TES EnergyFaçade – prefabricated timber based building system for improving the energy efficiency of the building envelope

funded by: Woodwisdom Net

Research project from 2008-2009

Content

1.1.	Modernisation - the 2nd chance for architecture	19
1.2.	TES method - Systemised workflow	23
2.	Building stock	31
2.1.	Energy efficiency in Building Stock	36
2.2.	Resource Efficiency in Building Stock	38
2.3.	Systemisation	40
2.3.1.	Building geometry	41
2.3.2.	Foundation	42
2.3.3.	Exterior wall	46
2.3.4.	Window	50
2.3.5.	Ceiling / balcony	56
3.	TES Method	60
3.1.	Survey and Digital Workflow	64
3.1.1.	Economic survey	67
3.1.2.	Methods of geometrical building survey	68
3.1.3.	3D Laser-scanning for TES projects: possibilities and challenges	74
3.1.4.	Reality versus model: Accuracy / Tolerances	76
3.1.5.	Digital Workflow	78
3.1.6.	Case study of a façade survey	85
3.2.	Environmental Impact and Life Cycle	88
4.	TES System	98
4.1.	TES Element	100
4.1.1.	Form and Function	104
4.1.2.	Adaption layer	107
4.1.3.	Windows	114
4.2.	Mounting and Fixation	120
4.2.1.	Mounting	120
4.2.2.	Load Bearing	121
4.2.3.	Element façades fixation joints	125
4.3.	Building Physics	127
4.3.1.	Fire Safety of Façades	127
4.3.2.	Hygrothermal (Heat, Air, Moisture) and Air / Wind Tightness	135
4.3.3.	Cavities in adaption layer and drying potential in existing wet walls	143
4.3.4.	Acoustics (Sound Protection)	146
4.4.	Building services	148
5.	Quality assurance	156
5.1.	Regulations	157
5.2.	TES specification	158
5.3.	Design recommendations for TES EnergyFaçade	159
6.	Pilot Projects in Europe	164
6.1.	Realschule, Buchloe, Germany	165
6.2.	Technical College, Risør, Norway	173
6.3.	Student Housing, Oulu, Finland	185

Graphics and Pictures

1.	Modernisation workflow	19
	TES EnergyFaçade building method.	19
	Global warming map, © by NASA.	20
	Possible interventions	20
	Schwanenstadt, AustriaSchool before and after modernisation; PAUAT Architekten, 2004	23
	Risør College, NorwayPrefabricated façade elements with close boarding, assembled in 2009.	23
	Retrofit interventions for energy efficiency.	23 24
	Prefabricated façade element assembly at Realschule Buchloe.	24
	Simplified lifecycle model of a TES EnergyFacade retrofit.	20
	Wide variety of surface solutions for TES.	20
10.	Residential units by building age class, Germany.	32
12.	Typical appartment houses of the post war era.	33
12.	Typology of relevant building types.	34
13. 14.	Typological floor plans with corridor houses and terraced houses (from left t. r.): acc. to Neufert, 1973.	35
15.	Typological floor plans with centralised access (from left t. r.): double dwelling, triple dwelling, staggered dw	
	Point block, acc. t. Neufert, 1973.	35
•	Examples of German dwellings from the 60s and 70s in Nuremberg.	35
17.	Building stock clustered in building age classes and its specific heat energy demand.	36
18.	Type of heating system in residential units in millions.	37
19.		40
20.		42
21.		42
22.	Raised ground floor, MFH Hinterbärenbadstraße, München	43
23.	Flat terrain.	43
24.	Tilted terrain.	43
25.	Separate foundation	44
27.	Fixation of brackets, Realschule Buchloe, 08/2009	44
26.		44
28.	Single layered masonry	46
29.	Insulated sandwich element	46
30.	Ventilated structure	46
31.	Principle heat transmission	47
32.	Isotherm curve of an uninsulated exterior corner. Temperature on the surface inside is below the critical Te	m-
pera	ature of 12,6 °C.	47
34.	Joint in concrete skeleton structure	48
33.	Façade joints in existing constructions.	48
35.	Heat bridge at roof eves: no heat bridge or a negligible geometric one (left), on the right there is a construct	;-
tion	al heat bridge remaining.	49
36.	Inner stop against outer reveal projection	50
37.	Outer stop against inner reveal projection	50
38.	Flat connection to reveal	50
39.	Situation interior against façade columns	50
40.		50
41.	Flat connection between columns	50
42.	Interior rolling shutter box and radiator niche, brick masonry 30 cm, D-Augsburg	53
44.	Double layered brick masonry with timber framed window element, 10 cm, poor insulation standard, NL-Ro	
end	aal	53

43.	Exterior shutter box, D-Augsburg	53			
45.	Curtain wall at stair case, loggia with additional glazing for noise protection, D-Augsburg	53			
46.	Spandrel panel ribbon glazing	54			
47.	Window, aluminium flat against reveal and parapet.	54			
48.	Window sill, cable channel and radiator in front off parapet. D-München, Umweltamt	54			
49.	Exterior structural glazing façade with rotating tilting frames, sun shading device, D-Buchloe, Realschule	54			
50.	Timber frame wall with poor insulation, large window areas, NOR- Rsior, College	55			
52.	Ceiling and balcony constructions.	56			
51.	Two types of exterior wall construction.	56			
53.	Cantilevering slab	57			
55.	Partly cantilevered slab	57			
54.	Loggia	57			
56.	Balcony	57			
	Cutting off balcony slab	58			
	TES process diagram.	60			
60.	Prefabrication degrees	62			
	Prefabrication and installation process.	62			
61.	Comprehensive inspection of a property.	64			
	The prefabricated TES element has to fit on the existing façade like a stencil.	65			
63.	Irregularities of a façade with a size of around 32 x 9 m. The maximum deviation perpendicular to the surface				
	e is in total between 30 and 40 mm.	65			
•	Example Rotlintstrstrasse, Frankfurt, Germany. A typical post-war building from the early 1950s.	66			
65.	Influencing parameters on several measuring methods used in façade survey (close to centre is not recom-				
	ded). Hand measuring is mentioned for comparison, but it is not competitive as it lacks 3D properties.	67			
66.	Benefit-cost ratio of the used measuring methods. Source Rauch 2008.	68			
	Typical application of a reverse engineering process with uneven surfaces in dental technology.	69			
68.	Multi-image 3D photogrammetry - postprocessing / 3D modeling of discreet façade points.	69			
	A modern Tacheometer also called Totalstation.	70			
		70			
	Entire raw data model consisting of a registered and cleaned point cloud, taken by a 3D laserscan.	71			
	Critical points of a façade survey.	76			
	3D model of the timber fabricator providing the façade for Realschule Buchloe, produced in july and assem-				
	in august 2009.	. 80			
	3D wireframe model of the Realschule Buchloe was basis for the product model of the timber fabricator, sur-				
	d in june 2009.	81			
-	Step by step development of a product model (BIM) from survey data.	82			
76.	Necessary steps of a TES survey campaign based on Scherer's paradigm.	83			
77.	(a) Definition of a façade plane, (b) insertion of volumetric solids in the position of a window opening, (c) colli				
	control between pointcloud and solid. Continuation of the iterative process by further adjustment and collisio				
contr		84			
	Criteria and relation cost - complexity of 3D models.	84			
79.	Case study building from the 1950s located in Frankfurt, Germany.	85			
80.	3D Wireframe model of Rotlinstraße, Frankfurt.	85			
81.	3D parametric model in SEMA after importing and postprocessing the wireframe model.	85			
82.	Rectified image (left) and digital surface model (DSM) of the façade (right), showing the topography in differ				
	colours (deviation to perpendicular to reference plane - each colour corresponds a 5 mm step in height). 87				
84.	The three pillars analogy of sustainability.	88			
	ed or easily recycled at its end of life.	88			

85. System borders for sustainability and LCA of TES.

0_4

89

87.	Lifecycle of an entire building and lifecycle of modernisation products.	90		
86.	Concept of description of sustainability due to CEN / TC 350 as basis for the EN 15643.	90		
88.	Typical technical lifetime of different façade modernisation systems and the related eco-indicator 99.	91		
89.	Specification of different insulation materials concerning heat conductivitiy and primary energy intensity (n			
	wable). The thicknesses of insulation is standardized to a U-value of 0,2 kWh/m2 in this case. The red boxe			
	v the contained primary energy (PEI) per m2. The data is based on the Ökobau.dat delivered by German Fe			
	Ministry of Construction.	92		
91.	Basic TES application and system hierarchy with; a) existing structure, b) adaption layer, c) timber framework	огк 98		
	insulation as main layer, d) cladding layer on the exterior side.			
	Variation of cladding materials in combination with a TES basic element.	99 100		
	Variation in size and orientation of TES elements.	100		
94. 05	Basic TES element with a) insulation b) panelling and c) structure.	101 102		
95. 96.	Different TES structure compositions based on the same principle of a framed wall element. Elements for Realschule Buchloe.	102		
		105		
97. 98.	Horizontal and vertical division - spatial enclosure and extension. Self-supporting structure with own foundation and roof extension (left), partly suspended structure (right).	105		
90. 99.	Ceiling slabs able to take loads in each storey.	100		
99. 100.	Basics concept of an element-façade	100		
100.	Fixation of adaption layer on the existing wall. Depicted here is a Heraklith surface, Realschule Buchloe	100		
101.	Element joint at sill	107		
102.	•	107		
103.		108		
104.	Drawing of the two storey element.	109		
100.		110		
107.	Window sill and reveal with sealing.	111		
107.	Trailer based standard ISOBLOW station.	111		
108.	Insulation perforated by hose	111		
110.	Filling procedure	111		
111.	Hole for control of filling	112		
112.	Joints seald with PU foam.	112		
	Drilled hole for filling hose.	112		
114.	Dust emission through boreholes.	113		
115.	Control opening:Cellulose fibre filling (bottom) andSLS filling (top)	113		
116.	Elevation, vertical and horizontal section of a basic TES structure and layering.	114		
117.	Distribution of illuminance values.	115		
118.	Rendered interior view of a room with one window and deep reveals.	115		
119.	Window replacement in masonry wall construction. New window is fully integrated in insulation layer.	116		
120.	Conservation of existing window and an additional exterior window integrated in the insulation layer.	117		
121.	Enlargement of existing window geometry (french window).	118		
123.	Airtight joint at window reveal with a double layer gypsum fibre board	119		
122.	Vertical section window lintel with air-tight sealing of the gap (adaption layer).	119		
124.	Precise adjustment of edge beam for fixation of elements.	120		
125.	Distance of scaffolding for mounting purpose.	120		
126.	Operating range of crane and other liftung devices.	120		
127.	Different lifting equipment with mobile crane etc.	120		
128.	Lifting solution for façade elements beneath roof overhang or structured façades, balconies etc. Develope			
by O.LUX, Georgensgmünd				
129.		121		
	Loads on TES element.	121		