berechnungsergebnissen deutlich. Auch hier werden die Abweichungen der Eigenfrequenzen mit hoher Wahrscheinlichkeit von einer Unterbewertung der hydrodynamischen Massen verursacht.

Zusammenfassend kann festgestellt werden, dass bei der rechnerischen Vorhersage des Eigenschwingungsverhaltens globaler Schiffsstrukturen im unteren Frequenzbereich der

6 - Biegung vertikal (2-Knoten) 5,5 Biegung horizontal (2-Knoten) Biegung vertikal (3-Knoten) 5 - Torsion (1-Knoten) Torsion (1-Knoten)+Biegung 4,5 Frequenz [Hz] Biegung horizontal (3-Knoten) 4 Torsion (2-Knoten) Biegung vertikal (4-Knoten) 3,5 - Torsion (2-Knoten)+Biegung Biegung vertikal (5-Knoten) 3 2,5 Zustand 1: FSG**0 (OMA, Werft) Zustand 2: FSG**0 (OMA, Probefahrt) 2 Zustand 3: FSG^{**0}, Rechnung (FEM) 1,5 1 2 3 Zustand

Ermittlung der wirksamen hydrodynamischen Massen eine besondere Bedeutung zukommt.

Abbildung 6.47: Experimentell unter Werft- und Probefahrtbedingungen ermittelte sowie berechnete Eigenfrequenzen der ersten 10 Schwingformen des RoRo-Schiffes FSG**0

6.9 Bewertung der Umgebungsbedingungen

Die Durchführung von experimentellen Untersuchungen unter Werftbedingungen ist die Vorgehensweise mit dem geringsten Aufwand und den besten Bedingungen für eine technische Realisierung. Wie jedoch gezeigt werden konnte (z.B. Abbildung 6.45), wird besonders im unteren Frequenzbereich das dynamische Verhalten der Schiffsstruktur durch flachwasserbedingte Veränderungen der hydrodynamischen Massen beeinflusst. Somit ist eine Vergleichbarkeit mit den Ergebnissen einer rechnerischen Vorhersage nicht gegeben und eine experimentelle Untersuchung darum nur bedingt geeignet. Alternativ wäre eine Berücksichtigung der Flachwassereffekte bei der rechnerischen Vorhersage entsprechend [4] denkbar und ein Vergleich der unter Werftbedingung ermittelten Eigenfrequenzen möglich. Diese Vorgehensweise ist derzeit aber nicht Stand der Technik. Zur experimentellen Ermittlung des dynamischen Verhaltens im unteren Frequenzbereich sind darum Untersuchungen unter Tiefwasserbedingungen (z.B. Probefahrt) erforderlich, was auch hinsichtlich des Einflusses der Schiffsgeschwindigkeit auf das Schwingungsverhalten (siehe Abbildung 6.48) zweckmäßig ist. Das Interesse am dynamischen Verhalten der Schiffsstruktur im höheren Frequenzbereich bezieht sich in der Regel auf das Verhalten von Substrukturen (z.B. Deckshäusern). Der Einfluss des Flachwassers auf das dynamische Verhalten in diesem Frequenzbereich ist sehr gering (siehe z.B. Abschnitt 6.6). Somit sind experimentelle Untersuchungen an Substrukturen unter Werftbedingungen durchaus praktikabel.

Die Bewertung der Umgebungsbedingungen hinsichtlich der Eignung zur Durchführung experimenteller Untersuchungen ist natürlich eng gekoppelt an die Eignung der zu verwendenden experimentellen Verfahren, deren Bewertung im nächsten Abschnitt erfolgt.

6.10 Bewertung der verwendeten Verfahren der Modalanalyse

Bei einer parallelen Anwendung der klassischen und der operativen Modalanalyse an Strukturen unter Laborbedingungen konnte in [68] gezeigt werden, dass mit beiden Verfahren bei einer entsprechenden Anregung gleiche modale Parameter identifiziert werden können. Im Rahmen der hier vorgestellten Untersuchungen ist ein direkter Vergleich der Ergebnisse von klassischer und operativer Modalanalyse nur am Schiff FSG**0 (Werft) möglich, da ausschließlich in diesem Fall beide Verfahren zeitgleich angewendet wurden. Geringe Abweichungen treten dabei nur bezüglich der identifizierten Dämpfungsparameter auf (siehe Tabellen 6.6 und 6.9). Die Ursachen für diese Abweichungen sind vorwiegend in einer unterschiedlichen Anregung der Struktur und damit einer unterschiedlichen Ausprägung der Resonanzstellen zu suchen.

Hinsichtlich der Antwort der Schiffsstruktur auf die Anregung bei klassischer Modalanalyse (Stoßanregung) oder bei operativer Modalanalyse (stochastische Anregung) konnten Unterschiede festgestellt werden. So erfolgte im unteren Frequenzbereich eine bessere Anregung der Schiffsstruktur durch die stochastische Anregung (Wellen, Wind) im Rahmen der operativen Modalanalyse. Der höhere Energieeintrag in die Struktur sowie die "Mehrpunkt-Anregung" führten zu besonders gut ausgeprägten Eigenschwingungen. Als ein Gütekriterium kann hierbei u.a. die Komplexität der ermittelten Schwingformen genutzt werden. Ausgehend von der Annahme vorwiegend reeller Eigenschwingungen, konnte bei den mit der operativen Modalanalyse ermittelten Eigenschwingformen tendenziell eine geringere Komplexität ermittelt werden. Beispielhaft ist die Bewertung auf Grundlage der Komplexität anhand von zwei Schwingformen im Anhang in der Abbildung A6.57 dargestellt.

Aufgrund der bei zunehmender Frequenz abnehmenden Intensität der stochastischen Anregung ist für Frequenzen größer 8 Hz die klassische der operativen Modalanalyse vorzuziehen. Diese Vorgehensweise ist auch deshalb vorteilhaft, da in diesem Frequenzbereich in der Regel die Schwingungen von Substrukturen (z.B. Deckshäusern) von besonderem Interesse sind und diese bei der klassischen Modalanalyse gezielt und mit hinreichendem Energieeintrag angeregt werden können.

Da sich die Anwendung der klassischen Modalanalyse auf den Einsatz unter Werftbedingungen beschränkt (siehe Abschnitt 6.2), kann in Zusammenhang mit der Bewertung der Umgebungsbedingungen (siehe Abschnitt 6.8) die folgende Vorgehensweise als geeignet angesehen werden:

- Ermittlung der dynamischen Parameter globaler Schiffskörperschwingungen im unteren Frequenzbereich durch Anwendung der operativen Modalanalyse unter Einsatzbedingungen
- Ermittlung der dynamischen Parameter von Substrukturen (Deckshäuser) im höheren Frequenzbereich durch Anwendung der klassischen Modalanalyse unter Werftbedingungen

Erwähnt werden soll in diesem Zusammenhang die Möglichkeit der zusätzlichen Bewertung des Vorhersagemodells auf Grundlage von Ergebnissen der klassischen Modalanalyse. Durch einen Vergleich von experimentell ermittelten und berechneten Frequenzgängen erfolgt die Bewertung des Vorhersagemodells nicht nur bezüglich der ermittelten Eigenfrequenzen und dazugehörigen Schwingformen sondern auch im Hinblick auf das dynamische Antwortverhalten einschließlich der verwendeten Dämpfungsannahmen. Ein solcher Vergleich wird im Abschnitt 6.10 dargestellt. Die Ergebnisse der operativen Modalanalyse bieten diese Möglichkeit aufgrund fehlender Informationen über die Anregung der Struktur nicht.

6.11 Rechnerische Vorhersage des Zwangsschwingungsverhaltens

Die rechnerische Vorhersage des Zwangsschwingungsverhaltens und der Vergleich mit experimentell ermittelten Ergebnissen erfolgten am Beispiel des Containerschiff CV2500. Das breite Spektrum der experimentellen Ergebnisse, insbesondere der Hochfahrvorgänge der Hauptmaschine, ermöglichte hier eine erweiterte Bewertung der Vorhersagegenauigkeit des Berechnungsmodells. Aufgrund der Strukturdynamik des Schiffskörpers und der Anregungscharakteristik im Schiffsbetrieb durch Hauptmaschine und Schiffspropeller, lieferte der Vergleich von Rechnung und Experiment bei Anregung durch die Hauptmaschine die aussagekräftigsten Ergebnisse. Insbesondere die Zündfrequenz der Hauptmaschine (Erregerordnung entsprechend der Zylinderzahl) stellte eine geeignete Erregung dar, da diese zum einen betragsmäßig hoch war und zum anderen im Frequenzbereich separiert werden konnten (ausblenden anderer Erregerordnungen). Ein Vergleich der Ergebnisse von Rechnung und Messung bei Berücksichtigung der Propellerregung hatte am Beispiel des CV2500 nur eingeschränkte Aussagekraft, da die Erregerordnungen des Propellers nicht in Resonanz mit ausgeprägten Eigenfrequenzen des Schiffskörpers lagen (was vom schiffbaulichen Standpunkt natürlich gewünscht ist!) und weiterhin die Erregerordnungen des Propellers nicht von denen der Hauptmaschine separiert werden konnten (Ordnungsanalyse, siehe Abschnitt 6.7). Eine weitere, bereits im Abschnitt 3 beschriebene Möglichkeit der Bewertung berechneter erzwungener Schwingungen ist die Berechnung von Frequenzgangfunktionen und der Vergleich mit experimentellen Verläufen, die im Rahmen der klassischen Modalanalyse ermittelt wurden.

6.11.1 Stossanregung klassische Modalanalyse

Die praktische Durchführung solcher Zwangsschwingungsrechnungen erfolgt bei konstanter Anregung der Struktur (F = 1 N) an den für die klassische Modalanalyse verwendeten Anregungspunkten im betrachteten Frequenzbereich und der Berechnung der Strukturantwort an der ausgewählten Sensorposition entsprechend des Messmodells. Die so rechnerisch ermittelte Frequenzgangfunktion konnte mit dem experimentell zwischen den betrachteten Strukturpunkten ermittelten Frequenzgang (klassische Modalanalyse) verglichen werden.

Im Gegensatz zur Ermittlung des Eigenschwingungsverhaltens sind zusätzliche Angaben zum Dämpfungsverhalten der Struktur notwendig, die im Rahmen dieser Untersuchungen unter anderem ermittelt wurden. In Abbildung 6.48 ist der Vergleich eines experimentell ermittelten Frequenzganges mit berechneten Frequenzgängen bei Anwendung unterschiedlicher Dämpfungsannahmen am Beispiel des Containerschiffes Aker**9 dargestellt. Auf Grundlage des Mittelwertes der experimentell ermittelten Dämpfungsparametern wurde eine Berechnung mit einer konstanten Dämpfung von $\vartheta = 1$ % durchgeführt. Eine weitere Berechnung erfolgte auf Grundlage der Dämpfungsannahmen des Germanischen Lloyd (GL) entsprechend der Abbildung 2.8 (Ballast).

Abbildung 6.48: Experimentell und rechnerisch mit verschiedenen Dämpfungsannahmen ermittelte Frequenzgänge am Containerschiff Aker**9 (Anregung Hauptmaschine, Antwort Deckshaus)

Anhand der Charakteristik der Frequenzgänge in Abbildung 6.48 ist ersichtlich, dass insbesondere im Frequenzbereich ab etwa 9 Hz die linear ansteigende Dämpfung der GL-Annahme ($\vartheta > 3 \%$) das Dämpfungsverhalten überbewertet. Hingegen gibt die Berechnung bei Anwendung einer konstanten 1%igen Dämpfung (entsprechend der in diesen Untersuchungen ermittelten durchschnittlichen Dämpfung) im Bereich der ausgeprägten Deckshausschwingungen (Mode 12.5 Hz) sowohl die Form der Resonanzüberhöhung als auch den Betrag des Frequenzganges sehr gut wieder.

6.11.2 Erregung durch die Hauptmaschine

Der für die Abbildung 6.48 ausgewählte Frequenzgang beschreibt das Antwortverhalten des Deckshauses auf die Anregung durch eine Einzelkraft an der Hauptmaschine. Dieser Übertragungsweg ist für die Vorhersage von Schwingungen im Schiffsbetrieb von besonderer Bedeutung, da die Hauptmaschine eine der beiden Haupterregerquellen und das Deckshaus der Ort mit den geringsten zulässigen Schwingungspegeln [69] ist. Natürlich kann die Anregung der Schiffsstruktur durch die Hauptmaschine nicht durch eine Einzelkraft beschrieben werden. Vielmehr können die auftretenden unterschiedlichen Erregerordnungen durch am Motor verteilte Kräftepaare dargestellt werden. Speziell für das Schiff Aker**9 ist die 7. Erregerordnung der Hauptmaschine (Zündfrequenz des 7-Zylinder 2-Takt Motors, H-Moment) besonders wichtig, da diese betragsmäßig sehr groß ist und im nutzbaren Drehzahlbereich (80 -113 U/min) die ausgeprägten Resonanzen der Deckshausstruktur durchläuft. Der vom Motorhersteller zur Verfügung gestellte Verlauf des Erregermomentes sowie die Wirkung an der Hauptmaschine sind im Anhang in der Abbildung A6.58 dargestellt. Auf Grundlage dieses Momentenverlaufes wurde in einer Zwangsschwingungsrechnung der Hochfahrvorgang der Hauptmaschine bezüglich der 7. Erregerordnung berechnet. Da diese Erregerordnung die einzige Erregerquelle in diesem Frequenzbereich darstellt, ist ein direkter Vergleich der berechneten Zwangsschwingungsamplituden mit den experimentell während eines realen Hochfahrvorgangs ermittelten Zwangsschwingungsamplituden (siehe Abschnitt 6.6) möglich. Die rechnerische Ermittlung erfolgte unter Verwendung verschiedener Dämpfungsannahmen. In Abbildung 6.49 ist der experimentell ermittelte Verlauf der Antwort der Deckshausstruktur auf die 7. Erregerordnung der entsprechenden rechnerischen Vorhersage unter Anwendung der Dämpfungsannahmen des Germanischen Lloyd (siehe Abbildung 2.8) gegenübergestellt. Deutlich zu erkennen ist die gute Übereinstimmung von berechneten und experimentell ermittelten Zwangsschwingungsamplituden bei Annahme der GL-Dämpfung. Dies bestätigt einerseits die Anwendbarkeit des GL-Konzeptes, andererseits steht es im Gegensatz zu den aus Abbildung 6.48 gezogenen Schlussfolgerungen, die die Anwendung einer durchschnittlichen Dämpfung von ϑ = 1 % nahe legt. Die Ursachen dieser Unterschiede können vielfältig sein. Ein möglicher Grund liegt in einer im Rechenmodell überbewerteten Einleitung der Erregermomente in die Schiffsstruktur. Weiterhin ist eine amplitudenbedingte Zunahme der Dämpfung der Deckshausstruktur aufgrund der höheren Schwingungsamplituden im Schiffsbetrieb zu diskutieren, obwohl der Verlauf der experimentell ermittelten Strukturantwort im Resonanzbereich (z.B. kann bei Anwendung des Verfahrens der Halbwertsbreite eine Dämpfung von ϑ = 1.6 % ermittelt werden) eine derartige Erhöhung der Dämpfung nicht vermuten lässt.

Abbildung 6.49: Experimentell und rechnerisch bei Anwendung der GL-Dämpfung ermittelte Antwort der Deckshausstruktur (steuerbord, Schiffslängsrichtung) auf die 7. Erregerordnung der Hauptmaschinen während eines Hochfahrvorganges des Containerschiffes Aker**9
In Abbildung 6.50 erfolgt ein Vergleich von berechneten und experimentell ermittelten Zwangsschwingungsamplituden des CV2500 bei Motorerregung im beladenen Zustand. Die experimentellen Ergebnisse stellen die Strukturantwort des Deckshauses (Schiffslängsrichtung) dar und wurden aus dem Hochfahrvorgang im Liniendienst ermittelt. Aus einem Vergleich der Abbildungen 6.50, 6.49 und 6.38 wird ersichtlich, dass die experimentell ermittelten Zwangsschwingungsamplituden im Bereich des Deckshauses nur sehr geringfügig vom Ladungszustand des Schiffes beeinflusst werden. In den Berechnungsergebnissen ist der Einfluss des Ladezustandes aber vorhanden. Zwar sind die berechneten Zwangsschwingungsamplituden im beladenen Zustand weiterhin größer als die berechneten, es kann aber der Abbildung 6.50 entnommen werden, dass mit einer vergleichsweise geringer angenommenen Dämpfung (im Vergleich zu Abbildung 6.49, Ballastzustand, GL-Dämpfung) eine verbesserte Übereinstimmung von Messung und Rechnung erzielet werden kann.

In Abbildung 6.51 ist ein Vergleich der berechneten und experimentell ermittelten Strukturantwort der Hauptmaschine (Schiffsquerrichtung) beim beladenen Schiff dargestellt. Die Übereinstimmung ist bei Anwendung einer 2%-igen Dämpfung in der Berechnung relativ gut. Ein Vergleich mit experimentellen Ergebnissen vom Schiff im Ballastzustand war aufgrund fehlender Messwerte nicht möglich

Abbildung 6.51: Experimentell und rechnerisch bei Anwendung einer 2%igen Dämpfung ermittelte Antwort der Deckshausstruktur (steuerbord, Schiffslängsrichtung) auf die 7. Erregerordnung der Hauptmaschinen während eines Hochfahrvorganges des Containerschiffes Aker**9 im beladenen Zustand

6.11.3 Propelleranregung

Im Rahmen der Zusammenarbeit im Verbundprojekt wurden vom Projektpartner FSG auf Grundlage von CFD-Berechnungen ermittelte Propellerdruckverteilungen im Hinterschiffsbereich des Containerschiffes CV2500 zur Verfügung gestellt. Unter Anwendung dieser örtlichen sowie drehzahlabhängigen Verteilung wurden Zwangsschwingungsrechnungen durchgeführt. Die dazugehörigen experimentellen Ergebnisse wurden durch eine Ordnungsanalyse der Strukturantworten ermittelt, die während des Hochfahrvorgangs der Hauptantriebsanlage aufgezeichnet wurden. Aufgrund der Anzahl der Propellerblätter (5) kann dem Propeller die fünfte Erregerordnung zugeordnet werden. Da auch von der Hauptmaschine Erregungen der fünften Ordnung der Wellendrehzahl in die Schiffsstruktur eingeleitet werden, ist eine Trennung der Anteile von Propeller und Hauptmaschine und somit eine differenzierte Bewertung nicht möglich. Ungünstig im Hinblick auf einen Vergleich von Messung und Rechnung stellt sich auch das strukturdynamische Verhalten des CV2500 dar. Im Frequenzbereich von ca. 5-10 Hz treten keine ausgeprägten Resonanzen auf, die einen aussagekräftigen Vergleich von Messung und Rechnung zulassen. Im Rahmen der rechnerischen Vorhersage ist auch die Festlegung der benetzten Wasserfläche im Achterschiffsbereich, und damit die Größe der Fläche in die die Propellerdruckimpulse eingeleitet werden, schwierig. Bei Probefahrten ist die Schiffsstruktur in der Regel oberhalb des Propellers aufgrund der Tiefgangsverhältnisse nicht benetzt. Im beladenen

Zustand ist der Grad der Benetzung zusätzlich abhängig von der Schiffsgeschwindigkeit. Ein Vergleich der bei Probefahrt und Liniendienst (beladen) gemessenen sowie berechneten 5. Ordnung der Strukturantwort im Achterschiffsbereich (vertikal) ist in Abbildung 6.52 dargestellt. Deutlich zu erkennen sind die mit zunehmender Frequenz (zunehmende Wellendrehzahl und somit auch Schiffsgeschwindigkeit) ansteigenden Schwingungsamplituden im beladenen Zustand, die ihre Ursache sowohl in einer verstärkten Einleitung der Druckimpulse als auch in der Strukturdynamik haben können. Eine Bewertung der Vorhersagegenauigkeit des Modells erweist sich somit als schwierig.

Abbildung 6.52: Experimentell (Ballast- und Ladungszustand) und rechnerisch (Ladungszustand) ermittelte Antwort des Achterschiffsbereiches (steuerbord, vertikal) auf die 5. Erregerordnung (Propellerordnung) während eines Hochfahrvorganges des Containerschiffes Aker**9

6.11.4 Strukturmodifikation FE-Modell

Zur Bewertung des Einflusses der Modellstruktur auf die Vorhersageergebnisse wurden umfangreiche rechnerische Untersuchungen durchgeführt. Neben der Verwendung der bereits dargestellten unterschiedlichen Dämpfungsannahmen und Beladungszuständen wurden folgende Modellvarianten untersucht:

- Berücksichtigung der hydrodynamischen Masse nach dem Verfahren von LEWIS
- Berücksichtigung der hydrodynamischen Masse durch Kopplung von FEM und BEM (Virtual Mass Methode, Nastran)

- Berücksichtigung von Flachwasserbedingungen
- Modifikation der Motorquerabstützung

Die Modellvariationen wurden sowohl bei Anregung durch die Hauptmaschine als auch bei Stossanregung untersucht. Im Folgenden wird eine Auswahl der ermittelten Berechnungsergebnisse vorgestellt.

Den großen Einfluss der Art der Berücksichtigung der hydrodynamischen Masse auf berechnete Zwangsschwingungsamplituden wird in Abbildung 6.53 besonders deutlich. Dargestellt sind Verläufe berechneter Zwangsschwingungsamplituden des Deckshauses bei Stossanregung unter Berücksichtigung der hydrodynamischen Masse nach LEWIS und durch die Kopplung von FEM und BEM (Nastran, Virtual Mass Methode) bei Tief- sowie Flachwasser. Da im Verfahren nach LEWIS die Frequenzabhängigkeit der hydrodynamischen Massen nicht berücksichtigt wird, wird die hydrodynamische Masse (in Abhängigkeit der Festlegung der Referenzschwingform) allgemein im unteren Frequenzbereich unter- und im höheren Frequenzbereich überbewertet. Dies führt sowohl zur Verschiebung von Eigenfrequenzen als auch zur Beeinflussung von Zwangsschwingungsamplituden. Insbesondere bei der Berechnung von Amplituden-Frequenzgängen bzw. Frequenzgangfunktionen bietet die Anwendung einer gekoppelten Fluid-Struktur-Berechnung große Vorteile, zumal ebenfalls Flachwassereinflüsse berücksichtigt werden können. Sichtbar werden diese Einflüsse insbesondere bei der ausgeprägten Deckshausschwingform im Frequenzbereich von ca. 12.5 Hz.

Abbildung 6.53: Rechnerisch mit ermittelte Frequenzgänge am Containerschiff Aker**9 bei unterschiedlicher Berücksichtigung der hydrodynamischen Masse im FE-Modell (Anregung Hauptmaschine, Antwort Deckshaus)

Durch die überbewertete hydrodynamische Masse nach LEWIS nehmen die Eigenfrequenz und die Anregbarkeit der Struktur ab, die Fluid-Struktur-Kopplung korrigiert diese Abweichungen, die Eigenfrequenz und Anregbarkeit erhöht sich. Durch eine Berücksichtigung des Einflusses von Flachwasser (Fluid-Struktur-Interaktion) erhöht sich real die wirksame hydrodynamische Masse (allerdings auch die Anregung aufgrund von Reflexionen an Fluidbegrenzungen), die daraus resultierenden Effekte können ebenfalls Abbildung 6.53 entnommen werden.

Abbildung 6.54: Einfluss unterschiedlicher Motorquerabstützungen auf das Antwortverhalten der Deckshausstruktur (Anregung: H-Moment, 7. Ordnung, Hauptmaschine), Fluid-Struktur-Kopplung, Ballastzustand, Dämpfung GL

Der Einfluss der Motorquerabstützung auf die dynamischen Antworten des Deckshauses ist in Abbildung 6.54 dargestellt. Eine zusätzliche Abstützung der Hauptmaschine im Modell führte zu einer Reduzierung der Antworten im Deckshausbereich. Die Auswirkungen einer veränderten Abstützung können örtlich durchaus unterschiedlich sein und führen nicht immer zu einer Reduzierung der Schwingungsamplituden. Zu Beachten ist in diesem Zusammenhang auch die räumliche Realisierung der Abstützung im FE-Modell, die aufgrund der verwendeten Elementgrößen zum Teil nur näherungsweise wiedergegeben werden kann.

Zusammenfassend kann anhand der hier auszugsweise dargestellten Ergebnisse festgestellt werden, dass neben der realitätsgetreuen Abbildung der Erregung und insbesondere der Dämpfung auch die Struktur des Finite-Elemente-Modells einen großen Einfluss auf berechnete Zwangsschwingungsamplituden besitzt. Mögliche Strukturmodifikationen reichen von globalen Einflussgrößen, wie der Art der Berücksichtigung der wirksamen hydrodynamischen Massenkräfte bis hin zu lokalen Effekten bei der Motorquerabstützung oder im Bereich der Erregungseinleitung der Hauptmaschine, die durch den im Modell ausschließlich berücksichtigten Membranspannungszustand möglicherweise nur ungenügend wiedergegeben werden.

7. Zusammenfassung

Die Kenntnis des dynamischen Verhaltens der realen Schiffsstruktur ist insbesondere im Hinblick auf die Überprüfung der Vorhersagegenauigkeit verwendeter Rechenmodelle sowie hinsichtlich der Bereitstellung von Dämpfungskennwerten zur Berechnung von Zwangsschwingungen von großer Bedeutung. Aufgrund der Festlegung immer anspruchsvollerer Grenzwerte für im Schiffsbetrieb auftretende Schwingungspegel nehmen die Anforderungen an die Genauigkeit einer rechnerischen Vorhersage von Schwingungsamplituden infolge der Erregung durch den Schiffsantrieb immer weiter zu.

Hauptgegenstand der hier vorgestellten Arbeit ist die experimentelle Identifikation des dynamischen Verhaltens der globalen schiffbaulichen Struktur. Diese experimentellen Untersuchungen umfassen sowohl die Ermittlung des Eigen- als auch des Zwangschwingungsverhaltens der Struktur. Dabei ist der Stellenwert experimentell identifizierter Dämpfungsparametern besonders hoch. Ein weiterer Schwerpunkt ist die vergleichende rechnerische Ermittlung des dynamischen Verhaltens zur Bewertung der Vorhersagegenauigkeit hinsichtlich des Eigen- und Zwangsschwingungsverhaltens der globalen Schiffsstruktur.

Nachdem im KAPITEL 2 dieser Arbeit ein kurzer Überblick über Schwingungen schiffbaulicher Strukturen und ihrer rechnerischen Vorhersage gegeben wird, erfolgt eine Beschreibung auftretender Dämpfungseffekte sowie eine zusammenfassende Darstellung zur Identifikation des Dämpfungsverhaltens schiffbaulicher Strukturen aus der Fachliteratur. Aufgrund der Zweckmäßigkeit wird dabei eine Unterteilung in *lokale* und *globale* Schiffsstrukturen vorgenommen. Die in der Literatur veröffentlichten Dämpfungskennwerte globaler Schiffsstrukturen liegen in einem Bereich zwischen 0.5 % und 5 % der kritischen Dämpfung bei einer Zunahme der Dämpfung mit steigender Frequenz. Aus Gründen der Vollständigkeit wird im KAPITEL 2 auch das in der Literatur beschriebene Dämpfungsverhalten lokaler Schiffsstrukturen betrachtet. Experimentell ermittelte Dämpfungskennwerte weisen eine starke Abhängigkeit vom Ausrüstungsstand der Struktur auf. Die in der Literatur angegebenen Werte liegen in einem Bereich zwischen ca. 1 % und 10 % der kritischen Dämpfung.

Aus diesem Stand der Technik werden im KAPITEL 3 die Zielstellungen und Vorgehensweisen für die hier vorgestellten Untersuchungen abgeleitet sowie die Gegenstände der Untersuchung vorgestellt. Die Untersuchungen zum dynamischen Verhalten *globaler* Schiffsstrukturen werden danach an zwei unterschiedlichen RoRo-Schiffen sowie an mehreren Containerschiffen vom Typ CV2500 durchgeführt. Ziel ist die experimentelle Identifikation von Dämpfungsparametern zur Erweiterung und Absicherung der vorhandenen Datenbasis sowie die Ermittlung von Eigenfrequenzen, dazugehörigen Eigenschwingformen und des Übertragungsverhaltens. Ergänzt werden die experimentellen Untersuchungen durch die Aufzeichnung von Strukturantworten während des Hochfahrvorganges der Hauptmaschine an den Containerschiffen. Auf Grundlage der dann vorliegenden experimentellen Ergebnisse können anschließend unterschiedliche rechnerische Vorhersagen zum Eigen- und Zwangsschwingungsverhalten durchgeführt und die Vorhersagegenauigkeit der verwendeten Rechenmodelle bewertet werden.

Ein weiteres wesentliches Ziel ist die Bewertung der Anwendbarkeit zweier unterschiedlicher Verfahren der experimentellen Modalanalyse. Besonderes Interesse besteht dabei an der operativen Modalanalyse, einem sich erst in jüngster Zeit verbreitenden und vorrangig im Bauwesen genutzten Verfahren, das bislang noch nicht zur Identifikation schiffbaulicher Strukturen zur Anwendung kam.

Im KAPITEL 4 wird ein Überblick über die mathematische Modellierung mechanischer Systeme gegeben. Ausführlich wird in diesem Zusammenhang auf die Modellierung des Dämpfungsverhaltens eingegangen. Dabei kann festgestellt werden, dass der Ansatz der viskosen geschwindigkeitsproportionalen Dämpfung für eine Vielzahl strukturdynamischer Problemstellungen hinreichend genaue Ergebnisse liefert und besonders vorteilhaft in seiner Anwendung ist. Im Hinblick auf die Verteilung der Dämpfung im System beschreibt die vereinfachte Annahme der massen- und steifigkeitsproportionalen Verteilung, verglichen mit der allgemeinen, nicht-proportionalen Verteilung, das Dämpfungsverhalten im Rahmen der Anforderungen im Schiffbau mit ausreichender Genauigkeit.

KAPITEL 5 stellt die Grundlagen der verwendeten experimentellen Identifikationsverfahren, insbesondere der operativen Modalanalyse, vor. Weiterhin werden Möglichkeiten des Vergleichs von experimentell und rechnerisch ermittelten Ergebnissen beschrieben.

Eine ausführliche Ergebnisdarstellung zu den Untersuchungen *globaler* Schiffsstrukturen erfolgt im KAPITEL 6. Die beiden angewandten experimentelle Verfahren, die klassische und die operative Modalanalyse, lieferten bezüglich identifizierter Eigenfrequenzen, dazugehöriger Eigenschwingformen und Dämpfungsparameter sehr gute und vergleichbare Ergebnisse.

Das Ergebnis der Identifikation von Dämpfungsparametern aus einer Vielzahl von Messungen an verschiedenen Schiffen unter Werft- und Probefahrtsbedingungen ist eine im betrachteten Frequenzbereich nahezu konstante Dämpfung von durchschnittlich 1.1 % der kritischen Dämpfung mit leicht abnehmender Tendenz. Sie ist hauptsächlich im höheren Frequenzbereich geringer als die aus der Literatur bekannten Werte. Bei Untersuchungen am beladenen Schiff konnten Dämpfungskennwerte nur für den unteren Frequenzbereich ermittelt werden. Sie liegen innerhalb der am unbeladenen Schiff ermittelten Bandbreite der Parameter, sind tendenziell aber etwas erhöht.

Bezüglich der ermittelten Eigenfrequenzen des Schiffskörpers kann die Aussage getroffen werden, dass diese, neben einer Beeinflussung durch zusätzliche Massen von Ballast und Ladung, eine starke Abhängigkeit von der Wassertiefe am Ort der Untersuchung aufweisen. Aufgrund der Vergleichbarkeit mit entsprechenden Rechenmodellen sind experimentelle Untersuchungen darum möglichst unter Tiefwasserbedingungen, bzw. unter den entsprechenden charakteristischen Bedingungen des Einsatzes, durchzuführen. Für die im höheren Frequenzbereich liegenden Eigenschwingungen von Substrukturen, wie z.B.

dem Deckshaus, gelten diese Einschränkungen nicht. Weiterhin konnte auch eine Abhängigkeit der Eigenfrequenzen von der Schiffsgeschwindigkeit bzw. aus der daraus resultierenden unterschiedlichen Benetzung der Außenhaut nachgewiesen werden.

Aufgrund der sehr guten Anregung der Schiffsstruktur durch die Umgebungsbedingungen im unteren Frequenzbereich wird empfohlen, die dynamischen Parameter globaler Schiffskörperschwingungen durch Anwendung der operativen Modalanalyse unter Einsatzbedingungen zu ermitteln. Zur Identifikation dynamischer Parameter von Substrukturen (z.B. Deckshäusern) im Frequenzbereich größer 8 Hz ist die klassische der operativen Modalanalyse vorzuziehen.

Ein Vergleich von berechneten und experimentell ermittelten Eigenschwingungsgrößen ist aufgrund der hohen örtlichen Auflösung und der Qualität der experimentell ermittelten Eigenschwingformen sehr gut möglich.

Für die Vorhersage und den Vergleich des Eigenschwingungsverhaltens des beladenen Schiffes ist der konkrete Ladezustand im Berechnungsmodell zu berücksichtigen. Für die Berücksichtigung der an der Schiffsstruktur wirksamen hydrodynamischen Massekräfte ist im Hinblick auf die Vorhersagegenauigkeit die gekoppelte Fluid-Struktur-Analyse dem Verfahren nach LEWIS vorzuziehen. Bei Anwendung der gekoppelten Analyse ist zusätzlich die Berücksichtigung von Flachwassereinflüssen möglich. Vorteile bietet die gekoppelte Fluid-Struktur-Analyse insbesondere aber hinsichtlich der Beschreibung der Frequenz- bzw. Schwingformabhängigkeit der hydrodynamischen Massenkräfte, was vor allem bei der Berechnung von Zwangsschwingungsamplituden wichtig ist.

Zwangsschwingungsrechnungen bei Simulation der Stossanregung unter Verwendung der identifizierten mittleren Dämpfung von ca. 1 % zeigen eine gute Übereinstimmung mit den entsprechenden Frequenzgängen der klassischen Modalanalyse. Hingegen treten bei der rechnerischen Vorhersage von Zwangsschwingungsamplituden bei Motorerregung größere Abweichungen zu den im Schiffsbetrieb bei Probefahrt experimentell ermittelten Schwingungsamplituden auf, wenn diese Dämpfungsannahme verwendet wird. Messung und Rechnung auf Grundlage des beladenen Schiffes zeigen wiederum eine verbesserte Übereinstimmung. Die Ursachen für diese Abweichungen sind vielfältig und konnten bislang nicht eingegrenzt werden.

Im Rahmen einer Vielzahl von Beispielrechnungen auf Grundlage veränderter Finite-Element-Modelle konnte der Einfluss der Modellstruktur auf die Vorhersageergebnisse bestimmt werden. Danach haben u.a. die Art der Berücksichtigung der Motorquerabstützung oder der hydrodynamischen Massekräfte einen wesentlichen Einfluss. Ebenfalls kann bei der Einleitung der Erregermomente der Hauptmaschine in den Schiffsverband die prinzipielle Modellierung der Struktur auf Grundlage von Membranen- und Balkenelementen als eine mögliche Ursache für Abweichungen zwischen Messung und Rechnung vermutet werden. Abweichende Dämpfungsannahmen, z.B. vom Germanischen Lloyd, tragen diesem Sachverhalt möglicherweise Rechnung. Bei diesen rechnerischen Untersuchungen wurde deutlich, dass die Dämpfung ein wichtiger Baustein aber nicht der alleinige Schlüssel zur Verbesserung der Vorhersagegenauigkeit sein kann.

Insbesondere die sehr umfangreiche Sammlung experimenteller Daten zum dynamischen Verhalten unterschiedlicher Schiffsstrukturen kann auch für künftige Bemühungen zur Verbesserung der Vorhersagegenauigkeit von Strukturantworten eine solide Basis bilden.

Abschließend sei noch einmal auf das sehr große Interesse der Werftindustrie an der in diesem Projekt entwickelten experimentellen Vorgehensweise zur Ermittlung des dynamischen von globalen Schiffstrukturen hingewiesen, da nach Ende des Projektes bereits weiterführende Untersuchungen an neuen Schiffstypen durchgeführt wurden bzw. in Planung sind.

8. Literaturverzeichnis

- [1] I. Asmussen, W. Menzel, H. Mumm, *Ship Vibration*, GL-Technology, Issue No. 5, Germanischer Lloyd, Hamburg , 2001.
- [2] K.-J. Bathe, *Finite-Elemente-Methoden*, Springer Verlag, Berlin, Heidelberg, New York, 1990.
- [3] F. M. Lewis, *The Inertia of Water Surrounding a Vibrating Ship*, SNAME Transactions, 37 (1929).
- [4] U. Röhr, P. Möller, *Berechnung Hydrodynamischer Massen- und Dämpfungsmatrizen*, Research report "Life Cycle Design" (BMBF), University of Rostock, 1999.
- [5] MAN B&W, Vibration Characteristics of Two-stroke Low Speed Diesel Engines, Project Guide.
- [6] I. Asmussen, H. Mumm, *Effektive Erregerlasten langsamlaufender Zweitakt-Schiffsmotoren aus den Gaskräften*, FDS-Bericht Nr. 215, 1990.
- [7] G. Schlottmann, S. Uhlenbrock, J. Winkelmann, S. Bludszuweit, H. Purcz, Erfassung der Schwingformen starr gelagerter Hauptantriebsaggregate durch Modalanalyse, Abschlußbericht AiF-Forschungsvorhaben Nr. 13072 BR, 2003.
- [8] I. Asmussen, H. Mumm, Propeller-Erregerkennwerte in Abhängigkeit von Skew und Kavitation f
 ür die Durchf
 ührung von Schwingungsberechnungen, FDS-Bericht Nr. 228, 1991.
- [9] H. Streckwall, Vergleich zweier Methoden zur Berechnung propellererregter Druckschwankungen, Jahrbuch der Schiffbautechnischen Gesellschaft, Springer-Verlag, Berlin Heidelberg New York, Band 89, 1995.
- [10] T. Gosch, K. Werner, Schiffsspezifische Vorhersage der Anregung vom Propeller durch Kopplung von Fluid- und Strukturmodellen, Jahrbuch der Schiffbautechnischen Gesellschaft, Springer-Verlag, Berlin Heidelberg New York, Band 100, 2006.
- [11] A. Hanke, G. Schlottmann, S.-E. Rosenow, S. Uhlenbrock, Korrektur von FE-Modellen dünnwandiger, eigenspannungsbehafteter Flächentragwerke, VDI-Schwingungstagung 2004; Modalanalyse und Identifikation, VDI-Bericht 1825, Düsseldorf, 2004.
- [12] G. Schlottmann, Machinery Induced Dynamic Response (4), Damping (7), Free Vibration Analysis of a Deck Structure – Benchmark Study (8), 15th International Ship and Offshore Structures Congress 2003, Report of the Committee II.2 "Dynamic Response", San Diego, 2003.
- [13] C. V. Betts, R. E. D. Bishop, W. G. Price, A Survey of Internal Hull Damping, Transactions of the Royal Institution of Naval Architects, London, 119 (1977), 125-142.
- [14] K. G. Willich, Beitrag zur Bestimmung der Dämpfung von Schiffsschwingungen, Dissertation, RWTH Aachen, 1988.
- [15] Ch. Cabos, F. Ihlenburg, H. Mumm, Verbesserung der Dämpfungsansätze für die Berechnung von Schiffsschwingungen, Germanischer Lloyd Hamburg, Bericht Nr. FI 99.139, 1999.
- [16] B. J. Lazan, Damping of Materials and Members in Structural Mechanics, Pergamon Press, London, 1965.

- [17] A. D. Nashif, D. I. G. Jones, J. P. Henderson, *Vibration Damping*, J. Wiley, New York, 1985.
- [18] N.N., Ship Structure Committee, *Hydrodynamic hull damping*, Technical Report SSC-359, Washington D. C., 1991.
- [19] K. Peleg, *Impact and vibration testing of shipping containers*, Journal of Sound and Vibration, 93 (1984), 371-388.
- [20] H. Thorbeck, E. Langecker, Ermittlung der Dämpfungseigenschaften von Schiffskonstruktionen, Schiffbauforschung, 39 (2000); 43-94.
- [21] S. J. Pietrzko, Verfahren zur Identifikation der Dämpfungsmatrix mechanischer Systeme, EMPA Dübendorf, Bericht Nr. 223, 1992.
- [22] H. G. Natke, *Einführung in die Theorie und Praxis der Zeitreihen- und Modalanalyse*, Vieweg Verlag, Braunschweig / Wiesbaden, 3. Auflage, 1992.
- [23] H. Irretier, *Experimentelle Modalanalyse*, Institut für Technische Mechanik, Universität Gesamthochschule Kassel, 3. Auflage, 2001.
- [24] D. J. Ewins, *Modal Testing: Theory, Practice and Application*, Research Studies Press LTD, 2. Edition, 2000.
- [25] R. Brincker, C. E. Ventura, P. Andersen, Why Output-Only Testing is a Desirable Tool for a Wide Range of Practical Applications, Proceedings of the 21st International Modal Analysis Conference (IMAC), Kissimmee, Florida, 2003.
- [26] A. Cunha, E. Caetano, From Input-Output to Output-Only Modal Identification of Civil Engineering Structures, Proc. of 1st. International Operational Modal Analysis Conference, 2005.
- [27] U. Fischer, W. Stephan, *Mechanische Schwingungen*, Fachbuchverlag, Leipzig-Köln,3. Auflage, 1993.
- [28] S. Hylarides, *Damping in propeller generated ship vibrations*, Netherland Ship Model Basin, Report 468, 1974.
- [29] T. Kumai, Damping factors in the higher modes of ship vibrations, European Shipbuilding, 1 (1958), 29-34.
- [30] A. I. Johnson, P. W. Ayling, On the vibration amplitudes of ship hulls, The Inst. of Eng. Shipbldrs. Scotland Trans. 105 (1962), 301-387.
- [31] T. Hirowatari, *Magnification factors in the higher modes of ship vibration*, Trans. Jap. Soc. Nav. Arch., 113 (1963), 156-168.
- [32] G. Aertsen, R. DeLembre, A survey of vibration damping factors found from slamming experiments on four ships, Trans. N.E. Coast Inst. Eng. and Shipbuild., 72 (1971), 83-122.
- [33] K. P. Schmitz, G. Schlottmann, *Untersuchung des Schwingungsverhaltens schiffbaulicher Konstruktionen in der Projektierung*, Schiffbauforschung 20 (1981) 32, 93-114.
- [34] K. P. Schmitz, G. Schlottmann, *Beitrag zur Vorausberechnung des Schwingungsverhaltens von Schiffsaufbauten*, Schiffbauforschung 19 (1980) 3, 155-164.
- [35] W. Geßner, Ermittlung der Dämpfung bei globalen Schiffsschwingungen, Sonderheft Internationales Schiffstechnisches Symposium 3.-6.10.1989 in Rostock, Band 2, 1989.

- [36] 8. ISSC, Report of Committee II.4, *Steady-state Dynamic Loading and Response*, Gdansk, 1982.
- [37] H. Thorbeck, E. Langecker, *Ermittlung der Dämpfungseigenschaften von Schiffskonstruktionen*, BMFT-Forschungsvorhaben, Förderkennzeichen 18 S 0023, 1993.
- [38] S. R. Ibrahim, The use of Random Decrement Technique for Identification of Structural Modes of Vibration, AIAA-Proceedings, 1977.
- [39] Lloyd's Register, Class Computational Services Group, Lloyd's Register Vibration and Noise Services, Report No. 97/18, 1997.
- [40] W. H. Groth, H. G. Payer, Untersuchungen über das Dämpfungsverhalten schiffbaulicher Konstruktionen, FDS-Bericht Nr. 53, 1975.
- [41] M. Imregun, D. J. Ewins, Complex Modes-Origins and Limits, Proceedings of the 13th International Modal Analysis Conference (IMAC), Nashville, TN, 1995, 496-506.
- [42] T. K. Hasselman, *Modal Coupling in Lightly Damped Structures*, AIAA Journal, 14 (1976), 1627-1628.
- [43] H.-P. Felgenhauer, Korrektur von Rechenmodellen für gedämpfte elastische Systeme mittels gemessener erzwungener Schwingungen, VDI-Z., Reihe 11, Nr. 37, 1981.
- [44] S. R. Ibrahim, E. Mikulcik, A Method fort he Direct Identification of Vibration Parameters from the Free Responses, Shock and Vibration Bulletin, Vol. 47(4), 1977, 183-198.
- [45] G. Lallement, D. J. Inman, *A Tutorial on Complex Eigenvalues*, Proceedings of the 13th International Modal Analysis Conference (IMAC), Nashville, TN, 1995, 490-495.
- [46] M. Link, Updating of Analytical Models Basic Procedures and Extensions, Proc. of NATO Advanced Study Institute, Sesimbra, Portugal, May 1998 in "Modal Analysis and Testing"(J.M.M. Silva and N.M.M. Maia (Eds.), Kluwer Acad. Publ., London, 1999.
- [47] M. Link, Was kann man von rechnerisch auf Testdaten angepassten Finite- Elemente- Modellen erwarten?, VDI- Berichte 1550, 2000, 73-94.
- [48] O. Flores-Santiago, Verfahren zur Lokalisierung und Korrektur von Modellfehlern in der Strukturdynamik, Dissertation, Universität Kassel, 1995.
- [49] F. Schäfer, Anpassung von modalen Dämpfungsparametern in Finite-Element-Rechenmodellen auf Grundlage gemessener Übertragungsfunktionen, Diplomarbeit, Universität Rostock, 2003.
- [50] M. Reichelt, Anwendung neuer Methoden zum Vergleich der Ergebnissen aus rechnerischen und experimentellen Modalanalyseuntersuchungen, VDI Berichte 1550, 2000, 481–495.
- [51] Z. Sibaei, F. Dalmer, *Modalanalyse*, Arbeitsunterlagen zum Workshop an der TU Chemnitz-Zwickau, 1996.
- [52] Hewlett-Packard GmbH, *Grundlagen der dynamischen Signalanalyse*, Application Note 243, 1994.
- [53] SDRC Inc. (IDEAS Test), Modal Analysis User's Guide, 2005.

- [54] R. Brincker, P. Anderson, A Way of Getting Scaled Mode Shapes in Output Only Modal Analysis, Proc. Of the International Modal Analysis Conference (IMAC) XXI, paper 141, 2003.
- [55] M. L. Aenlle, R. Brincker, P. F. Fernández, A. F. Canteli, Load Estimation from Modal Parameters, Proceedings of 2nd International Operational Modal Analysis Conference, Copenhagen, 2007.
- [56] P. D. Welch, The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms, IEEE Trans. Audio Electroacoustics, Vol. 15 (1967), 70-73.
- [57] R. Brinker, L. Zhang, P. Andersen, Modal Identification for Ambient Responses Using Frequency Domain Decomposition, Proceedings of the International Modal Analysis Conference (IMAC) XVIII, 2000.
- [58] R. Brinker, C. Ventura, P. Andersen, *Damping Estimation by Frequency Domain Decomposition*, Proceedings of the International Modal Analysis Conference (IMAC) XIX, 2001.
- [59] R. Brincker, L. Zhang, P. Andersen, Output-Only Modal Analysis by Frequency Domain Decomposition, Proceedings of ISMA 25, 2000.
- [60] P. Van Overschee, B. De Moor, *Subspace Identification for Linear Systems: Theory, Implementation, Application*, Kluwer Academic Publishers, The Netherlands, 1996.
- [61] S. R. Ibrahim, A. Sestieri, *Existence and Normalization of Complex Modes in Post Experimental Use in Modal Analysis*, NATO ASI Series, Band 363, 1999, 441-453
- [62] H. Ahmadian, G. M. L. Gladwell, F. Ismail, *Extracting Real Modes from Complex Measured Modes*, Proceedings of the 13th International Modal Analysis Conference (IMAC), Nashville, TN, 1995, 507-510.
- [63] A. Müller-Schmerl, U. Behrens, C. Cabos, H. Jefferies, M. Wilken, *Dynamische Strukturanalyse mit schiffbaulichen Entwurfssystemen*, Germanischer Lloyd Hamburg, Bericht Nr. ESM 2002.088, 2002.
- [64] S. Knees, H. Wiechers, Global Analysis of 2500 TEU Container Vessels, Hulls Nos. 457/458, Germanischer Lloyd Hamburg, Report No. ESV 2004.203, 2004.
- [65] Zierath J., Schlottmann G., Uhlenbrock S., Rosenow S.-E., Berechnung optimaler Sensorpositionen zur Anwendung der operativen Modalanalyse an Containerschiffen, Jahrbuch der Schiffbautechnischen Gesellschaft, Springer-Verlag, Berlin Heidelberg New York, Band 100, 2006
- [66] N.-J. Jacobsen, P. Andersen, R. Brincker, Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis, Proceedings of ISMA 2006, Belgium, 2006
- [67] S.-E. Rosenow, S. Uhlenbrock, G. Schlottmann, Parameter Extraction of Ship Structures in Presence of Stochstic and Harmonic Excitations, Proceedings of 2nd International Operational Modal Analysis Conference, Copenhagen, 2007
- [68] J. Lebahn, A. Hanke, J. Ritzke, G. Schlottmann, Influence of Welding Techniques on Modal Parameters of Stiffened Ship Panel Structures, Proceedings of 2nd International Operational Modal Analysis Conference, Copenhagen, 2007

[69] DIN ISO 6954:2001-06, Leitfaden für die Messung, Angabe und Bewertung von Schwingungen im Hinblick auf die Erträglichkeit für den Menschen auf Fahrgastschiffen und Handelsschiffen, Beuth Verlag, 2001

Anhang

Anhang zum Kapitel 4

Tabelle A4.1: Prozentuale Abweichungen von prognostizierten Zwangsschwingungsamplituden eines diskreten, nicht-proportional gedämpften Schwingungssystems (Abbildung 4.1) bei Anwendung unterschiedlicher Dämpfungsannahmen bezogen auf die Amplituden bei Berücksichtigung nicht-proportionaler Dämpfung

Mode	Modale Dämpfung					Rayleigh-Dämpfung (1)					Rayleigh-Dämpfung (2)				
	FG1	FG2	FG3	FG4	FG5	FG1	FG2	FG3	FG4	FG5	FG1	FG2	FG3	FG4	FG5
1	0.00	0.08	0.01	0.06	0.04	0.01	0.09	-0.04	0.08	0.00	-0.04	0.08	0.02	0.08	0.04
2	-0.99	2.00	-1.15	0.20	0.00	25.30	28.44	22.95	27.06	25.37	-63.44	-55.25	-62.31	-60.95	-62.16
3	-21.04	6.54	-10.16	-19.17	-6.67	136.4	654.5	317.0	139.1	373.9	-17.19	5.42	-9.54	-16.77	-7.55
4	-20.28	12.6	-11.95	-18.74	-8.27	163.9	486.6	48.45	171.6	59.63	-14.12	8.66	-10.50	-13.87	-9.13
5	5.43	0.53	2.02	-0.79	-0.06	-0.13	-2.67	0.60	2.68	0.11	-62.76	-76.63	-64.57	-79.88	-83.65

Anhang zum Kapitel 6

Tabelle A6.1: Ermittlung von Korrekturfaktoren für Eigenfrequenzen der vertikalen Schwingungsgrade des Containerschiffes CV2500 bei Ermittlung der hydrodynamischen Massen nach dem verfahren von LEWIS [3]

 $Korr_{hydro} = \sqrt{\frac{D + m_{hydro,vert.}F_4}{D + m_{hydro,vert.}F_{1...3}}} \quad \text{(nach [63])}$ D Verdrängung m hydro, vert - gesamte vertikale Hydromasse F_N - Abminderungsfaktor der Hydromassen [63] Korr hydro - Korrekturfaktor für Eigenfrequenzen der vertikalen Schwingungsgrade Schiffsspezifische Angaben CV2500: D = 19 140 t *m* hydro, vert =22 144 t (*m* hydro, horiz. =3971 t) 2 3 4 Vert. Schwingungsgrad Nr. 1 F_N 0.70 0.81 0.62 0.55 Korr hydro 0.9191 0.9508 0.9761 1.0000

Abbildung A6.1: Rechnerisch ermittelte Eigenschwingformen Nr. 1- 8 eines Containerschiffes vom Typ CV2500 (Darstellung des vollständigen Modells), siehe auch Abbildung 6.1

Abbildung A6.2: Rechnerisch ermittelte Eigenschwingformen des Containerschiffes Typ CV2500 im höheren Frequenzbereich mit elastischer Verformung des Deckshauses (Darstellung des vollständigen Modells), siehe auch Abbildung 6.2

Abbildung A6.3: Rechnerisch ermittelte Eigenschwingformen Nr. 1 - 10 des RoRo-Schiffes FSG**0 (Darstellung des vollständigen Modells), siehe auch Abbildung 6.3

Abbildung A6.4: Anordnung von Erregermasse (auf Schienen geführt oder als Pendel) sowie Gummielement und piezoelektrischer Kraftaufnehmer

Abbildung A6.5: Charakteristischer Erregerkraftverlauf bei Stoßanregung (klassische Modalanalyse) am Containerschiff Aker**9, Impulsdauer ca. 100 ms

Abbildung A6.6: Realisiertes Erregerspektrum bei Stoßanregung

Abbildung A6.7: Beispielhafte Darstellung einer aufgezeichneten Systemantwort infolge Impulsanregung am Containerschiff Aker**9 ohne (links) und mit angewandtem Exponentialfenster (rechts)

Abbildung A6.8: Parameteridentifikation bei Anwendung des Circle-Fit-Verfahrens an einer modal nicht gekoppelten Eigenschwingung (FSG**0) sowie Gegenüberstellung der experimentell und analytisch ermittelten Frequenzgänge

Abbildung A6.9: Parameteridentifikation bei Anwendung des Polyreferenz-Verfahrens mit Darstellung des Stabilitätsdiagramms sowie der Gegenüberstellung der experimentell und analytisch ermittelten Frequenzgänge (Aker**9)

Abbildung A6.10: Gegenüberstellung von experimentell und analytisch ermittelten Frequenzgänge (Aker **9) bei Anwendung des Komplex-Exponential-Verfahrens zur Parameteridentifikation

Abbildung A6.11: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker0*2 bei Anregung am Deckshaus

Abbildung A6.12: Experimentell ermittelter Frequenzgang des Containerschiffes Aker0*2 bei Anregung am Deckshaus

Abbildung A6.13: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker0*4 bei Anregung am Deckshaus

Abbildung A6.14: Experimentell ermittelter Drivingpoint-Frequenzgang des Containerschiffes Aker0*5 bei Anregung am Deckshaus

Abbildung A6.15: Experimentell ermittelter Frequenzgang des Containerschiffes Aker0*5 bei Anregung am Deckshaus

Abbildung A6.16: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes VWS**8 bei Anregung am Deckshaus

Abbildung A6.17: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes VWS**8 bei Anregung am Deckshaus und Antwort am Bug

Abbildung A6.18: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung am Deckshaus in Schiffslängsrichtung

Abbildung A6.19: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung am Deckshaus in Schiffslängsrichtung

Abbildung A6.20: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung am Deckshaus in Schiffsquerrichtung

Abbildung A6.21: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung am Deckshaus in Schiffsquerrichtung

Abbildung A6.22: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung an der Hauptmaschine in Schiffsquerrichtung

Abbildung A6.23: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung an der Hauptmaschine in Schiffsquerrichtung

Abbildung A6.24: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung an der Hauptmaschine in Schiffsquerrichtung

Abbildung A6.25: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung an der Hauptmaschine in Schiffsquerrichtung

Abbildung A6.26: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des Containerschiffes Aker**9 bei Anregung an der Hauptmaschine in Schiffsquerrichtung

Abbildung A6.27: Experimentell ermittelter Drivingpoint-Frequenzgang und dazugehörige Kohärenzfunktion des RoRo-Schiffes FSG**0 bei Anregung am Deckshaus in Schiffsquerrichtung

Abbildung A6.28: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des RoRo-Schiffes FSG**0 bei Anregung am Deckshaus in Schiffsquerrichtung

Abbildung A6.29: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des RoRo-Schiffes FSG**0 bei Anregung am Deckshaus in Schiffsquerrichtung

Abbildung A6.30: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des RoRo-Schiffes FSG**0 bei Anregung am Deckshaus in Schiffslängsrichtung

Abbildung A6.31: Experimentell ermittelter Frequenzgang und dazugehörige Kohärenzfunktion des RoRo-Schiffes FSG**0 bei Anregung am Deckshaus in Schiffslängsrichtung

Abbildung A6.32: Örtliche Gegebenheiten auf der Aker MTW Werft (links) und der Flensburger Schiffbaugesellschaft (rechts) zur Durchführung der operativen Modalanalyse

Abbildung A6.33: Wellensituation während der Durchführung der operativen Modalanalyse an den Schiffen Aker**9 (links) und FSG**0 (rechts)

Abbildung A6.34: Messmodell und Sensorpositionierung für die einzelnen Messreihen bei Anwendung der operativen Modalanalyse am Containerschiff Aker**6

Abbildung A6.35: Verfeinertes Messmodell und Sensorpositionierung für die einzelnen Messreihen bei Anwendung der operativen Modalanalyse am Containerschiff Aker**9

Abbildung A6.36: Messmodell und Sensorpositionierung für die einzelnen Messreihen bei Anwendung der operativen Modalanalyse am RoRo-Schiff FSG**0

Abbildung A6.37: Autoleistungsdichte-Spektrum eines am Schiff Aker**9 aufgezeichneten Datenkanals (Deckshaus, Schiffslängsrichtung)

Abbildung A6.38: Phasenbehaftetes Kreuzleistungsdichte-Spektrum zwischen zwei am Schiff Aker**9 aufgezeichneten Datenkanälen (Deckshaus, Schiffslängsrichtung, back- und steuerbord)

Abbildung A6.39: Verlauf der Singulärwerte der spektralen Leistungsdichte-Matrizen eines am Schiff Aker**9 aufgezeichneten Datensatzes

Abbildung A6.40: Verlauf der gemittelten Singulärwerte der spektralen Leistungsdichte-Matrizen aller am Schiff Aker**9 aufgezeichneten Datensätze mit ausgewählten Moden

Abbildung A6.41: Ausgewählter Verlauf der Singulärwerte einer Eigenschwingung im Bereich von zwei gekoppelten Moden und dazugehörige Autokorrelationsfunktion zur Parameteridentifikation

Abbildung A6.42: Im Rahmen der Anwendung der SSI-Verfahren ermitteltes Stabilitätsdiagramm auf Grundlage eines am Schiff Aker**9 aufgenommenen Datensatzes

Abbildung A6.43: Vergleich von experimentell ermittelter und analytisch generierter spektraler Autoleistungsdichte zur Bewertung der Güte der Identifikation (SSI)

Abbildung A6.44: Messmodelle und Sensorpositionierung für die einzelnen Messreihen bei Anwendung der operativen Modalanalyse während der Probefahrt an den Schiffen CV2500 (Aker**9 VWS**8), FSG**0 und FSG**1

Abbildung A6.45: Parameterermittlung unter Anwendung der EFDD und des Verfahrens der harmonische Identifikation und Eliminierung für den Fall einer harmonischen Erregerordnung eng benachbart mit einem strukturellem Mode

Abbildung A6.46: Stabilitätsdiagramm ermittelt unter Anwendung eines SSI-Verfahrens (UPC) für den Fall einer harmonischen Erregerordnung eng benachbart mit einem strukturellem Mode

Abbildung A6.47: Erhöhte Intensität der stochastischen Anregung bei Durchführung der operativen Modalanalyse während der Probefahrten

Abbildung A6.48: Veränderung der dynamischen Eigenschaften des RoRo-Schiffes FSG**1 in Abhängigkeit von der Schiffsgeschwindigkeit, Darstellung des Verlaufes der Singulärwerte

Abbildung A6.49: Spektogramm der Strukturantworten am Deckshaus des Schiffes Aker**9 (steuerbord, Schiffslängsrichtung) beim Hochfahrvorgang der Hauptmaschine, (65 – 113 min⁻¹)

Abbildung A6.50: Spektogramm der Strukturantworten am Deckshaus des Schiffes VWS^{**8} (steuerbord, Schiffslängsrichtung) beim Hochfahrvorgang der Hauptmaschine, (50 – 108 min⁻¹)

Abbildung A6.51: Darstellung des Ladezustandes des Schiffes Aker**9 (Hafen Rotterdam)

Abbildung A6.52: Spektogramm der Strukturantworten am Deckshaus des Schiffes Aker**9 (steuerbord, Schiffslängsrichtung) beim Hochfahrvorgang der Hauptmaschine, (84 – 108 min⁻¹) im beladenen Zustand (Liniendienst)

Abbildung A6.54: Zusammenfassende Darstellung aller identifizierten Dämpfungsparameter aller Schiffe sowie ermittelte Regressionsgerade

Abbildung A6.55: Aus [4] entnommene Darstellung zur Berechnung von Eigenfrequenzen und dazugehöriger Eigenschwingform unter Tief- und Flachwasserbedingungen

Eigenfrequenzen f [Hz] (Mode 1, Torsion, 1 Knoten)									
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	0,92	1,01	0,97	0,95	0,93				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	1,08			1,15					
Eigenfrequenzen f [Hz] (Mode 2, Biegung vertikal, 2 Knoten)									
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	1,16 [1,07]	1,05	1,07	0,93	0,85				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	0,99			0,88					
Eigenfrequenzen f [Hz] (Mode 3, Biegung horizontal, 2 Knoten)									
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	1,53	1,50	1,46	1,42	1,39				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	1,53			1,50					
	Eigenfrequer	nzen f [Hz] (Moo	le 4, Biegung v	ertikal, 3 Knote	en)				
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	2,28 [2,16]	2,08	2,12	1,73	1,53				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	1,93			1,48					
Eigenfrequenzen f [Hz] (Mode 5, Biegung horizontal, 3 Knoten)									
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	2,96	2,90	2,81	2,74	2,69				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	2,91			2,83					
Eigenfrequenzen f [Hz] (Mode 6, Torsion, 2 Knoten)									
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	3,10	3,10	3,10	3,03	2,95				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	3,06			2,71					
Eigenfrequenzen f [Hz] (Mode 7, Biegung vertikal, 4 Knoten)									
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m				
	3,30 [3,22]	3,14	3,12	2,54	2,21				
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / OMA (Werft) (Tiefgang 4,6/6,5)					
	2,74			2,25					

Eigenfrequenzen f [Hz] (Mode 8, Biegung vertikal, 5 Knoten)								
Rechnung	Lewis [mit Korrektur]	BEM / Rechnung GL	FEM / BEM Tiefwasser	FEM / BEM Flachwasser 2m	FEM / BEM Flachwasser 1m			
	3,99	4,15	3,86	3,13	2,70			
Experiment	Aker**9 / OMA Probefahrt (Tiefgang 4,5/7)			Aker**9 / Stoss Werft (Tiefgang 4,8/5,4)				
	3,56			2,68				

Abbildung A6.56: Vergleich von berechneten und experimentell ermittelten Eigenfrequenzen und Eigenschwingformen in Abhängigkeit von der Wassertiefe (Rechnung Nastran, Fluid-Struktur Interaktion)

Klassische Modalanalyse, Mode 3: 1.55 Hz

Operative Modalanalyse, Mode 1: 1.21 Hz

Operative Modalanalyse, Mode 3: 1.72 Hz

Abbildung A6.57: Ermittlung der Komplexität nach Gleichung (4.38) von mit klassischer und operativer Modalanalyse ermittelten Eigenschwingformen

Abbildung A6.58: Momentenverlauf der 7. Erregerordnung (H-Moment) des auf dem Schiff Aker**9 verwendeten 2-Takt Dieselmotors 7L70MC-C

7L70MC-C7