Untersuchungen zum Gastransport in der Auflockerungszone in einem geologischen Endlager in Tongestein

Abschlussbericht

Juni 2011

TU Darmstadt
Fachgebiet Thermische Verfahrenstechnik

Im Auftrage des Bundesministeriums für Wirtschaft und Technologie (BMWi)

Förderkennzeichen: 02 E 10015

Verfasser:
Hanskurt Fröhlich
Benjamin Häfner
M. J. Hampe
Inhaltsverzeichnis

Zusammenfassung ... 1
Einleitung und Zielsetzung .. 4
Poröse Medien ... 8
 Porenstruktur ... 8
 Einteilung der Stofftransportmechanismen ... 11
 Stofftransport bei einem einkomponentigen Gas 13
 3.3.1 Stationäre Permeabilitätsmessungen .. 13
 3.3.2 Viskose Strömung ... 14
 3.3.3 Molekularbewegung ... 15
 3.3.4 Übergangsgebiet ... 15
 3.3.5 Abweichungen von Darcyschen Gesetz ... 15
 Verfahren zur Porositätsbestimmung ... 17
 3.4.1 Bestimmung der Gesamtporosität mit dem Masse-Volumen-Verfahren ... 17
 3.4.2 Bestimmung der zugänglichen Porosität mit dem Gasexpansionsverfahren ... 17
 3.4.3 Instationäre Permeabilitätsmessungen zur Bestimmung der zugänglichen Porosität ... 19
 3.4.4 Porenradienabschätzung ... 19
 Diffusion .. 20
 3.5.1 Knudsen-Diffusion ... 20
 3.5.2 Molekulare Diffusion .. 21
 3.5.3 Diffusion im Übergangsgebiet ... 21
 3.5.4 Verhältnis der Massenströme ... 22
Stoffeigenschaften der verwendeten Strömungsfluide 23
 Gase ... 23
 Formationswasser ... 23
 Zementwasser .. 24
 Elementbestimmung mit Hilfe der AAS ... 24
Probenmaterial und Probenkörper ... 26
 Kenndaten und mineralogische Zusammensetzung der Tonproben 26
Inhaltsverzeichnis

5.2 Untersuchte Probenkörper ... 27
6 Versuchseinrichtungen zur Messung der Permeabilität 30
6.1 Allgemeines ... 30
6.2 Versuchsstand zur Messung der Permeabilität ... 31
 6.2.1 Autoklaven für die Permeabilitätsmessungen .. 33
 6.2.2 Blasenspeicher als Förderelement ... 34
 6.2.3 Membranmetallbalg als Förderelement .. 35
 6.2.4 Volumenstrommessung .. 36
6.3 Permeabilitätsmessung bei 90°C ... 38
6.4 Versuchsstand zur Messung der Permeabilität mit feuchtem Stickstoff als Messfluid 39
6.5 Überprüfung der Messanordnung auf Dichtheit ... 41
6.6 Korrektur des Einflusses der Atmosphärendruckschwankungen auf das durch die Tonprobe permeierte Gasvolumen ... 41
 6.6.1 Bestimmung des Totvolumens .. 42
 6.6.2 Korrektur des Einflusses von Umgebungsdruckschwankungen 43
7 Versuchsdurchführung und Auswertung .. 47
7.1 Versuchsdurchführung .. 47
7.2 Permeabilitätsmessungen mit Gas als Messfluid 57
 7.2.1 Bestimmung der Anfangspermeabilität und der Überlagerungsdruckabhängigkeit der Permeabilität mittels Gasmessungen .. 57
 7.2.2 Permeabilität in Abhängigkeit von der Anfangsoporosität 77
7.3 Vergleich der mit Gas und Wasser jeweils gemessenen Anfangspermeabilitäten 78
7.4 Quantifizierung des Einflusses von feuchtem Gas auf das Durchlässigkeitsverhalten 80
7.5 Quantifizierung des Einflusses der Temperatur auf das Permeabilitätsverhalten 86
 7.5.1 Probe BRA 07/11 .. 86
 7.5.2 BRA 07/15 .. 88
 7.5.3 BLT 10/11/03 .. 90
 7.5.4 Probe BRA 08/05 .. 93
7.6 Überlagerungsdruckabhängigkeit der Wasserpermeabilität 93
7.7 Untersuchung des Einflusses von Zementwasser auf das Durchlässigkeitsverhalten von Tonstein ... 95
 7.7.1 Auswertung BRA 07/14 ... 95
 7.7.2 Auswertung BRA 07/19 ... 101
 7.7.3 Auswertung BRA 08/06 ... 107
7.8 Ioneneintrag bzw. -austrag infolge der Durchströmung mit Formations- und Zementwasser .. 112
 7.8.1 Auswertung mittels Atomabsorptionsspektroskopie 112
 7.8.2 Optische Untersuchung der Probe BRA 07/19 .. 118
 7.8.3 Wellenlängendisperse Röntgenfluoreszenzanalyse (WDRFA) 122
Inhaltsverzeichnis

7.9 Gasdurchbruchsdrücke.. 124

7.10 Auswertung der Diffusionsmessungen... 128
 7.10.1 Auswertung.. 128

8 Literatur .. 131

9 Anhang... 135
 9.1 Auswertung BRA 07/01... 136
 9.1.1 Permeabilitätsmessungen mit Stickstoff ... 136
 9.2 Auswertung BRA 07/03... 137
 9.2.1 Permeabilitätsmessungen mit Stickstoff ... 138
 9.2.2 Permeabilitätsmessungen mit Formationswasser .. 138
 9.3 Auswertung BRA 07/04... 141
 9.3.1 Permeabilitätsmessungen mit Gas ... 141
 9.3.2 Stationäre Permeabilitätsmessungen ... 141
 9.3.3 Instationäre Permeabilitätsmessungen ... 142
 9.3.4 Messungen mit Formationswasser .. 143
 9.4 Auswertung BRA 07/05... 147
 9.4.1 Permeabilitätsmessungen mit Stickstoff und Wasserstoff als Messgas 147
 9.4.2 Stationäre Permeabilitätsmessungen ... 147
 9.4.3 Instationäre Permeabilitätsmessungen ... 150
 9.5 Auswertung BRA 07/06... 152
 9.5.1 Permeabilitätsmessungen mit Stickstoff .. 152
 9.5.2 Vermessen der Probe mit Formationswasser als Messfluid 152
 9.6 Auswertung BRA 07/08... 158
 9.6.1 Permeabilitätsmessungen mit Stickstoff ... 158
 9.6.2 Vermessen der Probe mit Formationswasser als Messfluid 163
 9.6.3 Ionenkonzentration .. 165
 9.7 Auswertung BRA 07/09... 168
 9.7.1 Vermessen der Probe mit Gas .. 168
 9.7.2 Untersuchungen zur Durchlässigkeit bei flüssigkeitsgetränkter Probe 175
 9.8 Auswertung BRA 07/10... 179
 9.8.1 Permeabilitätsmessungen mit Stickstoff ... 180
 9.8.2 Diffusionsmessungen ... 190
 9.8.3 Vermessen der Probe mit Formationswasser ... 192
 9.9 Auswertung BRA 07/11... 195
 9.9.1 Permeabilitätsmessungen mit Stickstoff ... 195
 9.9.2 Messungen mit Formationswasser ... 200
 9.10 Auswertung BRA 07/12.. 203
 9.10.1 Permeabilitätsmessungen mit Stickstoff als Messgas .. 203
 9.10.2 Messungen mit Formationswasser ... 208
 9.10.3 Ionenkonzentration BRA 07/12 .. 215
<table>
<thead>
<tr>
<th>9.11</th>
<th>Auswertung BRA 07/13</th>
<th>218</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.11.1</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>218</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Vermessen der Probe mit Formationswasser als Messfluid</td>
<td>223</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Ionenkonzentration</td>
<td>229</td>
</tr>
<tr>
<td>9.12</td>
<td>Auswertung BRA 07/14</td>
<td>232</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Permeabilitätsmessungen mit Wasserstoff</td>
<td>233</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Diffusionsmessungen</td>
<td>237</td>
</tr>
<tr>
<td>9.12.3</td>
<td>Vermessen der Probe mit Zementwasser als Messfluid</td>
<td>239</td>
</tr>
<tr>
<td>9.12.4</td>
<td>Ionenkonzentration BRA 07/14</td>
<td>242</td>
</tr>
<tr>
<td>9.13</td>
<td>Auswertung BRA 07/15</td>
<td>247</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>247</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Diffusionsmessungen</td>
<td>260</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Vermessen der Probe mit Formationswasser als Messfluid</td>
<td>261</td>
</tr>
<tr>
<td>9.14</td>
<td>Auswertung BRA 07/18</td>
<td>269</td>
</tr>
<tr>
<td>9.14.1</td>
<td>Permeabilitätsmessungen mit feuchtem Stickstoff</td>
<td>269</td>
</tr>
<tr>
<td>9.15</td>
<td>Auswertung BRA 07/19</td>
<td>272</td>
</tr>
<tr>
<td>9.15.1</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>272</td>
</tr>
<tr>
<td>9.15.2</td>
<td>Vermessen der Probe mit Formationswasser</td>
<td>275</td>
</tr>
<tr>
<td>9.15.3</td>
<td>Einfluss der Durchströmung mit Zementwasser auf die Probendurchlässigkeit</td>
<td>276</td>
</tr>
<tr>
<td>9.15.4</td>
<td>Ionenkonzentration</td>
<td>278</td>
</tr>
<tr>
<td>9.15.5</td>
<td>pH-Wert Änderungen</td>
<td>283</td>
</tr>
<tr>
<td>9.15.6</td>
<td>Optische Untersuchung der Probe</td>
<td>284</td>
</tr>
<tr>
<td>9.15.7</td>
<td>Wellenlängendisperse Röntgenfluoreszenzanalyse (WDRFA)</td>
<td>287</td>
</tr>
<tr>
<td>9.16</td>
<td>Auswertung BRA 07</td>
<td>290</td>
</tr>
<tr>
<td>9.16.1</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>290</td>
</tr>
<tr>
<td>9.16.2</td>
<td>Vermessen der Probe mit Formationswasser als Messfluid</td>
<td>295</td>
</tr>
<tr>
<td>9.17</td>
<td>Auswertung BLT 10/10/01</td>
<td>300</td>
</tr>
<tr>
<td>9.17.1</td>
<td>Probentrocknung</td>
<td>300</td>
</tr>
<tr>
<td>9.17.2</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>301</td>
</tr>
<tr>
<td>9.17.3</td>
<td>Permeabilitätsmessungen mit Formationswasser</td>
<td>301</td>
</tr>
<tr>
<td>9.17.4</td>
<td>Ionenkonzentration</td>
<td>303</td>
</tr>
<tr>
<td>9.18</td>
<td>Auswertung BLT/10/10/02</td>
<td>306</td>
</tr>
<tr>
<td>9.18.1</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>306</td>
</tr>
<tr>
<td>9.18.2</td>
<td>Vermessen der Probe mit Formationswasser</td>
<td>312</td>
</tr>
<tr>
<td>9.18.3</td>
<td>Ionenkonzentration</td>
<td>317</td>
</tr>
<tr>
<td>9.19</td>
<td>Auswertung BLT 10/10/03</td>
<td>321</td>
</tr>
<tr>
<td>9.19.1</td>
<td>Vermessen der Probe mit Stickstoff als Strömungsmedium</td>
<td>321</td>
</tr>
<tr>
<td>9.20</td>
<td>Auswertung BLT 10/11/03</td>
<td>327</td>
</tr>
<tr>
<td>9.20.1</td>
<td>Permeabilitätsmessungen mit Gas</td>
<td>328</td>
</tr>
<tr>
<td>9.20.2</td>
<td>Vermessen der Probe mit Formationswasser als Messfluid</td>
<td>333</td>
</tr>
<tr>
<td>9.21</td>
<td>Auswertung BRA 08/05</td>
<td>336</td>
</tr>
<tr>
<td>9.21.1</td>
<td>Permeabilitätsmessungen mit Stickstoff</td>
<td>336</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

9.21.2 Untersuchungen des Einflusses der relativen Feuchte von befeuchtetem Stickstoff als Permeat auf die Permeabilität ... 338

9.22 Auswertung BRA 08/06 .. 341
 9.22.1 Permeabilitätsmessungen mit Stickstoff ... 341
 9.22.2 Vermessen der Probe mit Formationswasser als Messfluid 348

9.23 Auswertung BRA 08/08 .. 352
 9.23.1 Vermessen der Probe mit Gas ... 352
 9.23.2 Vermessen der Probe mit Formationswasser .. 354
 9.23.3 Trocknung ... 356
 9.23.4 Ionenkonzentration ... 357

9.24 Auswertung Probe BRA 08/10 ... 361
 9.24.1 Permeabilitätsmessungen mit Stickstoff ... 361

9.25 Auswertung Probe GEM 90-669 ... 370
 9.25.1 Permeabilitätsmessungen mit Stickstoff ... 370
 9.25.2 Vermessen der Probe mit Formationswasser als Messfluid 375
Abbildungsverzeichnis

Abb. 3-1: Porenstruktur eines porösen Guts ... 8
Abb. 3-2: Foto der Probeneintrittsseite der Probe BRA 07/06 (mit Manschette) nach Durchströmung mit Gas und Formationswasser 9
Abb. 3-3: Mittlere freie Weglänge von Stickstoff und Wasserstoff als Funktion des Absolutdrucks ... 12
Abb. 3-4: Schematisch dargestellte Trajektorien im Knudsen-, Übergangs- und Molekulargebiet ... 13
Abb. 3-5: Versuchsaufbau zur Gasexpansionsmethode ... 18
Abb. 6-1: Schematischer Aufbau der Versuchsanlage zur Permeabilitätsmessung mit Gas und Flüssigkeit ... 32
Abb. 6-2: Autoklav mit Tonprobe ... 33
Abb. 6-3: Prinzipskizze eines Blasenspeichers ... 34
Abb. 6-4: Membranbalgspeicher und Druckzylinder ... 36
Abb. 6-5: Seifenblasenströmungsmesser zur Bestimmung des Permeationsstroms bei Messungen mit Gas als Messfluid 37
Abb. 6-6: Volumenstrommessung bei den Versuchen mit Formationswasser als Messfluid ... 37
Abb. 6-7: Foto vom Innenraum des Versuchsstandes zur Permeabilitätsmessung mit Formationswasser (Temperaturbereich bis 90 °C) 38
Abb. 6-8: Foto des gesamten Versuchsstandes zur Permeabilitätsmessung (Temperaturbereich bis 90 °C) ... 39
Abb. 6-9: Fließbild des Versuchsstandes zur Permeabilitätsmessung mit feuchtem Stickstoff ... 40
Abb. 6-10: Versuchsaufbau zur Bestimmung des Gastotvolumens 42
Abb. 7-1: Überlagerungsdruckabhängigkeit der Permeabilität bei der Probenserie BRA 07 ... 58
Abb. 7-2: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 1,0 MPa 59
Abb. 7-3: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 1,5 MPa bis 3,0 MPa Überlagerungsdruck ... 60
Abb. 7-4: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 MPa bis 7,0 MPa Überlagerungsdruck ... 60
Abb. 7-5: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit ... 61
Abb. 7-6: Stirnseite der Probe BRA 07 vor Versuch ... 62
Abb. 7-7: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 2,0 MPa und 3,0 MPa ... 63
Abb. 7-8: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit .. 64
Abb. 7-9: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken .. 64
Abb. 7-10: Klinkenbergfaktor, abhängig vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität .. 65
Abb. 7-11: Knudsendiffusionskoeffizient in Abhängigkeit von der Permeabilität .. 65
Abb. 7-12: Stirnseite der Probe BRA 07 nach Versuch, Riss rot markiert............. 66
Abb. 7-13: Mantelansicht der Probe BRA 07 nach Versuch, Riss rot markiert..... 67
Abb. 7-14: Stirnseite der Probe BRA 07 (3 h nach Ausbau aus dem Autoklaven)67
Abb. 7-15: Mantelansicht der Probe BRA 07 (3 h nach Ausbau aus dem Autoklaven) ... 68
Abb. 7-16: Stirnseite der Probe BRA 07 (6 d nach Ausbau aus dem Autoklaven)68
Abb. 7-17: Mantelansicht der Probe BRA 07 (6 d nach Ausbau aus dem Autoklaven) ... 69
Abb. 7-18: Überlagerungsdruckabhängigkeit der Permeabilität bei der Probenserie BRA 08 ... 70
Abb. 7-19: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,2 MPa 71
Abb. 7-20: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit.. 71
Abb. 7-21: Foto der Probeneintrittsseite der Probe BLT 10/11/03 vor dem Einbau in den Autoklaven ... 72
Abb. 7-22: Überlagerungsdruckabhängigkeit der Permeabilität bei der Probenserien BLT und der Probe GEM .. 74
Abb. 7-23: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 3,2 bis 7,0 MPa 75
Abb. 7-24: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 7,0 bis 9,0 MPa 76
Abb. 7-25: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit ... 76
Abb. 7-26: Permeabilität in Abhängigkeit von der Anfangsoporosität 78
Abb. 7-27: Anfangswasserpermeabilität als Funktion der Anfangsgaspermeabilität bei den Probenserie BRA 07, BRA 08, BLT 10 und GEM 79
Abbildungsverzeichnis

Abb. 7-28: Stirnseite der Probe BRA 07/18 vor Versuch (Einschweißfolie der Probe war undicht) .. 81
Abb. 7-29: Scheinbare Permeabilität als Funktion des inversen Gasdrucks 82
Abb. 7-30: Einfluss der Gasfeuchte auf die Permeabilität ... 82
Abb. 7-31: Einfluss der Feuchte des Messgases auf die Permeabilität 83
Abb. 7-32: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit .. 85
Abb. 7-33: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei RT und \(T = 60 \, ^\circ{C} \) und Überlagerungsdrücken von 1,0 – 1,5 MPa .. 87
Abb. 7-34: Gemessene Permeabilitäten als Funktion des inversen Gasdrucks bei \(T = 60 \, ^\circ{C} \) und Überlagerungsdrücken von 2,0 - 4,0 MPa 88
Abb. 7-35: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 89
Abb. 7-36: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 90
Abb. 7-37: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit .. 91
Abb. 7-38: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 92
Abb. 7-39: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 92
Abb. 7-40: Wasserpermeabilitäten als Funktion des Überlagerungsdrucks 94
Abb. 7-41: Permeabilitätsmessungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck ... 96
Abb. 7-42: Permeabilitätsmessungen bei konstantem Überlagerungsdruck und unterschiedlichen Temperaturen ... 96
Abb. 7-43: Klinkenbergauftragung der Messungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck ... 97
Abb. 7-44: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 99
Abb. 7-45: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 99
Abb. 7-46: pH-Werte als Funktion der Versuchszeit bei Probe BRA 07/14 ... 101
Abb. 7-47: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 und 5,0 MPa 102
Abbildungsverzeichnis

Abb. 7-48: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 104
Abb. 7-49: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 104
Abb. 7-50: pH-Werte der Flüssigkeit am Probenaustritt (Probe BRA 07/19) 106
Abb. 7-51: Analysenergebnisse WDRFA BRA 07/19 ... 107
Abb. 7-52: Absolute Permeabilität und Überlagerungsdruck als Funktion des Versuchszeit (Probe BRA 08/06) ... 108
Abb. 7-53: Gas- und Wasservolumenströme nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit 109
Abb. 7-54: Gas- und Wasservolumenpermeabilitäten nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit 110
Abb. 7-55: Relative Ionenkonzentrationen Probe BRA 07/08 ... 115
Abb. 7-56: Relative Ionenkonzentrationen Probe BLT 10/10/01 115
Abb. 7-57: Relative Ionenkonzentrationen Na⁺, K⁺, Ca²⁺ und Sr²⁺ (Probe BRA 07/14) .. 116
Abb. 7-58: Relative Ionenkonzentrationen Mg²⁺ (Probe BRA 07/14) 117
Abb. 7-59: Relative Ionenkonzentrationen Na⁺, K⁺, Ca²⁺ und Sr²⁺ (Probe BRA 08/06) ... 117
Abb. 7-60: Relative Ionenkonzentrationen Mg²⁺ (Probe BRA 08/06) 118
Abb. 7-61: Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19 119
Abb. 7-62: Probenoberfläche von BLT 10/11/03 ... 119
Abb. 7-63: 3D-Darstellung des Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19 .. 120
Abb. 7-64: 3D-Darstellung der eines Probenoberflächenausschnitts von BLT 10/11/03 .. 120
Abb. 7-65: Detail des Präzipitats ... 121
Abb. 7-66: Probenoberfläche BLT 10/11/03 im Detail ... 121
Abb. 7-67: WDRFA-Spektrum der präzipitatfreien Probe ... 122
Abb. 7-68: WDRFA-Spektrum der präzipitatbehafteten Probe 123
Abb. 7-69: Analysenergebnisse WDRFA BRA 07/19 ... 124
Abb. 7-70: Gasdurchbruchsdrücke als Funktion der Anfangswasserpermeabilität .. 125
Abb. 7-71: Aus Gasdurchbruchsdrücken berechnete äquivalente Porenradien als Funktion der Anfangswasserpermeabilität ... 127
Abb. 7-72: Äquivalenter Porenradius als Funktion des Probeneintrittsdrucks bei minimal erreichter Permeabilität oder technischer Dichtheit 127
Abbildungsverzeichnis

Abb. 9-1: Zeitlicher Permeabiltätsverlauf...136
Abb. 9-2: Foto der Probenaustrittsseite vor Versuch (Probe künstlich getrocknet) ..137
Abb. 9-3: Foto der Probenaustrittsseite vor Versuch (Probe künstlich getrocknet) ..138
Abb. 9-4: Zeitlicher Permeabilitätsverlauf...139
Abb. 9-5: Gewichtsabnahme der Probe BRA 07/03 durch Trocknung140
Abb. 9-6: Zeitlicher Permeabilitätsverlauf bei konstantem Überlagerungsdruk ..141
Abb. 9-7: Volumenstrom am Probenaustritts, Messpunkte (blau) und Simulation (rot)..143
Abb. 9-8: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ...144
Abb. 9-9: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ...144
Abb. 9-10: Änderung des Probengewichts infolge der Trocknung147
Abb. 9-11: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruk von 1,5 MPa.................................148
Abb. 9-12: Zeitlicher Verlauf der Permeabilität vom 18.04.06 bis 4.9.06...........149
Abb. 9-13: Vergleich der Klinkenbergfaktoren für Messungen mit trocknem und feuchten Stickstoff ...149
Abb. 9-14: Vergleich der mit N₂ und H₂ ermittelten tatsächlichen Permeabilität..150
Abb. 9-15: Volumenstrom am Probenaustritts, Messpunkte (blau) und Simulation (rot)..151
Abb. 9-16: Zeitlicher Verlauf der Permeabilität...152
Abb. 9-17: Gas- bzw. Flüssigkeitsvolumenstrom als Funktion der Zeit...........154
Abb. 9-18: Foto der Probeneintrittseite (BRA 07/06) ca. zwei Stunden nach Ausbau aus dem Autoklaven ...156
Abb. 9-19: Foto der Probenaustrittseite (BRA 07/06) ca. zwei Stunden nach Ausbau aus dem Autoklaven ...157
Abb. 9-20: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruk von 1,0 MPa.................................159
Abb. 9-21: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 1,5 MPa bis 3,0 MPa......159
Abbildungsverzeichnis

Abb. 9-22: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 MPa bis 7,0 MPa......160
Abb. 9-23: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit...160
Abb. 9-24: Klinkenbergauflagerung der Messungen..161
Abb. 9-25: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks...162
Abb. 9-26: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen der Permeabilität...162
Abb. 9-27: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck..........................164
Abb. 9-28: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck..........................164
Abb. 9-29: Ionenkonzentration von Na$^+$ und Ca$^{2+}$ im Formationswasser am Probenaustritt...166
Abb. 9-30: Ionenkonzentration von K$^+$, Mg$^{2+}$ und Sr$^{2+}$ im Formationswasser am Probenaustritt...167
Abb. 9-31: Relative Ionenkonzentrationen...167
Abb. 9-32: Mit Stickstoff und Wasserstoff gemessene scheinbare Permeabilität als Funktion des inversen Gasdrucks für Überlagerungsdrücke von 1,0 – 1,5 MPa...169
Abb. 9-33: Mittlere freie Weglänge von Stickstoff und Wasserstoff in Abhängigkeit vom Gasdruck ...170
Abb. 9-34: Wahre Permeabilität aus gemessener scheinbarer Permeabilität als Funktion des inversen mittleren Gasdruckes für Überlagerungsdrücke von 1,5 – 4,0 MPa ...170
Abb. 9-35: Permeabilität in Abhängigkeit vom Überlagerungsdruck als Funktion der Zeit ...171
Abb. 9-36: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des inversen mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken ...172
Abb. 9-37: Klinkenbergfaktor (für Stickstoff) als Funktion der wahren Permeabilität ..172
Abb. 9-38: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über der tatsächlichen Permeabilität ...173
Abb. 9-39: Foto der Stirnseite der Probe BRA 07/09 nach dem Vermessen mit Gas und anschließender Trocknung...174
Abbildungsverzeichnis

Abb. 9-40: Vergleich der Permeabilität zwischen „bergfeuchter“ und getrockneter Probe .. 174
Abb. 9-41: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungsdruck und Gasdruck 177
Abb. 9-42: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungsdruck und Gasdruck .. 177
Abb. 9-43: Foto der Stirnseite (Probeneneintritt) der Probe BRA 07/10 vor dem Einbau der Probe in den Autoklaven .. 179
Abb. 9-44: Foto der Stirnseite (Probenaustritt) der Probe BRA 07/10 vor dem Einbau der Probe in den Autoklaven .. 180
Abb. 9-45: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 0,6 MPa – 1,0 MPa) 181
Abb. 9-46: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 1,5 MPa) 181
Abb. 9-47: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 2,5 MPa – 4,5 MPa) 182
Abb. 9-48: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 5,5 MPa – 8,5 MPa) 183
Abb. 9-49: Permeabilität in Abhängigkeit vom Überlagerungsdruck als Funktion der Zeit ... 183
Abb. 9-50: Verhältnis der scheibaren zur wahren Permeabilität als Funktion des Kehrwertes des mittleren Gasdrucks (Überlagerungsdruck 1,5 MPa) ... 184
Abb. 9-51: Verhältnis der scheibaren zur wahren Permeabilität als Funktion des Kehrwertes des mittleren Gasdrucks 185
Abb. 9-52: Verhältnis der scheibaren zur wahren Permeabilität als Funktion des Kehrwertes des mittleren Gasdrucks 185
Abb. 9-53: Klinkenbergfaktor als Funktion der Permeabilität 186
Abb. 9-54: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über der tatsächlichen Permeabilität 187
Abb. 9-55: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über dem mittleren absoluten Gasdruck 188
Abb. 9-56: Klinkenbergfaktor und Knudsendiffusionskoeffizient als Funktionen der absoluten Permeabilität ... 189
Abb. 9-57: Übersicht über die scheibare mittlere und die absolute Permeabilität, den Überlagerungsdruck, die mittlere freie Weglänge des Permeats und des Knudsendiffusionskoeffizienten als Funktion der Versuchszeit ... 190
Abbildungsverzeichnis

Abb. 9-58: Diffusionskoeffizient als Funktion des Gasdrucks .. 191
Abb. 9-59: Produkt von Diffusionskoeffizient und Druck als Funktion des Druckes ... 191
Abb. 9-60: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 193
Abb. 9-61: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 194
Abb. 9-62: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei RT und \(T = 60 \, ^\circ\text{C} \) und Überlagerungsdrücken von 1,0 – 1,5 MPa .. 196
Abb. 9-63: Gemessene Permeabilitäten als Funktion des inversen Gasdrucks bei \(T = 60 \, ^\circ\text{C} \) und Überlagerungsdrücken von 2,0 bis 4,0 MPa .. 196
Abb. 9-64: Verhältnis von scheinbarer zu wahrer Permeabilität bei Überlagerungsdrücken von 1,0 bis 2,0 MPa .. 197
Abb. 9-65: Verhältnis der wahren zur scheinbaren Permeabilität bei Überlagerungsdrücken von 3,0 und 4,0 MPa .. 198
Abb. 9-66: Klinkenbergfaktor in Abhängigkeit vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität .. 198
Abb. 9-67: Knudsenkoeffizient und freie Weglänge der Gasmoleküle über tatsächlicher Permeabilität .. 199
Abb. 9-68: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungsdruck und Gasdruck .. 201
Abb. 9-69: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungsdruck und Gasdruck .. 202
Abb. 9-70: Gaspermeabilität bei Überlagerungsdrücken von 2,0 und 3,0 MPa .. 204
Abb. 9-71: Gaspermeabilität bei Überlagerungsdrücken von 4,0 bis 6,0 MPa .. 204
Abb. 9-72: Tatsächliche Permeabilität in Abhängigkeit vom Überlagerungsdruck als Funktion der Zeit .. 205
Abb. 9-73: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des inversen mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken .. 206
Abb. 9-74: Klinkenbergfaktor \(b \) als Funktion der wahren Permeabilität .. 206
Abb. 9-75: Knudsenkoeffizient und freie Weglänge der Stickstoffmoleküle über der tatsächlichen Permeabilität .. 207
Abb. 9-76: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 209
Abbildungsverzeichnis

Abb. 9-77: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 210
Abb. 9-78: Foto der Probeneintrittsseite der Probe BRA 07/12 unmittelbar nach ihrem Ausbau aus dem Autoklaven ... 211
Abb. 9-79: Foto der Probenaustrittsseite der Probe BRA 07/12 unmittelbar nach ihrem Ausbau aus dem Autoklaven ... 211
Abb. 9-80: Foto der Mantelseite der Probe BRA 07/12 unmittelbar nach ihrem Ausbau aus dem Autoklaven ... 212
Abb. 9-81: Foto der Probenaustrittsseite der Probe BRA 07/12 ca. 30 Minuten nach ihrem Ausbau aus dem Autoklaven ... 213
Abb. 9-82: Teilansicht der Probenaustrittsseite der Probe BRA 07/12 ca. 30 Minuten nach ihrem Ausbau aus dem Autoklaven .. 213
Abb. 9-83: Schnitt durch die Probe BRA 07/12, ca. 30 Minuten nach ihrem Ausbau aus dem Autoklaven ... 214
Abb. 9-84: Schnitt durch die Probe BRA 07/12, ca. zwei Stunden nach ihrem Ausbau aus dem Autoklaven ... 214
Abb. 9-85: Ionenkonzentration von Na⁺ und Ca²⁺ im Formationswasser am Probenaustritt .. 216
Abb. 9-86: Ionenkonzentration von K⁺, Sr²⁺ im Formationswasser am Probenaustritt .. 216
Abb. 9-87: Ionenkonzentration von Mg²⁺ im Formationswasser am Probenaustritt .. 217
Abb. 9-88: Relative Ionenkonzentrationen .. 217
Abb. 9-89: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 bis 4,0 MPa 219
Abb. 9-90: Druckabhängige Gaspermeabilität bei Überlagerungsdrücken von 5,0 bis 6,0 MPa ... 219
Abb. 9-91: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit .. 220
Abb. 9-92: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 bis 4,0 MPa ... 221
Abb. 9-93: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 5,0 bis 6,0 MPa ... 221
Abb. 9-94: Klinkenbergfaktor als Funktion der Permeabilität .. 222
Abb. 9-95: Knudsenkoefﬁzient und freie Weglänge der Gasmoleküle (N₂) als Funktion der tatsächlichen Permeabilität ... 223
Abbildungsverzeichnis

Abb. 9-96: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck ... 225
Abb. 9-97: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck ... 225
Abb. 9-98: Foto der Stirnseite (Probenaustritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (unmittelbar nach Ausbau der Probe aus dem Autoklaven) ... 226
Abb. 9-99: Foto der Stirnseite (Probeneintritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (unmittelbar nach Ausbau der Probe aus dem Autoklaven) ... 227
Abb. 9-100: Foto der Stirnseite (Probeneintritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (ca. eine Stunde nach Ausbau der Probe aus dem Autoklaven) ... 227
Abb. 9-101: Foto der Stirnseite (Probeneintritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (ca. fünf Stunden nach Ausbau der Probe aus dem Autoklaven) ... 228
Abb. 9-102: Foto der Stirnseite (Probenaustritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (ca. fünf Stunden nach Ausbau der Probe aus dem Autoklaven) ... 228
Abb. 9-103: Ionenkonzentration von Na\(^{+}\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt ... 230
Abb. 9-104: Ionenkonzentration von K\(^{+}\), Sr\(^{2+}\) im Formationswasser am Probenaustritt ... 230
Abb. 9-105: Ionenkonzentration von Mg\(^{2+}\) im Formationswasser am Probenaustritt ... 231
Abb. 9-106: Relative Ionenkonzentrationen ... 231
Abb. 9-107: Stirnseite der Probe BRA 07/14 vor Einbau in den Autoklaven (ohne sichtbare Risse) ... 232
Abb. 9-108: Mantelseite der Probe BRA 07/14 vor Einbau in den Autoklaven (ohne sichtbare Risse) ... 233
Abb. 9-109: Permeabilitätsmessungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck ... 234
Abb. 9-110: Permeabilitätsmessungen vom 12.05. bis 02.06.2010 bei 5,5 MPa Überlagerungsdruck ... 235
Abb. 9-111: Klinkenbergauftragung der Messungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck ... 236
Abb. 9-112: Klinkenbergauftragung der Messungen vom 12.05. bis 02.06.2010 bei 5,5 MPa Überlagerungsdruck ... 237
Abb. 9-113: $D_{12}p$ als Funktion des Drucks bei $T = 40\, ^{\circ}C$ 238
Abb. 9-114: Temperaturabhängigkeit von $D_{p}p$ bei $p = 6,9$ bar 238
Abb. 9-115: Zeittlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck 240
Abb. 9-116: Zeittlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 241
Abb. 9-117: Stirnseite der Probe BRA 07/14 nach Ausbau aus dem Autoklaven (ohne sichtbare Risse) ... 241
Abb. 9-118: Mantelseite der Probe 07/14 nach Ausbau aus dem Autoklaven (ohne sichtbare Risse) ... 242
Abb. 9-119: Ionenkonzentration von Na$^+$ und Ca$^{2+}$ im Formationswasser am Probenaustritt ... 244
Abb. 9-120: Ionenkonzentration von K$^+$, Mg$^{2+}$,Sr$^{2+}$ im Formationswasser am Probenaustritt ... 245
Abb. 9-121: Relative Ionenkonzentrationen Na$^+$, K$^+$, Ca$^{2+}$ und Sr$^{2+}$ 245
Abb. 9-122: Relative Ionenkonzentrationen Mg$^{2+}$.. 246
Abb. 9-123: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,0 MPa 247
Abb. 9-124: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 – 6,0 MPa 249
Abb. 9-125: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 7,0 – 9,0 MPa 249
Abb. 9-126: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 9,0 – 7,0 MPa 250
Abb. 9-127: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 6,0 – 4,0 MPa 251
Abb. 9-128: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 3,0 – 2,0 MPa 251
Abb. 9-129: Absolute und mittlere scheinbare Permeabilität und Überlagerungsdruck als Funktion des Versuchszeit 252
Abb. 9-130: Hysterese der absoluten Permeabilität ... 253
Abb. 9-131: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 2,0 MPa bis 3,0 MPa ... 254
Abb. 9-132: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 4,0 MPa bis 6,0 MPa ... 254
Abbildungsverzeichnis

Abb. 9-133: Klinkenbergauflagerung der Messungen bei Überlagerungsdrücken von 7,0 MPa bis 9,0 MPa ... 255
Abb. 9-134: Klinkenbergauflagerung der Messungen bei Überlagerungsdrücken von 9,0 MPa bis 7,0 MPa ... 256
Abb. 9-135: Klinkenbergauflagerung der Messungen bei Überlagerungsdrücken von 6,0 MPa bis 4,0 MPa ... 256
Abb. 9-136: Klinkenbergauflagerung der Messungen bei Überlagerungsdrücken von 3,0 MPa bis 2,0 MPa ... 257
Abb. 9-137: Klinkenbergsfaktor b als Funktion des Überlagerungsdrucks 258
Abb. 9-138: Knudsendiffusionskoeffizient D_{Kn} als Funktion des Überlagerungsdrucks ... 258
Abb. 9-139: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks ... 259
Abb. 9-140: Binärer und effektiver Diffusionskoeffizient nach Bosanquet von Wasserstoff in Stickstoff als Funktion des Überlagerungsdrucks 261
Abb. 9-141: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck.. 263
Abb. 9-142: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 263
Abb. 9-143: Eintrittsseite der Probe BRA 07/15 unmittelbar nach Ausbau aus dem Autoklaven ohne sichtbare Risse .. 264
Abb. 9-144: Austrittsseite der Probe BRA 07/15 unmittelbar nach Ausbau aus dem Autoklaven ohne sichtbare Risse .. 265
Abb. 9-145: Mantelseite der Probe BRA 07/15 nach Ausbau aus dem Autoklaven ohne sichtbare Risse ... 266
Abb. 9-146: Eintrittsseite der Probe BRA 07/15 nach sechs Tagen mit sichtbaren Rissen ... 267
Abb. 9-147: Austrittsseite der Probe BRA 07/15 nach sechs Tagen mit sichtbaren Rissen ... 267
Abb. 9-148: Mantelseite der Probe BRA 07/15 nach sechs Tagen mit sichtbaren Rissen ... 268
Abb. 9-149: Stirnseite der Probe BRA 07/18 vor Versuch (Einschweißfolie der Probe war undicht) ... 270
Abb. 9-150: Scheinbare Permeabilität als Funktion des inversen Gasdrucks 270
Abb. 9-151: Einfluss der Gasfeuchte auf die Permeabilität ... 271
Abb. 9-152: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 und 3,0 MPa.............. 273
Abb. 9-153: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 und 5,0 MPa273
Abb. 9-154: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 bis 5,0 MPa ...274
Abb. 9-155: Klinkenbergfaktor als Funktion der Permeabilität ..275
Abb. 9-156: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ..277
Abb. 9-157: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ..278
Abb. 9-158: Ionenkonzentration von Na\(^+\), Mg\(^{2+}\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt ..281
Abb. 9-159: Ionenkonzentration von K\(^+\), Sr\(^{2+}\) im Formationswasser am Probenaustritt ..281
Abb. 9-160: Relative Ionenkonzentrationen Na\(^+\), K\(^+\), Ca\(^{2+}\) und Sr\(^{2+}\) ..282
Abb. 9-161: Ionenkonzentrationen Mg\(^{2+}\) ..282
Abb. 9-162: pH-Werte der Flüssigkeit am Probenaustritt ..283
Abb. 9-163: Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19 ..284
Abb. 9-164: Probenoberfläche von BLT 10/11/03 ..285
Abb. 9-165: 3D-Darstellung des Präzipitats in möglicher Wegsamkeit in Probe BRA 07/19 ..285
Abb. 9-166: 3D-Darstellung der eines Probenoberflächenausschnitts von BLT 10/11/03 ..286
Abb. 9-167: Detail des Präzipitats ..286
Abb. 9-168: Probenoberfläche BLT 10/11/03 im Detail ..287
Abb. 9-169: WDRFA-Spektrum der präzipitatfreien Probe ..288
Abb. 9-170: WDRFA-Spektrum der präzipitatbehafteten Probe ..288
Abb. 9-171: Analysenergebnisse WDRFA BRA 07/19 ..289
Abb. 9-172: Stirnseite der Probe BRA 07 vor Versuch ..290
Abb. 9-173: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 2,0 MPa und 3,0 MPa ..291
Abb. 9-174: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit ..292
Abb. 9-175: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken ..293
Abb. 9-176: Klinkenbergfaktor, abhängig vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität .. 293
Abb. 9-177: Knudsendiffusionskoeffizient in Abhängigkeit von der Permeabilität .294
Abb. 9-178: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck .. 296
Abb. 9-179: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck ... 297
Abb. 9-180: Stirnseite der Probe BRA 07 nach Versuch, Riss rot markiert 297
Abb. 9-181: Mantelansicht der Probe BRA 07 nach Versuch, Riss rot markiert298
Abb. 9-182: Stirnseite der Probe BRA 07 (drei Stunden nach Ausbau aus dem Autoklaven) .. 298
Abb. 9-183: Mantelansicht der Probe BRA 07 (drei Stunden nach Ausbau aus dem Autoklaven) ... 299
Abb. 9-184: Änderung des Probengewichts infolge der Trocknung 300
Abb. 9-185: Fotos von der Probenein- und -austrittsseite vor dem Einbau in den Autoklaven .. 301
Abb. 9-186: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme in Abhängigkeit vom Probeneintritts- und Überlagerungsdruck 302
Abb. 9-187: Zeitlicher Verlauf der Permeabilität in Abhängigkeit von Probeneintritts- und Überlagerungsdruck .. 303
Abb. 9-188: Ionenkonzentration von Na⁺ und Ca²⁺ im Flüssigkeitsaustritt am Probenaustritt ... 304
Abb. 9-189: Ionenkonzentration von K⁺, Mg²⁺ und Sr²⁺ im Formationswasser am Probenaustritt .. 305
Abb. 9-190: Relative Ionenkonzentrationen .. 305
Abb. 9-191: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 1,0 bis 2,0 MPa 306
Abb. 9-192: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 3,0 und 4,0 MPa 307
Abb. 9-193: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 5,0 MPa 308
Abb. 9-194: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 1,5 MPa 308
Abb. 9-195: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit .. 309
Abbildungsverzeichnis

Abb. 9-196: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdruckes bei Überlagerungsdrücken von 1,0 bis 2,0 MPa ... 310
Abb. 9-197: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdruckes bei Überlagerungsdrücken von 3,0 und 4,0 MPa ... 310
Abb. 9-198: Klinkenbergfaktor als Funktion der Permeabilität ... 311
Abb. 9-199: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle als Funktion der tatsächlichen Permeabilität ... 312
Abb. 9-200: Zeiterlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 314
Abb. 9-201: Zeiterlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck ... 315
Abb. 9-202: Probenaustrittsfläche nach Durchströmen mit Formationswasser und Wiederverschließen der Probe bei einem Überlagerungsdruck von 5,0 MPa (unmittelbar nach Ausbau) ... 316
Abb. 9-203: Probenaustrittsfläche nach Durchströmen mit Formationswasser und Wiederverschließen der Probe bei einem Überlagerungsdruck von 5,0 MPa (ein Tag nach Ausbau) ... 316
Abb. 9-204: Ionenkonzentration von Na$^+$ und Ca$^{2+}$ im Formationswasser am Probenaustritt ... 318
Abb. 9-205: Ionenkonzentration von K$^+$, Sr$^{2+}$ im Formationswasser am Probenaustritt ... 319
Abb. 9-206: Ionenkonzentration von Mg$^{2+}$ im Formationswasser am Probenaustritt ... 319
Abb. 9-207: Relative Ionenkonzentrationen .. 320
Abb. 9-208: Scheinbare Permeabilität als Funktion des inversen mittleren Gasdrucks ... 322
Abb. 9-209: Scheinbare Permeabilität als Funktion des inversen mittleren Gasdrucks ... 322
Abb. 9-210: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit ... 323
Abb. 9-211: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des mittleren inversen Gasdrucks ... 324
Abb. 9-212: Verhältnis von scheinbarer zu wahrer Permeabilität ... 325
Abb. 9-213: Klinkenbergfaktor b und Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität ... 325
Abbildungsverzeichnis

Abb. 9-214: Ausgewählte Klinkenbergfaktoren und Knudsendiffusionskoeffizienten als Funktion des Überlagerungsdrucks .. 326
Abb. 9-215: Foto der Probeneintrittsseite der Probe BLT 10/11/03 vor dem Einbau in den Autoklaven .. 327
Abb. 9-216: Foto der Probenaustrittsseite der Probe BLT 10/11/03 vor Einbau in den Autoklaven .. 328
Abb. 9-217: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 3,2 bis 7,0 MPa 329
Abb. 9-218: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 7,0 bis 9,0 MPa 330
Abb. 9-219: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit .. 330
Abb. 9-220: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 7,0 – 9,0 MPa .. 331
Abb. 9-221: Klinkenbergfaktor als Funktion der Permeabilität 332
Abb. 9-222: Knudsenkoeffizient und freie Weglänge der Gasmoleküle (N₂) über der tatsächlichen Permeabilität .. 333
Abb. 9-223: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck 335
Abb. 9-224: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck .. 335
Abb. 9-225: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck .. 337
Abb. 9-226: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck .. 337
Abb. 9-227: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 3,2 und 4,0 MPa .. 338
Abb. 9-228: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck bei Befeuchtung .. 340
Abb. 9-229: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit .. 340
Abb. 9-230: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 5,0 MPa 342
Abb. 9-231: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 7,0 – 9,0 MPa und 3,2 MPa .. 343
Abbildungsverzeichnis

Abb. 9-232: Absolute Permeabilität und Überlagerungsdruck als Funktion des Versuchszeit ... 343
Abb. 9-233: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 2,0 MPa bis 5,0 MPa .. 344
Abb. 9-234: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 7,0 MPa bis 8,0 MPa .. 345
Abb. 9-235: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks .. 346
Abb. 9-236: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks ab dem 23.11.2009 346
Abb. 9-237: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen der Permeabilität ... 347
Abb. 9-238: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen der Permeabilität bei k < 3·10^{-19} m² 347
Abb. 9-239: Gas- und Wasservolumenströme nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit 349
Abb. 9-240: Gas- und Wasservolumenpermeabilitäten nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit 349
Abb. 9-241: Mantelansicht der Probe BRA 08/06 nach Versuch und Ausbau aus dem Autoklaven .. 350
Abb. 9-242: Stirnseite der Probe (6 d nach Ausbau aus dem Autoklaven) 351
Abb. 9-243: Mantelansicht der Probe (6 d nach Ausbau aus dem Autoklaven) 351
Abb. 9-244: Scheinbare Permeabilität als Funktion des inversen Gasdrucks 353
Abb. 9-245: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des inversen Gasdrucks bei Überlagerungsdrücken von 1,0 MPa bis 1,5 MPa .. 353
Abb. 9-246: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme 355
Abb. 9-247: Zeitlicher Permeabilitätsverlauf ... 356
Abb. 9-248: Veränderung der Probenmasse als Funktion der Trocknungszeit 357
Abb. 9-249: Ionenkonzentration von Na⁺ und Ca²⁺ im Formationswasser am Probenaustritt ... 359
Abb. 9-250: Ionenkonzentration von K⁺, Sr²⁺ im Formationswasser am Probenaustritt ... 359
Abb. 9-251: Ionenkonzentration von Mg²⁺ im Formationswasser am Probenaustritt ... 360
Abb. 9-252: Relative Ionenkonzentrationen .. 360
Abb. 9-253: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,2 MPa 362
Abb. 9-254: Tatsächliche Permeabilität und Überlagerungsdruk als Funktion der Versuchszeit
Abb. 9-255: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdücken von 2,0 – 3,2 MPa
Abb. 9-256: Klinkenbergfaktor als Funktion der Permeabilität
Abb. 9-257: Knudsendffusionskoeffizient und freie Weglänge der Gasmoleküle über der tatsächlichen Permeabilität
Abb. 9-258: Produkt aus binärem Diffusionskoeffizienten und Gasdruck für Wasserstoff bei \(p_0 = 3,2 \) MPa
Abb. 9-259: Probe BRA 08/10 mit Formationswasser gesättigt (Vor Wiedereinbau in den Autoklaven am 29.04.2008); Luftseite
Abb. 9-260: Probe BRA 08/10 mit Formationswasser gesättigt (Vor Wiedereinbau in Autoklav am 29.04.08); Wasserseite
Abb. 9-261: Volumenströme in Abhängigkeit vom Probeneintrittsdruk
Abb. 9-262: Stirnseite der Probe GME 90-669 vor Versuch
Abb. 9-263: Gemessene Permeabilitäten als Funktion des mittleren inversen Gasdrucks
Abb. 9-264: Tatsächliche Permeabilität und Überlagerungsdruk als Funktion der Versuchszeit
Abb. 9-265: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei unterschiedlichen Überlagerungsdücken
Abb. 9-266: Klinkenbergfaktor, abhängig vom Überlagerungsdruk, als Funktion der tatsächlichen Permeabilität
Abb. 9-267: Knudsenddiffusionskoeffizient in Abhängigkeit von der Permeabilität
Abb. 9-268: Zeittlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruk
Abb. 9-269: Zeittlicher Permeabilitätswert in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruk
Abb. 9-270: Foto der Probenaustrittseite kurz nach Ausbau aus dem Autoklaven
Abb. 9-271: Foto der Rissoberfläche
Tabellenverzeichnis

Tab. 3-1: Abhängigkeit des durch das Rissystem transportierten Stoffmengenstroms von der Rissöffnungsweite ... 9
Tab. 5-1: Die wichtigsten Kenndaten des Opalinuston aus Mont Terri /HEI 01/ 26
Tab. 5-2: Mineralogische Zusammensetzung des Wirtgesteins aus Mont Terri (aus /NTB 02-03/) .. 27
Tab. 5-3: BRA-Tonproben aus Mont Terri (parallel zur Schichtung erbohrt) 28
Tab. 5-4: BRA-Tonproben aus Mont Terri (senkrecht zur Schichtung erbohrt).. 29
Tab. 5-5: BLT-Tonproben aus Mont Terri (parallel zur Schichtung erbohrt) 29
Tab. 7-1: Anfangsparameter der Proben Serie BRA 07 49
Tab. 7-2: Anfangsparameter der Proben Serie BRA 08 51
Tab. 7-3: Anfangsparameter der Proben Serie BLT 52
Tab. 7-4: Übersicht Versuchsergebnisse Proben Serie BRA 07 53
Tab. 7-5: Übersicht Versuchsergebnisse Proben Serie BRA 08 55
Tab. 7-6: Übersicht Versuchsergebnisse Proben Serie BLT 10 und der Probe GEM ... 56
Tab. 7-7: Übersicht über die Ergebnisse der Kationenkonzentrationsmessungen ... 113
Tab. 7-8: Anionenkonzentrationen im Formationswasser nach NAGRA 113
Tab. 7-9: Übersicht über speziesbezogenen relativen Konzentrationen 114
Abkürzungsverzeichnis

Kn Knudsenzahl
FG TVT Fachgebiet Thermische Verfahrenstechnik der TU Darmstadt

Lateinische Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\dot{N})</td>
<td>Stoffmengenstromflussdichte</td>
<td>molm(^2)s(^{-1})</td>
</tr>
<tr>
<td>D</td>
<td>Diffusionskoeffizient</td>
<td>m(^2)s(^{-1})</td>
</tr>
<tr>
<td>d</td>
<td>Durchmesser</td>
<td>m</td>
</tr>
<tr>
<td>L</td>
<td>Länge der Kapillare</td>
<td>m</td>
</tr>
<tr>
<td>M</td>
<td>Molmasse</td>
<td>kgmol(^{-1})</td>
</tr>
<tr>
<td>p</td>
<td>Druck</td>
<td>Pa</td>
</tr>
<tr>
<td>r</td>
<td>Radius</td>
<td>m</td>
</tr>
<tr>
<td>R</td>
<td>Allgemeine Gaskonstante</td>
<td>Jmol(^{-1})K(^{-1})</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
<td>K</td>
</tr>
<tr>
<td>Y</td>
<td>Stoffmengenanteil in der Gasphase</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>Permeabilität</td>
<td>m(^2)</td>
</tr>
<tr>
<td>d</td>
<td>Tage</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
<td></td>
</tr>
</tbody>
</table>

Griechische Symbole

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon)</td>
<td>Porosität</td>
<td>-</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Dynamische Viskosität</td>
<td>Nsm(^{-2})</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Mittlere freie Weglänge</td>
<td>m</td>
</tr>
<tr>
<td>(\pi)</td>
<td>Kreiszahl</td>
<td>-</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Dichte</td>
<td>kgm(^{-3})</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Kontaktwinkel</td>
<td>°</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Grenzflächenspannung</td>
<td>Nm(^{-2})</td>
</tr>
</tbody>
</table>
Abkürzungsverzeichnis

Indices

0 Länge 0 -
äq Äquivalenz -
i Spezies i -
j Spezies j -
Kn Knudsen -
L Länge L -
mittl. Mittlerer -
Pore -
Tats. Tatsächlich -
ü Überlagerungs -
1 Zusammenfassung

Ein Hauptziel dieser Arbeit war es, zu untersuchen, in wie weit die Gasbildung und der Druckaufbau dazu führen können, dass das Formationswasser im intakten Wirtsgestein (primäre Porosität) und in der Auflockerungszone (Porosität der induzierten Risse) durch das Gas verdrängt werden kann, was zu einer signifikanten Erhöhung des Radionuklidtransportes führen kann.

Diese Effekte können die Permeabilität des umliegenden Tongesteins beeinflussen, in dem sie die Quellfähigkeit und somit die Selbstabdichtungsfähigkeit des Tons verändern und den hydraulischen Durchmesser der in der Auflockerungszone zur Verfügung stehenden Wegsamkeiten verändern.

Die gravimetrische Bestimmung der totalen Porosität ergab Werte im Bereich 11,3 - 18,7 %, die volumetrische Bestimmung der Transportporosität über einen größeren Bereich verteilte Werte von 0,4 - 10,0 %.

Um die Einwirkung von Gasen auf die Stofftransporteigenschaften des Tons unter Endlager relevanten Bedingungen zu untersuchen, wurden die Proben mit Wasserstoff und Stickstoff als Modellgasen bei Temperaturen bis zu 90 °C beaufschlagt. Die
erreichten Gaspermeabilitäten sind stark vom Feuchtegrad der Proben und vom Überlagerungsdruck abhängig. Es wurden absolute Gaspermeabilitätswerte von $5,9 \cdot 10^{-22}$ m² bis zu $1,0 \cdot 10^{-13}$ m² gemessen. Hierbei sind getrocknete rissbehafte Proben in der Regel um mehrere dekadische Größenordnungen permeabler als die rissfreien bergfeuchten Proben. Es wurde eine Abhängigkeit der scheinbaren Permeabilitäten von mittleren Gasdruck beobachtet, aus der der relative Anteil Knudsencher Molekularströmung am gesamten Stofftransport quantifiziert wurde und eine grobe Abschätzung der Äquivalenzradien der gasdurchströmten Wegsamkeiten erlaubte. Ein signifikanter Unterschied im Gasdurchströmungsverhalten zwischen senkrecht und parallel zur Schichtung angeströmten Proben wurde nicht beobachtet. Die Durchströmung der Proben mit feuchtem Gas und die Erhöhung der Temperatur auf bis zu 90 °C hatten keinen signifikanten Einfluss auf die Permeabilität.

Die ermittelten Wasserpermeabilitäten liegen in einem Wertebereich von $1,5 \cdot 10^{-20}$ m² bis $2,4 \cdot 10^{-17}$ m². Getrocknete und bergfeuchte Proben zeigen bei der Wasserdurchströmung auf Grund der Quell- und Selbstabdichtungseigenschaften des untersuchten Opalinustons keine signifikanten Permeabilitätsunterschiede. Der Einsatz von Zementwasser kann zu Präzipitaten in durchströmten Wegsamkeiten führen, die mit wellenlängen dispersiver Röntgenfluoreszenzanalyse quantitativ untersucht wurden. Es wurden aber keine beobachtbaren Permeabilitätsreduktionen im Zusammenhang beobachtet. Die Erhöhung der Temperatur auf 60, 70 oder 90 °C führt zu keinen signifikanten Permeabilitätsänderungen.

Die Untersuchung der flüssigen Austrittsströme mittels Atomabsorptionspektroskopie bzgl. der autochtonen Kationen Na^+, K^+, Mg^{2+}, Ca^{2+} und Sr^{2+} zeigt, dass die untersuchten Probenkörper nur bedingt mit dem verwendeten Formationswasser im che-

Die Ermittlung der Gasdurchbruchsdrücke von flüssigkeitsaufgesättigten Proben in Höhe von 0,5 – 17 bar lieferte nach der Washburn-Gleichung unter der Annahme vollständiger Benetzung der hochenergetischen Alumosilikatoberflächen durch die eingesetzten wässrigen Permeate Äquivalenzradien von etwa 80 nm bis über 2.800 nm.

Zusammenfassend ist festzustellen, dass in der EDZ Permeation der relevante Transportmechanismus ist.

Ab Gasüberdrücken von 0,5 bar kann durch Gasbildung Wasser aus den makroporösen spannungsumlagerungsinduzierten Wegsamkeiten in der EDZ verdrängt werden. Hier werden nahezu unabhängig von den untersuchten Temperaturen, Überlagerungsdrücken, Ionenstärken, pH-Werten und Feuchtegraden der Proben bei Einbau Wasserpermeabilitäten bis etwa 10^{-17} m² erreicht. Der durchströmte Ton fungiert hierbei als Ionentauscher und pH-Puffer.

Das bei der Verwendung von Zementwasser nachgewiesene Präzipitat zeigte im Beobachtungszeitraum keine permeabilitätsverringerdende Wirkung.
2 Einleitung und Zielsetzung

Tongestein ist als poröses Medium mit geringer Permeabilität anzusehen. Es bildet ähnlich wie Steinsalz eine sehr dichte natürliche Barriere mit einem großen Isolationspotenzial für den langfristigen Einschluss radioaktiver Abfälle. Untersuchungen zur Integrität des Gesteins unter Last und die Quantifizierung von Diffusions- und Migrationsprozessen sind daher von essentieller Bedeutung.

In /SKR 05/ wird als Referenzszenarium für die Gasbildung im Wirtsgestein Ton davon ausgegangen, dass im Bereich der wärmeentwickelnden Abfälle durch den Tonstein und die Bentonitbarriere in begrenztem Maße Wasser zu den Abfällen gelangt und es dadurch zu einem Druckaufbau innerhalb der Bentonitbarriere kommt. Bei Überschreitung eines Grenzdruckes kann Gas durch permeable Mikrorisse bzw. sich bildende Makrorisse entweichen. Flüchtige Nuklide können also über den Gaspfad freigesetzt werden.

Einleitung und Zielsetzung

Einlagerungsbereichen und die möglichen Konsequenzen daraus werden außer von der Durchlässigkeit des Wirtsgesteins von Ausmaß und Geschwindigkeit der Gasbildungsprozesse bestimmt.

Während für das gesättigte, intakte Wirtsgestein für die Nachbetriebsphase in den Sicherheitsanalysen wegen der geringen Permeabilität Diffusion als der wichtigste Transportmechanismus für die Radionuklide angesehen /ST 04/ wird, ist die Durchlässigkeit der Auflockerungszone infolge von Spannungsnullagerungen, die sich beim Bau der Einlagerungsstrecken um diese Bauwerke entwickelt während der Betriebsphase gegenüber dem intakten Wirtgestein markant erhöht.

In der Nachbetriebsphase wird die Auflockerungszone durch Konvergenz des Gebirges wieder kompaktiert, wobei sich deren Durchlässigkeit den Werten des intakten Wirtsgesteins annähert. Trotz der zu erwartenden Selbstabdichtungsprozesse nach Lagerverschluss stellt die Auflockerungszone einen potenziellen Freisetzungs pfad für Radionuklide dar /NTB 02-03/.

Es ist zu erwarten, dass die Gasbildung und der Druckaufbau dazu führen, dass das Formationswasser im intakten Wirtgestein (primäre Porosität) und in der Auflockerungszone (Porosität der induzierten Risse) durch das Gas verdrängt wird, wobei wegen ihrer hohen Transportkapazität die makroskopischen Risse von besonderer Bedeutung sind.

In der hier vorliegenden Arbeit wird die Phase des Nachbetriebs untersucht, in der die EDZ und das Verfüllmaterial (Bentonit) wieder aufgesättigt sind und eine Gasbildung in den Einlagerungsräumen stattfinden kann. Die infolge der Austrocknung und Auflockerung in der EDZ entstandenen Risse sind aber noch nicht wieder soweit
Einleitung und Zielsetzung

konsolidiert, dass die Verhältnisse vergleichbar mit denen im intakten Wirtsgestein sind und damit die Diffusion der bestimmende Transportprozess wäre.

Untersuchungen, die für ein Endlager in Salz durchgeführt wurden /FRÖ 95/ haben gezeigt, dass bei gleicher Permeabilität, das Verhältnis zwischen Permeationsstrom und Diffusionsstrom erheblich von der Porengröße abhängt. D.h. der jeweilige Anteil am Gesamtstrom hängt maßgeblich davon ab, ob die Durchlässigkeit durch viele kleine oder durch wenige große Poren bestimmt wird.

Der Prozess der Porenwasserverdrängung durch die Gasphase ist für die Ausbreitung der Korrosions- und Degradationsgase im Wirtsgestein der bestimmende Prozess. Bei hohen Gasdrücken, d.h. wenn sich der Gasdruck dem Betrag der minimalen Hauptkomponente der Gebirgsspannung nähert, kann der Prozess der Porenwasserverdrängung zu Dilatanzerscheinungen führen /NTB 02-03/.

Untersucht werden in diesem Zusammenhang die gekoppelten Prozesse Zweiphasenfluss, Dilatanz, Temperatur und Druckgradient und deren Einfluss auf die Durchlässigkeit der Auflockerungszone und den Gasdurchbruchsdruck nach deren Wiederaufsättigung.

Hier wird es über einen langen Zeitraum zu Interaktionen zwischen Zementwasser und dem Opalinuston kommen, denn neben der Korrosion der Eisenkomponenten findet bereits während der Teilsättigung auch eine Destabilisierung des Zements statt. Dies führt zu einer Erhöhung der Ionenstärke des Formationswassers, was zur Skin-Bildung und einer Verringerung der Gasdurchlässigkeit führen kann.

Diese Effekte können die Permeabilität des umliegenden Tongesteins beeinflussen, in dem sie die Quellfähigkeit und somit die Selbstabdichtungsfähigkeit des Tons verändern und den hydraulischen Durchmesser der in der Auflockerungszone zur Verfügung stehenden Wegsamkeiten verändern.

Des Weiteren kann die Anwesenheit von Pyrit im Ton dazu führen, dass dessen Oxidation unter aeroben Bedingungen zu Beginn der Verschlussphase zur Sulfatkonzentrationserhöhung im Na-Cl-(SO₄)-Typ-Porenwasser des Opalinustons führt
Einleitung und Zielsetzung

/NTB 02-03/. Dies kann die Zementdegradation verursachen oder beschleunigen, was ebenfalls das Isolationsvermögen des Barrièrersystems verändern kann.

Die Auswirkungen dieser möglichen Wechselwirkungen müssen daher bekannt, quantifizierbar und in ihrer Langzeitwirkung vorhersehbar sein.

Die Untersuchung des Einflusses der Änderung des chemischen Milieus (signifikante pH-Wert Erhöhung) durch die Zementlauge auf die Stofftransporteigenschaften von Opalinuston erscheint daher zur sicherheitstechnischen Auslegung eines Endlagers in Tonstein unbedingt notwendig.

Ziel dieses Teils der Untersuchungen ist daher auch die Abschätzung der Beeinflussung der Selbstabdichtungsfähigkeit des Tongesteins durch die Interaktion des Zementwassers mit dem Opalinuston.
3 Poröse Medien

3.1 Porenstruktur
Ein poröses Medium kann unterschiedliche Porenstrukturen aufweisen, die sich durch ihre Länge, Ausbreitung und Form unterscheiden. In Abb. 3-1 ist die Porenstruktur eines porösen Gutes dargestellt. Das poröse Gut ist charakterisiert durch drei Arten von Poren:

- Durchgangsporen, durch die der Stofftransport durch die Probe stattfindet
- Sackporen, die in das Gut hinein reichen, aber nicht durchgehend sind und
- abgeschlossene, für Gas unzugängliche Hohlräume.

Abb. 3-1: Porenstruktur eines porösen Guts

Zur Wahrung der Übersichtlichkeit wurde in Abb. 3-1 auf das Aufzeigen von Verbindungsporen, die unterschiedliche Durchgangsporen miteinander verbinden, verzichtet /HOH 96/.

Bei den hier untersuchten Tonproben kann aber nicht von ausschließlich durch eine solche Porenstruktur stattfindenden Stofftransport ausgegangen werden. Das Durchlässigkeitverhalten der untersuchten Proben wird stark von makroskopischen Rissen geprägt, die die Probe durchziehen. Abb. 3-2 zeigt die Probenstirnseite der Pro-
be BRA 07/06 nach Durchströmung mit Stickstoff und Formationswasser. Deutlich sind die Risse entsprechend der Schichtung erkennbar. Durch kurzeitige Trocknung nach Versuchsende wurden die Risse so deutlich sichtbar.

Baraka-Lokmane /BAR 02/ ermittelte die in Tab. 3-1 dargestellten Zusammenhänge zwischen der Rissöffnung und dem Anteil des durch den Riss erfolgenden Stoffmengenstroms am Gesamtstrom.

Tab. 3-1: Abhängigkeit des durch das Rissystem transportierten Stoffmengenstroms von der Rissöffnungsweite

<table>
<thead>
<tr>
<th>Rissöffnungsweite \ [µm]</th>
<th>Anteil am Gesamtstoffmengenstrom \ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>>30</td>
</tr>
<tr>
<td>>30</td>
<td>>50</td>
</tr>
<tr>
<td>>40</td>
<td>>80</td>
</tr>
</tbody>
</table>

Abb. 3-2: Foto der Probeneintrittsseite der Probe BRA 07/06 (mit Manschetten) nach Durchströmung mit Gas und Formationswasser

- Totale Porosität $\varepsilon_{p,0}$
- Zugängliche oder effektive Porosität ε_p
- Transportporosität $\varepsilon_{p,Tr}$

Die totale Porosität $\varepsilon_{p,0}$ berechnet sich nach Gl. 3-1 aus dem Verhältnis von gesamtem Hohlraumvolumen in einem porösen Gut zu Probenvolumen V_{Probe}.

$$ \varepsilon_p = \frac{V_{Hohlraum}}{V_{Probe}} \quad \text{Gl. 3-1} $$

Die zugängliche oder effektive Porosität ε_p berücksichtigt nur das von außen zugängliche Hohlraumvolumen, das sich aus dem Volumen der Durchgangsporen und der Sackporen bildet. Sie ist nach Gl. 3-2 als das Verhältnis von außen zugänglichem Hohlraumvolumen zu Probenvolumen definiert. V_{Durch} ist das Volumen der Durchgangsporen und V_{Sack} das der Sackporen.

$$ \varepsilon_p = \frac{V_{Durch} + V_{Sack}}{V_{Probe}} \quad \text{Gl. 3-2} $$

Die Transportporosität $\varepsilon_{p,Tr}$ ist nach Gl. 3-3 definiert als Quotient aus dem Volumen der Durchgangsporen und dem Probenvolumen.

$$ \varepsilon_{p,Tr} = \frac{V_{Durch}}{V_{Probe}} \quad \text{Gl. 3-3} $$

Für die drei oben definierten Porositäten gilt der durch Gl. 3-4 gegebene Zusammenhang.

$$ \varepsilon_{p,0} \geq \varepsilon_p \geq \varepsilon_{p,Tr} \quad \text{Gl. 3-4} $$

Ist die Dichte des porösen Mediums ρ_p und die Dichte des reinen Stoffes ρ_s bekannt, kann mit Gl. 3-5 die totale Porosität $\varepsilon_{p,0}$ berechnet werden.

$$ \varepsilon_{p,Tr} = \frac{\rho_s - \rho_p}{\rho_s} \quad \text{Gl. 3-5} $$
Die Dichte des porösen Tongesteins wird aus ihrer Masse und den geometrischen Abmessungen bestimmt. Hier wird vereinfachend angenommen, dass sich kein Wasser in der Probe befindet.

Eine weitere Methode zur Bestimmung der zugänglichen Porosität einer Probe ist die instationäre Permeabilitätsmessung (siehe Kap. 3.4.3). Bei der instationären Permeabilitätsmessung wird der Druck am Probeneintritt p₀ sprunghaft erhöht und die Zunahme des Volumenstroms auf der Probenaustrittsseite über die Zeit gemessen. Zur Bestimmung der zugänglichen Porosität muss die Kontinuitätsgleichung numerisch gelöst werden. Die zugängliche Porosität muss dabei so gewählt werden, dass die berechneten und gemessenen Volumenströme übereinstimmen.

3.2 Einteilung der Stofftransportmechanismen

Die mittlere freie Weglänge eines idealen Gases ist durch Gl. 3-6 definiert, in der \(\eta \) die dynamische Viskosität und \(M \) die Molmasse darstellen. /GEA 78/

\[
\lambda = \frac{3,2\eta}{p} \sqrt{\frac{RT}{2\pi M}}
\]

Gl. 3-6

Abb. 3-3 zeigt die Abhängigkeit der mittleren freien Weglänge eines Gases als Funktion des Druckes am Beispiel von Stickstoff.
Abb. 3-3: Mittlere freie Weglänge von Stickstoff und Wasserstoff als Funktion des Absolutdrucks

Das Verhältnis der mittleren freien Weglänge zum Porendurchmesser d_{Pore} ist nach Gl. 3-7 durch die dimensionslose Knudsenzahl Kn nach Gl. 3-7 definiert.

$$Kn = \frac{\lambda}{d_{\text{pore}}} \quad \text{Gl. 3-7}$$

Mit Hilfe der Knudsenzahl kann der Stofftransport in drei Gebiete unterteilt werden.

- $Kn << 1$ Kontinuumsgebiet
- $0,1 < Kn < 10$ Übergangsgebiet
- $Kn >> 1$ Knudsengebiet

Abb. 3-4 zeigt schematisch charakteristische Trajektorien von Gasteilchen in einer Pore der Länge L in den drei Gebieten.
3.3 Stofftransport bei einem einkomponentigen Gas

3.3.1 Stationäre Permeabilitätsmessungen

Das Gesetz von Darcy liefert nach Gl. 3-8 eine lineare Beziehung zwischen den treibenden Kräften (Druckgradient und Gravitationsterm) und der mittleren Fluidgeschwindigkeit.

\[\bar{v} = \frac{k}{\eta} (\nabla p - \rho \ddot{g}) \]

Gl. 3-8

Hierbei ist k die Permeabilität. Zur Anwendbarkeit des Darcyschen Gesetzes müssen die folgenden Voraussetzungen erfüllt sein:

- Laminare Strömung, keine Turbulenz
- Geschwindigkeit an der Porenwand ist null, Haftbedingung an der Wand
- Permeat ist ein Newtonsches Fluid
- Bei gasförmigen Permeaten ist Kn << 1, Kontinuumsgebiet
- Man erhält für die Massenstromdichte nach Gl. 3-9.

\[\dot{m} = \rho \bar{v} = \frac{k}{\eta} \rho \nabla p \]

Gl. 3-9
Hierbei wurde der Gravitationsterm vernachlässigt. Für die Durchströmung zylinderförmiger Proben entlang deren Zylinderachse ist nach Gl. 3-10 nur die z-Komponente relevant.

\[\dot{m} \cdot \vec{e}_z = \rho \vec{v}_z = -\frac{k}{\eta} \rho \frac{\partial p}{\partial z} \quad \text{Gl. 3-10} \]

Im stationären Zustand beschreibt Gl. 3-11 den Massenstrom eines idealen Gases.

\[\dot{m} = \frac{k}{\eta} \frac{M}{RT} \frac{p_e^2 - p_a^2}{2L} \quad \text{Gl. 3-11} \]

Der Austrittsvolumenstrom wird durch Gl. 3-12 gegeben.

\[\dot{V}_a = \frac{\dot{m} A_{\text{quer}}}{\rho_a} \frac{RT}{M} = A_{\text{quer}} \frac{k}{\eta} \frac{1}{p_a} \frac{p_e^2 - p_a^2}{2L} \quad \text{Gl. 3-12} \]

Das Auflösen nach der Permeabilität führt zu Gl. 3-13.

\[k = \frac{2 \dot{V}_a}{A_{\text{quer}}} \frac{p_a \eta}{L} \frac{p_e^2 - p_a^2}{p_e^2 - p_a^2} \quad \text{Gl. 3-13} \]

3.3.2 Viskose Strömung

Die durch einen Druckgradienten im Kontinuumsgebiet verursachte Strömung durch den Probenkörper kann mit Hilfe des Hagen-Poiseuilleschen Gesetzes durch Gl. 3-14 beschrieben werden.

\[\dot{m}_{\text{Pore,vis}} = -\rho \frac{\varepsilon_{p,Tr} \overline{R}^2_{\text{Pore}}}{8 \mu_{p,vis} \eta} \frac{\partial p}{\partial z} \quad \text{Gl. 3-14} \]

Hierbei ist \(\varepsilon_{p,Tr} \) die Transportporosität, \(\overline{R}_{\text{Pore}} \) der mittlere Porenradius und \(\mu_{p,vis} \) der gesamte Transportwiderstand.

Durch Koeffizientenvergleich von Gl. 3-13 und Gl. 3-14 ergibt sich für die wahre Permeabilität Gl. 3-15.

\[k = \frac{\varepsilon_{p,Tr} \overline{R}^2_{\text{Pore}}}{8 \mu_{p,vis}} \quad \text{Gl. 3-15} \]
3.3.3 Molekularbewegung
Im Knudsengebiet erfolgt der isotherme Stofftransport eines idealen Gases durch Molekularbewegung nach Knudsen /KNU 09/ nach Gl. 3-16, in der μ_L den Wegverlängerungsfaktor und $\mu_{F,Kn}$ den Formfaktor darstellen.

$$m_{Kn} = \frac{\varepsilon_{p,tr}\delta_{Kn}}{\mu_L\mu_{F,Kn}} \frac{M}{RT} \frac{\partial p}{\partial z} = -D_{Kn} \frac{M}{RT} \frac{\partial p}{\partial z} \quad \text{Gl. 3-16}$$

3.3.4 Übergangsgebiet
Im Übergangsgebiet ($0.01 \leq Kn \leq 10$) wird der durch eine Wegsamkeit durchtretende Massenstrom nach Gl. 3-17 durch die Superposition einer laminaren und einer molekularen Strömung beschrieben.

$$m_{Ges} = m_{vis} + m_{Kn} = -\rho \frac{\varepsilon_{p,tr} R_{Pore}^2}{8 \mu_{vis} \mu_{l}} \frac{\partial p}{\partial z} - D_{Kn} \frac{M}{RT} \frac{\partial p}{\partial z} = -\left(\frac{k}{\eta} p + D_{Kn}\right) \frac{M}{RT} \frac{\partial p}{\partial z} \quad \text{Gl. 3-17}$$

3.3.5 Abweichungen von Darcyschen Gesetz
Abweichungen der experimentellen Ergebnisse vom Darcyschen Gesetz können mehrere Ursachen haben. Zunächst können die Voraussetzungen für eine Permeation nach Darcy verletzt werden, etwa durch

- Auftreten von Turbulenz bei hohen Durchströmungsgeschwindigkeiten
- Nicht-Newtonisches Fluidverhalten
- $Kn \geq 1$, also Auftreten von Molekularströmung.

Das Auftreten von Turbulenz kann durch Abschätzung der Reynoldszahl Re nach Gleichung Gl. 3-18 entschieden werden. Hierbei ist ρ die Dichte, v die Strömungsgeschwindigkeit, d der Kapillardurchmesser und η die dynamische Viskosität.

$$Re = \frac{\rho \cdot v \cdot d}{\eta} \quad \text{Gl. 3-18}$$

Unter der Näherung des Vorliegens von Kapillaren mit einem konservativ geschätzten Äquivalenzdurchmesser von 10.000 nm, einer hohen Durchströmungsgeschwindigkeit von 0,1 m·s⁻¹, einer Stickstoffgasdichte von 25 kg·m⁻³ bei hohen Drücken und
einer dynamischen Viskosität des Stickstoffs von $1,7812 \cdot 10^{-5}$ Pa·s, ergibt sich nach Gl. 3-19 eine Reynoldszahl von etwa 1,4.

\[
Re = \frac{\frac{25 \cdot k_g}{m^3} \cdot \frac{0,1 m}{s} \cdot 10^{-5} m}{1,7812 \cdot 10^{-5} Pa \cdot s} \approx 1,4
\]

Gl. 3-19

Als Turbulenzkriterium wird allgemein für Rohrströmungen $Re > 2300$ angenommen. Dieses ist eindeutig nicht erfüllt, die Strömung ist also immer laminar.

Unter den Versuchsbedingungen können die Messgase Wasserstoff und Stickstoff in sehr guter Näherung als Newtonsche Fluide angesehen werden, da ihre Viskosität im betrachteten Bereich nahezu unabhängig von der Fließgeschwindigkeit ist.

Die auftretenden Abweichungen auf Grund von Knudsenscher Molekularströmung wurden bereits in den Kapiteln 3.3.2, 3.3.3 und 3.3.4 erläutert. Die tatsächliche Permeabilität ist um den Gleitströmungsanteil geringer als die experimentelle ermittelte scheinbare Permeabilität k_s. Der Anteil der Gleitströmung ist vom verwendeten Gas, dem durchströmten porösen Körper und der mittleren freien Weglänge des Gases als Funktion des mittleren Probengasdrucks ab. Klinkenberg /KLI 41/ stellte dieses Verhalten durch eine lineare Beziehung nach Gl. 3-20 dar.

\[
k_s = k \cdot \left(1 + \frac{b}{p_{mitt.}^{-1}}\right)
\]

Gl. 3-20

\[
b = \frac{D_{Kn} \cdot \eta}{k}
\]

Gl. 3-21

Damit ist der Klinkenbergfaktor ein direktes Maß für den Anteil Knudsenscher Molekularströmung am Stofftransport, ist er null, hat dieser Stofftransportmechanismus keinen Anteil am Stofftransport. Je höher b wird, umso größer wird der Stofftransportanteil durch Molekularströmung. Durch den Vergleich der Klinkenbergfaktoren bei verschiedenen Proben kann unter Beachtung der mittleren freien Weglänge des
eingesetzten Messgases unter Versuchsbedingungen ein Vergleich der Porendurchmesser hergestellt werden. Ist der Klinkenbergfaktor klein, so findet kaum Molekularströmung statt. Die bei diesen Versuchsbedingungen berechnete mittlere freie Weglänge ist deutlich kleiner als der Äquivalenzdurchmesser der Wegsamkeiten, durch die der Stofftransport stattfindet.

Bei Aufweitungen der Porenräume oder der Überwindung von Kapillardrücken flüssigkeitsgesättigter Poren bei hohen Gaseintrittsdrücken nimmt die scheinbare Permeabilität durch eine Vergrößerung des zur Verfügung stehenden Strömungsquerschnitts mit zunehmendem Gaseintrittsdruck zu. Hierdurch ist eine Auswertung nach Klinkenberg nicht möglich. Um eine tendenzielle Vergleichbarkeit der Größenordnung der scheinbaren Permeabilität bei diesen Messungen mit anderen Klinkenbergauswertbaren Experimenten zu erlauben, wird die arithmetisch gemittelte scheinbare Permeabilität $k_{s,m}$ nach Gl. 3-22 eingeführt. Hierbei sind $k_{s,i}$ die experimentell ermittelten scheinbaren Permeabilitäten bei den jeweiligen Probeneintrittsdrücken und n die Anzahl der Messpunkte.

$$k_{s,m} = \frac{\sum_{i=1}^{n} k_{s,i}}{n}$$ \hspace{1cm} \text{Gl. 3-22}

3.4 Verfahren zur Porositätsbestimmung

3.4.1 Bestimmung der Gesamtporosität mit dem Masse- Volumen-Verfahren

Mit diesem Verfahren wird die Gesamtporosität des Probenkörpers aus der Dichte der porösen Probe (ρ_P) und der Dichte des reinen Feststoffes (ρ_F) nach Gl. 3-25 berechnet.

$$\varepsilon_{p,0} = \frac{\rho_F - \rho_P}{\rho_F}$$ \hspace{1cm} \text{Gl. 3-23}

Die Dichte der porösen Tonprobe (ρ_P) wird durch Ausmessen ihrer äußeren geometrischen Abmessungen und der Massebestimmung durch Wägung ermittelt. Die Feststoffdichte (ρ_F) des Tonmaterials wurde aus /NTB 02-03/ übernommen.

3.4.2 Bestimmung der zugänglichen Porosität mit dem Gasexpansionsverfahren

Abb. 3-5 zeigt den experimentellen Aufbau. Unter genauer Kenntnis der Volumina der beiden Behälter und der eingeschlossenen Probe lässt sich die zugängliche Porosität berechnen.

Abb. 3-5: Versuchsaufbau zur Gasexpansionsmethode

Aus dem Gesetz der idealen Gase lässt sich folgende Beziehung unter Annahme eines geschlossenen isothermen Systems (Gl. 3-24) direkt ableiten:

\[p_1 \sum_{i=1}^{m} V_i = p_2 \left(\sum_{i=1}^{n} V_i - V_{\text{Probe}} (1 - \varepsilon_P) \right) \]

Gl. 3-24

Mit \(\varepsilon_P = (V_{\text{durch}} + V_{\text{sack}})/V_{\text{Probe}} \)

Hierbei umfasst die Summe auf der linken Seite alle Teilhohlraumvolumina zwischen dem Druckminderer (2) und dem Absperrventil (5), während die zweite Summe alle Volumina zwischen dem Druckminderer (2) und dem Absperrventil (7) enthält. Der rechte Term drückt das tatsächliche Volumen des Probenkörpers als Differenz des die Probe einhüllenden Zylindervolumens \(V_{\text{Probe}} \) und der als Teil dieses Volumens ausgedrückten zugänglichen Porosität \(\varepsilon_P \) aus, nach der die Gleichung durch einfaches Umformen aufgelöst werden. Alle anderen Parameter sind experimentell direkt zugänglich.
3.4.3 Instationäre Permeabilitätsmessungen zur Bestimmung der zugänglichen Porosität

Instationäre Permeabilitätsmessungen können ebenfalls zur Bestimmung der zugänglichen Porosität angewendet werden.

Bei den instationären Messungen stellt das zugängliche Hohlraumvolumen der Tonprobe einen Gasspeicher dar.

Bei der instationären Permeabilitätsmessung mit einem offenen System (an der Probenaustrittsseite liegt Umgebungsdruck an) wird bei \(t = 0 \) am Probeneintritt \(z = 0 \) ein Drucksprung vom Atmosphärendruck \(p_{\text{atm}} \) auf den Probeneintrittsdruck \(p_e \) aufgegeben. Der Druck an der Probenaustrittsseite \(p_a \) bleibt während des Experiments konstant auf atmosphärischem Niveau \(p_a = p_{\text{atm}} \).

Die als Sprungantwort bezeichnete Veränderung des Austrittsstroms mit der Zeit bei \(z = L \) erlaubt die Bestimmung der zugänglichen Porosität \(\varepsilon_p \) der die Lösung der Kontinuitätsgleichung in differentieller Form (Gl. 3.25) innerhalb der Grenzen \(0 < z < L \):

\[
\varepsilon_p \frac{\partial p}{\partial t} = -\nabla \cdot (\rho \nu) = -\nabla \cdot \dot{m}_{\text{Ges}} = \frac{\partial \dot{m}_{\text{Ges}}}{\partial z}
\]

Gl. 3.25

Einsetzen der Gleichung idealer Gase liefert eine von der Ortskoordinate \(z \) und der Zeit \(t \) abhängige partielle Differentialgleichung 2. Ordnung (Gl. 3.26) bzgl. des Drucks \(p \) mit den Randbedingungen \(p(t, z = 0) = p_e \) und \(p(t, z = L) = p_a \).

Die Werte für den Knudsendiffusionskoeffizienten \(D_{\text{Kn}} \) und die Permeabilität \(k \) werden aus stationären Permeabilitätsmessungen gewonnen. Einzige unbekannte Größe bleibt die Transportporosität \(\varepsilon_p \), die so gewählt wird, dass die Fehlerquadratsumme zwischen der numerischen Lösung von Gl. 3.26 und den Messpunkten minimal wird.

\[
\varepsilon_p \frac{\partial p}{\partial t} \bigg|_{0 < z < L} = \frac{k}{\eta} \left[\left(\frac{\partial p}{\partial z} \right)^2 + p \frac{\partial^2 p}{\partial z^2} \right] + D_{\text{Kn}} \frac{\partial^2 p}{\partial z^2}
\]

Gl. 3.26

3.4.4 Porenradienabschätzung

Über die Washburn-Gleichung (Gl. 3.27) /WAS 21/, die eine Modifikation der Young-Laplace-Gleichung darstellt, können äquivalente Porenradien bzw. Spaltweiten abgeschätzt werden.

\[
P_{\text{eq}} \approx \frac{2 \cdot \sigma_{\text{aw}} \cdot \cos \theta}{r_{\text{aq}}}
\]

Gl. 3.27

mit:
\(P_{ae} \) = Gaseintrittsdruck

\(\sigma_{aw} \) = Grenzflächenspannung Gas/Wasser (ca. \(73 \cdot 10^{-3} \) N/m bei 20 °C)

\(r_{äq} \) = äquivalenter Porenradius \([m]\)

\(\cos \theta = 1 \) (unter der Annahme einer totalen Benetzung, \(\theta = 0 \))

Mit dem gemessenen Gaseintrittsdruck \((p_{ae}) \), bei dem wieder ein Volumenstrom des Formationswassers gemessen werden kann, also das Wasser aus den Poren verdrängt wird, kann der äquivalente Porenraum \((r_{äq}) \) abgeschätzt werden.

\[
r \approx \frac{2 \cdot \sigma_{aw}}{P_{ae}}
\]

Gl. 3-28

Je nach Porenweite können die Poren in Makroporen, deren äquivalenter Radius über 50 nm liegt, in Mesoporen mit einem Radius von 2 bis 50 nm und in Mikroporen, deren Radius kleiner 2 nm ist, unterteilt werden /IUP 97/.

3.5 Diffusion

3.5.1 Knudsen-Diffusion

Die Bestimmung der Stoffmengenflussdichte \(\dot{N}_i \) einer Spezies \(i \) erfolgt durch die Bestimmung der durch diffuse Reflexion an einem differentiellen Kapillarinnenwandoberflächenelement hervorgerufenen Flussdichte durch den Kapillarquerschnitt und anschließender Integration über die gesamte Kapillarinnenwandoberfläche. Als Ergebnis erhält man für eine Komponente \(A \) in einem isobaren binären offenen System nach Gl. 3-29:

\[
\dot{N}_i = \frac{D_{Kn,i}}{R T L} (p_{i,0} - p_{i,L}) = \frac{D_{Kn,i} P}{R T L} (Y_{i,0} - Y_{i,L})
\]

Gl. 3-29

mit dem Knudsendiffusionskoeffizienten nach Gl. 3-30:

\[
D_{Kn,i} = \frac{2}{3} r \sqrt{\frac{8 R T}{\pi M_i}}
\]

Gl. 3-30
3.5.2 Molekulare Diffusion
Bei der molekularen Diffusion dominieren bimolekulare Stöße gegenüber Molekul-Wand-Stößen, so dass die Diffusion einer Spezies durch Anzahl und Art anderer vorhandener Spezies beeinflusst wird. Die mittlere freie Weglänge ist in diesem Fall sehr klein gegenüber dem Wegsamkeitsdurchmesser. Bei konstantem Kapillardurchmesser, isobaren und isothermen Bedingungen gilt Gl. 3-31:

\[N_i = \frac{D_i P}{RTL} \ln \left[\frac{1 - \alpha_i Y_{i,l}}{1 - \alpha_i Y_{i,0}} \right] \quad \text{Gl. 3-31} \]

Mit Gl. 3-32:

\[\alpha_i = 1 + \frac{N_j}{N_i} \quad \text{Gl. 3-32} \]

3.5.3 Diffusion im Übergangsgebiet
Im Übergangsgebiet kommen sowohl die molekulare als auch die Knudsen-Diffusion als Stofftransportmechanismen zum Tragen.

Scott et al. /SCO 62/ stellten eine Impulsbilanz für eine Spezies i auf, bei der die Impulsübertragung durch i auf die Wand und auf andere Moleküle in der Gasphase berücksichtigt werden. Der Partialdruckabfall für eine Spezies i wird als Summe aller Impulsübertragungen an die Wand und andere Moleküle aufgefasst. Als Ergebnis für eine Komponente i in einem binäre Gasgemisch wird Gl. 3-33 erhalten:

\[N_i = -\frac{D_i P}{RT} \frac{dY_{i,l}}{dz} \quad \text{Gl. 3-33} \]

Integration ergibt Gl. 3-34:

\[D_e = \frac{1}{\frac{1}{\frac{1}{D_i} + \frac{1}{D_{\infty}}}} \quad \text{Gl. 3-34} \]

Evans et al. /EVA 61/ kamen durch die Entwicklung des sog. Dusty-Gas-Modells für den stationären Zustand zu einem ähnlichen Ergebnis (Gl. 3-35).

\[N_i = \frac{D_{ij}}{\alpha_{ij}RTL} \ln \left[\frac{1 - \alpha_{ij} Y_{ij,l}}{1 - \alpha_{ij} Y_{ij,0} + \frac{D_i}{D_{\infty}}} \right] \quad \text{Gl. 3-35} \]

Für ein binäres System im Übergangsgebiet ist der lokale Wert für einen effektiven Diffusionskoeffizienten \(D_e \) durch Gl. 3-36 gegeben.
\[N_i = \frac{D_e P}{\alpha_i RT (1 - \alpha_i Y_i)} \, dY_i \]
\text{Gl. 3-36}

Integration von Gl. 3-36 über die Länge der Kapillare führt zu Gl. 3-37.

\[N_i = \frac{D_{ij}}{\alpha_i RT L} \ln \left[\frac{1 - \alpha_i Y_{i,L}}{1 - \alpha_i Y_{i,0}} \right] \]
\text{Gl. 3-37}

Die Eliminierung von \(N_i \) aus Gl. 3-36 und Gl. 3-37 ergibt Gl. 3-38:

\[N_i = \frac{D_{ij}}{\ln \left[\frac{1 - \alpha_i Y_{i,L}}{1 - \alpha_i Y_{i,0}} \right]} \ln \left[\frac{1 - \alpha_i Y_{i,L} + \frac{D_L}{D_m}}{1 - \alpha_i Y_{i,0} + \frac{D_L}{D_m}} \right] \]
\text{Gl. 3-38}

Bei hohen Drücken und rein molekularer Diffusion wird der effektive Diffusionskoeffizient \(D_e \) durch Gl. 3-33 und Gl. 3-1 nach Gl. 3-39 identisch mit dem binären Diffusionskoeffizienten.

\[D_e = D_{ij} \]
\text{Gl. 3-39}

Bei niedrigen Drücken im Knudsengebiet erhält man Gl. 3-40:

\[D_e = \alpha_i D_{Ku,i} \frac{(Y_{i,0} - Y_{i,L})}{\ln \left[\frac{1 - \alpha_i Y_{i,U}}{1 - \alpha_i Y_{i,0}} \right]} \]
\text{Gl. 3-40}

3.5.4 Verhältnis der Massenströme

Hoogschagen /HOO 55/, Rothfeld /ROT 63/, Scott und Dullien /SCO 62/, Evans et al. /EVA 62/ und Mason et al. /MAS 67/ haben mit verschiedenen Ansätzen Gl. 3-41 für das Verhältnis der Massenströme in allen drei Diffusionsregimen hergeleitet.

\[\frac{\dot{N}_j}{\dot{N}_i} = -\frac{\sqrt{M_i}}{\sqrt{M_j}} = \alpha_i - 1 \]
\text{Gl. 3-41}
4 Stoffeigenschaften der verwendeten Strömungsfluide

4.1 Gase
Zur Bestimmung der Ausgangspermeabilitäten wurden Durchlässigkeitssucheungen mit Stickstoff und Wasserstoff bei Temperaturen bis 90°C durchgeführt. Bei der Verwendung eines Gases als Strömungsfluid erhält man aus dem Wert des durch das poröse Medium permeierten Volumenstroms nur dann den „wahren“, absoluten Permeabilitätswert \(k \), wenn bei der gemessenen „scheinbaren“ Permeabilität \(k_s \) der Molekularströmungsanteil (sog. Klinkenbergkorrektur) berücksichtigt wird. Bei der graphischen Bestimmungsmethode werden die bei unterschiedlichen Drucken gemessenen Permeabilitäten \(k_s \) über den reziproken, mittleren Gasdrücken aufgetragen /FRÖ 99/. Der Schnittpunkt der durch die Messpunkte gelegten Regressionsgeraden mit dem Ursprung (d. h. bei unendlich hohen mittleren Gasdrücken) ergibt dann die absolute Permeabilität \(k \).

Es werden Stickstoff und Wasserstoff der Güte 5.0 (Fa. Air Liquide) eingesetzt. Unter SATP-Bedingungen (\(p = 101325 \) Pa, \(T = 298,15 \) K) beträgt die Dichte von Stickstoff \(\rho_{\text{SATP,N2}} = 1,1452 \) kg/m\(^3\) und die dynamische Viskosität \(\eta_{\text{SATP,N2}} = 1,7812 \cdot 10^{-5} \) Pa s. Die Dichte von Wasserstoff ist unter diesen Bedingungen \(\rho_{\text{SATP,H2}} = 0,0823 \) kg/m\(^3\), die dynamische Viskosität \(\eta_{\text{SATP,H2}} = 8,9153 \cdot 10^{-5} \) Pa s. Bei 90 °C und Atmosphärendruck beträgt die Dichte von Stickstoff \(\rho_{90^\circ\text{C,N2}} = 0,9399 \) kg/m\(^3\) und die dynamische Viskosität \(\eta_{90^\circ\text{C,N2}} = 2,0687 \cdot 10^{-5} \) Pa s. Für Wasserstoff findet man \(\rho_{90^\circ\text{C,H2}} = 0,0676 \) kg/m\(^3\) und \(\eta_{90^\circ\text{C,H2}} = 1,0199 \cdot 10^{-6} \) Pa s. Allerdings muss bei hohem mittlerem Stickstoffdruck die druckabhängige Dichte korrigiert werden /NIST 09/.

4.2 Formationswasser
Zur Bestimmung der Permeabilitäten mit Flüssigkeit als Messmedium wurde ein mit dem Opalinuston im chemischen Gleichgewicht stehender wässriger Elektrolyt (Simulat des Formationswassers) mit den in Tab. 7-7 und Tab. 7-8 gegebenen Ionenkonzentrationen verwendet.

Auf Grund der relativ geringen Ionenkonzentrationen wurden sowohl die Dichte als auch die Viskosität mit der reinen Wassers angesetzt. Die Dichte von Wasser beträgt bei SATP-Bedingungen \(\rho_{\text{SATP}} = 997,048 \) kg/m\(^3\) bei einer dynamischen Viskosität von \(\eta_{\text{SATP}} = 8,90082 \cdot 10^{-4} \) Pa s. Bei 90 °C und Atmosphärendruck ist \(\rho_{90^\circ\text{C}} = 965,310 \) kg/m\(^3\) und \(\eta_{90^\circ\text{C}} = 3,14408 \cdot 10^{-4} \) Pa s.
4.3 Zementwasser
Für die Untersuchungen zur Beeinflussung der Dichtheitseigenschaften der Tonsteinformation wurde aus dem Formationswasser durch Zugabe von einer Mischung aus Portlandzement und Zuschlagstoffen Zementwasser mit einem pH-Wert von \(\approx 13 \) hergestellt. Die Zusammensetzung ist ebenfalls in Tab. 7-7 dokumentiert.

4.4 Elementbestimmung mit Hilfe der AAS
Die Atomabsorptionsspektrometrie (AAS) ist ein spektralanalytisches Verfahren zum qualitativen Nachweis und zur quantitativen Bestimmung von Elementen mit Hilfe der Absorption optischer Strahlung durch freie Atome im Gaszustand.

Das Verhältnis der Intensitäten der durchgegangenen Strahlung \(I_D \) zur ursprünglichen Intensität \(I_0 \) ist über Gl. 4-1 verknüpft:

\[
I_D = I_0 \cdot e^{-\kappa' d}
\]

Gl. 4-1

Hierbei ist \(\kappa' \) der Extinktionskoeffizient. Bei nichteinheitlichen Stoffen wie Lösungen von absorbierenden Stoffen in nichtabsorbierenden Lösungsmitteln ist er der Konzentration nach Gl. 4-2 proportional.

\[
\kappa' = \varepsilon \cdot C
\]

Gl. 4-2

Die Umformung ergibt das bei niedrigen Konzentrationen gültige Gesetz von Lambert-Beer (Gl. 4-3).

\[
E = \log \frac{I_0}{I_D} = \varepsilon \cdot c \cdot d
\]

Gl. 4-3

Hierbei ist \(E \) die Extinktion, der Logarithmus der reziproken Durchlässigkeit, \(\varepsilon \) der Extinktionskoeffizient, \(c \) die Konzentration und \(d \) die Schichtdicke.

ein PC mit der Software WinLab 2.3 von Perkin-Elmer eingesetzt. Zur Probenaufbereitung wurde entionisiertes Wasser mit einer Leitfähigkeit von ca. 0,2 μS/cm verwendet, das durch eine Orben Ministil-P22 Ionentauscherpatrone mit Leitfähigkeitsmessgerät mit integrierter Messzelle erzeugt wurde.

Zum besseren Vergleich von Konzentrationsänderungen bezüglich der betrachteten Ionenspezies i bei der Durchströmung wird eine auf die Probeneintrittskonzentration bezogene relative Austrittskonzentration $c_{rel,i}$ nach Gl. 4-4 definiert. Dominieren Adsorptionsvorgänge bzgl. einer Spezies i in der Probe, ist $c_{rel,i} < 1$, bei Desorptionsvorgängen ist $c_{rel,i} > 1$. Bei $c_{rel,i} = 1$ befindet sich die Probe mit dem Permeat im chemischen Gleichgewicht bzgl. der Spezies i.

\[
 c_{rel,i} = \frac{c_{Austritt,i}}{c_{Eintritt,i}}
\]

Gl. 4-4
5 Probenmaterial und Probenkörper

5.1 Kenndaten und mineralogische Zusammensetzung der Tonproben

Die wichtigsten Kennwerte des Opalinustons sind in Tab. 5-1 zusammengestellt.

Die mineralogische Zusammensetzung des Probenmaterials aus Mont Terri zeigt Tab. 5-2.

Tab. 5-1: Die wichtigsten Kenndaten des Opalinuston aus Mont Terri
/HEI 01/

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Bereich</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesteinsdichte, gesättigt [g/cm³]</td>
<td>2,4 – 2,53</td>
<td>2,47</td>
</tr>
<tr>
<td>Wassergehalt [Gew. %]</td>
<td>3,0 – 8,1</td>
<td>5,6</td>
</tr>
<tr>
<td>Porosität [%]</td>
<td>7 – 18</td>
<td>12</td>
</tr>
<tr>
<td>Durchlässigkeitsbeiwert [m/s]</td>
<td>1·10⁻¹³ – 5·10⁻¹³</td>
<td>2e⁻¹³</td>
</tr>
<tr>
<td>Thermische Leitfähigkeit [Wm⁻¹K⁻¹]</td>
<td>1,0 – 3,1</td>
<td>2,1</td>
</tr>
<tr>
<td>Wärmekapazität [Jkg⁻¹K⁻¹]</td>
<td>970 – 1.340</td>
<td>1.155</td>
</tr>
<tr>
<td>Konzentration gelöster Ionen im Porenwasser [g/l]</td>
<td>5 – 20</td>
<td>12</td>
</tr>
<tr>
<td>Uniaxiale Druckfestigkeit [MPa]</td>
<td>10 – 16</td>
<td>13</td>
</tr>
<tr>
<td>Elastizitätsmodul [MPa]</td>
<td>4.000 – 10.000</td>
<td>7.000</td>
</tr>
<tr>
<td>Poissonzahl</td>
<td>0,24 – 0,33</td>
<td>0,29</td>
</tr>
<tr>
<td>Schermodul</td>
<td></td>
<td>1.200</td>
</tr>
</tbody>
</table>
Probenmaterial und Probenkörper

Tab. 5-2: Mineralogische Zusammensetzung des Wirtsgesteins aus Mont Terri (aus /NTB 02-03/)

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Mittelwert [Gew.-%]</th>
<th>Standardabweichung (1σ) [Gew.-%]</th>
<th>Anzahl Analysen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcit</td>
<td>13</td>
<td>± 8</td>
<td>8</td>
</tr>
<tr>
<td>Dolomit/Ankerit</td>
<td>n.n.</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Siderit</td>
<td>3</td>
<td>± 1,8</td>
<td>8</td>
</tr>
<tr>
<td>Quarz</td>
<td>14</td>
<td>± 4</td>
<td>8</td>
</tr>
<tr>
<td>Albit</td>
<td>1</td>
<td>± 1,0</td>
<td>8</td>
</tr>
<tr>
<td>Kalifeldspar</td>
<td>1</td>
<td>± 1,6</td>
<td>8</td>
</tr>
<tr>
<td>Pyrit</td>
<td>1,1</td>
<td>± 0,5</td>
<td>8</td>
</tr>
<tr>
<td>C (org)</td>
<td>0,8</td>
<td>± 0,5</td>
<td>8</td>
</tr>
<tr>
<td>Summe Schichtsilikate</td>
<td>66</td>
<td>± 11</td>
<td>8</td>
</tr>
<tr>
<td>Illit</td>
<td>23</td>
<td>± 2</td>
<td>8</td>
</tr>
<tr>
<td>Illit/Smektit-WL</td>
<td>11</td>
<td>± 2</td>
<td>8</td>
</tr>
<tr>
<td>Chlorit</td>
<td>10</td>
<td>± 2</td>
<td>8</td>
</tr>
<tr>
<td>Kaolinit</td>
<td>22</td>
<td>± 2</td>
<td>8</td>
</tr>
</tbody>
</table>

n.n.: nicht nachweisbar, d.h. < 1 Gew. %

5.2 Untersuchte Probenkörper

Um Anisotropie-Effekte untersuchen zu können, wurden Tonproben verwendet, die sowohl parallel (Bezeichnungen BRA 07 und BLT) als auch senkrecht zur Schichtung (Bezeichnung BRA 08) erbohrt wurden. Die Tonproben hatten Außendurchmesser von ca. 90 mm (BRA) bzw. ca. 100 mm (BLT). Die Probenlänge betrug ebenfalls ca. 90 bzw. ca. 100 mm. Die mit BRA gekennzeichneten Tonproben wurden im November 2005 erbohrt. Die mit BLT gekennzeichneten Proben wurden im Jahre 2000 für das EU-Vorhaben „nf-pro“ von der BGR zur Verfügung gestellt. Sie waren bis zu ihrer Verwendung dampfdicht in metallbedampfter Folie eingeschweißt.

Außerdem wurden noch zwei Proben aus tieferen Schichten untersucht.

Die Probe BRA 07 stammt ebenfalls aus Mont Terri und wurde am 07.12.2005 aus einer Tiefe von ca. 7,7 m parallel zur Schichtung im Auftrag der TU Clausthal erbohrt. Bis zum Einbau in den Autoklaven wurde sie, luftdicht verschlossen, bei einem Überlagerungsdruck von 2,0 MPa gelagert. Nach dem Ausbau aus der Lagerzelle bis zum Einbau in den Autoklaven war die Probe ca. 2 h Umgebungsbedingungen ausge- setzt.

Die Probe GEM 90-669 stammt aus Tournemire und wurde am 12.09.2007 aus einer Tiefe von 6,5 m parallel zur Schichtung ebenfalls im Auftrag der TU Clausthal erbohrt. Bis zum Einbau in den Autoklaven wurde sie, luftdicht verschlossen, bei einem Überlagerungsdruck von 2,0 MPa gelagert. Nach dem Ausbau aus der Lager-
zelle bis zum Einbau in den Autoklaven war die Probe ca. 2 Stunden Umgebungsbedingungen ausgesetzt.

Eine Zusammenstellung der für die Untersuchungen verfügbaren Proben ist in Tab. 5-3 bis Tab. 5-5 dokumentiert.

Tab. 5-3: BRA-Tonproben aus Mont Terri (parallel zur Schichtung erbohrt)

<table>
<thead>
<tr>
<th>Probenbezeichnung</th>
<th>Bohrtiefe [m]</th>
<th>Abmessungen [mm]</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>von</td>
<td>bis</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>BRA 07/01</td>
<td>0,30</td>
<td>0,40</td>
<td>89,00</td>
</tr>
<tr>
<td>BRA 07/02</td>
<td>0,40</td>
<td>0,50</td>
<td>89,01</td>
</tr>
<tr>
<td>BRA 07/03</td>
<td>0,50</td>
<td>0,60</td>
<td>89,00</td>
</tr>
<tr>
<td>BRA 07/04</td>
<td>0,60</td>
<td>0,70</td>
<td>89,00</td>
</tr>
<tr>
<td>BRA 07/05</td>
<td>0,70</td>
<td>0,80</td>
<td>89,05</td>
</tr>
<tr>
<td>BRA 07/06</td>
<td>0,80</td>
<td>0,90</td>
<td>89,20</td>
</tr>
<tr>
<td>BRA 07/08</td>
<td>1,00</td>
<td>1,10</td>
<td>89,35</td>
</tr>
<tr>
<td>BRA 07/09</td>
<td>1,10</td>
<td>1,20</td>
<td>89,25</td>
</tr>
<tr>
<td>BRA 07/10</td>
<td>1,20</td>
<td>1,30</td>
<td>89,05</td>
</tr>
<tr>
<td>BRA 07/11</td>
<td>1,30</td>
<td>1,40</td>
<td>88,95</td>
</tr>
<tr>
<td>BRA 07/12</td>
<td>1,40</td>
<td>1,50</td>
<td>89,60</td>
</tr>
<tr>
<td>BRA 07/13</td>
<td>1,50</td>
<td>1,60</td>
<td>89,46</td>
</tr>
<tr>
<td>BRA 07/14</td>
<td>1,6</td>
<td>1,7</td>
<td>89</td>
</tr>
<tr>
<td>BRA 07/15</td>
<td>1,7</td>
<td>1,8</td>
<td>89</td>
</tr>
<tr>
<td>BRA 07/16</td>
<td>1,9</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>BRA 07/18</td>
<td>2</td>
<td>2,1</td>
<td>90,75</td>
</tr>
<tr>
<td>BRA 07/19</td>
<td>2,1</td>
<td>2,2</td>
<td>91,8</td>
</tr>
<tr>
<td>BRA 07/20</td>
<td>2,2</td>
<td>2,3</td>
<td></td>
</tr>
<tr>
<td>BRA 07/21</td>
<td>2,3</td>
<td>2,4</td>
<td></td>
</tr>
<tr>
<td>BRA 07/22</td>
<td>2,4</td>
<td>2,5</td>
<td></td>
</tr>
<tr>
<td>BRA 07/23</td>
<td>2,5</td>
<td>2,6</td>
<td></td>
</tr>
<tr>
<td>BRA 07/24</td>
<td>2,6</td>
<td>2,7</td>
<td>88,15</td>
</tr>
<tr>
<td>BRA 07</td>
<td>7,7</td>
<td>7,8</td>
<td>88,8</td>
</tr>
<tr>
<td>GEM 90-669</td>
<td>6,5</td>
<td>6,6</td>
<td>86,7</td>
</tr>
</tbody>
</table>
Tab. 5-4: BRA-Tonproben aus Mont Terri (senkrecht zur Schichtung erbohrt)

<table>
<thead>
<tr>
<th>Probenbezeichnung</th>
<th>Bohrtiefe [m]</th>
<th>Abmessungen [mm]</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>von</td>
<td>bis</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>BRA 08/01</td>
<td>0,48</td>
<td>0,55</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/02</td>
<td>0,59</td>
<td>0,66</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/03</td>
<td>0,93</td>
<td>1,01</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/04</td>
<td>1,15</td>
<td>1,25</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/05</td>
<td>1,25</td>
<td>1,35</td>
<td>89,3</td>
</tr>
<tr>
<td>BRA 08/06</td>
<td>1,41</td>
<td>1,51</td>
<td>89,2</td>
</tr>
<tr>
<td>BRA 08/07</td>
<td>1,51</td>
<td>1,61</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/08</td>
<td>2,81</td>
<td>2,91</td>
<td>89,1</td>
</tr>
<tr>
<td>BRA 08/09</td>
<td>3,37</td>
<td>3,47</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/10</td>
<td>5,25</td>
<td>5,35</td>
<td>88,8</td>
</tr>
</tbody>
</table>

Tab. 5-5: BLT-Tonproben aus Mont Terri (parallel zur Schichtung erbohrt)

<table>
<thead>
<tr>
<th>Probenbezeichnung</th>
<th>Bohrtiefe [m]</th>
<th>Abmessungen [mm]</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>von</td>
<td>bis</td>
<td>Durchmesser</td>
</tr>
<tr>
<td>BLT-10/08/01</td>
<td>4,70</td>
<td>4,80</td>
<td>100</td>
</tr>
<tr>
<td>BLT-10/08/02</td>
<td>4,80</td>
<td>4,90</td>
<td>100</td>
</tr>
<tr>
<td>BLT-10/08/03</td>
<td>4,90</td>
<td>5,00</td>
<td>100</td>
</tr>
<tr>
<td>BLT-10/09/01</td>
<td>5,50</td>
<td>5,60</td>
<td>100</td>
</tr>
<tr>
<td>BLT-10/09/02</td>
<td>5,60</td>
<td>5,70</td>
<td>100</td>
</tr>
<tr>
<td>BLT-10/09/03</td>
<td>5,70</td>
<td>5,80</td>
<td>103,98</td>
</tr>
<tr>
<td>BLT-10/10/01</td>
<td>5,90</td>
<td>6,00</td>
<td>102,00</td>
</tr>
<tr>
<td>BLT-10/10/02</td>
<td>6,00</td>
<td>6,10</td>
<td>101,91</td>
</tr>
<tr>
<td>BLT-10/10/03</td>
<td>6,10</td>
<td>6,20</td>
<td>101,85</td>
</tr>
<tr>
<td>BLT-10/11/01</td>
<td>6,31</td>
<td>6,41</td>
<td>100</td>
</tr>
<tr>
<td>BLT-10/11/02</td>
<td>6,41</td>
<td>6,51</td>
<td>102,00</td>
</tr>
<tr>
<td>BLT-10/11/03</td>
<td>6,51</td>
<td>6,61</td>
<td>100</td>
</tr>
</tbody>
</table>
6 Versuchseinrichtungen zur Messung der Permeabilität

6.1 Allgemeines

Die im Rahmen des Vorhabens "Untersuchung der Durchlässigkeit von kompaktiertem Salzgrus und Salzgestein gegenüber Laugen bei HAW- und DE-typischen Temperaturen" (FKZ: 02 E 9330 und 02 E 9340) /FRÖ 03/ gefertigten Versuchsanlagen und Apparaturen wurden für dieses Vorhaben, soweit möglich, weiter verwendet. Diese waren speziell für die Messung der Permeabilität von kompaktiertem Salzgrus und gewachsenem Steinsalz gegenüber Laugen bei Temperaturen bis 150 °C konzipiert worden. Die Durchmesser der Salzproben betrugen ca. 100 mm. Die für das hier beschriebene Vorhaben aus Mont Terri beschafften Tonproben hatten Durchmesser von ca. 89 mm. Restproben aus dem EU-Vorhaben „nf-pro“ mit Durchmessern von ca. 100 mm wurden ebenfalls noch untersucht.

Der Versuchstand zur Permeabilitätsmessung besteht aus folgenden Grundkomponenten:

- Dem Autoklaven, der die Proben aufnimmt und in dem der Gebirgsdruck simuliert wird.
- Einem Fluidspeicher (Gasflasche, Blasenspeicher oder Metallbalgspeicher), in dem das benötigte Messmedium gespeichert und auf den Probeneintrittsdruck gebracht wird.
- Einer Messkammer, die zur Temperierung des Versuchstandes dient. Die maximale Versuchstemperatur ($T_{\text{max}} = 90^\circ\text{C}$) in der Messkammer soll während der gesamten Versuchsdauer (teilweise $> 10.000 \text{ h}$) mit einer Abweichung $< 0,5^\circ\text{C}$ konstant gehalten werden.
- Volumenstrommessstechnik, zur Bestimmung der Gas- und Flüssigkeitsvolumenströme
- Mess- und Regeltechnik, die dazu dient, die relevanten Größen wie Druck, Volumenstrom und Temperatur zu erfassen bzw. konstant zu halten.
Versuchseinrichtungen zur Messung der Permeabilität

In den Versuchsanlagen sollte der Stofftransport durch die Tonproben unter möglichst realistischen Bedingungen untersucht werden. Hierzu mussten die Randbedingungen entsprechend den tatsächlichen Bedingungen in der Auflockerungszone in einem Endlager in Tonstein eingestellt werden. Um den Einfluss eines sich ändern- den Überlagerungsdruckes auf die Permeabilität bzw. Porosität zu quantifizieren, wurden bei den Versuchsreihen Druckstufen von 1,0 bis 10,0 MPa eingestellt.

6.2 Versuchsstand zur Messung der Permeabilität

Der zur Messung der Permeabilität verwendete Versuchsaufbau ist in Abb. 6-1 schematisch dargestellt, siehe auch /FRÖ 99/. Für die Messungen bei höheren Temperaturen ist der Autoklav in die temperierte Messkammer eingebaut. Alle Ventile befinden sich außerhalb der Messkammer.

Die Temperatur wird durch einen Temperatursensor (PT 100) im Inneren der Versuchskammer aufgenommen und durch eine entsprechende PID Regelung (FUJI / Wachendorf) auf $\Delta T = \pm 0,2^\circ$C konstant gehalten. Die Luft des Innenraums wird mit einem Umluftventilator permanent umgewälzt, um eine gleichmäßige Temperaturverteilung im Innenraum sicherzustellen.

Abb. 6-1: Schematischer Aufbau der Versuchsanlage zur Permeabilitätsmessung mit Gas und Flüssigkeit

Der Volumenstrom (Fl) wird an der Probenaustrittsseite mit unterschiedlichen Messgeräten je nach Höhe des Volumenstroms gemessen. Für niedrige Volumenströme < 1 mL\textsubscript{N/min}, Normbedingungen nach DIN 1343 (T = 273,15 K und p = 1,013 bar), werden Seifenblasenströmungsmesser verwendet (Abb. 6-5). Bei höheren Volumenströmen (> 1 mL\textsubscript{N/min}) werden elektronische Massendurchflussmesser für verschiedene Messbereiche und Messgase (Fa. Kobold MAS) eingesetzt, die nach dem kalo-rimetrischen Prinzip arbeiten.

Die Permeabilitätsmessungen mit Gas wurden an allen Proben durchgeführt, wobei in den meisten Fällen mit einem niedrigen Überlagerungsdruck von 1,0 MPa begonnen wurde. Anschließend wurde der Überlagerungsdruck in mehreren Schritten bis max. 10,0 MPa angehoben.

Bei jedem Überlagerungsdruckniveau wurde der Volumenaustrittsstrom des permeierenden Gases bei unterschiedlichen Probeneintrittsdrücken ermittelt. Der Probeneintrittsdruck wurde bis maximal 60 % des Überlagerungsdruckes in Schritten angehoben.
6.2.1 Autoklaven für die Permeabilitätsmessungen

In Abb. 6-2 ist schematisch der Aufbau der Autoklaven dargestellt, in denen die Tonproben untersucht werden. Für die Zu- und Abfuhr des Messfluids sowie für die Probenentlüftung sind in den Verteilerstempeln je zwei Einschraubverschraubungen angebracht (nur jeweils einer in der Zeichnung abgebildet).

Abb. 6-2: Autoklav mit Tonprobe

Bei den Messungen liegt an der zum Autoklavenboden gewandten Seite der Proben- eintrittsdruck p_e, an der gegenüberliegenden Seite der Druck p_a, der kleiner als der Eintrittsdruck p_e ist und dem Atmosphäreendruck entspricht. Um zu verhindern,

6.2.2 Blasenspeicher als Förderelement

Die Abb. 6-3 zeigt die Prinzipskizze eines solchen Blasenspeichers.

Abb. 6-3: Prinzipskizze eines Blasenspeichers

Bei den in /FRÖ 03/ dokumentierten Versuchen erwies sich das Blasenmaterial (FKM) bei höheren Temperaturen aber als
Versuchseinrichtungen zur Messung der Permeabilität

nicht langzeitstabil im Hinblick auf mechanische und alterungsbedingte Stabilität. Bei Versuchstemperaturen von 90 °C traten bereits beim Anfahren der Versuche Risse im oberen Teil der Blase im Umfang auf.

Um die notwendigen Standzeiten während der Versuche bei hohen Temperaturen zu erreichen, wurde für die Versuche bei Temperaturen von 60 °C und 90 °C ein Membranmetallbalgspeicher eingesetzt.

6.2.3 Membranmetallbalg als Förderelement
Wie oben ausgeführt, hatte sich bei den Untersuchungen mit Salzlauge /FRÖ 03/ gezeigt, dass bei Temperaturen von 90 °C mit dem Blasenspeicher keine gesicherte Langzeitbeständigkeit erreicht werden konnte. Für diese Temperaturen wurde er deshalb durch einen Membranmetallbalgspeicher ersetzt. Der Membranmetallbalg besteht aus 0,3 mm dünnten Blechen aus Hastelloy C-22 (HC-22, 2.4602), die miteinander mikroplasmaverschweißt sind und sog. Membranpaare bilden, die eine hohe axiale Dehnungsaufnahme bis zu 80 % besitzen. Verschlossen wird das Unterteil des Balges mit einer HC-22-Scheibe, die gleichzeitig als Führungselement im Zylinder dient (s.u.). Der Membranbalg-Innenraum dient zur Aufnahme des Formationswassers, der Membranbalg-Außenraum wird mit Stickstoff druckbeaufschlagt, wodurch der Membranbalg axial komprimiert wird und durch die axiale Bewegungsaufnahme die Flüssigkeit im Inneren fördert. Das gesamte Innenvolumen des Membranalges beträgt 8 L, das Nutzvolumen 6 L.

Versuchseinrichtungen zur Messung der Permeabilität

6.2.4 Volumenstrommessung

Infolge des Druckgradienten über der Probenlänge stellt sich ein Permeationsstrom ein, der bei Gasmessungen mit einem Seifenblasenströmungsmesser (Abb. 6-5) oder bei höheren Volumenströmen mit elektronischen Massendurchflussmessern gemessen wird. Aus der Zeit, die eine Gasblase pro Volumeneinheit benötigt, wird der durch die Probe permeierte Volumenstrom berechnet.

Da bei der Permeation des Formationswassers durch die Tonprobe wesentlich geringere Volumenströme austreten, wird für die Messwert-Ermittlung die in Abb. 6-6 dargestellte Apparatur verwendet. An der Probenaustrittsseite des Autoklaven ist eine Messpipette angebracht, über die nach dem Wasserdurchbruch die durch die Probe permeierte Flüssigkeit gemessen wird. Über die Flüssigkeitsspiegeländerung in dem U-Rohr wird bis zum Flüssigkeitsdurchbruch das durch das Formationswasser aus der Probe verdrängte Gas gemessen. Nach dem Flüssigkeitsdurchbruch stellt die Volumenänderung im U-Rohr die Summe aus permeierten Gas und Flüssigkeit dar, sodass bei einer Zweiphasenströmung über die Differenz zwischen U-Rohr Spiegeländerung und Füllstandsänderung in der senkrechten Pipette auch der ausgetretene Gasvolumenstrom bestimmt werden kann.
Versuchseinrichtungen zur Messung der Permeabilität

Abb. 6-5: Seifenblasenströmungsmesser zur Bestimmung des Permeationstroms bei Messungen mit Gas als Messfluid

Abb. 6-6: Volumenstrommessung bei den Versuchen mit Formationswasser als Messfluid
6.3 Permeabilitätsmessung bei 90°C
Bei den 90°C-Versuchen kann wie bei den Versuchen bei Raumtemperatur mit gegen über der Atmosphäre offener Sekundärseite gearbeitet werden. Der schematische Aufbau des Versuchsstandes entspricht dem in Abb. 6-1 gezeigten.

Die Anordnung der unterschiedlichen Komponenten innerhalb der temperierten Messkammer ist auf dem Foto des Innenraumes der Messkammer (Abb. 6-7) zu erkennen. Auf der linken Seite erkennt man den Membranblasenbalg, über den die Messflüssigkeit (Formations- oder Zementwasser) mit definiertem Druck in die Probe gepresst wird. In der Mitte befindet sich ein Puffer für das Medium, über das der Überlagerungsdruck im Autoklaven erzeugt wird. Dieser Puffer wurde eingesetzt, um zu verhindern, dass sich im oberen Druckraum des Autoklaven ein Gaspolster aufbauen kann, das die Detektion von Leckagen an der Gummimanschette oder an Verschraubungen erschweren würde. In Abb. 6-8 ist die gesamte Versuchsanordnung zu sehen. Links neben der Messkammer erkennt man die Druckgasflasche, über die der Probeneintrittsdruck und der Überlagerungsdruck erzeugt werden. Rechts von der Messkammer befindet sich der für die Datenerfassung genutzte PC und unterhalb der Messkammer die Temperaturregelung.

Abb. 6-7: Foto vom Innenraum des Versuchsstandes zur Permeabilitätsmessung mit Formationswasser (Temperaturbereich bis 90 °C)
Versuchseinrichtungen zur Messung der Permeabilität

Abb. 6-8: Foto des gesamten Versuchsstandes zur Permeabilitätsmessung (Temperaturbereich bis 90°C)

6.4 Versuchsstand zur Messung der Permeabilität mit feuchtem Stickstoff als Messfluid

Das Fließbild dieses Versuchsstandes ist in Abb. 6-9 dargestellt.

Abb. 6-9: Fließbild des Versuchsstands zur Permeabilitätsmessung mit feuchtem Stickstoff

Zur Befeuchtung des von der Druckflasche gelieferten trockenen Stickstoffs der Qualität 5.0 ist hinter dem Druckminderer ein Befeuchter angeordnet. Dieser besteht aus einem Druckgefäß, welches mehr als zur Hälfte mit Wasser gefüllt ist und beheizt wird. Über ein Thermostat wird die Temperatur im Befeuchter auf dem gewünschten Niveau gehalten. Um eine relative Gasfeuchte von 100 % zu erhalten, wird der Stickstoff im folgenden Kondensator auf Umgebungstemperatur abgekühlt.

Um zu vermeiden, dass mitgerissene Wassertropfen in die weitere Rohrleitung und dann in die Tonprobe gelangen, strömt das feuchte Gas durch einen Tropfenabscheider. Hinter dem Tropfenabscheider, d.h. im Zustand 1 vor der Drossel, hat der Stickstoff die relative Feuchte von 100 % (\(\varphi = 1\)). Durch das Verhältnis des Druckes \(p_2\) hinter dem Druckminderer und \(p_1\) vor dem Druckminderer lässt sich die relative Feuchte \(\varphi\) des Stickstoffs einstellen. Sie ist definiert nach Gl. 6-1 als das Verhältnis des Partialdrucks des Wasserdampfes \(p_{H2O}\) zu dem Dampfdruck \(p_{H2O,d}\) bei einer festgelegten Temperatur T.
Versuchseinrichtungen zur Messung der Permeabilität

\[\varphi = \frac{P_d}{P_{wp,d}} \]

Gl. 6-1

Bei konstanter Temperatur verhalten sich die relativen Feuchten des Stickstoffs in Zustand 1 und Zustand 2 nach Gl. 6-2 wie:

\[\frac{\varphi_1}{\varphi_2} = \frac{P_{d,1}}{P_{d,2}} \]

Gl. 6-2

Da zwischen Zustand 1 und Zustand 2 die Masse erhalten bleibt, gilt Gl. 6-3

\[\frac{P_d}{P_{Ges.}} = \frac{m_d}{m_{Ges.}} \]

Gl. 6-3

Somit kann über das Druckverhältnisses zwischen Zustand 1 und Zustand 2 die gewünschte relative Feuchte am Probeneintritt laut Gl. 6-4 eingestellt werden.

\[\varphi_2 = \varphi_1 \cdot \frac{P_{Ges.,2}}{P_{Ges.,1}} \]

Gl. 6-4

6.5 Überprüfung der Messanordnung auf Dichtheit

6.6 Korrektur des Einflusses der Atmosphärendruckschwankungen auf das durch die Tonprobe permeierte Gasvolumen

Wie in Kap. 6.2.4 bereits beschrieben, wird bei sehr geringen Permeationsströmen der durch die Probe permeierte Gasstrom über das durch das Gas in einem U-Rohr verdrängte Wasser bestimmt (Abb. 6-10). Da zwischen 2 Messpunkten mehr als ein Tag liegen kann, sind Luftdruckschwankungen zwischen diesen 2 Messpunkten...
Versuchseinrichtungen zur Messung der Permeabilität

wahrscheinlich. Zur Korrektur des Einflusses von Atmosphärendruckänderungen auf die Berechnung des durch die Tonprobe permeierenden Gasvolumenstromes ist die Kenntnis des zwischen U-Rohr und Probe eingeschlossenen Totvolumens V_{tot} notwendig. Direkt messbar ist das Totvolumen nicht, da es neben dem Volumen der Rohrleitung auch das noch nicht vom Formationswasser getränkte Porenvolumen der Tonprobe beinhaltet.

Abb. 6-10: Versuchsaufbau zur Bestimmung des Gastotvolumens

6.6.1 Bestimmung des Totvolumens

Zur Berechnung des Totvolumens wird ein U-Rohr gasdicht mit der Ausgangsseite der Tonprobe verbunden. Durch die Befüllung des nach außen offenen Schenkels des U-Rohres um ΔH mit Wasser wird ein definierter Anstieg des Umgebungsdruckes von p_1 auf p_2 simuliert (Abb. 6-10).

Das U-Rohr wird so gefüllt, dass beide Schenkel die gleiche Füllhöhe haben, und der Druck in dem Schenkel (p_1), der mit der Probe verbunden ist, gleich dem Umgebungsdruck ist. Nach Hinzufügen einer möglichst großen Menge Wassers in den zur Atmosphäreenseite des U-Rohrs offenen Schenkel ergibt sich aufgrund der jetzt den Druck im Totvolumen (V_{tot}) erhöhenden Wassersäule (ΔH) nach Gl. 6-5 der Gasdruck p_2.

$$p_2 = p_1 + \rho_{H_2O} \cdot g \cdot \Delta H$$

Gl. 6-5
Versuchseinrichtungen zur Messung der Permeabilität

Hierbei ist \(g \) die Erdbeschleunigung und \(\rho \) die Dichte des Wassers im U-Rohr.

Die Erhöhung des Druckes von \(p_1 \) auf \(p_2 \) führt zu einer Reduzierung des Totvolumens um \(\Delta V \).

Unter der Annahme der Gültigkeit des Gesetzes idealer Gase ergibt sich Gl. 6-6.

Mit den Messgrößen \(p_1 \) und \(\Delta V \) sowie dem mit Hilfe der Messgröße \(\Delta H \) berechneten Druck \(p_2 \) lässt sich mit Gl. 6-6 das Totvolumen berechnen.

\[
V_{\text{tot}} = \frac{(p_2 \cdot \Delta V)}{(p_2 - p_1)} \tag{Gl. 6-6}
\]

6.6.2 Korrektur des Einflusses von Umgebungsdruckschwankungen

Die Korrektur des durch die Tonprobe permeierten Gasvolumens wird unter der Annahme der Gültigkeit des Gesetzes idealer Gase analog zu Kapitel 6.6.1 vorgenommen. Zu Beginn der Messung (Zustand 1) ist der Wasserspiegel in beiden Schenkeln des U-Rohres auf gleicher Höhe. Der Druck in dem der Probe zugewandten Schenkel entspricht damit dem Atmosphärendruck (\(p_{\text{atm},1} \)). Hieraus ergibt sich Gl. 6-7.

\[
p_{\text{atm},1} \cdot V_{\text{tot}} = n_1 \cdot R \cdot T \tag{Gl. 6-7}
\]

mit:

- \(n_1 \) [mol] Stoffmenge im Totvolumen
- \(R = 8,314 \ [\text{Pa} \cdot \text{m}^3/\text{mol} \cdot \text{K}] \) universelle Gaskonstante
- \(T \) [K] absolute Temperatur

Im Zustand 2, wenn die zu bestimmende Menge Gas von der Messflüssigkeit in der Probe verdrängt wurde, kann über den gemessenen Umgebungsdruck \(p_{\text{atm},2} \), sowie die am U-Rohr angezeigte Volumenänderung \(\Delta V \) mit Gl. 6-8 der Druck \(p_2 \) in dem mit der Probe verbundenen Schenkel des U-Rohres berechnet werden.

\[
p_2 = p_{\text{atm},2} + \rho \cdot g \cdot \Delta H \tag{Gl. 6-8}
\]

\(\Delta H \) ist dabei der Höhenunterschied des Flüssigkeitsstandes beider U-Rohrschenkel bzw. \(\Delta H = 2 \cdot \Delta V \cdot \text{Skalierungsfaktor} \), mit dem aus dem gemessenen Höhenunterschied das Volumen berechnet wird.

Die Zustandsgleichung im Zustand 2 lautet somit

\[
p_2 \cdot (V_{\text{tot}} + \Delta V) = n_2 \cdot R \cdot T \tag{Gl. 6-9}
\]

wobei \(n_2 \) die Summe aus \(n_1 \) und der Stoffmenge, die aus der Probe in das Totvolumen permeiert ist, darstellt. Hierbei wird das Totvolumen als viel größer als die Vo-
lumenänderung durch das permeierte Gas und daher in guter Nährung als konstant angenommen.

Die Auflösung von Gleichung Gl. 6-7 und Gl. 6-9 nach $\Delta n = n_2 - n_1$ ergibt Gl. 6-10.

$$\Delta n = \frac{p_2 \cdot (\Delta V + V_{tot}) - p_{atm,1} \cdot V_{tot}}{R \cdot T} \quad \text{Gl. 6-10}$$

Aus der erhaltenen Stoffmengendifferenz kann mit Hilfe von Gl. 6-11 das tatsächlich durch die Tonprobe permeierte Gasvolumen berechnet werden

$$\Delta V_{tats.} = \frac{\Delta n \cdot R \cdot T}{p_{atm,1} + p_2} \quad \text{Gl. 6-11}$$

Um die Bandbreite der Fehler auf das Volumenstrommessergebnis abzuschätzen, die aus der Umgebungsdruckänderung zwischen zwei Messpunkten resultieren, wurden im Folgenden zwei Messbeispiele aus tatsächlichen Messwerten berechnet.

Exemplarisch wird die Bestimmung des Totvolumens und die Korrektur des Einflusses vom Atmosphärendruckschwankugen an der im Autoklav II verbauten Probe BRA 7/10 gezeigt.

Die Bestimmung des Totvolumens analog Abb. 6-10 erfolgte am 24.01.2008. Dabei wurden folgende Messwerte ermittelt:

$p_1 = 1,006$ bar
$\Delta H = 26,2$ cm
$\Delta V = 1,1$ ml

Als Ergebnis der Berechnung des Totvolumens erhält man:

$p_2 = 1,0317$ bar
$V_{tot} = 44,2$ ml

Zur Abschätzung des maximalen Einflusses der Luftdruckschwankung auf den gemessenen Permeationsstrom werden zwei auf einander folgende Messwerte vom 04.04.2008 (Messwert 1) und 08.04.2008 (Messwert 2) gewählt, bei denen ein kleiner Permeationsstrom und eine größere Luftdruckschwankung gegeben sind. Folgende Werte wurden gemessen:

$p_1 = 1,007$ bar
$p_2 = 0,995$ bar
$V_{tot} = 44,2$ ml
$\Delta V_{gemessen} = 2,0$ ml
Versuchseinrichtungen zur Messung der Permeabilität

Als Ergebnis erhält man für die permeierte Stoffmenge und das korrigierte Volumen:

\[
\Delta n = 5,991 \cdot 10^{-5} \text{ mol}
\]
\[
\Delta V_{\text{korr}} = 1,46 \text{ ml}
\]

Die relative Änderung zwischen dem Messvolumen und dem korrigierten Volumen beträgt etwa 27 %.

Die bei den Versuchen bestimmten Totvolumina lagen im Bereich von 40–80 ml.

Zur Abschätzung des maximalen Einflusses einer Atmosphärendruckschwankung werden folgende Grenzwerte angenommen:

\[
V_{\text{tot}} = 80,0 \text{ ml}
\]
\[
p_1 = 1,010 \text{ bar}
\]
\[
p_2 = 0,990 \text{ bar}
\]
\[
\Delta n = 1,0 \cdot 10^{-5} \text{ mol}
\]

Die hieraus resultierende Volumenänderung beträgt bei konstanter Temperatur

\[
\Delta V_{\text{gemessen}} = 1,86 \text{ ml}
\]

Das korrigierte Volumen ergibt sich zu

\[
\Delta V_{\text{korr}} = 0,24 \text{ ml}
\]

Hierbei sind ca. 80 % der gemessenen Volumenänderung auf die Änderung des Umgebungsdruckes zurückzuführen. Dies zeigt, dass bei Experimenten mit Proben niedriger Permeabilität und daraus resultierenden kleinen Gasströmen und großen Luftdruckschwankungen eine Korrektur der gemessenen Volumenänderung unerlässlich ist. Bei großen Volumenströmen und kleinen Druckschwankungen ist die Volumenkorrektur dagegen von nur geringem Einfluss. Unter Annahme von

\[
V_{\text{tot}} = 80,0 \text{ ml}
\]
\[
p_1 = 1,001 \text{ bar}
\]
\[
p_2 = 0,999 \text{ bar}
\]
\[
\Delta n = 5,0 \cdot 10^{-4} \text{ mol}
\]

ergeben sich

\[
\Delta V_{\text{gemessen}} = 12,34 \text{ ml}
\]

und

\[
\Delta V_{\text{korr}} = 12,18 \text{ ml}
\]
Bei diesem Grenzfall sind nur ca. 1 % der Volumenänderung auf die Druckschwankung zurückzuführen, was zeigt, dass besonders bei Experimenten mit Proben hoher Permeabilität und daraus resultierenden großen Gasströmen und kleinen Luftdruckschwankungen eine Korrektur in guter Näherung vernachlässigt werden kann.
7 Versuchsdurchführung und Auswertung

7.1 Versuchsdurchführung

In diesem Kapitel werden die durchgeführten Untersuchungen beschrieben und die Versuchsergebnisse nach verschiedenen Gesichtspunkten ausgewertet. Folgende Teiluntersuchungen wurden durchgeführt:

- Porositätsbestimmung
- Bestimmung der Anfangspermeabilität mit Stickstoff als Messgas
- Untersuchung des Einflusses des Probenanfangszustandes „bergfeucht“ oder „vor Versuch getrocknet“ auf das Durchlässigkeitsverhalten
- Quantifizierung des Einflusses von feuchtem Gas auf das Permeabilitätsverhalten
- Quantifizierung des Einflusses der Temperatur auf die Permeabilität
- Untersuchung des Einflusses von Zementwasser auf das Durchlässigkeitsverhalten
- Ermittlung des Gasdurchbruchsdrucks bei flüssigkeitsgesättigten Proben
- Ioneneintrag bzw. -austrag infolge der Durchströmung mit Formations- und Zementwasser
- Bestimmung von Diffusionskoeffizienten

Es wurden Proben der Serien BRA 07, BRA 08 und BLT 10 aus dem Untertagelabor Mont Terri sowie eine Probe aus Tournemire (GEM) untersucht. Bei allen Proben wurde zuerst gravimetrisch die totale Porosität bestimmt. Bei einigen wurde zusätzlich die zugängliche Porosität über instationäre Permeabilitätsmessungen sowie mit Hilfe der Gasexpansionsmethode ermittelt (siehe auch Kap. 3.4). Über das nach der Flüssigkeitsbeaufschlagung aus der Probe verdrängte Gasvolumen bis zum Flüssigkeitsdurchbruch auf der Probenaustrittsseite wurde die Transportporosität abgeschätzt.

Anschließend wurde mit Gas (Stickstoff oder Wasserstoff) die Anfangspermeabilität und die Permeabilitätsänderung infolge der Erhöhung des Überlagerungsdruckes bestimmt.

Es wurde abgeschätzt in wie weit der Feuchtegehalt des durchströmten Tones (bergfeucht oder vor Versuch getrocknet) und der Feuchtegehalt des Messgases sowie die Versuchstemperatur das Durchlässigkeitsverhalten des Tones beeinflussen.
Die notwendigen Gasdrücke in Abhängigkeit von der Rissgröße und –geometrie, die notwendig waren, um nach der Probenaufsättigung die Flüssigkeit wieder aus den Rissen zu verdrängen, wurden abgeschätzt.

Der Einfluss von alkalischem Formationswasser als Permeat auf die Stofftransporteigenschaften im Opalinuston wurde untersucht.

Um Aussagen zum Ionenein- oder Austrag in die Probe infolge der Durchströmung mit Formationswasser oder Zementwasser zu erhalten, wurde das durchströmte Permeat auf seine Ionenkonzentration analysiert.

Zur Abschätzung, welchen Anteil die Diffusion am gesamten Stofftransport hat, wurden bei einigen Proben ebenfalls Diffusionsmessungen durchgeführt. In Tab. 7-1, Tab. 7-2 und Tab. 7-3 sind die Anfangsparameter, sowie die geplanten und durchgeführten Untersuchungen aufgelistet.

In Tab. 7-4, Tab. 7-5 und Tab. 7-6 sind die Ergebnisse der durchgeführten Untersuchungen zusammengefasst. Details zu den Versuchsdurchführungen und zu den Versuchsergebnissen der einzelnen Versuche befinden sich im Anhang.
Tab. 7-1: Anfangsparameter der Proben Serie BRA 07

<table>
<thead>
<tr>
<th>Versuchsnummer</th>
<th>Versuchsstart</th>
<th>Versuchs-temperatur</th>
<th>Strömungsmedium</th>
<th>Anfangszustand</th>
<th>Anfangsporosität [%]</th>
<th>Geplante und durchgeführte Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA 07/01</td>
<td>26.01.06</td>
<td>RT</td>
<td>N$_2$</td>
<td>-</td>
<td>16,1</td>
<td>wegen Wassereinbruch Versuch abgebrochen</td>
</tr>
<tr>
<td>BRA 07/02</td>
<td>13.02.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16,0</td>
<td>wegen Wassereinbruch keine Messungen</td>
</tr>
<tr>
<td>BRA 07/03</td>
<td>10.02.06</td>
<td>RT</td>
<td>N$_2$/FW</td>
<td>v.V getrocknet</td>
<td>16,5</td>
<td>Probe v. V. bis auf Gewichtskonstanz getrocknet, Messungen mit Gas und Formationswasser</td>
</tr>
<tr>
<td>BRA 07/04</td>
<td>14.02.06</td>
<td>RT</td>
<td>N$_2$/FW</td>
<td>bergfeucht</td>
<td>14,5</td>
<td>Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen</td>
</tr>
<tr>
<td>BRA 07/05</td>
<td>17.02.06</td>
<td>RT</td>
<td>N$_2$ (feucht)</td>
<td>v.V getrocknet</td>
<td>12,1 bzw.18,4</td>
<td>Vor Versuch getrocknet, Messungen mit N$_2$ und H$_2$, Einfluss feuchten Gases auf die Permeabilität; wg. Wassereinbruch Versuch abgebrochen</td>
</tr>
<tr>
<td>BRA 07/06</td>
<td>22.02.06</td>
<td>RT</td>
<td>N$_2$/FW</td>
<td>bergfeucht</td>
<td>12,9</td>
<td>Messungen mit Gas und Formationswasser; Messungen nach druckloser Probenaufsättigung, Gasdurchbruchsmessungen</td>
</tr>
<tr>
<td>BRA 07/08</td>
<td>02.11.07</td>
<td>RT</td>
<td>N$_2$/FW</td>
<td>bergfeucht</td>
<td>12,9</td>
<td>Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen; Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BRA 07/09</td>
<td>11.03.08</td>
<td>RT</td>
<td>H$_2$/N$_2$/FW</td>
<td>bergfeucht</td>
<td>13,0</td>
<td>Gasmessungen; nach Trocknung drucklose Tränkung der Probe mit Formationswasser bis zur Gewichtskonstanz; Gasdurchbruchsmessung</td>
</tr>
<tr>
<td>BRA 07/10</td>
<td>02.08.07</td>
<td>RT</td>
<td>H$_2$/N$_2$/FW</td>
<td>bergfeucht</td>
<td>11,8</td>
<td>Messungen mit Gas, Formationswasser; Diffusionsmessungen; Gasdurchbruchsmessungen</td>
</tr>
<tr>
<td>Versuchsnummer</td>
<td>Versuchstart</td>
<td>Versuchstemperatur</td>
<td>Strömungsmedium</td>
<td>Anfangszustand</td>
<td>Anfangs-porosität [%]</td>
<td>Geplante und durchgeführte Untersuchungen</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>BRA 07/11</td>
<td>30.06.08</td>
<td>RT/ 60 °C</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>12,0</td>
<td>Messungen mit Gas und Formationswasser; Messungen bei 60 °C Gasdurchbruchsmessungen</td>
</tr>
<tr>
<td>BRA 07/12</td>
<td>15.01.09</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht, Risse</td>
<td>14,7</td>
<td>Probe wies sichtbare Risse an Stirnseiten auf; Messungen mit Stickstoff und Formationswasser, Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BRA 07/13</td>
<td>15.01.09</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht, Risse</td>
<td>14,3</td>
<td>Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen, Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BRA 07/14</td>
<td>19.02.10</td>
<td>RT</td>
<td>H₂/N₂/FW</td>
<td>bergfeucht</td>
<td>14,5</td>
<td>Messungen mit Gas, Formationswasser und Zemenwasser; Diffusionsmessungen; Gasdurchbruchsmessungen, Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BRA 07/15</td>
<td>27.07.10</td>
<td>RT/ 90 °C</td>
<td>H₂/N₂/FW</td>
<td>bergfeucht</td>
<td>13,4</td>
<td>Permeabilitätsmessungen mit N₂ und H₂, Diffusionsmessungen, Messungen mit Formationswasser bei 90 °C</td>
</tr>
<tr>
<td>BRA 07/17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/18</td>
<td>26.06.07</td>
<td>RT</td>
<td>N₂ (feucht)</td>
<td>Folie undicht, Risse</td>
<td>16,0</td>
<td>Permeabilitätsmessung mit feuchtem Stickstoff</td>
</tr>
<tr>
<td>BRA 07/19</td>
<td>31.07.09</td>
<td>RT</td>
<td>N₂/FW/Zementwasser</td>
<td>Folie undicht, Risse</td>
<td>18,7</td>
<td>Messungen mit Gas, Formationswasser und Zementwasser; Gasdurchbruchsmessungen, Messung der Ionenkonzentration und des pH-Wert Verlaufs</td>
</tr>
<tr>
<td>BRA 07/20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/20</td>
<td>11.05.2010</td>
<td>RT</td>
<td>N₂/FW</td>
<td>ungest. Zone, bergfeucht</td>
<td>12,6</td>
<td>Probe aus der ungestörter Zone, Messungen mit Gas und Formationswasser, Gasdurchbruchsmessung</td>
</tr>
</tbody>
</table>
Versuchsdurchführung und Auswertung

Tab. 7-2: Anfangsparameter der Proben Serie BRA 08

<table>
<thead>
<tr>
<th>Versuchsnummer</th>
<th>Versuchsstart</th>
<th>Versuchstemperatur [°C]</th>
<th>Strömungsmedium</th>
<th>Anfangszustand</th>
<th>Anfangs-</th>
<th>Geplante und durchgeführte Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA 08/01</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/02</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/03</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/04</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>beim Vermessen der Geometrie zerbrochen</td>
</tr>
<tr>
<td>BRA 08/05</td>
<td>04.06.08</td>
<td>RT/60°C/70°C</td>
<td>N₂ (70 % rel. Feuchte) / FW</td>
<td>bergfeucht</td>
<td>14,2</td>
<td>Permeabilitätsmessungen mit trocknem und feuchtem N₂ bei unterschiedlichen Temperaturen</td>
</tr>
<tr>
<td>BRA 08/06</td>
<td>22.10.09</td>
<td>RT</td>
<td>H₂/N₂/FW/Zementwasser</td>
<td>bergfeucht</td>
<td>17,3</td>
<td>Permeabilitätsmessungen mit N₂ und H₂; mit Formationswasser und Zementwasser; Diffusionsmessungen, Messung des Gasdurchbruchsdrucks, pH-Wertkontrolle und Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BRA 08/07</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/08</td>
<td>17.12.07</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>15,0</td>
<td>Permeabilitätsmessungen mit N₂ und mit Formationswasser; Messung des Gasdurchbruchsdrucks, Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BRA 08/09</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/10</td>
<td>11.09.07</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>11,9</td>
<td>Permeabilitäts- und Diffusionsmessungen, Gasdurchbruchsmessungen bei v. Versuch drucklos mit Formationswasser gesättigter Probe</td>
</tr>
</tbody>
</table>
Tab. 7-3: Anfangsparameter der Proben Serie BLT

<table>
<thead>
<tr>
<th>Versuchsnummer Versuchsstart</th>
<th>Versuchsstart</th>
<th>Versuchstemperatur [°C]</th>
<th>Strömungsmedium</th>
<th>Anfangszustand</th>
<th>Ausgangs- porosität [%]</th>
<th>Geplante und durchgeführte Untersuchungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLT 10/08/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT 10/08/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT 10/08/03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT 10/09/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT 10/09/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLT 10/09/03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen wg. großer durchgehender Risse</td>
</tr>
<tr>
<td>BLT 10/10/01 05.12.05</td>
<td>RT</td>
<td>N₂/FW</td>
<td>v. V. getrocknet</td>
<td>18,4</td>
<td></td>
<td>Vor Versuch, Trocknung der Probe bis zur Gewichtskonstanz, Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen, Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BLT 10/10/02 15.02.08</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>11,9</td>
<td></td>
<td>Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen, Messung der Ionenkonzentration</td>
</tr>
<tr>
<td>BLT 10/10/03 15.11.2006</td>
<td>RT</td>
<td>N₂</td>
<td>bergfeucht</td>
<td>11,3</td>
<td></td>
<td>nur Gasmessungen wegen Undichtigkeit in Ummantelung</td>
</tr>
<tr>
<td>BLT 10/11/01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BLT 10/11/02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BLT10/11/03 04.09.09</td>
<td>RT/60 °C</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>13,9</td>
<td></td>
<td>Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen, Messungen mit Formationswasser bei RT und 60 °C</td>
</tr>
<tr>
<td>GEM 90-669 17.05.09</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>8,5</td>
<td></td>
<td>Probe aus Tournemire; Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen</td>
</tr>
<tr>
<td>GEM 90-669 17.05.09</td>
<td>RT</td>
<td>N₂/FW</td>
<td>bergfeucht</td>
<td>8,5</td>
<td></td>
<td>Probe aus Tournemire; Messungen mit Gas und Formationswasser; Gasdurchbruchsmessungen</td>
</tr>
</tbody>
</table>

bereits im Rahmen von nf-pro vermessen
Tab. 7-4: Übersicht Versuchsergebnisse Proben Serie BRA 07

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA 07/01 26.01.06</td>
<td>16,1</td>
<td>-</td>
<td>2,9·10⁻¹⁸ (bei $p_u = 1,5 \text{ MPa}$)</td>
<td>1,4·10⁻¹⁸ (bei $p_i = 1,5 \text{ MPa}$)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>350</td>
<td>wegen Wassereinbruch Versuch abgebrochen</td>
</tr>
<tr>
<td>BRA 07/02 13.02.06</td>
<td>16,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>wegen Öleinbruch in Druckraum des Autoklaven keine Messungen</td>
</tr>
<tr>
<td>BRA 07/03 10.02.06</td>
<td>12 bzw. 16,5</td>
<td>9,0</td>
<td>4,0·10⁻¹⁶ (bei $p_u = 1,5 \text{ MPa}$)</td>
<td>3·10⁻¹⁶ (bei $p_i = 1,5 \text{ MPa}$)</td>
<td>3,3·10⁻²⁰ bei $p_u = 2,5 \text{ MPa}$ und $p_e = 5,0 \text{ bar}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.000</td>
<td>Probe v. V. bis auf Gewichtskonstanz getrocknet</td>
</tr>
<tr>
<td>BRA 07/04 14.02.06</td>
<td>12,2</td>
<td>0,9</td>
<td>1,3·10⁻¹⁸ (bei $p_u = 1,6 \text{ MPa}$)</td>
<td>3,8·10⁻¹⁹ (bei $p_i = 1,5 \text{ MPa}$)</td>
<td>6,5·10⁻²⁰ bei $p_u = 1,6 \text{ MPa}$</td>
<td>dicht bei $p_u = 1,6 \text{ MPa}$ und $p_e = 5,0 \text{ bar}$</td>
<td>-</td>
<td>86 bzw. 206</td>
<td>8,3 bzw. 17</td>
<td>14.500</td>
<td>-</td>
</tr>
<tr>
<td>BRA 07/05 17.02.06</td>
<td>12,1 bzw. 18,4</td>
<td>-</td>
<td>1,8·10⁻¹⁵ (bei $p_u = 1,0 \text{ MPa}$)</td>
<td>9,1·10⁻¹⁷ (bei $p_i = 1,5 \text{ MPa}$)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.000</td>
<td>v. V. getrocknet, nur Messungen mit Gas, wg. Öl-einbruch Versuch abgebrochen</td>
</tr>
<tr>
<td>BRA 07/06 22.02.06</td>
<td>12,9</td>
<td>1,5</td>
<td>6·10⁻¹⁸ (bei $p_u = 1,5 \text{ MPa}$)</td>
<td>3·10⁻¹⁸ (bei $p_i = 1,5 \text{ MPa}$)</td>
<td>1·10⁻¹⁹ (bei $p_i = 1,5 \text{ MPa}$)</td>
<td>dicht bei $p_u = 3,0 \text{ MPa}$ und $p_e = 8,0 \text{ bar}$</td>
<td>-</td>
<td>96</td>
<td>15</td>
<td>18.000</td>
<td>drucklose Probenaufsaügung</td>
</tr>
<tr>
<td>BRA 07/08 02.11.07</td>
<td>12,9</td>
<td>3,6</td>
<td>1,1·10⁻¹⁸ (bei $p_u = 1,5 \text{ MPa}$)</td>
<td>1,1·10⁻²⁰ (bei $p_i = 7,0 \text{ MPa}$)</td>
<td>2,7·10⁻¹⁹ (bei $p_u = 1,8 \text{ MPa}$)</td>
<td>1,6·10⁻¹⁹ bei $p_i = 4 \text{ MPa}$ und $p_e = 12 \text{ bar}$</td>
<td>-</td>
<td>460</td>
<td>3</td>
<td>10.500</td>
<td>-</td>
</tr>
<tr>
<td>BRA 07/09 11.03.08</td>
<td>13,0</td>
<td>-</td>
<td>1,8·10⁻¹⁸ (bei $p_u = 1,5 \text{ MPa}$)</td>
<td>9,96·10⁻²⁰ (bei $p_i = 4,0 \text{ MPa}$)</td>
<td>3·10⁻¹⁹ (bei $p_u = 2,0 \text{ MPa}$; ZPS)</td>
<td>4,8·10⁻²⁰ (bei $p_i = 2,0 \text{ MPa}$ und $p_e = 2,0 \text{ bar}$; ZPS)</td>
<td>> 33</td>
<td>730</td>
<td>2</td>
<td>7400</td>
<td>mit Formationswasser bis zur Gewichtskonstanz getränkt</td>
</tr>
<tr>
<td>BRA 07/10 02.08.07</td>
<td>11,8</td>
<td>-</td>
<td>1,8·10⁻¹⁸ (bei $p_u = 1,5 \text{ MPa}$)</td>
<td>9,9·10⁻²¹ (bei $p_i = 8,5 \text{ MPa}$)</td>
<td>3,6·10⁻¹⁹ (bei $p_u = 1,7 \text{ MPa}$)</td>
<td>2·10⁻¹⁹ bei $p_u = 3,5 \text{ MPa}$ und $p_e = 8,0 \text{ bar}$</td>
<td>> 25</td>
<td>360</td>
<td>4</td>
<td>7.900</td>
<td>Diffusionsmessungen</td>
</tr>
</tbody>
</table>
Fortsetzung Tab. 7-4

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA 07/11</td>
<td>12,0</td>
<td>4 - 6,5</td>
<td>1,1·10^{-17} (bei (p_u) = 1,0 MPa)</td>
<td>5,9·10^{-22} (bei (p_0) = 4,0 MPa)</td>
<td>1,4·10^{-18} (bei (p_0) = 1,0 MPa)</td>
<td>2·10^{-18} bei (p_d) = 4,0 MPa und (p_e) = 2,5 bar</td>
<td>-</td>
<td>730</td>
<td>2</td>
<td>7,700</td>
<td></td>
<td>Messungen bei 60 °C</td>
</tr>
<tr>
<td>BRA 07/12</td>
<td>14,7</td>
<td>2,2</td>
<td>2,0·10^{-18} (bei (p_u) = 3,0 MPa)</td>
<td>5,2·10^{-18} (bei (p_0) = 6,0 MPa)</td>
<td>4,3·10^{-19} (bei (p_0) = 1,0 MPa)</td>
<td>1,0·10^{-19} bei (p_0) = 2,0 MPa und (p_e) = 1,8 bar</td>
<td>> 25</td>
<td>411</td>
<td>3,5</td>
<td>8,100</td>
<td></td>
<td>Risse an Probenstirnseite</td>
</tr>
<tr>
<td>BRA 07/13</td>
<td>14,3</td>
<td>1,5</td>
<td>2,3·10^{-15} (bei (p_u) = 2,0 MPa)</td>
<td>2,6·10^{-17} (bei (p_0) = 6,0 MPa)</td>
<td>4,6·10^{-19} (bei (p_0) = 1,0 MPa)</td>
<td>4,0·10^{-20} bei (p_d) = 3,0 MPa und (p_e) = 1,5 bar</td>
<td>> 40</td>
<td>360 - 960</td>
<td>1,5 - 4,0</td>
<td>11,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRA 07/14</td>
<td>14,5</td>
<td>2,4</td>
<td>5,5·10^{-17} (bei (p_u) = 5,5 MPa)</td>
<td>4,5·10^{-18} (bei (p_0) = 5,5 MPa)</td>
<td>1,0·10^{-17} (bei (p_0) = 2,0 MPa)</td>
<td>1,0·10^{-18} bei (p_0) = 6 MPa und (p_e) = 2,3 bar</td>
<td>-</td>
<td>2,800</td>
<td>0,5</td>
<td>7,250</td>
<td></td>
<td>mit Zementwasser vermessen</td>
</tr>
<tr>
<td>BRA 07/15</td>
<td>13,4</td>
<td>-</td>
<td>1,6·10^{-18} (bei (p_u) = 2,0 MPa)</td>
<td>6,3·10^{-18} (bei (p_0) = 4,0 MPa)</td>
<td>1,0·10^{-18} (bei (p_0) = 1,0 MPa)</td>
<td>4,6·10^{-20} bei (p_d) = 4,0 MPa und (p_e) = 2,0 bar</td>
<td>>> 15</td>
<td>1,160</td>
<td>1,2</td>
<td>6,740</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRA 07/17</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/18</td>
<td>16,0</td>
<td>-</td>
<td>7,9·10^{-18} (bei (p_u) = 5,0 MPa)</td>
<td>3,4·10^{-15} (bei (p_0) = 5,0 MPa)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Messungen mit feuchtem Stickstoff</td>
</tr>
<tr>
<td>BRA 07/19</td>
<td>18,7</td>
<td>1,2</td>
<td>3,8·10^{-15} (bei (p_u) = 3,0 MPa)</td>
<td>7,9·10^{-16} (bei (p_0) = 5,0 MPa)</td>
<td>7,3·10^{-19} (bei (p_0) = 1,5 MPa)</td>
<td>1,3·10^{-19} bei (p_0) = 5,0 MPa und (p_e) = 0,6 bar</td>
<td>>> 30</td>
<td>> 2,800</td>
<td>0,5</td>
<td>11,250</td>
<td></td>
<td>Lagerung in undichter Folie/Messung mit Zementwasser</td>
</tr>
<tr>
<td>BRA 07/20</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/21</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/22</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/23</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/24</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 07/25</td>
<td>12,6</td>
<td>1,3</td>
<td>1,1·10^{-21} (bei (p_u) = 2,0 MPa)</td>
<td>1,1·10^{-21} (bei (p_0) = 2,0 MPa)</td>
<td>4,0·10^{-18} (bei (p_0) = 2,0 MPa)</td>
<td>4,6·10^{-19} (bei (p_0) = 2,0 MPa und (p_e) = 2,4 bar)</td>
<td>>> 20 nm</td>
<td>> 2,800</td>
<td>0,5</td>
<td>8,230</td>
<td></td>
<td>Probe aus ungestörter Zone</td>
</tr>
</tbody>
</table>
Tab. 7-5: Übersicht Versuchsergebnisse Proben Serie BRA 08

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BRA 08/01</td>
<td></td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/02</td>
<td></td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/03</td>
<td></td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/04</td>
<td></td>
<td>-</td>
<td>beim Geometrie vermessen zerbrochen</td>
</tr>
<tr>
<td>BRA 08/05</td>
<td>04.06.08</td>
<td>14,2</td>
<td>-</td>
<td>2,2·10⁻¹⁹ (bei (p_0 = 3,2) MPa)</td>
<td>3,7·10⁻²⁰ bei (p_0 = 6,0) MPa</td>
<td>-</td>
<td>-</td>
<td>> 22</td>
<td>-</td>
<td>-</td>
<td>2.250</td>
<td>Abbruch wg. undichter Manschette</td>
</tr>
<tr>
<td>BRA 08/06</td>
<td>22.10.09</td>
<td>17,3</td>
<td>0,5</td>
<td>1,2·10⁻¹⁶ (bei (p_u = 2,0) MPa)</td>
<td>4,7·10⁻²⁰ (bei (p_u = 8,0) MPa)</td>
<td>-</td>
<td>1,3·10⁻²⁰ bei (p_u = 6,0) MPa und (p_e = 2,3) bar</td>
<td>> 90</td>
<td>580</td>
<td>2,5</td>
<td>12.930</td>
<td>Zementwasser</td>
</tr>
<tr>
<td>BRA 08/07</td>
<td></td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/08</td>
<td>17.12 07</td>
<td>15,0</td>
<td>1,0</td>
<td>2,0·10⁻¹⁷ (bei (p_u = 1,0) MPa)</td>
<td>2,0·10⁻¹⁸ (bei (p_u = 1,5) MPa)</td>
<td>2,0·10⁻¹⁹ (bei (p_u = 1,7) MPa)</td>
<td>dicht bei (p_u = 1,5) MPa und (p_e = 3,0) bar</td>
<td>29 - 66</td>
<td>360</td>
<td>4</td>
<td>12.150</td>
<td>-</td>
</tr>
<tr>
<td>BRA 08/09</td>
<td></td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BRA 08/10</td>
<td>11.09.07</td>
<td>11,9</td>
<td>-</td>
<td>8,7·10⁻¹⁸ (bei (p_u = 1,5) MPa)</td>
<td>4,2·10⁻²¹ (bei (p_u = 3,2) MPa)</td>
<td>-</td>
<td>> 25</td>
<td>120</td>
<td>12</td>
<td>4.000 h + 5.000 h (nach Tränkung)</td>
<td>Probe mit Formationswasser gesättigt: Permeabilitäts- und Diffusionsmessungen</td>
<td></td>
</tr>
</tbody>
</table>
Versuchsdurchführung und Auswertung

Tab. 7-6: Übersicht Versuchsergebnisse Proben Serie BLT 10 und der Probe GEM

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BLT 10/08/01</td>
<td>-</td>
<td>bereits in nf-pro vermessen</td>
</tr>
<tr>
<td>BLT 10/08/02</td>
<td>-</td>
<td>nicht vermessen wg. großer durchgehender Risse</td>
</tr>
<tr>
<td>BLT 10/09/01</td>
<td>-</td>
<td>BLT 10/10/01 05.12.05 Probe v. V. getrocknet</td>
</tr>
<tr>
<td>BLT 10/09/02</td>
<td>-</td>
<td>BLT 10/10/02 15.02.08 Probe wieder dicht</td>
</tr>
<tr>
<td>BLT 10/10/03</td>
<td>18,5</td>
<td>10,0</td>
<td>1,0·10^{-13} (bei p₀ = 1,5 MPa)</td>
<td>4,3·10^{-14} (bei p₀ = 1,5 MPa)</td>
<td>3,8·10^{-18} (bei p₀ = 1 MPa)</td>
<td>8,5·10^{-20} bei p₀ = 3,2 MPa und pₑ = 3 bar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Probe v. V. getrocknet</td>
</tr>
<tr>
<td>BLT 10/11/01</td>
<td>11,3</td>
<td>-</td>
<td>1,47·10^{-17} (bei p₀ = 1,5 MPa)</td>
<td>2,2·10^{-22} (bei p₀ = 7 MPa)</td>
<td>-</td>
<td>160 -210</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>nur Gasmessungen wegen Undichtigkeit in Ummantelung</td>
</tr>
<tr>
<td>BLT 11/01/01</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BLT10/11/02</td>
<td>-</td>
<td>nicht vermessen</td>
</tr>
<tr>
<td>BLT10/11/03</td>
<td>13,9</td>
<td>1,2</td>
<td>2,6·10^{-16} (bei p₀ = 7 MPa)</td>
<td>4,7·10^{-18} (bei p₀ = 9 MPa)</td>
<td>1,6·10^{-17} (bei p₀ = 2 MPa)</td>
<td>2,6·10^{-18} (bei p₀ = 2 MPa und pₑ = 0,5 bar)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Formationswasser bei 60 °C</td>
</tr>
<tr>
<td>GEM 90 -669</td>
<td>8,5</td>
<td>0,4</td>
<td>2,4·10^{-18} (bei p₀ = 2 MPa)</td>
<td>2,8·10^{-19} (bei p₀ = 5 MPa)</td>
<td>1,7·10^{-20} (bei p₀ = 5 MPa)</td>
<td>4,4·10^{-21} bei p₀ = 5 MPa und pₑ = 34 bar</td>
<td>ca. 30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Probe aus Tournemire</td>
</tr>
</tbody>
</table>
Versuchsdurchführung und Auswertung

7.2 Permeabilitätsmessungen mit Gas als Messfluid

Um die Einflüsse der verschiedenen Untersuchungsparameter auf den Permeabilitätsverlauf beurteilen zu können, wurde nach der Bestimmung der Gesamtporosität bei jeder untersuchten Probe zuerst die Anfangspermeabilität mittels Gasmessung bestimmt.

Entscheidend für das Permeabilitätsverhalten ist der Feuchtegrad der Proben. Bergfeuchte Proben, die beim Einbau keine Risse an ihren Stirnseiten aufweisen, haben bei geringen Überlagerungsdrücken Anfangspermeabilitäten von etwa 10^{-17} m² bis 10^{-18} m². Proben dagegen, die beim Einbau in den Autoklaven bereits Risse an den Stirnseiten aufweisen, sind bei niedrigen Drücken um bis zu drei, bei hohen Überlagerungsdrücken um mehr als vier Größenordnungen permeabler.

Die Ursache der Risse war entweder eine undichte Verpackung während der Lagerung, infolgedessen der Wassergehalt der Probe reduziert wurde, oder die beabsichtigte Trocknung bis zur Gewichtskonstanz vor Versuchsbeginn. Mehrere Proben wurden vor dem Einbau in den Autoklaven bis auf Gewichtskonstanz getrocknet, um auch Aussagen zum Grenzzustand völlig durchtrockneten Tones machen zu können.

Es wurde darüber hinaus untersucht, ob und bei welchen Versuchsparametern bei Unterschreitung von bestimmten Probeneintrittsdrücken die Permeabilität auf nicht mehr messbare Werte abfällt, die Probe also „dicht“ wird. Der zur Wasserverdrängung aus den Wegsamkeiten minimal notwendige Kapillardruck und der daraus resultierende äquivalente Porenradius wurden durch Wiederbeaufschlagung der mit Flüssigkeit gesättigten Probe mit Gas ermittelt.

7.2.1 Bestimmung der Anfangspermeabilität und der Überlagerungsdruckabhängigkeit der Permeabilität mittels Gasmessungen

Abb. 7-1, Abb. 7-18 und Abb. 7-22 zeigen die Anfangspermeabilität und die Überlagerungsdruckabhängigkeit der Permeabilität der untersuchten Proben der drei Serien.

In Abb. 7-1 sind die Ergebnisse für die Probenserie BRA 07 zusammenfassend dokumentiert. Als Anfangspermeabilität wurde die durch die bei niedrigstem Überlagerungsdruck nach Klinkenberg auswertbare Permeabilitätsmessung als tatsächliche Permeabilität verwendet. Die Anfangspermeabilitäten der bergfeuchten Proben aus der Auflockerungszone (EDZ) ohne Risse wurden bei Überlagerungsdrücken von 1,0 MPa bis 1,5 MPa ermittelt und liegen in einem relativen engen Bereich zwischen 10^{-17} m² > $k > 10^{-18}$ m² und unterscheiden sich nur wenig, während die durch defekte Verpackung ausgetrockneten oder absichtlich vor Versuchsbeginn getrockneten Proben bei Überlagerungsdrücken von 1,0 MPa bis 3,0 MPa signifikant höhere Permeabilitäten von teilweise über 10^{-15} m² aufweisen. Das ungestörte bergfeuchte
Wirtsgestein von Probe BRA 07 hingegen weist mit ca. 10^{20} m² eine um ca. zwei Größenordnungen geringere Anfangspermeabilität bei ähnlichen Überlagerungsdrücken wie die aus der EDZ stammenden bergfeuchten Proben auf.

Die Ursache der hohen Permeabilität von ca. $6 \cdot 10^{-16}$ m² und des hohen zur Erreichung einer klinkenburgauswertbaren Messung nötigen Überlagerungsdrucks von 5,5 MPa bei Probe BRA 07/14 konnte nicht ermittelt werden.

Das Ausmaß der Verringerung der Permeabilität mit zunehmendem Überlagerungsdruck ist bei vielen Proben aber relativ ähnlich. Eine weitere Ausnahme bildet die Probe BRA 07/11, deren Permeabilitätsabfall mit zunehmendem Überlagerungsdruck deutlich steiler ist, als die aller anderen Proben dieser Serie. Sie erreicht schon bei einem Überlagerungsdruck von 4,0 MPa die niedrigste, überhaupt bei dieser Serie erreichte Permeabilität von unter 10^{-21} m².

Im Unterschied zu den anderen Proben wurden bei dieser Probe die Gasmessungen nicht bei Raumtemperatur sondern bei 60 °C durchgeführt.

Als typisches Beispiel für die untersuchten bergfeuchten Proben dieser Serie werden im Folgenden die Untersuchungen der Probe BRA 07/08 näher dargestellt.
Nach dem Einbau in den Autoklaven wurden die Permeabilitätsmessungen mit einem Überlagerungsdruck von 1,0 MPa gestartet. Die bei diesem Überlagerungsdruck durchgeführten Permeabilitätsmessungen ergaben nach Abb. 7-2 eine Erhöhung der Permeabilität mit steigendem Probeneintrittsdruck und sind deshalb nicht Klinkenberg auswertbar.

Die bei Überlagerungsdrücken von 1,5 MPa bis 7,0 MPa durchgeführten, und in Abb. 7-3 und Abb. 7-4 dargestellten Permeabilitätsmessungen sind Klinkenberg auswertbar. Hierbei nimmt die tatsächliche Permeabilität von $k = 10^{-18}$ m² bei $p_0 = 1,5$ MPa auf $k = 10^{-20}$ m² bei $p_0 = 7,0$ MPa ab. Die Druckabhängigkeit der Permeabilität nimmt ebenfalls mit steigendem Überlagerungsdruck im betrachteten Bereich um mehr als eine Größenordnung ab. Die tatsächliche Permeabilität in Abhängigkeit vom Überlagerungsdruck ist in Abb. 7-5 dargestellt.

Abb. 7-2: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 1,0 MPa
Versuchsdurchführung und Auswertung

Abb. 7-3: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 1,5 MPa bis 3,0 MPa

Abb. 7-4: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 MPa bis 7,0 MPa
Versuchsdurchführung und Auswertung

Die durch eine defekte Verpackung ausgetrockneten oder absichtlich vor Versuchsbeginn auf Gewichtskonstanz getrockneten Proben weisen dagegen eindeutig höhere Anfangspermeabilitäten auf. Auch in der Abhängigkeit vom Überlagerungsdruck unterscheiden sie sich deutlich von den bergfeuchten Proben. Diese Abhängigkeit ist bei den getrockneten Proben noch geringer als bei den Proben mit Rissen und beträgt im Überlagerungsdruckbereich von 1,5 MPa und 10,0 MPa lediglich eine Größenordnung. Dies ist dadurch zu erklären, dass durch die Reduzierung der Feuchte im Ton dessen Plastizität ebenfalls verringert wird. Bei den Proben mit Rissen beträgt die Abnahme der Permeabilität ca. drei Größenordnungen bei einer Überlagerungsdruckerhöhung von 2,0 MPa auf 6,0 MPa.

Um einen Vergleich zwischen der Durchlässigkeit der Auflockerungszone und dem ungestörten Wirtsgestein zu ermöglichen, wurde auch eine Probe aus dem ungestörten Bereich untersucht.

Lagerbedingungen sind drei feine Risse erkennbar, die jeweils vom Rand bis ca. ein Drittel der jeweiligen Sehnenlänge verlaufen. In Längsrichtung waren die Risse nur ca. 3 bis 4 cm an der Probenoberfläche sichtbar.

Abb. 7-6: Stirnseite der Probe BRA 07 vor Versuch

Die Probe BRA 07 weist gegenüber den risssfreien Proben aus der EDZ, die ebenfalls bei Raumtemperatur untersucht wurden, eine um ca. zwei Größenordnungen geringere Anfangspermeabilität auf. Die über einen Zeitraum von etwa zehn Wochen bei Überlagerungsdücken von 2,0 und 3,0 MPa durchgeführten Gaspermeabilitätsmessungen mit Stickstoff führten nach Abb. 7-7 und Abb. 7-8 zu einem mit keinem aus Versuchen mit Proben aus der Auflockerungszone vergleichbaren Verlauf. Hier nimmt die absolute Permeabilität mit forschreitender Versuchszeit und 2,0 MPa Überlagerungsdruck zunächst zu. Nach einer Überlagerungsdruckerhöhung auf 3,0 MPa steigt sie weiter mit langsamerer Geschwindigkeit an und verringert sich dann nach einer Rücknahme des Überlagerungsdrucks auf 2,0 MPa wieder, während die scheinbaren Permeabilitäten und die Druckabhängigkeit der Permeabilität mit forschreitender Versuchszeit abnehmen. Insgesamt befinden sich die Werte für die absolute Permeabilität im Bereich von ca. $1,1 \cdot 10^{-21}$ m² < k < $1,3 \cdot 10^{-20}$ m².

Insgesamt kann festgestellt werden, dass bei der Probe BRA 07 nach dem Einbau trotz Überlagerungsdrukserhöhung auf 3,0 MPa ein Anstieg der Permeabilität stattfindet und von einer Vergrößerung der Äquivalenzradien der durchströmten Wegsamkeiten ausgegangen werden muss.

Abb. 7-7: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 2,0 MPa und 3,0 MPa
Versuchsdurchführung und Auswertung

Abb. 7-8: Tatsächliche Permeabilität als Funktion des Überlagerungsdru-ckes und der Versuchszeit

Abb. 7-9: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken
Versuchsdurchführung und Auswertung

Abb. 7-10: Klinkenbergfaktor, abhängig vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität

Abb. 7-11: Knudsendiffusionskoeffizient in Abhängigkeit von der Permeabilität
Nach dem Ausbau der Probe aus dem Autoklaven wurden Stirnseite und Mantelfläche der Probe fotografiert. Wie in Abb. 7-12 und Abb. 7-13 zu erkennen ist, kann der relativ große Äquivalenzdurchmesser durch den deutlich sichtbaren Riss erklärt werden, der ein Probensegment abzutrennen scheint. Die drei Stunden später gemachten Aufnahmen (Abb. 7-14 und Abb. 7-15) zeigen, dass infolge der mechanischen Entlastung und der Trocknung weitere Risse längs der Schichtungsgrenzen entstanden sind. Die sechs Tage später entstandenen Aufnahmen (Abb. 7-16 und Abb. 7-17) zeigen gegenüber den Aufnahmen, die drei Stunden nach dem Ausbau aufgenommen wurden, keine signifikante Veränderung mehr.

Die Tatsache, dass trocknungs- und spannungsumlagerungsinduzierte Rissbildung anscheinend schon nach wenigen Stunden abgeschlossen sind, kann einen Hinweis zur Deutung des ungewöhnlichen Permeabilitätsverhaltens geben, da die Probe vor und während des Einbaus in den Autoklaven ca. ein bis zwei Stunden unvermeidbar Umgebungsdruck ausgesetzt war. Wenn es hierbei bereits zur Rissbildung kam, wurden die entstandenen Wegsamkeiten evtl. bei der Durchströmung mit Gas aufgeweitet, was zu einem Permeabilitätsverhalten wie in Abb. 7-7 und Abb. 7-8 dargestellt führen könnte. Dies dokumentiert die Schwierigkeit im experimentellen Umgang mit Proben aus dem ungestörten Wirtsgestein.

Abb. 7-12: Stirnseite der Probe BRA 07 nach Versuch, Riss rot markiert
Versuchsdurchführung und Auswertung

Abb. 7-13: Mantelansicht der Probe BRA 07 nach Versuch, Riss rot markiert

Abb. 7-14: Stirnseite der Probe BRA 07 (3 h nach Ausbau aus dem Autoklaven)
Versuchsdurchführung und Auswertung

Abb. 7-15: Mantelansicht der Probe BRA 07 (3 h nach Ausbau aus dem Autoklaven)

Abb. 7-16: Stirnseite der Probe BRA 07 (6 d nach Ausbau aus dem Autoklaven)
Versuchsdurchführung und Auswertung

Abb. 7-17: Mantelansicht der Probe BRA 07 (6 d nach Ausbau aus dem Auto-klaven)

Die Ergebnisse der Untersuchungen der restlichen Proben sind im Anhang detailliert dargestellt.

Abb. 7-18 zeigt die Überlagerungsdruckabhängigkeit der Permeabilität von Proben der Serie BRA 08. Hier wurden nur bergfeuchte Proben untersucht. Die Anfangspermeabilitäten liegen in einem Bereich von etwa $10^{-16} \, \text{m}^2 > k > 10^{-17} \, \text{m}^2$ bei Überlagerungsdrücken von 1,0 MPa bis 2,0 MPa. Die deutlich niedrigere Anfangspermeabilität der Probe BRA 08/05 von etwa $2,0 \cdot 10^{-19} \, \text{m}^2$ ist auf den im Vergleich erhöhten Anfangsüberlagerungsdruck von 3,2 MPa zurückzuführen. Insgesamt wurden bei Überlagerungsdrücken zwischen 1,0 MPa und 6,0 MPa Permeabilitäten in einem Bereich von gut $10^{-17} \, \text{m}^2$ bis knapp unter $10^{-20} \, \text{m}^2$ ermittelt. Tendienziell fällt die Permeabilität monoton mit steigendem Überlagerungsdruck ab, wobei der Abfall der Probe BRA 08/10 deutlich stärker mit zunehmendem Überlagerungsdruck abfällt als bei den anderen Proben.
Versuchsdurchführung und Auswertung

Als Beispiel für die untersuchten bergfeuchten Proben dieser Serie werden im Folgenden die Versuchsergebnisse der Probe BRA 08/10 näher dargestellt.

Mit den Permeabilitätsmessungen wurde wieder bei einem Überlagerungsdruck von 1,0 MPa begonnen.

Die bei diesem Überlagerungsdruck gemessenen Permeabilitäten waren ebenfalls nicht nach Klinkenberg auswertbar. Erst die Erhöhung des Überlagerungsdruckes auf 2,0 MPa führte zu auswertbaren Permeabilitätswerten von ca. \(k = 1,5 \times 10^{-19} \) m². In Abb. 7-19 sind die Ergebnisse der Messungen bei Überlagerungsdrücken von 2,0 MPa – 3,2 MPa dargestellt. Wie aus der Abbildung zu ersehen ist, führt die Überlagerungsruckerhöhung von 2,0 MPa auf 3,2 MPa zu einer Permeabilitätsabnahme von ca. \(k = 1,5 \times 10^{-19} \) m² auf ca. \(k = 4,2 \times 10^{-21} \) m².

In Abb. 7-20 ist die Änderung der Permeabilität in Abhängigkeit von der Versuchszeit und dem Überlagerungsdruck zusammengefasst.

![Diagramm Vergleich k = f(p_{\mu})](image_url)

Abb. 7-18: Überlagerungsdruckabhängigkeit der Permeabilität bei der Probenserie BRA 08
Versuchsdurchführung und Auswertung

BRA 08/10
(bergfeucht)

\[y = 2.66 \times 10^{-19} x + 1.45 \times 10^{-19} \]
\[y = 1.06 \times 10^{-19} x + 6.03 \times 10^{-20} \]
\[y = 1.43 \times 10^{-19} x + 5.17 \times 10^{-20} \]
\[y = 1.44 \times 10^{-19} x + 4.24 \times 10^{-21} \]

1.00E-21
5.10E-20
1.01E-19
1.51E-19
2.01E-19
2.51E-19
3.01E-19
3.51E-19

0,0
0,2
0,4
0,6

Abb. 7-19: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,2 MPa

Permeabilität \([\text{m}^2]\)

Abb. 7-20: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit

71
Versuchsdurchführung und Auswertung

Vergleicht man diese Ergebnisse mit denen der Probenserie BRA 07, so sind die Permeabilitätsverläufe der direkt vergleichbaren Proben beider Serien (bergfeucht und ohne Risse) nahezu identisch und liegen in einem Bereich von gut \(10^{-17}\) m² bis knapp unter \(10^{-20}\) m². Lediglich der Permeabilitätsabfall der Probe BRA 08/10 ist deutlich steiler.

Dies Ergebnis, dass die Überlagerungsdruckabhängigkeit der Permeabilität zwischen den parallel (BRA 07) und orthogonal (BRA 08) zur Strömung erbohrten Proben nahezu vernachlässigbar ist, war so nicht erwartet worden.

Bei der Probenserie BLT war nur die Probe BLT 10/10/01 vor Versuchsbeginn getrocknet worden, und sie wurde nur bei einem konstanten Überlagerungsdruck von 1,5 MPa untersucht. Die Probe BLT 10/11/03 wies vor Versuchsbeginn, trotz dichter Folie während der Lagerung, deutlich sichtbare Risse auf (Abb. 7-21).

Abb. 7-21: Foto der Probeneintrittsseite der Probe BLT 10/11/03 vor dem Einbau in den Autoklaven

Abb. 7-22 zeigt die Überlagerungsdruckabhängigkeit der Probenserien BLT und der Probe GEM 60669 aus Tournemire. Die Anfangspermeabilitäten der Proben der Serie BLT liegen in einem weiten Bereich von etwa \(1,0 \cdot 10^{-13}\) m² > \(k\) > \(1,2 \cdot 10^{-17}\) m² bei Überlagerungsdrücken von 1,0 MPa bis 7,0 MPa. Hierbei sind große Permeabilitäts-
Versuchsdurchführung und Auswertung

unterschiede zwischen der vor Versuchsbeginn getrockneten Proben BLT 10/10/01, den bergfeuchten Proben BLT 10/10/02, BLT 10/10/03 und GEM 90-669 sowie der bergfeuchten Probe BLT 10/11/03 mit Rissen an der Stirnseiten festzustellen. Bei gleichem Überlagerungsdruck ist die getrocknete Probe um etwa drei bis vier Größenordnungen permeabler als die Bergfeuchten. Während mit zunehmendem Überlagerungsdruck die Permeabilitäten der bergfeuchten Proben um bis zu vier Größenordnungen abnehmen, verringert sich bei einer Erhöhung des Überlagerungsdrucks von 2,0 MPa auf 9,0 MPa die Permeabilität der mit Rissen durchzogenen bergfeuchten Probe BLT 10/11/03 nur um gut anderthalb Größenordnungen. Die Anfangspermeabilität der Probe GEM 90-669 von etwa 2,0 \cdot 10^{-18} \text{m}^2 ist ähnlich der der bergfeuchten Proben der Serie BLT. Wie in Kap. 5.2 bereits erwähnt stammt die Probe GEM 90-669 aus Tournemire und ist damit nicht direkt vergleichbar mit den BLT Proben.

Die Anfangspermeabilitäten der bergfeuchten Proben aus der EDZ ohne Risse liegen zwischen 2,5 \cdot 10^{-16} \text{m}^2 > k > 2,4 \cdot 10^{-18} \text{m}^2 und weichen damit nur unwesentlich von den Ergebnissen der beiden anderen Probenserien ab. Lediglich die Anfangspermeabilität ist ca. eine Größenordnung größer. In dem Abfall der Permeabilität mit zunehmendem Überlagerungsdruck ist das Verhalten aber sehr ähnlich.

Da die Proben der BLT Serie vor ihrer Vermessung schon mehrere Jahre unter Atmosphärendruck, aber luft- und dampfdicht verpackt, gelagert wurden, scheint der Zeitraum zwischen Erbohrung und Vermessung keinen großen Einfluss auf die Permeabilität zu haben. Wichtig hierbei ist, dass bei der Lagerung die Proben dampfdicht verpackt sind.
Versuchsdurchführung und Auswertung

Nach dem Einbau in den Autoklaven wurde die Probe zuerst mit einem Überlagerungsdruck von 3,2 MPa beaufschlagt. Die bei Überlagerungsdrücken von 3,2 MPa bis 6,0 MPa durchgeführten Messungen ergaben keine Abnahme der Permeabilität mit der Erhöhung des Probeneintrittsdruckes (siehe Abb. 7-23). Bis zu diesem Überlagerungsdruck nahm die Permeabilität mit zunehmendem Probeneintrittsdruck sogar zu, was auf eine Porendilatation in der Probe oder eine Porenöffnung durch Überschreitung des Kapillardrucks von im Durchmesser kleinen Wegsamkeiten infolge des Gasdruckes hindeutet. Erst ab einem Überlagerungsdruck von 7,0 MPa waren auswertbare Permeabilitätsmessungen möglich.

In Abb. 7-23 sind noch zwei weitere Messungen dargestellt, die nach Ende der Gasmessungen bei 9,0 MPa nach der Wiederabsenkung des Überlagerungsdruckes auf 2,0 MPa und 5,0 MPa durchgeführt wurden. Wie aus der Abbildung zu ersehen ist, hat die vorherige Belastung der Probe mit einem Überlagerungsdruck von bis zu 9,0 MPa zu einer bleibenden Verdichtung und damit zu einer irreversiblen Permeabilitätsabnahme von ca. einer Größenordnung geführt.

wurde, nur eine schwach ausgeprägte Abhängigkeit der Permeabilität vom Gasdruck feststellbar.

Im zeitlichen Verlauf der tatsächlichen Permeabilität in Abhängigkeit vom Überlagerungsdruck fällt die Permeabilität relativ stetig von $8,7 \cdot 10^{-17} \text{ m}^2$ bei einem Überlagerungsdruck von 7,0 MPa auf ca. $4,7 \cdot 10^{-18} \text{ m}^2$ bei 9,0 MPa.

Abb. 7-23: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 3,2 bis 7,0 MPa
Versuchsdurchführung und Auswertung

Abb. 7-24: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 7,0 bis 9,0 MPa

Abb. 7-25: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit
Zusammenfassend zeigen die Versuchsergebnisse, dass zwischen den drei untersuchten Probenserien bezüglich der Permeabilität und deren Abhängigkeit vom Überlagerungsdruck, bis auf wenige Ausnahmen, nur unwesentliche Unterschiede bestehen. Bei den bergfeuchten Proben und Überlagerungsdrücken zwischen 1,0 MPa und 6,0 MPa fällt die Permeabilität von ca. $1 \cdot 10^{-17} \text{m}^2$ bei 1,0 MPa auf ca. $1 \cdot 10^{-20} \text{m}^2$ bei 6,0 MPa. Signifikant ist aber der Einfluss der Feuchte des Tongesteins auf das Permeabilitätsverhalten. Die vor dem Versuch auf Gewichtskonstanz getrockneten Proben sind zwischen drei und vier Größenordnungen permeabler als die in bergfeuchtem Zustand untersuchten. Auch die Kompaktierbarkeit und damit die Verringerung der Permeabilität mit steigendem Überlagerungsdruck ist deutlich geringer. Während sich die Permeabilität bei den bergfeuchten Proben in diesem Überlagerungsdruckbereich um ca. drei Größenordnungen verringert, beträgt die Reduktion bei den vor dem Versuch getrockneten Proben weniger als eine Größenordnung.

Diese Abhängigkeit ist bei den Proben mit Rissen weniger ausgeprägt als bei den bergfeuchten und beträgt im Überlagerungsdruckbereich von 1,0 MPa und 9,0 MPa zwischen zwei und drei Größenordnungen.

7.2.2 Permeabilität in Abhängigkeit von der Anfangsporosität
7.3 Vergleich der mit Gas und Wasser jeweils gemessenen Anfangspermeabilitäten

Abb. 7-27 zeigt die „Anfangswasserpermeabilität“ als Funktion der „Anfangsgaspermeabilität“ für die Probenserien BRA 07, BRA 08, BLT und die Probe GEM. Hierbei ist festzustellen, dass bei allen rissfreien, bergfeuchten Proben aus der Auflockerungszone die Anfangswasserpermeabilitäten, die sich insgesamt im Bereich von $3,3 \cdot 10^{-20}$ m² $< k < 1,0 \cdot 10^{-17}$ m² bewegen, um jeweils etwa eine Größenordnung geringer sind als die zugehörigen Anfangsgaspermeabilitäten, die bei $1,3 \cdot 10^{-18}$ m² $< k < 1,8 \cdot 10^{-15}$ m² liegen. Bei der getrockneten Probe und den rissbehafteten Proben beträgt dieser Unterschied etwa zwischen drei und vier Größenordnungen, trotz stark erhöhter Anfangsgaspermeabilitäten von über 10^{-16} m² liegen die Anfangswasserpermeabilität auf dem gleichen Niveau wie bei den bergfeuchten rissfreien Proben. Die Probe BRA 07 aus dem ungestörten Wirtsgestein nimmt hier mit einer gegenüber der am wenigsten permeablen bergfeuchten Probe aus der Auflockerungszone um über zwei Größenordnungen geringeren Anfangsgaspermeabilität von $1,1 \cdot 10^{-20}$ m² eine Sonderstellung ein. Die Anfangswasserpermeabilität war mit $3,9 \cdot 10^{-18}$ m² über zwei Größenordnungen höher als die Anfangsgaspermeabilität, was evtl. auf den zum Wasser durchbruch notwendigen hohen Probeneintrittsdruk von 16,0 bar zurückzuführen ist oder auf eine spannungsumlagerungsinduzierte Rissbildung während die Probe beim Einbau in die Versuchsapparatur kurzzeitig Normaldruck ausgesetzt war.
Signifikante Permeabilitätsunterschiede wurden zwischen den parallel zur Schichtung erbohrten bergfeuchten Proben der Serie BRA 07 und den senkrecht zur Schichtung erbohrten bergfeuchten Proben der Serie BRA 08 nicht festgestellt.

Ein differenziertes Verhalten zeigen die Proben der Serien BLT und GEM. Während die bergfeuchte Probe GEM 90-669 mit etwa um zwei Größenordnungen geringeren Anfangswasser- als -gaspermeabilitäten ein ähnliches Verhalten wie die bergfeuchten Proben der Probenserien BRA 07 und BRA 08 an den Tag legen, und die getrockneten Proben BLT 10/10/01 ähnlich wie die getrockneten Vertreter der Serie BRA 07 eine um drei bis vier Größenordnungen höhere Anfangsgas- als -wasserpermeabilität aufweist, zeigt die bergfeuchte und rissfreie Probe BLT 10/10/02 eine wie bei den getrockneten Proben um über drei Größenordnungen gegenüber der Anfangswasserpermeabilität erhöhte Anfangsgaspermeabilität. Bei der ebenfalls bergfeuchten Probe BLT 10/11/03 ist die Anfangswasserpermeabilität gegenüber der Anfangsgaspermeabilität nur ca. eine Größenordnung geringer.

Abb. 7-27: Anfangswasserpermeabilität als Funktion der Anfangsgaspermeabilität bei den Probenserien BRA 07, BRA 08, BLT 10 und GEM
7.4 Quantifizierung des Einflusses von feuchtem Gas auf das Durchlässigkeitverhalten

Bei der Verwendung von trockenem Stickstoff als Messgas kann es bei Permeabilitätsmessungen über lange Zeiträume zu einem Austrocknen der Proben kommen, so dass die Messergebnisse nicht mehr repräsentativ für „bergfeuchten“ Ton sind.

Ziel der Untersuchungen war es, den Einfluss der Feuchte auf die Permeabilität zu quantifizieren. Hierzu wurden drei Tonproben, zwei parallel und eine senkrecht zur Schichtung erbohrt, bezüglich des Einflusses von feuchtem Gas auf die Durchlässigkeit bei verschiedenen Temperaturen untersucht.

Als Probe mit hoher Permeabilität wurde die Probe BRA 07/18 ausgewählt. Die Probe war ca. 1,5 Jahre in undichter Plastikfolie gelagert, was dazu führte, dass sie austrocknete und an der Oberfläche Risse zeigte. In Abb. 7-28 sind diese deutlich an der Stirnseite der Probe zu erkennen. Aus der Masse der Probe und der Probengeometrie wurde eine Gesamtporosität von ca. 16 % ermittelt, dies entspricht einem Gesamtporenvolumen von ca. 102 ml.

Wegen der bei dieser Probe durch die vielen Risse relativ großen inneren Oberflächen wurde erwartet, dass ein eventueller Einfluss der Gasfeuchte auf das Durchlässigkeitsverhalten hier besonders deutlich würde.

Nach /NTB 03/ besteht der Ton hauptsächlich aus nicht quellfähigen Anteilen. Da die Probe über 1,5 Jahre in einer undichten Verpackung gelagert wurde, ist davon auszugehen, dass der Restfeuchtegehalt aus Oberflächenfeuchte und Wassergehalt zwischen den Smektitplättchen gering ist. Zu untersuchen war daher, ob das infolge der Trocknung entfernte Zwischenwasser durch die Durchströmung mit feuchtem Gas wieder aufgenommen wird, und infolge dessen der Ton quillt, oder ob die Partikel irreversibel zusammen kleben.

Um eine eventuelle Plastifizierung des Tons infolge der Feuchtigkeit in einem überschaubaren Zeitraum detektieren zu können, wurden die Messungen bei hohem, konstantem Überlagerungsdruck von 5,0 MPa durchgeführt.

Nach dem Einbau der Probe in den Autoklaven wurde zunächst die Anfangspermeabilität mit trockenem Stickstoff gemessen. Sie lag bei $7,9 \times 10^{-15}$ m² und veränderte sich
während der fünf Tage an denen mit trockenem Stickstoff gemessen wurde kaum. Anschließend folgte ebenfalls bei Raumtemperatur über einen Zeitraum von 900 Stunden eine kontinuierliche Durchströmung der Probe mit feuchtem Stickstoff \((\varphi \approx 1)\). Die Ergebnisse dieser Messungen sind in Abb. 7-29 im Einzelnen aufgeführt und in Abb. 7-30 zusammengefasst. Wie aus den Diagrammen zu ersehen ist, führt die Befeuchtung des Messfluids (Stickstoff) mit \(\varphi \approx 1\) nur zu einer minimalen Verringerung der Permeabilität von ca. \(5 \cdot 10^{-15} \text{ m}^2\) auf \(3 \cdot 10^{-15} \text{ m}^2\).

Wegen des geringen Einflusses der Feuchte auf das Durchlässigkeitsverhalten wurde dieser Versuch nach einer Versuchszeit von ca. 1.000 Stunden beendet.

Abb. 7-28: Stirnseite der Probe BRA 07/18 vor Versuch (Einschweißfolie der Probe war undicht)
Versuchsdurchführung und Auswertung

Abb. 7-29: Scheinbare Permeabilität als Funktion des inversen Gasdrucks

Als weitere, parallel zu Schichtung erbohrte Probe wurde BAR 07/05 untersucht. Um eine große innere Oberfläche der Wegsamkeiten zu erreichen wurde die Probe vor
Versuchsdurchführung und Auswertung

Versuch auf Gewichtskonstanz getrocknet. Der Gewichtsverlust betrug 7,1 %, bezogen auf die Gesamtausgangsmasse.

Zur Bestimmung der Ausgangspermeabilität und um den Einfluss des Zeitfaktors vom Einfluss der Feuchte des Messgases auf die Permeabilität trennen zu können, wurden über einen Zeitraum von ca. 1.700 Stunden bei konst. Überlagerungsdruck von 1,5 MPa Gasmessungen mit trockenem Stickstoff bzw. trockenem Wasserstoff durchgeführt. Die aus dem gemessenen Volumenstrom berechnete Permeabilität fiel während dieses Zeitraums von ca. 1,8·10^{-15} m² um ca. eine Größenordnung auf 2,1·10^{-16} m² (Abb. 7-31).

Um den Einfluss einer Probendurchströmung mit feuchtem Gas auf die Durchlässigkeit zu simulieren, wurde anschließend die Probe mit feuchtem Stickstoff mit einer relativen Feuchte von 60 % durchströmt. Wie in Abb. 7-31 zu sehen ist, ändert sich der Gradient der Permeabilitätsabnahme gegenüber der Durchströmung mit trockenem Stickstoff kaum. Während der Durchströmung mit feuchtem Stickstoff über einen Zeitraum von ca. 1.300 Stunden fällt die Permeabilität lediglich von 2,1·10^{-16} m² auf 9,5·10^{-17} m².

Abb. 7-31: Einfluss der Feuchte des Messgases auf die Permeabilität
Die Probe BRA 08/05 wurde senkrecht zur Schichtung erbohrt und senkrecht zur Schichtung vermessen. Sie wurde im bergfeuchten Zustand untersucht und zuerst bei Raumtemperatur über einen Zeitraum von 312 Stunden mit trockenem Stickstoff bei steigenden Überlagerungsdrücken von 1,0 MPa bis 6,0 MPa vermessen. Wie in Abb. 7-32 dargestellt, führt die Erhöhung des Überlagerungsdruckes zu einer Abnahme der Permeabilität von $6 \cdot 10^{-18}$ auf $3,7 \cdot 10^{-20}$ m². Nach kurzzeitiger Reduzierung des Überlagerungsdrucks auf 1,0 MPa zur mechanischen Relaxation der Probe, die zu einem Wiederanstieg der Permeabilität auf $5,5 \cdot 10^{-19}$ m² führte, wurde sie über einen Zeitraum von fast 1.300 Stunden bei konstantem Überlagerungsdruck von 1,5 MPa mit Stickstoff mit einer relativen Feuchte von $\varphi \approx 1$ bei Raumtemperatur durchströmt. Während dieses Zeitraums nahm die Permeabilität lediglich auf $1,6 \cdot 10^{-19}$ m² ab. Um die in die Probe zugeführte Wassermenge deutlich zu erhöhen, wurde die Probe mit Stickstoff mit einer relativen Feuchte von $\varphi \approx 1$ und Temperaturen von 50 bis 70 °C durchströmt. Eine signifikante Änderung des Permeabilitätsverlaufs ist dadurch aber nicht zu erkennen. Lediglich eine etwa Halbierung der Permeabilität wurde durch die Temperaturerhöhung erreicht.

Die Ergebnisse aller Messungen sind in Abb. 7-32 zusammengefasst. Um Überlagerungseinflüsse zu vermeiden, wurden die Messungen mit feuchtem Stickstoff bei konstantem Überlagerungsdruck von 1,5 MPa durchgeführt.

Wie auch bei den anderen Versuchen ist im Vergleich zum Einfluss des Überlagerungsdrucks auf die Permeabilität der Einfluss der Feuchte vernachlässigbar. Infolge der Überlagerungsdruckerhöhung von 1,5 MPa auf bis zu 6,0 MPa war die Permeabilität von $6 \cdot 10^{-18}$ m² auf $3,7 \cdot 10^{-20}$ m² gefallen. Die anschließende Reduzierung des Überlagerungsdrucks auf 1,5 MPa führte zu einem Wiederanstieg der Permeabilität auf $5,5 \cdot 10^{-19}$ m².

Die in Abb. 7-32 dargestellten Messergebnisse zeigen, dass infolge der Durchströmung mit feuchtem Stickstoff bei Raumtemperatur über einen Zeitraum von ca. 1.300 Stunden, die Permeabilität lediglich von $5,5 \cdot 10^{-19}$ m² auf $1,6 \cdot 10^{-19}$ m² abnahm. Die Durchströmung mit feuchtem Stickstoff bei Temperaturen von 60°C, 70°C und 50 °C führte lediglich zu einer Permeabilitätsabnahme von $1,6 \cdot 10^{-19}$ m² auf $1,0 \cdot 10^{-19}$ m².

Anschließend sollte noch untersucht werden, ob sich bei der Durchströmung mit feuchtem Gas der Überlagerungsdruckeinfluss auf die Permeabilität gegenüber der Durchströmung mit trockenem Gas ändert. Infolge der Erhöhung des Überlagerungsdrucks von 1,5 MPa auf 3,0 MPa wurde die Probenmanschette, die durch die Temperatur brüchig geworden war, jedoch undicht. Wegen der damit verbundenen Verölung der Probe war eine Weiterführung des Versuchs nicht mehr möglich.
Versuchsdurchführung und Auswertung

Dieser Versuch zeigte, dass auch die Durchströmung mit feuchtem Gas hoher Temperatur zu keiner signifikanten Reduzierung der Permeabilität führt. Wie aus dem zeitlichen Permeabilitätsverlauf in Abb. 7-32 zu ersehen, ist nach ca. 2.000 Stunden, die die Probe mit feuchtem Gas durchströmt wurde, der zeitliche Permeabilitätsabfall gering im Vergleich zum Versuchsbeginn, als der Überlagerungsdruck erhöht wurde.

Zusammenfassend zeigen die Ergebnisse der Messungen mit feuchtem Messgas an drei Tonproben, dass im Unterschied zu den Untersuchungen mit Salz eine hohe Feuchtebeladung des Messgases nur einen unwesentlichen Einfluss auf die Permeabilität hat. Bei den Untersuchungen zum Einfluss der Feuchte des Messgases auf das Permeabilitiesverhalten von Salz fiel bei der Durchströmung der Probe mit Gas mit einer relativen Feuchte von 85 % die Permeabilität innerhalb von wenigen hundert Stunden um bis zu sieben Größenordnungen /FRÖ 99/.

Weder waren Unterschiede zwischen senkrecht oder parallel zur Schichtung erbohrten Proben, noch Unterschiede erkennbar, die sich aus dem Einbauzustand „trocken oder bergfeucht“ ableiten lassen. Auch konnte kein Einfluss der Temperatur auf das Durchlässigkeitsverhalten festgestellt werden. Gründe für den geringen Einfluss der Gasfeuchte auf die Permeabilität bei Ton können sein, dass, da nur an den inneren Oberflächen der Strömungswege das feuchte Messgas mit den quellfähigen Anteilen

Abb. 7-32: Tatsächliche Permeabilität als Funktion des Überlagerungsdrukkes und der Versuchszeit
des Tons in Kontakt kommt, nur hier der Feuchteeinfluss zur Quellung und damit zu einer Verminderung des Permeationsquerschnitts führt. Da der Anteil quellfähiger Anteile des Tons jedoch gering ist, kommt die Feuchte auch nur mit einem geringen Anteil der quellfähigen Tonanteile in Kontakt. Da die Gasfeuchte in die ungestörten Teile des Tonkörpers primär über Diffusion gelangen kann, wäre eine Beeinflussung dieser Bereiche daher nur über eine deutlich längere Versuchzeit erreichbar.

7.5 Quantifizierung des Einflusses der Temperatur auf das Permeabilitätsverhalten

Zur Beurteilung, welchen Einfluss die für die Endlagerung von nuklearem Abfall jeweiligen zu erwartenden Einlagerungstemperaturen auf das Durchlässigkeitsverhalten des Tones haben, wurden neben den Untersuchungen bei Raumtemperatur, charakteristisch für den schwach aktiven Abfall, auch Messungen bei 60 °C, charakteristisch für den mittelaktiven Abfall und 85 °C, charakteristisch für den hochaktiven Abfall, durchgeführt.

7.5.1 Probe BRA 07/11

Die Probe BRA 07/11 wurde parallel zur Schichtung erbohrt und bezüglich ihres Durchlässigkeitsverhaltens auch parallel zur Schichtung vermessen. Sie wurde im bergfeuchten Zustand eingebaut und wies keine sichtbaren Risse auf. Aus der Volumenbestimmung und der Wägung errechnete sich ein Gesamtporenvolumen von ca. 12 %.

Dies war der erste Versuch zur Messung der Permeabilität bei einer Temperatur von 60 °C.

Die Probe wurde in den Autoklaven eingebaut und zuerst unter stationären Bedingungen bei Raumtemperatur und einem Überlagerungsdruck von 1,0 MPa vermessen. Die tatsächliche Permeabilität betrug zwei Tage nach dem Einbau in den Autoklaven ca. \(k = 1 \cdot 10^{-17} \text{ m}^2 \). Nach der Aufheizung der Messkammer und dem Erreichen konstanter Temperatur wurden Messungen bei gleichem Überlagerungsdruck bei einer Temperatur von 60 °C durchgeführt. Wie aus Abb. 7-33 zu ersehen ist, lag die bei 60 °C gemessene Permeabilität eine halbe Größenordnung unter der bei RT gemessenen, wobei der Einfluss des Gasdruckes auf die gemessene scheinbare Permeabilität deutlich geringer ist.

Die Erhöhung des Überlagerungsdruckes von 1,0 MPa auf 1,5 MPa hatte eine weitere Permeabilitätsabnahme von etwa einer halben Größenordnung zur Folge.

Bei Überlagerungsdrücken von 2,0 MPa bis 4,0 MPa sind Permeabilitätsabnahmen mit steigendem Überlagerungsdruck von über zwei Größenordnungen zu beobacht-
ten, die Druckabhängigkeit der Permeabilität sinkt mit steigendem Überlagerungsdruck (Abb. 7-34). Nach der Erhöhung des Überlagerungsdrucks von 2,0 MPa auf 3,0 MPa ist innerhalb einer Woche eine Verringerung der absoluten Permeabilität von über einer Größenordnung zu beobachten. Bei einem Überlagerungsdruck von 4,0 MPa wurden die Permeabilitätsmessungen mit Gas beendet. Die Permeabilität war zu diesem Zeitpunkt auf 5,9·10^{-22} m² abgefallen.

Zusammenfassend ist festzustellen, dass der Erhöhung der Temperatur auf 60 °C keinen signifikanten Einfluss auf die Gaspermeabilität der Probe hatte.

Abb. 7-33: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei RT und T = 60 °C und Überlagerungsdrücken von 1,0 – 1,5 MPa
Abb. 7-34: Gemessene Permeabilitäten als Funktion des inversen Gasdrucks bei $T = 60^\circ C$ und Überlagerungsdrücken von 2,0 - 4,0 MPa

7.5.2 BRA 07/15

Die Probe BRA 07/15 wurde nach den Gasmessungen am 22.11.2010 nach 2.830 Stunden an der Probeneintrittsseite bei einer Temperatur von 85 °C mit Formationswasser geflutet. In Abb. 7-35 sind die zeitlichen Verläufe der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck dokumentiert. Abb. 7-36 zeigt die Permeabilitätsverläufe, die im Detail im Anhang ausgewertet wurden.

Bei 85 °C wurde bei gleichzeitigem Austritt von Gas und Flüssigkeit eine minimale Gaspermeabilität von ca. 1·10^{-21} m² und eine Wasserpermeabilität von ca. 1·10^{-20} m² ermittelt, die nur wenig von der Erhöhung des angelegten Überlagerungsdrucks von 1,0 MPa bis zu 4,0 MPa abhängig ist.

Zur Überprüfung, ob die Austrittsvolumenströme nach einer Absenkung des Probeneintrittsdrucks mit der Versuchstemperatur zusammenhängen, wurde die Versuchstemperatur ab ca. 5.930 Stunden auf Raumtemperatur abgesenkt, und der Probeneintrittsdruck bei null belassen. Während der Temperaturabsenkungsphase konnten auf Grund der Wärmeausdehnung der verwendeten Geräte, Proben und Permeate keine belastbaren Volumenströme aufgezeichnet werden. Es wurde aber infolge der Abkühlung des gesamten Systems auf Raumtemperatur ein Versiegen der Gas- und Wasservolumenströme festgestellt. Wahrscheinlich wurden diese Volumenströme...
Versuchsdurchführung und Auswertung

durch Verdunstung von Wasser aus der Probe hervorgerufen, das dann an kälteren Stellen des Probenaustrittsvolumens außerhalb des thermostatisierten Bereichs kondensierte. Insgesamt strömte ein Volumen von ca. 7,5 ml während der ca. 890 Stunden zwischen Probeneintrittsdruckabsenkung auf null und der Temperaturabsenkung auf Raumtemperatur aus der Probe.

Bei ca. 6.240 Stunden wurde zur Bestimmung des Gasdurchbruchsdrucks die Probe wieder mit Stickstoff bei einem Probeneintrittsdruck von ca. 0,5 bar beaufschlagt, ab 6.290 Stunden mit ca. 1,2 bar. Unmittelbar nach der Erhöhung stellte sich wieder eine Zweiphasenströmung am Probenausstritt ein. Die erreichten Permeabilitäten liegen etwa in der gleichen Größenordnung wie die bei den Versuchbedingungen von 85 °C. Ein signifikanter Einfluss der Temperatur auf die Permeabilität konnte nicht festgestellt werden.

Abb. 7-35: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Abb. 7-36: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

7.5.3 BLT 10/11/03

Die Probe wurde parallel zur Schichtung erbohrt und auch parallel zur Schichtung vermessen. Sie war im Jahre 2000 von der BGR zur Verfügung gestellt worden und wurde bis zum Einbau luftdicht verschlossen, aber drucklos gelagert. Aus der Volumenbestimmung und der Wägung wurde eine Gesamtporosität von ca. 13,9 % berechnet.

Bei Überlagerungsdrücken von 9,0 MPa wurden die Permeabilitätsmessungen mit Gas beendet.
Anschließend begannen zunächst bei Raumtemperatur die Untersuchungen mit Formationswasser als Strömungsfluid. Während der Aufsättigungsphase wurde die Versuchstemperatur auf 60 °C erhöht. Bei einem Probeneintrittsdruck von 4,2 bar kam es ca. 2.700 Stunden nach Versuchsbeginn zum Wasserdurchbruch am Probenaustritt. Hier wurden nach Abb. 7-39 bei Probeneintrittsdrücken zwischen 3,2 bar und 4,3 bar und Überlagerungsdrücken zwischen 2,0 MPa und 5,0 MPa Wasserpermeabilitäten von ca. 10^{-17} m² und Gaspermeabilitäten im Bereich von 10^{-20} m² < k < 10^{-19} m² beobachtet. Auch bei der Bestimmung des Gasdurchbruchsdrucks wurden Werte in diesem Bereich erhalten. Eine spätere Absenkung der Temperatur auf Raumtemperatur führte zu keiner Änderung der Permeabilitäten.

Zusammenfassend ist festzustellen, dass Permeabilitätswerte von ca. 10^{-17} m² für Formationswasser und etwa 10^{-20} m² - 10^{-19} m² für Gas bei Überlagerungsdrücken von 2,0 MPa bis 5,0 MPa erreicht wurden. Hierbei hat der Überlagerungsdruck einen schwachen Einfluss auf die Permeabilitäten. Ein signifikanter Temperatureinfluss bei $RT < T < 60$ °C auf die Permeabilität war nicht feststellbar.
Versuchsdurchführung und Auswertung

Abb. 7-38: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 7-39: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
7.5.4 Probe BRA 08/05
Die Probe wurde senkrecht zur Schichtung erbohrt und auch senkrecht zur Schichtung verme-
sen. Sie wurde bergfeucht in den Autoklaven eingebaut. Weder an den Stirnseiten noch am Umfang waren Risse erkennbar. Die durch Dichtevergleich be-
stimmte totale Porosität betrug ca. 14,2 %. Die gemessenen tatsächlichen bzw. mittleren scheinbaren Permeabilitäten lagen etwa zwischen 6,0 \cdot 10^{-18} \text{ m}^2 < k < 3,5 \cdot 10^{-20} \text{ m}^2. Der Einfluss der Temperatur auf das Durchlässigkeit-
keitsverhalten wurde bereits in Kap. 7.4 zur Permeationsmessung mit feuchtem Gas beschrieben. Eine signifikante Änderung der Permeabilität ist im gesamten Ver-
suchsverlauf nicht festzustellen.

7.6 Überlagerungsdruckabhängigkeit der Wasserpermeabilität

Insgesamt bewegen sich die Permeabilitätswerte aller Proben im Bereich von 1,5 \cdot 10^{-20} \text{ m}^2 > k > 2,4 \cdot 10^{-17} \text{ m}^2 und sind im Vergleich zu den sich untereinander stärker unterscheidenden Gaspermeabilitäten (Abb. 7-1, Abb. 7-18 und Abb. 7-22) weniger vom Überlagerungsdruck abhängig und zeigen ein deutlich homogeneres Durchströmungsverhalten. Die Permeabilitäten verringern sich tendenziell mit steigendem Überlagerungsdruck, die Permeabilitätsveränderungen bleiben aber deutlich unterhalb einer dekadischen Größenordnung über den gesamten Überlagerungsdruckbereich. Bei den Proben BRA 07/04 und BRA 08/08 konnte bei Überlagerungsdrücken von 1,6 MPa bzw. 1,5 MPa technische Dichtheit erreicht werden, diese wurde hier einer Permeabilität von 1,0 \cdot 10^{-24} \text{ m}^2 gleichgesetzt.

Zusammenfassend lässt sich feststellen, dass das Wasserpermeationsverhalten auf Grund der Quell- und damit Selbstabdichtungsfähigkeit gegenüber dem Gasespermeationsverhalten relativ einheitlich ist. Die durch Trocknung oder längeren Atmosphärenkontakt entstandenen Risse führten bei der Durchströmung mit Formations- oder Zementwasser bei Temperaturen von 20 - 85 °C zu keinen signifikanten Permeabilitätsunterschieden zwischen den bergfeuchten oder getrockneten bzw. rissbehafteten verschiedenen Probengruppen. Anscheinend können die Quelltonanteile der untersuchten Probenkörper bei der Durchströmung nahezu quantitativ rehydratisiert werden, was zum Verschluss der Risse durch selbstabdichtende Quellung führt. Die nicht feststellbare Auswirkung der Anisotropie der Schichtstruktur des Tons auf das Durchströmungsverhalten orthogonal und parallel erbohrter Proben war nicht erwartet worden.

Die Ursache für das Erreichen technischer Dichtheit bei den formationswasserdurchströmten Proben BRA 07/04 und BRA 08/08 bei relativ geringen Überlagerungsdrücken konnte nicht ermittelt werden. Da bei allen anderen Proben bei Überlagerungsdrücken bis zu 6,0 MPa Austrittsvolumenströme detektiert wurden, kann nicht im Allgemeinen mit dem Erreichen technischer Dichtheit unter realistischen Überlagerungs- und Probeneintrittsdrücken gerechnet werden.

Abb. 7-40: Wasserpermeabilitäten als Funktion des Überlagerungsdrucks

<table>
<thead>
<tr>
<th>Überlagerungsdruck [MPa]</th>
<th>Wassermenge [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1,0E-24</td>
</tr>
<tr>
<td>1.0</td>
<td>1,0E-23</td>
</tr>
<tr>
<td>2.0</td>
<td>1,0E-22</td>
</tr>
<tr>
<td>3.0</td>
<td>1,0E-21</td>
</tr>
<tr>
<td>4.0</td>
<td>1,0E-20</td>
</tr>
<tr>
<td>5.0</td>
<td>1,0E-19</td>
</tr>
<tr>
<td>6.0</td>
<td>1,0E-18</td>
</tr>
<tr>
<td>7.0</td>
<td>1,0E-17</td>
</tr>
<tr>
<td>8.0</td>
<td>1,0E-16</td>
</tr>
</tbody>
</table>

Diagramm zeigt die Vergleich k = f(p)

Legende:
- BRA 07/03;getr.
- BRA 07/04;bergf.
- BRA 07/06;bergf.
- BRA 07/08;bergf.
- BRA 07/10;bergf.
- BRA 07/11;bergf. (60°C)
- BRA 07/12;Risse
- BRA 07/13;Risse
- BRA 07/14;bergf. Zem.was.
- BRA 07/15;bergf.
- BRA 07/19;Risse
- GEM 90-669;bergf.
- BRA 08/06;bergf. Zem.was.
- BRA 08/08;bergf.
- BRA 08/10;bergf.
- BLT 10/10/01;getr.
- BLT 10/10/02;bergf.
- BLT 10/11/03;bergf.
- BRA 07;bergf.
7.7 Untersuchung des Einflusses von Zementwasser auf das Durchlässigkeitkeitsverhalten von Tonstein

7.7.1 Auswertung BRA 07/14

Die Probe BRA 07/14 wurde parallel zur Schichtung erbohrt und vermessen. Sie wies auf den Stirnseiten keine sichtbaren Risse auf, allerdings sind deutliche Säge- und Wägung wurde eine Gesamtporosität von ca. 14,5 % errechnet.

Die Gasmessungen ergaben nach Abb. 7-41 bis Abb. 7-43 bei einem für Klinken-berg-auswertbare Messungen minimal notwendigen Überlagerungsdruck von 5,5 MPa Permeabilitäten von $4,5 \cdot 10^{-18} \text{ m}^2 < k < 1,4 \cdot 10^{-17} \text{ m}^2$, bei Klinkenbergfaktoren von $0,24 \text{ bar} < b < 1,40 \text{ bar}$ und Knudsendiffusionskoeffizienten von $1,28 \cdot 10^{-7} \text{ m}^2/\text{s} < D_{Kn} < 4,75 \cdot 10^{-7} \text{ m}^2/\text{s}$.

Messungen mit Gas bei Temperaturen von bis zu $90 \, ^\circ\text{C}$ ergaben keine signifikante Temperaturabhängigkeit der Permeabilität (Abb. 7-42).

Eine detaillierte Beschreibung des Versuchsverlauf und der Versuchsergebnisse ist im Anhang dokumentiert.
Versuchsdurchführung und Auswertung

Abb. 7-41: Permeabilitätsmessungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck

Abb. 7-42: Permeabilitätsmessungen bei konstantem Überlagerungsdruck und unterschiedlichen Temperaturen
7.7.1.1 Vermessen der Probe mit Zementwasser

bei ca. $1,2 \times 10^{-4}$ ml/min. Daher ist davon auszugehen, dass keine Reduzierung der Strömungswege durch Quellung oder Kompaktion erfolgte.

Um ein Verschließen der Probe zu erreichen, wurde der Überlagerungsdruck zunächst auf 4,0 MPa bzw. 5,0 MPa erhöht. Dies führte zu einem langsamen Abfall des Flüssigkeitsvolumenstroms, durch die weitere Erhöhung des Überlagerungsdrucks auf 6,0 MPa wurde der Abfall des Flüssigkeitsvolumenstroms nur unwesentlich beschleunigt. Da bei diesem langsamen Abfall des Flüssigkeitsvolumenstroms eine Probendichtheit erst nach weiteren mehreren tausend Stunden Versuchszeit zu erwarten war, wurde 6.300 Stunden nach Versuchsbeginn, bei unverändertem Überlagerungsdruck von 6,0 MPa, der Probeneintrittsdruck auf Null gesetzt, was mit einem unmittelbaren Versiegen der Volumenströme am Probenaustritt verbunden war.

Nachdem über einen Zeitraum von ca. 200 Stunden weder ein Gas- noch ein Flüssigkeitsvolumenstrom messbar waren, wurde mit der Untersuchungen zur Bestimmung des Gasdurchbruchsdruckes begonnen. Bei weiter konstantem Überlagerungsdruck von 6,0 MPa wurde am Probeneintritt ein Gasdruck von 0,5 bar eingestellt. Wie in Abb. 7-44 zu erkennen ist, führt dies unmittelbar zu einem messbaren Flüssigkeitsvolumenstrom am Probenaustritt. Mit einer Verzögerung von ca. 250 Stunden war dann ebenfalls ein Gasaustritt detektierbar.

Unter Annahme von 0,5 bar als Gasdurchbruchsdruck kann mit der Hilfe der Washburn-Gleichung ein äquivalenter Porenradius von ca. 2.800 nm abgeschätzt werden.
Versuchsdurchführung und Auswertung

Abb. 7-44: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 7-45: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
7.7.1.2 Ionenkonzentration BRA 07/14

Das Zementwasser zeichnet sich gegenüber dem Formationswasser durch einen stark erhöhten Kaliumgehalt und einer starken Reduktion des Magnesiumgehalts aus. Die Konzentrationen von Natrium und Calcium sind gegenüber dem Formationswasser um jeweils ca. 30 % erhöht, während die Strontiumkonzentration nahezu unverändert ist. Daher ist zu erwarten, dass unter Berücksichtigung der Ionentauscherfähigkeit des Tongesteins Kalium und besonders bezüglich Magnesiums stark von 1 abweichende relative Konzentrationen am Austritt detektiert werden. Details zu der Auswertung der Ionenkonzentration mittels AAS befinden sich in Kapitel 7.8.

7.7.2 Auswertung BRA 07/19

Die auf Grund einer undichten Verpackung während der Lagerung teilweise ausgetrocknete Probe wies sichtbare Risse an beiden Stirnseiten auf, die über den gesamten Probendurchmesser verliefen. Die durch Wägung und Volumenbestimmung ermittelte totale Porosität war entsprechend hoch und betrug ca. 18,7 %. Nach Beendigung der Gasmessungen wurde die Probe bis zum Flüssigkeitsdurchbruch mit Formationswasser und anschließend bis zum Versuchsende mit Zementwasser durchströmt. Eine genaue Beschreibung des Versuchsverlaufs befindet sich im Anhang.

Erst ab einem Überlagerungsdruck von 4,0 MPa waren nach Klinkenberg auswertbare Permeabilitätsmessungen möglich. Nach Abb. 7-47 ist nur eine schwach ausgeprägte Abhängigkeit der gemessenen Permeabilität vom mittleren Gasdruck bei hohen Permeabilitäten von ca. $4,0 \cdot 10^{-15} \text{ m}^2 < k < 7,9 \cdot 10^{-16} \text{ m}^2$, kleinen Klinkenbergfaktoren von $2,1 \cdot 10^{-2} \text{ bar} < k < 6,1 \cdot 10^{-2} \text{ bar}$ und Knudsendiffusions-koeffizienten von $D_{Kn} \approx 3 \cdot 10^{-7} \text{ m}^2/\text{s}$ feststellbar. Dies lässt darauf schließen, dass die Durchströmung der Probe im Kontinuumsbereich stattfand, was auf Äquivalenzradien der transportrelevanten Wegsamkeiten von sehr viel größer als 50 nm schließen lässt.
7.7.2.1 Vermessen der Probe mit Formations- und Zementwasser

Nach den Messungen mit Stickstoff zur Bestimmung der Gasermeabilität wurde der Überlagerungsdruk zwecks schneller Aufsättigung der Probe von 5,0 MPa auf 1,5 MPa reduziert und die Probe wurde an der Probeneintrittsseite mit Formations- wasser bei einem Probeneintrittsdruck von 1,5 bar geflutet, der nach 100 Stunden auf 5,5 bar erhöht wurde. Diese Erhöhung war unmittelbar mit einem Gasaustritt an der Probenaustrittsseite verbunden, dem ca. 350 Stunden später der Wasserdurchbruch folgte. Bis zu diesem Zeitpunkt waren ca. 8 ml Gas aus der Probe verdrängt worden, was ca. 8 % des Gesamtporenvolumens von ca. 125 ml und einer Transportporosität von ca. 1,2 % entspricht. Hieraus lässt sich ebenfalls schließen, dass der Flüssigkeitstransport nur durch wenige Risse erfolgt, deren äquivalenter Porenradius aber deutlich im Bereich der Makroporen liegt. Nach dem Flüssigkeitss durchbruch wurde der Probeneintrittsdruck wieder auf 2,3 bar reduziert, was aber zu kei- ner Verminderung des Flüssigkeitstraumensstromes führte. Ein Gasaustret- strom war über den gesamten Zeitraum nicht mehr messbar. Die zeitlichen Verläufe der Volumenströme und der Permeabilität sind in Abb. 7-48 und Abb. 7-49 dokumen- tiert.

Ca. 1.850 Stunden nach Versuchsbeginn wurde an der Probeneintrittsseite das For- mationswasser durch Zementwasser mit einem pH-Wert von ca. 13 ersetzt. Der Wert
Versuchsdurchführung und Auswertung

des Probeneintrittsdruckes (2,3 bar) und der des Überlagerungsdruckes (1,5 MPa) wurden dann über einen Zeitraum von ca. 850 Stunden beibehalten, ohne dass eine Abnahme des Flüssigkeitsvolumenstromes erkennbar war. Auch im weiteren Versuchsverlauf konnte über einen Zeitraum von ca. 1.350 Stunden keine merkliche Abnahme des Flüssigkeitsvolumenstromes bei Überlagerungsdrücken von bis zu 5,0 MPa festgestellt werden.

Um zu ermitteln, bei welchem Probeneintrittsdruck kein Wasservolumenstrom mehr messbar ist, wurde anschließend der Probeneintrittsdruck auf 0,5 bar reduziert. Dies führte zunächst zu einer geringfügigen Abnahme des Flüssigkeitsvolumenstroms. Da im Weiteren keine Änderung des Austrittsvolumenstroms zu erkennen war, wurde der Probeneintrittsdruck wieder auf Null gesetzt, was aber erst mit einer Verzögerung von ca. 500 Stunden zu einem Versiegen des Flüssigkeitsvolumenstromes führte. Nachdem nach einer Reduzierung des Überlagerungsdruckes auf 2,0 MPa über weitere ca. 500 Stunden keine messbaren Volumenströme mehr detektierbar waren, wurde mit den Messungen zur Bestimmung des Gasdurchtrittsdrucks begonnen.

Bei weiter konstantem Überlagerungsdruck von 2,0 MPa wurde die Probeneintrittseite mit Stickstoff mit einem Druck von 0,5 bar beaufschlagt. Dies führte unmittelbar wieder zu einem Flüssigkeitsvolumenstrom am Probenaustritt. Auch die folgende Reduzierung des Überlagerungsdruckes auf 1,5 MPa bewirkte keine Änderung am Probenaustritt. Es wurde über einen Zeitraum von mehr als 1.000 Stunden nur Flüssigkeit detektiert, erst dann folgte ein kurzzeitiger Gasaustritt.

Bei diesem Versuch, bei dem die Probe eine hohe Anfangsporosität von fast 19 % aufwies, war auch bei hohen Überlagerungsdrücken und geringen Probeneintrittsdrücken keine Probendichtheit zu erreichen. Die Quellfähigkeit des Tons reichte nicht aus, um die vorhandenen Risse vollständig zu verschließen. Auch waren keine Anzeichen erkennbar, dass eventuelle Ausfällungen infolge der Durchströmung mit basischem Zementwasser zu einem veränderten Durchlässigkeitsverhalten führten.

Erst als kein Probeneintrittsdruck mehr anlag, war auch kein Fluidaustritt mehr detektierbar.

Geht man davon aus, dass der Flüssigkeitsaustritt bei der Gasdruckbeaufschlagung von 0,5 bar durch den Gaseintritt in die Probe hervorgerufen wurde, so ist von einem Gasdurchbruchsdruck von 0,5 bar auszugehen. Nach der Washburn-Gleichung liegt daher der äquivalente Porenradius bzw. die Rissweite in der Größenordnung von 2.800 nm.
Versuchsdurchführung und Auswertung

Abb. 7-48: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 7-49: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
7.7.2.2 Ionenkonzentrationen BRA 07/19
Wie schon für die beiden vorherigen Untersuchungen beschrieben, ist zu erwarten, dass unter Berücksichtigung der Ionentauscherfähigkeit des Tongesteins Kalium und besonders bezüglich Magnesiums stark von 1 abweichende relative Konzentrationen am Austritt detektiert werden.

7.7.2.3 pH-Wert Änderungen
Versuchsdurchführung und Auswertung

1. Versuchsdauer [h]
2. pH-Wert [-]
3. pH-Wert Probenaustritt
4. pH-Wert Formationswasser
5. pH-Wert Zementwasser

Abb. 7-50: pH-Werte der Flüssigkeit am Probenaustritt (Probe BRA 07/19)

7.7.2.4 Optische Untersuchung der Probe

7.7.2.5 Wellenlängendisperse Röntgenfluoreszenzanalyse (WDRFA)

Hierbei ist im Vergleich der Proben aus der vermuteten Wegsamkeit mit denen durch die kein Zementwasser strömte, ein leicht erhöhter Calciummassenanteil festzustel-
len, sowie leicht reduzierte Kalium- und Magnesium-, sowie stark reduzierte Strontiummassenanteile.

Abb. 7-51: Analysenergebnisse WDRFA BRA 07/19

Diese Ergebnisse stimmen teilweise mit den Erwartungen aus der AAS-Analyse überein. Hier wurde eine starke Eluierung von Magnesium beobachtet. Dieses Magnesium muss aus dem den Strömungskanal umhüllenden Ton stammen, dort muss es folglich zu einer Magnesiumabreicherung kommen, die tendenziell durch die RFA bestätigt wird. Calcium wurde über einen großen Teil der Versuchszeit in relativ kleinen Mengen vom Ton adsorbiert, was den leicht erhöhten Calciumanteil in der Nähe der Wegsamkeit erklärt. Kalium und Strontium werden ebenfalls in die Probe eingebracht, zeigen aber in der RFA wider Erwarten im durchströmten Bereich geringere Massenanteile.

7.7.3 Auswertung BRA 08/06

Die Probe BRA 8/06 wurde senkrecht zur Schichtung erbohrt und vermessen. Vor dem Einbau waren weder an den Stirnflächen noch an der Mantelfläche Risse erkennbar. Aus der Volumenbestimmung und der Wägung wurde eine Porosität von ca. 17,3 % errechnet. Die während der Gasmessungen ermittelten Permeabilitäten sind in Abb. 7-52 dargestellt. Die mit k_s,m gekennzeichneten Werte waren nicht nach Klinkenberg auswertbar, sie wurden als Mittelwerte der gemessenen scheinbaren Permeabilität ermittelt. Wie aus der Abbildung ersichtlich sinkt mit steigendem Über-
lagerungsdruck und zunehmender Versuchsdauer die Permeabilität von ca. $2 \cdot 10^{-16}$ m² bei $p_0 = 2,0$ MPa auf ca. $4,0 \cdot 10^{-20}$ m² bei $p_0 = 9,0$ MPa.

<table>
<thead>
<tr>
<th>p [MPa]</th>
<th>k [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0E-21</td>
<td>1,0E-20</td>
</tr>
<tr>
<td>1,0E-19</td>
<td>1,0E-18</td>
</tr>
<tr>
<td>1,0E-17</td>
<td>1,0E-16</td>
</tr>
<tr>
<td>1,0E-15</td>
<td>1,0E-14</td>
</tr>
</tbody>
</table>

Abb. 7-52: Absolute Permeabilität und Überlagerungsdruck als Funktion des Versuchszeit (Probe BRA 08/06)

7.7.3.1 Vermessen der Probe mit Zementwasser als Messfluid

2.650 Stunden nach Versuchsbeginn wurde mit der Beaufschlagung der Probe mit basischem Zementwasser ($\text{pH} = 13$) begonnen. Der Überlagerungsdruck betrug $p_0 = 1,5$ MPa und der Probeneintrittsdruck $p_e = 2,8$ bar. Erst nach mehrmaliger Probeneintrittsdruckerhöhung bis auf 10,0 bar konnte ca. 2.300 Stunden später, nach Abb. 7-53, ein Gasaustritt in der Größenordnung von 10^{-5} - 10^{-4} ml/min detektiert werden, der mit dem ca. 1.200 Stunden später erfolgenden Wasserdurchbruch plötzlich wieder versiegte. Die Gaspermeabilität nach Darcy betrug nach Abb. 7-54 etwa $k \approx 10^{-23}$ m², die Wasserpermeabilität belief sich auf etwa $k \approx 10^{-19}$ m². Beide Werte sind belastbar, da in diesen Bereichen beide Phasen nicht gleichzeitig austraten und damit die Voraussetzung für die Anwendung des Darcyschen Gesetzes gegeben waren. Um ein Verschließen der Probe zu ermöglichen, wurde schrittweise der Probeneintrittsdruck bis zum Versiegen des Austrittsstroms auf ca. 1,4 bar bei ca. 9.550 Stunden reduziert.

Bei der Verwendung von Zementwasser als Permeat lassen sich bei der Permeabilität keine signifikanten Unterschiede im Vergleich zur Verwendung von Formationswasser feststellen. Die beobachtete Wasserpermeabilität von $k \approx 10^{-19}$ m² unter-
verschied sich nach Abb. 7-27 nur wenig von den mit Formationswasser durchströmten Proben BRA 08/08 und BRA 08/10. Auch die schrittweise Erhöhung des Überlagerungsdrucks auf bis zu 5,0 MPa hatte nur einen geringen Permeabilitätsabfall von weniger als einer Größenordnung zur Folge.

Abb. 7-53: Gas- und Wasservolumenströme nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit
Versuchsdurchführung und Auswertung

110

Beaufschlagung mit Zementwasser

Abb. 7-54: Gas- und Wasservolumenpermeabilitäten nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit

7.7.3.2 Zusammenfassung

Untersucht wurde der Einfluss von Zementwasser als Strömungsfluid auf die Durchlässigkeitseigenschaften zweier parallel und einer senkrecht zur Schichtung erbohrten Proben, die rissfreie Probe BRA 07/14, die rissbehafte Probe BRA 07/19 sowie die senkrecht zur Schichtung erbohrte Probe BRA 08/06. Die Proben wurden zunächst mit Wasserstoff oder Stickstoff als Permeat vermessen, Probe BRA 07/14 und Probe BRA 08/06 wurden danach mit Zementwasser, Probe BRA 07/14 zuerst mit Formations- und dann mit Zementwasser durchströmt.

Die rissfreie Probe BRA 07/14 erreichte temperaturunabhängig Gaspermeabilitäten von $4,5 \cdot 10^{-18} \text{m}^2 < k < 1,4 \cdot 10^{-17} \text{m}^2$, Klinkenbergfaktoren von $0,24 \text{bar} < b < 1,40 \text{bar}$ bei einem Überlagerungsdruck von 5,5 MPa. Auf Grund der sichtbaren Risse lag bei der Probe BRA 07/19 erwartungsgemäß die Gaspermeabilität von $4,0 \cdot 10^{-15} \text{m}^2 < k < 7,9 \cdot 10^{-16} \text{m}^2$ deutlich höher und die Klinkenbergfaktoren $2,1 \cdot 10^{-2} \text{bar} < k < 6,1 \cdot 10^{-2} \text{bar}$ erheblich niedriger als bei Probe BRA 07/14.

Die Zementwasserpermeabilität erreichte bei Probe BRA 07/14 unabhängig vom angelegten Überlagerungsdruck und der Versuchszeit Werte um 10^{-17}m^2. Die Probe BRA 07/19 wies im Vergleich hierzu bei ähnlichen Überlagerungsdrücken unerwartet eine um ca. ein bis zwei Größenordnungen geringere Wasserpermeabilität von $10^{-19} \text{m}^2 < k < 10^{-18} \text{m}^2$ auf. Hierbei ist tendenziell eine sehr langsam auftretende
leichte Abnahme der Permeabilität nach Beaufschlagung mit Zementwasser zu beobachten.

Beide Proben weisen sehr hohe aus den Gasdurchbruchsmessungen abgeleitete Äquivalenzradien von mindestens 2.800 nm auf, was bei Probe BRA 07/19 durch die mit bloßem Auge sichtbaren Risse in den Stirnseiten nicht überrascht, bei der rissfreien Probe BRA 07/14 aber nicht erwartet wurde.

Bei der Probe BRA 08/06 betrug die Gasermeabilität etwa $k \approx 10^{-23}$ m2, die Wasserpermeabilität belief sich auf etwa $k \approx 10^{-19}$ m2. Es sind keine signifikanten Unterschiede im Vergleich zur Verwendung von Formationswasser festzustellen.
7.8 Ioneneintrag bzw. -austrag infolge der Durchströmung mit Formations- und Zementwasser

7.8.1 Auswertung mittels Atomabsorptionsspektroskopie

Tab. 7-7 und Tab. 7-8 zeigen die von der NAGRA angegebenen und die am Fachgebiet Thermische Verfahrenstechnik durch AAS ermittelten Kationenkonzentrationen. Tab. 7-8 zeigt die von NAGRA angegebenen Anionenkonzentrationen.

Das Zementwasser weist eine um etwa zwei Größenordnungen reduzierte Magnesiumkonzentration auf, die durch Präzipitation von Magnesiumhydroxid bei pH = 13 erklärt werden kann.

Zum Ermöglichung einer Aussage, ob das eingesetzte synthetische Formationswasser im chemischen Gleichgewicht mit den permeierten Tonproben stand, wurde die Kationenkonzentrationen von Na⁺, K⁺, Mg²⁺, Ca²⁺ und Sr²⁺ mittels Atomabsorptionsspektroskopie gemessen. Durch die Ermittlung der Differenz zwischen Eintritts- und Austrittskonzentrationen der einzelnen Spezies kann auf Ad- oder Desorptionsvorgänge in der Probe geschlossen werden. Tab. 7-9 zeigt die Übersicht der erhaltenen Ergebnisse. Die Proben BRA 07/14, BRA 07/19 und BRA 08/06 und BRA 08/08 wurden mit Zementwasser, alle anderen Proben mit Formationswasser durchströmt. In Tab. 7-9 stellen die Symbole „“ starke Austräge, „-“ Austräge, „O“ keine signifikante Konzentrationsveränderung und „+“ Einträge der jeweiligen Spezies in die untersuchte Probe dar. Ändert sich das Sorptionsverhalten bezüglich einer Spezies monoton während eines Versuches und kommt es innerhalb dieser Zeit zu einem Wechsel zwischen Ad- und Desorption, wird die Verhaltenstendenz für hohe Versuchszeiten in „()“ gesetzt.
Tab. 7-7: Übersicht über die Ergebnisse der Kationenkonzentrationsmessungen

<table>
<thead>
<tr>
<th>Typ</th>
<th>Analyse</th>
<th>Hersteller</th>
<th>c(Na⁺) [mol/l]</th>
<th>c(K⁺) [mol/l]</th>
<th>c(Mg²⁺) [mol/l]</th>
<th>c(Ca²⁺) [mol/l]</th>
<th>c(Sr²⁺) [mol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formationswasser ohne Tracer</td>
<td>/NTB 02-03/</td>
<td>/NTB 02-03/</td>
<td>0,2405</td>
<td>1,6·10⁻³</td>
<td>1,69·10⁻²</td>
<td>2,58·10⁻²</td>
<td>5,05·10⁻⁴</td>
</tr>
<tr>
<td>Formationswasser ohne Tracer</td>
<td>FG TVT, 06.03.2009</td>
<td>/NTB 02-03/</td>
<td>0,2771</td>
<td>1,379·10⁻³</td>
<td>1,605·10⁻²</td>
<td>1,522·10⁻²</td>
<td>5,775·10⁻⁴</td>
</tr>
<tr>
<td>Formationswasser mit Tracer</td>
<td>FG TVT, 06.03.2009</td>
<td>FG TVT</td>
<td>0,3441</td>
<td>2,562·10⁻³</td>
<td>2,131·10⁻²</td>
<td>3,262·10⁻²</td>
<td>2,249·10⁻³</td>
</tr>
<tr>
<td>Formationswasser mit Tracer</td>
<td>FG TVT, 30.09.2010</td>
<td>FG TVT</td>
<td>0,1874</td>
<td>2,853·10⁻³</td>
<td>1,429·10⁻²</td>
<td>3,634·10⁻²</td>
<td>2,179·10⁻³</td>
</tr>
<tr>
<td>Zementwasser ohne Tracer</td>
<td>FG TVT, 30.09.2010</td>
<td>FG TVT</td>
<td>0,2336</td>
<td>2,366·10⁻²</td>
<td>2,231·10⁻⁴</td>
<td>4,815·10⁻²</td>
<td>2,114·10⁻³</td>
</tr>
</tbody>
</table>

Tab. 7-8: Anionenkonzentrationen im Formationswasser nach NAGRA

<table>
<thead>
<tr>
<th>Typ</th>
<th>Analyse</th>
<th>Hersteller</th>
<th>c(Cl⁻) [mol/l]</th>
<th>c(SO₄²⁻) [mol/l]</th>
<th>c(HCO₃⁻) [mol/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formationswasser</td>
<td>/NTB 02-03/</td>
<td>/NTB 02-03/</td>
<td>0,2998</td>
<td>1,408·10⁻²</td>
<td>4,761·10⁻⁴</td>
</tr>
</tbody>
</table>
Versuchsdurchführung und Auswertung

Tab. 7-9: Übersicht über speziesbezogenen relativen Konzentrationen

<table>
<thead>
<tr>
<th>Probe</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
<th>Sr²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLT 10/10/01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(O)</td>
<td>-</td>
</tr>
<tr>
<td>BLT 10/10/02</td>
<td>(O)</td>
<td>-</td>
<td>-</td>
<td>O</td>
<td>+</td>
</tr>
<tr>
<td>BLT 10/10/03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(O)</td>
<td>(-)</td>
</tr>
<tr>
<td>BRA 07/08</td>
<td>-</td>
<td>-</td>
<td>(-)</td>
<td>O</td>
<td>+</td>
</tr>
<tr>
<td>BRA 07/12</td>
<td>-</td>
<td>-</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>BRA 07/13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>O</td>
<td>(O)</td>
</tr>
<tr>
<td>BRA 08/08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>O</td>
<td>+</td>
</tr>
<tr>
<td>BRA 07/14 Zementwasser</td>
<td>-</td>
<td>+</td>
<td>--</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>BRA 07/19 Zementwasser</td>
<td>-</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>BRA 08/06 Zementwasser</td>
<td>-</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Bei den formationswasser durchströmten Proben kommt es typischerweise bei allen Proben über den ganzen Versuchsverlauf zu Natrium-, Kalium- und Magnesiumausträgen (Abb. 7-55 und Abb. 7-56). Bei der Probe BLT 10/10/01 (Abb. 7-56) fällt die relative Natriumkonzentration während der Versuchzeit kontinuierlich ab und liegt bei Versuchende nur noch geringfügig über 1.

Die relative Calciumkonzentration liegt meistens nahe bei 1 und nimmt bei der Probe BLT 10/10/01, ähnlich wie die Natriumkonzentration, mit fortschreitender Versuchszeit leicht ab und erreicht gegen Versuchende 1, was bedeutet, dass bezüglich dieses Elementes ein Konzentrationsgleichgewicht erreicht ist. Die relative Strontiumkonzentration liegt meistens unter 1 bzw. nahe bei 1. Eine Ausnahme bildet die Probe BLT 10/10/01 (Abb. 7-56), hier ist die relative Strontium-Ionenkonzentration immer größer 1. Dies ist die einzige Probe, bei der Strontium über den gesamten Versuchszeitraum eluiert wird. Die mit Formationswasser durchströmten Proben befinden sich nur bezüglich der Ionenkonzentration von Ca²⁺ annähernd im chemischen Gleichgewicht mit der Probe.

Abb. 7-55 und Abb. 7-56 zeigen das beschriebene Verhalten beispielhaft für die nur mit Formationswasser durchströmten Proben BRA 07/08 und BLT 10/10/01. Die Ergebnisse der restlichen formationswasser durchströmten Proben sind im Anhang dokumentiert.
Versuchsdurchführung und Auswertung

Abb. 7-55: Relative Ionenkonzentrationen Probe BRA 07/08

Abb. 7-56: Relative Ionenkonzentrationen Probe BLT 10/10/01

Abb. 7-57 bis Abb. 7-60 zeigen das beschriebene Verhalten beispielhaft für die mit Zementwasser durchströmten Proben BRA 07/14 und BRA 08/06. Die Ergebnisse der dritten zementwasserdurchströmten Probe sind im Anhang dokumentiert.

Abb. 7-57: Relative Ionenkonzentrationen Na\(^+\), K\(^+\), Ca\(^{2+}\) und Sr\(^{2+}\) (Probe BRA 07/14)
Versuchsdurchführung und Auswertung

Abb. 7-58: Relative Ionenkonzentrationen Mg$^{2+}$ (Probe BRA 07/14)

Abb. 7-59: Relative Ionenkonzentrationen Na$^+$, K$^+$, Ca$^{2+}$ und Sr$^{2+}$ (Probe BRA 08/06)
Versuchsdurchführung und Auswertung

Abb. 7-60: Relative Ionenkonzentrationen Mg\(^{2+}\) (Probe BRA 08/06)

7.8.2 Optische Untersuchung der Probe BRA 07/19

Versuchsdurchführung und Auswertung

Abb. 7-61: Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19

Abb. 7-62: Probenoberfläche von BLT 10/11/03
Abb. 7-63: 3D-Darstellung des Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19

Abb. 7-64: 3D-Darstellung der eines Probenoberflächenausschnitts von BLT 10/11/03
Versuchsdurchführung und Auswertung

Abb. 7-65: Detail des Präzipitats

Abb. 7-66: Probenoberfläche BLT 10/11/03 im Detail

7.8.3 Wellenlängendisperse Röntgenfluoreszenzanalyse (WDRFA)

Abb. 7-67: WDRFA-Spektrum der präzipitatfreien Probe
Abb. 7-68: WDRFA-Spektrum der präzipitatbehafteten Probe

Der Vergleich der Proben durch die Zementwasser strömte mit denen durch die nur Formationswasser strömte, zeigt für die Zementwasser durchströmten einen leicht erhöhten Calciummassenanteil, sowie leicht reduzierte Kalium- und Magnesiumanteile, sowie stark reduzierte Strontiummassenanteile.

Diese Ergebnisse stimmen teilweise mit den Erwartungen aus der AAS-Analyse überein. Hier wurde bei den mit Zementwasser durchströmten Proben ebenfalls eine starke Eluierung von Magnesium beobachtet. Dieses Magnesium muss aus dem den Strömungskanal umhüllenden Ton stammen, dort muss es folglich zu einer Magnesiumabreicherung kommen, die tendenziell durch die RFA bestätigt wird. Calcium wurde über einen großen Teil der Versuchszeit in relativ kleinen Mengen vom Ton adsorbiert, was den leicht erhöhten Calciumanteil in der Nähe der Wegsamkeit erklärt. Kalium und Strontium werden ebenfalls in die Probe eingetragen, zeigen aber in der RFA wider Erwartung im durchströmten Bereich geringere Massenanteile. Während der eher geringe relative Unterschied der Massenanteile bei Kalium evtl. noch durch die niedrige Messgenauigkeit erklärt werden kann, bleibt die Ursache des großen relativen Unterschieds der Massenanteile bei Strontium unklar.
Versuchsdurchführung und Auswertung

Abb. 7-69: Analysenergebnisse WDRFA BRA 07/19

7.9 Gasdurchbruchsdrücke

Es ist zu erwarten, dass nach der Wiederaufsättigung des Versatzes und der EDZ die Gasbildung und der Druckaufbau in den Hohlräumen der Einlagerungsbereiche dazu führen, dass das Formationswasser aus den Rissen durch das Gas verdrängt wird, wobei wegen ihrer hohen Transportkapazität die makroskopischen Risse von besonderer Bedeutung sind.

Der Prozess der Porenwasserverdrängung durch die Gasphase ist für die Ausbreitung der Korrosions- und Degradationsgase im Wirtsgestein der bestimmende Prozess. Bei hohen Gasdrücken, d.h. wenn sich der Gasdruck dem Betrag der minimalen Hauptkomponente der Gebirgsspannung nähert, kann der Prozess der Porenwasserverdrängung zu Dilatanzerscheinungen führen /NTB 02-03/. In diesem Teil der Experimente wurde untersucht, ob diese Drücke erreicht werden bzw. welche Drücke für die Verdrängung der Flüssigkeit notwendig sind. In Abb. 7-70 sind die Gasdurchbruchsdrücke nach Aufsättigung mit Formationswasser als Funktion der Anfangspermeabilität aller untersuchter Proben aufgetragen. Es ist zu erkennen, dass bei allen Messungen, bei denen Gasdurchbruchsdrücke detektiert wurden, diese weit unterhalb der relevanten Gebirgsdrücke in der Auflockerungszone liegen. Die Mehrzahl der Proben weisen Gasdurchbruchsdrücke zwischen etwa 2,0 bar und
Versuchsdurchführung und Auswertung

6,0 bar auf. Hierbei ist eine Tendenz von leicht zunehmenden Drücken mit abnehmenden Anfangswasserpermeabilitäten zu beobachten. Die bergfeuchten rissfreien Proben weisen hier leicht höhere Gasdurchbruchsdrücke als die rissbehafteten auf. Die rissbehaftete Probe BRA 07/19 hat mit 0,5 bar den geringsten Gasdurchbruchsdruck in Verbindung mit der höchsten Anfangswasserpermeabilität von 7,3-10⁻¹⁹ m² aller untersuchten Proben. Die Proben BRA 07/06 und BRA 08/10 weisen mit 12 bar und 15 bar die mit Abstand höchsten Gasdurchbruchsdrücke und mit unter 10⁻¹⁹ m² die geringsten Anfangswasserpermeabilitäten auf.

Abb. 7-70: Gasdurchbruchsdrücke als Funktion der Anfangswasserpermeabilität

Abb. 7-71 zeigt die mit Hilfe der Washburn-Gleichung (siehe Kap. 3.4.4) aus den Gasdurchbruchsdrücken abgeschätzten äquivalenten Porenradien als Funktion der Anfangswasserpermeabilität. Die äquivalenten Porenradien nehmen mit fallender Anfangswasserpermeabilität zu und bewegen sich größtenteils in der Größenordnung zwischen 80 nm und 730 nm. Nur Probe BRA 07/19 weist einen mit dem sehr niedrigen Gasdurchbruchsdruck von 0,5 bar korrespondierenden sehr hohen Äquivalenzradius von ca. 2.800 nm auf.
Versuchsdurchführung und Auswertung

Abb. 7-72 zeigt den äquivalenten Porenradius als Funktion des Probeneintrittsdrucks bei der minimal erreichten Permeabilität oder technischen Dichtheit. Hierbei kann zwischen zwei Probengruppen differenziert werden.

Bei den rissbehafteten und den bergfeuchten Proben konnte nach Tab. 7-4 keine Dichtheit bei Permeabilitäten von $4,4 \cdot 10^{-20} \text{ m}^2 < k < 2,0 \cdot 10^{-18} \text{ m}^2$ bei Überlagerungsdrücken von $2,0 \text{ MPa} < p_0 < 5,0 \text{ MPa}$ erzielt werden. Sie weisen äquivalente Porenradien im Bereich von 120 nm bis 2800 nm auf. Bei den Proben BRA 07/04 und BRA 07/06 konnte bei Überlagerungsdrücken von $1,6 \text{ MPa} < p_0 < 2,5 \text{ MPa}$ und Probeneintrittsdrücken von $5,0 \text{ bar} < p_0 < 6,0 \text{ bar}$ die technische Dichtheit erreicht werden. Die äquivalenten Porenradien betrugen 86 nm und 96 nm.

Insgesamt konnte nur bei den beiden Proben BRA 07/04 und BRA 07/06 die technische Dichtheit bei einem Überlagerungsdruck von 5,0 MPa erreicht werden. Beide Proben wiesen zu Versuchsbeginn keine sichtbaren Risse auf, hatten vergleichsweise geringe äquivalente Porenradien von $r_{eq} < 100 \text{ nm}$ sowie geringe Anfangs- und Gaspermeabilitäten.

Alle anderen Proben erreichten minimale Permeabilitäten, die über etwa zwei dekadische Größenordnungen bei $4,4 \cdot 10^{-20} \text{ m}^2 < k < 2,0 \cdot 10^{-18} \text{ m}^2$ verteilt waren.
Abb. 7-71: Aus Gasdurchbruchsdücken berechnete äquivalente Porenradien als Funktion der Anfangswasserpermeabilität

Abb. 7-72: Äquivalenter Porenradius als Funktion des Probeneintrittsdrucks bei minimal erreichter Permeabilität oder technischer Dichtheit
7.10 Auswertung der Diffusionsmessungen

7.10.1 Auswertung

Zur Abschätzung des Anteils verschiedener Mechanismen am Stofftransport wurden Diffusionsmessungen bei verschiedenen Drücken durchgeführt. Aufgrund der abgeschätzten Wegsamkeitsäquivalenzdurchmesser im Bereich von $20 \text{ nm} < d < 3 \text{ µm}$ erfolgt der Stofftransport entlang eines Konzentrationsgradienten im Übergangsgebiet, in dem sowohl Molekularbewegung als auch freie Diffusion eine Rolle spielen.

Der effektive Diffusionskoeffizient D_e bestimmt den Stofftransport im Übergangsgebiet.

$$D_e = D_{12} \left(\ln \frac{1 - \alpha_y y_{1.a}}{1 - \alpha_y y_{1.e}} \right)^{-1} \ln \frac{1 - \alpha_y y_{1,a} + D_{12} / D_{Kn,1}}{1 - \alpha_y y_{1,e} + D_{12} / D_{Kn,1}}$$

Bei kleinen Wasserstoffmengenanteilen im Stickstoff von $y_1 < 1\%$ kann die Abhängigkeit von D_e vom Stoffmengenanteil vernachlässigt werden und man erhält näherungsweise D_e als Kehrwert der Summe über die Kehrwerte des Fickschen Diffusionskoeffizienten D_{12} und des Knudsendiffusionskoeffizienten D_{Kn}, der aus den Klinkenbergmessungen erhalten wurde.

$$D_e \approx \left(\frac{1}{D_{12}} + \frac{1}{D_{Kn,1}} \right)^{-1}$$

Diese Kehrwerte des Diffusionskoeffizienten können als Stofftransportwiderstände der jeweiligen Stofftransportmechanismen angesehen werden. Hierbei wird der effektive Diffusionskoeffizient maßgeblich vom größten Widerstand, d.h. kleineren Diffusionskoeffizienten beeinflusst.

7.10.1.1 Untersuchte Proben

Diffusionsmessungen wurden an den parallel zur Schichtung erbohrten Proben BRA 07/10, BRA 07/14 und BRA 07/15 und an der senkrecht zur Schichtung erbohrte Probe BRA 08/10 durchgeführt.

7.10.1.2 Experimentelle Bedingungen

Für die Messungen wurde ein Gasdruck von 6 bar < p_{abs}, < 8 bar gewählt, was einer mittleren freien Weglänge des Wasserstoffs von $\lambda_{H2} \approx 15 \text{ nm}$ entspricht. Diese ist kleiner als die kleinsten mittleren Äquivalenzdurchmesser aller untersuchten Proben und soll für $Kn<<1$ und reine Ficksche Diffusion garantieren. Der so bestimmte Diffu-
sionskoeffizient ist der rein durch Ficksche Diffusion bestimmte Koeffizient D_{12}. Für jede Probe wurden die Messungen bei Raumtemperatur durchgeführt.

7.10.1.3 Ergebnisse

Abb. 7-73 zeigt den binären Diffusionskoeffizienten D_{12}, den Knudsendiffusionskoeffizienten D_{Kn} und den effektiven Diffusionskoeffizienten D_e nach Bosanquet als Funktion des Überlagerungsdrucks für die durch Diffusionsmessungen untersuchten Proben.

Hierbei ist allgemein festzustellen, dass bei allen Wertepaaren die jeweiligen Knudsendiffusionskoeffizienten (7,6·10^{-10} m²/s < D_{Kn} < 1,2·10^{-7} m²/s) um mehrere Größenordnungen größer als die zugehörigen binären Diffusionskoeffizienten sind (5,2·10^{-13} m²/s < D_{12} < 5,3·10^{-10} m²/s). Dies erklärt, dass die effektiven Diffusionskoeffizienten numerisch sehr viel näher bei den binären als bei den Knudsendiffusionskoeffizienten liegen.

Bei vergleichbaren Überlagerungsdrücken differieren die Knudsendiffusionskoeffizienten verschiedener Proben um bis zu zwei Größenordnungen, bei den binären Diffusionskoeffizienten um bis zu drei.

Bei den Proben BRA 07/10, und BRA 08/10 unterscheiden sich die Werte zwischen D_{12} und D_{Kn} maximal um ca. zwei Größenordnungen, bei der Probe BRA 07/14 beträgt die Differenz etwa drei und bei Probe BRA 07/15 über vier Größenordnungen, was durch die Kompaktierung dieser Probe durch Überlagerungsdrücke bis zu 9,0 MPa vor Beginn der Versuchsmessungen erklärt werden kann.

Zusammenfassend lässt sich festhalten, dass durch Ficksche Diffusion in allen Fällen der entscheidende Stofftransportwiderstand gegeben ist. Die verschiedenen Diffusionskoeffizienten unterscheiden sich um bis zu vier Größenordnungen und sind eher von der gewählten Probe als vom angelegten Überlagerungsdruck abhängig. Die einzige untersuchte Probe, die senkrecht zu Schichtung erbohrt wurde, BRA 08/10, weist keine signifikant unterschiedlichen Diffusionskoeffizienten zu den parallel erbohrten Proben auf.
Versuchsdurchführung und Auswertung

Abb. 7-73. Binäre, Knudsen- und effektiver Diffusionskoeffizienten nach Bosanquet von Wasserstoff in Stickstoff als Funktion des Überlagerungsdrucks für verschiedene Proben
8 Literatur

/APE 05/
D. Appel, J. Kreusch und W. Neumann,
Aspekte der Endlagerung radioaktiver Abfälle im Rahmen des Ein-Endlager-Konzeptes
Hannover, International Journal for Nuclear Power, Nr. 4 April 2005

/BAR 02/
S. Baraka-Lokmane,
Determination of hydraulic conductivities from discrete geometrical characterization of fractured sandstone cores.
Tübinger Geowissenschaftliche Arbeiten (TGA) C 51, Geowissenschaftliche Fakultät der Eberhard-Karls-Universität Tübingen, 2002

/BEA 72/

/BFS 05/
Konzeptionelle und sicherheitstechnische Frage der Endlagerung radioaktiver Abfälle
Synthesebericht des Bundesamtes für Strahlenschutz
Salzgitter Nov. 2005

/DBE 05/
„Gegenüberstellung von Endlagerkonzepten im Salz- und Tongestein“

/EVA 61/
R.B. Evans, G. M. Watson,
Literatur

/FRÖ 95/
H. Fröhlich, C.-R. Hohentanner et.al.:

/FRÖ 99/
H. Fröhlich.; O. Conen et al.
Durchlässigkeit von Steinsalzversatz gegenüber Lauge unter Berücksichtigung von zeitlich veränderlichen Überlagerungsdrücken und Lösungsvorgängen, Abschlussbericht, Battelle Ingenieurtechnik GmbH; Eschborn, 1999

/FRÖ 03/
H. Fröhlich; M.J. Hampe et al.
Untersuchung der Durchlässigkeit von kompaktierten Salzgrus und Salzgestein gegenüber Laugen bei HAW- und DE-typischen Temperaturen, Abschlußbericht; BUTECE Umwelttechnik GmbH Eschborn, 2003

/GEA 78/
C. J Geankoplis,
Transport Processes and Unit Operations, Allyn and Bacon, Inc., Boston, 1978

/HEI 01/
Peter Heizmann & Paul Bossart
Das Mont-Terri-Projekt,
Untersuchungen über den Opalinuston im internationalen Felslabor
Bull. angew. Geol. Vol. 6 Nr. 2 S. 183 – 197 Dezember 2001

/HEL 97/
R. Helmig,

/HOH 96/
C.-R. Hohentanner,
Literatur

/HOO 55/

J. Hoogschagen,

/IUP 97/

/KLI 41/

L.J. Klinkenberg
The Permeability of Porous Media to Liquids and Gases
Drilling and Production Practice, 1941, Toronto, 1974

/KNU 09/

Martin Knudsen,

/MAS 67/

E. A. Mason, A. P. Malinauskas, A. P., R. B. Evans,

/NIST 09/

National Institute of Standards and Technology (NIST)
http://webbook.nist.gov/chemistry/fluid/

/NTB 02-03/

Technischer Bericht NTB 02-03: Projekt Opalinuston, Synthese der geowissenschaftlichen Untersuchungsergebnisse

Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle, Dezember 2002
Literatur

/ROT 63/
L. B Rothfeld,

/RSK 05/
Reaktorsicherheitskommission: RSK – Stellungnahme Gase im Endlager vom 27.01.2005 (379. Sitzung)

/SCO 62/
D. S. SCOTT, F. A. L. DULLIEN,
Diffusion of Ideal Gases in Capillaries and Porous Solids.
In: A. I. CH. E. Journal 8 (1962), S. 113–117

/STO 04/
R. Storck et al.: Verschlussmaßnahmen aus sicherheitsanalytischer Sicht, Präsentation auf Fachgespräch „Verschlussbauwerke für untertägige Hohlräume, Braunschweig 25. und 26. 03 2004

/SKR 05/
Skrzyppek et. al.
Untersuchung der Gasbildungsmechanismen in einem Endlager für radioaktive Abfälle und der damit verbundenen Auswirkungen auf die Führung des Nachweises der Endlagersicherheit
Colenco Bericht 31161/28, Abschlussbericht für Bundesamt für Strahlenschutz Salzgitter

/WIC 41/
E. Wicke, R. Kallenbach:
Kolloid Z., 97, 135 (1941)

/WAS 21/
Edward W. Washburn
"The Dynamics of Capillary Flow.". Physical Review 17 (3): 273 (1921)
9 Anhang
9.1 Auswertung BRA 07/01

Die Probe BRA 07/01 wurde am 26.06.2006 im bergfeuchten Zustand in den Autoklaven eingebaut.

Die aus dem Probengewicht und dem Probenvolumen errechnete Gesamtporosität betrug (ohne Berücksichtigung des in den Poren haftenden Wassers) ca. 16 %.

9.1.1 Permeabilitätsmessungen mit Stickstoff

Bei konstantem Überlagerungsdruck von 1,5 MPa wurde die Anfangspermeabilität gemessen. Über die Messzeit von ca. 340 Stunden sank sie lediglich von $2,9 \cdot 10^{-18} \text{ m}^2$ auf $1,5 \cdot 10^{-18} \text{ m}^2$. Die Messergebnisse sind in Abb. 9-1 dokumentiert.

Weitere Messungen wurden nicht durchgeführt, da die Manschette, in die die Probe eingebettet war, undicht wurde und Öl in die Probe eindrang. Um im Falle einer Un-dichtigkeit der Manschette die Probe für Untersuchungen mit Formationswasser weiter verwenden zu können, wurde für die meisten der weiteren Versuche anstelle des Öls Wasser als Füllflüssigkeit für den Autoklaven verwendet.

Abb. 9-1: Zeitlicher Permeabilitätsverlauf
9.2 Auswertung BRA 07/03

Die Probe BRA 07/03 wurde vor den Permeabilitätsmessungen bis auf Gewichtskonstanz getrocknet und am 10.02.2006 in den Autoklaven eingebaut.

Die Gewichtsabnahme infolge der Trocknung betrug 0,106 kg, was bezogen auf das Ausgangsgewicht von 1,476 kg, einer Reduzierung von etwa 7 % entspricht (Abb. 9-5).

Die Gesamtporosität vor der Probentrocknung wurde aus dem Probengewicht und dem Probenvolumen errechnet. Sie betrug (ohne Berücksichtigung des in den Poren haftenden Wassers) ca. 12 %. Nach der Trocknung lag die Gesamtporosität bei ca. 16,5 %.

Fotos der Probeneintritts- und -austrittsseite nach der Trocknung sind in Abb. 9-2 und Abb. 9-3 dokumentiert. In beiden Abbildungen ist ein Riss zu erkennen, der sich sowohl in radialer als auch in axialer Richtung durch die Probe erstreckt.

Abb. 9-2: Foto der Probeneintrittsseite vor Versuch (Probe künstlich getrocknet)
9.2.1 Permeabilitätsmessungen mit Stickstoff

Bei konst. Überlagerungsdruck von 1,5 MPa wurde anschließend über einen Zeitraum von ca. 500 Stunden die Anfangspermeabilität gemessen. Sie lag während dieser Zeit nahezu unverändert bei ca. $5 \cdot 10^{-16}$ m² und damit ca. zwei Größenordnungen höher als bei bergfeuchten Proben (z.B. BRA 07/06; $k = 5 \cdot 10^{-18}$ m²). Die Messergebnisse sind in Abb. 9-4 dokumentiert.

9.2.2 Permeabilitätsmessungen mit Formationswasser

Nach den Permeabilitätsmessungen mit Gas (ca. 500 Stunden) erfolgte die Beaufschlagung mit Formationswasser. Um die Sättigung der Probe zu beschleunigen, wurde der Probeneintrittsdruck (bei konstantem Überlagerungsdruck von 1,5 MPa) von 5,0 bar über 7,5 bis 10,0 bar kontinuierlich erhöht. Nach ca. 1.700 Stunden wurde bei einem Überlagerungsdruck von 1,5 MPa und einem Probeneintrittsdruck von 10,0 bar erstmals Flüssigkeit am Probenausstritt detektiert. Der zwischen dem Beginn des Durchströmens mit Formationswasser bis zum Wasser durchbruch in Abb. 9-4 dargestellte Permeabilitätsverlauf (in der Abbildung als nicht gefüllte rote Quadrate dargestellt) wurde aus dem vom Formationswasser verdrängten Gas berechnet, er entspricht daher keiner exakten Permeabilitätsbestimmung.
Wie aus dem Diagramm zu ersehen ist, bricht der Gasvolumenstrom unmittelbar nach dem ersten Flüssigkeitsaustritt vollständig zusammen.

Das bis zum Wasserdurchbruch detektierte ausgetretene Gasvolumen betrug unter Berücksichtigung der Verdrängung des Gases aus den Poren des Sinterfilters und dem Totvolumen der Verteilerplatte ca. 60 ml. Hieraus lässt sich eine Transportporosität von mehr als 9 % abschätzen. Dies entspricht ca. 55 % der Gesamtporosität.

Im Vergleich zu allen anderen Versuchen sind diese Werte sehr hoch.

Ab ca. 2.000 Stunden nach Versuchsbeginn, als nur noch ein unwesentlicher Anteil von Gasblasen im durch die Probe permeierten Formationswasser zu erkennen war, erfolgt die Auswertung der Permeabilität mit Formationswasser als Messfluid.

Bei Überlagerungsdrücken von 1,5 MPa, 2,0 MPa und 3,0 MPa war über einen Zeitraum von ca. 7.000 Stunden Versuchszeit keine merkliche Abnahme der Permeabilität erkennbar.

Da unter diesen Bedingungen keine Dichtheit der Probe erreicht werden konnte, wurde der Versuch nach ca. 9.000 Stunden beendet, die Probe gewogen und wieder bis zur Gewichtskonstanz getrocknet.

Abb. 9-4: Zeitlicher Permeabilitätsverlauf
Das Ergebnis der Probentrocknung vor und nach Beginn der Durchströmung mit Formationswasser ist in Abb. 9-5 dokumentiert. Im feuchten Ausgangszustand vor der jeweiligen Trocknung war das Probengewicht nach dem Durchströmen mit Formationswasser um ca. 37 g höher, was darauf hindeutet, dass ein Teil der im Ausgangszustand der Probe mit Gas gefüllten Hohlräume jetzt mit Flüssigkeit gefüllt waren. Der Vergleich beider Endwerte der Trocknung zeigt, dass auch jetzt das Probengewicht noch ca. 17 g höher war. Eine Erklärung hierfür kann sein, dass infolge der Durchströmung Flüssigkeit in Bereiche eingedrungen ist, die infolge der Kompaktion wieder zu eingeschlossenen Poren wurden.

Nach der Trocknung wurde die Probe nochmals in den Autoklaven eingebaut und Gasmessungen bei zunehmendem Überlagerungsdruck von 3,0 MPa bis 7,0 MPa durchgeführt. Nach den jetzt gemessenen und klinkenberg auswertbaren Werten betrug die Anfangspermeabilität 1,3·10^{-14} m². Sie reduzierte sich infolge des steigenden Überlagerungsdrucks auf 1,1·10^{-16} m² bei einem Überlagerungsdruck von 9,0 MPa. Bei jetzt konstantem Überlagerungsdruck von 9,0 MPa war über einen Zeitraum von nahezu 500 Stunden keine weitere Permeabilitätsabnahme erreichbar. Wie schon zu Versuchsbeginn, spielt der Zeitfaktor bei „trockenen“ Proben im Vergleich zur Übergangszustandskompression bezüglich des Einflusses auf den Permeabilitätsverlauf nur eine vernachlässigbare Rolle.

Abb. 9-5: Gewichtsabnahme der Probe BRA 07/03 durch Trocknung
9.3 Auswertung BRA 07/04
Die Probe wurde parallel zur Schichtung erbohrt und auch parallel zur Schichtung vermessen. Sie wurde im bergfeuchten Zustand am 16.02.2006 in den Autoklaven eingebaut und wies keine sichtbaren Risse auf. Bei einer angenommenen Korndichte von 2.701 kg/m³ ergab sich aus der Volumenbestimmung und der Wägung eine Gesamtporosität von ca. 12 %.

9.3.1 Permeabilitätsmessungen mit Gas
9.3.2 Stationäre Permeabilitätsmessungen
Über einen Zeitraum von ca. 600 Stunden wurde bei konstantem Überlagerungsdruck von 1,6 MPa die Anfangspermeabilität mit Stickstoff als Messgas bestimmt. Während der Gasmessung über diesen Zeitraum war bei Probeneintrittsdrücken von 6,0 bzw. 6,9 bar nur eine kurzzeitige Abnahme der Permeabilität von ca. 1,4·10⁻¹⁸ m² auf ca. 8,5·10⁻¹⁹ m² innerhalb der ersten 150 Stunden detektierbar. Danach blieb sie annähernd konstant. Klinkenbergmessungen wurden nicht durchgeführt. Die Ergebnisse der Gasmessungen sind in Abb. 9-6 dokumentiert.

Abb. 9-6: Zeitlicher Permeabilitätsverlauf bei konstantem Überlagerungsdruck
9.3.3 Instationäre Permeabilitätsmessungen

Am 08.05.2008 wurde eine instationäre Permeabilitätsmessung mit Wasserstoff als Permeat bei Raumtemperatur und einem Überlagerungsdruck von 3,2 MPa durchgeführt. Der absolute Probeneintrittsdruck betrug 5,0 bar. Die absolute Permeabilität \(k = 4,3 \cdot 10^{-17} \, \text{m}^2 \) und der Klinkenbergfaktor \(b = 2,0 \, \text{bar} \) wurden vorher aus stationären Experimenten ermittelt. Abb. 9-7 zeigt die erhaltenen Messpunkte (blau) und die Ergebnisse der Simulation (rot), bei der mit Hilfe einer Minimierung der Fehlerquadratsumme ein Wert von \(\varepsilon_{p,\text{tr}} = 0,06 \) für die Transportporosität ermittelt wurde.

Es gibt deutliche Abweichungen zwischen Experiment und theoretischer Vorhersage. Das Anfahrverhalten für Versuchszeiten unter 50 s wird nur ungenau wiedergegeben. Auch das Verhalten bei höheren Zeiten wird nicht exakt beschrieben. Ab etwa 100 s wird ein stationärer Permeationszustand bei Volumenströmen von ca. 27 ml/min vorhergesagt, experimentell steigt der Volumenstrom aber auch nach diesem Zeitpunkt weiter und erreicht bei 200 s ca. 35 ml/min.

Eine Erklärung für die ungenaue Wiedergabe des Anfahrverhaltens könnte sein, dass das benutzte Modell nach Hohenthanner /HOH 96/ den instationären Stofftransport durch homogene poröse Medien beschreibt, der Stofftransport in der untersuchten Probe aber in Spalten stattfindet, die den Hauptpfad für den advektiven Stofftransport bilden. Die geringe experimentelle Totzeit zwischen Öffnung des Magnetventils und Einsetzen eines Austrittsstroms weist im Vergleich zu der durch die Minimierung des Fehlerquadrats im gesamten Messbereich erhaltenen Transportporosität auf deutliche kleinere Porositätswerte als 5,8 % hin. Diese Vermutung passt zu der im Kapitel 9.3.4 abgeschätzten Transportporosität für Wasser von ca. 0,9 %.

Insgesamt kann die durch diese Simulation erhaltene Transportporosität als nur wenig belastbar angesehen werden.
Abb. 9-7: Volumenstrom am Probenaustritt, Messpunkte (blau) und Simulation (rot)

9.3.4 Messungen mit Formationswasser

Die Beaufschlagung mit Formationswasser mit einem Probeneintrittsdruck von 11,0 bar und einem Überlagerungsdruck von 1,6 MPa führte ca. 650 Stunden nach Versuchsbeginn zu einem messbaren Gasaustritt am Probenaustritt. Über einen Zeitraum von ca. 1.600 Stunden war am Probenaustritt nur das aus den Poren der Probe durch das Formationswasser verdrängte Gas messbar (Abb. 9-8). In dieser Zeit wurden etwa 5,4 ml Gas aus der Probe verdrängt. Aus der durch Gewichts- und Volumenmessung vor Versuchsbeginn ermittelten Porosität von ca. 12,2 % errechnet sich ein Porenvolumen von ca. 75,5 ml. Bezogen auf das Gesamtprobenvolumen resultiert hieraus eine Transportporosität von lediglich ca. 0,9 %. Der Vergleich dieses Wertes mit der Gesamtporosität zeigt, dass zu diesem Zeitpunkt nur ca. 7 % des Porenvolumens als Strömungspfad für das Formationswasser dienen.

Ca. 2.270 Stunden nach Versuchsbeginn, d.h. ca. 1.600 Stunden nach Beginn der Wasserbeaufschlagung erfolgte der Wasserdurchbruch, wobei gleichzeitig der Gasvolumenstrom vollständig versiegte. Bei konstanten Drücken blieb der Flüssigkeitsvolumenstrom über ca. 900 Stunden mit ca. 2,2·10^{-4} ml/min ebenfalls nahezu konstant, was einer Permeabilität von ca. 5·10^{-20} m² entspricht (Abb. 9-9).
Abb. 9-8: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-9: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Um eine weitere Kompaktierung der Probe und damit ein Verschließen der Poren zu erreichen, wurde der Überlagerungsdruck auf 2,6 MPa erhöht und gleichzeitig der Probeneintrittsdruck auf 6,0 bar reduziert. Diese Maßnahme führte über einen Zeitraum von ca. 1.900 Stunden zunächst zu einem langsamen Abfall der Permeabilität um ca. eine Größenordnung (von 6,5·10⁻²⁰ auf 8,0·10⁻²¹ m²), und dann innerhalb von ca. 500 Stunden zum Verschluss der Probe.

Die weiteren Beaufschlagung mit Formationswasser mit 6,0 bar bei einem Überlagerungsdruck von 1,6 MPa führte über einen Zeitraum von fast 2.400 Stunden weder zu einem messbaren Gas- noch Flüssigkeitsstrom durch die Probe.

Bei allen Auswertungen wurden die unterhalb der Messgrenze liegenden Volumenstromwerte bei Gas auf 1·10⁻⁷ ml/min und bei Formationswasser auf 1·10⁻⁸ ml/min gesetzt. Die Permeabilitätswerte werden dabei ebenfalls, entsprechend der Volumenstrommesswerte, auf 1·10⁻²³ m² für Gas und 1·10⁻²⁴ m² für Flüssigkeit gesetzt.

Da jetzt von einer „dichten“ Probe ausgegangen werden konnte, wurde anschließend der Teil des Versuches gestartet, in dem die Verdrängung des Porenwassers durch die Gasphase untersucht werden soll. Um Aussagen über die Porengröße zu erhalten, wurde jetzt der Probeneintrittsdruck bestimmt, der notwendig ist, um die Kapillarkräfte zu überwinden, die ein Eindringen des Gases in die Poren des Tonsteins verhindern.

Mit der Hilfe der Washburn-Gleichung kann aus dem gemessenen Gasintrittsdruck (p_{ae}), bei dem wieder Formationswasser aus den Poren verdrängt wird, ein äquivalenter Porenradius (r_{aq}) abgeschätzt werden.

Ab einer Versuchszeit von ca. 7.500 Stunden wurde die mit Formationswasser teilgesättigte Probe mit Stickstoff beaufschlagt. Bei einem Probeneintrittsdruck von 5,3 bar und einem Überlagerungsdruck von 1,6 MPa waren zunächst keine Gas- oder Wasserpermeationsströmungen messbar. Erst die anschließende Erhöhung des Probeneintrittsdrucks auf 8,0 bar führte unmittelbar zum Austritt eines Flüssigkeitsvolumenstroms von ca. 4·10⁻⁵ ml/min und anschließend auch kurzzeitig zu einem Gasvolumenstrom in der gleichen Größenordnung. Die während dieses kurzen Zeitraums der Zweiphasenströmung (ZPS) berechneten Permeabilitätswerte sind nicht belastbar, da die Bedingungen einer Auswertung nach dem Darcyschen Gesetz nicht gegeben sind. Hierbei wurde anscheinend in Wegsamkeiten mit einem Äquivalenzradius $275 \text{ nm} \geq r_{aq} \geq 180 \text{ nm}$ der Kapillardruck überwunden und Formationswasser durch Stickstoff verdrängt.

Bei konstantem Überlagerungsdruck von 1,6 MPa und konstantem Probeneintrittsdruck von 8,0 bar wurde über einen Zeitraum von ca. 1.050 Stunden ein nahezu konstanter Flüssigkeitsstrom von ca. 4·10⁻⁵ ml/min durch die Probe gemessen, der dann abrupt auf Null abfiel.
Um eine Aussage darüber zu erhalten, ob diese plötzliche Dichtheit der Probe zu signifikanten Änderungen der Porenstruktur geführt hat, wurde der Probeneintrittsdruck wieder in Stufen von 8,0 bar auf 10,0 bar, 11,0 bar und 13,0 bar erhöht, ohne dass am Probenaustritt ein Gas oder Flüssigkeitsaustritt feststellbar war. Dies bedeutet, dass die für den Stofftransport relevanten Poren deutlich kleiner geworden sind. Aus der Washburn-Gleichung errechnet sich für einen Probeneintrittsdruck von 13,0 bar ein äquivalenter Porenradius von ca. 110 nm.

Eine weitere Erhöhung des Probeneintrittsdruckes, bei konstantem Überlagerungsdruck von 1,6 MPa war nicht sinnvoll, da die Gefahr bestand, dass Randläufigkeitseffekte einen Gasdurchbruch durch die Probe vortäuschen.

Der Überlagerungsdruck wurde deshalb von 1,6 auf 2,6 MPa, und der Probeneintrittsdruck auf 17,0 bar erhöht. Bei diesem Probeneintrittsdruck war am Probenaustritt unmittelbar nach der Druckerhöhung wieder ein Flüssigkeitsvolumenstrom messbar. Der hieraus resultierende äquivalente Porenradius beträgt 85 nm. Das bedeutet, dass sich der Porenradius zwar weiter verkleinert hat, die Permeation aber weiterhin im Bereich der Makroporen stattfindet. Bei konstantem Überlagerungs- und Probeneintrittsdruck nahm der Flüssigkeitsvolumenstrom anschließend langsam ab und fiel dann abrupt auf nicht mehr messbare Werte. Gleichzeitig mit dem Versiegen des Flüssigkeitsvolumenstrom stieg der Gasvolumenstrom innerhalb von ca. 400 Stunden auf seinen Maximalwert von ca. $6,3 \cdot 10^{-3}$ ml/min an. Ein Flüssigkeitsvolumenstrom war nicht mehr messbar. Dies lässt vermuten, dass jetzt ein Teil der Transportporen nicht mehr mit Wasser gefüllt waren und dass aufgrund der geringeren Viskosität des Stickstoffs jetzt nur noch Gas durch die Probe permeierte. Bei konstantem Überlagerungsdruck von 3,0 MPa wurde der Probeneintrittsdruck stufenweise wieder abgesenkt, wobei, proportional zur Druckabsenkung, der Gasvolumenstrom ebenfalls abnahm. Bei einem Probeneintrittsdruckes von 12,0 bar war die Probe wieder dicht.
9.4 Auswertung BRA 07/05

Die Probe wurde vor Versuch auf Gewichtskonstanz getrocknet. Der Gewichtsverlust betrug, bezogen auf die Gesamtausgangsmasse, 7,1 % (Abb. 9-10).

Aus der Masse der getrockneten Probe und der Probengeometrie ergab sich eine Gesamtporosität von ca. 18,4 %, dies entspricht einem Gesamtporenvolumen von ca. 113 ml. Im bergfeuchten Zustand betrug die Porosität ca. 12,1 %.

Abb. 9-10: Änderung des Probengewichts infolge der Trocknung

9.4.1 Permeabilitätsmessungen mit Stickstoff und Wasserstoff als Messgas

9.4.2 Stationäre Permeabilitätsmessungen

Zur Bestimmung der Ausgangspermeabilität und zur Abschätzung des Einflusses des Zeitfaktors auf die Permeabilität wurden über einen Zeitraum von ca. 1.700 Stunden bei konstantem Überlagerungsdruck von 1,5 MPa Gasmessungen mit trockenem Stickstoff bzw. trockenem Wasserstoff durchgeführt. Die Messungen waren alle Klinkenberg-auswertbar und die Ergebnisse sind in Abb. 9-11 dokumentiert. Die aus dem gemessenen Volumenstrom berechnete Permeabilität fiel während dieses Zeitraums von ca. $1,8 \cdot 10^{-15}$ m² um ca. eine Größenordnung auf $2,1 \cdot 10^{-16}$ m² (Abb. 9-12).

Um den Einfluss einer Probendurchströmung mit feuchtem Gas auf die Durchlässigkeit zu simulieren, wurde ca. 1.700 Stunden nach Versuchsbeginn die Probe mit
feuchtem Stickstoff mit einer relativen Feuchte von 60 % durchströmt. Wie in Abb. 9-12 zu sehen ist, ändert sich die zeitliche Abnahme der Permeabilität gegenüber der Durchströmung mit trockenem Stickstoff kaum. Während der Durchströmung mit feuchtem Stickstoff über einen Zeitraum von ca. 1.300 Stunden fällt die Permeabilität lediglich von $2,1 \cdot 10^{-16} \text{ m}^2$ auf $9,5 \cdot 10^{-17} \text{ m}^2$.

Abb. 9-11: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 1,5 MPa

In Abb. 9-13 sind die Klinkenbergsfaktoren über der wahren Permeabilität für die Durchströmung mit trockenen und feuchten Stickstoff dargestellt. Für den jeweiligen Permeabilitätsbereich (trocken, feucht) sind die Faktoren relativ klein und liegen innerhalb einer vergleichbaren Bandbreite. Daher kann davon ausgegangen werden, dass der Stofftransport in beiden Fällen primär im Kontinuumsbereich und nur zu einem kleinen Teil als Molekularströmung im Knudsengebiet erfolgte.

Wegen eines Öleinbruchs in die Probe beim Umbau auf die Flüssigkeitsdurchströmung musste der Versuch beendet werden.
Abb. 9-12: Zeitlicher Verlauf der Permeabilität vom 18.04.06 bis 4.9.06

Abb. 9-13: Vergleich der Klinkenbergfaktoren für Messungen mit trocknom und feuchten Stickstoff
Vor den Messungen mit feuchtem Gas wurden noch Messungen mit Wasserstoff als Messgas durchgeführt. Mit diesen Messungen sollte gezeigt werden, dass die Permeabilität ein Kennwert ist, der nur von den Eigenschaften des durchströmten Mediums, aber nicht von denen des Permeats abhängig ist.

In Abb. 9-14 ist der Vergleich der mit Wasserstoff und Stickstoff gemessenen scheinbaren Permeabilitäten dargestellt. Die mit Wasserstoff gemessene scheinbare Permeabilität verläuft steiler als die mit Stickstoff gemessene, was bedeutet, dass der Molekularstromungsanteil bei Wasserstoff größer ist, da bei gleichem Gasdruck die freie Weglänge bei Wasserstoff größer als bei Stickstoff ist. Der Wert der tatsächlichen Permeabilität beider Messungen ist nahezu identisch.

Abb. 9-14: Vergleich der mit N$_2$ und H$_2$ ermittelten tatsächlichen Permeabilität

9.4.3 Instationäre Permeabilitätsmessungen

Am 23.08.2006 wurde eine instationäre Permeabilitätsmessung mit Stickstoff als Permeat bei Raumtemperatur und einem Überlagerungsdruck von 1,5 MPa durchgeführt. Der absolute Probeneintrittsdruck betrug 3,8 bar. Die absolute Permeabilität ($k = 4,4 \cdot 10^{-16}$ m2) und der Klinkenbergfaktor ($b = 1,15$ bar) wurden vorher aus stationären Experimenten ermittelt (siehe Kap. 9.4.2). Abb. 9-15 zeigt die erhaltenen Messpunkte (blau) und die Ergebnisse der Simulation (rot), bei der mit Hilfe einer Minimierung der Fehlerquadratsumme ein Wert für die Transportporosität von $\varepsilon_{p, tr} = 0,76$ % ermittelt wurde. Da wegen einer Leckage bei diesem Versuch keine
Messungen mit Formationswasser durchgeführt werden konnten, liegt kein Vergleichswert aus der Probenaufsättigung vor. Der hier mit der instationären Messung ermittelte Wert liegt aber im Bereich der meisten anderen BRA 07 Proben. Die durch diese Simulation erhaltene Transportporosität kann auf Grund der relativ guten Übereinstimmung zwischen Modell und Experiment als belastbar angesehen werden.

Abb. 9-15: Volumenstrom am Probenaustritts, Messpunkte (blau) und Simulation (rot)
9.5 Auswertung BRA 07/06

Die Tonprobe wurde parallel zur Schichtung erbohrt und am 22.06.2006 im bergfeuchten Zustand in den Autoklaven eingebaut und ebenfalls parallel zur Schichtung vermessen. Aus der Geometrie und der Masse der Probe von 1,470 kg wurde eine Gesamtporosität von 12,9 % bestimmt.

9.5.1 Permeabilitätsmessungen mit Stickstoff

Gasmessungen wurden nur bei einem konstanten Überlagerungsdruck von 1,5 MPa durchgeführt. Während der Gasmessung vom 22.02.2006 bis 15.03.2006 reduzierte sich die Permeabilität nur geringfügig von ca. $6 \times 10^{-18} \text{ m}^2$ auf ca. $3 \times 10^{-18} \text{ m}^2$ (siehe Abb. 9-16).

Abb. 9-16: Zeitlicher Verlauf der Permeabilität

9.5.2 Vermessen der Probe mit Formationswasser als Messfluid

Ca. 500 Stunden nach Versuchsbeginn wurde die Probe bei weiterhin konstantem Überlagerungsdruck mit Formationswasser beaufschlagt. Anschließend erfolgte eine kontinuierliche Erhöhung des Probeneintrittsdrucks, bis am Probenaustritt über die Messung des aus den Poren verdrängten Gases ein Fortschreiten der Flüssigkeitsfront in der Probe feststellbar war. Nach der Erhöhung des Probeneintrittsdrucks von 5,0 bar auf 7,5 bar war ca. 1.000 Stunden nach dem Beginn der Beaufschlagung
mit Formationswasser erstmals ein Gasaustritt am Probenaustritt feststellbar (Abb. 9-17). Nach einer weiteren Erhöhung des Probeneintrittsdruckes auf 10,0 bar erfolgte ca. 250 Stunden später der Flüssigkeitsdurchbruch an der Probenaustritteite. Die in Abb. 9-16 dargestellten Permeabilitätswerte während der Aufsättigungsphase der Probe stellen nur Anhaltswerte dar, da bei der Zweiphasenströmung die Bedingungen für eine Auswertung nach Darcy nicht gegeben sind.

Das bis zu diesem Zeitpunkt aus den Poren verdrängte Gasvolumen betrug ca. 9 ml. Aus der durch Gewichts- und Volumenmessung vor Versuchsbeginn ermittelten Gesamtporosität von ca. 12,9 % errechnet sich ein Porenvolumen von ca. 80 ml. Der Vergleich dieser Werte zeigt, dass bis zum Wasser durchbruch ca. 11 % des Gesamtporenvolumens als Transportvolumen für das Formationswasser diente. Hieraus lässt sich eine Transportporosität von ca. 1,5 % abschätzen.

Mit der Berechnung der Permeabilität aus dem Wasservolumenstrom wurde erst ca. 3.200 Stunden nach Versuchsbeginn begonnen, als ein kontinuierlicher Wasservolumenstrom messbar war. Die jetzt gemessene Permeabilität von ca. 8·10^{-20} m² war ca. zwei Größenordnungen geringer als die zu Versuchsbeginn gemessene „Gaspermeabilität“, wobei diese Werte ebenfalls nur bedingt belastbar sind, da zu diesem Zeitpunkt noch eine Zweiphasenströmung vorlag. Das gleichzeitig aus den Poren der Tonprobe verdrängte Gas entsprach einer um zwei Größenordnungen geringeren Permeabilität. Nachdem ein kontinuierlicher Wasservolumenstrom durch die Probe messbar war, mussten die Bedingungen herausgefunden werden, unter denen der mit Flüssigkeit gesättigte Ton vollständig dicht war. Deshalb wurde der Probeneintrittsdruck nach ca. 3.750 Stunden von 10,0 bar wieder auf 6,0 bar reduziert, was aber zu keiner signifikanten Änderung der Permeabilität führte. Erst durch die Erhöhung des Überlagerungsdruckes von 1,5 MPa auf 2,5 MPa nach ca. 4.300 Stunden, wurde innerhalb einer relativ kurzen Zeit ein Verschließen der Probe erreicht. Nach ca. 4.900 Stunden waren weder ein Gas- noch ein Flüssigkeitsvolumenstrom messbar.

Nachdem der Überlagerungsdruck wieder auf 1,5 MPa reduziert wurde, war bei reduziertem Probeneintrittsdruck von 5,0 bar wieder ein Flüssigkeitsstrom messbar (siehe Abb. 9-16 und Abb. 9-17). Der Flüssigkeitsvolumenstrom stieg unmittelbar nach der Reduzierung des Überlagerungsdruckes wieder auf das Niveau vor der Überlagerungsdruckanhebung an. Die Überlagerungsdruckerhöhung hatte demnach, obwohl sie zum Verschluss der Probe geführt hatte, nur zu einer reversiblen Veränderung der Durchlässigkeit geführt. Die anschließende Erhöhung des Überlagerungsdrucks von 1,5 über 2,0 auf 3,0 MPa führt bei 3,0 MPa und einem Probeneintrittsdruck von 8,0 bar wieder zum Verschluss der Probe.
<table>
<thead>
<tr>
<th>Volumenstrom [ml/min]</th>
<th>Zahlenwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0E-09</td>
<td>1,0E-08</td>
</tr>
<tr>
<td>1,0E-07</td>
<td>1,0E-06</td>
</tr>
<tr>
<td>1,0E-05</td>
<td>1,0E-04</td>
</tr>
<tr>
<td>1,0E-03</td>
<td>1,0E-02</td>
</tr>
<tr>
<td>1,0E+00</td>
<td>1,0E+01</td>
</tr>
</tbody>
</table>

Versuchszeit [h]

<table>
<thead>
<tr>
<th>Volumenstrom [ml/min]</th>
<th>Zahlenwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,000</td>
</tr>
<tr>
<td>2</td>
<td>4,000</td>
</tr>
<tr>
<td>4</td>
<td>6,000</td>
</tr>
<tr>
<td>6</td>
<td>8,000</td>
</tr>
<tr>
<td>8</td>
<td>10,000</td>
</tr>
<tr>
<td>10</td>
<td>12,000</td>
</tr>
<tr>
<td>12</td>
<td>14,000</td>
</tr>
<tr>
<td>14</td>
<td>16,000</td>
</tr>
<tr>
<td>16</td>
<td>18,000</td>
</tr>
</tbody>
</table>

Probeneingangsdruck [bar]

<table>
<thead>
<tr>
<th>Überlagerungsdruck [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
</tr>
<tr>
<td>2,0</td>
</tr>
<tr>
<td>4,0</td>
</tr>
<tr>
<td>6,0</td>
</tr>
<tr>
<td>8,0</td>
</tr>
<tr>
<td>10,0</td>
</tr>
<tr>
<td>12,0</td>
</tr>
<tr>
<td>14,0</td>
</tr>
<tr>
<td>16,0</td>
</tr>
<tr>
<td>18,0</td>
</tr>
<tr>
<td>20,0</td>
</tr>
</tbody>
</table>

Abb. 9-17: Gas - bzw. Flüssigkeitsvolumenstrom als Funktion der Zeit

Da jetzt von einer „dichten“ Probe ausgegangen werden konnte, wurde ab 11.250 Stunden der Teil des Versuches gestartet, in dem die Verdrängung des Porenwassers durch die Gasphase untersucht wurde. Dazu wurde am Probeneintritt die Probe wieder mit Stickstoff beaufschlagt.

Der zur Verdrängung des Porenwassers durch die Gasphase notwendige Gaseintrittsdruck stellt den Differenzdruck zwischen dem Gas und dem Porenwasser dar. Er muss zur Verdrängung des Porenwassers aus dem ursprünglich voll gesättigten Probenkörper aufgewendet werden.

Mit Hilfe der Washburn–Gleichung kann dann mit dem gemessenen Gaseintrittsdruck (p_{ae}), bei dem wieder ein Volumenstrom des Formationswassers gemessen werden kann, der äquivalente Porenradius (r_{eq}) abgeschätzt werden.

Bei weiterhin konstantem Überlagerungsdruck von 3,0 MPa wurde der Probeneingangsdruck von 8,0 bar schrittweise bis auf 15,0 bar erhöht. Erst bei diesem Druck trat ca. 13.000 Stunden nach Versuchsbeginn wieder kurzzeitig Formationswasser am Probenaustritt aus. Der jetzt gemessene Volumenstrom lag geringfügig unter dem Wert, der zum Zeitpunkt gemessen wurde bevor die Probe undurchlässig wurde. Obwohl sowohl der Überlagerungsdruck als auch der Probeneintrittsdruck konstant gehalten wurden, brach ca. 400 Stunden später der Flüssigkeitsvolumen-
strom wieder komplett zusammen. Das ausgetretene Flüssigkeitsvolumen betrug ca. 2 ml. Bezogen auf das gesamte Probenvolumen von 620,5 ml entspricht dies einer freien Porosität für das verdrängte Wasser von ca. 0,3 %. Die aus der Tränkung der Probe abgeschätzte Transportporosität betrug ca. 1,5 %.

Gleichzeitig mit dem Versiegen des Flüssigkeitsvolumenstroms war bei konstantem Probeneintrittsdruck von 15,0 bar aber wieder ein Gasaustritt feststellbar. Der Gasaustritt stabilisierte sich auch bei einer weiteren Druckerhöhung auf 18,0 bar, ohne dass ein Flüssigkeitsaustritt messbar war.

Aus dem Probeneintrittsdruck von 15,0 bar, der notwendig war, um das Wasser aus den Poren zu verdrängen, lässt sich mit der Washburn–Gleichung ein äquivalenter Porenradius von ca. 96 nm abschätzen.

Auch durch eine weitere Erhöhung des Probeneintrittsdruckes auf bis zu 18,0 bar war zwar ein leicht erhöhter Gasaustritt aber kein weiterer Flüssigkeitsaustritt mehr messbar. Auch die Reduzierung des Probeneintrittsdruckes auf 11,0 bar und die erneute Erhöhung auf bis zu 19,0 bar führte bei gleichzeitiger Erhöhung des Überlagerungsdruckes auf 5,0 MPa zu keinem weiteren Flüssigkeitsaustritt.

Nach dem Ausbau aus dem Autoklaven wurde die Probe gewogen. Die Wasseraufnahme während der ca. 25 Monate dauernden Durchströmversuche mit Formationswasser hatte lediglich zu einer Gewichtszunahme von 9,3 g geführt. Daraus würde sich eine Durchgangsporosität von nur ca. 1,5 % errechnen, was mit dem vorher abgeschätzten Wert gut übereinstimmt.

Danach wurde die Probe ohne Überlagerungsdruck über zwei Monate in Formationswasser gelagert. Die Wasseraufnahme betrug über diesen Zeitraum ca. 52,55 g. Zusammen mit der während der Durchströmversuche aufgenommenen Feuchte ergibt dies eine Gesamtwasseraufnahme von ca. 62 g, was einer zugänglichen Porosität von ca. 10 % entspricht. Die vor Beginn der Untersuchungen aus Gewicht und Probenvolumen berechnete Gesamtporosität betrug 12,9 %.

Die jetzt nahezu gesättigte Probe wurde anschließend wieder bei einem Überlagerungsdruck von 2,0 MPa in den Autoklaven eingebaut. Dann wurde sie wieder mit Gas beaufschlagt, und der Probeneintrittsdruck wurde von 6,0 bar auf 8,0 bar erhöht. Bei 8,0 bar war an der Probenaustrittsseite wieder ein Gasaustritt detektierbar. Hieraus lässt sich ein äquivalenter Porenradius von ca. 140 nm abschätzen. Er ist damit größer als der aus der Tränkung zu Versuchsbeginn abgeschätzte von 96 nm. Nur kurze Zeit später konnte an der Probenaustrittsseite neben dem Gas- auch wieder ein Flüssigkeitsaustritt detektiert werden.

Um zu ermitteln, wann die Probe wieder „dicht“ wird, wurde im Folgenden der Probeneintrittsdruck kontinuierlich abgesenkt, bei gleichzeitiger Erhöhung des Überlagerungsdruckes...
rungsdruckes. Aber selbst bei einem Überlagerungsdruck von 6,0 MPa und einem Probeneintrittsdruck von weniger als 2,0 bar war keine Dichtheit der Probe mehr zu erreichen. Danach wurde der Versuch beendet.

Wie die Fotos in Abb. 9-18 und Abb. 9-19 zeigen, wird die Durchlässigkeit der Probe durch mehrere durchgehende, relativ breite Risse längs der Schichtungsgrenzen geprägt, die zu einer hohen Durchlässigkeit führen.

Abb. 9-18: Foto der Probeneintrittseite (BRA 07/06) ca. zwei Stunden nach Ausbau aus dem Autoklaven
Abb. 9-19: Foto der Probenaustrittseite (BRA 07/06) ca. zwei Stunden nach Ausbau aus dem Autoklaven
9.6 Auswertung BRA 07/08

Die Probe BRA 07/08 wurde parallel zur Schichtung erbohrt und vermessen. Der Einbau der Probe in den Autoklaven erfolgte am 05.11.2007 im bergfeuchten Zustand mit einer Probenmasse von 1,525 kg. Aus der Volumenbestimmung und der Wägung wurde eine Porosität von ca. 12,9 % errechnet.

9.6.1 Permeabilitätsmessungen mit Stickstoff

Nach dem Einbau in den Autoklaven wurden die Permeabilitätsmessungen am 05.11.2007 mit einem Überlagerungsdruck von 1,0 MPa gestartet. Die bei diesem Überlagerungsdruck durchgeführten Permeabilitätsmessungen vom 05.11.2007 bis zum 09.11.2007 ergaben nach Abb. 7-2 eine Erhöhung der Permeabilität mit steigendem Probeneintrittsdruck und sind deshalb nicht Klinkenberg-auswertbar.

Am 09.11.2007 wurde der Überlagerungsdruck auf 1,5 MPa erhöht. Die ab dem 13.11.2007 bei Überlagerungsdrücken von 1,5 MPa bis 7,0 MPa durchgeführten in Abb. 7-3 und Abb. 7-4 dargestellten Permeabilitätsmessungen sind Klinkenberg-auswertbar. Hierbei nimmt die tatsächliche Permeabilität von \(k \approx 10^{-18} \text{ m}^2 \) bei \(p_0 = 1,5 \text{ MPa} \) auf \(k \approx 10^{-20} \text{ m}^2 \) bei \(p_0 = 7,0 \text{ MPa} \) ab. Die Druckabhängigkeit der Permeabilität nimmt ebenfalls mit steigendem Überlagerungsdruck im betrachteten Bereich um mehr als eine Größenordnung ab.

Eine Zusammenfassung der Permeabilitätsmessungen mit Stickstoff als Strömungsmedium ist in Abb. 7-5 dargestellt.
Abb. 9-20: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruk von 1,0 MPa

Abb. 9-21: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 1,5 MPa bis 3,0 MPa
Abb. 9-22: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 MPa bis 7,0 MPa

Abb. 9-23: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit
Bei einer Klinkenbergaufragung ausgewählter Quotienten der scheinbaren zur tatsächlichen Permeabilität als Funktion des inversen mittleren Gasdrucks (Abb. 9-24) liegt der Klinkenbergfaktor b in einem Bereich von $2,5 \text{ bar} < b < 8,6 \text{ bar}$ und steigt tendenziell mit fortschreitender Versuchszeit. Hieraus ergeben sich Knudsendiffusionskoeffizienten von $2,1 \cdot 10^{-8} \text{ m}^2/\text{s} > D_{Kn} > 5,3 \cdot 10^{-10} \text{ m}^2/\text{s}$.

Abb. 9-24: Klinkenbergaufragung der Messungen

Abb. 9-25 und Abb. 9-26 zeigen die Abhängigkeit des Knudsendiffusionskoeffizienten D_{Kn} als absolutes Maß für den Stofftransport im Knudsenregime und des Klinkenbergfaktors b als Maß für den relativen Anteil der Stofftransports in diesem Regime am gesamten Stofftransport vom Überlagerungsdruck und der tatsächlichen Permeabilität. Der Knudsendiffusionskoeffizient fällt durch eine überlagerungsdruckinduzierte Kompaktierung der Probe mit zunehmendem Überlagerungsdruck und sinkender Permeabilität ab. Der Klinkenbergfaktor steigt mit zunehmendem Überlagerungsdruck und abnehmender Permeabilität tendenziell aber unstetig an, was auf eine Zunahme des Anteils des Stofftransports im Knudsenregime am gesamten Stofftransport hindeutet. Dies korrespondiert mit der Abnahme des mittleren äquivalenten Durchmessers der für den Stofftransport zur Verfügung stehenden Wegsamkeiten. Zusammenfassend lässt sich feststellen, dass mit Zunahme des Überlagerungsdrucks der Stofftransport durch die Probe insgesamt erschwert wird. Gleichzeitig steigt der Knudsenanteil am verbleibenden Stofftransport an, was auf eine Verringerung des äquivalenten Porendurchmessers schließen lässt.
Abb. 9-25: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks

<table>
<thead>
<tr>
<th>(p_\circ) [MPa]</th>
<th>(b) [bar]</th>
<th>(D_{Kn}) [m²/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0E+00</td>
<td>0,0E+00</td>
<td>0,0E+00</td>
</tr>
<tr>
<td>5,0E-09</td>
<td>5,0E-09</td>
<td>5,0E-09</td>
</tr>
<tr>
<td>1,0E-08</td>
<td>1,0E-08</td>
<td>1,0E-08</td>
</tr>
<tr>
<td>1,5E-08</td>
<td>1,5E-08</td>
<td>1,5E-08</td>
</tr>
<tr>
<td>2,0E-08</td>
<td>2,0E-08</td>
<td>2,0E-08</td>
</tr>
<tr>
<td>2,5E-08</td>
<td>2,5E-08</td>
<td>2,5E-08</td>
</tr>
</tbody>
</table>

Abb. 9-26: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen der Permeabilität

<table>
<thead>
<tr>
<th>(k) [m²]</th>
<th>(b) [bar]</th>
<th>(D_{Kn}) [m²/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0E-20</td>
<td>1,0E-20</td>
<td>1,0E-20</td>
</tr>
<tr>
<td>2,1E-19</td>
<td>2,1E-19</td>
<td>2,1E-19</td>
</tr>
<tr>
<td>4,1E-19</td>
<td>4,1E-19</td>
<td>4,1E-19</td>
</tr>
<tr>
<td>6,1E-19</td>
<td>6,1E-19</td>
<td>6,1E-19</td>
</tr>
<tr>
<td>8,1E-19</td>
<td>8,1E-19</td>
<td>8,1E-19</td>
</tr>
<tr>
<td>1,0E-18</td>
<td>1,0E-18</td>
<td>1,0E-18</td>
</tr>
<tr>
<td>1,2E-18</td>
<td>1,2E-18</td>
<td>1,2E-18</td>
</tr>
<tr>
<td>1,4E-18</td>
<td>1,4E-18</td>
<td>1,4E-18</td>
</tr>
</tbody>
</table>
9.6.2 Vermessen der Probe mit Formationswasser als Messfluid

Nach einer Versuchszeit von ca. 1.000 Stunden wurden die Gasmessungen beendet und die Probe an der Probeneintrittsseite mit Formationswasser bei einem Druck von \(p_e \approx 12 \) bar geflutet. Der Überlagerungsdruck wurde dabei wieder auf 1,8 MPa reduziert. Nach Abb. 9-27 und Abb. 9-28 wurden bis zum Wasser durchbruch bei einer Versuchszeit von ca. 2.800 Stunden am Probenaustritt nur Gasströme detektiert. Diese entsprechen einer Permeabilität von \(k_{\text{gas}} \approx 5 \cdot 10^{-22} \) m². Das vor dem Wasserdurchbruch detektierte ausgetretene Gasvolumen betrug unter Berücksichtigung der Verdrängung der Porosität des Sinterfilters und des Totvolumens an der Verteilerplatte ca. 23 ml, was etwa 28 % der Gesamt porosität der Probe entspricht. Bezogen auf das gesamte Probenvolumen entspricht dies einer Transportporosität von ca. 3,6 %. Ab ca. 2.800 Stunden war auch ein Wasservolumenstrom messbar, er entspricht einer Permeabilität von \(k_{\text{fl}} \approx 2 \cdot 10^{-19} \) m². Wegen des gleichzeitigen Ausströmens von Gas und Flüssigkeit ist dieser Wert nur bedingt belastbar (siehe auch Versuch BRA07/06).

Eine Erhöhung des Überlagerungsdrucks auf 2,6 MPa nach ca. 3.400 Stunden bzw. auf 3,5 MPa nach ca. 3.600 Stunden führte zu keiner signifikanten Veränderung der Volumenströme. Die Absenkung des Probeneintrittsdrucks auf Atmosphärendruck nach ca. 4.400 Stunden führte erst nach etwa 1.200 Stunden zum Versiegen aller Volumenströme. In dieser Zeit wurde der Überlagerungsdruck stufenweise von 3,5 MPa auf 1,5 MPa reduziert.

Zur Bestimmung des Gasdurchbruchsdruucks wurde anschließend die Probe mit einem Gaseintrittsdruck von 2,0 bar beaufschlagt. Über einen Zeitraum von ca. 300 Stunden waren weder ein Gas- noch ein Flüssigkeitsstrom zu detektieren. Erst eine Erhöhung des Probeneintrittsdrucks auf \(p_e = 3,0 \) bar führte ab ca. 6.070 Stunden wieder zu detektiervaren Gas- und Flüssigkeitsvolumenströmen, die den bereits vorher detektierten Permeabilitäten entsprachen. Nach der Washburn-Gleichung entspricht dieser Eintrittsdruck einem äquivalenten Porendurchmesser von etwa 460 nm.

Um die verzögerte Reaktion des Gas- und Flüssigkeitsvolumenstroms auf die Absenkung des Probeneintrittsdrucks näher zu untersuchen, wurde nach ca. 7.300 Stunden der Überlagerungsdruck auf 4,0 MPa, bei gleichzeitiger Reduzierung des Eintrittsdrucks auf \(p_e = 0 \), erhöht. Dies hatte zunächst keine gravierende Auswirkung auf die Gas- und Wasservolumenströme, die erst ab 8.800 Stunden zum Erliegen kamen. Eine Erklärung dieser signifikant verzögerten Reaktion der Volumenströme auf die Probeneintrittsdruckabsenkung konnte nicht gefunden werden.

Eine erneute Druckbeaufschlagung mit \(p_e \approx 2 \) bar führte instantan zu einem Wieder auftreten der Ströme bei nahezu unveränderten Permeabilitäten.
Abb. 9-27: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-28: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
9.6.3 Ionenkonzentration

Abb. 9-29 und Abb. 9-30 zeigen den mit Hilfe des Atomabsorptionsspektrometers (AAS) gemessenen Konzentrationsverlauf der Spezies Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) und Sr\(^{2+}\). In Abb. 9-31 ist die auf die Eintrittskonzentration normierte Konzentration dargestellt.

Die relative Natriumkonzentration beträgt am ersten Messpunkt (nach 2.420 Stunden) ca. 1,2 und steigt bis zum zweiten Messpunkt (nach 2.780 Stunden) auf ca. 1,8 an. Danach fällt sie auf etwa 1,5 (nach 2.930 Stunden) ab und verharrt bei diesem Wert bis zum Ende der Messungen (nach 3.792 Stunden).

Am ersten Messpunkt (nach 2.420 Stunden) beträgt die relative Kaliumionenkonzentration ca. 2,3. Sie steigt bis auf knapp 2,8 (nach 2.780 Stunden) an und fällt bis auf 2,0 bis zum Messungsende (nach 3.790 Stunden) ab.

Die relative Magnesiumionenkonzentration steigt über den gesamten Versuchsverlauf von knapp unter 0,7 bei der ersten Messung bis auf ca. 4,3 am Versuchsende (nach 3.790 Stunden).

Zu Beginn der Messungen liegt die relative Calciumionenkonzentration bei etwa 0,9, sie steigt auf gut 1,3 nach 2.780 Stunden an. Beim dritten Messwert nach 2.930 Stunden ist sie auf etwa 1,1 abgefallen und bleibt bis zur letzten Messung auf diesem Niveau (nach ca. 3.790 Stunden).

Bei der ersten Probennahme (nach 2.420 Stunden) liegt die relative Strontiumionenkonzentration bei knapp 0,7. Sie steigt auf knapp 1,0 (nach 2.780 Stunden) an und fällt dann auf etwa 0,8 (nach 2.930 Stunden) ab und verharrt bis zum Ende der Messungen (nach 3.792 Stunden) auf diesem Wert.

Bei allen untersuchten Ionensorten außer Mg\(^{2+}\), dessen Konzentration streng monoton mit zunehmender Versuchszeit zunimmt, zeigt der zeitliche Verlauf der relativen Konzentrationen einen ähnlichen Verlauf. Vom ersten zum zweiten Messpunkt kommt es zu einer Konzentrationszunahme. Vom zweiten zum dritten Messpunkt kommt es zu einem Konzentrationsabfall, der bei Na\(^+\), Ca\(^{2+}\) und Sr\(^{2+}\) auf Konzentrationen oberhalb, bei K\(^+\) unterhalb des ersten Messwerts führt. Von dritten zum vierten Messpunkt kommt es zu keiner signifikanten Konzentrationsänderung mehr.

Die relativen Konzentrationen von Natrium und Kalium sind durchweg größer als 1, was einen Ionenaustrag dieser Elemente aus der Probe während der gesamten Versuchszeit bedeutet. Die relative Magnesiumkonzentration ist ab dem zweiten Messwert bei ca. 2.780 Stunden ebenfalls größer 1, beim ersten Messpunkt bei 2.420 Stunden aber kleiner 1, was zunächst einen Ioneneintrag bedeutet, dem ein ausgeprägter Ionenaustrag über den Rest der Versuchszeit folgt. Die relative Calciumkonzentration fluktuiert über die gesamte Versuchszeit um einen Wert von ca. 1.
Die relative Sr\(^{2+}\)-Konzentration ist bis auf den zweiten Messwert bei 2.780 Stunden immer deutlich kleiner 1, was auf eine Sr\(^{2+}\)-Adsorption in der Probe hindeutet.

Abb. 9-29: Ionenkonzentration von Na\(^+\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt
Abb. 9-30: Ionenkonzentration von K^+, Mg^{2+} und Sr^{2+} im Formationswasser am Probenaustritt

Abb. 9-31: Relative Ionenkonzentrationen
9.7 Auswertung BRA 07/09

Die Probe BRA 07/09 wurde parallel zur Schichtung erbohrt und bezüglich ihres Durchlässigkeitsverhaltens auch parallel zur Schichtung vermessen. Sie wurde im bergfeuchten Zustand eingebaut und wies keine sichtbaren Risse auf. Bei einer angenommenen Korndichte von 2740 kg/m³ /NTB 02-03/ ergab sich aus der Volumenbestimmung und der Wägung eine Gesamtporosität von ca. 13 %.

9.7.1 Vermessen der Probe mit Gas

Die Probe wurde am 11.03.2008 in den Autoklaven eingebaut und mit Überlagerungsdrücken von 1,0 MPa und 1,5 MPa beaufschlagt. Die bei diesen Überlagerungsdrücken bei jeweils unterschiedlichen Gasdrücken durchgeführten Permeabilitätsmessungen zeigten die erwartete Abnahme der Permeabilität mit zunehmendem Überlagerungsdruck. Die Messungen waren aber nach Klinkenberg auswertbar (siehe Abb. 9-32).

Die Permeabilität beträgt bei einem Überlagerungsdruck von 1,0 MPa ca. \(k = 1 \cdot 10^{-17} \text{ m}^2 \) und ist nahezu unabhängig vom mittleren Gasdruck, was bedeutet, dass die mittlere freie Weglänge der Gasmoleküle \(\lambda \) sehr viel kleiner als die Spaltweite der Risse ist. Daher ist davon auszugehen, dass der Gastransport im Kontinuumsbereich stattfindet. Da bei einem mittleren absoluten Gasdruck von \(p = 2,0 \text{ bar} \) die freie Weglänge der Stickstoffmoleküle ca. 33 nm beträgt (siehe Abb. 9-33), resultiert hieraus eine Spaltweite deutlich größer 33 nm. Bei den am 13.03.2008 und 14.03.2008 bei einem Überlagerungsdruck von 1,5 MPa durchgeführten Messungen war die Permeabilität um nahezu eine Größenordnung geringer, was auf die weitere Kompaktierung infolge des höheren Überlagerungsdruckes zurückzuführen ist.

Nach Belastung der Probe mit einem konstanten Überlagerungsdruck von 1,5 MPa über ca. einen Monat, wurden weitere Permeabilitätsmessungen mit Stickstoff und Wasserstoff als Messfluide durchgeführt. Wie aus Abb. 9-32 zu ersehen ist, hat eine weitere, zeitabhängige Permeabilitätsabnahme stattgefunden. Die fast zeitgleich mit Wasserstoff bzw. Stickstoff gemessenen Permeabilitätswerte sind nahezu identisch. Auch jetzt ist kein Einfluss des mittleren Gasdrucks auf die gemessene scheinbare Permeabilität feststellbar, woraus geschlossen werden kann, dass der Stofftransport im Kontinuumsgebiet stattfindet. Die freie Weglänge der Stickstoff- bzw. Wasserstoffmoleküle beträgt bei den höchsten mittleren Gasdrücken von \(p_a = 5 \text{ bar} \) \(\lambda_{\text{N}_2} \approx 15 \text{ nm} \) und \(\lambda_{\text{H}_2} \approx 22 \text{ nm} \). Die Spalt- bzw. Rissbreite ist demnach noch deutlich größer 22 nm.

In Abb. 9-34 sind die nach der Erhöhung des Überlagerungsdruckes auf 2,0 bis 4,0 MPa gemessenen Permeabilitäten ebenfalls als Funktion des inversen Gasdruckes dargestellt. Deutlich ist zu erkennen, dass mit zunehmendem Überlagerungs-
druck die Permeabilität weiter abnimmt und dass jetzt aber auch die Abhängigkeit der gemessenen Permeabilität vom Gasdruck zunimmt.

Die wahre Permeabilität wird ermittelt, indem durch die Messpunkte eine Regressionsgerade gelegt wird. Der Schnittpunkt dieser Geraden mit dem Ursprung, d. h. bei unendlich hohem Gasdruck, ergibt die wahre Permeabilität (siehe Abb. 9-34).

Der Verlauf der wahren Permeabilität in Abhängigkeit vom Überlagerungsdruck ist in Abb. 9-35 dargestellt.

Abb. 9-32: Mit Stickstoff und Wasserstoff gemessene scheinbare Permeabilität als Funktion des inversen Gasdrucks für Überlagerungsdrücke von 1,0 – 1,5 MPa
Abb. 9-33: Mittlere freie Weglänge von Stickstoff und Wasserstoff in Abhängigkeit vom Gasdruck

Abb. 9-34: Wahre Permeabilität aus gemessener scheinbarer Permeabilität als Funktion des inversen mittleren Gasdruckes für Überlagerungsdrücke von 1,5 – 4,0 MPa
Abb. 9-35: Permeabilität in Abhängigkeit vom Überlagerungsdruck als Funktion der Zeit

Aus dem Verhältnis der wahren zur scheinbaren Permeabilität kann über den damit ermittelten Klinkenbergfaktor (siehe Abb. 9-36) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten gegenüber der freien Weglänge der Gasmoleküle relativ klein sind. In Abb. 9-37 sind die Klinkenbergfaktoren über der wahren Permeabilität aufgetragen. Deutlich ist der Anstieg des Klinkenbergfaktors mit abnehmender Permeabilität zu erkennen. Ein Permeabilitätsabfall von $1,6\cdot10^{-18} \text{ m}^2$ (bei $p_\text{ü} = 1,5 \text{ MPa}$) auf $1,0\cdot10^{-19} \text{ m}^2$ (bei $p_\text{ü} = 4,0 \text{ MPa}$) führt zu einer mehr als Vervierfachung des Klinkenbergfaktors von 0,4 bar auf 1,9 bar.

Nach den Permeabilitätsmessungen bei 4,0 MPa wurde die Probe bis auf Gewichtskonstanz getrocknet und danach bei 1,0 MPa eine weitere Klinkenbergmessung durchgeführt. Die Permeabilität war infolge der Rissbildung (siehe Abb. 9-39) jetzt auf $k = 5,7\cdot10^{-15} \text{ m}^2$ erhöht, sie war damit ca. zweieinhalb dekadische Größenordnungen höher als bei der Durchströmung der bergfeuchten Probe (Abb. 9-40). Der Klinkenbergfaktor war ebenfalls deutlich geringer (siehe Abb. 9-37), woraus zu ersehen ist, dass infolge der Trocknung die Spaltweite der Risse deutlich vergrößert sein muss.
Abb. 9-36: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des inversen mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken

Abb. 9-37: Klinkenbergfaktor (für Stickstoff) als Funktion der wahren Permeabilität
In Abb. 9-38 sind die mittlere freie Weglänge der Gasmoleküle \(\lambda \) und der Knudsendiffusionskoeffizient \(D_{Kn} \) als Funktion der tatsächlichen Permeabilität \(k \) aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet.

Wie aus dem Diagramm zu ersehen ist, verläuft in dem vermessenen Permeabilitätsbereich von \(9 \cdot 10^{-20} \, m^2 \leq k \leq 2 \cdot 10^{-18} \, m^2 \) der Knudsendiffusionskoeffizient besonders bei kleinen Permeabilitäten mit größerer Steigung als die freie Weglänge der Stickstoffmoleküle.

Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die Interaktion der Gasmoleküle mit der Porenwand abnimmt, bedeutet dies für diesen Bereich \(k \leq 10^{-19} \, m^2 \), wenn trotz der Reduzierung der freien Weglänge der Knudsendiffusionskoeffizient weiter abnimmt, dass die Reduzierung des äquivalenten Porenradius in diesem Bereich geringer sein muss als die Abnahme der freien Weglänge der Gasmoleküle.

Abb. 9-38: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über der tatsächlichen Permeabilität
Abb. 9-39: Foto der Stirnseite der Probe BRA 07/09 nach dem Vermessen mit Gas und anschließender Trocknung

Abb. 9-40: Vergleich der Permeabilität zwischen „bergfeuchter“ und getrockneter Probe
9.7.2 Untersuchungen zur Durchlässigkeit bei flüssigkeitsgetränkter Probe

Nach dem Vermessen der getrockneten Probe mit Gas wurde die Probe ausgebaut und sechs Tage drucklos (bis zur Gewichtskonstanz) mit Formationswasser getränkt. Es sollte untersucht werden, bei welchem Probeneintrittsdruck, in Abhängigkeit vom Überlagerungsdruck, die Probe wieder durchlässig für Gas wird.

Nach dem Wiedereinbau in den Autoklaven wurde die Probe mit einem Überlagerungsdruck von 2,0 MPa belastet und an der Primärseite zunächst ein Gasdruck von ca. 2,0 bar angelegt. Zur Bestimmung der aus der Probe austretenden Gas- und Wasservolumenströme wurde die Probenaushrittseite mit den Messpipetten verbunden, um das durch die Probe permeierte Formationswasser und das durch das Wasser aus der Probe verdrängte Gas messen zu können. Um Aussagen zum Durchlässigkeitsverhalten der flüssigkeitsgetränkten Probe zu erhalten, wurden im weiteren Verlauf der Untersuchungen Überlagerungsdruck und Probeneintrittsdruck variiert. Die Ergebnisse der am Probenaustritt gemessenen Gas- und Flüssigkeitsvolumenströme sind in Abb. 9-41 und Abb. 9-42 dargestellt. Die unterhalb der Messgrenze liegenden Volumenstromwerte wurden in der Auswertung bei Gas auf \(1 \cdot 10^{-7}\) ml/min und bei Formationswasser auf \(1 \cdot 10^{-8}\) ml/min gesetzt. Da gleichzeitig Gas und Flüssigkeit durch die Probe migrierte, sind wegen dieses Zweiphasenflusses die aus den Volumenströmen errechneten Permeabilitäten nur als Anhaltswerte zu sehen. Die Permeabilitätswerte (Abb. 9-42) sind dabei ebenfalls, entsprechend der Volumenstrommesswerte, auf \(1 \cdot 10^{-23}\) m² für Gas und \(1 \cdot 10^{-24}\) m² für Flüssigkeit gesetzt. Der in Abb. 9-41 dargestellte tatsächliche Gasvolumenstrom wurde aus der Differenz des gemessenen Gesamtfluidstroms und des Wasservolumenstroms ermittelt. Bei einem Überlagerungsdruck von 2,0 MPa und einem Probeneintrittsdruck von 2,0 bar wurden die ersten Messwerte aufgenommen. Nach einer kurzen Durchströmung bei diesem Probeneintrittsdruck wurde, da die Volumenstrommessungen sowohl für Gas als auch für Formationswasser relativ hohe Volumenströme anzeigten, der Probeneintrittsdruck halbiert, was aber nur einen unwesentlichen Einfluss auf den Austrittsvolumenstrom hatte. Um zu überprüfen, ob der Gas- und Wasseraustritt an der Probensekundärseite lediglich auf die weitere Kompaktion infolge des Überlagerungsdruckes zurückzuführen ist, wurde der Probeneintrittsdruck auf Null gesetzt. Wie aus dem Verlauf der Gas- und Flüssigkeitsvolumenströme zu ersehen ist, fielen sowohl Gas- als auch Flüssigkeitsvolumenstrom unmittelbar nach dieser Absenkung ebenfalls auf Werte unterhalb der Messgrenze ab. Für ca. 160 Stunden wurden diese Bedingungen beibehalten, wobei keine messbaren Volumenströme mehr detektiert werden konnten. Eine weitere Probenkompaktion infolge des Überlagerungsdruckes sowie eventuelle Leckagen konnten damit ausgeschlossen werden. Anschließend wurde der Probeneintrittsdruck wieder auf 1,0 bar angehoben. Dieser Zustand wurde über einen Zeitraum von über 200 Stunden aufrecht erhalten, ohne dass Gas- oder
Flüssigkeitsvolumenströme messbar waren. Die anschließende Erhöhung des Probeneintrittsdruckes auf 2,0 bar dagegen war mit einem unmittelbaren Gasaustritt aus der Probe verbunden, während ein Wasservolumenstrom erst ca. 200 Stunden verzögert messbar war. Aus dem Gasdurchbruchsdruk von 2,0 bar lässt sich ein äquivalenter Porenradius von 730 nm ableiten.

Um zu untersuchen, ob durch eine höhere Kompaktion die Probe wieder „dicht“ wird, wurde anschließend der Probeneintrittsdruck auf Null reduziert und der Überlagerungsdruck von 2,0 MPa auf 4,0 MPa erhöht. Wie in Abb. 9-41 zu sehen, ist mit der Anhebung des Überlagerungsdruckes und der Absenkung des Probeneintrittsdruckes ein unmittelbarer kurzer Anstieg des Wasservolumenstroms und dem anschließenden Abfall des Gas- und des Flüssigkeitsvolumenstroms verbunden. Ca. 250 Stunden nach der Änderung von Überlagerungs- und Probeneintrittsdruck ist der Flüssigkeitsvolumenstrom auf nicht mehr messbare Werte abgesunken, während der Gasvolumenstrom noch ca. 800 Stunden annähernd konstant bleibt und erst dann innerhalb von ca. 350 Stunden ebenfalls auf Null abfällt. Eine Erklärung für die verzögerte Reaktion der austretenden Volumenströme auf die Absenkung des Probeneintrittsdruckes auf Null konnte nicht gefunden werden.

Summiert man die in Folge der weiteren Kompaktion während dieser Zeit aus der Probe gepressten Gasvolumina, so erhält man mit etwa 8 – 9 ml in etwa 10 % des zu Beginn der Versuche ermittelten Gesamtporenvolumens der Probe.

Nachdem weder ein Gas- noch ein Flüssigkeitsvolumenstrom messbar waren, wurde der Probeneintrittsdruck wieder auf 1,0 bar angehoben. Ohne nennenswerte Zeitverzögerung stiegen Gas- und Flüssigkeitsvolumenstrom wieder auf die gleichen Werte wie beim Start der Untersuchungen zur Verdrängung der Flüssigkeit in den Poren der Probe.
Abb. 9-41: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungsdruck und Gasdruck

Abb. 9-42: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungsdruck und Gasdruck
Als Fazit dieses Versuches kann festgestellt werden, dass diese Probe, die drucklos bis zur Gewichtskonstanz mit Formationswasser getränkt wurde, bei einem Überlagerungsdruck von 2,0 MPa bis zu einem Probeneintrittsdruck von 1,0 bar gegenüber Gas dicht war. Die Erhöhung des Probeneintrittsdrucks auf 2,0 bar aber führte bereits zum Gasdurchtritt.

Auch nachdem bei einem Überlagerungsdruck von 4,0 MPa die Probe über einen Zeitraum von ca. 2.500 Stunden ohne Probeneintrittsdruck lagerte, war keine Dichtheit mehr zu erreichen. Unmittelbar nach der Beaufschlagung des Probeneintritts mit $p_e = 1$ bar waren am Probenaustritt sowohl Gas- als auch Flüssigkeitsvolumenströme messbar.
9.8 Auswertung BRA 07/10

Die Probe BRA 07/10 wurde parallel zur Schichtung erbohrt und vermessen. Der Einbau der Probe in den Autoklaven erfolgte am 02.08.2007 im bergfeuchten Zustand. Wie aus Abb. 9-43 und Abb. 9-44 zu ersehen ist, sind bei der Probe weder an der Probeneintritts- noch an der -austrittsseite Risse erkennbar. Wegen der durch das Sägen der Probe entstandenen Oberflächenstruktur wären allerdings ganz feine Risse nicht erkennbar.

Aus der Volumenbestimmung und der Wägung wurde eine Gesamtporosität von 11,8 % errechnet.

Abb. 9-43: Foto der Stirnseite (Probeneintritt) der Probe BRA 07/10 vor dem Einbau der Probe in den Autoklaven
9.8.1 Permeabilitätsmessungen mit Stickstoff

Nach dem Einbau in den Autoklaven wurde bei einem Überlagerungsdruck von 0,6 MPa mit den Permeabilitätsmessungen begonnen. Hierbei wurden, wie in Abb. 9-45 dokumentiert, am 02.08.2007 und am 03.08.2007 Messungen mit Stickstoff durchgeführt, bei denen die Permeabilität mit zunehmendem Gasdruck stark anstieg. D.h. die Messungen waren nicht nach Klinkenberg auswertbar. Nach einer groben Abschätzung betrugen die mittleren scheinbaren Permeabilitäten \((k_{s,m}) \) am 02.08.2007 \(k_{s,m} = 1,6 \cdot 10^{-16} \text{ m}^2 \) und am 03.08.07 \(k_{s,m} = 1,1 \cdot 10^{-16} \text{ m}^2 \), was durch Kompressions der Probe infolge des Überlagerungsdruckes zu erklären ist. Eine folgende Erhöhung des Überlagerungsdrucks auf 1,0 MPa führte am 06.08.2007 zu einer deutlichen Verringerung des Anstiegs der scheinbaren Permeabilität mit steigendem Gasdruck bei einer um mehr als einer Größenordnung verringerten scheinbaren mittleren Permeabilität von ca. \(k_{s,m} = 6,4 \cdot 10^{-18} \text{ m}^2 \).

Nach der Erhöhung des Überlagerungsdrucks auf 1,5 MPa ergaben die bei diesem Überlagerungsdruck durchgeführten Messungen nach Abb. 9-46 einen deutlichen Einfluss des Probeneintrittsdruckes auf die Permeabilität, welche mit steigendem Gasdruck abfällt. Es wurden tatsächliche Permeabilitäten von \(k = 1,5 \cdot 10^{-18} \text{ m}^2 \) bis \(k = 1,8 \cdot 10^{-18} \text{ m}^2 \) ermittelt.
Abb. 9-45: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 0,6 MPa – 1,0 MPa)

Abb. 9-46: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 1,5 MPa)
Danach wurde der Überlagerungsdruck schrittweise auf 2,5 MPa, 3,5 MPa und 4,5 MPa erhöht (Abb. 9-47). Auch in diesem Gaseintrittsdrukkbereich (2,5 bis 4,5 bar), war nur ein geringer Einfluss des Gasdrucks auf die Permeabilität feststellbar. Die absoluten Permeabilitäten lagen bei 9,9·10⁻¹⁹ m² > k >1,8·10⁻¹⁹ m².

![Diagramm](image)

Abb. 9-47: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 2,5 MPa – 4,5 MPa)

In Abb. 9-48 sind die Auswirkungen einer weiteren Erhöhung des Überlagerungsdrucks auf die Permeabilität zu erkennen. Die Erhöhung des Überlagerungsdruckes von 5,5 MPa auf bis zu 8,5 MPa führt zu einer Abnahme der Permeabilität von ca. 7,4·10⁻²⁰ m² bei p₀ = 5,5 MPa auf ca. 9,5·10⁻²¹ m² bei p₀ = 8,5 MPa.

Zusammenfassung der Auswertung BRA 07/10

Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck (Überlagerungsdruck 5,5 MPa – 8,5 MPa)

Permeabilität in Abhängigkeit vom Überlagerungsdruck als Funktion der Zeit

Abb. 9-50: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion des Kehrwertes des mittleren Gasdrucks (Überlagerungsdruck 1,5 MPa)
Abb. 9-51: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion des Kehrwertes des mittleren Gasdrucks

Abb. 9-52: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion des Kehrwertes des mittleren Gasdrucks
In Abb. 9-53 sind die Permeabilität und die Klinkenbergfaktoren als Funktion der Versuchszeit aufgetragen. Wie aus dem Diagramm erkennbar ist, besteht im gesamten Bereich bis ca. 850 Stunden und \(k > 2 \cdot 10^{-19} \text{ m}^2 \) praktisch keine Abhängigkeit des Klinkenbergfaktors von der Permeabilität. Ab \(t > 850 \) Stunden nimmt die Fluktuation des Klinkenbergfaktors stellenweise stark zu. Der relative Anteil der Molekularströmung am gesamten Stofftransport steigt ab hier stark an.

Abb. 9-53: Klinkenbergfaktor als Funktion der Permeabilität

In Abb. 9-54 sind die mittlere freie Weglänge der Gasmoleküle \(\lambda \) und der Knudsendiffusionskoeffizient \(D_{Kn} \) als Funktion der tatsächlichen Permeabilität \(k \) aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet. Der Knudsendiffusionskoeffizient \(D_{Kn} \) ist hierbei als absolutes Maß für den in diesem Regime stattfindenden Stofftransport anzusehen. Wie aus Abb. 9-54 zu ersehen ist, verlaufen in dem vermessenem Permeabilitätsbereich von \(1 \cdot 10^{-21} \text{ m}^2 \leq k \leq 1 \cdot 10^{-18} \text{ m}^2 \) in logarithmischer Darstellung der Knudsendiffusionskoeffizient und die freie Weglänge der Stickstoffmoleküle nahezu parallel.
Abb. 9-54: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über der tatsächlichen Permeabilität

Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die absolute Interaktion der Gasmoleküle mit der Porenwand abnimmt, bedeutet dies für diesen Bereich $k \leq 1,0 \cdot 10^{-18}$ m², wenn trotz der Verringerung der freien Weglänge der Knudsendiffusionskoeffizient weiter abnimmt, dass die Reduzierung des effektiven Porenradius in diesem Bereich geringer sein muss als die Abnahme der freien Weglänge der Gasmoleküle. Die Diffusionsmessungen machen hierüber keine direkte Aussage, da nur bei einem Überlagerungsdruck von 1,5 MPa gemessen wurde. Hier war die Ficksche Diffusion ab einem Gasdruck von ca. 5,0 bar der dominante Transportmechanismus. Abb. 9-55 zeigt, dass sich über einem mittleren absoluten Gasdruck von ca. 5,5 bar ein stärkeres Absinken des Knudsendiffusionskoeffizienten andeuteten könnte, was auf die beginnende Dominanz Fickscher Diffusion hindeuten würde. Dieses Ergebnis wäre erstens mit den Schlussfolgerungen aus den Diffusionsmessungen kompatibel (siehe Kap. 9.8.2) und würde zweitens auf eine kompaktierungsinduzierte Verringerung der äquivalenten Wegsamkeitsdurchmesser auf Grund der Überlagerungsdrucksteigerung von 1,5 MPa auf 8,5 MPa hinweisen, da bei höheren Überlagerungsdrücken kleinere mittlere freie Weglängen und somit höhere Gasdrücke zur Erreichung reiner Fickscher Diffusionsverhältnisse nötig sind.
Abb. 9-55: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über dem mittleren absoluten Gasdruck

Abb. 9-56 zeigt den Verlauf von Klinkenbergfaktor und Knudsendiffusionskoeffizient als Funktionen der absoluten Permeabilität. Hierbei wird bei geringen Permeabilitäten der Knudsendiffusionskoeffizient kleiner und der Klinkenbergfaktor größer, was auf eine absolute Verringerung und relative Steigerung der Molekularströmung als Stofftransportmechanismus schließen lässt.
Zusammenfassend lässt sich nach Abb. 9-57 feststellen, dass im Zeitraum vom 17.08.2007 bis zum 12.10.2007, während dem der Überlagerungsdruck schrittweise von 1,5 MPa auf 8,5 MPa erhöht wurde, die Permeabilität generell eine fallende Tendenz bei steigendem Überlagerungsdruck aufweist.

Während die Permeabilität zu Beginn des betrachteten Zeitintervalls noch ca. $1,8 \cdot 10^{-18}$ m² bei einem Überlagerungsdruck von 1,5 MPa beträgt, ist sie nach einer Versuchsdauer von etwa 1.700 Stunden bei $p_u = 8,5$ MPa um gut zwei Größenordnungen auf $9,5 \cdot 10^{-21}$ m² abgefallen.

Im gleichen Zeitraum fällt der Knudsendiffusionskoeffizient von $1,5 \cdot 10^{-8}$ m²/s auf $7,5 \cdot 10^{-10}$ m²/s. Hieraus kann nicht abschließend auf eine selektive Schließung von Wegsamkeiten mit kleinem Durchmesser geschlossen werden. Um einen detektierbaren Stoffmengenfluss durch die Probe aufrecht zu erhalten, musste der mittlere Probendruck auf Grund der Permeabilitätsverminderung erhöht werden. Somit verringerte sich, wie in Abb. 9-54 dargestellt, die mittlere freie Weglänge der Gasmoleküle von ca. 24 nm auf ca. 11 nm, was zu einer Verminderung der Wahrscheinlichkeit von Molekül-Wand-Wechselwirkungen beitrug.
Abb. 9-57: Übersicht über die scheinbare mittlere und die absolute Permeabilität, den Überlagerungsdruck, die mittlere freie Weglänge des Permeats und des Knudsendiffusionskoeffizienten als Funktion der Versuchszeit

9.8.2 Diffusionsmessungen

Am 10.08.2007 wurden Diffusionsmessungen von Wasserstoff in Stickstoff durch die Probe bei einem Überlagerungsdruck von 1,5 MPa und Absolutgasdrücken zwischen 1,4 bar und 7,0 bar durchgeführt. Hierbei ist nach Abb. 9-58 ein Abfall des Diffusionskoeffizienten über den gesamten untersuchten Druckbereich festzustellen.

Bei rein Fickscher Diffusion ist das Produkt aus effektivem Diffusionskoeffizienten und Gasdruck $D \cdot p$ konstant. Abb. 9-59 zeigt, dass diese Bedingung ab einem Gasdruck von ca. 5 bar erfüllt ist, zwischen diesem und dem maximalen Druck von 7 bar kommt es zu keiner signifikanten Erhöhung von $D \cdot p$. Dies deutet auf das Erreichen eines Zustandes rein Fickscher Diffusion hin.

Die im gleichen Zeitraum durchgeführten stationären Permeabilitätsmessungen (Abb. 9-46 und Abb. 9-50) wurden bei mittleren Gasdrücken von ca. 3 bar durchgeführt, d.h. bei Überlagerungsdrücken bei denen der Bereich der rein Fickschen Diffusion noch nicht erreicht war. Sie liefern für den Knudsendiffusionskoeffizienten von $D_{Kn,N2} = 9,2 \cdot 10^{-9} m^2/s$ für Stickstoff bzw. $D_{Kn,HN2} = D_{Kn,N2} \cdot (M_{N2}/M_{H2})^{0.5} = 3,4 \cdot 10^{-8} m^2/s$ für Wasserstoff im Vergleich zu $8,5 \cdot 10^{-10} m^2/s$ bei gleichem Druck aus der Diffusionsmessung für Wasserstoff in Stickstoff. Diese Daten sind ein Hinweis auf die Bevorzugung der Molekularströmung gegenüber der freien Diffusion als Transportme-
chanismus bei den betrachteten Parametern. Ab ca. 5,0 bar dominiert die Ficksche Diffusion als Stofftransportmechanismus.

Abb. 9-58: Diffusionskoeffizient als Funktion des Gasdrucks

Abb. 9-59: Produkt von Diffusionskoeffizient und Druck als Funktion des Druckes
9.8.3 Vermessen der Probe mit Formationswasser als Messfluid

Am 01.02.08, d.h. ca. 1.800 Stunden nach Beginn der Wasserbeaufschlagung, kam es am Probeneintritt zum Wasserdurchbruch (Abb. 9-60). Die bis zu diesem Zeitpunkt gemessene Gasmenge, die primär durch das in die Probe eindringende Formationswasser verdrängt wurde, betrug ca. 44 ml. Ein direkter Vergleich mit den Ergebnissen anderer Versuche ist jedoch nicht sinnvoll, da infolge des Unterdrucks am Probenaustritt keine vergleichbaren Bedingungen vorlagen, weil die gemessenen 44 ml nicht nur Gas aus den Transportwegen, sondern auch aus Sackporen enthielt.

Die aus der Volumenstrommessung abgeschätzte Gaspermeabilität war im Zweiphasenflussgebiet (5.000 bis 5.300 Stunden nach Versuchsbeginn) mit Werten in der Größenordnung von $k = 1 \cdot 10^{-21}$ m² um zwei bis drei Größenordnungen geringer als die Flüssigkeitspermeabilität, die sich in der Größenordnung von $k = 1 \cdot 10^{-19}$ m² bewegte (Abb. 9-61). Bei annähernd unverändertem Probeneintritts- und Überlagerungsdruck blieb nach kurzzeitigem Anstieg der Flüssigkeitsvolumenstrom nahezu konstant, während der Gasvolumenstrom kontinuierlich abnahm und nach der Erhöhung des Überlagerungsdruckes auf 2,5 MPa unmittelbar auf nicht mehr messbare Werte abfiel. Über einen Zeitraum von ca. 750 Stunden blieb, bei leicht abfallendem Probeneintrittsdruk, der Gasvolumenstrom im nicht mehr messbaren Bereich und der Flüssigkeitsvolumenstrom bei ca. $1 \cdot 10^{-3}$ ml/min nahezu konstant. Die Permeabilität lag während dieser Phase bei ca. $2 \cdot 10^{-19}$ m². Infolge der Erhöhung des Überlagerungsdruckes und/oder der gleichzeitigen Absenkung des Probeneintrittsdruckes auf 10,0 bzw. 8,0 bar stieg der Gasvolumenstrom wieder an, bei gleichzeitig konstant bleibendem Flüssigkeitsvolumenstrom. Dieser Anstieg kurz nach der Erhöhung des Überlagerungsdruckes ist nur dadurch erklärbar, dass infolge der Druckerhöhung Brüche in der Tonstruktur initiiert wurden. Durch die neu entstandenen Wegsamkeiten wurde eingeschlossenes Gas freigesetzt. Die Druckänderungen wurden vorgenommen, um ein Wiederverschließen der Probe zu beschleunigen.

Ein Flüssigkeitsaustritt war zunächst nicht festzustellen. Bei unverändertem Probeneintritts- und Überlagerungsdruck fiel innerhalb von ca. 300 Stunden der Gasvolumenstrom auf nicht mehr messbare Werte, während gleichzeitig der Flüssigkeitsvolumenstrom auf 5×10^{-4} ml/min erneut anstieg und bis zum Versuchsende auf diesem Niveau verharrte.

Abb. 9-60: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Abb. 9-61: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
9.9 Auswertung BRA 07/11
Die Probe BRA 07/11 wurde parallel zur Schichtung erbohrt und bezüglich ihres Durchlässigkeitsverhaltens auch parallel zur Schichtung vermessen. Sie wurde im bergfeuchten Zustand eingebaut und wies keine sichtbaren Risse auf. Bei einer angenommenen Korndichte von 2.740 kg/m³ ergab sich aus der Volumenbestimmung und der Wägung ein Gesamtporenvolumen von ca. 12 %.

9.9.1 Permeabilitätsmessungen mit Stickstoff

Die Erhöhung des Überlagerungsdruckes von 1,0 MPa auf 1,5 MPa hat eine weitere Permeabilitätsabnahme von etwa einer halben Größenordnung zur Folge.

Bei Überlagerungsdrücken von 2,0 MPa bis 4,0 MPa sind Permeabilitätsabnahmen mit steigendem Überlagerungsdruck von über zwei Größenordnungen zu beobachten, die Druckabhängigkeit der Permeabilität sinkt mit steigendem Überlagerungsdruck (Abb. 7-34). Nach der Erhöhung des Überlagerungsdrucks von 2,0 MPa auf 3,0 MPa ist innerhalb einer Woche eine Verringerung der absoluten Permeabilität von über einer Größenordnung zu beobachten. Bei einem Überlagerungsdruck von 4,0 MPa wurden die Permeabilitätsmessungen mit Gas beendet. Die Permeabilität war zu diesem Zeitpunkt auf 5,9·10⁻²² m² abgefallen.
Abb. 9-62: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei RT und T = 60 °C und Überlagerungsdrücken von 1,0 – 1,5 MPa

Abb. 9-63: Gemessene Permeabilitäten als Funktion des inversen Gasdrucks bei T = 60 °C und Überlagerungsdrücken von 2,0 bis 4,0 MPa
In Abb. 9-64 und Abb. 9-65 ist das Verhältnis der scheinbaren zur wahren Permeabilität über dem inversen mittleren Gasdruck für Überlagerungsdrücke von 1,0 MPa bis 4,0 MPa aufgetragen. Infolge dieser Erhöhung steigt der Klinkenbergfaktor b kontinuierlich von etwa 0,67 bar auf etwa 103 bar, was eine deutliche Erhöhung des Anteils Knudenscher Molekularströmung am Stofftransport mit zunehmendem Überlagerungsdruck bedeutet.

In Abb. 9-66 sind die Klinkenbergfaktoren und der Überlagerungsdruck über der tatsächlichen Permeabilität aufgetragen. Hier erkennt man, dass sich die Permeabilität bei jeder Erhöhung des Überlagerungsdruckes um 1,0 MPa jeweils um etwa eine Größenordnung verringert. Im Bereich relativ hoher Durchlässigkeit ($10^{-19} \text{m}^2 < k < 10^{-16} \text{m}^2$) erkennt man bei Überlagerungsdrücken von bis zu 2,0 MPa nur einen geringen Anstieg der Klinkenbergfaktoren mit abnehmender Permeabilität. Erst ab der Erhöhung des Überlagerungsdrucks von 2,0 MPa auf 3,0 MPa, d.h. bei Permeabilitäten $k < 1 \cdot 10^{-19} \text{m}^2$, kommt es zu einer starken Zunahme des Klinkenbergfaktors b.

Bei einem Überlagerungsdruck von 4,0 MPa wurden die Permeabilitätsmessungen mit Gas beendet. Die Permeabilität war zu diesem Zeitpunkt auf $5,9 \cdot 10^{-22} \text{m}^2$ abgefallen.
Abb. 9-65: Verhältnis der wahren zur scheinbaren Permeabilität bei Überlagerungsdrücken von 3,0 und 4,0 MPa

Abb. 9-66: Klinkenbergfaktor in Abhängigkeit vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität
In Abb. 9-67 sind die mittlere freie Weglänge der Gasmoleküle (λ) und der Knudsendiffusionskoeffizient (D_{Kn}) als Funktion der tatsächlichen Permeabilität (k) aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet. In dem Bereich, in dem Permeabilitäten von etwa 10^{-16} m² bis 10^{-19} m² gemessen wurden, ändert sich die mittlere freie Weglänge nur wenig, während der Knudsendiffusionskoeffizient um etwa 2,5 Größenordnungen abfällt. Zwischen $1 \cdot 10^{-20}$ m² und $1 \cdot 10^{-22}$ m² dagegen ist die Abnahme von D_{Kn} auch mit einer deutlichen Abnahme von λ verbunden.

Eine Erklärung für obiges Verhalten kann die zunächst selektive Schließung von kleinen Poren im Bereich von 10^{-19} m² < k < 10^{-16} m² durch eine Kompaktierung infolge des steigenden Überlagerungsdrucks sein. Ab k < 10^{-19} m² wird der Abfall von D_{Kn} geringer, während λ stärker abnimmt. Hier scheint die Selektivität bei der Schließung kleiner Poren weniger ausgeprägt.

Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die Interaktion der Gasröhrchen mit der Porenwand abnimmt, bedeutet dies für den Bereich k < 10^{-19} m², wenn trotz der Reduzierung der freien Weglänge der Knudsendiffusionskoeffizient weiter abnimmt, dass die Reduzierung des effektiven Porenradius bzw. der effektiven Spaltweite in diesem Bereich geringer sein muss als die Abnahme der freien Weglänge der Gasmoleküle.

Abb. 9-67: Knudsenkoeffizient und freie Weglänge der Gasmoleküle über tatsächlicher Permeabilität
9.9.2 Messungen mit Formationswasser

Das bis zum Wasserdurchbruch detektierte ausgetretene Gasvolumen betrug unter Berücksichtigung des Verdrängungsvolumens aus den Poren des Sinterfilters und dem Totvolumen der Verteilerplatte ca. 25 ml, bzw. 40 ml, wenn man den Bereich des parallelen Austritts von Gas und Wasser mit berücksichtigt. Dies entspricht ca. 33 % bzw. 50 % der Gesamtporosität der Probe. Bezogen auf das gesamte Probenvolumen von 611 ml entspricht dies einer Transportporosität von ca. 4 %, bzw. ca. 6,5 %.

Die Erhöhung des Überlagerungsdrucks von 1,0 MPa auf bis zu 4,0 MPa zeigte keinen signifikanten Einfluss auf die Wasserpermeabilität ($10^{-18} \text{ m}^2 \leq k \leq 10^{-17} \text{ m}^2$). Da trotz der Anhebung des Überlagerungsdruckes bis auf 6,0 MPa keine Reduzierung des Wasservolumenstroms erkennbar war, wurde, um eine Leckage zwischen Probe und Überlagerungsmedium auszuschließen, der Probeneintrittsdruck auf Null abgesenkt. Parallel wurde der Überlagerungsdruck wieder auf 2,0 MPa reduziert. Dieses Absenken des Probeneintrittsdrucks führte zu einem zeitnahen Versiegen des Permeatstroms (3.330 Stunden). Die anschließende Anhebung des Probeneintrittsdruckes auf 2,0 bar ist wieder unmittelbar mit dem Anstieg des Wasservolumenstroms auf das gleiche Niveau wie vor der Absenkung des Probeneintrittsdrucks auf Null verbunden.

Auch die Anhebung des Überlagerungsdrucks auf 4,0 bzw. 6,0 MPa führte zu keiner Reduzierung des Wasservolumenstroms. Jetzt war sogar wieder ein Gasvolumenstrom messbar. Um Fehlinterpretationen der Messwerte durch Undichtigkeiten auszuschließen, wurden alle Anschlüsse und die Dichtmanschette mit Hilfe des Wasserstofflecktests auf Dichtheit überprüft. Da keine Leckagen festgestellt werden konnten, wurde der Versuch nach ca. 5.900 Stunden bei einem Überlagerungsdruck von 2,0 MPa, aber ohne Probeneintrittsdruck weitergeführt. Unter diesen Bedingungen fielen innerhalb weniger Tage sowohl der Wasser- als auch der Gasvolumenstrom auf nicht mehr messbare Werte ab.
Anschließend wurde bei gleich bleibendem Überlagerungsdruck von 2,0 MPa mit der Bestimmung des Gasdurchbruchsdruckes begonnen. In Schritten von 0,5 bar wurde der Gasdruck am Probeneintritt erhöht. Bei einem Probeneintrittsdruck von 2,0 bar war zuerst die Verdrängung des Porenwassers durch die Gasphase erkennbar, mit einer Verzögerung von ca. 300 Stunden konnte dann der Gasdurchbruch ebenfalls detektiert werden.

Aus dem Probeneintrittsdruck von 2,0 bar, bei dem wieder ein Volumenstrom am Probenausstritt gemessen werden konnte, ergibt sich nach der Washburn-Gleichung ein äquivalenter Porenradius von ca. 730 nm.

Die nach dem Permeatdurchbruch bei $p_e = 2,0$ bar gemessenen Gas- und Flüssigkeitsvolumenströme, bzw. die entsprechenden Permeabilitäten lagen um mehr als eine Größenordnung niedriger als vor der Probeneintrittsdrucksenkung auf Null.

Abb. 9-68: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungsdruck und Gasdruck
Abb. 9-69: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungsdruck und Gasdruck
9.10 Auswertung BRA 07/12

Der Einbau der parallel zur Schichtung erbohrten Probe in den Autoklav erfolgte bergfeucht am 15.01.2009 nach bestandenem H₂-Lecktest. Die Probe zeigte sichtbare Risse an den Stirnseiten, die teilweise über den gesamten Probendurchmesser verliefen. Die durch Wägung und Vermessung bestimmte totale Porosität betrug ca. 14,7%.

9.10.1 Permeabilitätsmessungen mit Stickstoff als Messgas

Nach dem Einbau in den Autoklaven wurde die Probe mit einem Überlagerungsdruck von 2,0 MPa beaufschlagt. Die bei diesem Überlagerungsdruck durchgeführten Permeabilitätsmessungen ergaben keine Abnahme der scheinbaren Permeabilität bei der Erhöhung des Probeneintrittsdruckes (siehe Abb. 9-70). Bei diesem Überlagerungsdruck nahm mit zunehmendem Probeneintrittsdruck die Permeabilität sogar zu, was auf eine Porendilatation in der Probe oder eine Porenöffnung durch Überschreitung des Kapillardrucks von im Durchmesser kleinen Wegsamkeiten infolge des Gasdruckes hindeutet.

Erst bei einem Überlagerungsdruck von 3,0 MPa waren auswertbare Permeabilitätsmessungen möglich. Im gesamten Gasdruckbereich, in dem gemessen wurde (2,5 bis 10,3 bar), war nach Abb. 9-71 eine schwach ausgeprägte Abhängigkeit der Permeabilität vom Gasdruck feststellbar.

Entsprechend Abb. 9-70 und Abb. 9-71 verringerte sie sich um ca. zwei Größenordnungen von von $k = 2,0 \cdot 10^{-16}$ m² bei $p_0 = 3,0$ MPa auf $k = 5,2 \cdot 10^{-18}$ m² bei $p_0 = 6,0$ MPa.

Der zeitliche Verlauf der tatsächlichen Permeabilität in Abhängigkeit vom Überlagerungsdruck ist in Abb. 9-72 dargestellt.
Abb. 9-70: Gaspermeabilität bei Überlagerungsdrücken von 2,0 und 3,0 MPa

Abb. 9-71: Gaspermeabilität bei Überlagerungsdrücken von 4,0 bis 6,0 MPa
Aus dem Verhältnis der wahren zur scheinbaren Permeabilität wird über den damit ermittelten Klinkenbergfaktor (siehe Abb. 9-73) eine Aussage darüber möglich, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die freie Weglänge der Gasmoleküle sind. In Abb. 9-74 sind die Klinkenbergfaktoren und der Überlagerungsdruck über der wahren Permeabilität aufgetragen. Zwar ist ein Anstieg des Klinkenbergfaktors mit abnehmender Permeabilität von \(b = 0,13 \text{ bar} \) bei \(k = 2,0 \cdot 10^{-16} \text{ m}^2 \) auf \(b = 0,8 \text{ bar} \) bei \(k = 5,2 \cdot 10^{-18} \text{ m}^2 \) zu erkennen, aber im Vergleich zu anderen Versuchen (z. B. BRA 07/11) ist dieser Anstieg sehr gering.
Abb. 9-73: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des inversen mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken

Abb. 9-74: Klinkenbergfaktor b als Funktion der wahren Permeabilität
In Abb. 9-75 sind die mittlere freie Weglänge der Gasmoleküle λ und der Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität k aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung angelegten mittleren Gasdruck zugeordnet. Wie aus dem Diagramm zu ersehen ist, verlaufen in dem vermessenen Bereich von $5,2 \cdot 10^{-18} \text{ m}^2 \leq k \leq 2,0 \cdot 10^{-16} \text{ m}^2$ der Knudsendiffusionskoeffizient und die freie Weglänge der Stickstoffmoleküle nahezu parallel. Mit abnehmender Permeabilität nimmt der Knudsendiffusionskoeffizient von $D_{Kn} = 2,2 \cdot 10^{-8} \text{ m}^2/\text{s}$ bei $k = 5,2 \cdot 10^{-18} \text{ m}^2$ ebenfalls auf $D_{Kn} = 1,5 \cdot 10^{-7} \text{ m}^2/\text{s}$ bei $k = 2,0 \cdot 10^{-16} \text{ m}^2$ ab.

Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die Interaktion der Gasmoleküle mit der Porenwand abnimmt, bedeutet dies für diesen Bereich $k \geq 5,2 \cdot 10^{-18} \text{ m}^2$, wenn trotz der Reduzierung der freien Weglänge der Knudsendiffusionskoeffizient weiter abnimmt, dass die Reduzierung des effektiven Porenradius in diesem Bereich geringer sein muss als die Abnahme der freien Weglänge der Gasmoleküle.

Es kann daher davon ausgegangen werden, dass der Stofftransport nur zu einem sehr kleinen Teil als Molekularströmung im Knudsengebiet erfolgte.

Die äquivalente Rissweite muss daher nach Abb. 9-75 größer als 30 nm sein.

Abb. 9-75: Knudsenkoeffizient und freie Weglänge der Stickstoffmoleküle über der tatsächlichen Permeabilität
9.10.2 Messungen mit Formationswasser

Bei konstantem Überlagerungs- und Probeneintrittsdruck bleibt der Flüssigkeitsvolumenstrom nahezu konstant. Die anschließende Reduzierung des Probeneintrittsdruckes von 5,2 bar auf 2,6 bar bewirkt dann aber eine Abnahme des Flüssigkeitsvolumenstromes um ca. eine Größenordnung. Trotz einer weiteren Absenkung des Probeneintrittsdruckes auf 1,6 bar bleibt der Flüssigkeitsvolumenstrom über einen Zeitraum von ca. 1.200 Stunden nahezu konstant. Erst infolge der Erhöhung des Überlagerungsdruckes von 1,0 MPa auf 2,0 MPa nimmt, bei gleichzeitigem Wiederaustritt von Gas, der Flüssigkeitsvolumenstrom ab. Bei jetzt konstantem Überlagerungs- und Probeneintrittsdruck steigt der Gasvolumenstrom über ca. 450 Stunden kontinuierlich an, während der Flüssigkeitsvolumenstrom weiter kontinuierlich abnimmt. Ohne dass Probeneintritts- und Überlagerungsdruck verändert werden, kehren sich die Verläufe wieder um. Der Gasaustritt nimmt bis auf nicht mehr messbare Werte ab und bleibt unverändert, während der Flüssigkeitsvolumenstrom wieder ansteigt und dann bei unveränderten Drücken nahezu konstant bleibt.

Um zu überprüfen, ob der Tonstein so weit konsolidiert ist, dass infolge des Überlagerungsdruckes keine weitere Kompaktierung mehr stattfindet, was zum Auspressen von Flüssigkeit aus der Probe führen könnte, wurde der Probeneintrittsdruck auf Null reduziert und über ca. 200 Stunden bei Null belassen. Wie in Abb. 9-76 zu sehen ist, ist diese Absenkung des Probeneintrittsdruckes unmittelbar mit der Absenkung des Volumenstroms auf Null verbunden.
Nachdem über einen Zeitraum von ca. 200 Stunden weder ein Gas- noch ein Flüssigkeitsvolumenstrom messbar waren, wurde mit den Untersuchungen zur Bestimmung des Gasdurchtrittsdruckes begonnen. Bei weiter konstantem Überlagerungsdruck von 2,0 MPa wurde am Probeneintritt ein Gasdruck von 0,6 bar eingestellt. Wie in Abb. 9-76 zu erkennen, ist unter diesen Bedingungen die Probe dicht. Die stufenweise Erhöhung des Probeneintrittsdruckes von 0,6 bar über 1,0 bar, 1,6 bar, 2,2 bar auf 2,8 bar führte bei 2,8 bar wieder zu messbaren Gas- und Flüssigkeitsvolumenströmen am Probenaustritt. Dieser Versuch zeigte, dass bei einem Überlagerungsdruck von 2,0 MPa ein Gasdruck an der Probeneintrittsseite von 2,8 bis 3,5 bar notwendig ist, um die Flüssigkeit aus den Poren zu verdrängen bzw. einen Gasdurchbruch zu bewirken.

Mit Hilfe der Washburn-Gleichung kann mit dem gemessenen Gaseintrittsdruck (p_{ae}), bei dem wieder ein Volumenstrom am Probenaustritt gemessen werden konnte, der äquivalente Porenradius (r_{aq}) abgeschätzt werden. Wie aus Abb. 9-76 zu erkennen ist, wird zuerst Formationswasser aus der Probe verdrängt und erst mit zeitlicher Verzögerung folgt der Gasdurchtritt. Aus diesem Probeneintrittsdruck von ca. 3,0 bar, der in etwa dem kapillaren Schwellendruck entspricht, lässt sich ein äquivalenter Porenradius von ca. 460 nm abschätzen. Dies bedeutet, dass der Stofftransport primär im Bereich der Makroporen stattfindet.

Abb. 9-76: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Abb. 9-77: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-78: Foto der Probeneintrittsseite der Probe BRA 07/12 unmittelbar nach ihrem Ausbau aus dem Autoklav.

Abb. 9-79: Foto der Probenaustrittsseite der Probe BRA 07/12 unmittelbar nach ihrem Ausbau aus dem Autoklav.
Abb. 9-80: Foto der Mantelseite der Probe BRA 07/12 unmittelbar nach ihrem Ausbau aus dem Autoklaven
Abb. 9-81: Foto der Probenaustrittsseite der Probe BRA 07/12 ca. 30 Minuten nach ihrem Ausbau aus dem Autoklaven

Abb. 9-82: Teilansicht der Probenaustrittsseite der Probe BRA 07/12 ca. 30 Minuten nach ihrem Ausbau aus dem Autoklaven
Abb. 9-83: Schnitt durch die Probe BRA 07/12, ca. 30 Minuten nach ihrem Ausbau aus dem Autoklaven

Abb. 9-84: Schnitt durch die Probe BRA 07/12, ca. zwei Stunden nach ihrem Ausbau aus dem Autoklaven
9.10.3 Ionenkonzentration BRA 07/12

Abb. 9-85, Abb. 9-86 und Abb. 9-87 zeigen die mit Hilfe des Atomabsorptionsspektrometers gemessenen Konzentrationsverläufe der Spezies Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) und Sr\(^{2+}\). In Abb. 9-88 ist die auf die Eintrittskonzentration normierte Konzentration dargestellt. Da wegen zu geringer Eluatmengen nur drei von fünf Proben ausgemessen werden konnten, ist die Belastbarkeit der Messergebnisse gering.

Die relative Natriumionenkonzentration beträgt am ersten Messpunkt (nach 1.670 Stunden) ca. 1,7 und steigt bis zum Versuchsende (nach 4.190 Stunden auf ca. 2,5 an.

Die relative Kaliumionenkonzentration beträgt am ersten Messpunkt (nach 1.670 Stunden) ca. 2,9 und steigt bis auf 5,5 gegen Versuchsende (nach 4.190 Stunden.

Am ersten Messpunkt (nach 1.670 Stunden) liegt die relative Magnesiumionenkonzentration bei etwa 3,2. Sie fällt geringfügig auf etwa 3,0 (nach 1.890 Stunden) um dann bis zum Versuchsende auf 5,5 (nach 4.190 Stunden) anzusteigen.

Bei Calcium steigt die relative Ionenkonzentration über den Versuchszeitraum von 1 über 1,1 (nach 1.890 Stunden) auf etwa 2,3 gegen Versuchsende an.

Bei der ersten Probennahme nach 1.670 Stunden liegt die relative Strontiumionenkonzentration bei etwa 1,2. Sie fällt bis auf 0,4 (nach 1.890 Stunden) ab und steigt bis auf gut 2,1 gegen Versuchsende wieder an.

Bei allen untersuchten Ionensorten außer Sr\(^{2+}\), dessen Konzentration zunächst fällt und danach wieder ansteigt, ist der zeitliche Verlauf der relativen Konzentrationsmonoton steigend.

Die relativen Konzentrationen von Natrium, Kalium, Magnesium und Calcium sind durchweg größer als 1; die relative Calciumkonzentration liegt bei den ersten beiden Messpunkten nur knapp über 1, steigt aber zum Versuchsende hin auf 2,3. Dies bedeutet einen Ionenaustausch dieser Elemente aus der Probe während der gesamten Versuchszeit. Die relative Strontiumionenkonzentration ist bis auf den zweiten Messwert (nach 2.780 Stunden) auch immer größer 1, was auf eine Sr\(^{2+}\)-Eluierung aus der Probe während eines großen Teils des Versuchszeitraums hindeutet.

Zusammenfassend zeigt dieser Versuch, dass die Elemente Natrium, Kalium, Magnesium und Calcium während des gesamten Versuchs in unterschiedlichem Maße eluiert werden und dass Strontium während eines Großteils der Versuchszeit ausge- tragen wird. Innerhalb der Versuchszeit sind nur die relativen Calciumionenkonzentrationen (nach 1.670 Stunden und 1.890 Stunden) nahe 1. Bis auf diese Ausnahme wird kein chemisches Gleichgewicht zwischen Formationswasser und Ton bezüglich jeglicher Spezies erreicht.
Abb. 9-85: Ionenkonzentration von Na\(^+\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt

Abb. 9-86: Ionenkonzentration von K\(^+\), Sr\(^{2+}\) im Formationswasser am Probenaustritt
Abb. 9-87: Ionenkonzentration von Mg\(^{2+}\) im Formationswasser am Probenaus- tritt

Abb. 9-88: Relative Ionenkonzentrationen
9.11 Auswertung BRA 07/13
Der Einbau der parallel zur Schichtung erbohrten Probe in den Autoklav erfolgte am 15.01.2009 nach bestandenem H₂-Lecktest. Die Probe wurde bergfeucht in den Autoklaven eingebaut. Obwohl keine Beschädigung der metallbedampften Kunststofffolie, in der die Probe gelagert war, zu erkennen war, wies die Probe zwei Risse an den Stirnseiten auf, die über den gesamten Probendurchmesser verliefen. Die durch Vermessen und Wägen der Probe bestimmte totale Porosität betrug ca. 14,3 %.

9.11.1 Permeabilitätsmessungen mit Stickstoff
Mit den Permeabilitätsmessungen mit Stickstoff als Messgas wurde bei einem Überlagerungsdruck von 1,0 MPa begonnen. Die bei diesem Überlagerungsdruck durchgeführten Permeabilitätsmessungen ergaben eine Zunahme der Permeabilität bei der Erhöhung des Probeneintrittsdruckes, was auf eine Porendilatation in der Probe oder eine Porenöffnung durch Überschreitung des Kapillardrucks von im Durchmesser kleinen Wegsamkeiten infolge des Gasdruckes hindeutete. Eine Bestimmung der tatsächlichen Permeabilität nach Klinkenberg war daher nicht möglich.

Erst ab einem Überlagerungsdruck von 2,0 MPa waren die Messungen hinsichtlich der tatsächlichen Permeabilität auswertbar (Abb. 9-89 und Abb. 9-90). Als Folge der Erhöhung des Überlagerungsdruckes verringerte sich die tatsächliche Permeabilität nach Abb. 9-91 von 2,3·10⁻¹⁵ m² bei 2,0 MPa auf 2,6·10⁻¹⁷ m² bei 6,0 MPa. Im gesamten Gasdruckbereich, in dem gemessen wurde (1,5 bis 7,2 bar), war nach Abb. 9-89 und Abb. 9-90 nur eine schwach ausgeprägte Abhängigkeit der gemessenen Permeabilität vom Gasdruck erkennbar.
Abb. 9-89: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 bis 4,0 MPa

Abb. 9-90: Druckabhängige Gaspermeabilität bei Überlagerungsdrücken von 5,0 bis 6,0 MPa
Abb. 9-91: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit

Aus dem Verhältnis der tatsächlichen zur scheinbaren Permeabilität kann über den Klinkenbergfaktor (siehe Abb. 9-92 und Abb. 9-93) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor, desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die mittlere freie Weglänge der Gasmoleküle sind.

In Abb. 9-94 sind die Klinkenbergfaktoren über der wahren Permeabilität für alle Messreihen zusammengefasst. Man erkennt im gesamten Permeabilitätsbereich ($1 \cdot 10^{-17} \text{ m}^2 \leq k \leq 1,2 \cdot 10^{-15} \text{ m}^2$) nur einen geringen Anstieg der Klinkenbergfaktoren mit abnehmender Permeabilität.

Demnach kann davon ausgegangen werden, dass der Stofftransport primär im Kontinuumsbereich und nur zu einem Teil als Molekularströmung im Knudsengebiet erfolgte.
Abb. 9-92: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 bis 4,0 MPa

Abb. 9-93: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 5,0 bis 6,0 MPa
Abb. 9-94: Klinkenbergfaktor als Funktion der Permeabilität

In Abb. 9-95 sind die mittlere freie Weglänge der Gasmoleküle λ und der Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität k aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet.

Wie aus dem Diagramm zu ersehen ist, verlaufen in dem Permeabilitätsbereich von ca. $4,1 \cdot 10^{-16} \text{ m}^2 \leq k \leq 1 \cdot 10^{-15} \text{ m}^2$ der Knudsendiffusionskoeffizient und die freie Weglänge der Stickstoffmoleküle nahezu parallel, im Permeabilitätsbereich $k \leq 2 \cdot 10^{-16} \text{ m}^2$ dagegen nimmt bei gleicher freier Weglänge der Gasmoleküle der Knudsendiffusionskoeffizient überproportional ab. Dies deutet darauf hin, dass sich der Stofftransport trotz abnehmender Permeabilität immer mehr in den Kontinuumsbereich verlagert. Erklärbar ist dies nur dadurch, dass sich immer mehr Wegsamkeiten kleineren Durchmessers schließen und der Stofftransport durch die größeren Poren bestimmt wird. Der äquivalente Porenradius muss demnach deutlich größer als die freie Weglänge der Stickstoffmoleküle von 40 nm sein.

Bei Überlagerungsdrücken von 6,0 MPa wurden die Permeabilitätsmessungen mit Gas beendet.
Abb. 9-95: Knudsenkoeffizient und freie Weglänge der Gasmoleküle (N₂) als Funktion der tatsächlichen Permeabilität

9.11.2 Vermessen der Probe mit Formationswasser als Messfluid

Am 18.02.2009 wurden die Gasmessungen beendet und die Probe an der Probeneingangsseite mit Formationswasser geflutet. Der Überlagerungsdruck wurde dabei wieder auf 1,0 MPa reduziert. Abb. 9-96 und Abb. 9-97 zeigen den Verlauf der gemessenen Volumenströme und der daraus errechneten Permeabilitäten. Die Aufsättigung der Probe wurde mit einem Probeneintrittsdruck von 2,0 bar gestartet und über einen Zeitraum von ca. 1.400 Stunden schrittweise bis auf 5,0 bar gesteigert. Unmittelbar nach dem Start der Aufsättigung mit Formationswasser war am Probenaustritt ein Gasvolumenstrom messbar. Ca. 800 Stunden nach Beginn der Aufsättigung erfolgte bei einem Probeneintrittsdruck von 5,0 bar der Wasserdurchbruch an der Probenaustrittsseite. Bis zu diesem Zeitpunkt waren ca. 9 ml Gas aus der Probe verdrängt worden, dies entspricht ca. 10 % des Gesamtporenvolumens. Bezogen auf das gesamte Probenvolumen von 629 ml resultiert hieraus eine Transportporosität von ca. 1,5 %.

Hieraus lässt sich ebenfalls schließen, dass der Flüssigkeitstransport nur durch wenige Risse erfolgt. Ca. 300 Stunden nach dem Wasserdurchbruch, nachdem der Überlagerungsdruck auf 2,0 MPa erhöht wurde, brach der Gastransport komplett zusammen, und es permeierte nur noch Flüssigkeit durch die Probe. Der Flüssigkeitsvolumenstrom blieb dabei nahezu unverändert. Erst mit der Absenkung des Probeneintrittsdruckes auf 1,0 MPa erreichte wieder ein Gasvolumenstrom messbare Größe.
Eintrittsdrucks von 5,0 auf 2,0 bzw. 1,5 bar sank er um ca. eine Größenordnung. Um wieder ein Verschließen der Probe zu erreichen, wurde der Überlagerungsdruck auf 3,0 MPa erhöht. Dies führte zunächst zu einem Anstieg des Flüssigkeitsvolumenstroms, dem dann aber nach kurzer Zeit wieder ein Abfall folgte, wobei während des Abfalls wieder ein Gasvolumenstrom in der gleichen Größenordnung wie der Flüssigkeitsvolumenstrom gemessen wurde. Da die weitere Erhöhung des Überlagerungsdrucks auf 4,0 bar zu keiner Abnahme der Volumenströme führte, wurde er wieder auf 3,0 MPa gesenkt. Um die Dichtheit der Gumimanschette zu überprüfen, die die Probe gegen den Autoklaven abdichtet, wurde der Probeneintrittsdruck auf Null gesetzt. Dies führte unmittelbar zum Versiegen der Volumenströme. Nachdem über ca. 150 Stunden keine messbaren Volumenströme mehr detektierbar waren, war von der Unversehrtheit der Manschette auszugehen und es konnte mit den Messungen zur Bestimmung des Gasdurchtrittsdrucks begonnen werden.

Bei weiter konstantem Überlagerungsdruck von 3,0 MPa wurde die Probeneintrittseite mit Stickstoff mit einem Druck von 0,5 bar beaufschlagt. Dieser Stickstoffdruck wurde ca. 300 Stunden konstant gehalten, ohne dass ein Gas- oder Wasseraustritt detektierbar war. Die anschließende Erhöhung des Gaseintrittsdrucks auf 1,0 bar führte ebenfalls zu keinem Gas- oder Wasseraustritt. Erst nach der Erhöhung des Gasdrucks auf 1,5 bar war ein Gas- und Flüssigkeitsaustritt messbar. Da der Gasaustritt aber wieder versiegte, wurde der Probeneintrittsdruck auf 2,3 bar erhöht, was wieder zu einem Austritt eines Gas-Flüssigkeitsgemisches führte, wobei der Gasstrom nach kurzer Zeit abermals versiegte. Das gleiche Verhalten, dass nach der Druckerhöhung eine Zweiphasenströmung aus Stickstoff und Formationswasser mit anschließendem Versiegen des Gasstromes erfolgte, zeigte sich auch nach der Erhöhung des Probeneintrittsdrucks auf 2,7 und 3,5 bar. Erst nachdem der Probeneintrittsdruck auf 4,0 bar erhöht wurde, war ein kontinuierlicher Gas- und Wasserstrom messbar.

Aufgrund dieser Ergebnisse war nur eine ungefähre Quantifizierung des Gasdurchbruchdruckes auf Werte zwischen 1,5 und 4,0 bar möglich. Entsprechend der Washburn-Gleichung ergibt sich hieraus ein Äquivalenzporenradius zwischen 360 und 960 nm, was bedeutet, dass der Stofftransport primär in Makroporen stattfindet. Be merkenswert ist hierbei, dass nach dem Gasdurchbruch permanent ein Wasservolumenstrom in nahezu konstanter Höhe gemessen wurde.

Nachdem bei einem Probeneintrittsdruck von 4,0 bar wieder kontinuierliche Gas- und Flüssigkeitsvolumenströme auftraten, wurde der Versuch beendet.
Abb. 9-96: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck

Abb. 9-97: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck
Fotos von den Stirnseiten der Probe, die unmittelbar nach Versuchsende und nachdem die Probe aus dem Autoklav ausgebaut wurde, aufgenommen wurden, (Abb. 9-98 und Abb. 9-99) lassen nur die Struktur des Sägeschnitts, aber keine Risse erkennen. Die Probe wurde dann bei Raumtemperatur gelagert. Bereits eine Stunde später ist an der Probeneintrittsseite deutlich ein Riss erkennbar (Abb. 9-100).

Fünf Stunden nach dem Ausbau sind deutlich mehrere Risse parallel zur Schichtung erkennbar (Abb. 9-101 und Abb. 9-102), die teilweise längs der gesamten Probe verlaufen. Es ist davon auszugehen, dass ein Teil dieser Risse auch durch den Überlagerungsdruck und die Quellung des Tons nicht wieder komplett verschlossen wurden und durch sie bei den o.g. Probeneintrittsdrücken Gas permeieren konnte.

Abb. 9-98: Foto der Stirnseite (Probenaustritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (unmittelbar nach Ausbau der Probe aus dem Autoklaven)
Abb. 9-99: Foto der Stirnseite (Probeneintritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (unmittelbar nach Ausbau der Probe aus dem Autoklaven)

Abb. 9-100: Foto der Stirnseite (Probeneintritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (ca. eine Stunde nach Ausbau der Probe aus dem Autoklaven)
Abb. 9-101. Foto der Stirnseite (Probeneintritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (ca. fünf Stunden nach Ausbau der Probe aus dem Autoklaven)

Abb. 9-102: Foto der Stirnseite (Probenaustritt) der Probe BRA 07/13 nach dem Vermessen mit Formationswasser (ca. fünf Stunden nach Ausbau der Probe aus dem Autoklaven)
9.11.3 Ionenkonzentration

Abb. 9-103, Abb. 9-104 und Abb. 9-105 zeigen die mit Hilfe des AAS gemessenen Konzentrationsverläufe der Spezies Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) und Sr\(^{2+}\). In Abb. 9-106 ist die auf die Eintrittskonzentration normierte Konzentration dargestellt. Im Zeitbereich zwischen 2.328 und 10.944 Stunden liegen keine Messwerte vor, da wegen undichter Probenflaschenkappen die in diesem Zeitraum entnommenen Proben nicht auswertbar waren.

Die relative Natriumionenkonzentration beträgt am ersten Messpunkt (nach 1.680 Stunden) ca. 3,3 und fällt auf knapp 2,0 (nach 2.330 Stunden). Gegen Versuchsende (nach 10.940 Stunden) ist der Wert auf knapp 1,6 abgefallen.

Am ersten Messpunkt bei 1.680 Stunden beträgt die relative Kaliumionenkonzentration ca. 8,7 und fällt bis 1.872 Stunden auf 3,1 ab. Bei ca. 2.140 Stunden beträgt sie 3,6, bei ca. 2.230 Stunden 2,7. Sie steigt bis ca. 2.330 Stunden auf 3,3 und fällt bis zum Versuchsende bei 10.940 Stunden auf 2,7.

Die relative Magnesiumionenkonzentration liegt am ersten Messpunkt (nach 1.680 Stunden) bei etwa 4,2. Sie fällt dann auf Werte um 3 und verharrt bis zum Versuchsende auf diesem Level (nach 10.940 Stunden).

Zu Beginn der Messungen liegt die relative Calciumionenkonzentration bei knapp 1,0, sie fällt kurzzeitig auf etwa 0,8 (nach 1.870 Stunden), steigt dann wieder auf 1 und verharrt bei knapp 1 bis zum Versuchsende.

Bei der ersten Probennahme liegt die relative Strontiumionenkonzentration bei etwa 0,3 (nach 1.680 Stunden) und steigt dann kurzzeitig bis auf 2 (nach 1.870 Stunden) an. Anschließend fällt sie wieder auf unter 1 ab und liegt bei Versuchsende (nach 10.940 Stunden) knapp unter 0,8.

Die relativen Konzentrationen von Natrium, Kalium und Magnesium sind durchweg größer als 1 und zeigen mit fortschreitender Versuchszeit eine fallende Tendenz. Dies bedeutet einen Ionenaustrag dieser Elemente aus der Probe während der gesamten Versuchszeit. Die relative Calciumionenkonzentration bewegt sich während des Versuchs knapp unter 1, was auf eine leichte Eluierung des Calciums hinweist. Die relative Strontiumionenkonzentration nimmt bis auf die ersten beiden Messungen Werte von 0,8 bis 1,0 an, was auf eine leichte Strontiumionenadsorption in der Probe während eines großen Teils des Versuchszeitraums hindeutet.

Zusammenfassend zeigt dieser Versuch, dass die Elemente Natrium, Kalium und Magnesium während des gesamten Versuchs in unterschiedlichem Maße eluiert werden. Calcium und Strontium werden in geringem Maße adsorbiert, die relativen Konzentrationen beider Spezies bewegen sich über weite Teile des Versuchszeitraums in der Nähe von 1 und des chemischen Gleichgewichts.
Abb. 9-103: Ionenkonzentration von Na\(^+\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt

Abb. 9-104: Ionenkonzentration von K\(^+\), Sr\(^{2+}\) im Formationswasser am Probenaustritt
Abb. 9-105: Ionenkonzentration von \(\text{Mg}^{2+} \) im Formationswasser am Probenaustritt

Abb. 9-106: Relative Ionenkonzentrationen
9.12 Auswertung BRA 07/14

Abb. 9-107: Stirnseite der Probe BRA 07/14 vor Einbau in den Autoklaven (ohne sichtbare Risse)
9.12.1 Permeabilitätsmessungen mit Wasserstoff

Nach dem Einbau in den Autoklaven wurde die Probe am 22.02.2010 mit einem Überlagerungsdruck von 3,0 MPa beaufschlagt. Die bei diesem Überlagerungsdruck durchgeführten Permeabilitätsmessungen ergaben eine Erhöhung der Permeabilität mit steigendem Probeneintrittsdruck und sind deshalb nicht nach Klinkenberg auswertbar. Am 23.02.2010 wurde der Überlagerungsdruck auf 5,5 MPa erhöht. Die vom 25.02.2010 bis zum 08.03.2010 durchgeführten, in Abb. 9-109 dargestellten Permeabilitätsmessungen, sind Klinkenberg-auswertbar. Während des Messzeitraums sinkt die tatsächliche Permeabilität k von ca. $5,7 \cdot 10^{-17}$ m² auf $1,4 \cdot 10^{-17}$ m², was durch Kompaktierung der Probe in Folge der Überlagerungsdruckerhöhung erklärt werden.
kann. Bei der Druckabhängigkeit der scheinbaren Permeabilität ist in dieser Zeitspanne kein signifikanter Trend zu beobachten, lediglich die Messung vom 08.03.2010 weist eine etwas höhere Abhängigkeit auf.

Abb. 9-109: Permeabilitätsmessungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck

Die nach den Diffusionsmessungen vom 12.05. bis 02.06.2010 bei unverändertem Überlagerungsdruck durchgeführten Permeationsmessungen bei Raumtemperatur, 40 °C, 60 °C und 90 °C (Abb. 9-110), zeigen einerseits erwartungsgemäß eine durch weitere Kompaktierung des Probenmaterials induzierte Verringerung der tatsächlichen Permeabilität auf Werte um 4,5·10⁻¹⁸ m² und andererseits keinen signifikanten Einfluss der Temperatur auf die Permeabilität. Die Druckabhängigkeit der Permeabilität ist insgesamt tendenziell schwächer ausgeprägt als bei der ersten Versuchsreihe vom Februar und März.
Abb. 9-110: Permeabilitätsmessungen vom 12.05. bis 02.06.2010 bei 5,5 MPa Überlagerungsdruck

Bei einer Klinkenbergauftragung der Quotienten der scheinbaren und der tatsächlichen Permeabilität als Funktion des inversen mittleren Gasdrucks für die Messungen bis zum 08.03.2010 (Abb. 7-43) liegt der Klinkenbergfaktor b in einem Bereich von 0,24 bar < b < 1,40 bar und steigt tendenziell mit fortschreitender Versuchszeit. Hieraus ergeben sich Knudsendiffusionskoeffizienten von $1,28 \cdot 10^{-7}$ m²/s < D_{Kn} < $4,75 \cdot 10^{-7}$ m²/s. Diese Ergebnisse lassen auf einen vom 25.02.2010 bis zum 08.03.2010 stärker werdenden Anteil des Stofftransports im Knudsenregime schließen.

Bei den Klinkenbergsmessungen vom 12.05.2010 bis 02.06.2010 (Abb. 9-112) in einem Temperaturbereich von Raumtemperatur bis 90 °C wurden Klinkenbergfaktoren von 0,42 bar < b < 2,19 bar gemessen. Hierbei wurden mit fallender Versuchstemperatur und fortschreitender Versuchszeit tendenziell steigende Werte festgestellt, die Knudsendiffusionskoeffizienten betragen $2,25 \cdot 10^{-8}$ m²/s < D_{Kn} < $1,32 \cdot 10^{-7}$ m²/s, wobei die kleinsten Werte bei hohen Temperaturen zu Beginn des Versuchsintervalls gemessen wurden.

Der Knudsendiffusionskoeffizient D_{Kn} ist definiert als:

$$D_{Kn} = \frac{2 \varepsilon}{3 \cdot \tau} \cdot r \cdot \sqrt{\frac{8 \cdot R \cdot T}{\pi \cdot M}}.$$
demnach müsste $D_{Kn} \sim T^{0.5}$ sein. Aus dieser Abhängigkeit würde sich aus der Temperaturerhöhung von $T = 20 \, ^\circ C$ ($293 \, K$) auf $T = 90 \, ^\circ C$ ($363 \, K$) eine Erhöhung von D_{Kn} ergeben. Diese Erhöhung konnte jedoch nicht beobachtet werden. Eine mögliche Erklärung ist die durch bei kleinen Permeatströmen hohe relative Feuchte des Permeats, infolge des aus der Probe verdunstenden Wassers. Hierdurch wird die durchschnittliche Molmasse des Permeats signifikant erhöht, wodurch die Temperaturabhängigkeit von D_{Kn} überkompensiert würde. Bei einem Wasserdampfdruck von ca. 700 mbar bei 90 °C und mittleren Drücken in der Probe von ca. 2,5 bar würde sich der Stoffmengenanteil des Wassers in der Probe auf etwa $y_{H2O} = 0,28$ erhöhen, was zu einer Änderung der mittleren Molmasse des Permeats von $2,0 \cdot 10^{-3}$ kg/mol auf ca. $6,5 \cdot 10^{-3}$ kg/mol führte, was nach

$$\frac{D_{Kn,2}}{D_{Kn,1}} = \sqrt{\frac{T_2 \cdot M_1}{T_1 \cdot M_2}}$$

zu einer Verringerung des D_{Kn} bei einer Temperaturerhöhung von 293 K auf 363 K auf ca. 63,5 % des Anfangswertes führen müsste. Der durch die Verdunstung hervorgerufene Anstieg des mittleren Molekulargewichts und der damit hervorgerufene Abfall von D_{Kn} überkompensiert die D_{Kn} erhöhende Temperatursteigerung.

![Diagramm]

Abb. 9-111: Klinkenbergauftragung der Messungen vom 25.02. bis 08.03.2010 bei 5,5 MPa Überlagerungsdruck
9.12.2 Diffusionsmessungen

Vom 06.04.2010 bis zum 30.04.2010 wurden Diffusionsmessungen bei einem Überlagerungsdruck von 5,5 MPa und Absolutgasdrücken zwischen 2,0 bar und 7,0 bar durchgeführt. Hierbei ist nach Abb. 9-113 ein Anstieg von $D_\text{eff} \cdot p$ bis zu einem Druck von $p \approx 3$ bar zu beobachten, danach bleibt der Wert etwa bei etwa $2 \cdot 10^{-4}$ m2 Pa/s konstant, was das Erreichen des Zustands reiner Fickscher Diffusion bedeutet. Das bedeutet aber auch, dass der äquivalente Porenradius größer als die freie Weglänge der Gasmoleküle sein muss.

Abb. 9-114 zeigt die Auftragung von $D_{12} \cdot p$ über der Temperatur. Hierbei ist bei $p = 6,9$ bar (also bei rein Fickscher Diffusion) keine signifikante Abhängigkeit von D_{12} von der Temperatur festzustellen, $D_{12} \cdot p$ beträgt $2,1 \cdot 10^{-4}$ m2 Pa/s über den gesamten Temperaturbereich. Nach theoretischer Vorhersage sollte D_{12} eigentlich nach einem Arrheniusansatz ($D_{12} = D_0 \cdot e^{\frac{E_a}{R}T}$) mit der Temperatur ansteigen. Da der Dampfdruck des Wassers mit der Erhöhung der Temperatur ebenfalls exponentiell ansteigt, kommt es zu einer Verdunstung des Wassers über die Stirnseiten aus der Probe, die den Diffusionsstrom des Wasserstoffs behindert. Anscheinend kompensieren sich beide Effekte im betrachteten Temperaturfenster, so dass sich D_{12} nicht wesentlich mit der Temperatur ändert.
Abb. 9-113: $D_{12} \cdot p$ als Funktion des Drucks bei $T = 40^\circ C$

Abb. 9-114: Temperaturabhängigkeit von $D_e \cdot p$ bei $p = 6,9$ bar
9.12.3 Vermessen der Probe mit Zementwasser als Messfluid

Am 10.06.2010 wurden die Gasmessungen beendet und die Probe an der Probeneintrittsseite mit Zementwasser mit einem pH-Wert von 13 geflutet. Der Überlagerungsdruck wurde dabei wieder auf 2,0 MPa reduziert. Begonnen wurde mit einem Probeneintrittsdruck von 5,0 bar, der aber, um die Probenaufsaugung zu beschleunigen, nach ca. 100 Stunden auf knapp 10,0 bar erhöht wurde. Unmittelbar nach der Probeneintrittsdruckerhöhung war an der Probenaustrittsseite ein Gasvolumenstrom messbar. Weitere 350 Stunden später erfolgte der Wasserdurchbruch. Bis zum Wasserdurchbruch waren ca. 15 ml Gas aus der Probe verdrängt worden. Dies entspricht ca. 16 % des Gesamtporenvolumens. Bezogen auf das gesamte Probenvolumen von 624 ml resultiert hieraus eine Transportporosität von ca. 2,4 %. Dies zeigt, dass nur ein geringer Anteil der Porosität für den Stofftransport verfügbar ist. Über einen Zeitraum von ca. 250 Stunden nach dem Wasserdurchbruch tritt am Probenaustritt ein Zweiphasengemisch aus. Ohne dass bei den Druckbedingungen etwas verändert wurde, brach nach 250 Stunden der Gastransport komplett zusammen, und es permeierte nur noch Flüssigkeit durch die Probe (siehe Abb. 9-115). Der Flüssigkeitsvolumenstrom blieb dabei nahezu unverändert und er entsprach einer Permeabilität von ca. 1·10⁻¹⁷ m² (Abb. 7-45). Sie ist damit fast drei Größenordnungen höher als die im Zweiphasenflussgebiet aus dem Gasvolumenstrom errechnete. Da über einen Zeitraum von ca. 500 Stunden nur Flüssigkeit aus der Probe austrat, wurde der Eintrittsdruck auf 2,0 bar reduziert, um wieder ein Verschließen der Probe zu erreichen. Entsprechend der Druckabsenkung nahm zeitgleich auch der Flüssigkeitsvolumenstrom ab. Er blieb dann aber über einen Zeitraum von ca. 1.100 Stunden annähernd konstant bei ca. 1,2·10⁻⁴ ml/min, sodass davon auszugehen war, dass keine Reduzierung der Strömungswege durch Quellung oder Kompaktion erfolgte.

Um wieder ein Verschließen der Probe zu erreichen, wurde der Überlagerungsdruck zuerst auf 4,0 MPa und dann auf 5,0 MPa erhöht. Dies führte zunächst zu einem langsamen Abfall des Flüssigkeitsvolumenstroms, wobei nach der Erhöhung auf 5,0 MPa kurzzeitig wieder ein Gasvolumenstrom messbar war. Durch die weitere Erhöhung des Überlagerungsdrucks auf 6,0 MPa wurde der Abfall des Flüssigkeitsvolumenstroms nur unwesentlich beschleunigt.

Da bei diesem langsamen Abfall des Flüssigkeitsvolumenstroms eine Probendichtigkeit erst nach weiteren mehreren tausend Stunden Versuchszeit zu erwarten war, wurde 6.300 Stunden nach Versuchsbeginn, bei unverändertem Überlagerungsdruck von 6,0 MPa, der Probeneintrittsdruck auf null gesetzt, was mit einem unmittelbaren Versiegen der Volumenströme am Probenaustritt verbunden war.

Nimmt man diese 0,5 bar als Gasdurchbruchsdruck an, so kann mit der Hilfe der Washburn-Gleichung aus dem gemessenen Gaseintrittsdruck \(p_{ae} \), bei dem wieder ein Volumenstrom am Probenausricht gemessen werden konnte, ein äquivalenter Porenradius \(r_{aq} \) von ca. 2.800 nm abgeschätzt werden.

Abb. 9-115: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-117: Stirnseite der Probe BRA 07/14 nach Ausbau aus dem Autoklaven (ohne sichtbare Risse)
Abb. 9-118: Mantelseite der Probe 07/14 nach Ausbau aus dem Autoklaven (ohne sichtbare Risse)

9.12.4 Ionenkonzentration BRA 07/14

Die Probe BRA 07/14 wurde mit Zementwasser beaufschlagt. Dieses zeichnet sich gegenüber dem Formationswasser durch einen etwa 8,3-fachen Kaliumgehalt und einer Reduktion des Magnesiumgehalts um ca. 98,4 % aus. Die Konzentrationen von Natrium und Calcium sind gegenüber dem Formationswasser um 25 % bzw. 33 % erhöht, während die Strontiumkonzentration nahezu unverändert ist. Daher ist zu erwarten, dass unter Berücksichtigung der Ionentauscherfähigkeit des Tongesteins Kalium und besonders bezüglich Magnesiums stark von eins abweichende relative Konzentrationen am Austritt detektiert werden.
Abb. 9-119 und Abb. 9-120 zeigen die mit Hilfe des AAS gemessenen Konzentrationsverläufe der Spezies Na+, K+, Mg2+, Ca2+ und Sr2+. In Abb. 9-121 und Abb. 9-122 ist die auf die Eintrittskonzentration normierte relative Konzentration dargestellt.

Die relative Natriumkonzentration beträgt bei den ersten drei Messpunkten (Zeitpunkte 3.750 Stunden, 4.110 Stunden und 4.590 Stunden) ca. 1,5. Sie fällt bis zum Zeitpunkt 4.930 Stunden auf gut 1,4 und weiter bis auf 1,3 bei 5.530 Stunden ab. Bei 5.870 Stunden beträgt sie gut 1,4 (Abb. 9-121).

Die relative Kaliumkonzentration beträgt bei den ersten drei Messpunkten (3.750 Stunden, 4.110 Stunden und 4.590 Stunden) 0,4, bei 4.930 Stunden ca. 0,3 und bei den beiden letzten Messpunkten (5.530 Stunden und 5.870 Stunden) gut 0,2.

Die relative Calciumionenkonzentration ändert sich bis auf den Messwert bei 5.530 Stunden nur wenig. Dieser Messwert wird als zufälliger Fehler und damit als nicht belastbar angesehen. Bei allen anderen Messungen liegt die relative Calciumionenkonzentration zwischen 1,4 und 1,5.

Die relative Strontiumionenkonzentration beträgt etwa 2,1 nach ca. 3.750 Stunden und fällt über den gesamten Versuchszeitraum von knapp 2,1 auf 0,5 ab.

Die relative Magnesiumkonzentration schwankt nach Abb. 9-122 bei allen sechs Messpunkten zwischen 97 und 104.

Zusammenfassend zeigt dieser Versuch, dass die Elemente Natrium, Magnesium und Calcium während des Versuchs immer eluiert werden und Kalium immer adsor-

Abb. 9-119: Ionenkonzentration von Na\(^+\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt
Abb. 9-120: Ionenkonzentration von K^+, Mg^{2+}, Sr^{2+} im Formationswasser am Probenaustritt

Abb. 9-121: Relative Ionenkonzentrationen Na^+, K^+, Ca^{2+} und Sr^{2+}
Abb. 9-122: Relative Ionenkonzentrationen Mg$^{2+}$
9.13 Auswertung BRA 07/15

Die Probe BRA 7/15 wurde parallel zur Schichtung erbohrt und vermessen. Weder an der Stirn- noch an der Mantelseite waren Risse erkennbar. Der Einbau der Probe in den Autoklaven erfolgte am 27.07.2010 im bergfeuchten Zustand bei einer Probemasse von 1,467 kg. Aus der Volumenbestimmung und der Wägung wurde eine Porosität von ca. 13,4 % errechnet.

9.13.1 Permeabilitätsmessungen mit Stickstoff

Nach dem Einbau in den Autoklaven wurden die Permeabilitätsmessungen am 27.07.2010 mit einem Überlagerungsdruck von 2,0 MPa gestartet. Die durchgeführten Messungen waren klinkenbergauswertbar und zeigten bei diesem Überlagerungsdruck nach Abb. 9-123 eine teils deutliche Druckabhängigkeit der Permeabilität vom inversen mittleren Druck und tatsächliche Permeabilitäten von 1,6·10^{-16} m² < k < 7,8·10^{-17} m². Vom 27.07.2010 bis 30.07.2010 waren eine Halbierung der tatsächlichen Permeabilität und eine Verringerung der Abhängigkeit von 1/p_{mittl} um eine dekadische Größenordnung festzustellen. Der relative Anteil des Stofftransports im Knudsenregime am gesamten Stofftransport nahm folglich stark ab.

Abb. 9-123: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,0 MPa
Am 30.07.2010 wurde der Überlagerungsdruck auf 3,0 MPa erhöht. Nach dieser Erhöhung ist nach Abb. 9-123 eine deutliche Verringerung der Druckabhängigkeit der Permeabilität festzustellen. Die tatsächliche Permeabilität ist mit $1,7 \cdot 10^{-17} \text{m}^2 < k < 2,6 \cdot 10^{-17} \text{m}^2$ gegenüber den Messungen bei $p_u = 2,0 \text{MPa}$ um fast eine Größenordnung niedriger.

Am 05.08.2010 wurde der Überlagerungsdruck weiter auf 4,0 MPa erhöht. Bei dieser Messung war die Druckabhängigkeit der Permeabilität um etwa die Hälfte geringer als bei der vorangegangenen Messung. Zudem war eine relative starke Verringerung der absoluten Permeabilität über den Versuchszeitraum festzustellen. Die absolute Permeabilität betrug $6,5 \cdot 10^{-18} \text{m}^2 < k < 8,6 \cdot 10^{-18} \text{m}^2$. Die Ergebnisse dieser Permeabilitätsmessungen sind in Abb. 9-124 dargestellt.

Am 12.08.2010 wurde der Überlagerungsdruck auf 5,0 MPa erhöht. Bei dieser Messung war die Abhängigkeit der Permeabilität vom inversen mittleren Druck in ähnlicher Größe wie bei der vorangegangenen Messung. Ebenfalls fand eine Verringerung der absoluten Permeabilität über den Versuchszeitraum statt. Die absolute Permeabilität betrug $4,2 \cdot 10^{-18} \text{m}^2 < k < 5,0 \cdot 10^{-18} \text{m}^2$. Am 16.08.2010 wurde der Überlagerungsdruck auf 6,0 MPa erhöht. Bei dieser Messung war die Druckabhängigkeit der Permeabilität in ähnlicher Größe wie bei den vorangegangenen Messungen. Die Verringerung der absoluten Permeabilität über den Versuchszeitraum ist deutlich geringer als bei den vorangegangenen Messungen. Die absolute Permeabilität betrug $2,1 \cdot 10^{-18} \text{m}^2 < k < 2,3 \cdot 10^{-18} \text{m}^2$. Die Abhängigkeit der tatsächlichen Permeabilität nahm über den betrachteten Zeitraum etwa um den Faktor zwei ab.

Am 19.08.2010 wurde der Überlagerungsdruck auf 7,0 MPa erhöht. Nach dieser Erhöhung ist nach Abb. 9-125 eine Verringerung der Druckabhängigkeit der Permeabilität festzustellen. Die tatsächliche Permeabilität liegt bei $1,3 \cdot 10^{-18} \text{m}^2 < k < 1,6 \cdot 10^{-18} \text{m}^2$. Am 24.08.2010 wurde der Überlagerungsdruck auf 8,0 MPa erhöht, diese Erhöhung führt nach Abb. 9-125 zu einer leichten Verringerung der Druckabhängigkeit der Permeabilität. Die tatsächliche Permeabilität liegt bei $9,1 \cdot 10^{-19} \text{m}^2 < k < 9,7 \cdot 10^{-19} \text{m}^2$. Am 27.08.2010 wurde der Überlagerungsdruck auf 9,0 MPa erhöht, diese Erhöhung führt nach Abb. 9-125 zu einer leichten Verringerung der Druckabhängigkeit der Permeabilität. Die tatsächliche Permeabilität ist gegenüber der vorherigen Messung geringer und liegt bei $4,5 \cdot 10^{-19} \text{m}^2 < k < 4,7 \cdot 10^{-19} \text{m}^2$.

Abb. 9-124: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 – 6,0 MPa

Abb. 9-125: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 7,0 – 9,0 MPa
Am 10.09.2010 wurde der Überlagerungsdruck wieder auf 8,0 MPa und am 22.09.2010 auf 7,0 MPa verringert. Hierbei wurden nach Abb. 9-126 tatsächliche Permeabilitäten von $5,4 \times 10^{-19}$ m² und $4,5 \times 10^{-19}$ m² ermittelt. Die Druckabhängigkeit der Permeabilität bei diesen Messungen unterscheidet sich nur geringfügig.

Am 01.10.2010 wurde der Überlagerungsdruck auf 6,0 MPa verringert, am 05.10.2010 auf 5,0 MPa und am 08.10.2010 auf 4,0 MPa. Hierbei wurden nach Abb. 9-127 tatsächliche Permeabilitäten von $7,6 \times 10^{-19} \text{m}^2 < k < 1,8 \times 10^{-18} \text{m}^2$ bestimmt. Auch hier verändert sich die Druckabhängigkeit der Permeabilität wenig mit der Verminderung des Überlagerungsdrucks.

Am 15.10.2010 wurde der Überlagerungsdruck auf 3,0 MPa verringert und am 26.10.2010 auf 2,0 MPa. Hierbei wurden nach Abb. 9-128 tatsächliche Permeabilitäten von $1,8 \times 10^{-18} \text{m}^2 < k < 5,4 \times 10^{-18} \text{m}^2$ bestimmt. Die Druckabhängigkeit der Permeabilität ist bei den durchgeführten Messungen nahezu konstant.

![Diagramm](image.png)

Abb. 9-126: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 9,0 – 7,0 MPa
Abb. 9-127: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruk von 6,0 – 4,0 MPa

Abb. 9-128: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruk von 3,0 – 2,0 MPa
Eine Zusammenfassung der Permeabilitätsmessungen mit Stickstoff als Strömungsmedium ist in Abb. 9-129 dargestellt.

Die Hysterese der Permeabilität in Abhängigkeit des steigenden und fallenden Überlagerungsdrucks ist in Abb. 9-130 dargestellt. Hierbei zeigt sich, dass die durch Erhöhung des Überlagerungsdrucks von 2,0 MPa auf 9,0 MPa hervorgerufene Permeabilitätsverringerung nur teilweise bei Rücknahme des Überlagerungsdrucks reversibel ist. Es kommt zu einer irreversiblen Permeabilitätsverminderung, die nach Wiederabsenkung des Überlagerungsdrucks auf 3,0 MPa ca. eine dekadische Größenordnung ausmacht.

Abb. 9-129: Absolute und mittlere scheinbare Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit
Bei einer Klinkenbergauftragung der Quotienten der scheinbaren zur tatsächlichen Permeabilität als Funktion des inversen mittleren Gasdrucks (Abb. 9-131) liegt der Klinkenbergfaktor b bei Überlagerungsdrücken zwischen 2,0 MPa und 3,0 MPa in einem Bereich von $0,3 \text{ bar} < b < 1,7 \text{ bar}$, ohne signifikant vom Überlagerungsdruck abhängig zu sein. Hieraus ergeben sich Knudsendiffusionskoeffizienten von $1,5 \cdot 10^{-7} \text{ m}^2/\text{s} \; < \; D_{Kn} \; < \; 1,7 \cdot 10^{-6} \text{ m}^2/\text{s}$.

Abb. 9-132 zeigt die Messungen bei 4,0 MPa bis 6,0 MPa Überlagerungsdruck zwischen dem 27.07.2010 und dem 06.08.2010. Die Klinkenbergfaktoren der einzelnen Messungen liegen bei $0,7 \text{ bar} < b < 2,9 \text{ bar}$. Dies entspricht Knudsendiffusionskoeffizienten von $1,2 \cdot 10^{-7} \text{ m}^2/\text{s} \; < \; D_{Kn} \; < \; 5,1 \cdot 10^{-8} \text{ m}^2/\text{s}$. Tendentiell ist ein Anstieg des Klinkenbergfaktors mit dem Überlagerungsdruck zu verzeichnen.

In Abb. 9-133 sind die Messungen bei 7,0 MPa bis 9,0 MPa Überlagerungsdruck zwischen dem 20.08.2010 und dem 01.09.2010 dargestellt. Die Klinkenbergfaktoren der einzelnen Messungen liegen bei $0,6 \text{ bar} < b < 2,4 \text{ bar}$. Dies entspricht Knudsendiffusionskoeffizienten von $3,3 \cdot 10^{-9} \text{ m}^2/\text{s} \; < \; D_{Kn} \; < \; 1,5 \cdot 10^{-9} \text{ m}^2/\text{s}$. Die Messwerte bei 7,0 MPa streuen stark, bei 8,0 MPa und 9,0 MPa ist tendenziell ein Anstieg des Klinkenbergfaktors mit dem Überlagerungsdruck zu verzeichnen.
Abb. 9-131: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 2,0 MPa bis 3,0 MPa

Abb. 9-132: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 4,0 MPa bis 6,0 MPa
Abb. 9-133: Klinkenbergaufragung der Messungen bei Überlagerungsdrücken von 7,0 MPa bis 9,0 MPa

Abb. 9-134 zeigt die Messungen bei abnehmendem Überlagerungsdruck von 9,0 MPa auf 7,0 MPa zwischen dem 30.08.2010 und dem 23.09.2010. Die Klinkenbergfaktoren der einzelnen Messungen liegen bei $1,5 \text{ bar} < b < 3,1 \text{ bar}$. Dies entspricht Knudsendiffusionskoeffizienten von $3,3 \cdot 10^{-9} \text{ m}^{2}/\text{s} < D_{\text{Kn}} < 1,4 \cdot 10^{-8} \text{ m}^{2}/\text{s}$.

Abb. 9-135 zeigt die Messungen bei abnehmendem Überlagerungsdruck von 6,0 MPa auf 4,0 MPa zwischen dem 05.10.2010 und dem 15.10.2010. Die Klinkenbergfaktoren der einzelnen Messungen liegen bei $0,6 \text{ bar} < b < 3,3 \text{ bar}$. Dies entspricht Knudsendiffusionskoeffizienten von $1,3 \cdot 10^{-8} \text{ m}^{2}/\text{s} < D_{\text{Kn}} < 3,3 \cdot 10^{-8} \text{ m}^{2}/\text{s}$.
Abb. 9-134: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 9,0 MPa bis 7,0 MPa

Abb. 9-135: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 6,0 MPa bis 4,0 MPa
In Abb. 9-136 sind die Messungen bei 3,0 MPa und 2,0 MPa Überlagerungsdruck zwischen dem 18.10.2010 und dem 28.10.2010 dargestellt. Die Klinkenbergfaktoren der einzelnen Messungen liegen bei $1.3 \text{ bar} < b < 2.9 \text{ bar}$. Dies entspricht Knudsendiffusionskoeffizienten von $6.1 \cdot 10^{-8} \text{ m}^2/\text{s} < D_{Kn} < 1.1 \cdot 10^{-7} \text{ m}^2/\text{s}$. Die ermittelten Klinkenbergfaktoren als Funktion des steigenden und fallenden Überlagerungsdrucks sind in Abb. 9-137 aufgetragen. Bei niedrigen und mittleren Überlagerungsdrücken nehmen die Klinkenbergfaktoren mit steigendem Überlagerungsdruck tendenziell zu und erreichen bei Überlagerungsdrücken von 5,0 – 6,0 MPa ein Maximum. Bei höheren Überlagerungsdrücken fallen die Werte hingegen wieder etwas ab.

Abb. 9-137: Klinkenbergfaktor b als Funktion des Überlagerungsdrucks

Abb. 9-138: Knudsendiffusionskoeffizient D_{Kn} als Funktion des Überlagerungsdrucks
Abb. 9-139 zeigt den Klinkenbergfaktor \(b \) und den Knudsendiffusionskoeffizienten \(D_{Kn} \) als Funktion der tatsächlichen Permeabilität. Der Knudsendiffusionskoeffizient als absolutes Maß für den Stofftransport im Knudsenregime fällt durch eine überlagerungsdruckinduzierte Kompaktierung der Probe mit zunehmendem Überlagerungsdruck und sinkender Permeabilität tendenziell ab. Der Klinkenbergfaktor steigt mit abnehmender Permeabilität tendenziell aber unstetig an, was auf eine Zunahme des Anteils des Stofftransports im Knudsenregime am gesamten Stofftransport hindeutet, die mit der Abnahme des mittleren äquivalenten Durchmessers der für den Stofftransport zur Verfügung stehenden Wegsamkeiten korrespondiert. Besonders hoch ist der Klinkenbergfaktor nach längerem Anlegen eines hohen Überlagerungsdrucks, wie die ab dem 13.09.2010 ermittelten Werte bei \(k < 10^{-18} \text{ m}^2 \) zeigen. Zusammenfassend lässt sich feststellen, dass mit Zunahme des Überlagerungsdrucks der Stofftransport durch die Probe insgesamt erschwert wird. Gleichzeitig steigt der Knudsenanteil am verbleibenden Stofftransport an, was auf eine Verringerung des äquivalenten Porendurchmessers bei höheren Überlagerungsdrücken schließen lässt.

Abb. 9-139: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktion des Überlagerungsdrucks
9.13.2 Diffusionsmessungen

Vom 02.09.2010 bis 27.10.2010 wurden Diffusionsmessungen von Wasserstoff in Stickstoff durch die Probe bei Überlagerungsdrücken von 9,0 MPa bis 2,0 MPa und Absolutgasdrücken von ca. 7,0 bar durchgeführt. Die diesen Gasdrücken entsprechende mittlere freie Weglänge von $\lambda_{H2} \approx 15 \text{ nm}$ ist deutlich kleiner als die durchschnittlichen Äquivalenzdurchmesser von bisher untersuchten Proben. Deshalb soll der binäre Diffusionskoeffizient von H$_2$ in N$_2$ unter Ausschluss von Knudsendiffusion ermittelt werden. Abb. 9-140 zeigt den binären Diffusionskoeffizienten D_{12} und den effektiven Diffusionskoeffizienten D_e nach Bosanquet als Funktion des Überlagerungsdrucks. Bis auf den Bereich bei sehr hohen Überlagerungsdrücken von 8,0 MPa und 9,0 MPa steigt D_{12} mit fallendem Überlagerungsdruck von $D_{12} \approx 5,0 \cdot 10^{-13} \text{ m}^2/\text{s}$ bei $p_u = 7,0 \text{ MPa}$ auf etwa $D_{12} \approx 2,9 \cdot 10^{-12} \text{ m}^2/\text{s}$ bei $p_u = 2,0 \text{ MPa}$ an. Dieser Zuwachs ist etwa vergleichbar mit dem Permeabilitätszuwachs im selben Zeitraum. Das unregelmäßige Verhalten bei hohen Überlagerungsdrücken ist wahrscheinlich auf einen Messfehler zurückzuführen, die in diesem Bereich erhaltenen Ergebnisse werden daher als nicht belastbar eingestuft.

Im Vergleich mit den aus den Klinkenbergsmessungen erhaltenen Knudsendiffusionskoeffizienten D_{Kn} im gleichen Versuchszeitraum, die sich in der Größenordnung von $10^{-9} \text{ m}^2/\text{s}$ bis $10^{-7} \text{ m}^2/\text{s}$ bewegen, sind die ermittelten Werte für D_{12} etwa um drei dekadische Größenordnungen kleiner und stellen klar bei der Berechnung des D_e nach Bosanquet den dominanten, weil kleineren numerischen Wert dar, so dass der D_e numerisch nahezu identisch mit dem binären Diffusionskoeffizienten D_{12} ist.
Abschnitt 9.13.3 Vermessen der Probe mit Formationswasser als Messfluid

Begonnen wurden die Messungen mit Formationswasser bei einem Überlagerungsdruck von 1,0 MPa und einem Probeneintrittsdruck von 0,7 bar. Bei diesem Eintrittsdruck wurde unmittelbar nach Versuchsbeginn ein Gasaustrittsstrom detektiert. Bei ca. 2.880 Stunden wurde der Probeneintrittsdruck auf ca. 2,0 bar erhöht. Nach ca. 3.050 Stunden kam es zum Wasserdurchbruch. Innerhalb dieser 220 Stunden waren ca. 10,5 ml Gas aus der Probe verdrängt worden, dies entspricht ca. 12,6 % des aus der Porositätsbestimmung errechneten Gesamtporenvolumens. Bezogen auf das gesamte Probenvolumen resultiert hieraus zu diesem Zeitpunkt eine Transportporosität von ca. 1,7 %.

Nach dem Wasserdurchbruch muss am Probenaustritt von einer ZPS ausgegangen werden, weshalb die Permeabilitätswerte nur bedingt belastbar sind. Hierbei bricht ohne eine Änderung der Versuchsparameter zwischen etwa 3.240 Stunden und 3.260 Stunden der Gasstrom zusammen. Eine Erklärung für dieses Verhalten konnte...
nicht gefunden werden. Um ein Verschließen der Probe zu erreichen, wurde bei etwa 4.100 Stunden der Überlagerungsdruck auf 2,0 MPa, bei ca. 4.510 Stunden auf 3,0 MPa und bei ca. 5.040 Stunden auf 4,0 MPa erhöht. Hierbei wurde ein Probeeintrittsdruck von 2,0 bar beibehalten. Während der Gasvolumenstrom im Verlauf der Überlagerungsdruckerhöhung tendenziell geringer wird, nimmt das Formationswasservolumenstrom zu, was eventuell durch ein Auspressen von Flüssigkeit aus der Probe in Folge einer überlagerungsdruckinduzierten Kompaktierung zu Stande kommt. Unter der Anwendung des Gesetzes von Darcy ergeben sich eine minimale Gaspermeabilität von ca. 1·10^{-21} m² und eine Wasserpermeabilität von ca. 1·10^{-20} m².

Um zu überprüfen, ob die weiterhin gemessenen hohen Volumenströme evtl. auf Undichtigkeiten zurückzuführen sind, wurde bei gleich bleibendem Überlagerungsdruck von 4,0 MPa der Probeneintrittsdruck auf null gesetzt. Wie aus Abb. 7-35 zu ersehen ist, bleibt sowohl der Gas- als auch der Flüssigkeitsvolumenstrom auf nahezu dem gleichen Niveau wie vor der Absenkung des Probeneintrittsdrucks.

Abb. 9-141: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-142: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Direkt nach Ende des Versuchs wurde die Probe aus dem Autoklaven ausgebaut und fotografiert. Weder an den Stirnseiten (Abb. 9-143 und Abb. 9-144) noch an der Mantelseite Abb. 9-145 waren Risse festzustellen.

Abb. 9-143: Eintrittsseite der Probe BRA 07/15 unmittelbar nach Ausbau aus dem Autoklaven ohne sichtbare Risse
Abb. 9-144: Austrittsseite der Probe BRA 07/15 unmittelbar nach Ausbau aus dem Autoklaven ohne sichtbare Risse
Abb. 9-145: Mantelseite der Probe BRA 07/15 nach Ausbau aus dem Autoklav ohne sichtbare Risse
Abb. 9-146: Eintrittsseite der Probe BRA 07/15 nach sechs Tagen mit sichtbaren Rissen

Abb. 9-147: Austrittsseite der Probe BRA 07/15 nach sechs Tagen mit sichtbaren Rissen
Abb. 9-148: Mantelseite der Probe BRA 07/15 nach sechs Tagen mit sichtbaren Rissen
9.14 Auswertung BRA 07/18

Die Probe war ca. 1,5 Jahre in undichter Plastikfolie gelagert, was dazu führte, dass sie austrocknete und an der Oberfläche Risse zeigte. In Abb. 9-149 sind diese deutlich an der Stirnseite der Probe zu erkennen. Aus der Masse der Probe von 1,456 kg und dem Probenvolumen ergibt sich eine Gesamtporosität von ca. 16 %, dies entspricht einem Gesamtporenvolumen von ca. 102 ml.

9.14.1 Permeabilitätsmessungen mit feuchtem Stickstoff

An dieser Probe sollte gezeigt werden, welchen Einfluss das Durchströmen mit feuchtem Stickstoff auf das Durchlässigkeitsverhalten hat. Wegen der bei dieser Probe durch die vielen Risse relativ großen inneren Oberfläche wurde erwartet, dass ein eventueller Einfluss der Gasfeuchtigkeit auf das Durchlässigkeitsverhalten hier besonders deutlich würde. Um eine eventuelle plastische Verformung des Tons infolge der Feuchtigkeit in einem überschaubaren Zeitraum detektieren zu können, wurden die Messungen bei hohem, konstantem Überlagerungsdruck von 5,0 MPa durchgeführt.

Nach dem Einbau der Probe in den Autoklaven wurde zunächst die Anfangspermeabilität mit trockenem Stickstoff gemessen. Sie lag bei 7,9·10^{-15} m² und veränderte sich während der fünf Tage an denen mit trockenem Stickstoff gemessen wurde kaum. Anschließend folgte ebenfalls bei Raumtemperatur über einen Zeitraum von 900 Stunden eine kontinuierliche Durchströmung der Probe mit feuchtem Stickstoff (φ ≈ 1). Die Ergebnisse dieser Messungen sind in Abb. 9-150 im Einzelnen aufgeführt und in Abb. 9-151 zusammengefasst. Wie aus den Diagrammen zu ersehen, führt die Befeuchtung des Messfluids (Stickstoff) mit von φ ≈ 1 nur zu einer minimalen Verringerung der Permeabilität von 5·10^{-15} m² auf 3·10^{-15} m².

Nach diesen Ergebnissen war zu erwarten, dass auch eine weitere Durchströmung mit feuchtem Stickstoff zu keiner signifikanten Reduzierung der Durchlässigkeit führen würde. Der Versuch wurde deshalb nach einer Versuchszeit von ca. 1.000 Stunden beendet.

Zusammenfassend zeigte dieser Versuch, dass die Durchströmung mit feuchtem Gas zu keiner signifikanten Reduzierung der Permeabilität führt. Gründe hierfür können sein, dass sich nur der Feuchteeinfluss über eine deutlich längere Versuchzeit entscheidend auswirkt, da nur an den inneren Oberflächen der Strömungswege das feuchte Messgas mit den quellfähigen Anteilen des Tons in Kontakt kommt, und nur hier kann der Feuchteeinfluss zur Quellung und damit zu einer Verminderung des Permeationsquerschnitts führen. Wie aus dem zeitlichen Permeabilitätsverlauf in Abb. 9-151 aber zu ersehen, ist nach 900 Stunden, die die Probe mit feuchtem Gas durchströmte, der zeitliche Permeabilitätsabfall bereits vernachlässigbar gering.
Abb. 9-149: Stirnseite der Probe BRA 07/18 vor Versuch (Einschweißfolie der Probe war undicht)

Abb. 9-150: Scheinbare Permeabilität als Funktion des inversen Gasdrucks
Abb. 9-151: Einfluss der Gasfeuchte auf die Permeabilität
9.15 Auswertung BRA 07/19

Der Einbau der parallel zur Schichtung erbohrten Probe erfolgte am 30.07.2009 nach bestandenem H₂-Lecktest. Wegen der nicht mehr dichten Einschweißfolie war die Probe während der Lagerung teilweise ausgetrocknet und wies sichtbare Risse an beiden Stirnseiten auf, die über den gesamten Probendurchmesser verliefen. Die durch Wägung und Volumenbestimmung ermittelte totale Porosität war entsprechend hoch und betrug ca. 18,7 %.

Dies war der erste Versuch, in dem der Einfluss der Interaktion von Zementwasser mit Opalinuston auf die Durchlässigkeit untersucht wurde. Die Probe wurde bis zum Flüssigkeitsdurchbruch (von ca. 1.000 Stunden bis ca. 1.840 Stunden) mit Formationswasser und anschließend bis zum Versuchsende mit Zementwasser durchströmt.

9.15.1 Permeabilitätsmessungen mit Stickstoff

Nach dem Einbau in den Autoklaven wurde die Probe zunächst mit Überlagerungsdrücken von 2,0 und 3,0 MPa beaufschlagt. Die bei diesen Überlagerungsdrücken durchgeführten Permeabilitätsmessungen ergaben keine auswertbaren Ergebnisse, da mit der Erhöhung des Probeneintrittsdruckes auch die Permeabilität anstieg, was auf eine Porendilatation in der Probe oder eine Porenöffnung durch Überschreitung des Kapillardrucks von im Durchmesser kleinen Wegsamkeiten infolge des Gasdrucks hindeutete (siehe Abb. 9-152).

Erst ab einem Überlagerungsdruck von 4,0 MPa waren auswertbare Permeabilitätsmessungen möglich. Im gesamten mittleren Gasdruckbereich, in dem gemessen wurde (1,3 bis 4,0 bar), war nach Abb. 7-47 eine nur schwach ausgeprägte Abhängigkeit der gemessenen Permeabilität vom Gasdruck feststellbar. Dies lässt darauf schließen, dass die Durchströmung der Probe im Kontinuumsbereich stattfand, was auf relativ breite Risse schließen lässt. Aus dem Vergleich der mittleren Gasdrücke mit der freien Weglänge der Gasmoleküle (Abb. 7-47) und der Unabhängigkeit der scheinbaren Permeabilität vom mittleren Gasdruck, kann abgeschätzt werden, dass die äquivalenten Porenradien bzw. Rissbreiten deutlich größer als 30 nm sein müssen.

Die tatsächliche Permeabilität verringerte sich mit zunehmendem Überlagerungsdruck von ca. $4 \cdot 10^{-15}$ m² bei 3,0 MPa Überlagerungsdruck auf ca. $8 \cdot 10^{-16}$ m² bei 5,0 MPa.
Abb. 9-152: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 und 3,0 MPa

Abb. 9-153: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 und 5,0 MPa
Aus dem Verhältnis der tatsächlichen zur scheinbaren Permeabilität kann über den damit ermittelten Klinkenbergfaktor (Abb. 9-154) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor, desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die mittlere freie Weglänge der Gasmoleküle sind.

In Abb. 9-155 sind die Klinkenbergfaktoren über der wahren Permeabilität für die relevanten Messreihen zusammengefasst. Man erkennt, dass die Klinkenbergfaktoren im gesamten Permeabilitätsbereich ($8 \cdot 10^{-16} \text{ m}^2 \leq k \leq 2 \cdot 10^{-15} \text{ m}^2$) sehr klein sind und mit abnehmender Permeabilität nur minimal ansteigen.

Demnach kann davon ausgegangen werden, dass wie schon vorher erläutert, der Stofftransport überwiegend im Kontinuumbereich stattfindet.

Die D_{Kn}-Werte zeigten ebenfalls nur eine geringe Abhängigkeit von der Permeabilität. Die aus den vier auswertbaren Messungen errechneten Werte lagen alle im Bereich von $D_{Kn} \approx 3 \cdot 10^{-7} \text{ m}^2/\text{s}$.

Abb. 9-154: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 4,0 bis 5,0 MPa
Abb. 9-155: Klinkenbergfaktor als Funktion der Permeabilität

9.15.2 Vermessen der Probe mit Formationswasser

Nach den Messungen mit Stickstoff zur Bestimmung der Anfangspermeabilität wurden am 03.09.2009 die Gasmessungen bei Überlagerungsdrücken von 5,0 MPa beendet und die Probe wurde an der Probeneintrittsseite mit Formationswasser geflutet. Der Überlagerungsdruck wurde dabei wieder auf 1,5 MPa reduziert, um eine möglichst schnelle Sättigung der Probe mit Formationswasser bzw. den Flüssigkeitsdurchbruch zu erreichen. Die Aufsättigung der Probe wurde mit einem Probeneintrittsdruck von 1,5 bar gestartet und nach 100 h auf 5,5 bar erhöht. Diese Erhöhung war unmittelbar mit einem Gasaustritt an der Probenaustrittsseite verbunden, dem ca. 350 Stunden später der Wasserdurchbruch folgte. Bis zu diesem Zeitpunkt waren ca. 8 ml Gas aus der Probe verdrängt worden, was ca. 8 % des Gesamtporenvolumens von ca. 125 ml und einer Transportporosität von ca. 1,2 % entspricht. Hieraus lässt sich ebenfalls schließen, dass der Flüssigkeitstransport nur durch wenige Risse erfolgt, deren äquivalenter Porenradius aber deutlich im Bereich der Makroporen liegt.

Nach dem Flüssigkeitstürchbruch wurde der Probeneintrittsdruck wieder auf 2,3 bar reduziert, was aber zu keiner Verminderung des Flüssigkeitstaustrialtvolumenstromes führte. Ein Gasaustrittsstrom war über den gesamten Zeitraum nicht mehr messbar.
9.15.3 Einfluss der Durchströmung mit Zementwasser auf die Probendurchlässigkeit

Um zu ermitteln, bei welchem Probeneintrittsdruck kein Wasservolumenstrom mehr messbar ist, wurde anschließend der Probeneintrittsdruck auf 0,5 bar reduziert. Dies führte zunächst zu einer geringfügigen Abnahme des Flüssigkeitsvolumenstroms. In dieser Phase trat kurzzeitig auch wieder ein Gasvolumenstrom in der gleichen Größenordnung wie der Flüssigkeitsvolumenstrom auf. Da im Weiteren keine Änderung des Austrittsvolumenstroms zu erkennen war, wurde der Probeneintrittsdruck wieder auf Null gesetzt, was aber erst mit einer Verzögerung von ca. 500 Stunden, als auch der Überlagerungsdruck von 5,0 MPa auf 2,0 MPa abgesenkt wurde, zu einem Versiegen des Flüssigkeitsvolumenstromes führte. Nachdem über weitere ca. 500 Stunden keine messbaren Volumenströme mehr detektiert waren, wurde mit den Messungen zur Bestimmung des Gasdurchtrittsdrucks begonnen. Bei weiter konstantem Überlagerungsdruck von 2,0 MPa wurde die Probeneintrittsseite mit Stickstoff mit einem Druck von 0,5 bar beaufschlagt. Dies führte unmittelbar wieder zu einem Flüssigkeitsvolumenstrom am Probenaustritt. Auch die folgende Reduzierung des Überlagerungsdruckes auf 1,5 MPa bewirkte keine Änderung am Probenaustritt. Es wurde über einen Zeitraum von mehr als 1.000 Stunden nur Flüssigkeit detektiert, erst dann folgte ein kurzzeitiger Gasaustritt.
Bei diesem Versuch, bei dem die Probe eine hohe Anfangsporosität von fast 19 % aufwies, war auch bei hohen Überlagerungsdrücken und geringen Probeneintrittsdrücken keine Probendichtheit zu erreichen. Die Quellfähigkeit des Tons reichte nicht aus, um die vorhandenen Risse vollständig zu verschließen. Auch waren keine Anzeichen erkennbar, dass eventuelle Ausfällungen infolge der Durchströmung mit basischem Zementwasser zu einem veränderten Durchlässigkeitverhalten führten.

Erst als kein Probeneintrittsdruck mehr anlag, war auch kein Fluidaustritt mehr detektiert.

Geht man davon aus, dass der Flüssigkeitsaustritt bei der Gasdruckbeaufschlagung von 0,5 bar durch den Gaseintritt in die Probe hervorgerufen wurde, so ist von einem Gasdurchbruchsdruck von 0,5 bar auszugehen. Nach der Washburn-Gleichung liegt daher der äquivalente Porenradius bzw. die Rissweite in der Größenordnung von 2.800 nm.

Abb. 9-156: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
9.15.4 Ionenkonzentration

Die Probe BRA 07/19 wurde bis zum Flüssigkeitsdurchbruch (von ca. 820 Stunden bis ca. 1.840 Stunden) mit Formationswasser und anschließend bis zum Versuchsende mit Zementwasser durchströmt. Damit sollte untersucht werden, wie eine bereits mit Formationswasser aufgesättigte Probe auf die Beaufschlagung mit Zementwasser reagiert. Das Zementwasser zeichnet sich gegenüber dem Formationswasser durch einen etwa 8,3-fach erhöhten Kaliumgehalt und einer Reduktion des Magnesiumgehalts um ca. 98,4 % aus. Die Konzentrationen von Natrium und Calcium sind gegenüber dem Formationswasser um 25 % bzw. 33 % erhöht, während die Strontiumkonzentration nahezu unverändert ist. Daher ist zu erwarten, dass unter Berücksichtigung der Ionentauscherfähigkeit des Tongesteins bzgl. des Kaliums und besonders des Magnesiums stark von 1 abweichende relative Konzentrationen am Probenaustritt detektiert werden. Abb. 9-158 und Abb. 9-159 zeigen den mit Hilfe des AAS gemessenen Konzentrationsverlauf der Spezies Na⁺, K⁺, Mg²⁺, Ca²⁺ und Sr²⁺. In Abb. 9-160 und Abb. 9-161 ist die auf die Eintrittskonzentration normierte relative Konzentration dargestellt.

Die relative Natriumkonzentration beträgt zum Zeitpunkt der ersten Probennahme, nach 1.620 Stunden, ca. 1,5. Bis zu diesem Zeitpunkt wurde die Probe mit Formati-
onswasser durchströmt. Sie steigt anschließend leicht auf ca. 1,7 an und fällt dann bis zum Versuchsende (nach 10.810 Stunden) geringfügig bis auf ca. 1,3 ab.

Da der erste Wert der relativen Kaliumkonzentration auf die Kaliumkonzentration des Formationswassers bezogen ist, die um den Faktor 10 geringer als die des Zementwassers ist, weicht die relative Konzentration mit 6 deutlich von den Folgewerten ab. Die erste nach dem Beginn der Durchströmung mit Zementwasser gemessene relative Ionenkonzentration bei 2.120 Stunden beträgt ca. 1,5. Bis zum Versuchsende bei ca. 10.810 Stunden fällt dieser Wert kontinuierlich bis auf knapp 0,4 ab. Zu keiner Zeit der Durchströmung mit Zementwasser fällt der Wert unter 1.

Aufgrund der gegenüber dem Zementwasser um den Faktor 76 höheren Ionenkonzentration des Formationswassers beträgt die relative Magnesiumkonzentration am ersten Messpunkt nur 5. Die relative Konzentration liegt am ersten Messpunkt nach dem Beginn der Durchströmung mit Zementwasser nach 2.120 Stunden bei 383. Im Laufe der ersten drei Messungen fällt sie auf 361 (nach 2.500 Stunden) ab. Bis ca. 6.270 Stunden ist sie auf 297 und bis Versuchsende nach ca. 10.810 Stunden ist sie bis auf 290 abgefallen.

Wegen der geringen Unterschiede der Calciumkonzentration im Formations- und Zementwasser liegt zu Beginn der Messungen die relative Calciumionenkonzentration nur geringfügig über den folgenden Werten. Zwischen 2.120 Stunden und 2.500 Stunden bleibt sie bei knapp 0,6 nahezu konstant. Bis 5.960 Stunden bzw. 6.270 Stunden ist ein leichter Anstieg auf gut 0,7 festzustellen. Bis zum letzten Messwert bei 10.810 Stunden ist ein weiterer Anstieg auf gut 1,3 zu verzeichnen.

Wegen der fast gleichen Strontiumkonzentration im Zement- und Formationswasser weicht die relative Ionenkonzentration bei den Anfangswerten auch nur minimal ab. Sie beträgt gut 0,8 bei 1.620 Stunden und fällt auf 0,4 bei 2.500 Stunden. Bis zum letzten Messpunkt nach 10.810 Stunden schwankt sie dann zwischen 0,3 und 0,5. Bei allen Elementen außer Calcium zeigt der zeitliche Verlauf der Konzentrationen eine fallende Tendenz (Abb. 9-160 und Abb. 9-161). Bei der Calciumionenkonzentration ist eine langsam steigende Tendenz der Konzentration mit zunehmender Versuchszeit zu beobachten.

Die relativen Konzentrationen von Natrium und Magnesium sind durchweg größer als 1, was einen Ionenaustrag dieser Elemente aus der Probe während fast der gesamten Versuchszeit bedeutet. Aufgrund der zementwasserbedingten vergleichsweise niedrigen Magnesiumioneneintrittskonzentration kommt es zu einem starken, über die Versuchszeit nur wenig abnehmenden Magnesiumionenaustrag mit relativen Konzentrationen von etwa 300. Die relative Natriumkonzentration fällt von ca. 1,8 bei ca. 1.620 Stunden auf ca. 1,3 bei 5.960 Stunden und bleibt dann konstant, was zunächst einen mit der Zeit geringer werdenden Ionenaustrag bedeutet, dem ein kon-
stanter Ionenaustieg auf niedrigem Niveau folgt. Die Kaliumionenkonzentration bleibt über der gesamten Versuchszeit immer kleiner als 1 und fällt tendenziell von 0,6 auf knapp 0,4, was mit einer sich mit zunehmender Versuchszeit verstärkenden Kaliumionenadsorption in der Probe erklären lässt. Die Calciumionenkonzentration steigt über die Versuchszeit langsam von knapp 0,6 auf gut 1,3 an. Dies bedeutet zunächst einen langsam schwächer werdenden Calciumioneneintrag in die Probe. Die letzte Messung gegen Versuchsende nach 10.810 Stunden zeigt zwar einen Calciumionenaustieg an, dies kann aber auch auf eine Messungenauigkeit zurückzuführen sein. Die relative Sr$^{2+}$-Konzentration ist immer kleiner 1 und fällt über den gesamten Versuchszeitraum von gut 0,8 auf 0,3 ab, was sich durch eine mit zunehmender Versuchszeit steigende Strontiumionenaufnahme in der Probe erklären lässt.

Abb. 9-158: Ionenkonzentration von Na\(^+\), Mg\(^{2+}\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt

Abb. 9-159: Ionenkonzentration von K\(^+\), Sr\(^{2+}\) im Formationswasser am Probenaustritt
Abb. 9-160: Relative Ionenkonzentrationen Na⁺, K⁺, Ca²⁺ und Sr²⁺

Abb. 9-161: Ionenkonzentrationen Mg²⁺
9.15.5 pH-Wert Änderungen

![Diagramm: pH-Werte der Flüssigkeit am Probenaustritt](image-url)

Abb. 9-162: pH-Werte der Flüssigkeit am Probenaustritt
9.15.6 Optische Untersuchung der Probe

Abb. 9-163: Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19
Abb. 9-164: Probenoberfläche von BLT 10/11/03

Abb. 9-165: 3D-Darstellung des Präzipitat in möglicher Wegsamkeit in Probe BRA 07/19
Abb. 9-166: 3D-Darstellung der eines Probenoberflächenausschnitts von BLT 10/11/03

Abb. 9-167: Detail des Präzipitats

9.15.7 Wellenlängendispersive Röntgenfluoreszenzanalyse (WDRFA)

Die Analyse wurde mit Hilfe eines Wellenlängendispersiven Röntgenfluoreszenzspektrometers der Firma Bruker, Modell S8 Tiger, durchgeführt. Durch diese Messung wurden alle chemischen Elemente ab der Ordnungszahl von Magnesium erfasst.

Abb. 9-169 und Abb. 9-170 zeigen die erhaltenen Röntgenfluoreszenzspektren.
Abb. 9-169: WDRFA-Spektrum der präzipitatfreien Probe

Abb. 9-170: WDRFA-Spektrum der präzipitatbehafteten Probe

Hierbei ist im Vergleich der Proben aus der vermuteten Wegsamkeit mit denen durch die kein Zementwasser strömte, ein leicht erhöhter Calciummassenanteil festzustellen, sowie leicht reduzierte Kalium- und Magnesium-, sowie stark reduzierte Strontiummassenanteile.

Abb. 9-171: Analysenergebnisse WDRFA BRA 07/19

Diese Ergebnisse stimmen teilweise mit den Erwartungen aus der AAS-Analyse überein. Hier wurde eine starke Eluierung von Magnesium beobachtet. Dieses Magnesium muss aus den dem Strömungskanal umhüllenden Ton stammen, dort muss es folglich zu einer Magnesiumabreicherung kommen, die tendenziell durch die RFA bestätigt wird. Calcium wurde über einen großen Teil der Versuchszeit in relativ kleinen Mengen vom Ton adsorbiert, was den leicht erhöhten Calciumanteil in der Nähe der Wegsamkeit erklärt. Kalium und Strontium werden ebenfalls in die Probe eingetragen, zeigen aber in der RFA wider Erwarten im durchströmten Bereich geringere Massenanteile.
9.16 Auswertung BRA 07

Die Probe stammt aus Mont Terri und wurde am 07.12.2005 aus einer Tiefe von ca. 7,7 m parallel zur Schichtung erbohrt. Bis zum Einbau in den Autoklaven wurde sie, luftdicht verschlossen, bei einem Überlagerungsdruck von 20 bar gelagert. Nach dem Ausbau aus der Lagerzelle bis zum Einbau in den Autoklaven war die Probe ca. zwei Stunden Umgebungsbedingungen ausgesetzt. Abb. 9-172 zeigt die Stirnseite der Probe. Es sind drei feine Risse erkennbar, die jeweils vom Rand bis ca. ein Dreißigstel der jeweiligen Sehnenlänge verlaufen. In Längsrichtung waren die Risse nur ca. 3 bis 4 cm an der Probenoberfläche sichtbar. Die Probe wurde vermessen und gewogen. Die hieraus ermittelte totale Porosität beträgt ca. 12,6 %.

Abb. 9-172: Stirnseite der Probe BRA 07 vor Versuch

9.16.1 Permeabilitätsmessungen mit Stickstoff

Am 11.05.2010 wurde die Probe in den Autoklaven eingebaut und bei einem Überlagerungsdruck von 2,0 MPa wurden ca. 20 Stunden später die ersten Permeabilitätsmessungen durchgeführt. Die Ergebnisse dieser Messungen sind in Abb. 9-173 dargestellt und in Abb. 9-174 zusammengefasst. Die über einen Zeitraum von knapp zweieinhalb Monaten bei Überlagerungsdrücken von 2,0 und 3,0 MPa durchgeführt-
ten Messungen führten zu einem mit keinem aus Versuchen mit Proben aus der Auflockerungszone vergleichbaren Verlauf. Die geringste Permeabilität von ca. $1 \cdot 10^{-21}$ m² wurde bei der ersten Messung bei einem Überlagerungsdruck von 2,0 MPa gemessen. Die folgenden Messungen bei 2,0 und 3,0 MPa zeigten einen Anstieg der Permeabilität auf Werte von bis zu ca. $1,3 \cdot 10^{-20}$ m². Die Lagerung der Probe während der folgenden ca. 1.000 Stunden bei 2,0 MPa führte nur zu einer geringfügigen Permeabilitätsabnahme. Erklärbar ist dies nur, wenn man davon ausgeht, dass infolge der Belastung des Tons durch den Überlagerungsdruck weitere Wegsamkeiten entstanden, die die Permeation erleichterten.

Abb. 9-173: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 2,0 MPa und 3,0 MPa

In Abb. 9-176 sind die Klinkenbergfaktoren über der wahren Permeabilität für alle Messreihen zusammengefasst. Man erkennt, dass b für die erste Messung bei 2,0 MPa, bei der eine Permeabilität von ca. 1·10^{-21} m² gemessen wurde, etwa um den Faktor zehn größer ist als bei den späteren Messungen im Permeabilitätsbereich von 8,8·10^{-21} m² bis 1,3·10^{-20} m². In diesem Bereich sind die Klinkenbergfaktoren nahezu unabhängig von der Permeabilität und liegen zwischen 5 und 28 bar. Hieraus ist zu schließen, dass hier der Stofftransport hauptsächlich im Kontinuumsbereich stattfindet.
Abb. 9-175: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken

Abb. 9-176: Klinkenbergfaktor, abhängig vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität
In Abb. 9-177 sind die mittlere freie Weglänge der Gasmoleküle λ und der Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität k aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet. Wie aus dem Diagramm zu ersehen ist, bleibt in dem gesamten vermessen Permeabilitätsbereich von $1,1 \cdot 10^{-21} \text{m}^2$ bis $1,3 \cdot 10^{-20} \text{m}^2$ die freie Weglänge der Stickstoffmoleküle nahezu unverändert, während der Knudsendiffusionskoeffizient im Bereich $9,4 \cdot 10^{-21} \text{m}^2$ bis $1,3 \cdot 10^{-20} \text{m}^2$ deutlich abnimmt. Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die Interaktion der Gasmoleküle mit der Porenwand abnimmt, bedeuten dies für diesen Bereich $3,5 \cdot 10^{-18} \text{m}^2 \leq k \leq 2 \cdot 10^{-19} \text{m}^2$, wenn bei Konstanz der freien Weglänge der Knudsendiffusionskoeffizient abnimmt, dass der effektive Porenradius in diesem Bereich zunimmt. Wie vorher schon vermutet, können infolge der Belastung des Tons durch den Überlagerungsdruck weitere Risse entstanden sein, die die Poren- bzw. Rissstruktur vergrößerten. Hieraus ist zu schließen, dass infolge der Erhöhung des Überlagerungsdruckes die effektiven Porenradien vergrößert wurden, und infolgedessen Gastransport im Kontinuumsbereich erfolgt. Demnach lag der äquivalente Porenradius zu Beginn der Untersuchungen im Bereich der freien Weglänge von ca. 20 nm, nahm im Laufe des Versuchs aber deutlich zu. Eine eindeutige Aussage wäre aber nur in Kombination mit Diffusionsmessungen möglich.

Nach dem Vermessen der Probe bei 2,0 MPa wurden die Permeabilitätsmessungen mit Gas beendet.

Abb. 9-177: Knudsendiffusionskoeffizient in Abhängigkeit von der Permeabilität
9.16.2 Vermessen der Probe mit Formationswasser als Messfluid

Begonnen wurden die Messungen mit Formationswasser bei einem Überlagerungsdruck von 2,0 MPa und einem Probeneintrittsdruck von 10,0 bar. Da bei diesem Eintrittsdruck unmittelbar Gas am Probenaustritt ausströmte, wurde untersucht, ob dies nicht auf Randläufigkeiten zurückzuführen war. Deshalb wurde der Probeneintrittsdruck auf 5,0 bar reduziert. Da nun kein Gasaustritt mehr detektierbar war, wurde der Eintrittsdruck jetzt schrittweise bis auf 16,0 bar erhöht. Erst nach dieser Erhöhung war am Probenaustritt wieder ein Gasvolumenstrom messbar.

Ca. 840 Stunden nachdem am Probenaustritt der erste Gasaustritt beobachtet werden konnte, erfolgte der Flüssigkeitsdurchbruch. Innerhalb dieser 840 Stunden waren ca. 8,3 ml Gas aus der Probe verdrängt worden, dies entspricht ca. 11 % des aus der Porositätsbestimmung errechneten Gesamtporenvolumens. Bezogen auf das gesamte Probenvolumen resultiert hieraus zu diesem Zeitpunkt eine Transportporosität von ca. 1,3 %. Ab ca. 4.450 Stunden war kein Gasvolumenstrom mehr detektierbar, die Probe wurde ab hier nur noch von Flüssigkeit permeiert. Um wieder ein Verschließen der Probe zu erreichen, wurde bei etwa 4.850 Stunden der Probeneintrittsdruck auf 5,3 bar, und bei ca. 5.180 Stunden weiter auf 2,4 bar abgesenkt. Zwischen ca. 5.230 und 5.730 Stunden trat ein Gasvolumenstrom auf, dessen Ursache nicht geklärt werden konnte. Danach wurde der Probeneintrittsdruck auf null abgesenkt. Unmittelbar nach der letzten Absenkung versiegten die Austrittströme völlig. Bei ca. 6.750 Stunden wurde zur Bestimmung des Gasdurchbruchsdrucks die Probe wieder mit Stickstoff bei einem Probeneintrittsdruck von ca. 0,5 bar beaufschlagt. Unmittelbar nach der Beaufschlagung stellte sich eine Zweiphasenströmung am Probenaustritt ein. Mit Hilfe der Washburn-Gleichung kann aus diesem Druck ein Äquivalenzdurchmesser von über 2.800 nm berechnet werden. Dieser Wert ist im Vergleich zu vielen anderen Proben sehr hoch und wurde nicht erwartet, da Probe BRA 07 nicht aus der Auflockerungszone sondern aus dem intakten Wirtsgestein stammt und somit nicht von spannungsumlagerungsinduzierten Rissen behaftet ist, die üblicherweise zu so hohen Äquivalenzdurchmessern führen.

Nach dem Ausbau der Probe aus dem Autoklaven wurden Stirnseite und Mantelfläche der Probe fotografiert. Wie in Abb. 7-12 und Abb. 7-13 zu erkennen, ist der rela-
tiv große Äquivalenzdurchmesser durch den deutlich sichtbaren Riss zu erklären, der ein Probensegment abzutrennen scheint. Die drei Stunden später gemachten Aufnahmen (Abb. 7-14 und Abb. 7-15) zeigen, dass infolge der mechanischen Entlastung und der Trocknung weitere Risse längs der Schichtungsgrenzen entstanden sind.

Abb. 9-178: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probenaustrittsdruck
Abb. 9-179: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-180: Stirnseite der Probe BRA 07 nach Versuch, Riss rot markiert
Abb. 9-181: Mantelansicht der Probe BRA 07 nach Versuch, Riss rot markiert

Abb. 9-182: Stirnseite der Probe BRA 07 (drei Stunden nach Ausbau aus dem Autoklaven)
Abb. 9-183: Mantelansicht der Probe BRA 07 (drei Stunden nach Ausbau aus dem Autoklaven)
9.17 Auswertung BLT 10/10/01

9.17.1 Probentrocknung

Die Probe wurde parallel zur Schichtung erbohrt und auch parallel zur Schichtung vermessen. Sie wurde vor Versuch auf Gewichtskonstanz getrocknet, wobei sie während der Trocknung in der Gummimanschette eingepresst war. Bezogen auf die Gesamtausgangsmasse betrug der Gewichtsverlust ca. 7 % (Abb. 9-184).

Aus der Masse der getrockneten Probe und der Probengeometrie ergibt sich eine Gesamtporosität von ca. 18,5 %, was einem Gesamtporenvolumen von ca. 160 ml entspricht.

Abb. 9-184: Änderung des Probengewichts infolge der Trocknung

Wie aus den Fotos in der Abb. 9-185 zu ersehen ist, ist trotz der Trocknung nur an der Probeneintrittsseite (Front), etwa in Probenmitte, ein Riss sichtbar. Die Probenaustrittsseite weist keine sichtbaren Risse auf.
9.17.2 Permeabilitätsmessungen mit Stickstoff

9.17.3 Permeabilitätsmessungen mit Formationswasser
Nach den Gasmessungen erfolgte die Beaufschlagung mit Formationswasser bei einem Überlagerungsdruck von 1,5 MPa. Um die Probenaufsaftigung zu beschleunigen wurde der Probeneintrittsdruck von 1,0 bar auf 2,5 bar und dann auf 5,0 bar erhöht, und ca. 1.000 Stunden nach Versuchsbeginn erfolgte der Wasserdurchbruch bei einem Probeneintrittsdruck von 5,0 bar. Die seit Beginn der Beaufschlagung mit Formationswasser bis zum Wasserdurchbruch vom Wasser aus dem Porenraum der Probe verdrängte Gasmenge betrug ca. 84 ml. Bezogen auf das Gesamtporenvolumen von 154 ml vor der Wassersättigung sind dies ca. 54 %. Hieraus lässt sich...
schließen, dass infolge der Trocknung die Probenporosität durch Durchgangsporen dominiert wird, die aber vor Versuch an den Stirnflächen nicht sichtbar waren. Aus der aus der Probe verdrängten Gasmenge von 84 ml lässt sich eine Transportporosität von ca. 10 % abschätzen. Dies bedeutet, dass der Anteil der Transportporosität von der Gesamtporosität ca. 54 % beträgt.

Bei konstantem Eintrittsdruck von 5,0 bar war während der folgenden ca. 2.000 Stunden kein Gasaustritt messbar. Die zwischenzeitliche Erhöhung des Überlagerungsdruckes von 1,5 MPa auf 2,5 MPa und die Reduzierung des Probeneintrittsdrucks führten zu einer Abnahme des Flüssigvolumenstroms auf Werte von ca. 5·10⁻⁵ ml/min, was einer Permeabilität von ca. 1·10⁻¹⁹ m² entspricht. Bei einem Eintrittsdruck von 2,2 bar war auch kurzzeitig wieder ein Gasvolumenstrom messbar, der aber schnell wieder versiegte. Da wegen der durch die Trocknung entstandenen relativ großen Risse eine Dichtheit der Probe nicht zu erwarten war, wurde ca. 3.800 Stunden nach Versuchsbeginn die Probe mit Gas beaufschlagt. Wie aus Abb. 9-186 und Abb. 9-187 zu ersehen ist, führt dies kurzzeitig bei einem Eintrittsdruck von 2,7 bar zu einem Gasaustritt, auf den Flüssigkeitsvolumenstrom hatte dies aber nur geringe Auswirkungen. Auch die weitere Erhöhung des Überlagerungsdruckes auf 3,2 MPa führte zu keinen signifikanten Änderungen. Da aus diesen Ergebnissen weder Aussagen zum Gasdurchbruchsdruck noch zu Porengeometrie möglich waren, wurde nach ca. 7.500 Stunden Versuchszeit der Versuch beendet.

Abb. 9-186 Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme in Abhängigkeit vom Probeneintritts- und Überlagerungsdruck
Abb. 9-187: Zeitlicher Verlauf der Permeabilität in Abhängigkeit von Probeneintritts- und Überlagerungsdruck

9.17.4 Ionenkonzentration

Abb. 9-188 und Abb. 9-189 zeigen den mit Hilfe der Atomabsorptionspektroskopie (AAS) gemessenen Konzentrationsverläufe der Spezies Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) und Sr\(^{2+}\). In Abb. 9-190 ist die auf die Eintrittskonzentration normierte Konzentration dargestellt.

Die relative Natriumkonzentration fluktuiert an den ersten fünf Messpunkten zwischen ca. 790 Stunden und ca. 1.340 Stunden zwischen 1,5 und 1,6. Danach fällt sie über 1,4 nach ca. 1.460 Stunden auf Werte von 1,3 bis zu dem letzten Messwert nach ca. 1.850 Stunden ab.

Nach ca. 790 Stunden beträgt die relative Kaliumionenkonzentration ca. 5,4 und fällt auf gut 3,8 nach ca. 1.080 Stunden ab. Nach ca. 1.170 Stunden ist sie wieder auf knapp 4,4 angestiegen und bleibt bis zum nächsten Messpunkt nach ca. 1.270 Stunden etwa auf diesem Niveau. Ab ca. 1.340 Stunden fällt die relative Konzentration bis auf 2,9 nach ca. 1.750 Stunden. Bei der letzten Messung nach ca. 1.850 Stunden ist wieder ein Anstieg auf gut 3,2 zu verzeichnen.

Am ersten Messpunkt nach ca. 790 Stunden beträgt die relative Magnesiumkonzentration 2,6 und fällt danach auf 2,0 nach ca. 1.080 Stunden ab, um dann wieder bis auf ca. 2,3 nach 1.270 Stunden anzusteigen. Danach fällt sie bis zum Versuchsende auf Werte von 1,5 - 1,6 ab.
Die relative Calciumionenkonzentration fällt von ca. 2,1 nach 790 Stunden über 1,5 nach ca. 1.080 Stunden bis auf 1,1 beim letzten Messwert nach ca. 1.850 Stunden ab. Die relative Strontiumionenkonzentration beträgt 1,8 nach 790 Stunden und fällt dann kontinuierlich bis gut 1,3 nach ca. 1.340 Stunden. Danach steigt sie wieder leicht an und fluktuiert zwischen 1,5 und 1,6.

Bei allen untersuchten Ionenarten zeigt der zeitliche Verlauf der Konzentrationen eine leicht fallende Tendenz mit fortschreitender Versuchszeit. Die relativen Konzentrationen aller Spezies sind durchweg größer als 1, was einen mit fortschreitender Versuchszeit geringer werdenden Ionenaustrag der untersuchten Elemente aus der Probe während fast der gesamten Versuchszeit bedeutet, die Calciumkonzentration fällt bei höheren Versuchszeiten auf mittlere Konzentrationswerte von knapp 1,0 bis 1,1 ab.

Abb. 9-188: Ionenkonzentration von Na⁺ und Ca²⁺ im Flüssigkeitsaustritt am Probenaustritt
Abb. 9-189: Ionenkonzentration von K⁺, Mg²⁺ und Sr²⁺ im Formationswasser am Probenaustritt

Abb. 9-190: Relative Ionenkonzentrationen
9.18 Auswertung BLT/10/10/02

Die Probe wurde parallel zur Schichtung erbohrt und auch parallel zur Schichtung vermessen. Sie war im Jahre 2000 von der BGR zur Verfügung gestellt worden und bis zum Einbau luftdicht verschlossen, aber drucklos gelagert. Sie wurde am 17.02.2008 im bergfeuchten Zustand in den Autoklaven eingebaut und wies keine sichtbaren Risse auf. Bei einer angenommenen Korndichte von 2.740 kg/m³ ergab sich aus der Volumenbestimmung und der Wägung eine Gesamtporosität von ca. 12 %.

9.18.1 Permeabilitätsmessungen mit Stickstoff

Mit den Permeabilitätsmessungen wurde am 19.02.2008 bei einem Überlagerungsdruck von 1,0 MPa begonnen. Die bei diesem Überlagerungsdruck gemessene Permeabilität zeigt einen vernachlässigbaren Einfluss der gemessenen scheinbaren Permeabilität vom Gasdruck. Die tatsächliche Permeabilität beträgt $k = 2,5\times10^{-16}$ m². Die an den folgenden Tagen durchgeführten Messungen bei $p_0 = 1,5$ MPa ergaben Permeabilitäten, die ca. eine Größenordnung unter der bei $p_0 = 1,0$ MPa lagen. Die Erhöhung des Überlagerungsdruckes auf 2,0 MPa führte zu einer weiteren Permeabilitätsabnahme auf Werte von ca. $k = 6,5\times10^{-18}$ m². Die Abhängigkeit der scheinbaren Permeabilität vom Gasdruck ist weiter relativ gering. In Abb. 9-191 sind die Ergebnisse der Messungen bei Überlagerungsdrücken von 1,0 bis 2,0 MPa dargestellt.

Abb. 9-191: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 1,0 bis 2,0 MPa
Die Auswirkungen einer weiteren Erhöhung des Überlagerungsdruckes sind in Abb. 9-192 und Abb. 9-193 zu erkennen. Die Überlagerungsdruckerhöhung von 1,0 MPa auf 5,0 MPa führt zu einer Permeabilitätsabnahme von ca. $2,5 \cdot 10^{-16}$ m^2 auf ca. $7 \cdot 10^{-20}$ m^2. Dass auch ein nicht unerheblicher zeitlicher Einfluss auf die Abnahme der Permeabilität besteht, zeigen die Messungen bei 5 MPa (Abb. 9-193). Bei konstantem Überlagerungsdruck nimmt die Permeabilität innerhalb von vier Tagen um fast eine halbe Größenordnung ab. Abb. 9-194 zeigt die Ergebnisse der Messungen, nach der Wiederabsenkung des Überlagerungsdruckes auf 1,5 MPa. Infolge dieser Druckabsenkung steigt die Permeabilität um mehr als eine Größenordnung wieder an.

In Abb. 9-195 sind die Ergebnisse der Permeabilitätsmessungen mit Stickstoff als Strömungsmedium zusammengefasst. Mit Erhöhung des Überlagerungsdruckes von 1,0 MPa auf 5,0 MPa nimmt die Permeabilität von $2,5 \cdot 10^{-16}$ m^2 auf $7,2 \cdot 10^{-20}$ m^2 ab. Das elasto-plastische Verhalten des Tones ist deutlich daran zu erkennen, dass, nachdem der Überlagerungsdruck von 5,0 MPa wieder auf 1,5 MPa reduziert wurde, sich eine Permeabilität von ca. $2 \cdot 10^{-18}$ m^2 einstellte, während sie bei dem ersten Belastungszyklus bei gleichem Überlagerungsdruck bei ca. $1,6 \cdot 10^{-17}$ m^2 lag.

Abb. 9-192: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 3,0 und 4,0 MPa
Abb. 9-193: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 5,0 MPa

Abb. 9-194: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei einem Überlagerungsdruck von 1,5 MPa
Abb. 9-195: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit

Aus dem Verhältnis der tatsächlichen zur scheinbaren Permeabilität kann über den damit ermittelten Klinkenbergfaktor (siehe Abb. 9-196 und Abb. 9-197) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor, desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die freie Weglänge der Gasmoleküle sind.

In Abb. 9-198 sind die Klinkenbergfaktoren über der wahren Permeabilität aufgetragen. Im Unterschied zu anderen Versuchen (z. B. BRA 07/09), bei denen deutlich der Anstieg des Klinkenbergfaktors mit abnehmender Permeabilität zu erkennen ist, erkennt man im gesamten Permeabilitätsbereich nur einen geringen Anstieg der Klinkenbergfaktoren mit abnehmender Permeabilität.
Abb. 9-196: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdruckes bei Überlagerungsdrücken von 1,0 bis 2,0 MPa

Abb. 9-197: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdruckes bei Überlagerungsdrücken von 3,0 und 4,0 MPa
Abb. 9-198: Klinkenbergfaktor als Funktion der Permeabilität

In Abb. 9-199 sind die mittlere freie Weglänge der Gas moleküle λ und der Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität k aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet.

Wie aus dem Diagramm zu ersehen ist, verlaufen in dem vermessenen Permeabilitätsbereich von $7 \cdot 10^{-20} \text{ m}^2 \leq k \leq 8 \cdot 10^{-18} \text{ m}^2$ der Knudsendiffusionskoeffizient und die freie Weglänge der Stickstoffmoleküle nahezu parallel.

Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die Interaktion der Gas moleküle mit der Porenwand abnimmt, bedeutet dies für diesen Bereich $k \leq 10^{-17} \text{ m}^2$, wenn trotz der Verringerung der freien Weglänge der Knudsendiffusionskoeffizient weiter abnimmt, dass die Reduzierung des effektiven Porenradius in diesem Bereich geringer sein muss als die Abnahme der freien Weglänge der Gas moleküle. Hieraus und aus den niedrigen Klinkenbergfaktoren über den gesamten Permeabilitätsbereich lässt sich ein äquivalenter Porenradius von $r_{äq} > 70 \text{ nm}$ abschätzen.

Nach der Reduzierung des Überlagerungsdruckes von 5,0 MPa auf 1,5 MPa wurden die Permeabilitätsmessungen mit Gas beendet.
Abb. 9-199: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle als Funktion der tatsächlichen Permeabilität

9.18.2 Vermessen der Probe mit Formationswasser

Bei einem Überlagerungsdruck von 2,0 MPa und einem Probeneintrittsdruck von 3,0 bar wurde mit der Probenaufsättigung begonnen. Da unter diesen Bedingungen praktisch kein Formationswassereintrag in die Probe stattfand, wurde der Probeneintrittsdruck auf 12,0 bar erhöht. Unmittelbar danach war am Probenaustritt ein Gasvolumenstrom zu detektieren. Über einen Zeitraum von ca. 300 Stunden trat nur das von dem in die Probe eindringende Wasser verdrängte Gas aus. Das während dieses Zeitraums detektierte Gasvolumen von ca. 17 ml entspricht ca. 17 % des Gesamtporenvolumens von ca. 99 ml. Bezogen auf das Gesamtvolum vom ca. 823 ml lässt sich hieraus eine Transportporosität von ca. 2 % ableiten. Die Ergebnisse der Volumenstrommessungen sind in Abb. 9-200 dokumentiert.

Die nach dem Wasserdurchbruch gemessenen Gas- und Flüssigkeitsvolumenströme zeigen, dass überwiegend Flüssigkeit durch die Probe permeierte. Während der Wasservolumenstrom annähernd konstant bleibt, nimmt der Gasvolumenstrom kontinuierlich von ca. 1\cdot10^{-3} auf ca. 1\cdot10^{-5} ml/min ab. Um zu überprüfen, ob der Tonstein soweit konsolidiert ist, dass infolge des Überlagerungsdrukkes keine weitere Kompaktierung mehr stattfindet, was zum Auspressen von Flüssigkeit aus dem Tonstein führen würde, wurde ca. 2.000 Stunden nach Versuchsbeginn der Probeneintrittsdruck auf Null reduziert. Wie in Abb. 9-200 zu sehen ist, hat dies nur geringe Auswir-
kungen auf die am Probenaustritt gemessenen Volumenströme. Erst nachdem auch der Überlagerungsdruck auf Null gesetzt wurde (Zeitintervall zwischen 2.443 und 2.587 Stunden), waren keine Volumenströme mehr detektierbar. Aus der anschließenden Erhöhung des Überlagerungsdruckes auf 2,0 MPa resultierte ohne merkliche Zeitverzögerung wieder ein Anstieg der Volumenströme auf die gleichen Werte wie vor der Überlagerungsdruckabsenkung. Auch nach weiteren ca. 1.000 Stunden, blieb am Probenaustritt der Volumenstrom nahezu konstant, ohne dass am Probeneintritt ein Fluiddruck angelegt wurde. Da dieses Verhalten nicht erklärbar war, wurde die Probe aus dem Autoklaven ausgebaut und die Dichtheit der Gummimanschette und der Anschlüsse überprüft. Die Untersuchung zeigte, dass einer der Einschrauber in der unteren Verteilerplatte nicht dicht war, so dass über diese Leckage Flüssigkeit aus der Wasservorlage des Autoklaven in die Probe gepresst wurde, wodurch der Permeationsstrom verfälscht wurde. Die im Versuchszeitraum bis 3.500 Stunden in Abb. 9-76 und Abb. 9-201 dargestellten Volumenstrommesswerte und Permeabilitätswerte sind daher nicht belastbar.

Da infolge des zusätzlichen Wasserzutritts über die Leckagestellen davon auszugehen war, dass die Probe mit Formationswasser gesättigt war, wurde mit der Untersuchungen zur Bestimmung des Gasdurchtrittsdruckes fortgefahren. Bei weiter konstantem Überlagerungsdruck von 2,0 MPa wurde am Probeneintritt ein Gasdruck von 1,0 bar eingestellt. Wie in Abb. 9-200 zu erkennen, ist unter diesen Bedingungen die Probe dicht. Die Erhöhung des Probeneintrittsdruckes auf 2,0 bar führte aber unmittelbar wieder zu messbaren Gas- und Flüssigkeitsvolumenströmen am Probenaustritt.

Aus diesem Gasdurchbruchsdruck von 2,0 bar lässt sich nach der Washburn-Gleichung für die jetzt durchgängigen Gaswegsamkeiten ein äquivalenter Porenradius von ca. 730 nm abschätzen.

Um zu klären, ob bei konstantem Probeneintrittsdruck von 2,0 bar durch Erhöhung des Überlagerungsdruckes wieder die Dichtheit der Probe erreicht werden konnte, wurde dieser in einem ersten Schritt von 2,0 auf 4,0 MPa erhöht. Wie aus Abb. 9-200
und Abb. 9-201 zu ersehen ist, führte dies unmittelbar nach der Erhöhung auf 4,0 MPa kurzzeitig zum Versiegen des Gasaustrittsstroms. Flüssigkeit wurde aber weiterhin aus der Probe gepresst. Nach diesem kurzzeitigen Abfall stieg der Gasvolumenstrom wieder auf das Niveau wie vor der Überlagerungsdrukerhöhung an. Bei gleichem Überlagerungs- und Probeneintrittsdruck blieben Gas- und Flüssigkeitsvolumenstrom über ca. 1.500 Stunden nahezu unverändert. Auch die dann folgende Erhöhung des Überlagerungsdrukes auf 5,0 MPa führte zunächst nur zu einer geringen Abnahme der Volumenströme. Erst ca. 1.500 Stunden nach dieser Überlagerungsdrukerhöhung nahmen zuerst der Flüssigkeitsvolumenstrom und ca. 200 Stunden später auch der Gasvolumenstrom auf nicht mehr messbare Werte ab. Da während der nächsten ca. 600 Stunden keine Volumenströme mehr messbar waren, wurde der Versuch nach insgesamt 9.000 Versuchsstunden beendet. Dieser Versuch zeigte, dass nach dem Gasdurchbruch durch die Erhöhung des Überlagerungsdruks die Strömungswege wieder verschlossen werden können. In diesem Fall war hierzu eine Erhöhung des Überlagerungsdrukes von 2,0 auf 5,0 MPa notwendig.

Abb. 9-200: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Abb. 9-201: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-202 zeigt ein Foto der Probenaustrittsseite, das unmittelbar nach dem Ausbau der Probe aus dem Autoklaven aufgenommen wurde. Die Oberfläche zeigt keine Struktur oder Risse aus denen Strömungspfade zu erkennen wären, oder dass die Probe parallel zur Schichtung erbohrt wurde.

Das einen Tag später aufgenommene Foto der gleichen Probe lässt deutlich wieder die Rissstruktur parallel zur Schichtung erkennen. Hieraus lässt sich schließen, dass die durch die Befeuchtung und den Überlagerungsdruck erzielte Probendichtheit nur zu einem reversiblen Verschluss der Risse geführt hat.
Abb. 9-202: Probenaustrittsfläche nach Durchströmen mit Formationswasser und Wiederverschließen der Probe bei einem Überlagerungsdruck von 5,0 MPa (unmittelbar nach Ausbau)

Abb. 9-203: Probenaustrittsfläche nach Durchströmen mit Formationswasser und Wiederverschließen der Probe bei einem Überlagerungsdruck von 5,0 MPa (ein Tag nach Ausbau)
9.18.3 Ionenkonzentration

Abb. 9-204 bis Abb. 9-206 zeigen die mit Hilfe des AAS gemessenen Konzentrationsverläufe der Spezies Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) und Sr\(^{2+}\). In Abb. 9-207 ist die auf die Eintrittskonzentration normierte Konzentration dargestellt.

Die relative Natriumkonzentration beträgt am ersten Messpunkt bei 1.670 Stunden ca. 1,2. Sie steigt anschließend auf 1,4 an und schwankt dann bis zum Zeitpunkt von 5.160 Stunden zwischen 1,1 und 1,7 um zum Versuchsende bei ca. 7.660 Stunden auf gut 0,8 abzufallen.

Die relative Kaliumkonzentration steigt nach Beginn der Durchströmung mit Formatswasser von 2 bis auf knapp 4,2 an und fällt dann über die Versuchszeit auf 1,2 ab. Die zum Zeitpunkt von 4.190 Stunden gemessene relative Konzentration von 6,7 wird als zufälliger Fehler und damit als nicht belastbar angesehen.

In der Anfangsphase der Durchströmung, zwischen 1.670 und 1.920 Stunden steigt die relative Magnesiumkonzentration von 1,4 bis auf ca. 4,0 an. Bis zu den drei folgenden Messpunkten ca. 3.860, 3.940 und 4.190 Stunden ist sie bis auf 4,7 angestiegen. Ab diesem Zeitpunkt fällt sie bis zum Versuchsende bei ca. 7.660 Stunden wieder auf 3,0 ab.

Die relative Calciumionenkonzentration beträgt zu Versuchsbeginn ca. 1,3. Sie fällt über die Versuchszeit langsam auf Werte um 1 und hat gegen Versuchsende bei 7.660 Stunden einen Wert von knapp 0,7.

Der erste Messwert der relativen Strontiumionenkonzentration beträgt 1,2, 1.670 Stunden nach Beginn der Durchströmung und fällt schnell auf 0,6 bei 1.690 Stunden ab. Anschließend folgt ein kontinuierlicher Abfall über die Versuchszeit bis auf 0,4 zum Versuchsende bei ca. 7.660 Stunden.

Die relativen Konzentrationen von Kalium und Magnesium sind durchweg größer als 1, was einen Ionenaustrag dieser Elemente aus der Probe während fast der gesamten Versuchszeit bedeutet. Die relative Natriumkonzentration ist bis ca. 5.000 Stunden ebenfalls größer 1, fluktuierter aber bei späteren Zeiten um den
Wert 1, was zunächst einen mit der Zeit geringer werdenden Ionenaustrag bedeutet, der von einem Gleichgewichtszustand mit dem Permeat gefolgt wird. Die Calciumkonzentration fluktuiert bis ca. 2.000 Stunden etwa um eine relative Konzentration von 1,2, und fällt bei höheren Versuchszeiten auf mittlere Konzentrationswerte von knapp 1,0 ab. Auch hier kann man von einem sich abschwächenden Ionenaustrag zu Beginn und dem Erreichen eines chemischen Gleichgewichts ausgehen. Die relative Sr$^{2+}$-Konzentration ist bis auf den ersten Messwert bei 1.670 Stunden immer kleiner 1, was auf eine Sr$^{2+}$-Adsorption in der Probe hindeutet.

Abb. 9-204: Ionenkonzentration von Na$^+$ und Ca$^{2+}$ im Formationswasser am Probenaustritt
Abb. 9-205: Ionenkonzentration von K\(^+\), Sr\(^{2+}\) im Formationswasser am Probenaustritt

Abb. 9-206: Ionenkonzentration von Mg\(^{2+}\) im Formationswasser am Probenaustritt
Relative Konzentrationen (BLT 10/10/02)

Abb. 9-207: Relative Ionenkonzentrationen
9.19 Auswertung BLT 10/10/03

Die Probe wurde parallel zur Schichtung erbohrt und auch parallel zur Schichtung vermessen. Sie war im Jahre 2000 von der BGR zur Verfügung gestellt worden und bis zum Einbau luftdicht verschlossen, aber drucklos gelagert. Bei einer angenommenen Kornrichte von 2.740 kg/m³ ergab sich aus der Volumenbestimmung und der Wägung eine Gesamtporosität von ca. 11,3 %.

Die Probe wurde am 15.11.2006 in bergfeuchtem Zustand in den Autoklav eingebaut.

9.19.1 Vermessen der Probe mit Stickstoff als Strömungsmedium

Zuerst wurde über einen Zeitraum von etwa 620 Stunden bei konstantem Überlagerungsdruck von 1,6 MPa der zeitliche Verlauf der Permeabilität bestimmt. Wie aus Abb. 9-208 ersichtlich ist, nahm die tatsächliche Permeabilität innerhalb dieses Zeitraums von 1,2·10⁻¹⁷ m² auf 4,7·10⁻¹⁸ m² ab.

Um Aussagen zu erhalten, in welchem Regime der Stofftransport stattfindet, wurden die Permeabilitätsmessungen bei unterschiedlichen mittleren Gasdrücken durchgeführt. Die Ergebnisse der jeweiligen Messungen sind in Abb. 9-208 und Abb. 9-209 dargestellt. Die Erhöhung des Überlagerungsdruckes von 1,6 MPa auf 3,0 MPa führte zu einer sprunghaften Abnahme der Permeabilität auf ca. 3,0·10⁻¹⁹ m². Die weitere Anhebung des Überlagerungsdruckes auf 4,0 MPa ergab nur noch eine geringfügige Permeabilitätsabnahme.

Die anschließende stufenweise Erhöhung des Überlagerungsdrucks auf bis zu 7,0 MPa hatte eine ebenfalls stufenweise Abnahme der Permeabilität bis auf 4,4·10⁻²² m² zur Folge. Bis zu diesem Wert sind Klinkenbergmessungen mit den verwendeten Blasen-Durchflussmessern mit ausreichender Genauigkeit möglich.

Der zeitliche Verlauf der tatsächlichen Permeabilität in Abhängigkeit vom Überlagerungsdruck ist in Abb. 9-210 dargestellt. Tendenziell fällt die Permeabilität relativ stetig mit zunehmendem Überlagerungsdruck. In den ca. 1.800 Stunden während denen der Überlagerungsdruck konstant bei 3,0 MPa belassen wurde, zeigte sich der relativ geringe zeitliche Einfluss. Die Permeabilität fällt nach dem ersten Abfall nach der Überlagerungsdruckerhöhung von 1,5 MPa auf 3,0 MPa nur noch geringfügig ab. Auch eine zwischenzeitliche Absenkung von 3,0 auf 2,0 MPa hat nur einen kurzzeitigen Einfluss auf die Permeabilität.
Abb. 9-208: Scheinbare Permeabilität als Funktion des inversen mittleren Gasdrucks

Abb. 9-209: Scheinbare Permeabilität als Funktion des inversen mittleren Gasdrucks
Abb. 9-210: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit

Bei einer Klinkenbergauflagrung ausgewählter Quotienten der scheinbaren zur tatsächlichen Permeabilität als Funktion des inversen mittleren Gasdrucks (Abb. 9-211 und Abb. 9-212) liegt der Klinkenbergfaktor b bei Überlagerungsdrücken von 1,5 MPa bis 5,0 MPa in einem Bereich von 0,03 bar < b < 5,4 bar. Er steigt nach Abb. 9-213 und Abb. 9-214 tendenziell mit fortschreitender Versuchszeit, fallender Permeabilität und steigendem Überlagerungsdruck. Hieraus ergeben sich in diesem Überlagerungsdruckbereich Knudsendiffusionskoeffizienten von 7,0⋅10^{-10} m²/s < D_{Kn} < 2,0⋅10^{-8} m²/s. Eine Erhöhung des Überlagerungsdrucks von 5,0 MPa auf 7,0 MPa führt zu einem starken Anstieg des Klinkenbergfaktors auf b = 210 bar, während der Knudsendiffusionskoeffizient bei diesen Messungen mit etwa D_{Kn} = 2,8⋅10^{-10} m²/s nur relativ geringfügig im Vergleich zu den Messungen bei 5,0 MPa Überlagerungsdruck (D_{Kn} = 7,0⋅10^{-10} m²/s) abnimmt.

Der Knudsendiffusionskoeffizient als absolutes Maß für den Stofftransport im Knudsenregime steigt bei Permeabilitäten um 1,0⋅10^{-17} m²/s plötzlich mit fallender Permeabilität um über eine Größenordnung an und fällt danach bis 1,0⋅10^{-19} m²/s auf das ursprüngliche Niveau wieder ab. Anscheinend wird in diesem Versuchsabschnitt der Kapillardruck in Wegsamkeiten mit geringerem Äquivalenzdurchmesser durch höher werdende Probeneintrittsdrücke überwunden und diese für den Gasteansport zugänglich gemacht. Unter Berücksichtigung des Gasteintrittsdrücke in diesem Bereich lassen sich mit Hilfe der Washburn-Gleichung Äquivalenzradien von etwa
160 nm – 210 nm berechnen, was offenbar eine Verkleinerung des mittleren Äquivalenzdurchmessers bedeutet und Molekül-Wand-Stöße wahrscheinlicher macht.

Zusammenfassend lässt sich feststellen, dass mit Zunahme des Überlagerungsdrucks der Stofftransport durch die Probe insgesamt erschwert wird. Gleichzeitig steigt der Knudsenanteil am verbleibenden Stofftransport an, was auf eine Verringerung des äquivalenten Porendurchmessers schließen lässt. Die Erhöhung des Überlagerungsdrucks von 5,0 MPa auf 7,0 MPa hat auf Grund des starken Anstiegs des Klinkenbergfaktors anscheinend eine sehr starke Verringerung der mittleren Äquivalenzdurchmesser der permeierten Wegsamkeiten zur Folge.

Nach Beendigung der Gaspermeationsversuche trat an der Probe eine Ölleckage auf, so dass der Versuch an dieser Stelle abgebrochen wurde.

Abb. 9-211: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des mittleren inversen Gasdrucks
Abb. 9-212: Verhältnis von scheinbarer zu wahrer Permeabilität

Abb. 9-213: Klinkenbergfaktor b und Knudsediffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität
Abb. 9-214: Ausgewählte Klinkenbergfaktoren und Knudsendiffusionskoeffizienten als Funktion des Überlagerungsdrucks
9.20 Auswertung BL 10/11/03

Die Probe wurde parallel zur Schichtung erbohrt und auch parallel zur Schichtung vermessen. Sie war im Jahre 2000 von der BGR zur Verfügung gestellt worden und bis zum Einbau luftdicht verschlossen, aber drucklos gelagert. Bei einer angenommenen Korndichte von 2.740 kg/m³ ergab sich aus der Volumenbestimmung und der Wägung eine Gesamtporosität von ca. 13,9 %.

Abb. 9-215: Foto der Probeneintrittsseite der Probe BLT 10/11/03 vor dem Einbau in den Autoklaven
9.20.1 Permeabilitätsmessungen mit Gas

Nach dem Einbau in den Autoklaven wurde die Probe zuerst mit einem Überlagerungsdruk von 3,2 MPa beaufschlagt. Die bei Überlagerungsdrukken von 3,2 MPa bis 6,0 MPa durchgeführten Messungen ergaben keine Abnahme der Permeabilität mit der Erhöhung des Probeneintrittsdruckes (siehe Abb.9-217). Bis zu diesem Überlagerungsdruk nahm die Permeabilität mit zunehmendem Probeneintrittsdruck sogar zu, was auf eine Porendilatation in der Probe oder eine Porenöffnung durch Überschreitung des Kapillardrucks von im Durchmesser kleinen Wegsamkeiten infolge des Gasdruckes hindeutet. Erst ab einem Überlagerungsdruk von 7,0 MPa waren auswertbare Permeabilitätsmessungen möglich.

In Abb. 9-217 sind noch zwei weitere Messungen dargestellt, die nach Ende der Gasmessungen bei 9,0 MPa nach der Wiederabsenkung des Überlagerungsdrukkes auf 2,0 und 5,0 MPa vom 20.10.2009 bis zum 23.10.2009 durchgeführt wurden. Wie aus der Abbildung zu ersehen ist, hat die vorherige Belastung der Probe mit einem Überlagerungsdruk von bis zu 9,0 MPa zu einer bleibenden Verdichtung und damit zu einer irreversiblen Permeabilitätsabnahme von ca. einer Größenordnung geführt.

Die Ergebnisse aller relevanten Messungen sind in Abb. 9-218 dargestellt. Bei allen Überlagerungsdrukken war im gesamten Gasdruckbereich, in dem gemessen wurde,
nur eine schwach ausgeprägte Abhängigkeit der Permeabilität vom Gasdruck feststellbar (Abb. 9-218).

Der zeitliche Verlauf der tatsächlichen Permeabilität in Abhängigkeit vom Überlagerungsdruck ist in Abb. 9-219 dargestellt. In Abhängigkeit vom Überlagerungsdruck fällt die Permeabilität relativ stetig von $8,7 \cdot 10^{-17} \text{m}^2$ bei einem Überlagerungsdruck von 7,0 MPa auf ca. $4,7 \cdot 10^{-18} \text{m}^2$ bei 9,0 MPa.

Abb. 9-217: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 3,2 bis 7,0 MPa
Abb. 9-218: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdruckes bei Überlagerungsdrücken von 7,0 bis 9,0 MPa

Abb. 9-219: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit
Aus dem Verhältnis der tatsächlichen zur scheinbaren Permeabilität kann über den damit ermittelten Klinkenbergfaktor (siehe Abb. 9-220) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor, desto größer der Gleitströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die mittlere freie Weglänge der Gasmoleküle sind.

In Abb. 9-221 sind die Klinkenbergfaktoren über der wahren Permeabilität für alle Messreihen zusammengefasst. Die Klinkenbergfaktoren sind im gesamten untersuchten Bereich sehr klein und man erkennt im gesamten Permeabilitätsbereich ($4,7 \cdot 10^{-18} \text{ m}^2 \leq k \leq 8,7 \cdot 10^{-17} \text{ m}^2$) nur einen geringen Anstieg der Klinkenbergfaktoren mit abnehmender Permeabilität.

Es kann daher davon ausgegangen werden, dass der Stofftransport überwiegend im Kontinuumsbereich stattfindet und nur zu einem kleinen Teil als Molekularströmung im Knudsengebiet erfolgt.

Abb. 9-220: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 7,0 – 9,0 MPa
Abb. 9-221: Klinkenbergfaktor als Funktion der Permeabilität

In Abb. 9-222 sind die mittlere freie Weglänge der Gasmoleküle \(\lambda \) und der Knudsendiffusionskoeffizient \(D_{Kn} \) als Funktion der tatsächlichen Permeabilität \(k \) aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegten mittleren Gasdruck zugeordnet.

Wie aus dem Diagramm zu ersehen ist, verlaufen im gesamten Permeabilitätsbereich von \(4,7 \cdot 10^{-18} \text{ m}^2 \leq k \leq 8,7 \cdot 10^{-17} \text{ m}^2 \) der Knudsendiffusionskoeffizient und die freie Weglänge der Stickstoffmoleküle nahezu parallel. Dies deutet darauf hin, dass der Stofftransport trotz abnehmender Permeabilität sich immer mehr in den Kontinuumsbereich verlagert, was schon aus dem Verlauf des Klinkenbergfaktors (Abb. 9-221) abzuleiten war. Erklärbar ist dies nur dadurch, dass sich mit abnehmender Permeabilität immer mehr Wegsamkeiten kleineren Durchmessers schließen und der Stofftransport durch die Poren größeren Durchmessers bestimmt wird. Daraus folgt, dass der äquivalente Porenradius der freien Strömungswege größer als die freie Weglänge der Gasmoleküle sein muss. Entsprechend Abb. 9-222 folgt daraus, dass der äquivalente Porenradius > 70 nm ist.

Bei Überlagerungsdrücken von 9,0 MPa wurden die Permeabilitätsmessungen mit Gas am 23.10.2009 beendet.
9.20.2 Vermessen der Probe mit Formationswasser als Messfluid

Am 26.10.2009 begannen die Untersuchungen mit Formationswasser als Strömungsmittel bei Raumtemperatur. Bei konstantem Überlagerungsdruck von 2,0 MPa wurde die Beaufschlagung mit Formationswasser mit einem Probeneintrittsdruck von 1,0 bzw. 1,5 bar gestartet. Bei 1,5 bar war unmittelbar nach der Erhöhung des Probeneintrittsdrucks am Probenausstritt ein Gasvolumenstrom detektierbar, der aber nach kurzer Zeit wieder versiegte. Die weitere Erhöhung des Eintrittsdruckes von 1,5 auf 2,0 und 2,5 bar war mit keinem Gasaustritt am Probenausstritt verbunden. Auch die Erhöhung der Versuchstemperatur von Raumtemperatur auf 60 °C führte zu keiner messbaren Volumenströmen am Probenausstritt. Erst nach einer Erhöhung des Probeneintrittsdruckis auf 3,5 bar nach 1.843 Stunden war wieder kurzzeitig ein Gasaustritt messbar. Eine weitere Erhöhung auf 4,0 bzw. 4,2 bar führte zu einem weiteren Gasaustritt und ca. 2.700 Stunden nach Versuchsbeginn zum Wasser durchbruch am Probenausstritt. Die Ergebnisse der Volumenstrommessungen sind in Abb. 7-38 dokumentiert. Abb. 7-39 zeigt die daraus ermittelten Werte der Permeabilität, die aber im Bereich der Zweiphasenströmung (ZPS) nur Näherungswerte darstellen. Bis zum Flüssigkeitsdurchbruch war aus der Probe ca. 10 ml Gas verdrängt worden, dies entspricht weniger ca. 8,7 % des aus der Porositätsbestimmung errechneten Gesamtporenvolumens von 115 ml. Bezogen auf das gesamte Volumen der Probe resultiert hieraus eine Transportporosität von ca. 1,2 %. Hieraus lässt sich
ebenfalls schließen, dass der Flüssigkeitstransport nur durch wenige Risse erfolgt. Unmittelbar nach dem Flüssigkeitsdurchbruch bricht der Gastransport komplett zusammen, und es permeiert nur noch Flüssigkeit durch die Probe. Bei konstantem Druck bleibt der Flüssigkeitsvolumenstrom nahezu unverändert. Erst mit der Absenkung des Probeneintrittsdrucks von 4,2 auf 3,0 bar und der Erhöhung des Überlagerungsdruckes auf bis zu 5,0 MPa sinkt der Volumenstrom um ca. eine Größenordnung.

Um zu überprüfen, ob der Tonstein soweit konsolidiert ist, dass infolge des Überlagerungsdruckes keine weitere Kompaktierung mehr stattfindet, was zum Auspressen von Flüssigkeit aus dem Tonstein führen würde, wurde bei unverändertem Überlagerungsdruck von 5,0 MPa der Probeneintrittsdruck auf Null abgesenkt. Wie in Abb. 7-38 zu sehen, ist diese Absenkung des Probeneintrittsdruckes unmittelbar mit dem Austritt von Gas, bei gleichzeitig nur geringer Reduzierung des Flüssigkeitvolumenstroms verbunden. Eine Erklärung für dieses Verhalten konnte nicht gefunden werden. Erst infolge der Überlagerungsdruckabsenkung auf 1,0 MPa waren mit einer Verzögerung von fast 200 Stunden am Probenaustritt keine Volumenströme mehr messbar. Mit dem anschließend durchgeführten Wasserstofflecktest konnten an der gesamten Messanordnung keine Undichtigkeiten festgestellt werden.

Nachdem über einen Zeitraum von über 400 Stunden weder ein Gas- noch ein Flüssigkeitsvolumenstrom messbar waren, wurde mit der Untersuchungen zur Bestimmung des Gasdurchbruchsdruckes begonnen. Bei einem Überlagerungsdruck von 2,0 MPa wurde am Probeneintritt ein Gasdruck von 0,5 bar eingestellt. Wie in Abb. 7-38 zu erkennen ist, führte dies unmittelbar wieder zu messbaren Gas- und Flüssigkeitsvolumenström en am Probenaustritt. Mit Hilfe der Washburn-Gleichung lässt sich aus diesem Gasdurchbruchsdruck von 0,5 bar ein äquivalenter Porenradius von ca. 2.800 nm ableiten.

der Erhöhung auf 0,8 bar folgte der Gasdurchbruch. Aus diesem Gasdurchbruchsdruck von 0,8 bar lässt sich ein äquivalenter Porenradius von ca. 1.800 nm ableiten.

Abb. 9-223: Zeitlicher Verlauf der Gas- und Wasservolumenströme in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-224: Zeitlicher Verlauf der Permeabilität in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
9.21 Auswertung BRA 08/05

Die Probe wurde senkrecht zur Schichtung erbohrt und auch senkrecht zur Schichtung vermessen. Am 04.06.2008 wurde sie bergfeucht in den Autoklaven eingebaut. Weder an den Stirnseiten noch am Umfang waren Risse erkennbar. Die durch Dichtevergleich bestimmte totale Porosität betrug ca. 14,2%.

9.21.1 Permeabilitätsmessungen mit Stickstoff

Nach dem Einbau in den Autoklaven wurde die Probe mit einem Überlagerungsdruck von 1,5 MPa beaufschlagt. Die bei diesem Überlagerungsdruck und auch noch die bei $p_0 = 2,0$ MPa durchgeführten Permeabilitätsmessungen ergaben nach Abb. 9-225 eine Erhöhung der Permeabilität mit steigendem Probeneintrittsdruck und waren deshalb nicht nach Klinkenberg auswertbar. Erst bei einem Überlagerungsdruck von 3,2 MPa und 4,0 MPa waren sinnvolle Permeabilitätsmessungen möglich. Die jetzt gemessenen tatsächlichen Permeabilitäten lagen zwischen $1,8 \cdot 10^{-18}$ m² bzw. $1,0 \cdot 10^{-19}$ m² (Abb. 9-225).

Die bei höheren Überlagerungsdrücken durchgeführten Permeabilitätsmessungen (Abb. 9-226) ergaben keine Abnahme der Permeabilität bei der Erhöhung des Probeneintrittsdruckes. Mit zunehmendem Probeneintrittsdruck stieg auch die Permeabilität an, was auf eine Porendilatation in der Probe oder eine Porenöffnung durch Überschreitung des Kapillardrucks von im Durchmesser kleinen Wegsamkeiten infolge des Gasdruckes hindeutete. Eine Klinkenbergauswertung war daher in diesem Bereich nicht möglich. Aus der Mittelwertbildung der gemessenen scheinbaren Permeabilitäten lässt sich bei einem Überlagerungsdruck von 6,0 MPa eine minimal erreichte Permeabilität von $3,7 \cdot 10^{-20}$ m² abschätzen.

Aus dem Verhältnis der tatsächlichen zur scheinbaren Permeabilität kann für die drei Klinkenberg-auswertbaren Messungen über den damit ermittelten Klinkenbergfaktor (siehe Abb. 9-227) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor, desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die mittlere freie Weglänge der Gasmoleküle sind.

Aus Abb. 9-227 erkennt man nur relativ niedrige Klinkenbergfaktoren von 0,16 bar bis 1,74 bar. Demnach kann davon ausgegangen werden, dass der Stofftransport primär im Kontinuumsbereich erfolgte. Die Spaltweite der Strömungswege muss daher deutlich größer als die freie Weglänge der Stickstoffmoleküle, die bei mittleren Gasdrücken von 3,0 bar bei 22 nm liegt.
Abb. 9-225: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck

Abb. 9-226: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck
Abb. 9-227: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 3,2 und 4,0 MPa

9.21.2 Untersuchungen des Einflusses der relativen Feuchte von befeuchtetem Stickstoff als Permeat auf die Permeabilität

Nach kurzzeitiger Reduzierung des Überlagerungsdrucks auf 1,0 MPa zur mechanischen Relaxation der Probe, wurde sie vom 20.06.2008 bis zum 04.07.2008 bei einem Überlagerungsdruck von 1,5 MPa mit Stickstoff mit einer relativen Feuchte von φ ≈ 1 bei Raumtemperatur durchströmt. Bei den gemessenen Permeabilitäten, die nicht Klinkenberg auswertbar waren, wurde die arithmetisch gemittelte scheinbare Permeabilität verwendet.

Ab dem 05.08.2008 wurde die Probe beheizt. Bei Stickstoff mit einer relativen Feuchte von φ ≈ 1 und Temperaturen von 60 bis 70°C wurde die in die Probe zugeführte Wassermenge deutlich erhöht. Eine signifikante Änderung des Permeabilitätsverlaufs ist bis zum 27.08.2008 nicht zu beobachten. Lediglich eine etwa Halbierung der Permeabilität wurde durch die Temperaturerhöhung erreicht. Am 28.08.2008 wurde die Temperatur auf 50°C abgesenkt. Bis zum 26.09.2008 sind keine signifikanten Änderungen bei der scheinbaren Permeabilität zu beobachten (Abb. 9-228)

Die Ergebnisse aller Messungen sind in Abb. 7-32 zusammengefasst. Im Vergleich zum Einfluss des Überlagerungsdrucks auf die Permeabilität ist der Feuchteinfluss vernachlässigbar. Infolge der Überlagerungsdruckerhöhung von 1,5 MPa auf bis zu
6,0 MPa ist die Permeabilität von $6 \cdot 10^{-18}$ m² auf $3,7 \cdot 10^{-20}$ m² gefallen. Die anschließende Reduzierung des Überlagerungsdrucks auf 1,5 MPa führt zu einem Wiederanstieg der Permeabilität auf $5,5 \cdot 10^{-19}$ m².

Um Überlagerungsdruckeinfüsse zu vermeiden, wurden die Messungen mit feuchtem Stickstoff bei konstantem Überlagerungsdruck von 1,5 MPa durchgeführt. Die in Abb. 9-228 und Abb. 7-32 dargestellten Messergebnisse zeigen, dass infolge der Durchströmung mit feuchtem Stickstoff bei Raumtemperatur über einen Zeitraum von ca. 1.300 Stunden die Permeabilität lediglich von $5,5 \cdot 10^{-19}$ m² auf $1,6 \cdot 10^{-19}$ m² abnimmt. Die Durchströmung mit feuchtem Stickstoff bei Temperaturen von 60 °C, 70 °C und 50 °C führen lediglich zu einer Permeabilitätsabnahme von $1,6 \cdot 10^{-19}$ m² auf $1,0 \cdot 10^{-19}$ m².

Um zu untersuchen, ob bei der Durchströmung mit feuchtem Gas der Überlagerungsdruckeinfuss auf die Permeabilität sich gegenüber der Durchströmung mit trocknem Gas ändert, wurde am 28.10.2008 der Überlagerungsdruck von 1,5 MPa auf 3,0 MPa erhöht, wobei die Probenmanschette, die durch die Temperatur brüchig geworden war, undicht wurde. Wegen der damit verbundenen Verölung der Probe war eine Weiterführung des Versuchs nicht mehr möglich.

Zusammenfassend zeigte dieser Versuch, dass auch die Durchströmung mit feuchtem, heißem Gas zu keiner signifikanten Reduzierung der Permeabilität führt. Gründe hierfür können sein, dass nur über eine deutlich längere Versuchzeit der Feuchteeinfluss sich entscheidend auswirkt, da nur an den inneren Oberflächen der Strömungswege das feuchte Messgas mit den quellfähigen Anteilen des Tons in Kontakt kommt, und nur hier kann der Feuchteeinfluss zur Quellung und damit zu einer Vermindernung des Permeationsquerschnitts führen. Wie aus dem zeitlichen Permeabilitätsverlauf in Abb. 7-32 aber zu ersehen, ist nach ca. 2.000 Stunden, die die Probe mit feuchtem Gas durchströmtes, der zeitliche Permeabilitätsabfall, im Vergleich zum Versuchsbeginn, als der Überlagerungsdruck erhöht wurde, vernachlässigbar gering.
Abb. 9-228: Scheinbare Permeabilität als Funktion vom inversen mittleren Gasdruck bei Befeuchtung

Abb. 9-229: Tatsächliche Permeabilität als Funktion des Überlagerungsdruckes und der Versuchszeit
9.22 Auswertung BRA 08/06

Die Probe BRA 8/06 wurde senkrecht zur Schichtung erbohrt und vermessen. Vor dem Einbau waren weder an den Stirnflächen noch an der Mantelfläche Risse erkennbar. Der Einbau der Probe in den Autoklaven erfolgte am 27.10.2009 im bergfeuchten Zustand bei einer Probenmasse von 1,525 kg ohne und 1,703 kg mit Gummienschette. Aus der Volumenbestimmung und der Wägung wurde eine Porosität von ca. 17,3 % errechnet.

9.22.1 Permeabilitätsmessungen mit Stickstoff

Nach dem Einbau in den Autoklaven wurden die Permeabilitätsmessungen am 27.10.2009 mit einem Überlagerungsdruck von 2,0 MPa gestartet. Die an diesem Tag durchgeführten Permeabilitätsmessungen ergaben eine Erhöhung der Permeabilität mit steigendem Probeneintrittsdruck und sind deshalb nicht nach Klinkenberg auswertbar. Die bei gleichem Überlagerungsdruck ab dem Folgetag durchgeführten Messungen sind auswertbar und zeigen eine schwache Druckabhängigkeit der Permeabilität und tatsächliche Permeabilitäten von $k \approx 1,1 \cdot 10^{-16}$ m². Am 03.11.2009 wurde der Überlagerungsdruck auf 3,2 MPa erhöht. Eine wesentliche Erhöhung der Druckabhängigkeit der Permeabilität war nicht festzustellen. Die tatsächliche Permeabilität liegt gegenüber den Messungen bei $p_\text{ü} = 2,0$ MPa um etwa eine Größenordnung niedriger bei $k \approx 2,1 \cdot 10^{-17}$ m². Am 10.11.2009 wurde der Überlagerungsdruck auf 5,0 MPa erhöht. Bei dieser Messung war die Druckabhängigkeit der Permeabilität um etwa eine Größenordnung geringer als bei den vorangegangenen Messungen, die absolute Permeabilität verringerte sich auf $k \approx 3,6 \cdot 10^{-17}$ m². Die Ergebnisse der Permeabilitätsmessungen sind in Abb. 9-230 dargestellt.

Am 17.11.2007 wurde der Überlagerungsdruck auf 6,0 MPa, am 20.11.2009 auf 7,0 MPa, am 27.11.2009 auf 8,0 MPa und am 07.12.2009 auf 9,0 MPa erhöht. Am 14.12.2009 wurde der Überlagerungsdruck wieder auf 3,2 MPa abgesenkt. Die Messwerte bei 6,0 MPa waren nicht klinkenbergauswertbar. Erst die ab dem 23.11.2009 bei Überlagerungsdrücken von 7,0 MPa und 8,0 MPa durchgeführten in Abb. 9-231 dargestellten Messungen sind größtenteils wieder klinkenbergauswertbar. Hierbei nimmt die Permeabilität $k = 2,6 \cdot 10^{-19}$ m² bei $p_\text{ü} = 7,0$ MPa auf $k = 5,0 \cdot 10^{-20}$ m² bei $p_\text{ü} = 8,0$ MPa ab. Die Druckabhängigkeit der Permeabilität nimmt ebenfalls mit steigendem Überlagerungsdruck im betrachteten Bereich um mehr als eine Größenordnung ab. Bei $p_\text{ü} = 9,0$ MPa konnten keine klinkenbergauswertbaren Daten erhalten werden, die mittlere scheinbare Permeabilität beträgt $k \approx 2,0 \cdot 10^{-20}$ m² und ist erwartungsgemäß niedriger als die bei $p_\text{ü} = 9,0$ MPa Überlagerungsdruck gemessene.
Die Reduktion des Überlagerungsdrucks auf $p_0 = 3,2$ MPa führte nur zu einer geringen Zunahme der absoluten Permeabilität auf $k = 2,5 \cdot 10^{-19}$ m², was in guter Näherung den Werten entspricht, die vorher bei 7,0 MPa gemessen wurden und um zwei Größenordnungen niedriger liegen, als die vorher bei 3,2 MPa gemessenen Werte von $k \approx 2,1 \cdot 10^{-17}$ m².

Eine Zusammenfassung der Permeabilitätsmessungen mit Wasserstoff als Strömungsmedium ist in Abb. 9-232 dargestellt. Hierbei wurde aus den gemessenen Permeabilitäten der nicht klinkenbergauwertbaren Messungen die arithmetisch gemittelte scheinbare Permeabilität $k_{s,m}$ zur Verdeutlichung der Überlagerungsdruckabhängigkeit der Permeabilität eingeführt.

Abb. 9-230: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 5,0 MPa
Abb. 9-231: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 7,0 – 9,0 MPa und 3,2 MPa

Abb. 9-232: Absolute Permeabilität und Überlagerungsdruck als Funktion des Versuchszeit
Bei einer Klinkenbergauftragung der Quotienten der scheinbaren zur tatsächlichen Permeabilität als Funktion des inversen mittleren Gasdrucks (Abb. 9-233) liegt der Klinkenbergfaktor b bei Überlagerungsdrücken zwischen 2,0 MPa und 5,0 MPa in einem Bereich von $0,03 \, \text{bar} < b < 0,82 \, \text{bar}$ und steigt tendenziell mit fortschreitender Versuchszeit. Hieraus ergeben sich Knudsendiffusionskoeffizienten von $1,5 \cdot 10^{-9} \, \text{m}^2/\text{s} < D_{Kn} < 2,3 \cdot 10^{-7} \, \text{m}^2/\text{s}$. Abb. 9-234 zeigt die Messungen bei 7,0 MPa und 8,0 MPa Überlagerungsdruck. Hier unterscheiden sich die Klinkenbergfaktoren der einzelnen Messungen wenig, $0,51 \, \text{bar} < b < 0,57 \, \text{bar}$. Dies entspricht Knudsendiffusionskoeffizienten von $3,0 \cdot 10^{-10} \, \text{m}^2/\text{s} < D_{Kn} < 1,5 \cdot 10^{-9} \, \text{m}^2/\text{s}$. Die Streuung der Messwert ist teilweise erheblich.

Abb. 9-233: Klinkenbergauftragung der Messungen bei Überlagerungsdrücken von 2,0 MPa bis 5,0 MPa
Abb. 9-234: Klinkenbergaufragung der Messungen bei Überlagerungsdrücken von 7,0 MPa bis 8,0 MPa

Abb. 9-235, Abb. 9-236, Abb. 9-237 und Abb. 9-238 zeigen Überlagerungsdrucks- und Permeabilitätsabhängigkeit des Knudsendiffusionskoeffizienten D_{Kn} als absolutes Maß für den Stofftransport im Knudsenregime und des Klinkenbergfaktors b als Maß für den relativen Anteil des Stofftransports in diesem Regime am gesamten Stofftransport. Der Knudsendiffusionskoeffizient D_{Kn} fällt durch eine überlagerungsdruckinduzierte Kompaktierung der Probe mit zunehmendem Überlagerungsdruck und sinkender Permeabilität tendenziell ab. Es ist eine ausgeprägte, durch plastische Probenkompaktierung verursachte Permeabilitäts hysterese zu beobachten, nach Rücknahme des Überlagerungsdrucks von 9,0 MPa auf 3,2 MPa sind die im Zeitraum vom 14.12. - 16.12.2009 ermittelten Permeabilitäten um ca. zwei Größenordnungen geringer als bei ersten Messungen vom 03.11. - 09.11.2009. Der Klinkenbergfaktor steigt mit zunehmendem Überlagerungsdruck und abnehmender Permeabilität tendenziell aber unstetig an, was auf eine Zunahme des Anteils des Stofftransports im Knudsenregime am gesamten Stofftransport hindeutet, die mit der Abnahme des mittleren äquivalenten Durchmessers der für den Stofftransport zur Verfügung stehenden Wegsamkeiten korrespondiert. Zusammenfassend lässt sich feststellen, dass mit Zunahme des Überlagerungsdrucks der Stofftransport durch die Probe insgesamt erschwert wird. Gleichzeitig steigt der Knudsenanteil am verbleibenden Stofftransport an, was auf eine Verringerung des äquivalenten Porendurchmessers schließen lässt.
Abb. 9-235: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks

Abb. 9-236: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen des Überlagerungsdrucks ab dem 23.11.2009
Abb. 9-237: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen der Permeabilität

Abb. 9-238: Knudsendiffusionskoeffizient und Klinkenbergfaktor als Funktionen der Permeabilität bei \(k < 3 \cdot 10^{-19} \text{ m}^2 \)
9.22.2 Vermessen der Probe mit Formationswasser als Messfluid

Nach einer Versuchszeit von ca. 2.660 Stunden wurden die Gasmessungen beendet und die Probe an der Probeneintrittsseite mit basischem Zementwasser (pH = 13) bei einem Überlagerungsdruck von $p_\text{G} = 1,5$ MPa und einem Probeneintrittsdruck von $p_e \approx 2,8$ bar nach Abb. 7-53 beaufschlagt. Nach ca. 3.500 Stunden wurde der Überlagerungsdruck auf 1,0 MPa abgesenkt. Da keine Permeationsströme zu detektieren waren, wurde, um eine schnellere Aufsättigung zu erreichen, nach ca. 5.000 Stunden bei einem Überlagerungsdruck von 1,5 MPa der Probeneintrittsdruck auf ca. 10,0 bar erhöht. Dies war unmittelbar mit einem Gasaustritt in der Größenordnung von $10^{-5} - 10^{-4}$ ml/min verbunden, der mit dem bei ca. 6.190 Stunden auftretenden Wasser durchbruch plötzlich wieder versiegte.

Die Gaspermeabilität nach Darcy betrug nach Abb. 7-54 etwa $k = 10^{-23}$ m², dieser Wert ist allerdings nicht belastbar, da die Voraussetzungen für die Anwendung des Darcyschen Gesetzes bei einer ZPS nicht gegeben sind. Um ein Verschließen der Probe zu ermöglichen, wurde nach ca. 6.590 Stunden der Probeneintrittsdruck auf ca. 2,2 bar reduziert, was ein langsames Absinken des Flüssigkeitsvolumenstroms von etwa 3×10^{-4} ml/min auf etwa 5×10^{-5} ml/min bis ca. 9.550 Stunden zur Folge hatte. Aber erst die Reduzierung des Eintrittsdrucks auf 1,4 bar bei ca. 9.550 Stunden hatte ein Versiegen des Probenaustrittsstroms zur Folge. Zwischenzeitlich war kurzfristig auch wieder ein nicht erklärbarer Gasvolumenstrom gemessen worden.

Bei ca. 9.810 Stunden wurde die nun mit Formationswasser gesättigte Probe zur Bestimmung des Durchbruchsdrucks mit Stickstoff beaufschlagt. Der Anfangsprobeintrittsdruck von 0,5 bar wurde in 0,5 bar - Schritten in der Folgezeit langsam erhöht, bis es nach ca. 11.970 Stunden bei einem Probeneintrittsdruck von 2,5 bar zu einem gleichzeitigen Gas- und Wasserdurchbruch kam. Hierbei traten Gas- und Wasservolumenströme in der Größenordnung von 10^{-5} ml/min auf, was Gaspermeabilitäten von ca. 10^{-23} m² < $k < 10^{-22}$ m² und Wasserpermeabilitäten von $k \approx 10^{-20}$ m² entspricht. Diese Werte sind auf Grund der vorliegenden ZPS, wie oben schon erwähnt, wenig belastbar. Aus dem Gasdurchbruchsdruck von 2,5 bar kann über die Washburn-Gleichung ein Äquivalenzdurchmesser der Wegsamkeiten in der Probe von ca. 580 nm bestimmt werden.
Abb. 9-239: Gas- und Wasservolumenströme nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit

Abb. 9-240: Gas- und Wasservolumenpermeabilitäten nach der Zementwasserbeaufschlagung als Funktion der Versuchszeit

Abb. 9-241: Mantelansicht der Probe BRA 08/06 nach Versuch und Ausbau aus dem Autoklaven
Abb. 9-242: Stirnseite der Probe (6 d nach Ausbau aus dem Autoklaven)

Abb. 9-243: Mantelansicht der Probe (6 d nach Ausbau aus dem Autoklaven)
9.23 Auswertung BRA 08/08

Die Probe BRA 08/08 wurde senkrecht zur Schichtung erbohrt und bezüglich ihres Durchlässigkeitverhaltens auch senkrecht zur Schichtung vermessen. Sie wurde im bergfeuchten Zustand am 17.02.2007 in den Autoklaven eingebaut. Sie wies keine sichtbaren Risse auf. Bei einer angenommenen Korndichte von 2.740 kg/m³ /NTB 02-03/ ergab sich aus der Volumenbestimmung und der Wägung eine Gesamtporosität von ca. 15 %.

9.23.1 Vermessen der Probe mit Gas

Die ersten Permeabilitätsmessungen zur Bestimmung der Ausgangspermeabilität wurden mit Überlagerungsdrücken von 1,0 MPa und 1,5 MPa durchgeführt. Die bei diesen Überlagerungsdrücken durchgeführten Messungen (jeweils bei unterschiedlichen Gasdrücken) ergaben zum Einen eine mit zunehmender Versuchszeit und zunehmendem Überlagerungsdruck tendenziell abnehmende Permeabilität, zum Andern war ein deutlicher Einfluss des Gasdruckes auf den Permeabilitätsverlauf zu erkennen. Wie in Abb. 9-244 zu erkennen ist, ergeben die Messungen bei einem Überlagerungsdruck von 1,0 MPa und niedrigen Gasdrücken eine deutliche Abhängigkeit der Permeabilität vom inversen mittleren Gasdruck. Bei mittleren Gasdrücken von 1,0 bar bis 1,3 bar ist die Abhängigkeit der Permeabilität vom Gasdruck so deutlich, dass man davon ausgehen kann, dass der Stofftransport im Knudsenbereich stattfindet. Da die freie Weglänge der Gasmoleküle hier im Bereich zwischen 50 und 66 nm liegt, lässt sich hieraus ein äquivalenter Porenradius bzw. eine Spaltweite in der Großenordnung von 50–66 nm abschätzen. Bei den Messungen bei einem Überlagerungsdruck von 1,5 MPa ist bei mittleren Gasdrücken von 1,7 bis 2,3 bar praktisch keine Abhängigkeit der Permeabilität vom Gasdruck erkennbar. Wenn die scheinbare Permeabilität unabhängig ist vom mittleren Gasdruck in den Poren, ist davon auszugehen, dass der Gastransport im Kontinuumsbereich stattfindet, der Porendurchmesser also größer als die freie Weglänge der Gasmoleküle ist. Bei diesen Drücken liegt die freie Weglänge der Gasmoleküle zwischen 29 und 40 nm, d.h. der äquivalente Porendurchmesser muss größer als die freie Weglänge sein. Aus diesen Ergebnissen lässt sich ableiten, dass bei dieser Probe die Permeabilität durch Risse oder Spalten mit einem äquivalenten Porendurchmesser zwischen etwa 29 und 66 nm bestimmt wird.

Bei einer Klinkenberg-Auftragung der Quotienten der scheinbaren zur tatsächlichen Permeabilität als Funktion des inversen mittleren Gasdrucks (Abb. 9-245), liegt der Klinkenbergfaktor für Überlagerungsdrücke zwischen 1,0 MPa und 1,5 MPa in einem Bereich von 1 bar < b < 62 bar. Hieraus ergeben sich Knudsendiffusionskoeffizienten von 5,5·10⁻⁸ m²/s < D_Kn < 1,7·10⁻⁶ m²/s. Auf Grund der sehr starken Streuung der Messwerte können diese nur als Anhaltswerte angesehen werden.
Abb. 9-244: Scheinbare Permeabilität als Funktion des inversen Gasdrucks

Abb. 9-245: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion des inversen Gasdrucks bei Überlagerungsdrücken von 1,0 MPa bis 1,5 MPa
9.23.2 Vermessen der Probe mit Formationswasser

Ca. 260 Stunden nach Beginn des Versuchs wurde bei einem Probeneintrittsdruck von 9,5 bar mit der Probenaufsättigung begonnen. Nach 690 Stunden wurde der Probeneintrittsdruck auf ca. 12 bar erhöht. Bis 835 Stunden war nur das Ausströmen gasförmigen Permeats am Austritt festzustellen, was einer Gapermeabilität von \(k_{\text{Gas}} \approx 10^{-22} \text{m}^2 \) entspricht. Die Menge des bis zu diesem Zeitpunkt aus der Probe verdrängten Gases betrug ca. 6 ml. Bezogen auf das vor Versuch ermittelte Gesamtporenvolumen von 96 ml beträgt der Anteil der Transportporosität lediglich 6,3 % von der Gesamtporosität. Bezogen auf das Gesamtprobenvolumen ergibt sich eine Transportporosität von ca. 1 %.

Nach 835 Stunden kam es zum Wasserdurchbruch bei gleichzeitigem Versiegen des Gasvolumenstroms, die Flüssigkeitspermeabilität betrug \(k \approx 1 \cdot 10^{-19} \text{m}^2 \). Da jetzt nur noch Flüssigkeit durch die Probe permeierte, wurde um ein Wiederverschließen der Probe zu erreichen der Überlagerungsdruck nach ca. 2.000 Stunden auf 2,5 MPa angehoben, was allerdings keinen signifikanten Einfluss auf den Wasservolumenstrom hatte. Nach ca. 2.760 Stunden erfolgte eine weitere Erhöhung des Überlagerungsdrucks auf 3,5 MPa. Auch die Reduktion des Probeneintrittsdrucks auf ca. 10 bar nach ca. 3.070 Stunden hatte keine merklichen Auswirkungen auf die Wasserpermeabilität und zunächst auch nicht auf die Gapermeabilität. Ab ca. 3.450 Stunden kam es dann abrupt zu einem Gasvolumenstromaustritt, der einer Gapermeabilität von \(10^{-22} \text{m}^2 < k_{\text{Gas}} < 10^{-23} \text{m}^2 \) entsprach. Ab diesem Zeitpunkt war auch eine leichte Zunahme der Wasserpermeabilität zu verzeichnen. Nach ca. 3.740 Stunden wurde der Überlagerungsdruck auf 2,0 MPa reduziert, was aber nur zu einem leichten Anstieg der Gapermeabilität führte. Von ca. 4.100 Stunden bis ca. 5.000 Stunden wurde der Probeneintrittsdruck von 10,0 auf 8,0 bar abgesenkt, bei gleichzeitiger Reduzierung des Überlagerungsdrucks auf 1,5 MPa. Beide Maßnahmen hatten keine signifikanten Auswirkungen auf die Gas- und Wasservolumenströme.
Ca. 5.500 Stunden nach Versuchsbeginn wurde am Probeneintritt der Gasdruck auf 2,5 bar abgesenkt. Erst diese Absenkung führte zu einem kurzzeitigen Versiegen des Wasservolumenstroms. Anschließend wurde am Probenaustritt wieder ein Ausströmen gasförmigen und flüssigen Permeats in annähernd gleicher Höhe wie vor der Absenkung des Eintrittsdrucks beobachtet. Nach ca. 6.300 Stunden wurde der Probeneintrittsdruck weiter auf ca. 1,8 bar zurückgenommen, was mit Verzögerung zu einer kontinuierlichen Abnahme der Gas- und Flüssigkeitsvolumenströme führte. Nach ca. 7.820 Stunden war kein messbarer Flüssigkeitsstrom mehr zu detektieren. Kurze Zeit später versiegte auch der Gasvolumenstrom. Nach ca. 8.130 Stunden wurde der Probeneintrittsdruck auf ca. 3,0 bar und nach ca. 8.660 Stunden auf 4,0 bar angehoben, worauf sich nach der Erhöhung auf 4,0 bar schlagartig wieder ein zweiphasiger Permeatstrom einstellte. Dieser Probeneintrittsdruck korrespondiert über die Washburn-Gleichung mit einem Äquivalenzdurchmesser von ca. 360 nm. Zwischen ca. 9.640 Stunden und ca. 10.290 Stunden kam es dann wieder zu einem plötzlichen Versiegen der Permeatströme, ohne dass einer der Versuchsparameter geändert wurden wäre. Ab ca. 10.340 Stunden waren wieder Permeatströme detektierbar, mit \(k \approx 10^{-19} \text{ m}^2 \) und \(k_{\text{Gas}} \approx 10^{-21} \text{ m}^2 \). Eine Erhöhung des Überlagerungsdrucks bei ca. 10.480 Stunden auf 2,0 MPa hatte keine signifikanten Auswirkungen auf die Permeabilität. Nach ca. 12.140 Stunden wurde der Versuch beendet.

Die teilweise abrupten Änderungen der Austrittsvolumenströme, die auftraten ohne dass an den Versuchsparametern Veränderungen vorgenommen wurden, sind nur erklärbar durch abrupte Änderungen in der Tonstruktur, die zum Verschließen oder Öffnen von Wegsamkeiten führten.

Abb. 9-246: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme
Abb. 9-247: Zeitlicher Permeabilitätsverlauf

9.23.3 Trocknung

Nach Beendigung des Versuchs wurde die Probe aus dem Autoklaven ausgebaut und bei 105 °C im Trockenschrank unter Atmosphärendruck getrocknet. Abb. 9-248 zeigt den Verlauf der Probenmasse als Funktion der Trocknungszeit. Zwischen Trocknungsanfang und –ende verliert die Probe innerhalb von ca. 340 Stunden etwa 123 g an Wasser, was ca. 8 % der Probenausgangsmasse entspricht.
Abb. 9-248: Veränderung der Probenmasse als Funktion der Trocknungszeit

9.23.4 Ionenkonzentration

Abb. 9-249, Abb. 9-250 und Abb. 9-251 zeigen die mit Hilfe des AAS gemessenen Konzentrationsverläufe der Spezies Na\(^+\), K\(^+\), Mg\(^{2+}\), Ca\(^{2+}\) und Sr\(^{2+}\). In Abb. 9-252 ist die auf die Eintrittskonzentration normierte Konzentration dargestellt.

Die relative Natriumionenkonzentration liegt am ersten Messpunkt (nach 1.010 Stunden) bei 0,7. Sie steigt innerhalb von etwa 900 Stunden auf ihren Maximalwert von ca. 1,7 (nach 1.940 Stunden), um anschließend bis auf knapp 1,1 (nach 2.380 Stunden) abzufallen. Es folgt ein leichter Anstieg bis auf knapp 1,7 (nach 5.110 Stunden) und am letzten Messpunkt (nach 8.110 Stunden) ist sie wieder auf ca. 1,5 gefallen.

Die relative Kaliumkonzentration beträgt beim ersten Messwert nach 1.010 Stunden ca. 1,5, steigt dann bis auf knapp 4,4 nach 1.610 Stunden. Im weiteren Verlauf bis 2.060 Stunden ist die Konzentration auf 3,7 gestiegen und fällt dann nach 2.380 Stunden auf 2,9. Sie steigt dann wieder an bis auf knapp 3,6 nach 5.110 Stunden um dann bis zum Versuchsende langsam wieder auf knapp 2,9 abzufallen.

Nach dem Anstieg der relativen Magnesiumkonzentration von 1,1 bei der ersten Messung auf bis zu 5,0 nach 1.440 Stunden fällt sie, stark schwankend, auf bis zu 2,4 nach 2.380 Stunden wieder ab. Danach steigt sie wieder auf 3,5 nach 5.110 Stunden um bis zum Versuchsende (nach 8.110 Stunden) auf 2,6 abzufallen.
Zu Versuchsbeginn steigt die relative Calciumionenkonzentration von ca. 0,3 nach 1.010 Stunden bis auf Werte von 1 nach 2.060 Stunden mit degressivem Verlauf an. Die anschließenden Werte bis zum Versuchsende schwanken zwischen 0,8 (nach 2.380 Stunden) und fast 1,4 bei Versuchsende (nach 8.110 Stunden).

Die relative Strontiumionenkonzentration beträgt gut 0,2 nach 1.010 Stunden und steigt degressiv bis zum Maximalwert von knapp 0,7 (nach 1.940 Stunden) an. Nach einem Rückgang auf ca. 0,5 (nach 2.380 Stunden) bleibt sie im weiteren Verlauf bis zum Versuchsende auf relativ konstantem Niveau von ca. 0,8.

Bei allen Ionensorten zeigt sich kein eindeutiger zeitlicher Verlauf der relativen Ionenkonzentrationen. Es können bestenfalls Tendenzen abgeschätzt werden. So nehmen die relativen Konzentrationen aller Spezies zunächst zu und fluktuieren teilweise erheblich auf gegenüber den Startwerten erhöhtem Niveau. Dabei bleiben bei hohen Versuchszeiten die relativen Konzentrationen mit Werten von ca. 1,5 für Natrium und etwa 3,3 für Kalium und Magnesium deutlich über 1. Die relative Calciumkonzentration schwankt in diesem Zeitbereich etwa um den Wert 1. Die Strontiumionenkonzentration ist immer kleiner als 1 und liegt ab ca. 1.900 Stunden um 0,7 mit geringfügig abnehmender Tendenz gegen Versuchsende.

Die relativen Konzentrationen von Natrium, Kalium und Magnesium sind, bis auf den ersten Natriumwert immer größer als 1, was einen Ionenaustrag dieser Elemente aus der Probe während fast der gesamten Versuchszeit bedeutet. Der Ionenaustrag nimmt zunächst zu und schwankt dann auf erhöhtem Niveau relativ stark. Die Calciumkonzentration fluktuiert ab ca. 1.850 Stunden etwa um eine relative Konzentration von 1, was durch einen anfänglichen IonenEintrag und das Erreichen eines Gleichgewichtszustands zwischen Formationswasser und Tonprobe erklärt werden kann. Der zeitliche Verlauf der relativen Strontiumionenkonzentration ist dem des Calciums ähnlich, allerdings bleiben die Strontiumkonzentrationen beständig unter 1, was einen permanenten StrontiumEintrag in die Probe bedeutet.

Abb. 9-249: Ionenkonzentration von Na\(^+\) und Ca\(^{2+}\) im Formationswasser am Probenaustritt

Abb. 9-250: Ionenkonzentration von K\(^+\), Sr\(^{2+}\) im Formationswasser am Probenaustritt
Abb. 9-251: Ionenkonzentration von Mg$^{2+}$ im Formationswasser am Probenaus- tritt

Abb. 9-252: Relative Ionenkonzentrationen
9.24 Auswertung Probe BRA 08/10
Die Probe wurde am 11.09.2007 bergfeucht in den Autoklaven eingebaut und bezüglich Gaspermeation und Diffusion ausgemessen. Das Gewicht der bergfeuchten Probe betrug vor dem Einbau in den Autoklaven 1,472 kg. Aus der Wägung und der Volumenbestimmung sowie einer angenommenen Korndichte von 2.730 kg/m³ resultiert eine Gesamtporosität von 11,9 %.

9.24.1 Permeabilitätsmessungen mit Stickstoff
Mit den Permeabilitätsmessungen wurde am 12.09.2007 bei einem Überlagerungsdruck von 1,0 MPa begonnen. Die bei diesem Überlagerungsdruck gemessenen Permeabilitäten waren nicht auswertbar, da mit steigendem Gasdruck die gemessenen Permeabilitäten stark anstiegen, was darauf hindeutete, dass entweder durch den Gasdruck Poren aufgeweitet wurden, oder dass Porenflüssigkeit durch den Gasstrom aus den Poren verdrängt wurde. Erst die Erhöhung des Überlagerungsdruckes auf 2,0 MPa führte zu auswertbaren Permeabilitätswerten von ca. \(k = 1,5 \cdot 10^{-19} \text{ m}^2 \). In Abb. 9-253 sind die Ergebnisse der Messungen bei Überlagerungsdrücken von 2,0 – 3,2 MPa dargestellt. Wie aus der Abbildung zu ersehen ist, führt die Überlagerungsdruckerhöhung von 2,0 MPa auf 3,2 MPa zu einer Permeabilitätsabnahme von ca. \(k = 1,5 \cdot 10^{-19} \text{ m}^2 \) auf ca. \(k = 4,2 \cdot 10^{-21} \text{ m}^2 \).

In Abb. 9-254 ist die Änderung der Permeabilität in Abhängigkeit von der Versuchszeit und dem Überlagerungsdruck zusammengefasst.
Abb. 9-253: Gemessene Permeabilitäten als Funktion des inversen mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,2 MPa

Abb. 9-254: Tatsächliche Permeabilität und Überlagerungsdruck als Funktion der Versuchszeit
Aus dem Verhältnis der tatsächlichen zur scheinbaren Permeabilität kann über den damit ermittelten Klinkenbergfaktor (siehe Abb. 9-255) eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Hierbei erhält man Klinkenbergfaktoren von $1,76 \text{ bar} \leq k \leq 33,9 \text{ bar}$ und mit den zugehörigen tatsächlichen Permeabilitäten die daraus resultierenden Knudsendiffusionskoeffizienten von $6,0 \cdot 10^{-10} \text{ m}^2/\text{s} \leq D_{Kn} \leq 1,5 \cdot 10^{-9} \text{ m}^2/\text{s}$. Je größer der Klinkenbergfaktor, desto größer der Molekularströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die mittlere freie Weglänge der Gasmoleküle sind.

In Abb. 9-256 sind die Klinkenbergfaktoren aus allen Messreihen über der wahren Permeabilität aufgetragen. Man erkennt im gesamten Permeabilitätsbereich ($k > 3 \cdot 10^{-20} \text{ m}^2$) nur einen geringen Anstieg der Klinkenbergfaktoren mit abnehmender Permeabilität. Erst bei $p_m = 3,2 \text{ MPa}$ und $k = 4,2 \cdot 10^{-21} \text{ m}^2$. ist der ermittelte Wert signifikant höher. Ab $k < 1 \cdot 10^{-20} \text{ m}^2$ scheint der Klinkenbergfaktor sprunghaft anzusteigen (siehe auch Versuch BRA 07/11).

Abb. 9-255: Verhältnis der scheinbaren zur wahren Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei Überlagerungsdrücken von 2,0 – 3,2 MPa
Abb. 9-256: Klinkenbergfaktor als Funktion der Permeabilität

In Abb. 9-257 sind die mittlere freie Weglänge der Gasmoleküle λ und der Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität k aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet.

Wie aus dem Diagramm zu ersehen ist, verlaufen in dem vermessenen Permeabilitätsbereich von $4,2 \cdot 10^{-21} \text{ m}^2 \leq k \leq 1,4 \cdot 10^{-19} \text{ m}^2$ der Knudsendiffusionskoeffizient und die freie Weglänge der Stickstoffmoleküle nahezu parallel.

Da die Abnahme des Knudsendiffusionskoeffizienten bedeutet, dass die Interaktion der Gasmoleküle mit der Porenwand abnimmt, bedeutet dies, wenn trotz der Reduzierung der freien Weglänge der Knudsendiffusionskoeffizient weiter abnimmt, dass die Reduzierung des effektiven Porenradius in diesem Bereich geringer sein muss als die Abnahme der freien Weglänge der Gasmoleküle.

Es kann daher davon ausgegangen werden, dass der Stofftransport nur zu einem sehr kleinen Teil als Molekularströmung im Knudsengebiet erfolgte.

Die äquivalente Rissweite muss daher nach Abb. 9-257 deutlich größer als 25 nm sein.

Nach dem Vermessen der Probe bei 3,2 MPa wurden die Permeabilitätsmessungen mit Gas beendet.
Abb. 9-257: Knudsendiffusionskoeffizient und freie Weglänge der Gasmoleküle über der tatsächlichen Permeabilität

9.24.1.1 Diffusionsmessungen
Vom 14.02.2008 bis zum 01.04.2008 wurden Diffusionsmessungen nach Wicke-Kallenbach /WIC 41/ von H₂ in N₂ bei einem Überlagerungsdruck von 3,2 MPa und einem Gasdruck von 3,0 bar bis 5,0 bar zur Ermittlung des binären Diffusionskoeffizienten D₁₂ durchgeführt. Die Ergebnisse der der Messungen sind in Abb. 9-258 dargestellt. Hierbei wird klar, dass innerhalb des zu diesem Zeitpunkt experimentell zugänglichen Gasdruckbereichs kein Zustand reiner Fickscher Diffusion erreicht wurde. Bei diesem wäre bei Drücken, bei denen Kn << 1 ist, das Produkt D₁₂·p konstant. Dieser Zustand wurde nicht erreicht, da die Steigung des Produkts mit zunehmendem Druck nicht abzunehmen scheint. Die bei höchstem gemessen Druck erhaltenen Werte betragen etwa D₁₂ = 1,5·10⁻¹⁰ m²/s, sind aber aus o.g. Gründen nicht belastbar. Der tatsächliche binäre Diffusionskoeffizient wird demnach bei höheren Drücken zu erreichen sein und folglich kleiner als 1,5·10⁻¹⁰ m²/s sein.
Abb. 9-258: Produkt aus binärem Diffusionskoeffizienten und Gasdruck für Wasserstoff bei \(p_u = 3,2 \) MPa

Eine bei gleichem Überlagerungsdruck am 08.10.2007 mit \(N_2 \) durchgeführte Klinkenbergmessung lieferte nach Abb. 9-255 einen Knudsendiffusionskoeffizienten von \(D_{Kn,N_2} = 8,2 \cdot 10^{-10} \) m²/s, was nach Gl. 3-8 einem Knudsendiffusionskoeffizienten für Wasserstoff von \(D_{Kn,H_2} = 3,1 \cdot 10^{-9} \) m²/s entspricht.

\[
D_{Kn,H_2} = D_{Kn,N_2} \sqrt{\frac{M_{N_2}}{M_{H_2}}} \quad \text{Gl. 9-1}
\]

Über die Bosanquet-Näherung nach Gl. 9-2 lässt sich unter Annahme von \(D_{12} = 1,5 \cdot 10^{-10} \) m²/s ein effektiver Diffusionskoeffizient abschätzen, man erhält einen ungefähren Wert von \(D_{eff,H_2} = 1,4 \cdot 10^{-10} \) m²/s. Dies zeigt, dass die Ficksche Diffusion mit Werten von wahrscheinlich \(D_{12} < 1,5 \cdot 10^{-10} \) m²/s den Hauptstofftransportwiderstand darstellt und sich der numerische Wert für \(D_{eff,H_2} \) nahe an dem für \(D_{12} \) bewegt.

\[
D_{eff,1} = \left(\frac{1}{D_{Kn,1}} + \frac{1}{D_{12}} \right)^{-1} \quad \text{Gl. 9-2}
\]
9.24.1.2 Untersuchung der mit Formationswasser gesättigten Probe

Am 19.04.2008 wurde die Probe aus dem Autoklaven ausgebaut und drucklos mit Formationswasser getränkt. Das Gewicht inkl. Mantel betrug 1.713 kg (ohne Mantel 1.545 kg). Im Vergleich zur Ausgangsmasse der Probe ist dies ca. 0.074 kg mehr, was etwa dem gemessenen Gesamtporenvolumen vor Beginn der Permeabilitätsmessungen mit Gas entspricht.

Abb. 9-259: Probe BRA 08/10 mit Formationswasser gesättigt (Vor Wiedereinbau in den Autoklaven am 29.04.2008); Luftseite
In Abb. 9-261 sind der zeitliche Verlauf des Probeneintrittsdruckes sowie die gemessenen Gas- und Wasservolumenströme dargestellt. Über einen Zeitraum von ca. 1.900 Stunden wurde der Probeneintrittsdruck, beginnend bei 2,0 bar, in Stufen von 1,0 bar bzw. 2,0 bar erhöht. Erst bei 12,0 bar erfolgte der Gasdurchbruch. Er kündigte sich dadurch an, dass zuerst das sich in den Poren bzw. im Totraum der Probenummantelung befindende Wasser mittransportiert wurde, dann aber in zunehmendem Maße nur noch Gas durch die Probe strömte. Aus dem Druck von 12,0 bar, der notwendig war um die Flüssigkeit aus den Poren bzw. Spalten zu verdrängen, kann mit Hilfe der Washburn-Gleichung ein äquivalenter Porenradius von ca. 120 nm abgeschätzt werden. Dies bedeutet, dass der Stofftransport primär im Bereich der Makroporen stattfand.
Nach dem Gasdurchbruch bei $p_e = 12$ bar wurde der Versuch beendet und die Probe wurde ausgebaut. Anschließend wurde die Probe gewogen. Im Vergleich zum Originalzustand war beim Ausgangsgewicht lediglich eine Gewichtszunahme von 1,8 g festzustellen. Die anschließende Trocknung der Probe führte zu einer Gewichtsabnahme von 185 g. Das Gewicht der getrockneten Probe betrug noch lediglich 1,360 kg. Bezogen auf das Gesamtvolumen der Probe im Ausgangszustand errechnet sich für die getrocknete Probe eine Porosität von ca. 30 %.
9.25 Auswertung Probe GEM 90-669

Die Probe stammt aus dem Untergrundlabor Tournemire (Frankreich) und wurde am 12.09.2007 aus einer Tiefe von 6,5 m parallel zur Schichtung erbohrt. In Tournemire wird Tonschiefer auf seine Tauglichkeit als Endlagerformation untersucht. Bis zum Einbau in den Autoklaven wurde die Probe, luftdicht verschlossen, bei einem Überlagerungsdruck von 2,0 MPa gelagert. Nach dem Ausbau aus der Lagerzelle bis zum Einbau in den Autoklaven war die Probe ca. zwei Stunden Umgebungsbedingungen ausgesetzt. Abb. 9-262 zeigt die Stirnseite der Probe, an deren linker Seite ein Riss erkennbar ist, der bis ca. in die Probenmitte reicht. Der Riss war in Längsrichtung ca. 4 cm an der Probenmantelfläche sichtbar. Die Probe wurde vermessen und gewogen. Das Gewicht der bergfeuchten Probe betrug vor dem Einbau in den Autoklaven 1,493 kg. Die hieraus ermittelte totale Porosität beträgt ca. 8,5 %. Nach http://www.pluspedia.de/index.php/Gesteinsdichte liegt die Dichte von Tonschiefer zwischen 2.700 kg/m³ und 2.840 kg/m³. Da die genauen Dichtewerte für die Probe nicht verfügbar waren, wurde mit einer mittleren Rein-

dichte von 2.770 kg/m³ gerechnet. Trotz des sichtbaren Risses ist die Porosität im Vergleich zu den Proben aus der Auflockerungszone aus Mont Terri deutlich niedriger.

9.25.1 Permeabilitätsmessungen mit Stickstoff

Am 17.05.2009 wurde die Probe in den Autoklaven eingebaut und ca. 20 Stunden später wurden bei einem Überlagerungsdruck von 2,0 MPa die ersten Permeabilitätsmessungen durchgeführt. Die Ergebnisse dieser Messungen sind in Abb. 9-263 dargestellt und in Abb. 9-264 zusammengefasst. Die über einen Zeitraum von knapp dreieinhalb Wochen durchgeführten Messungen, bei steigendem Überlagerungsdruck von 2,0 auf 5,0 MPa, führten zu einer Abnahme der Permeabilität um ca. eine Größenordnung (von 2,4·10⁻¹⁸ m² auf 2,8·10⁻¹⁹ m²).
Abb. 9-262: Stirnseite der Probe GME 90-669 vor Versuch

Abb. 9-263: Gemessene Permeabilitäten als Funktion des mittleren inversen Gasdrucks
In Abb. 9-265 ist das Verhältnis der scheinbaren zur wahren Permeabilität über dem inversen mittleren Gasdruck für Überlagerungsdrücke von 2,0 bis 5,0 MPa aufgetragen. Über den damit ermittelten Klinkenbergfaktor kann eine Aussage darüber getroffen werden, in wie weit Molekularströmung als Stofftransportmechanismus Anteil am gesamten Stofftransport hat. Je größer der Klinkenbergfaktor, desto größer der Gleitströmungsanteil, was bedeutet, dass die Anzahl der Gas/Wandstöße zunimmt. Bei gleichen mittleren Gasdrücken folgt daraus, dass bei hohen Klinkenbergfaktoren die Poren- bzw. Spaltweiten kleiner als die mittlere freie Weglänge der Gasmoleküle sind. Der Klinkenbergfaktor b steigt mit zunehmendem Überlagerungsdruck von ca. $b = 0,2$ bar bei einem Überlagerungsdruck von 2,0 MPa auf $b = 1,5$ bar bei einem Überlagerungsdruck von 5,0 MPa an.

In Abb. 7-10 sind die Klinkenbergfaktoren über der wahren Permeabilität für alle Messreihen zusammengefasst. Man erkennt, dass im Permeabilitätsbereich von $3,5 \cdot 10^{-18}$ m² bis $1,1 \cdot 10^{-18}$ m² die Klinkenbergfaktoren nahezu unabhängig von der Permeabilität bei ca. 0,5 bar liegen. Erst im Permeabilitätsbereich $k < 1,1 \cdot 10^{-18}$ m² ist ein Anstieg auf bis zu ca. 3,1 bar bei einer Permeabilität von $2,1 \cdot 10^{-19}$ m² zu erkennen.
Abb. 9-265: Verhältnis von scheinbarer zu wahrer Permeabilität als Funktion vom Kehrwert des mittleren Gasdrucks bei unterschiedlichen Überlagerungsdrücken

Abb. 9-266: Klinkenbergfaktor, abhängig vom Überlagerungsdruck, als Funktion der tatsächlichen Permeabilität

In Abb. 9-267 sind die mittlere freie Weglänge der Gasmoleküle λ und der Knudsendiffusionskoeffizient D_{Kn} als Funktion der tatsächlichen Permeabilität k
aufgetragen. Die freie Weglänge der Stickstoffmoleküle wurde dem bei der jeweiligen Messung vorgelegenen mittleren Gasdruck zugeordnet. Wie aus dem Diagramm zu ersehen ist, ist in dem gesamten vermessenem Permeabilitätsbereich von \(3,4 \cdot 10^{-18} \text{m}^2\) bis \(2,1 \cdot 10^{-19} \text{m}^2\) die freie Weglänge der Stickstoffmoleküle nahezu konstant, während der Knudsendiffusionskoeffizient im Bereich \(3,4 \cdot 10^{-18} \text{m}^2\) bis \(2,5 \cdot 10^{-18} \text{m}^2\) deutlich abnimmt, aber im Bereich von \(k \leq 2 \cdot 10^{-18} \text{m}^2\) dann ebenfalls nahezu unverändert bleibt.

Die Abnahme des Knudsendiffusionskoeffizienten als absolutes Maß für den Stofftransport im Knudsengebiet bedeutet eine Abnahme des Stofftransports durch Molekularströmung mit sinkender Permeabilität im Bereich \(3,5 \cdot 10^{-18} \text{m}^2 \leq k \leq 2,5 \cdot 10^{-18} \text{m}^2\).

Im Bereich \(k \leq 2,5 \cdot 10^{-18} \text{m}^2\) dagegen ist bei ebenfalls gleichbleibender freier Weglänge keine signifikante Abnahme des Knudsendiffusionskoeffizienten festzustellen. Daraus ist zu schließen, dass im Bereich \(2,1 \cdot 10^{-19} \text{m}^2 \leq k \leq 2,0 \cdot 10^{-18} \text{m}^2\) der relative Anteil der Molekularströmung als Stofftransportmechanismus am gesamten Stofftransport steigt und der mittlere Äquivalenzdurchmesser der Strömungspfade abnimmt (siehe auch Abb. 7-10). Der äquivalente Porendurchmesser ist somit mit ca. 30 nm anzunehmen.

Nach dem Vermessen der Probe bei 3,2 MPa wurden die Permeabilitätsmessungen mit Gas beendet.

![GEM 90-669 Diagramm](image)

Abb. 9-267: Knudsendiffusionskoeffizient in Abhängigkeit von der Permeabilität
9.25.2 Vermessen der Probe mit Formationswasser als Messfluid

Vor Beginn der Untersuchungen mit Formationswasser wurde der Überlagerungsdruck auf 2,0 MPa reduziert. Die Aufsättigung der Probe startete mit einem Probeneintrittsdruck von 2,0 bar. Dieser wurde über einen Zeitraum von ca. 5.000 Stunden schrittweise bis auf 25,0 bar gesteigert, ohne dass ein Flüssigkeitsdurchbruch detektiert werden konnte. Um Randläufigkeiten zu vermeiden, musste der Überlagerungsdruck dabei ebenfalls schrittweise bis auf 5,0 MPa erhöht werden. Erst nachdem der Probeneintrittsdruck auf 35,0 bar erhöht wurde, war am Probenaustritt ein Gasvolumenstrom messbar. Ca. 400 Stunden später erfolgte dann der Flüssigkeitsdurchbruch. Innerhalb dieser 400 Stunden waren ca. 2,2 ml Gas aus der Probe verdrängt worden, dies entspricht ca. 4,4 % des aus der Porositätsbestimmung errechneten Gesamtporenvolumens. Bezogen auf das gesamte Probenvolumen resultiert zu diesem Zeitpunkt hieraus eine Transportporosität von nur ca. 0,4 %. Eine Erklärung hierfür kann sein, dass infolge der Benetzung mit Formationswasser infolge des Quellens des Tones alle Poren und Risse bis zu einer bestimmten Größe verschlossen wurden, und der Flüssigkeitstransport nur noch durch wenige oder sogar nur durch einen offenen Riss erfolgt. Außerdem ist zu berücksichtigen, dass die Probe aus tieferen Formationen erbohrt wurde, und auch die Gesamtporosität deutlich geringer als bei den Proben aus der Auflockerungszone war.

Unmittelbar nach dem Wasserdurchbruch bricht der Gastransport wieder komplett zusammen, und es wird nur noch Flüssigkeit durch die Probe transportiert. Bei konstantem Überlagerungs- und Probeneintrittsdruck permeiert über einen Zeitraum von ca. 1.500 Stunden das Formationswasser, mit leicht abnehmendem Volumenstrom, durch die Probe. Ohne dass Probeneintritts- oder Überlagerungsdruck geändert wurden, ist dann wieder ein Gasvolumenstrom messbar, der geringfügig höher als der Flüssigkeitsvolumenstrom ist. Während der folgenden ca. 900 Stunden steigen bei gleich bleibenden Drücken sowohl der Gas- als auch der Flüssigkeitsvolumenstrom langsam weiter an. Auch nach Absenkung des Probeneintrittsdruckes von 35,0 bar über 10,0 und 2,0 auf 0,0 bar steigt der Gasvolumenstrom weiter langsam an und auch der Flüssigkeitsvolumenstrom nimmt nur minimal ab. Da trotz des Probeneintrittsdruckes von 0,0 bar über einen Zeitraum von 14 Tagen am Probenaustritt noch Gas- und Flüssigkeitsvolumenströme gemessen

375
wurden, wurde am 15.07.2010 die Probe aus dem Autoklaven ausgebaut um eventuelle Leckagen am Probenmantel feststellen zu können.

Da eine Weiterverwendung der Probe nicht mehr sinnvoll war, wurde der Versuch beendet, ohne dass die Verdrängung des Formationswassers durch Gasdruck untersucht werden konnte.
Abb. 9-268: Zeitlicher Verlauf der Gas- und Flüssigkeitsvolumenströme am Probenaustritt in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck

Abb. 9-269: Zeitlicher Permeabilitätsverlauf in Abhängigkeit vom Überlagerungs- und Probeneintrittsdruck
Abb. 9-270: Foto der Probenaustrittseite kurz nach Ausbau aus dem Autoklaven

Abb. 9-271: Foto der Rissoberfläche
Berichtsblatt

1. ISBN oder ISSN

2. Berichtsart
Schlussbericht

3a. Titel des Berichts
Untersuchungen zum Gastransport in der Auflockerungszone in einem geologischen Endlager in Tongestein

3b. Titel der Publikation

4a. Autoren des Berichts (Name, Vorname(n))
Prof. Dr.-Ing. Hampe, Manfred J.; Dipl.-Ing. Fröhlich, Hanskurt; Dipl.-Ing. Häfner, Benjamin

4b. Autoren der Publikation (Name, Vorname(n))

5. Abschlussdatum des Vorhabens
15.12.2010

6. Veröffentlichungsdatum
30.06.2011

7. Form der Publikation
Abschlussbericht

8. Durchführende Institution(en) (Name, Adresse)
Technische Universität Darmstadt
Fachgebiet Thermische Verfahrenstechnik
Petersenstraße 30, 64287 Darmstadt

10. Förderkennzeichen
02 E 10015

11a. Seitenzahl Bericht
406

11b. Seitenzahl Publikation
-

12. Literaturangaben
27

13. Fördernde Institution (Name, Adresse)
Bundesministerium für Wirtschaft und Arbeit (BMWA)
53107 Bonn

14. Tabellen
15

15. Abbildungen
359

16. Zusätzliche Angaben

17. Vorgelegt bei (Titel, Ort, Datum)

18. Kurzfassung

19. Schlagwörter
Endlagerung in Tonstein, radioaktiver Abfall, Nahfeld, Auflockerungszone, Permeabilität, Gastransport

20. Verlag

21. Preis
18. Abstract

The objective of the project is to investigate breakthrough gas pressures and cement water permeabilities at various temperatures in a resaturated EDZ in Opalinus clay by laboratory experiments. Therefore investigations focused on gas and fluid permeabilities, gas diffusivities and threshold and breakthrough pressures of clay samples from the underground laboratory Mont Terri. To gather information on the initial conditions of the samples gas permeation experiments with hydrogen and nitrogen were conducted. The diffusivity of hydrogen in nitrogen in the samples was experimentally determined as well. The water permeability was studied using rock water and cement water. The saturated samples were used for determining the threshold pressure for a gas breakthrough allowing an estimation of equivalent radii of the fluid paths. Experiments were done at temperatures up to 90 °C.

In summary, the investigations show that gas permeabilities strongly depend on the moisture ratios of the respective samples and the lithostatic stress applied in the experiments. In comparison, the water permeabilities’ dependence on these parameters are not as pronounced. Throughout all experiments done in this work, the permeability proved to be virtually independent of the temperature. Sealing of the probes was improbable under the chosen experimental conditions. The transport porosities were in general much lower than the accessible and the total porosities, all equivalent radii measured were clearly in the macroporous range. Above inlet gas pressures of at least 0.5 bar, water can be displaced from the macroporous fluid paths induced by stress rearrangements. Permeabilities up to about 10^{-17} m² have been observed. They were nearly independent of the temperature, the confinement pressure, the ionic strength, the pH-value and the moisture ratio at the time of mounting.

19. Keywords

Final disposal, radioactive waste, permeability, opalinus clay, gas transport