SCHLUSSBERICHT

ULTRAHOCHAUFLÖSENDE EPR - SPEKTROSKOPIE AN DÜNNSCHICHTSILIZIUM FÜR DIE SOLARENERGIEFORSCHUNG (EPR-SOLAR)

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen 03SF0328D gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

Projektleitung: Dr. Friedhelm Finger Dr. Oleksandr Astakhov

Institut für Energie- und Klimaforschung (IEK-5) - Photovoltaik Forschungszentrum Jülich GmbH 52425 Jülich GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Inhaltsverzeichnis

I.1. Aufgabenstellung	4
I.2. Voraussetzungen unter denen das Vorhaben durchgeführt wurde	4
I.3. Planung und Ablauf des Vorhabens	5
I.4. Wissenschaftlich und technischer Stand, an den angeknüpft wurde	5
I.5. Zusammenarbeit mit anderen Stellen	6
II.1. Verwendung der Zuwendung und erzielte Ergebnisse im Einzelnen, mit Gegenüberstellung der	
vorgegebenen Ziele	6
II.2. Notwendigkeit und Angemessenheit der geleisteten Arbeit	14
II.3. Voraussichtlicher Nutzen, insbesondere der Verwertbarkeit des Ergebnisses im Sinne des	
fortgeschriebenen Verwertungsplans	14
II.4. Während der Durchführung des Vorhabens dem Zuwendungsempfänger bekannt gewordene	
Fortschritte auf dem Gebiet des Vorhabens bei anderen Stellen	14
III. Danksagungen	14
Anhang 1: Ergebnisse	16
AP1.2: Probenpräparation	16
AP1.2A: a-Si- und µc-Si-Proben für Multifrequenz- und Multiresonanz-EPR	20
AP1.2B: a-Si- und µc-Si-Proben für Multifrequenz-EDMR	24
AP1.2C: Lichtalterung	26
AP1.2D: Isotopenanreichung in a-Si und µc-Si Proben	26
AP1.2F: Proben für ortsaufgelöste EDMR	35
AP1.2G: Legierung von a-Si oder µc-Si mit Germanium oder Kohlenstoff	37
AP1.2H: Proben für THz-EPR-Spektroskopie	39
AP2.1E Untersuchung der Rekombination in a-Si:H- und μ c-Si:H-Filmen	39
Anhang 2: Veröffentlichungen (projektbezogen)	42
Anhang 3: Probenlisten	47
Tabelle 1: a-Si- und µc-Si-Proben für Multifrequenz- und Multiresonanz-EPR. AP1.2A	47
Tabelle 2: a-Si:H und μ c-Si:H Proben für die Untersuchung, welchen Einfluss die Art der Pulver-	
präparation auf die EPR Eigenschaften hat. AP1.2A	48
Tabelle 3: a-Si- und µc-Si-Proben für Multifrequenz-EDMR. AP1.2B	49
Tabelle 4: a-Si:H und μc-Si:H Proben. AP1.2C	50
Tabelle 5: a-Si:D und μc-Si:D Proben. AP1.2D	51
Tabelle 6: a- ²⁸ Si:Η und μc- ²⁸ Si:Η Proben. AP1.2D	52

Tabelle 7: Testschichten aus ²⁹ Si-isotopangereichertem Silan. AP1.2D	53
Tabelle 8: a- ²⁹ Si:Η und μc- ²⁹ Si:Η Proben. AP1.2D	54
Tabelle 9: Schichten und Schichtstrukturen. AP1.2F	55
Tabelle 10: Schichten und Solarzellen. AP2.1E	58

I. 1. Aufgabenstellung

Gesamtziel des interdisziplinären Netzwerks EPR-Solar war die Identifikation von Defekten und deren Entstehungsmechanismen in dünnen Siliziumschichten unterschiedlicher Morphologie sowie in daraus hergestellten Solarzellen höchster Güte mit bisher unerreichter Empfindlichkeit, spektraler Auflösung und Spezifität. Aufbauend auf der komplementären Expertise der Netzwerk-Partner in den Feldern EPR-Spektroskopie, Biophysik, Synchrotronstrahlung, Dichtefunktionaltheorie und Photovoltaik sollte ein interdisziplinäres Netzwerk aufgebaut werden, das in der Lage ist, mit Hilfe von Ansätzen der Grundlagenforschung Fragestellungen der angewandten Solarenergieforschung mit dem Ziel zu beantworten, den Wirkungsgrad von Si-basierten Dünnschichtmodulen zu verbessern. Das dafür notwendige breite Spektrum an Methoden wurde durch eine Vernetzung von Universitäten (Technische Universität München, Freie Universität Berlin), Großforschungseinrichtungen (Helmholtzzentrum Berlin, Forschungszentrum Jülich) und einem Max-Planck-Institut (MPI für Eisenforschung Düsseldorf) zur Verfügung gestellt.

Aufgabe des Forschungszentrum Jülich war die Entwicklung und Herstellung von Proben und Probenkonfigurationen für die EPR-basierten Messmethoden. Das Forschungszentrum Jülich verfügt über ausgewiesene Expertise beim Einsatz von Siliziumschichten in Solarzellen und bei der Herstellung von Proben für EPR. Die Miniaturisierung der Proben und die Integration in die Messapparaturen stellte dabei eine große Herausforderung dar.

I. 2 Voraussetzungen unter denen das Vorhaben durchgeführt wurde

Hintergrund des Vorhabens war der Aufwuchs der Dünnschicht-Silizium Solarzellenproduktion in Deutschland und weltweit seit etwa dem Jahr 2005. Wesentlicher Vorteil der Dünnschichttechnologie gegenüber der marktbeherrschenden Silizumwafertechnologie sind die vergleichsweise niedrigen Herstellungskosten der Solarmodule bezogen auf die Solarmodulfläche. Für deutliche weitere Kostensenkungen und langfristige Konkurrenzfähigkeit gegenüber der Wafertechnologie muss aber der Wirkungsgrad der Silizium Dünnschichtmodule steigen. Neben Verbesserungen am eigentlichen Bauelement mit der eingesetzten Produktionstechnik muss die Defektphysik in Dünnschichtsilizium weit über das bisherige Maß erforscht werden. Der noch unvollständig verstandene Staebler-Wronski-Effekt (SWE) in amorphem Silizium ist ein grundlegendes Problem mit großen technologischen Auswirkungen. Beim SWE werden durch Sonnenlichteinwirkung Defekte im amorphen Silizium erzeugt. Dabei werden vermutlich durch die Rekombination von lichterzeugten Ladungsträgern schwache Bindungen des Siliziumnetzwerks aufgebrochen und durch eine atomare Umorganisation (z.B. von Wasserstoff) stabilisiert. Obwohl in den letzten 30 Jahren untersucht wurde, wie die SWE Defekte entstehen, welche Auswirkungen sie auf das Bauelement haben und wie man das Bauelementdesign in Hinblick auf den gealterten Zustand optimiert, ist der detaillierte mikroskopische Prozess der Defektentstehung nach wie vor ungeklärt. Ohne dieses mikroskopische Verständnis gelang es bisher nicht, geeignete Maßnahmen für die Beseitigung des SWE zu finden oder aber zu zeigen, dass dies prinzipiell unmöglich ist. Auch bei Solarzellen auf der Basis von mikrokristallinem Silizium sind Alterungseffekte zu beobachten. In µc-Si:H, welches als Mischsystem aus einer amorphen und einer kristallinen Phase verstanden werden kann, ist ungeklärt, welche Rolle die Korngrenzen und deren Passivierung durch amorphes Si und/oder durch Wasserstoff für die elektronischen Eigenschaften spielen und wo die durch Licht erzeugten Defekte lokal entstehen. Gleiches gilt für Legierungen wie amorphes und mikrokristallines SiC und SiGe die als Absorbermaterialien in Stapelsolarzellen zum Einsatz kommen können. Hier ist es wichtig zu klären, welcher Natur die Defekte sind, wie sich deren Bildung mit dem Mischungsverhältnis ändert, in welchen Phasen des Materials die Defekte lokalisiert sind und wie sie mit Wasserstoff und eventuellen Verunreinigungen wie Stickstoff oder Sauerstoff wechselwirken.

Mit dem grundlagen-orientierten Netzwerkprojekt bestand die Chance, im Verständnis der Ursachen für die Defekterzeugung und deren Auswirkungen auf die Solarzelleneigenschaften wesentliche Fortschritte zu machen mit dem Ziel, Maßnahmen zu identifizieren um insbesondere lichtinduzierte Defekterzeugung in Siliziumschichten zu minimieren oder zu verhindern.

I. 3 Planung und Ablauf des Vorhabens

Das Teilvorhaben am Forschungszentrum Jülich bestand im Wesentlichen darin, spezifische Proben und Probenkonfigurationen für die bei den Projektpartnern vorhandenen oder im Rahmen des Projektes aufzubauenden EPR-basierten Messtechniken zu entwickeln und herzustellen, die Probenqualität zu verifizieren, die Proben gegebenenfalls gezielt zu modifizieren, grundlegende experimentelle Daten zu erfassen und dann die Proben in geeigneter Form den Projektpartner zur Verfügung zu stellen. Bei den Proben handelt es sich um Schichten auf Trägermaterial oder als Pulver sowie um Schichtsysteme und Solarzellen. Während der gesamten Projektphase wurden mit der Entwicklung der neuen Messmethoden die Anforderungen an die Geometrie und Konditionierung der Proben weiter entwickelt und entsprechend modifizierte Schichten und Solarzellen hergestellt.

Hierfür standen im Rahmen des Projektes Personal- und Sachmittel zur Verfügung. Mit den Sachmitteln wurden vor allem Sondergase für die Probenpräparation (Silane, isotopenangereicherte Silane, Wasserstoff, Deuterium, Dotier- und Legierungsgase) angeschafft. Gegenüber der ursprünglichen Projektplanung, in der die Bereitstellung isotopenangereicherter Proben von dritter Seite eingeplant gewesen war und die in dieser Form nicht zu Stande kam, musste das Budget in einem Aufstockungsantrag, durch Mittelumverteilung zwischen den Projektpartnern sowie unter Verwendung von Eigenmitteln des Forschungszentrums für die Anschaffung dieser Gase erweitert werden. Auch bei den Personalmitteln für einen wissenschaftlichen Mitarbeiter ergab sich, dass über die Projektlaufzeit von fünf Jahren, die Personalmittel zu knapp kalkuliert waren und ebenfalls durch Eigenmittel des Instituts aufgestockt werden mussten. Unter Verwendung dieser Zusatzmittel, konnten alle Proben aus den jeweiligen Teilprojektvorhaben bzw. aus den einzelnen Arbeitspaketen erfolgreich hergestellt und den Projektpartnern zur Verfügung gestellt werden.

I. 4. Wissenschaftlich und technischer Stand, an den angeknüpft wurde

Das Vorhaben konnte auf dem vorhandenen und auf hohem internationalem Niveau entwickelten Know-How für die Herstellung von Siliziumschichten für den Einsatz in Dünnschichtsolarzellen am Forschungszentrum Jülich aufbauen. Darüber hinaus konnte auf die langjährige Expertise bei der Untersuchung von Defekten mit EPR basierten Methoden und hier insbesondere auch auf das Know-How bei der Probenpräparation für diese Messtechniken zurückgegriffen werden.

Dieses Know-How basierte auf langjähriger Materialforschung zu dieser Thematik am Forschungszentrum in den Instituten IGV (Institut für Grenzflächen- und Vakuumphysik; 1979-1988), ISI (Institut für Schicht- und Ionentechnik; 1988 - 2000), IPV (Institut für Photovoltaik, 2000 - 2006) IEF-5 bzw. IEK-5 (Institut für Energieforschung 2006 - 2010 und Institut für Energie- und Klimaforschung ab 2010). Von erheblicher Bedeutung für die Entwicklung von Know-How und Infrastruktur waren dabei die Photovoltaikprojekte ("Entwicklungsarbeiten zur Photovoltaik: Grundlagen und Technologie von Silizium Dünnschichtsolarzellen; Förderkennzeichen ΕT 9129 A/B; "Kristallines für Dünnschichtsolarzellen", Förderkennzeichen 9612 A; und "Grundlagen und Technologie für die Silizium-Dünnschichtphotovoltaik auf der Basis von Niedertemperaturprozessen, Förderkennzeichen 0327625),

die vom BMBF bzw. BMU gefördert worden waren. Ein wesentlicher Teil der Fachliteratur, die für das Vorhaben benötigt wurde, war im eigenen Haus entstanden bzw. war auf internationalen Photovoltaikund materialwissenschaftlichen Fachtagungen vorgetragen worden.

I. 5. Zusammenarbeit mit anderen Stellen

Durch den besonderen Charakter des Netzwerkprojektes in der das Forschungszentrum in seinem Teilvorhaben für die Probenherstellung für die Projektpartner zuständig war, ergab sich zwangsläufig eine sehr intensive und fruchtbare Zusammenarbeit mit allen Projektpartnern: Technische Universität München, Freie Universität Berlin, Helmholtzzentrum Berlin und MPI für Eisenforschung Düsseldorf. Neben dem tagesaktuellen Austausch im Zusammenhang mit der Probenpräparation und den halbjährigen Projekttreffen wurde auch die Möglichkeit genutzt, die Messtechnikinfrastruktur bei den Partnerinstituten für eigene Messanforderungen im Rahmen des Projektes einzusetzen – entweder durch zusätzlichen gezielten Probenaustausch oder durch direkte Nutzung der Messeinrichtungen bei den Partnern durch wissenschaftliche Mitarbeiter des Forschungszentrum. Dies fand auch Ausdruck in der Betreuung eines gemeinsamen Doktoranden mit der TU München.

Intensiver Austausch mit über den Kreis der Projektpartner hinausgehenden, zahlreichen international führenden wissenschaftlichen Einrichtungen aus Forschung und Industrie erfolgte in drei im Rahmen des Projektes veranstalteten Workshops. In diesen wurden die Ergebnisse des Projektes präsentiert und ihre Relevanz für das grundlegende Verständnis von Defektzuständen in Siliziumschichten, der lichtinduzierten Degradation und deren Auswirkungen auf die Eigenschaften von Solarzellen dargestellt und diskutiert. Bei den Kooperationen innerhalb von Deutschland spielten Kooperationsprojekte eine sehr wichtige Rolle. Für die internationalen Einrichtungen, mit denen während der Laufzeit des Projektes intensiver wissenschaftlicher Austausch zu projekt-relevanten Fragestellungen stattfand, seien stellvertretend hier die folgenden genannt: in den Niederlanden (Uni/TU Utrecht, Delft, Eindhoven), in Frankreich (Ecole Polytechnique, Palaiseau), in der Schweiz (EPFL-IMT, Neuchatel), in den USA (NREL, Golden, Colorado), in Japan (AIST, Tsukuba), und in China (Universitäten in Tianjin und Hangzhou).

Von besonderer Bedeutung mit sehr erfolgreichen Ergebnissen für das Verbundvorhaben war die Zusammenarbeit mit dem National Science Center Kharkov, Ukraine. Mit dem Institut in Kharkov war bereits im Vorfeld mit partieller finanzieller Unterstützung der EU (STCU Projekt #655) ein gemeinsames Experiment für die Bestrahlung von Schichten und Solarzellen mit hochenergetischen Elektronen mit geeigneter Probentransportlogistik zwischen Jülich und Kharkov entwickelt worden. Diese Experimente wurden während des Netzwerkprojektes weiter ausgebaut und intensiv genutzt.

II. 1 Verwendung der Zuwendung und erzielte Ergebnis im Einzelnen, mit Gegenüberstellung der vorgegebenen Ziele

Wie beantragt wurde die Zuwendung vor allem für die anteilige Finanzierung eines wissenschaftlichen Mitarbeiters verwendet, der die Projektarbeiten durchgeführt und koordiniert hat. Die Projektarbeiten bestanden aus

- der Entwicklung und Herstellung von Schichten und Schichtsystemen auf der Basis von amorphen und mikrokristallinen Siliziumlegierungen,

- der Entwicklung und Herstellung von Proben und Probenkonfigurationen f
 ür die EPR-basierten Messtechniken bei den Projektpartnern,
- der Bereitstellung bzw. Lieferung dieser Proben an die Projektpartner,
- der Vorcharakterisierung der Schichten und Schichtsysteme sowie der Durchführung eigener Experimente
- Koordination und Durchführung der Zusammenarbeit mit dem National Science Center Kharkov, Ukraine
- Betreuung eines Doktoranden

Die Sachmittel wurden wie vorgesehen vor allem für die Beschaffung von Sondergasen und für Verbrauchsmaterialien an den Depositionsanlagen verwendet.

Im Folgenden sind die durchgeführten Arbeiten und Ergebnisse in den einzelnen Arbeitspaketen mit Bezug auf die Aufgabenstellung im Projektantrag zusammengefasst. Weitere Beispiele und Details der wissenschaftlichen Forschung sowie Probenlisten sind in Anhang 1 und 3 dargestellt. Eine Liste projektbezogener Veröffentlichungen findet sich in Anhang 2.

AP1.2: Probenpräparation

AP1.2A: a-Si- und µc-Si-Proben für Multifrequenz- und Multiresonanz-EPR

Projektziel:

"Die Probenpräparation in Pulver- und Filmform erfolgt über die am FZJ üblichen Herstellungsverfahren. Die Herstellungsbedingungen werden den jeweiligen Fragestellungen gezielt angepasst, um zum Beispiel spezielle Defekte heraus zu präparieren oder eine gewünschte Materialstruktur zu erhalten."

Projektergebnisse:

Für das Arbeitspaket AP1.2A wurden amorphe und mikrokristalline Silizium- (a-Si:H- und μ c-Si:H) Schichten auf Glassubstraten und, für die Herstellung von Pulverproben, auf mit ZnO beschichtetem Glas und auf Metallsubstraten (Aluminium, Molybdän) hergestellt. Die a-Si:H Schichten wurden mit unterschiedlicher Qualität, insbesondere mit unterschiedlicher Defektdichte hergestellt. Dabei wurden die Defektdichten durch die Herstellungsbedingungen oder durch nachträgliche Behandlung (Beleuchtung, Elektronenbestrahlung) variiert. Die μ c-Si:H Schichten wurden mit unterschiedlicher Kristallinität hergestellt. Sehr detailliert wurde auch der Einfluss des Herstellungsprozesses für Pulverproben auf die EPR Eigenschaften untersucht um zu gewährleisten, dass durch die Herstellung bedingte Effekte angemessen berücksichtigt werden können. In diesem Zusammenhang wurde der Einfluss der Exposition an atmosphärische Gase und Prozessflüssigkeiten (Wasser, verdünnte Salzsäure) auf die EPR-Eigenschaften der a-Si:H und μ c-Si:H Proben untersucht. Für dieses Arbeitspaket wurden ca. 50 Einzelproben und zahlreiche Testproben für die Einstellung der Depositionsparameter hergestellt. Ca. 25 Pulverproben wurden den Projektpartnern HZB, TUM und FUB zur Verfügung gestellt. Prozessdauer für eine in EPR-Quarzrohren versiegelte Pulverprobe ist dabei etwa 2 Tage.

Beispiele einiger ausgewählter Ergebnisse und eine Probenliste befinden sich in den Anhänge 1 und 3.

Alle Ziele des Teilprojektes am FZJ im AP1.2A wurden erreicht. Alle geplanten a-Si:H- und µc-Si:H-Proben für die Multifrequenz- und Multiresonanz-EPR wurden hergestellt und den Projektpartnern zur Verfügung gestellt.

AP1.2B: a-Si- und µc:Si-Proben für Multifrequenz-EDMR

Projektziel:

"a-Si und µc-Si Proben als Schichten und Solarzellen für Multifrequenz-EDMR müssen neu präpariert werden. Dazu werden Schichten und Solarzellen am FZJ hergestellt und mittels Laserstrukturierung für den Einsatz in den EDMR Experimenten weiterverarbeitet. Ausgehend von einem etablierten Verfahren, das von FZJ und HMI [jetzt: HZB] gemeinsam entwickelt wurde, müssen die Proben- und Kontaktgeometrien an die Dimensionen der Hochfrequenzresonatoren angepasst werden. Für die Identifikation der Resonanzen aus den verschiedenen Bereichen der Solarzelle (p-, i-, und n-Schichten) müssen insbesondere die dotierten p- und n-Schichten alternativ amorph oder mikrokristallin hergestellt werden. Gegebenenfalls müssen auch alternative Schichtstrukturen untersucht werden."

Projektergebnisse:

Für die Untersuchung von a-Si:H und µc-Si:H Solarzellen wurden Strukturen für EDMR Experimente in Zusammenarbeit zwischen HZB und FZJ entwickelt. Die Solarzellen wurden am FZJ mit der Schichtenfolge Glas/ZnO/pin a-Si:H bzw. µc-Si:H/ZnO/Ag hergestellt. Durch Laserabtragungsprozesse wurden anschließend die Solarzellen für den Einsatz in EDMR-Messapparaturen bei den Projektpartnern strukturiert. Hierfür mussten am FZJ neuartige Laserstrukturierungsprozesse entwickelt werden. Für dieses Arbeitspaket wurden ca. 20 Solarzellenstrukturen und zahlreiche Testproben für die Einstellung der Depositionsparameter hergestellt. Die Solarzellen-EDMR Proben wurden den Projektpartnern HZB und FUB zur Verfügung gestellt. Auch der Prozess für eine komplette Solarzellen-EDMR Probe ist zeitaufwendig und dauert etwa 2 Tage.

Eine Probenliste und eine detaillierte Beschreibung der EDMR-Probengeometrie befinden sich in den Anhänge 1 und 3.

Projektziel:

"Für die Untersuchung des SWE können die fertig konditionierten Proben direkt bestrahlt und auch getempert werden. Die Vorcharakterisierung der Solarzellen (Strom-Spannungs- Kennlinien unter AM1.5 Beleuchtungsbedingungen, gegebenenfalls spektrale Quantenausbeute) und der Schichten (elektrische Leitfähigkeit, optische Absorption, Strukturzusammensetzung) erfolgt am FZJ und am HMI. Alternativ soll die Defekterzeugung mit Elektronenbestrahlung in Erwägung gezogen werden, die in einer Kooperation zwischen dem FZJ und dem National Science Center-Kharkov (Institute of Physics & Technology, Kharkov, Ukraine) in Vorexperimenten erfolgreich neue Einblicke in die Struktur paramagnetischer Defekt in a-Si und μc-Si erbracht haben. Auch die Degradation unter atmosphärischen Bedingungen durch Adsorption oder Oxidation, insbesondere in hochkristallinem, porösem μ c-Si wird untersucht."

Projektergebnisse:

Die Solarzellenstrukturen wurden am FZJ vorcharakterisiert (Strom-Spannungskennlinien und spektrale Quantenausbeute). Lichtalterung erfolgte vor allem an Einzelschichten (siehe dazu Arbeitspaket AP1.2C). Defekterzeugung mit Elektronenbestrahlung erfolgte systematisch in der Zusammenarbeit mit dem National Science Center-Kharkov sowohl an Einzelschichten als auch an kompletten Solarzellen (siehe dazu Arbeitspaket AP2.1E).

Alle Ziele des Teilprojektes am FZJ im AP1.2B wurden erreicht. Alle geplanten a-Si:H- und µc-Si:H-Proben für die Multifrequenz-EDMR wurden hergestellt und den Projektpartnern zur Verfügung gestellt.

AP1.2C: Lichtalterung

Projektziel:

"Die Lichtalterung (SWE) von dünnen Filmen und Solarzellen erfolgt, wenn nicht anders vereinbart, vor Ort in den jeweiligen EPR-Aufbauten. Für die Degradation von Pulverproben muss aber ein anderes Verfahren verwendet werden, da eine homogene Beleuchtung des Pulvers (und somit Alterung) nicht gewährleistet werden kann. Hierfür werden am FZJ spezielle Proben auf Metallsubstraten hergestellt. Diese Proben werden vor der Pulverisierung und Verfüllung in die Probenröhrchen auf den Metallfolien gealtert. Die Proben werden, falls nicht bereits geschehen, am FZJ hinsichtlich ihrer strukturellen (mittels Ramanspektroskopie) und hinsichtlich der elektrischen Zusammensetzung Transporteigenschaften (mittels Leitfähigkeitsmessungen) vorcharakterisiert. Gegebenenfalls müssen Infrarotmessungen zur Bestimmung des Wasserstoffgehalts und der Wasserstoffbindungsstruktur durchgeführt werden. Hierzu werden die Schichten auf Siliziumwafern co-deponiert."

Projektergebnisse:

Für dieses Arbeitspaket wurden 13 Einzelproben und verschiedene Testproben für die Einstellung der Depositionsparameter hergestellt und dem Projektpartner HZB zur Verfügung gestellt. Die Proben wurden zwischen 480 und 1000 Stunden lichtgealtert. Zu Vergleichszwecken wurde eine Probe in Kooperation mit dem Institut NREL (Colorado, USA) mit einem Laser lichtgealtert. An den Testproben wurden auch die strukturelle Zusammensetzung und die Wasserstoffbindungsstruktur bestimmt.

Alle Ziele des Teilprojektes am FZJ im AP1.2C wurden erreicht. Alle für die Lichtalterung geplanten a-Si:H- und µc-Si:H-Proben und die entsprechenden Proben mit Isotopenaustausch wurde hergestellt, die Lichtalterung wurde durchgeführt und die Proben den Projektpartnern zur Verfügung gestellt. Ausgewählte Ergebnisse sind in Anhang 1 dargestellt. Eine Probenliste befindet sich im Anhang 3.

AP1.2D: Isotopenanreicherung in a-Si und µc-Si Proben

Projektziel:

"Um die Wasserstoffverteilung in a-Si und µc-Si mittels ENDOR und ESEEM untersuchen zu können, müssen zusätzlich deuterierte Proben (a-Si:D, µc-Si:D) hergestellt werden und für die jeweiligen Messverfahren vorbereitet werden. Für die Untersuchung der lokalen Defektstruktur müssen a-Si und µc-Si mit ²⁹Si bzw. ²⁸Si angereichert werden. Die entsprechende Silangase sind nicht kommerziell verfügbar und nur unter großen Anstrengungen und Kosten herzustellen. Es soll geprüft werden, inwieweit über eine Kooperation mit dem Advanced Institute for Science and Technology (Prof. Dr. M. Kondo AIST, Tsukuba, Japan) Prozessgas oder isotopenreine Proben bezogen werden können."

Projektergebnisse:

Die im Projektantrag angedeutete Beschaffung entsprechender Proben in einer Kooperation mit dem Advanced Institute for Science and Technology (AIST, Tsukuba, Japan) konnte nicht realisiert werden. Deswegen wurden für die Herstellung von isotopenangereicherten Proben mehrere Spezialgase im Rahmen des Projektes am FZJ erworben:

- D₂ Deuterium,
- SiD₄ deuteriertes Silan,
- 28 Si:H₄ Silan angereichert mit 28 Si (Anreicherungsgrad > 99,9%)
- 29 Si:H₄ Silan angereichert mit 29 Si (Anreicherungsgrad ca. 55%)

Für die im ursprünglichen Antrag nicht vorgesehene Beschaffung der Gase musste das Projektbudget des FZJ aufgestockt werden. Hierbei kamen Mittelverschiebungen zwischen den Projektpartnern (vom MPI zum FZJ), Eigenmittel des FZJ und ein Aufstockungsantrag des FZJ zum Einsatz. Insbesondere die Beschaffung von ²⁹Si:H₄ war mit erheblichen logistischen und organisatorischen Schwierigkeiten verbunden und hat zu Zeitverzögerung der Projektarbeiten geführt.

Für die Verwendung der sehr teuren Spezialgase wurde in dem Aufstockungsantrag auch Arbeiten zur Entwicklung von Herstellungsprozessen mit hoher Gasausbeute erfolgreich am FZJ bearbeitet. Ziel war es, die sehr teuren Gase mit möglichst geringen Verlusten für die Schichtdeposition einsetzten zu können.

Insgesamt wurden ca. 60 Proben und zahlreiche Testproben mit isotopenangereichertem Silan (Einzelschichten auf Glas und Metallsubstraten, Pulverproben und Solarzellen-EDMR Proben) hergestellt und den Projektpartnern HZB, FUB und TMU zur Verfügung gestellt.

Beispiele einiger ausgewählter Ergebnisse und eine Probenliste befinden sich in den Anhängen 1 und 3.

Alle Ziele des Teilprojektes am FZJ im AP1.2D wurden erreicht. Alle geplanten isotopenangereicherten a-Si- und µc-Si-Proben für die EPR-basierten Messmethoden wurden hergestellt und den Projektpartnern zur Verfügung gestellt.

AP1.2F: Proben für ortsaufgelöste EDMR

Projektziel:

"Für die Entwicklung der ortsaufgelösten EDMR (AP2.1) sollen am FZJ zunächst Standard-a- Si:H-, µc-Si- und mikromorphe Solarzellen auf möglichst glatten transparenten leitfähigen Oxiden wie z.B. ZnO hergestellt werden. Mit diesen Strukturen soll die Skalierbarkeit von EDMR, die Stabilität des neu zu konstruierenden ortsaufgelösten EDMR-Spektrometers und die damit erreichbaren Ortsauflösungen untersucht werden. Zum Studium des spinabhängigen Transport durch mikroskristallines Silizium und über Korngrenzen hinweg sollen darüber hinaus µc-Si-Filme hergestellt werden, zur Bestimmung des Einflusses der Dotierung insbesondere mit unterschiedlichen Bor- und Phosphor- Dotierungen. Die Proben sollen mittels Lithographie am WSI strukturiert werden, derart, dass in einer Art Punktkontakt der Transport nur noch durch sehr wenige Nanokristalle erfolgt. Herausforderung bei der Herstellung dieser sehr dünnen nc-Si Schichten wird die definierte Dotierung innerhalb der Inkubationsschicht sein. In der zweiten Projektphase (4. + 5. Jahr) werden die EPR- und EDMR-Verfahren auf Legierungen (a-SiGe, a-SiC, µc-SiGe, µc-SiC) sowie weiterer isotopenangereicherter Proben (z.B. mit ¹⁷O) ausgedehnt. Insbesondere sollen in der zweiten Projektphase die Siliziumschichten und Solarzellen mit der neu entwickleten THz-EPR-Spektroskopie untersucht werden."

Projektergebnisse:

Für die Entwicklung der ortsaufgelösten EDMR an der TU München wurden verschieden Proben und Probenserien auf Glassubstraten hergestellt und geliefert. Für die Entwicklung der Ortsauflösung wurden die Proben (Schichten bzw. Solarzellen) auf Glassubstraten am FZJ mit Laserabtragungsprozessen strukturiert:

- undotierte a-Si:H und µc-Si:H Proben auf Glas
- Phosphor-doptierte μ c-Si:H Proben mit Dotierkonzentrationen im Bereich 10⁻¹ bis 10⁴ ppm
- Kompensierte a-Si:H Proben mit Phosphor-Bor Konzentrationen von 0,1 bzw. 1,0 %
- a-Si:H und µc-Si:H Schichten auf glattem und geätzten (rauen) TCO
- Silber und TCO Schichten auf Glass
- komplette Solarzellen und Einzelschichten aus den Solarzellen mit Laserstrukturierung

Insgesamt wurden ca. 80 Proben für die Untersuchung der ortsaufgelösten EDMR hergestellt und dem Projektpartner TMU zur Verfügung gestellt.

Eine Beschreibung zu Details der Probenstrukturierung und eine Probenliste, befinden sich in den Anhängen 1 und 3.

Die Ziele des Teilprojektes am FZJ im AP1.2F wurden erreicht. Alle geplanten bzw. vom Projektpartner angeforderten Proben für die EPR-basierten Messmethoden wurden hergestellt und dem Projektpartnern zur Verfügung gestellt. Eine Erweiterung der Messtechnik auf die Legierungssysteme (SiGe, SiC), Einsatz von Isotopenanreicherung (¹⁷O) und Untersuchungen mit THz Spektroskopie wurde vom Projektpartner nicht angefordert.

AP1.2G: Legierung von a-Si oder µc-Si mit Germanium oder Kohlenstoff

Projektziel:

"Legierungen von a-Si oder μc-Si mit Germanium oder Kohlenstoff ermöglichen vor allem eine Variation der optischen Bandlücke über einen weiten Bereich von ca. 1,0 eV bis 3,0 eV. Damit sind diese Legierungen von großem Interesse für den Einsatz in Stapelsolarzellen mit optimierter Anpassung der Quantenausbeute an das Sonnenspektrum, verbesserter Stabilität und letztendlich höherer Wirkungsgrade. Die Legierungen können durch Zumischung entsprechender Gase mit den gleichen Herstellungsverfahren (PECVD und HWCVD) deponiert werden. Die Proben werden in gleicher Weise wie die a-Si und µc-Si Proben als Schichten in Pulverform oder auf Substraten oder als Solarzellen hergestellt. Um zu überprüfen, welche Rolle Verunreinigungen wie zum Beispiel Kohlenstoff und Sauerstoff bei der Defektbildung und Dotierung spielen, werden hier speziell Proben mit der der Fragestellung angepassten Isotopenanreicherung präpariert."

Projektergebnisse:

Das Arbeitspaket AP1.2G wurde am FZJ umfangreich bearbeitet. Neben der Untersuchung der Herstellungsprozesse, der elektrischen, optischen und strukturellen Eigenschaften und der Anwendung in Solarzellen von Schichten aus den Legierungssystemen "mikrokristallines Siliziumkarbid (μ c-SiC:H)" und "mikrokristallines Siliziumoxid (μ c-SiO_x:H)" in mehreren laufenden F&E-Arbeiten, wurden detaillierte Untersuchungen der EPR-Eigenschaften von μ c-SiC:H und -SiO_x:H im Rahmen einer Doktorarbeit mit dem Titel "Electron Spin Resonance Investigation of Semiconductor Materials for Application in Thin-Film Silicon Solar Cells" durchgeführt. Hierzu wurde eine Vielzahl von Proben hergestellt und am FZJ untersucht. Im Rahmen des Verbundprojektes fanden auch gemeinsame Messungen bei den Projektpartnern HZB, FUB und TUM statt. Die Promotionsarbeit wurde erfolgreich an der TUM eingereicht und abgeschlossen.

Beispiele einiger ausgewählter Ergebnisse und befinden sich im Anhang 1. Eine Zusammenfassung der Ergebnisse ist als Publikation der genannten Promotionsarbeit in "*Schriften des Forschungszentrums Jülich, Reihe Energie Umwelt, Band 146*" erschienen.

AP1.2H: Proben für THz-EPR-Spektroskopie

Projektziel:

"Die jeweiligen Spezifikationen für die Dünnschichtsiliziumproben für die THz-EPR Experimenten müssen im Laufe dieser Projektphase in enger Zusammenarbeit mit AP2.2 THz-EPR bestimmt werden und dann über geeignete Herstellungsverfahren gezielt Proben mit den gewünschten Eigenschaften präpariert werden."

Projektergebnisse:

Für den Einsatz als Probe in THz-EPR-Spektroskopie wurde eine qualitativ hochwertige a-Si:H mit einer Schichtdicke von 1 µm auf Diamant Substrat hergestellt. Um gute Adhäsion zu gewährleisten, wurde die Schicht mit einer Silankonzentration von 100 % hergestellt. Zusätzlich wurden zwei Proben (Glas, sowie Glas mit ZnO Beschichtung) für Testzwecke zur Verfügung gestellt.

Die Ziele des Teilprojektes am FZJ im AP1.2H wurden erreicht. Die vom Projektpartner angeforderten Proben für die EPR-basierten Messmethoden wurden hergestellt und dem Projektpartnern zur Verfügung gestellt.

AP2: Methodenentwicklung

AP2.1E: Untersuchung der Rekombination in a-Si:H- und µc-Si:H-Filmen

Projektziel:

"Die neu entwickelte Methode der ortsaufgelösten EDMR soll zunächst zur Untersuchung von undotierten und insbesondere auch kompensierten a-Si:H Filmen sowie mikro- bzw. nanokristallinen Silizium-Dünnschichten verwendet werden. Dabei sollen in enger Zusammenarbeit mit den anderen Arbeitsgruppen Modelle entwickelt werden, die die Rekombination in diesen ungeordneten Strukturen beschreiben. Von besonderem Interesse sind dabei unter anderem ein besseres Verständnis des reduzierten Staebler-Wronski-Effektes in kompensierten a-Si:H-Filmen und der Einfluss von Korngrenzen auf die Rekombination und die photoinduzierte Degradation."

Projektergebnisse:

Über die Verwendung der EDMR-basierten Methoden bei den Projektpartnern hinaus, wurden am FZJ die zusammen mit dem Kooperationspartner National Science Center-Kharkov (Institute of Physics & Technology, Kharkov, Ukraine) weiter entwickelten experimentellen Methoden zur Untersuchung von Defekten in Halbleiterschichten nach Elektronenbestrahlung sehr erfolgreich für Experimente an Solarzellen mit amorphen und mikrokristallinen Silizium Absorberschichten eingesetzt. Die Ergebnisse sind in einer ganzen Reihen von Publikationen veröffentlicht und wurden auf wissenschaftlichen Konferenzen vorgestellt (s. Liste der Publikationen und Vorträge).

Der Rekombinationsprozess ist ein wichtiger Limitierungsparameter für den Solarzellenwirkungsgrad. Den Einfluss der Rekombination an Defektzuständen kann man durch eine Variation der Defektdichte in dem Material und der gesamten Solarzelle untersuchen. Hierzu wird hochenergetische Elektronenbestrahlung als Instrument zur Variation der Defektdichte genutzt. Die Bestrahlung wurde bei 100K mit einem 2MeV Elektronenstrahl ausgeführt. Nach der Bestrahlung wurden die a-Si:H und µc-Si:H Einzelschichten und Solarzellen schrittweise getempert, um die erhörte Defektdichte wieder zu senken und dadurch die Abhängigkeit der Zellparameter von der Defektdichte zu erfassen.

Beispiele ausgewählter Ergebnisse und eine Probenliste befinden sich in den Anhängen 1 und 3.

II. 2 Notwendigkeit und Angemessenheit der geleisteten Arbeit

Die Notwendigkeit und Angemessenheit der geleisteten Arbeit ergab sich aus der besonderen Rolle des Forschungszentrums Jülich im Netzwerkprojekt. Der bei weitem größte Teil der im Projekt untersuchten Proben wurden in Jülich hergestellt und den Projektpartnern zur Verfügung gestellt. Dies war z. T. mit erheblichen Vor- und Entwicklungsarbeiten verbunden um die geeigneten Herstellungsverfahren einzustellen, die Probengeometrien zu entwickeln und die von den Projektpartnern angeforderten Probenqualität und Probenspezifikation zu erfüllen. Für die Herstellung der Proben wurde die vorhandene Infrastruktur an Depositionsapparaturen genutzt. Hierbei wurden typische Verschleißteile der Depositionsanlagen anteilig aus Projektmitteln ersetzt. Ein Teil der notwendigen Gase, insbesondere Isotopenangereicherte Silane und Deuterium mussten speziell für das Projekt angeschafft bzw. beim Lieferanten hergestellt werden. Probenvorcharakterisierung erfolgte mit den am FZJ vorhandenen Meßapparaturen. Die Arbeiten am FZJ und die Zusammenarbeit mit den Projektpartnern wurden von einem wissenschaftlichen Mitarbeiter (Postdoc) koordiniert und durchgeführt, der auch die Betreuung einer Doktorarbeit leistete. Die Durchführung der Arbeiten am FZJ wäre ohne die Zusatzfinanzierung aus dem Projekt nicht möglich gewesen.

II. 3 Voraussichtlicher Nutzen, insbesondere der Verwertbarkeit des Ergebnisses im Sinne des fortgeschriebenen Verwertungsplans

Der Gesamtnutzen des Projektes bestand im Aufbau eines Netzwerkes aus Anwendern von EPRbasierten Methoden für die Untersuchung von Defekten in Materialien für photovoltaische Anwendungen, insbesondere Si-basierte Materialien. Die im Rahmen des Projektes erarbeiteten wissenschaftlich-technischen Ergebnisse sind von aktueller Relevanz und haben in vielen Bereichen zu neuen Erkenntnissen und tieferem Verständnis der Defekte in dünnen Silizium- und Siliziumlegierungsschichten geführt. Zahlreiche Publikationen in renommierten wissenschaftlichen Zeitschriften und viele eingeladene Vorträge auf internationalen Konferenzen zeugen von der allgemeinen Anerkennung und der Qualität der erzielten Ergebnisse.

Für das Teilprojekt am FZJ war die enge Zusammenarbeit mit den Netzwerkpartnern für die Entwicklung von angepassten Proben und Probengeometrien für die EPR-basierten Meßmethoden von großem Nutzen. Ein großer Pool an Proben wurde für die Projektpartner hergestellt. Diese Proben sind teilweise von einzigartiger Qualität und Ausgestaltung, etwa die zahlreichen Proben mit Isotopenangereicherten Gasen. Der Probenpool dürfte in seiner Gesamtheit international einmalig sein. Die Proben sind in der Regel auch für zukünftige Experimente lager- und verfügbar. Die Technologie für die Probenherstellung am FZJ ist jederzeit verfügbar und abrufbar.

Das FZJ ist in der Lage, dieses Know-How in zukünftige Drittmittelprojekte sowie in die nächste Phase der programmorientierten Förderung (POFIII) der Helmholtzzentren einzubringen.

II. 4. Während der Durchführung des Vorhabens dem ZE bekannt gewordenen Fortschritts auf dem Gebiet des Vorhabens bei anderen Stellen

Die im Projekt durchgeführte Vernetzung von Kompetenzen auf dem Gebiet der EPR-basierten Messmethoden für dünnen Siliziumschichten für die Photovoltaik zusammen mit der Kompetenz auf

dem Gebiet der Herstellung von solchen Schichten und spezieller Proben für die eingesetzten Methoden hat eine internationale Alleinstellung in so hohem Maße, dass mit vergleichbar hochwertigen Ergebnissen und Fortschritten an anderer Stelle nicht zu rechnen war. Wesentliche Fortschritte insbesondere zu Defekten in dünnen Siliziumschichten die mit EPR-basierten Methoden untersucht wurden, oder zur Entwicklung und Herstellung von geeigneten Proben und Probengeometrien sind uns von anderer Stelle nicht bekannt geworden.

III. Danksagung

Wir bedanken uns bei allen Mitarbeitern des Instituts für Energie- und Klimaforschung (IEK-5) – Photovoltaik, die an den Projektarbeiten mitgewirkt haben. Insbesondere möchten wir nennen, Wanjiao Böttler, Reinhard Carius, Tao Chen, Kaining Ding, Björn Grootoonk, Stefan Haas, Andreas Lambertz, Stephan Michard, Bart Pieters, Andreas Schmalen, Vladimir Smirnov, Sandra Tillmanns, Rebecca van Aubel, Johannes Wolff, Lihong Xiao, Uwe Zastrow, unsere Kollegen vom National Science Center Kharkov (Ukraine), Dmitry Barankov, Valery Borosenko, Yuri Petrusenko, und nicht zuletzt die Partner im Forschungsnetzwerk.

Oleksandr Astakhov und Friedhelm Finger, Jülich, 30. September 2013

Anhang 1: Ergebnisse

Im Folgenden sind exemplarisch einige wichtige Ergebnisse im Detail dargestellt. Eine Auflistung der projektbezogenen Veröffentlichungen findet man in Anhang 2.

AP1.2: Probenpräparation

Schichten aus amorphen und mikrokristallinen Siliziumlegierungen

Die Proben aus amorphem und mikrokristallinem Silizium bzw. Siliziumlegierungen wurden am IEK5 mit Plasma Enhanced Chemical Vapour Deposition (PECVD) oder mit Hot Wire Chemical Vapour Deposition (HWCVD) hergestellt. Für Schichtsysteme und komplette Solarzellen kamen außerdem Sputterdeposition und thermische Verdampfung für transparente leitfähige Oxidschichten (TCO) bzw. für Metalle zum Einsatz. Für die Projektaufgaben standen drei Mehrkammer-Depositionssysteme, sowie eine Einkammer-Anlage für die Herstellung von SiC Legierungen zur Verfügung. Fig.1 zeigt zwei dieser Anlagen: 6-Kammeranlage (6K) und Cluster-Tool 1 (CT1).

Die Si Schichten wurden typisch bei 200°C aus den Prozessgasen: Silan (SiH₄), Wasserstoff (H₂) für intrinsische Schichten bzw. unter Zumischung von Phosphin (PH₃), Trimethylbor (B(CH₃)₃) oder Diboran (B₂H₆) für n-oder p-dotiertes Material hergestellt. Für die Siliziumlegierungen aus Siliziumoxid, wurde zusätzlich Kohlendioxid (CO₂), für Siliziumkarbid kam Monomethylsilan (H₃SiCH₃) und für p-dotiertes Siliziumkarbid, Trimethylaluminium (Al₂(CH₃)₆) zum Einsatz.

Fig. 1. Depositionsanlagen für die Herstellung von EPR-Proben: 6-Kammeranlage (links) und Clustertool I (rechts)

Bei den verschiedenen EPR-basierten Messmethoden, die Wechselwirkung der Elektronenspins mit magnetischen Kernmomenten ausnutzen, ist, wo möglich, ein Isotopenaustausch von großem Interesse. Hierbei werden chemische gleiche Isotope, aber mit unterschiedlichen kernmagnetischen Momenten eingesetzt. In den hier untersuchten Proben konnte durch die Verwendung von deuteriertem Silan (SiD₄) und Deuterium (D₂), Wasserstoff (Kernspin m=½) durch Deuterium (Kernspin m=1) ersetzt werden. Außerdem wurde das natürliche Isotopengemisch des Silizium (²⁸Si: 29,2%, m=0; ²⁹Si: 4,7%, m=½; ³⁰Si: 3,1%, m=0) gezielt verändert. Für die Schichtpräparation wurden Filmproben auf glattem Erdalkali-Boro-Aluminosilkat Glas (Corning Eagle 2000 oder Corning 1737) oder auf aufgerautem Barium-Borsilkat Glas (Corning 7059) abgeschieden. Die Substratgröße ist 100x100 mm² bzw. 4 Stücke 25x100cm² bei einer Dicke von 1 mm (Fig. 2).

Fig. 2. (a) Rückansicht des Substrathalters (b) µc-Si:H Schichten auf Glasssubstrat 100x100 mm² (c) Ag Schichten auf 4 Gläsern mit der Größe 25x100mm². Die Glassubstrate können mit zusätzlicher Öffnung auch als Aufnahme für weitere kleine Substrate mit Dicke 0.3 mm bis zu Größen 15x15 mm² dienen.

Alternativ kann ein Substrat auch als zusätzlich Aufnahme für weitere kleine Substrate mit einer Dicke von 0.3 mm bis zu Größen 15x15 mm² dienen, z. B. für Si-Wafer als Substrat für Infrarotspektroskopie. Für Schichtdicken von weniger als 1 µm können in der Regel glatte Substrate genutzt werden. Für größere Schichtdicken, etwa auch bei Deposition zusammen mit Pulverproben, werden wegen der besseren Haftung aufgeraute Gläser genutzt. (Fig. 3).

(a)

Fig. 3. Dünnschichtsilizium auf (a) glattem Glas und auf (b) aufgerautem Glas der Größe 0.3x4x15 mm³, die direkt in Standard X-Band EPR Probenröhrchen genutzt werden können.

Fig. 4. X-Band EPR-Probenröhrchen (Fa. Wilmad Glass Company; Innendurchmesser 4 mm) gefüllt mit Siliziumpulver. Links und rechts die beschichteten Aluminium und Molybdän Folien.

Für Pulverproben werden vor allem zwei Verfahren genutzt: (A) Deposition auf Aluminiumfolie mit anschließender nasschemischer Entfernung der Al Folie und Trocknung des Pulvers an Umgebungsluft. Zur mechanischen Stabilisierung wird die Aluminiumfolie für die Beschichtung um die 25x100mm² Glassubstrate gewickelt. Alternativ kann auch bei Benutzung eines mit ZnO beschichteten Glassubstrats, die Si Proben durch nasschemisches Ätzen vom Substrat gelöst werden. Ohne Nasschemie kommt die zweite Methode aus: (B) Deposition auf Molybdänfolie mit Loslösung des Pulvers durch mechanisches Verbiegen des Substrates. Die Molybdänfolie braucht während der Deposition nicht zusätzlich mechanisch stabilisiert zu werden. In beiden Fällen wird das Pulver unter Schutzgas (500hPa He) in EPR Probenröhrchen eingeschmolzen (Fig. 4). Methode A hat den Vorteil, dass auch sehr dünne Schichten zu Pulver verarbeitet werden können die bei Methode B nur mit sehr geringer Ausbeute vom Substrat lösbar sind. Methode B hat den Vorteil, dass die Pulverpräparation ohne nasschemische Prozessschritte und ohne langen Kontakt an Umgebungsluft auskommt.

Kontaktschichten

Für die Solarzellen oder andere relevante ESR Proben wurde Al-dotiertes Zinkoxid (ZnO:Al) als transparente Kontaktschicht benutzt. Das ZnO wurde durch Kathodenzerstäubung ("Sputtern") hergestellt (Fig. 5). Weiterhin wurden für Solarzellen und für Leitfähigkeitsmessungen Silberkontakte entweder mit Elektronenstrahlverdampfung oder mit thermischer Verdampfung hergestellt.

Fig. 5. Depositionsanlage für Herstellung von ZnO:Al Kontaktschichten mit Sputter-Prozessen

Laserstrukturierung

Ein wichtiger Teil des Projektes ist die besondere Probenstrukturierung für EDMR Messungen und für die neu zu entwickelnde ortsaufgelöste EDMR Methoden. Die Strukturierung wurde mit Laserprozessen realisiert. Hierbei kann mit einem Laserstrahl geeigneter Wellenlänge selektiv Frontkontakt-, Absorberund Rückkontaktmaterial abgetragen werden. Das Know-How basiert auf der für die Siliziumdünnschichttechnologie entwickelten Verfahren für die Modulverschaltung (Fig. 6).

Lichtalterung

Die durch Lichtalterung erzeugte Veränderung in a-Si:H, insbesondere die Zunahme von elektronischen Defekten, ist ein großes Problem bei der Anwendung dieses Materials in Solarzellen. Die Untersuchung der durch Lichtalterung erzeugten Defekten mit neuesten EPR Methoden war eine der Hauptaufgaben des EPR-Solar Projektes. Dafür wurden Defekte durch kontrollierte Beleuchtung in a-Si:H Schichten und Solarzellen erzeugt. Die Anlage für die Lichtalterung ist in Fig. 7 dargestellt.

Fig. 6. Veranschaulichung der Laserstrukturierung eines Solarmoduls: Das gebündelte Laserlicht wird in geeigneter Weise in den Schichten des Moduls absorbiert wodurch diese abgesprengt werden. So können gezielt Schichten abgetragen werden. Durch Kombination von Schichtabtragung und anschließender Deposition werden Einzelzellen (im Bild sichtbar) zu einem Module in Serie verschaltet. Diese Technik wird für die Herstellung der EDMR Proben genutzt.

Fig. 7. Anlage für die Lichtalterung von a-Si:H Schichten und Solarzellen für langfristige (typisch: 1000 Stunden) Beleuchtung unter sogenannten Standardbedingungen (AM1.5 Spektrum mit 1kW/m² bei 50°C).

Probencharakterisierung

Die am IEK-5 hergestellten Proben wurden in der Regel vor Bereitstellung an die Projektpartner mit unterschiedlichen Messverfahren auf ihre strukturellen, elektrischen und optischen Eigenschaften hin untersucht. Zum Einsatz kamen: Continuous Wave (CW-) EPR, elektrische Photo- und Dunkelleitfähigkeit, Schichtdickenmessungen, Photoleitungsspektroskopie (Constant Photocurrent Method (CPM)), Secondary Ion Mass Spectrometry (SIMS), Infrarot Spektroskopie, IV-Kennlinien und spektrale Quantenausbeute an Solarzellen.

AP1.2A: a-Si- und µc-Si-Proben für Multifrequenz- und Multiresonanz-EPR

Für das Arbeitspaket AP1.2A wurden amorphe und mikrokristalline Silizium- (a-Si:H- und μ c-Si:H) Schichten auf Glassubstraten und, für die Herstellung von Pulverproben, auf mit ZnO beschichtetem Glas und auf Metallsubstraten (Aluminium, Molybdän) hergestellt. Die a-Si:H Schichten wurden mit unterschiedlicher Qualität, insbesondere mit unterschiedlicher Defektdichte hergestellt. Dabei wurden die Defektdichten durch die Herstellungsbedingungen oder durch nachträgliche Behandlung (Beleuchtung, Elektronenbestrahlung) variiert. Die μ c-Si:H Schichten wurden mit unterschiedlicher Kristallinität hergestellt. Sehr detailliert wurde auch der Einfluss des Herstellungsprozesses für Pulverproben auf die EPR Eigenschaften untersucht um zu gewährleisten, dass durch die Herstellung bedingte Effekt angemessen berücksichtigt werden können. In diesem Zusammenhang wurde der Einfluss der Exposition an atmosphärische Gase und Prozessflüssigkeiten (Wasser, verdünnte Salzsäure) auf die EPR-Eigenschaften der a-Si:H und μ c-Si:H Proben untersucht.

Tabelle 1 im Anhang 3 listet die hergestellten und den Projektpartnern zur Verfügung gestellten Proben. Weitere Details von Testproben zur Einstellung der Herstellungsparameter und der Schichteigenschaften finden sich in der Datenbank des IEK-5.

Im Zusammenhang mit der Herstellung insbesondere der Pulverproben für die Projektpartner wurde eine systematische Untersuchung des Einflusses der Probenpräparation auf die EPR Eigenschaften des Pulvermaterials durchgeführt. Pulverproben finden Verwendung um in den EPR Experimenten bessere Signal-Rausch Verhältnisse zu erreichen. Dieser Präparationsprozess erfordert die Anwendung von temporären Substraten z.B. Mo Folie, Al Folien oder ZnO auf einem Glasssubstrat. Die Si Schicht wird nach der Deposition von Substrat durch einen HCl Ätzprozess (bei Al Folie und ZnO auf Glas) abgetrennt oder durch mechanische Deformation des Substrates gelöst (Mo Folie). Es ist davon auszugehen, dass das Substratmaterial und die Präparationsgeschichte grundsätzlich die EPR Eigenschaften des Materials beeinflussen können. Für die Untersuchung wurde Si Material in amorpher und mikrokristalliner Form auf den unterschiedlichen Substraten deponiert. Die Deposition erfolgt mit PECVD Prozessen aus Silan-Wasserstoff-Gemischen. Die Silankonzentration (relativ zum Gesamtanteil am Prozessgas) wird variiert um µc-Si:H Schichten mit geeigneter Kristallinität zu erhalten. Eine Übersicht über die für diese Arbeiten hergestellten Proben gibt Tabelle 2 im Anhang 3.

Fig. 8 zeigt einen Vergleich von EPR Spektren von a-Si:H bzw. μc-Si:H (mittel- und hochkristallin) Proben, die auf den unterschiedlichen temporären Substraten Mo, Al und ZnO hergestellt wurden. Die Signale sind auf gleiche Signalhöhe normiert. Für das hier untersuchte Pulver aus relativ dicken (> 2 μm) Schichten wird gefunden, dass die Art des temporären Substrates und das damit verbundene Verfahren für die Herstellung der Pulverproben, keinen großen Einfluss auf die EPR Linienform und den g-Wert des dominanten Signals hat.

Allerdings findet man erheblichen Einfluss der Herstellungsverfahren auf die Spindichte und, insbesondere bei hochkristallinen und dünnen Proben, auch einen deutlichen Einfluss auf das EPR Spektrum. In Fig.9 ist die Spindichte für Pulverproben gezeigt, die mit nasschemischem Ätzen vom Substrat gelöst wurden zusammen mit der Spindichte einer Probenserie, die auf Mo Substrat deponiert und mechanisch abgelöst wurden. Die Darstellung erfolgt als Funktion der Silankonzentration bei der Herstellung, und damit auch als Funktion der Kristallinität der Proben von hochkristallin bei einer Silankonzentration von 2% zu amorph bei 10%. Man findet bei einigen hochkristallinen Proben einen großen Einfluss des Herstellungsprozesses auf die Spindichte. Lange Ätzzeiten führen zu einem deutlichen Anstieg der Spindichte. Durch Tempern dieser Proben etwas unterhalb der Herstellungstemperatur (ca. 160°C), kann diese erhöhte Spindichte aber ausgeheilt werden.

Fig. 8. EPR Spektren von hochkristallinen (SC=2%), mittelkristallinen (SC=5%) und amorphen (SC=10%) Pulverproben deponiert auf Mo- und Al-Metallfolie und auf ZnO beschichteten Glassubstraten. Anschließend wird das Material mit den beschriebenen Verfahren vom Substrat gelöst.

Die damit einhergehenden Effekte, Einfluss der Ätzzeiten und der Temperbedingungen, wurden im Rahmen einer Doktorarbeit am IEK-5 systematisch untersucht. Unter Berücksichtigung der gefundenen Effekte und der Möglichkeiten zur Korrektur herstellungsbedingter Einflüsse auf die EPR Parameter kann festgehalten werden, dass für das Materialsystem "Dünne Siliziumschichten" die Pulverproben für die Experimente im Rahmen des EPR-Projektes als repräsentativ für die dünnen Schichten auf Glassubstraten genutzt werden können.

Der Einfluss der Ätzvorgänge für die Ablösung des Pulvers vom temporären Substrat auf die EPR Linienform ist im Folgenden dargestellt. Fig. 10 & 11 zeigen die Entwicklung der Spektrenform sowie der g-Werte und der Spindichten in Abhängigkeit von der Behandlungsdauer in HCl für unterschiedlich kristalline und für amorphe Proben. Man findet, dass insbesondere in hochkristallinen Proben sich die Spektren und die Spindichte sehr stark ändern. Der Effekt nimmt mit der Dauer der Behandlungszeit zu. Für amorphe Proben und Proben mit mittlerem kristallinem Anteil sind die Effekte wesentlich kleiner.

Fig. 10. Vergleich der EPR Spektren von (a) hochkristallinem μ c-Si:H, (b) mittelkristallinem μ c-Si:H und (c) a-Si:H deponiert auf Al Folie gemessen nach Ätzen in HCl für 12 min. bzw. 16 Std.

Fig. 11. Entwicklung der EPR Spektren von hochkristallinem μ c-Si:H als Funktion der Ätzdauer in HCI. (a) Spektren nominell identischer Proben, die nacheinander deponiert und in HCI mit unterschiedliche Dauer behandelt wurden (b) Spektren einer in drei Teile aufgeteilten Probe die in HCI mit unterschiedliche Dauer behandelt wurden (c) und (d) zugehörige Spindichten und g-Werte.

Fig. 12. Ausheizen der hochkristalliner EPR Pulverprobe in He Schutzgasatmosphäre nach 16 Stunden Ätzen in HCI. Die Probe wurde auf Al Folie deponiert. (a) Effekt des Ausheizens auf das EPR Spektrum. Der Pfeil zeigt die Änderung mit zunehmender Ausheiztemperatur und – dauer (b) Spindichte und g-Werte nach den verschiedenen Ausheizschritten.

Durch Ausheizen der Proben bis zu einer Temperatur von 160°C lassen sich die durch das Ätzen in HCl hervorgerufenen Veränderungen der EPR Spektren nahezu vollständig ausheilen. Dies ist in Fig. 12 dargestellt. Man sieht die Spektren (Fig. 12a) und die Spindichten und g-Werte (Fig. 12b) in Abhängigkeit von der Ausheiztemperatur bzw. der Temperdauer.

Die beobachteten, in der Regel durch Ausheizen reversiblen Veränderungen durch Exposition der Proben in verdünnter HCl, werden Adsorptionprozessen in der porösen Struktur des µc-Si:H zugeschrieben. Das Material, insbesondere hochkristallines µc-Si:H, besteht aus kolumnaren Kristallclustern mit spaltenartigen Hohlräumen zwischen den Säulen. Diese sind besonders anfällig für Adsorptions- und Oxidationsprozesse. Bei den hier beobachteten reversiblen Effekten gehen wir von Adsorptionsprozesse aus, die über die damit verbundene Veränderung der Oberfächenladung zu Umbesetzungen der paramagnetischen Defekte führen, und damit zu Veränderungen der Spindichten und der EPR Spektren.

Es kann festgehalten werden, dass durch geeignete Präparationsmethoden (trockene Ablösung von Mo-Folie, kurze Behandlungsdauer) bzw. durch Nachbehandlung (Ausheizen in verkapselten Probenröhrchen in Schutzgasatmosphäre), die Effekte der Pulverpräparation auf die EPR Eigenschaften minimiert bzw. verhindert werden können. Für die Bereitstellung der EPR-Proben für die Projektpartner wurde dies angemessen berücksichtigt.

AP1.2B: a-Si- und µc-Si-Proben für Multifrequenz-EDMR

Für die Untersuchung von a-Si:H und µc-Si:H Solarzellen wurden Strukturen für EDMR Experimente in Zusammenarbeit zwischen HZB und FZJ entwickelt. Die Solarzellen werden am FZJ mit einer Schichtenfolge wie in Fig. 13 gezeigt auf einer Substratfläche von 50x100mm² deponiert.

Jeweils nach Deposition (i) des ZnO, (ii) der Si-Schichten mit dem ZnO Reflektor und (iii) des Ag-Rückkontaktes wird die EDMR Struktur durch einen Laserabtragungsprozeß aus der Gesamtfläche herauspräpariert (Fig. 14). Man erhält so jeweils 10 EDMR-Strukturen auf der Fläche von 50x100mm². Aus dem Substrat werden schließlich die einzelnen Strukturen mit einer Diamantsäge abgetrennt.

Fig. 14. (a) Deposition und Strukturierung des ZnO (b) Deposition und Strukturierung der Siliziumschichten (c) Deposition und Strukturierung des Silber-Rückkontakts

Figur 15 zeigt Fotos der EDMR-Solarzellenstrukturen. In Fig. 15(a) sieht man das 50x100mm² Substrat mit einem Satz von 10 EDMR-Proben. Fig. 15(b) zeigt einzelne Zellen (1mm²) mit den beiden Ag-Kontaktleitern. Fig. 15(c) zeigt eine fertig präparierte EDMR Struktur.

(b)

(c)

Alternativ wurde eine zweite EDMR Struktur entwickelt und getestet. In dieser sollten mögliche Einflüsse der parallelen Kontaktzuführungen in der EPR Messanordnung minimiert werden. Auch hier wurden die Solarzellen und die dazugehörigen elektrischen Kontakte mit Laser auf eine aktive Fläche von 1x1mm² strukturiert, allerdings mit Kontaktzuführung von gegenüberliegenden Seiten (Fig. 16).

Die für dieses Arbeitspaket hergestellten und den Projektpartnern zur Verfügung gestellten Proben sind in Tabelle 3 im Anhang 3 aufgelistet.

AP1.2C: Lichtalterung

Für die Untersuchung der Lichtalterung wurde a-Si:H und µc-Si:H Proben, a-Si:D und µc-Si:D Proben und Proben mit ²⁹Si-Anreicherung hergestellt, teilweise lichtgealtert, vorcharakterisiert und den Projektpartnern zur Verfügung gestellt (Tabelle 4, Anhang 3). Die ca. 1 µm dicken a-Si- und µc-Si-Proben wurden auf Aluminium Folie deponiert. Die Proben wurden auf der Folie zwischen 480 und 1000 Stunden lichtgealtert. Alle Proben wurden nach der Lichtalterung weiter prozessiert. Das temporäre Al Substrat wurde geätzt, das Si Pulver getrocknet und in Quarzröhrchen versiegelt. Fig. 17 zeigt ein Beispiel eines EPR Spektrums von a-Si:H vor und nach der Lichtalterung.

Fig. 17. Effekt der Lichtalterung auf das EPR Spektrum von a-Si:H. Nach 1000 Std. Beleuchtung nimmt die Signalintensität der dominanten, den Si dangling bonds zugeordneten Linie, und damit die Spindichte, um mehr als eine Größenordnung zu.

AP1.2D: Isotopenanreichung in a-Si und µc-Si Proben

Für das umfangreiche Arbeitspaket zur Herstellung von isotopenangereicherten Proben wurden mehrere Spezialgase im Rahmen des Projektes am FZJ erworben:

- D₂ Deuterium,
- SiD₄ deuteriertes Silan,
- 28 Si:H₄ Silan angereichert mit 28 Si (Anreicherungsgrad > 99,9%)
- ²⁹Si:H₄ Silan angereichert mit ²⁹Si (Anreicherungsgrad ca. 55%)

Für die Verwendung der sehr teuren Spezialgase wurde in dem Aufstockungsantrag auch Arbeiten zur Entwicklung von Herstellungsprozessen mit hoher Gasausbeute erfolgreich am FZJ bearbeitet. Ziel war es, die sehr teuren Gase mit möglichst geringen Verlusten für die Schichtdeposition einsetzten zu können. Die Probenliste für Isotopenanreicherung mit Deuterium, ²⁸Si und ²⁹Si sind in den Tabellen 5 – 8, Anhang 3 zusammengefasst.

Fig. 18. g-Wert und Spindichte von a-Si:H/D und µc-Si:H/D Proben als Funktion der Silankonzentration. g-Wert und Spindichte in den Si:H und Si:D Materialien zeigen keine signifikanten Unterschiede in der CW EPR.

Fig. 18 zeigt den Vergleich der EPR Parameter von Schichten die mit Wasserstoff (H) bzw. Deuterium (D) hergestellt werden. Man findet keinen signifikanten Unterschied in g-Wert und Spindichte zwischen den a-Si:H, μc-Si:H und den a-Si:D, μc-Si:D Proben als Hinweis für die gleiche "Qualität" der Proben. Das die Isotopeneffekte aber sehr wohl deutlich in den EPR Spektren auftreten können, zeigt der Vergleich von EPR Spektren von a-Si:H und a-Si:D vor und nach Elektronenbestrahlung (Fig. 19). Das Auftreten von Satelliten nach der Bestrahlung in a-Si:H wird der Erzeugung von Wasserstoff-Defekt Komplexen zugeschrieben.

Fig. 19. Effekt von 2MeV Elektronenbestrahlung auf EPR Spektren des (a) a-Si:H und (b) a-Si:D.

Nach der Probenherstellung zeigen die Spektren von a-Si:H und a-Si:D keine Unterschiede. Nach Elektronenbestrahlung sieht man neben der starken Signalerhöhung ein Paar von Satellitenlinien im EPR Spektrum von a-Si:H. In a-Si:D sind die zusätzlichen Strukturen nicht zu erkennen.

Optimierte Gasausnutzung bei der Verwendung von ²⁹Si-angereichertem Silan (²⁹SiH₄)

²⁹Si-angereichertes Silan (²⁹SiH₄) gehört zu den teuersten Verbrauchsmitteln im Projekt. Deswegen wurde vor der Probenpräparation die Gasausnutzung des PECVD Prozesses untersucht und einige technische Änderungen in der Gasversorgung an den Depositionsanlagen 6-Kammer Anlage und Cluster Tool II durchgeführt.

In Vorbereitung auf die Probenherstellung mit hoher Gasausnutzung des ²⁹SiH₄ wurde das Depositionsregime unter Verwendung von hohen Plasmaleistungen und großen Depositionsdrücken, untersucht. Dazu wurden in verschiedenen Silan-Konzentrations-Serien Silizium-Schichten auf Glas Substrat abgeschieden. Ein Depositionsparameter (Elektrodenabstand *d*, eingespeiste Leistung *P* oder Depositionsdruck *p*) wurde bei den unterschiedlichen Serien jeweils variiert.

Die totale Silan-Gasausnutzung

$$U_{sg} = \frac{A \times r_D}{\varphi_{SiH_4} \times n_{Si}}$$

gibt das Verhältnis von in die Prozess-Kammer gelangenden zu deponierten Silizium-Atomen an. A ist die totale deponierte Fläche, welche in einer guten Näherung zweimal der Fläche der Elektrode entspricht. r_D ist die Depositionsrate, ϕ_{SiH4} der in die Kammer gelangende Silan-Teilchenfluss und n_{Si} die Teilchendichte der wachsenden Schicht. Die effektive Silan-Gasausnutzung auf dem Substrat $U_{sg,eff}$, d. h. Menge der deponierten und verwendbaren Schicht im Verhältnis zu verbrauchtem Prozeßgas beträgt bei dem verwendeten Versuchsreaktor ein Viertel der totalen Ausnutzung U_{sg} und beträgt daher maximal 25%.

$$U_{sg,eff} = \frac{1}{4}U_{sg}$$

Fig. 20c zeigt die Kristallinität I_{CRS} von Silizium-Schichten, die mit unterschiedlichen Elektrodenabständen *d* und Silan-Konzentrationen *SC* hergestellt wurden (*P*=100W, *p*=5mbar). Der Übergang von kristallinem zu amorphem Schichtwachstum verschiebt sich mit zunehmenden d in Richtung zu höheren *SC*. Die Depositionsrate (Fig. 20b) und die Gasausnutzung U_{sg} (Fig.20a) steigt für gegebene *SC* an, wenn d von 5 auf 7mm vergrößert wird. Weiter Vergrößerung des Elektrodenabstandes hat dann nur noch wenig Einfluss auf U_{sg} und r_D .

Für verschiedene Depositionsdrücke ändert sich die Depositionsrate nicht signifikant (Fig. 21b), steigt aber in allen Druckbereichen mit der SC an. Der Übergang des Wachstumregimes mikrokristallinamorph verschiebt sich mit zunehmendem Depositionsdruck in Richtung zu niedrigeren SC (Fig. 21c).

Schließlich wurden die Plasmaanregungsleistungen über einen weiten Bereich variiert (Fig. 22). Mit zunehmender Leistung verschiebt sich der Übergang von amorphem zu kristallinem Wachstum in Richtung größere Silan-Konzentration und verbreitert sich gleichzeitig (Fig. 22c). Dadurch steigt die Depositionsrate für die Schichten, die mit einer Kristallinität nahe am Übergang hergestellt wurden, von 0.7nm/s bei 50W auf 2.8nm/s bei 600W (Fig. 22b). Die Silan-Gasausnutzung U_{sg} liegt für diese Proben zwischen 60 und 80% (Fig. 23), die effektive Gasausnutzung somit bei $U_{sg,eff}$ = 15-20%.

Fig. 20. a) Silan-Gasausnutzung, b) Depositionsrate und c) Raman-Kristallinität von Siliziumschichten, die mit unterschiedlichen Elektrodenabständen und Silan-Konzentrationen hergestellt wurden (P=100W, p=5mbar).

Fig. 21. a) Silan-Gasausnutzung, b) Depositionsrate und c) Raman-Kristallinität von Siliziumschichten, die mit unterschiedlichen Drücken und Silan-Konzentrationen hergestellt wurden (P=100W, d=10mm).

Fig 22. a) Silan-Gasausnutzung, b) Depositionsrate und c) Raman-Kristallinität von Siliziumschichten, die mit unterschiedlichen Leistungen und Silan-Konzentrationen hergestellt wurden (d=10mm, p=5mbar).

Mikrokristalline Si Schichten haben die beste elektronische Qualität bei einer Kristallinität von 30-60%, sogenanntes *Optimum Phase Mixture (OPM)* Material. Fig. 23 zeigt r_D und U_{sg} für solches *OPM* Material. Fig. 24 zeigt die zu den Proben gehörende Photosensitivität, als ein Maß für die Materialqualität. Erfahrungswerte zeigen, das *OPM* Material mit einer Photosensitivität im Bereich $10^2 - 10^3$ gute elektronische Qualität etwa für den Einsatz in Solarzellen hat.

Für die in Fig. 23 mit roter Umrandung gekennzeichneten Probenserien wurden zusätzlich EPR-Pulverproben auf Aluminium-Substraten hergestellt. Für die Pulverproben wurde die Depositionsrate und damit U_{sg} aus der Pulvermasse und der Substratfläche berechnet. In Fig. 25 & 26 sind Spindichte und g-Werte dieser Proben dargestellt und mit den Ergebnissen von Referenz-Material verglichen. Das Referenz-Material wurde im sogenannten "niedrig-Druck, niedrig-Leistung" Regime hergestellt, den Standard-Depositionsbedingungen der bisher im Projekt untersuchten Proben. Wir finden sehr gute Übereinstimmungen der ESR-Eigenschaften hinsichtlich Spindichte und Linienparametern. Als Beispiel wurde bei einer Silan-Gasausnutzung von U_{sg} =54% und einer Depositionsrate von 2.3nm/s Material mit einer Spin-Dichte von n_s=2.8*10¹⁶ cm⁻³ hergestellt. Bei der auf Glas kodeponierten Probe betrug die Photosensitivität 230. Mit dem entwickelte Depositionsregime sind wir in der Lage, mikrokristallines Silizium mit Standard-Eigenschaften bei hoher Silan-Gasausnutzung herzustellen.

Fig. 23. Depositionsrate für Schichten mit einer Kristallinität am Übergang von mikrokristallinem zu amorphem Wachstum (*OPM* Material) vs. Silan-Konzentration. Die grauen Linien geben den Grad der Silan-Gasausnutzung an.

Fig. 24. Photosensitivität für µc-Si:H *OPM* Material vs. Silan-Konzentration.

Fig. 25. Spin-Dichte für Proben die mit P=400W, d=10mm, p=5mbar (Rauten); P=200W, d=7mm, p=5mbar (Sterne) und P=100W, d=7mm, p=5mbar (Quadrate) hergestellt wurden, sowie für Referenz-Proben mit unterschiedlicher Kristallinität. Für einige Proben sind die Depositionsrate und die Silan-Gasausnutzung angegeben.

Fig. 26. g-Wert für Proben die mit P=400W, d=10mm, p=5mbar (Rauten); P=200W, d=7mm, p=5mbar (Sterne) und P=100W, d=7mm, p=5mbar (Quadrate) hergestellt wurden, sowie für Referenz-Proben mit unterschiedlicher Kristallinität.

a-Si:H und µc-Si:H Proben aus²⁹Si-angereichertem Silan (²⁹SiH₄)

Für die Einstellung der Depositionsparameter und der Materialqualität wurde eine Serie von Testschichten mit ²⁹SiH₄ auf Glas deponiert. Der ²⁹Si Isotopengehalt liegt jeweils bei ca. 50 %. Eine Übersicht über die Proben der Testserie findet man in Tabelle 7, Anhang 3.

An den Schichten wurden Raman-, Infrarot- SIMS-, und elektrische Leitfähigkeitsmessungen durchgeführt. Die Dunkel- und Photoleitfähigkeit der ²⁹Si-isotopenangereicherte Schichten ist in Fig. 27 dargestellt, Wasserstoffgehalt über der Kristallinität in Fig. 28. Die Leitfähigkeiten sind ähnlich wie bei hochwertigen µc-Si:H und a-Si:H Material das mit konventionellem, hochreinem SiH₄ hergestellt wird. Auch der Zusammenhang zwischen Wasserstoffkonzentration und Kristallinität verhält sich wie in gutem Standardmaterial.

Das Isotopenverhältnis und die Dichte atomarer Verunreinigung in den Testschichten wurde aus SIMS Messungen ausgewertet. Die SIMS Profile und die daraus errechneten Isotopenverhältnisse sind in Fig. 29 (a & b) dargestellt. Das natürliche Isotopenverhältnis für Si ist ²⁸Si – 92,23%, ²⁹Si – 4,67%, ³⁰Si – 3,1%. In den Proben die mit dem angereichertem ²⁹SiH₄ hergestellt wurden, finden wir ein Isotopenverhältnis von: ²⁸Si – 37%, ²⁹Si – 55%, ³⁰Si – 8%, also ²⁹Si : ⁽²⁸⁺³⁰⁾Si = 55:45 in akzeptabler Übereinstimmung mit den Angaben des Gaslieferanten.

Die Konzentration der typischen Verunreinigkeitselemente C und O wurden ebenfalls aus SIMS Spektren ermittelt. Fig. 30 (a & b) zeigt die Konzentrationsprofile von O und C für zwei a-Si:H Schichten aus der Testserie. Die Konzentrationen von O und C liegen mit Werten von 10¹⁸- 10¹⁹ cm⁻³ im Bereich der auch in Material gefunden wird, das aus gutem Standardsilan hergestellt wird.

Fig. 27. Leitfähigkeit von µc-Si:H und a-Si:H Schichten aus der ²⁹Si Testserie in Abhängigkeit von der Silankonzentration SC.

Fig. 28. Wasserstoffgehalt C_H gegen Ramankristallinität für Schichten aus der ²⁹Si Testserie sowie für Referenzproben aus Silan mit natürlichem Isotopenverhältnis.

Fig. 29. SIMS-Intensitäten der Massen 28-32 gegen SIMS-Streuzeit und daraus errechnete Isotopenverhältnisse für ²⁸Si, ²⁹Si und ³⁰Si für zwei a-Si:H Schichten aus der Testserie. Zu beachten ist, dass in den SIMS Intensitäten jeweils auch die Massen von Si-H mitgemessen werden. Dies muss bei der Auswertung berücksichtigt werden.

Fig. 30. Konzentrationen von C und O errechnet aus SIMS-Profile für zwei a-Si:H Schichten aus der ²⁹Si-Testserie

Schließlich wurde auch die Konzentration von Fluor ermittelt. Grund ist, dass für die Herstellung des isotopenangereicherten SiH₄, fluoriniertes Silan (SiF₄) als Zwischenprodukt eingesetzt wird und Fluor (i) potentiell ähnliche chemische Bindungen wie Wasserstoff in a-Si:H bzw. µc-Si:H einnehmen kann und (ii) zu 100% ein magnetisches Kernmoment hat. Damit könnten hohe Fluorkonzentration bei der Untersuchung der Hyperfeinwechselwirkung der ²⁹Si Atome mit den Dangling Bonds zu Komplikationen führen. In Fig. 31 sind die Massenspektren von zwei a-Si:H Proben aus ²⁹SiH₄ und aus Standardsilan verglichen. Wir finden in der angereicherten Probe nur eine geringe Erhöhung der Fluorkonzentration um weniger als eine Größenordnung.

Fig. 31. Vergleich von SIMS Massenspektren von a-Si:H hergestellt mit ²⁹SiH₄ (rot) und mit hochreinem Standardsilan (blau).

Nach Abschluss der Voruntersuchungen gehen wir davon aus, dass die mit dem isotopenangereichertem Silan hergestellten Proben

- sich in ihren elektrischen und strukturellen Eigenschaften und in der Konzentration der atomaren Verunreinigung nicht von Standardmaterial unterscheiden
- der angestrebte Anreicherungsgrad an ²⁹Si erreicht wurde
- geeignete Depositionsprozesse gefunden wurden, mit denen man Material mit guter Qualität bei optimaler Gasausnutzung herstellen kann.

Nach diesen Vorarbeiten wurden die mit ²⁹Si angereicherten Proben für die Projektpartner hergestellt. Eine Übersicht findet man in Tabelle 8, Anhang 3.

Bis zum Abschluss des Projektes konnte alle Probenpräparationen mit ²⁹Si-isotopenangereichertem Silan (²⁹SiH₄) abgeschlossen werden.

Fig. 32 zeigt CW-EPR Spektren von a-Si:H und µc-Si:H Proben die mit dem isotopenangereichertem ²⁸SiH₄ bzw. ²⁹SiH₄ hergestellt wurden. Bei dem Material mit ²⁸Si wird keine signifikante Abweichung von den Spektren des Standardmaterials gefunden. Hier würde man, wegen der Abwesenheit von Si-Hyperfeinwechselwirkung, eine sehr geringfügig schmaler Resonanzlinie erwarten. Die Schichten die mit ²⁹Si angereichter sind zeigen dagegen sehr geringe Signalintensität und verbreiterte Linien was auf den Isotopeneffekt mit einem erhöhten Anteil an Kernmagnetischen Momenten hinweisen kann. Aufschluss hierüber sollen die noch über das Projektende hinaus bei den Projektpartnern durchgeführten Multifrequenz- und Puls-EPR Experimente liefern.

Fig. 32. EPR Spektren von mit (a) ²⁸Si und (b) ²⁹Si angereicherten a-Si:H und µc-Si:H Proben. Die Proben mit ²⁸Si Anreicherung zeigen CW-EPR Signale, die sich nicht erkennbar von Si:H Proben mit natürlicher Isotopenmischung unterscheiden. Anderseits zeigen alle ²⁹Si angereicherten Proben sehr schwache und stark verbreiterte Resonanzlinien in deutlichen Unterschied zu Standardmaterial.

AP1.2F: Proben für ortsaufgelöste EDMR

Für die Entwicklung der ortsaufgelösten EDMR an der TU München wurde zahlreiche Proben und Probenkonfigurationen entwickelt und getestet. Darunter a-Si:H und µc-Si:H Schichten in undotierter, dotierter und kompensierter Form, Metall- und TCO-Schichten, strukturierte Einzelschichten, Schichtpakete und kompletten Solarzellen. Eine Zusammenfassung gibt Tabelle 9 im Anhang 3. Im Folgenden sind einige Beispiele der Präparationsarbeiten dargestellt

Entwicklung von lateralen Strukturen

Als einfache Möglichkeit eine Oberflächenstruktur mit scharfen Kanten und Übergängen zwischen a-Si:H / µc-Si:H und z.B. TCO (ZnO) wurde auf einem 10x10cm² Substrat ein Streifenmuster durch Laserabtragung hergestellt. Der Prozessablauf ist in Fig. 33 dargestellt.

Fig. 33. Aufbau einer strukturierten Silizium-TCO Probe für die ortsaufgelöste EDMR (oben) und Ansicht der fertigen Struktur (unten).

Diese Strukturen wurden für unterschiedliche Schichten und Schichtenfolgen eingesetzt. Weiterhin wurde gemeinsam mit der TUM eine neue Probenstrukturierung entwickelt (Fig. 34). Die Probe ist eine Solarzelle auf 700 nm dicken ZnO auf 10x10cm² großen Glassubstraten mit ZnO oder ZnO/Ag Rückkontakt. Da die ortsaufgelöste EDRM hoch empfindlich auf die Rauigkeit der Probenoberfläche ist, wurde glattes (nichtgeätztes) ZnO und nur kurz geätztes TCO (2 sek.) als Substrat genutzt. Als Referenz wurde eine 2 Sekunden geätztes ZnO auf Glassubstrat benutzt.

Fig. 34. Strukturmuster für die Solarzellen für ortsaufgelöste EDMR (TU München)

In einem weiteren Entwicklungsschritt wurde eine Probenkonfiguration getestet, die groß- und kleinflächig Kontakte für EDMR Test-Messungen kombiniert (Fig. 35).

Fig. 35. Strukturmuster für die Solarzellen für ortsaufgelöste EDMR (TU München)

Dotierte Proben

Für die Entwicklungsarbeiten zur ortsaufgelösten EDMR an der TUM wurden weiterhin verschiedene dotierte und kompensierte Schichten hergestellt.

Fig. 36. (a) Dunkelleitfähigkeit und (b) Kristallinität als Funktion der Phosphin-Dotiergaskonzentraion.

Fig. 37. Dunkel- und Photoleitung der kompensierten a-Si:H Proben. Die gestrichelte Linie zeigt die entsprechenden Werte von hochqualitativem undotiertem a-Si:H

Dabei waren einige technische Probleme zu lösen. Für eine Probenserie von <n> dotierte µc-Si:H Proben mit einer Dicke von d \approx 20nm und PH₃ Konzentrationen von 0.1 ppm bis 10.000 ppm (relativ zum SiH₄ Prozeßgas) besteht die Schwierigkeit zum einen in dem weiten Dotierbereich, der nicht mit der vorhandenen Kombination aus Gasgemischen und Massenflußreglern abgedeckt werden kann. Stattdessen müssen individuelle Gasgemische in eine Mischkammer hergestellt werden. Zum anderen ist bei einer Schichtdicke von nur 20 nm nicht gewährleistet, dass die Schichten bereits völlig und reproduzierbar kristallin sind und nicht vielmehr ein mehr oder weniger ausgeprägte Inkubationsschicht ausweisen. Die nicht unerhebliche Streuung in den erzielten Leitfähigkeiten als Funktion der Dotiergaskonzentration (s. Fig. 36(a)) könnte darauf zurückzuführen sein. Fig. 36(b) zeigt das Ramanintensitätsverhältnis (I_c^{RS}) als semi-quantitatives Maß für den kristallinen Volumenanteil in den Schichten. I_c^{RS} errechnet sich aus den Intensitätsanteilen der Ramanstreuspektren des kristallinen zum amorphen Anteil im Wellenzahlbereich 480-520 cm⁻¹. Details sind in der Literatur beschrieben (L. Houben et al., Phil. Mag. A, 77 (1998) 1447). Eine Herausforderung stellt auch die Herstellung kompensierter a-Si:H Proben auf Glas dar. Die Dunkel- und Photoleitung zeigt Fig. 37 zusammen mit den Werten von intrinsischem (undotiertem) a-Si:H. Man sieht, dass die Kompensation nicht ideal erfolgt. Vermutlich ist die n-Dotierung effektiver und man müsste relativ mehr p-Dotierung nutzen um die Dunkelleitung zu minimieren.

AP1.2G: Legierung von a-Si oder µc-Si mit Germanium oder Kohlenstoff

Im Rahmen einer Doktorarbeit wurden am IEK-5 intensive Untersuchungen der EPR-Eigenschaften von Siliziumlegierung (µc-SiC:H, µc-SiO_x:H) durchgeführt. Die Fig. 38 zeigt EPR Spektren der SiC bzw. SiO_x Legierungen. Man erkennt in den SiC Proben neben einer dominanten, in der Regel sehr intensiven

Zentrallinien, die Defekten zugeordnet wird, das Auftreten von Satelliten-Linien besonders in Material mit mittlerer Kristallinität. Der mikroskopische Ursprung dieser Satelliten ist noch nicht eindeutig geklärt und noch Gegenstand aktueller Untersuchungen. In den Phosphor-dotierten SiO_x Legierungen sieht man in den Spektren den Übergang von der bekannten CE-Resonanz in dotiertem μ c-Si:H (CO₂-Fluss = 0 sccm) zu der aus amorphem SiO_x bekannten Dangling Bond Resonanz bei g=2.0043.

Fig. 38 (a) EPR Spektren von μ c-SiC:H mit unterschiedliche Kristallinität und (b) von Phosphor-dotierten μ c-SiO_x:H Proben mit Variation des CO₂ Flusses während der Deposition.

Fig. 39. Spindichte der μ c-SiC:H Legierungen als Funktion der Kristallinität

Fig. 40. Spindichte und g-Wert in μ c-SiO_x:H als Funktion des CO₂ Flusses während der Deposition

Die SiC Legierungen zeigen in der Regel eine sehr hohe Spindichte (Fig.39). Ursache sind vermutlich strukturelle Defekte (dangling bonds) und Bandausläuferzustände. Eine eindeutige Identifikation war im Rahmen der durchgeführten Arbeiten nicht möglich. Die SiO_x Legierungen zeigen bei zunehmenden CO₂ Fluss in der Herstellung das erwartet Verhalten: Höhere optische Transparenz und Abnahme der Leitfähigkeit beim Übergang von Silizium-reichen zu Sauerstoff-reichen Legierungen. Auch der Verlauf der g-Werte und der Spindichten, in Fig. 40 gezeigt für n-dotiertes Material, entspricht den Erwartungen.

Die Legierungsproben wurden sowohl als Schichten auf Glas als auch teilweise in Pulverform hergestellt. Einige der Proben wurden in Kooperation mit den Projektpartner (Multi-Frequenz-EPR) untersucht.

AP1.2H: Proben für THz-EPR-Spektroskopie (FZJ)

Für den Einsatz als Probe in THz-EPR-Spektroskopie wurde eine qualitativ hochwertige a-Si:H mit einer Schichtdicke von 1 µm auf Diamant Substrat hergestellt. Um gute Adhäsion zu gewährleisten, wurde die Schicht mit einer Silankonzentration von 100 % hergestellt. Darüber hinaus wurden für die Tests an dem THz Spektormeter dem HZB Glassubstrate mit und ohne ZnO Beschichtung zur Verfügung gestellt.

AP2.1E Untersuchung der Rekombination in a-Si:H- und µc-Si:H-Filmen

Die im Rahmen des EPR-SOLAR Projektes weiter entwickelten experimentellen Methoden zur Untersuchung von Defekten in Halbleiterschichten nach Elektronenbestrahlung wurden sehr erfolgreich für Experimente an Solarzellen mit amorphen und mikrokristallinen Silizium Absorberschichten eingesetzt. Die Ergebnisse sind in einer ganzen Reihen von Publikationen veröffentlicht und wurden auf wissenschaftlichen Konferenzen vorgestellt (s. Liste der Publikationen und Vorträge).

Fig. 41. Variation der Spindichte in µc-Si:H und a-Si:H Proben nach Elektronenbestrahlung und schrittweisem Defekte Ausheizen der bei den angezeigten Temperaturen.

Fig. 42. Exemplarische Darstellung des Einflusses der angezeigten Defektdichte der intrinsischen Absorberschichten auf die Kennlinien in n- und p-Seite beleuchteten µc-Si:H Zellen.

0,4

Voltage V [V]

0,2

μc-Si:H

0,6

p-side ----- n-side

0.8

Der Rekombinationsprozess ist ein wichtiger Limitierungsparameter für den Solarzellenwirkungsgrad. Den Einfluss der Rekombination an Defektzuständen kann man durch eine Variation der Defektdichte in Material und der gesamten Solarzelle untersuchen. Hierzu wird hochenergetische dem Elektronenbestrahlung als Instrument zur Variation der Defektdichte genutzt. Die Bestrahlung wurde bei 100K mit einem 2MeV Elektronenstrahl ausgeführt. Die Stromdichte des Elektronstrahls beträgt 5µA*cm⁻². Nach der Bestrahlung wurden die a-Si:H und µc-Si:H Einzelschichten und Solarzellen schrittweise getempert, um die erhörte Defektdichte wieder zu senken und dadurch die Abhängigkeit der Zellparameter von der Defektdichte zu erfassen. Der Verlauf der Spindichte als Funktion der Bestrahlungs- und Tempersequenz ist für a-Si:H und µc-Si:H Proben in Fig. 41 gezeigt. Nach Bestrahlung steigt die Spindichte um bis zu 2,5 Größenordnungen an um nach Ausheizen bei 180°C in der Regel wieder zum Ausgangswert zurück zu kehren. Der Effekt auf die Solarzellenkennlinie (I-V Kurve) ist für eine Solarzelle mit uc-Si:H Absorberschicht bei Beleuchtung von entweder der p-Seite

oder der n-Seite in Fig. 42 gezeigt. Man sieht die starke Abnahme aller Solarzellenparameter mit zunehmender Spindichte. Dies ist im Detail in Fig. 43 für die Effizienz η , Leeraufspannung V_{oc}, Füllfaktor FF, und Kurzstromdichte J_{sc} dargestellt. Man sieht, dass alle Solarzellenparameter mehr oder weniger stark mit der Defektdichte abnehmen. Allerdings ist der Verlauf für die einzelnen Kenndaten sehr unterschiedlich und auch das Verhalten zwischen p-Seite und n-Seite beleuchtete Zellen zeigt große Unterschiede. Instruktiv ist in diesem Zusammenhang die Untersuchung der spektralen Quantenausbeute. Dabei findet man Hinweise, das für p-Seiten beleuchtete Zellen, der Stromverlust vor allem im roten Wellenlängenbereich (> 600nm) stattfindet, während bei n-Seiten Beleuchtung die Quantenausbeute im gesamten Wellenlängenbereich abfällt (Fig. 44).

Fig. 43. Effizienz η , Leeraufspannung V_{oc}, Füllfaktor FF, und Kurzschlussstromdichte J_{sc} als Funktion der Defektdichte N_s.

1.0 p-side 0.8 illuminated 0.6 EQE 0.4 N_s 0.2 0.0 400 600 800 1000 1.0 n-side 0.8 Ns illuminated 0.6 EQE 0.4 0.2 0.0 400 600 800 1000 λ [nm]

Fig. 44. Experimentell gemessene Spektralempfindlichkeit von p- und n-Seite beleuchteten μ c-Si:H Solarzellen mit unterschiedlichen Defektdichte N_s.

Fig. 45. Simulation der Spektralempfindlichkeit mit dem ASA-Programm: p- und n-Seite beleuchtete μ c-Si:H Solarzellen mit unterschiedlichen Defektdichte N_s.

Das beobachtete Verhalten lässt sich mit Simulationen sehr gut nachvollziehen. Fig. 45 zeigt die Simulation entsprechender Solarzellenstrukturen mit dem sogenannten ASA-Programm (Advanced Semiconductor Analysis, TU Delft). Die Übereinstimmungen mit den Messdaten sind gut. Wesentliche Annahme für diese Übereinstimmung ist ein Zustandsdichtemaximum in der oberen Hälfte der Beweglichkeitslücke mit entsprechender Ladungsverteilung der Defektzustände (Fig. 46).

In laufenden Arbeiten werden diese Effekte weiter untersucht und mit den Computersimulationen verglichen. Eine Übersicht der für die Experimente eingesetzten Proben findet man in Tabelle 10, Anhang 3.

Fig. 46. µc-Si:H Zustandsdichte die für die ASA Simulationen benutzt wurde.

Anhang 2: Veröffentlichungen (projektbezogen) 2008 – 2013

Veröffentlichungen, Konferenzbeiträge und andere Präsentationen der Ergebnisse

Promotionen:

L. Xiao, *Electron Spin Resonance Investigation of Semiconductor Materials for Application in Thin-Film Silicon Solar Cells*, Technische Universität München, 2012, in Schriften des Forschungszentrums Jülich, Reihe Energie & Umwelt, Band 146.

Publikationen:

2009

O. Astakhov, R. Carius, F. Finger, Y. Petrusenko, V. Borysenko and D. Barankov, *Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon,* Physical Review B 79 (2009) 104205

J. Behrends, A. Schnegg, M. Fehr, A. Lambertz, S. Haas, F. Finger, B. Rech, and K. Lips, *Electrical Detection of Electron Spin Resonance in Microcrystalline Silicon Pin Solar Cells*, Philosophical Magazine, 89 (2009), 2655-76.

F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A, Dasgupta, A. Gordijn, L. Houben, Y. Huang, S. Klein, M. Luysberg, Y. Wang, and L. Xiao, *Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells,* Thin Solid Films 517 (2009) 3507

2010

O. Astakhov, R. Carius, Y. Petrusenko, V. Borysenko, D. Barankov, and F. Finger, *Variation of the Fermi level in n-type microcrystalline silicon by electron bombardment and successive annealing: ESR and conductivity studies*, Physica status solidi c, 7 (2010) 654-657.

M. Fehr, A. Schnegg, C. Teutloff, R. Bittl, Oleksandr Astakhov, F. Finger, B. Rech, and K. Lips, *Hydrogen Distribution in the Vicinity of Dangling Bonds in Hydrogenated Amorphous Silicon (a-Si:H),* physica status solidi a, 207 (2010), 552-55.

V. Smirnov, W. Boettler, A. Lambertz, O. Astakhov, R. Carius, F. Finger, *N-type Microcrystalline Silicon Oxide (µc-SiOx:H) Window Layers with Combined Anti-reflection Effects for n-i-p Thin Film Silicon Solar Cells,* Material Research Society Proceedings, vol. 1245, pp. A21-02, 2010

L. Xiao, O. Astakhov, R. Carius, T. Chen, H. Wang, M. Stutzmann, F. Finger, *Paramagnetic states in* μ *c*-SiC:*H thin films prepared by Hot-Wire CVD at low temperature,* Physica status solidi c, 7 (2010), 778-781.

L. Xiao, O. Astakhov, R. Carius, A. Lambertz, T. Grundler, F. Finger, *Defects and structure of µc-SiOx:H deposited by PECVD*, Physica status solidi c, 7 (2010) 941-944.

2011

M. Fehr, A. Schnegg, B. Rech, K. Lips, O. Astakhov, F. Finger, G. Pfanner, C. Freysoldt, J. Neugebauer, R. Bittl, C. Teutloff, *Combined multifrequency EPR and DFT study of dangling bonds in a-Si:H,* Physical Review B 84, 245203, 2011

M. Fehr, J. Behrends, S. Haas, B. Rech, K. Lips, A. Schnegg, *Electrical detection of electron-spin-echo envelope modulations in thin-film silicon solar cells,* Physical Review B 84, 193202, 2011

L. Xiao, O. Astakhov, T. Chen, M. Stutzmann, F. Finger, *Aluminum Doped Silicon Carbide Thin Films Prepared by Hot-Wire CVD: Investigation of Defects with Electron Spin Resonance*, Thin Solid Films 519 (2011) 4519–4522

L. Xiao, O. Astakhov, F. Finger, *Silicon thin film powder samples for Electron Spin Resonance investigation: The role of substrate and preparation procedure,* Japanese Journal of Applied Physics 50 (2011) 071301

2012

O. Astakhov, V. Smirnov, R. Carius, Yu. Petrusenko, V. Borysenko, W. Bötler, F. Finger, Variation of the defect density in a-Si:H and μ c-Si:H based solar cells with 2MeV electron bombardment, Journal of Non-Crystalline Solids, 358 (2012) 2198-2201

O. Astakhov, R. Carius, Yu. Petrusenko, V. Borysenko, D. Barankov, F. Finger, *The relationship between hydrogen and paramagnetic defects in thin film silicon irradiated with 2 MeV electrons,* Journal of Physics: Condensed Matter 24 (2012) 305801

K. Ding, U. Aeberhard, O. Astakhov, U. Breuer, M. Beigmohamadi, S. Suckow, B. Berghoff, W. Beyer, F. Finger, R. Carius, and U. Rau, *Defect passivation by hydrogen reincorporation for silicon quantum dots in SiC/SiOx hetero-superlattice*, Journal of Non-Crystalline Solids, 358 (2012) 2145-2149.

K. Ding, U. Aeberhard, W. Beyer, O. Astakhov, F. Köhler, U. Breuer, F. Finger, R. Carius, and U. Rau, *Annealing induced defects in SiC, SiOx single layers and SiC/SiOx hetero-superlattices,* Physica status solidi (a) 209 (2012) 1960–1964

M. Fehr, A. Schnegg, B. Rech, K. Lips, O. Astakhov, F. Finger, C. Freysoldt, R. Bittl, C. Teutloff, *Dangling bonds in amorphous silicon investigated by multifrequency EPR*, Journal of Non-Crystalline Solids 358 (2012) 2067-2070

V. Smirnov, O. Astakhov, R. Carius, Yu. Petrusenko, V. Borysenko, F. Finger, Variation of the absorber layer defect density in amorphous and microcrystalline silicon thin film solar cells with 2MeV electron bombardment, Japanese Journal of Applied Physics 51 (2012) 022301

V. Smirnov, O. Astakhov, R. Carius, B. E. Pieters, Yu. Petrusenko, V. Borysenko, F. Finger, *Performance of p- and n-side illuminated microcrystalline silicon solar cells following 2 MeV electron bombardment,* Applied Physics Letters 101, 143903 (2012)

L. Xiao, O. Astakhov, F. Finger, M. Stutzmann, *Determination of the defect density in thin film amorphous and microcrystalline silicon from ESR measurements: The influence of the sample preparation procedure,* Journal of Non-Crystalline Solids, 358 (2012) 2078-2081

2013

S. Michard, M. Meier, B. Grootoonk, O. Astakhov, A. Gordijn, F. Finger, *High deposition rate processes for the fabrication of microcrystalline silicon thin films,* Materials Science and Engineering: B 178 (2013), 691-694

O. Astakhov, V. Smirnov, R. Carius, B. E. Pieters, Yu. Petrusenko, V. Borysenko, F. Finger, Relationship between absorber layer defect density and performance of a-Si:H and μ c-Si:H solar cells studied over a wide range in a 2 MeV electron bombardment experiment, to be published

O. Astakhov et al., *Multifrequency EPR study of HWCVD SiC:H films for photovoltaic applications,* to be published

Vorträge, Poster:

2008

Eingeladen: O. Astakhov, R. Carius, Y. Petrusenko, V. Borysenko and D. Barankov, and F. Finger, *The role of defects in the electronic transport in thin film silicon: ESR and conductivity investigations of electron irradiated material*, Materials Research Society Spring Meeting, San Francisco (CA), 25-28 März, 2008

O. Astakhov, F. Finger, R. Carius, Y. Petrusenko, V. Borysenko and D. Barankov, *Transport and defects in thin film silicon,* Forschungszentrum Jülich – Helmholtzzentrum Berlin Seminar, 21-26 September 2008, Hirschegg, Österreich

Eingeladen: F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A. Dasgupta, A. Gordijn, L. Houben, Y. Huang, S. Klein, M. Luysberg, H. Wang, L. Xiao, *Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells,* 5th International conference on Hot Wire CVD, Cambridge (MA), August 20-24, 2008

K. Lips, J. Behrendes, B. Rech, M. Stutzmann, F. Finger, R. Bittl, K. Holldack, CH. Freysoldt, J. Neugebauer, A. Schnegg, *Light-induced degradation and defects in amorphous and microcrystalline silicon – a new approach to an old problem with novel EPR techniques,* Workshop on Quantum Solar Energy Conversion QUANTSOL, 01-07 März 2008, Salzburg, Österreich

2009

Eingeladen: O. Astakhov, F. Finger, R. Carius, Y. Petrusenko, V. Borysenko and D. Barankov, *Paramagnetic defect and hydrogen in amorphous silicon after low temperature electron bombardment,* 1st International Workshop on the Staebler-Wronski Effect" (1st IWSWE) 20-22 April 2009, Berlin

O. Astakhov, R. Carius, Yu. Petrusenko, V. Borysenko, D. Barankov, F. Finger, Variation of the Fermi level in n-doped microcrystalline silicon by electron bombardment and successive annealing: ESR and conductivity studies, 23rd International Conference on Amorphous and Nanocrystalline Semiconductors, 23 – 28 August 2009, Utrecht, Niederlande

M. Fehr, A. Schnegg, C. Teutloff, R. Bittl, Oleksandr Astakhov, F. Finger, B. Rech, and K. Lips, *Hydrogen Distribution in the Vicinity of Dangling Bonds in Hydrogenated Amorphous Silicon (a-Si:H)* 23rd International Conference on Amorphous and Nanocrystalline Semiconductors, 23 – 28 August 2009, Utrecht, Niederlande

Eingeladen: F. Finger, *Nano-crystalline silicon and its alloys for application in thin film solar cells,* 1st International Workshop on Si based nano-electronics and –photonics (SiNEP), 20-23 September 2009, Vigo, Spain

C. Teutloff, R. Bittl, M. Fehr, A. Schnegg, K. Lips, O. Astakhov, F. Finger, *Multifrequency EPR on defects in hydrogenated amorphous silicon, 23rd* International Conference on Amorphous and Nanocrystalline Semiconductors, 23 – 28 August 2009, Utrecht, Niederlande

L. Xiao, O. Astakhov, R. Carius, T. Chen, H. Wang, M. Stutzmann, F. Finger, *Paramagnetic states in* μ *c-SiC:H thin films prepared by Hot-Wire CVD at low temperatures,* 23rd International Conference on Amorphous and Nanocrystalline Semiconductors, 23 – 28 August 2009, Utrecht, Niederlande

L. Xiao, O. Astakhov, R. Carius, A. Lambertz, T. Grundler, F. Finger, *Defects and structure of \mu c-SiOx:H deposited by PECVD, 23rd* International Conference on Amorphous and Nanocrystalline Semiconductors, 23 – 28 August 2009, Utrecht, Niederlande

L. Xiao, O. Astakhov, R. Carius, T. Chen, T. Grundler, A. Lambertz, H. Wang, F. Finger, M. Fehr, A. Schnegg, K. Lips, C. Teutloff, C. Meier, R. Bittl, *Paramagnetic states in microcrystalline SiC:H and*

SiOx:H thin films, 1st International Workshop on the Staebler-Wronski Effect" (1st IWSWE) 20-22 April 2009, Berlin

2010

Eingeladen: O. Astakhov, R. Carius, Yu. Petrusenko, V. Borysenko, D. Barankov, F. Finger, *Interaction between hydrogen and paramagnetic defects in thin film silicon*, Material Research Society Spring Meeting, 5-9 April 2010, San Francisco, USA

L. Xiao, O. Astakhov, T. Chen, F. Finger, *Electron Spin Resonance investigation into Al-doped microcrystalline silicon carbide alloys prepared with Hot-Wire CVD*, 6th International Conference on Hot-Wire Chemical Vapor Deposition Process, September 13-17, 2010, Palaiseau, France

2011

O. Astakhov, R. Carius, F. Finger, V. Borysenko, D. Barankov, Yu. Petrusenko, *Thin film silicon photovoltaics: principles, limitations and potential,* "CYCLOTRON" Research Facility of Kharkov Institute of Physics & Technology NSC KIPT, 2 Feb 2011 Kharkov, Ukraine

O. Astakhov, *Electron spin (paramagnetic) resonance: What electrons can tell about defects in a semiconductor?*, "CYCLOTRON" Research Facility of Kharkov Institute of Physics & Technology NSC KIPT, 2 Feb 2011 Kharkov, Ukraine

O. Astakhov, V. Smirnov, R. Carius, Yu. Petrusenko, V. Borysenko, W. Böttler, F. Finger, Variation of the defect density in a-Si:H and µc-Si:H based solar cells with 2MeV electron bombardment, 24th International Conference on Amorphous and Nanocrystalline Semiconductors, August 21-26 2011, Nara, Japan

O. Astakhov, R. Carius, V. Smirnov, Yu. Petrusenko, V. Borysenko, F. Finger, *Defects in hydrogenated thin film silicon for solar cell application*, EPR-Solar workshop "Advanced EPR for material and solar energy research" 13./14. Oktober 2011, Berlin

L. Xiao, O. Astakhov, F. Finger, M. Stutzmann, *Determination of the Defect Density in Thin Film Amorphous and Microcrystalline Silicon from ESR Measurements: The Influence of the Sample Preparation Procedure,* 24th International Conference on Amorphous and Nanocrystalline Semiconductors, August 21-26 2011, Nara, Japan

2012

O. Astakhov, V. Smirnov, R. Carius, B. Pieters, Yu. Petrusenko, V. Borysenko, F. Finger, *Performance of a-Si:H and µc-Si:H based solar cells with a wide range of defect densities generated by 2 MeV electron irradiation,* Materials Research Society Spring Meeting, April 9-13 2012, San Francisco CA, USA

O. Astakhov, V. Smirnov, R. Carius, B. Pieters, Yu. Petrusenko, V. Borysenko, F. Finger, *Performance of a-Si:H and \muc-Si:H based solar cells studied over wide range of absorber layer defect densities, 4th Joint Workshop-Seminar of Forschungszentrum Jülich and Helmholtzzentrum Berlin, 12 – 17 August 2012, Hirschegg, Österreich*

K. Ding, U. Aeberhard, O. Astakhov, W. Beyer, F. Finger, R. Carius, U. Rau, *On the nature of annealing induced defects in SiC/SiOx hetero-superlattices,* International Conference of European Materials Research Society, May 14-18, 2012, Strasbourg, France

K. Ding , U. Aeberhard, O. Astakhov, W. Beyer, F. Finger, R. Carius, U. Rau, *Silicon carbide/silicon oxide hetero-superlattice: a novel silicon quantum dot absorber material for photovoltaic applications,* Materials Research Society Fall Meeting, November 25 - 30, 2012, Boston, MA, USA

Eingeladen: F. Finger, *Materialentwicklung und Herstellungsprozesse für Dünnschicht-Silizium Solarzellen*, DFG-Netzwerk "Silane", 26. 01. 2012, Düsseldorf

Eingeladen: F. Finger, *Thin film silicon (a-Si/µc-Si) tandem solar cells,* Seminar TU Delft, Delft, 26 March 2012, The Netherlands

Eingeladen: F. Finger, U. Aeberhard, R. Carius, T. Chen, K. Ding, A. Lambertz, U. Rau, and V. Smirnov, *Microcrystalline silicon-carbon and silicon-oxygen alloys for application (not only) in thin film solar cells*, 4th International Workshop on Thin-Film Silicon Solar Cells IWTFSSC-4, March 19-23, 2012, Neuchatel, Switzerland.

F. Finger, *Film silicon materials for solar cells,* Seminar Ecole Polytechnique, October 08, 2012, Palaiseau, France.

K. Klein, B. Hauer, S. Matich, O. Astakhov, F. Finger, M. Stutzmann, M. Brandt, *Electrically Detected Magnetic Resonance of a-Si:H Films: The Influence of the Contact Geometry,* Materials Research Society Spring Meeting, April 9-13 2012, San Francisco CA, USA

Eingeladen: K. Lips, M. Fehr, A. Schnegg, B. Rech, O. Astakhov, F. Finger, G. Pfanner, C. Freysoldt, J. Neugebauer, R. Bittl, C. Teutloff, *The Staebler-Wronski Effect in a-Si:H Revisited with Advanced Electron Paramagnetic Resonance (EPR)*, Materials Research Society Spring Meeting, April 9-13 2012, San Francisco CA, USA

S. Michard, M. Meier, B. Grootoonk, O. Astakhov, A. Gordijn, F. Finger, *High deposition rate processes for the fabrication of microcrystalline silicon thin films,* International Conference of European Materials Research Society (E-MRS 2012 Spring Meeting), May 14-18, 2012, Strasbourg, France

V. Smirnov, O. Astakhov, R. Carius, Yu. Petrusenko, V. Borysenko, and F. Finger, *Variation of the absorber layer defect density in a-Si:H and µc-Si:H solar cells with 2MeV electron bombardment, 7th International Conference on Amorphous & Microcrystalline Semiconductors, 2-5 July, 2012, St. Petersburg, Russia,*

2013

Eingeladen: O. Astakhov, V. Smirnov, S. Haas, U. Zastrow, F. Finger, *Thin film silicon material and device preparation for investigation of defects with advanced EPR techniques,* EPR-SOLAR Workshop "Spins as Functional Probes in Solar Energy Research", 10.-12.04.2013, Berlin

Anhang 3: Probenlisten

Tabelle 1: a-Si- und	µc-Si-Proben für Multifrequenz	- und Multiresonanz-EPR. AP1.2A
----------------------	--------------------------------	---------------------------------

Probe	Beschreibung	Geschickt nach	Materilal	Silankonzentration [%]	Typ	Dicke/Masse	Substrat	Raman Kristallinität [%]
04B127 II	Deposited in 2004 irradiated with 2MeV electrons and annealed. Sent for test measurements	HZB	μc-Si:H	3	<i></i>	42mg	Al foil / rough glass	85
04B123 II	Deposited in 2004 irradiated with 2MeV electrons and annealed. Sent for test measurements	HZB	a-Si:H	100	<i></i>	140mg	Al foil / rough glass	0
08B455 I	Poor quality a-Si:H	HZB	a-Si:H	100	<i></i>		Mo foil / rough glass	0
08B455 II	Poor quality a-Si:H	НΖВ	a-Si:H	100	<i></i>		rough glass	0
08B539 II(I)	a-Sift with relatively high deposition rate but yet reasonable quality (Ns 5.6E15cm-3) a-SiH with relatively high deposition	HZB	a-Si:H	13	<i></i>	46.5mg	Al foil / rough glass	0
08B539 II	rate but yet reasonable quality (Ns 5.6E15cm-3)	HZB	a-Si:H	13	<i></i>	48mg	Al foil / rough glass	0
08B191	763.8h of degradation at solar simulator AM1.5 temperature of 50C	HZB	a-Si:H	10	<i></i>	1um	Al foil / rough glass	0
09B149	solar cell (µc-Si:H p / µc-Si:H i / a- Si:H n) Laser scribed	HZB	solar cell	4.5	p/i/n	1um	700nm Zno non-etched	
10B087	standard a-Si:H material for solar cell chamber 2 RF SC 10%	HZB	a-Si:H		i	46.5mg	Al foil / rough glass	0
10B063	Reference standard a-Si:H	HZB	RF a-Si:H	10	i		glass	0
09B502 I	a-SI:H powder sealed in a quartz tube	HZB	a-Si:H	10	i	67.8mg	Al foil / rough glass	0
09B488	uc-SI:H powder sealed in a quartz tube	HZB	uc-Si:H	5	i	62mg	Al foil / rough glass	40
10B021 I	uc-SI:H powder sealed in a quartz tube	HZB	uc-Si:H	2	i	28.7mg	Al foil / rough glass	85
05B-039III	High defect density a-Si:H powder irradiated with 2MeV electrons and annealed 3 times sent for investigations at Santa Barbara	HZB	a-Si [.] H	100	i	192ma		0
08B481	Highly crystalline uc-Si:H powder	HZB	uc-Si:H	80	i.	95mg	Mo foil / rough glass	80
12B-181 I	Moderately crystalline uc-SiH powder sample	HZB	uc-Si:H	4.5	i	82.5mg	Al foil / rough glass	43
11B-193	High defect density a-Si layer prepared to estimate H content	НΖВ	a-Si:H	100	i	2050nm	Corning, Si Wafer	0
10B089	VHF a-Si:H chamber 6	тим	a-Si:H	10	i	85mg	Al foil / rough glass	0
10B052	Reference standard a-Si:H	тим	a-Si:H	10	i		Al foil / rough glass	0
10B053	Standard RF a-Si:H light soaked for 1000h and sealed in quartz tube	тим	a-Si:H	10	i	8mg	Al foil / rough glass	0
05B-039II	measurements, used for irradiation - annealing 3 times	ТИМ	a-Si:H	100	i	153mg		0
12B-181 II	Moderately crystalline uc-SiH powder sample	FUB	uc-Si:H	4.5	 i	60mg	Al foil / rough glass	43

Tabelle 2 : a-Si:H und µc-Si:H Proben für die Untersuchung, welchen Einfluss die Art der Pulverpräparation auf die EPR Eigenschaften hat. AP1.2A

Probe	Silankonzentration (Material)	Pulvermasse [mg]	Substratmaterial	Behandlungmethode
09B513	2% (µc-Si:H)	45.4	Al Folie	Abätzen mit 15% iger HCI; 15 Min.
09B571	2% (µc-Si:H)	31	Al Folie	Abätzen mit 15% iger HCI; 14Std.
09B488	5% (µc-Si:H)	62	Al Folie	Abätzen mit 15% iger HCI; 15 Min.
09B502 I	10% (a-Si:H)	67.8	Al Folie	Abätzen mit 15% iger HCl; 15min.
09B554	2% (µc-Si:H)	51.5	Glass + 800nm ZnO	Abätzen mit 15% iger HCI; 14Std.
09B492	5% (µc-Si:H)	48.7	Glass + 800nm ZnO	Abätzen mit 15% iger HCl; 14Std.
09B502 II	10% (a-Si:H)	70	Glass + 800nm ZnO	Abätzen mit 15% iger HCl; 14Std.
09B516	2% (µc-Si:H)	30	Mo Folie	Trockene Ablösung
09B497	5% (µc-Si:H)	47.5	Mo Folie	Trockene Ablösung
09B569	10% (a-Si:H)	72	Mo Folie	Trockene Ablösung
10B005	2% (µc-Si:H)	42.5	Al Folie	Abätzen mit 15% iger HCl; 12Min.
10B010	2% (µc-Si:H)	19.4	Al Folie	Abätzen mit 15% iger HCl; 12Std.
10B021.I	2% (µc-Si:H)	20.5	Al Folie	Abätzen mit 15% iger HCl; 12 Min.
10B021.II	2% (µc-Si:H)	25.8	Al Folie	Abätzen mit 15% iger HCl; 12min.
10B021.III	2% (µc-Si:H)	17.9	Al Folie	Abätzen mit 15% iger HCl; 12min.
10B044	5% (µc-Si:H)	58	Al Folie	Abätzen mit 15% iger HCl; 12min.
10B045	10% (a-Si:H)	65.5	Al Folie	Abätzen mit 15% iger HCl; 12min.
10B080	2% (µc-Si:H)	84.2	Glass + 800nm ZnO	Abätzen mit 15% iger HCl; 14Std.
10B098	2% (µc-Si:H)	39	Glass + 800nm ZnO	Abätzen mit 15% iger HCl; 14Std.
10B128	2% (µc-Si:H)	30	Mo Folie	Trockene Ablösung
10B129	2% (µc-Si:H)	66.9	Al Folie	Abätzen mit 15% iger HCl; 12min
10B129.I	2% (µc-Si:H)	28.7	Al Folie	Abätzen mit 15% iger HCl; 12min
10B129.II	2% (µc-Si:H)	38.2	Al Folie	Abätzen mit 15% iger HCI; 12min
10B130	2% (µc-Si:H)	28	Glass + 800nm ZnO	Abätzen mit 15% iger HCI; 14Std.

Probe	Beschreibung	Geschickt nach	Materilal	Silankonzentration [%]	Тур	Dicke	Substrat	Bearbeitung
07B112	EDMR cell a-Si p/ a-Si 300nm i/ a-Si n	HZB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
07B121	EDMR cell a-Si p/ a-Si 300nm i/ a-Si n	HZB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
07B122	EDMR cell a-Si p/ µc-Si 1000nm i/ µc-Si n	HZB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
07B257	EDMR cell a-Si p/ µc-Si 1000nm i/ µc-Si n	HZB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
07B266	EDMR cell a-Si p/ µc-Si 1000nm i/ µc-Si n	HZB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
08B105	Device grade RF 100%SC a-Si:H	HZB	a-Si:H	100	<i></i>	1000n m	Bulk Diamond, Si wafer	-
10B047	Standard a-Si:H pin solar cell	HZB	soalr cell		p/i/n	300nm	Not etched ZnO 0.7mm glass	Laser Patterned HZB I
10B105	a-Si:H pin solar cell first EDMR contact layout	HZB	soalr cell		p/i/n	300nm	700nm ZnO 0.7mm glass	Laser Patterned HZB I
10B113	a-Si:H pin solar cell with ucSi p and n layers	HZB	soalr cell		p/i/n	1000n m	700nm ZnO 0.7mm glass	Laser Patterned HZB I
10S198	Standard RF a-Si:H	HZB	RF aSi:H	10	i	300nm	700nm ZnO 0.7mm glass	Laser Patterned HZB I
10B184	ZnO/a-Si:H/ZnO/Ag stack a-SiH Standard RF-PECVD	HZB	a-Si:H	10	i	1000n m	700nm ZnO 0.7mm glass	Laser Patterned HZB I
10B251	ZnO/ p a-Si:H / i a-Si:H / n a-Si:H / ZnO/Ag	HZB	solar cell	10	p/i/n	1000n m	700nm ZnO 0.7mm glass	Laser Patterned HZB I
10B249	ZnO/ <n> a-Si:H/ZnO/Ag stack</n>	HZB	n aSi		n	170nm	700nm ZnO 0.7mm glass	Laser Patterned HZB I
07B253	EDMR cell a-Si p/ µc-Si 1000nm i/ µc-Si n	FUB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
08B112	EDMR cell a-Si p/ µc-Si 1000nm i/ µc-Si n	FUB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I
10B015	EDMR cell n-µc-Si:H/ i-µc- Si:H/ p-µc-Si:H	FUB	solar cell		p/i/n		ZnO	Laser Patterned HZB I
10B-517	pin a-SiH solar cell equivalent to 10B251	FUB	solar cell	10	p/i/n		corning + ZnO	Laser Patterned HZB I
11B-015	EDMR cell μc-Si:Η p/ μc- Si:Η i/μc-Si:Η n	FUB	solar cell		p/i/n		corning + ZnO	Laser Patterned HZB I

Tabelle 4: a-Si:H und µc-Si:H Proben. AP1.2C

Probe	Beschreibung	Geschickt nach	Materilal	Silankonzentration [%]	Masse	Bearbeitung	Raman Kristallinität [%]
08B191	Device grade a-Si:H RF 10%SC deposited on AI foil	HZB	a-Si:H	10	1000n m	h under AM1.5 trough OG590 filter at 50C	0
09B227	a-Si:H degraded for 600h with AM1.5+Red Filter etched and sealed in X-band tube	HZB	a-Si:H		62.9m g	600 h under AM1.5 trough OG590 filter at 50C	0
09B229	a-Si:H degraded for 600h with AM1.5 etched and sealed in X- band tube	HZB	a-Si:H		68.7mg	600 h under AM1.5 trough OG590 filter at 50C	0
09B451	Device grade a-Si:H degraded for 481h with AM1.5+Red Filter (cut off 550nm) etched and sealed in X-band tube	HZB	a-Si:H		16.8mg	481 h under AM1.5 trough OG590 filter at 50C	0
09B452	Device grade a-Si:H degraded for 481h with AM1.5 etched and sealed in X-band tube	HZB	a-Si:H		18.3mg	481 h under AM1.5 trough OG590 filter at 50C	0
09C345	High defect density a-Si:H degraded for 481h with AM1.5 etched and sealed in X-band tube	HZB	a-Si:H		28.3mg	481 h under AM1.5 trough OG590 filter at 50C	0
10B057	Standard RF a-Si:H light soaked for 1000h and sealed in quartz tube	HZB	RF a-Si:H	10	17mg	1000 h under AM1.5 trough OG590 filter at 50C	0
10B-399	a-Si:D prepared under standard a-Si:H conditions	HZB	a-Si:D	10	15mg	1000h under AM1.5 trough OG590 filter at 50C	0
10B-402	uc-SI:D prepared under standard uc-Si:H conditions	HZB	uc-Si:D	5	18mg	1000h under AM1.5 trough OG590 filter at 50C	74
10B-419	a-SI:D prepared under non optimized conditions	HZB	a-Si:D	100	40mg	1000h under AM1.5 trough OG590 filter at 50C	0
11B-035	Standard a-Si:H	HZB	a-Si:H	10		Light soaking with laser at	0
12B-126	29Si enriched (50%) aSiH powder of standard a-Si SC=10%	HZB	a-29Si:H	10	12mg	1000 h under AM1.5 trough OG590 filter at 50C	0
12B-129	29Si enriched (25%) aSiH powder of standard a-Si SC=10%	HZB	a-29Si:H	10	12.4mg	1000 h under AM1.5 trough OG590 filter at 50C	0

Tabelle 5: a-Si:D und µc-Si:D Proben. AP1.2D

Probe	Beschreibung	Geschickt nach	Materilal	Silankonzentration [%]	Dicke/Masse	Substrat	Raman Kristallinität [%]
07B223 I	a-SI:D powder sealed in a quartz tube Irradiated and annealed twice	HZB	a-Si:D	10	46.7mg	Al foil / rough glass	0
07B225 I	uc-SI:D powder sealed in a quartz tube Irradiated and annealed twice	HZB	uc-Si:D	6	33mg	Al foil / rough glass	60
07B226 I	uc-SI:D powder sealed in a quartz tube Irradiated and annealed twice	HZB	uc-Si:D	3	27mg	Al foil / rough glass	82
10B407I	a-SI:D powder sealed in a quartz tube	HZB	a-Si:D	8	52.5mg	Al foil / rough glass	0
10B418I	a-SI:D powder sealed in a quartz tube	HZB	a-Si:D	9	68.7mg	Al foil / rough glass	0
10B420I	a-SI:D powder sealed in a quartz tube	HZB	a-Si:D	10	60.2mg	Al foil / rough glass	0
10B422I	uc-SI:D powder sealed in a quartz tube	HZB	uc-Si:D	4	60mg	Al foil / rough glass	88
10B-481I	uc-SI:D powder sealed in a quartz tube	HZB	uc-Si:D	3	56.5mg	Al foil / rough glass	88.1
10B-480I	uc-SI:D powder sealed in a quartz tube	HZB	uc-Si:D	5	59mg	Al foil / rough glass	85.5
10B-474	uc-SI:D powder sealed in a quartz tube	HZB	uc-Si:D	6	62.7mg	Al foil / rough glass	55.8
10B-462	a-SI:D powder sealed in a quartz tube	HZB	a-Si:D	7	73.3mg	Al foil / rough glass	0
10B-494I	a-SI:D powder sealed in a quartz tube	HZB	a-Si:D	100	123mg	Al foil / rough glass	0
10B-399	a-Si:D prepared under standard a-Si:H conditions	HZB	a-Si:D	10	15mg	1000h under AM1.5 trough OG590 filter at 50C	0
10B-402	uc-SI:D prepared under standard uc-Si:H conditions	HZB	uc-Si:D	5	18mg	1000h under AM1.5 trough OG590 filter at 50C	74
10B-419	a-SI:D prepared under non optimized conditions	HZB	a-Si:D	100	40mg	1000h under AM1.5 trough OG590 filter at 50C	0
10B382	<i> a-SiD film on glass substrate from the test series</i>	тим	a-SiD	10	450nm	Corning	0
10B385	<i> uc-SiD film on glass substrate from the test series</i>	тим	uc-SiD	4	350nm	Corning	77.6
10B382	a-Si:D film on glass/rough glass from test series 500nm	тим	a-Si:D	10	500nm	Corning/Rough Corning glass	0

Probe	Beschreibung	Geschickt nach	Materilal	Silankonzentration [%]	Dicke/Masse	Substrat	Raman Kristallinität [%]
11B-292	samples prepared of 28Si	HZB	a-28SiH	10	89 1mg	Al foil / rough glass	0
11B-294	powder Si28 uc-Si:H moder stryst (equiv to old SC6% material)	HZB	uc-28SiH	4	74mg	Al foil / rough glass	76.7
11B-314	samples prepared of 28Si enriched silane	HZB	a-28SiH	10	129mg	Al foil / rough glass	0
11B-316	samples prepared of 28Si enriched silane	HZB	a-28SiH	50	119mg	Al foil / rough glass	0
11B-317	samples prepared of 28Si enriched silane	HZB	uc-28SiH	3	60mg	Al foil / rough glass	83
11B-318	samples prepared of 28Si enriched silane	HZB	a-28SiH	100	122mg	Al foil / rough glass	0
11B317	Powder 28Si enriched Si:H	HZB	uc-28Si:H	3	60mg	Al foil / rough glass	
11B294	Powder 28Si enriched Si:H	HZB	uc-28Si:H	4	74mg	Al foil / rough glass	
11B314	Powder 28Si enriched Si:H	HZB	a-28Si:H	10	129mg	Al foil / rough glass	
11B316	Powder 28Si enriched Si:H	HZB	a-28Si:H	50	119mg	Al foil / rough glass	
11B318	Powder 28Si enriched Si:H	HZB	a-28Si:H	100	122mg	Al foil / rough glass	
11B-289	(d=300nm) on the standard glass substrate. NO TCO, NO metal.	тим	a-28SiH	10	322nm	Corning	0
11B-291	<i>Si28 uc-Si film (d=300nm) on the standard glass substrate. NO TCO, NO metal.</i>	тим	uc-28SiH	3	385nm	Corning	78.6
11B 210	repetition of 11B-291 which peeled off after transportation, thingr layer	TUNA		2		Corning	
11B-313	a-Si pin solar cells with	FUB	a-SiH cell	10	300pm	700nm ZnO on 0.7mm glass patterned with HZB1 pattern 1sec HCl etched	
11B-311	uc-Si pin solar cells with Si28 intrinsic layer	FUB	uc-SiH cell	4	1000nm	700nm ZnO on 0.7mm glass patterned with HZB1 pattern 1sec HCl etched	
12B-172	EDMR solar cell with 29Si enriched ucSiH absorber layer	FUB	uc-29Si:H cell	4.5		700nm ZnO on 0.7mm glass patterned with HZB1 pattern 1second HCI etched	13-47
12B-202	EDMR solar cell with 29Si enriched ucSiH absorber laver	FUB	uc-29Si:H cell	4		700nm ZnO on 0.7mm glass patterned with HZB1 pattern1 second HCl etched	67

Tabelle 6: a-²⁸Si:H und µc-²⁸Si:H Proben. AP1.2D

Probe	Material	Silan- Konzentration [%]	Schichtdicke [nm]	Substrat	Ziel
12B-088	a-Si:H	3	332	Glas / raues Glas	
12B-085	a-Si:H	5	170	Glas / raues Glas	Bestimmung der Depositionsrate
12B-091	a-Si:H	6	200	Glas / raues Glas	Untersuchung der strukturellen und
12B-089	µc-Si:H	10	240	Glas / raues Glas	elektronischen Eigenschaften
12B-086	μc-Si:H	10	Inhomogene Deposition	Glas / raues Glas	
12B-093	a-Si:H	2	600	Glas / raues Glas / c-Si	
12B-094	a-Si:H	4	500	Glas / raues Glas / c-Si	Depositionsrate
12B-119	a-Si:H	10	956	Glas / raues Glas / c-Si	strukturellen und
12B-121	μc-Si:H	100	1140	Glas / raues Glas / c-Si	Eigenschaften
12B-123	μc-Si:H	50	1081	Glas / raues Glas / c-Si	

Probe	Beschreibung	Geschickt nach	Materilal	Silankonzentration [%]	Dicke/Masse	Substrat	Raman Kristallinität [%]
12B-124	29Si enriched (50%) aSiH powder	HZB	a-29Si:H	10	108mg	Al foil / rough glass	0
12B-125	29Si enriched (25%) aSiH powder	HZB	a-29Si:H	10	106mg	Al foil / rough glass	0
	29Si enriched (50%) ucSiH powder of						
12B-130	high crystallinity	HZB	uc-29Si:H	2	79mg	Al foil / rough glass	84.7
12B-131	29Si enriched (50%) ucSiH powder of moderate crystallinity	HZB	uc-29Si:H	4.5	118mg	Al foil / rough glass	52.8
	29Si enriched (25%) ucSiH powder of						
12B-161	moderate crystallinity	HZB	uc-29Si:H	4.5	123mg	Al foil / rough glass	54.8
12B-162	high crystallinity	HZB	uc-29Si:H	2	74.9mg	Al foil / rough glass	84.4
	29Si enriched (50%) aSiH powder of				Ŭ		
12B-203	high defect density a-Si SC=100%	HZB	a-29Si:H	100	80.1mg	Al foil / rough glass	0
12B-207	29Si enriched (25%) aSiH powder of	H7B	a-20Si-H	100	80mg	Al foil / rough glass	0
12B084	a-Si pin solar cells with intrinsic layer prepared of standard SiH4 at SC=100% to achieve high defect density	TUM	a-29Si:H	100	750nm	700nm ZnO 0.7mm glass non etched	
12B-160	29Si enriched (25%) ucSiH layer of moderate crystallinity	тим	uc-29Si:H	3.5	200nm	Corning/Rough Corning glass	60.1
12B-158	29Si enriched (25%) ucSiH layer of high crystallinity	тим	uc-29Si:H	2	220nmn	Corning/Rough Corning glass	78.5
	29Si enriched (50%) ucSiH layer of					Corning/Rough	
12B-157	moderate crystallinity	TUM	uc-29Si:H	3.5	210nm	Corning glass	57.8
10D 154	29Si enriched (50%) ucSiH layer of	TUNA	110 20 Side	2	220.000	Corning/Rough	77.0
120-104	nigh crystainnity	TOM	uc-2951.H	2	2301111		11.2
12B-204	29Si enriched (25%) aSiH layer high defect density a-Si SC=100%	тим	a-29Si:H	100	290nm	Corning/Rough Corning glass	0
12B-206	29Si enriched (50%) aSiH layer high defect density a-Si SC=100%	тим	a-29Si:H	100	250nm	Corning/Rough Corning glass	0
12B-172	EDMR solar cell with 29Si enriched ucSiH absorber layer	FUB	uc-29Si:H cell	4.5		700nm ZnO on 0.7mm glass patterned with HZB1 pattern1second HCI etched	13-47
12B-202	EDMR solar cell with 29Si enriched ucSiH absorber layer	FUB	uc-29Si:H cell	4		0.7mm glass patterned with HZB1 pattern1second HCI etched	67

Tabelle 8: a-²⁹Si:H und µc-²⁹Si:H Proben. AP1.2D

Probe	Beschreibung	Materilal	Silankonzentration [%]	Тур	Dotierung [ppm]	Dicke-Masse	Substrat	Bearbeitung	Raman Kristallinität [%]
07C068	lithography process tests	µc-Si:H		<i></i>		473nm	Glass		
07C069	lithography process tests	µc-Si:H		<i></i>		457nm	Glass		
07C070	lithography process tests	µc-Si:H		<i></i>		489nm	Glass		
07C071	lithography process tests	µc-Si:H		<i></i>		511nm	Glass		
07C072	lithography process tests	µc-Si:H		<i></i>		481nm	Glass		
07C073	lithography process tests	µc-Si:H		<i></i>		372nm	Glass		
07C262	<pre><n> doping series of thin films on glass <n> doping series of thin</n></n></pre>	µc-Si:H		<n></n>	10000	15-22nm	Glass		0.34
07C263	films on glass	µc-Si:H		<n></n>	1000	18-25nm	Glass		0.61
07C277	films on glass	µc-Si:H		<n></n>	100	15-25nm	Glass		0.39
07C435	films on glass	µc-Si:H		<n></n>	10	26nm	Glass		0.47
07C436	<n> doping series of thin films on glass</n>	µc-Si:H		<n></n>	1	27nm	Glass		0.52
07C437	<n> doping series of thin films on glass</n>	µc-Si:H		<n></n>	0.1	23nm	Glass		0.51
07C465	compensated material	a-Si:H		com p.	1% PH3 1%B2H6	475nm	Glass		
08C001	compensated material	a-Si:H		com p.	0.1% PH3 0.1%B2H6	490nm	corning		
08B462	Device grade a-Si:H on TCO	a-Si:H	10	<i></i>		430nm	etched 1-2 seconds (700nm)	laser scribed to perform a grid	
08B534	Standard a-Si:H	a-Si:H	100	<i></i>		1000nm	Glass 0.7mm		
088535	Standard a SitH	a Si-Li	100	zis		520nm	Glass		
08B546	Device grade a-Si:H on TCO laser scribed to perform a grid	a-Si:H	10	<i></i>		430nm	TCO etched 1-2 seconds (100nm)		
	n-layer on ZnO for further								
	preparation of organic solar						ZnO etched		
08B558	Cell	µc-Si:H	0.5	<n></n>	2%	30nm	40sec		
09B087	Standard a-Si:H sent 04.03.09	a-Si:H	10	<i></i>			1737		
09B091	04.03.09	a-Si:H	10	<i></i>			1737		
09B117	Grid laser patterned	µc-Si:H		<i></i>		100nm	100nm ZnO non etched		
00B127	Part of a solar cell 30nm ucSi <n> 1700nm ucSi <i> appeared to be almost amorphous</i></n>	uc Si-H	4.5	n/i		1700pm	700nm Zno		1.6
030127	Part of the solar cell 30nm	μο-0ι.Π	4.5	11/1			700nm Zno		1.0
09B133	ucSi 1000nm ucSi <i></i>	µc-Si:H	4.5	p/i		1000nm	non-etched		66.1
Ag1	layers of Ag on corning prepared for the tests of the quality factor damping	Ag				50nm	Corning 1737 25x100mm d=0.7mm		
	layers of Ag on corning prepared for the tests of the						Corning 1737 25x100mm		
Ag2	quality factor damping	Ag	-			100nm	d=0.7mm		

Tabelle 9:	Schichten	und	Schichtstrukturen.	AP	1.2F
------------	-----------	-----	--------------------	----	------

robe	seschreibung	laterilal	ilankonzentration %]	yp	ootierung [ppm]	oicke-Masse	ubstrat	searbeitung	kaman Kristallinität %]
Ag3	layers of Ag on corning prepared for the tests of the guality factor damping	Ag	<u>.</u>			150nm	Corning 1737 25x100mm d=0.7mm		
Ag4	layers of Ag on corning prepared for the tests of the quality factor damping Repetition of 09B133 with	Ag	-			200nm	Corning 1737 25x100mm d=0.7mm		
09B151	seed layer for crystallinity improvement (4 min SC=4%)	μc-Si:H	4.5	n/i		1050nm	700nm Zno non-etched		
09B277	Laser scribing harms TCO after the removal of a-Si the TCO layer is absent or too resistive	a-Si:H	10	<i></i>	250		100nm ZnO		
09B276	on 700nm TCO	a-Si:H	10	<i></i>	100		100nm ZnO		
09B275		a-Si:H	10	<i></i>	50		100nm ZnO		
	Standard a-Si:H sent						700nm Zno		
09B278	30.06.09 Stondard a Sirk cont	a-Si:H	10	<i></i>	150		non-etched		
09B279	30.06.09	a-Si:H	10	<i></i>	100		non-etched		
	Standard a-Si:H sent						700nm Zno		
09B294	30.06.09 about 100pm of a-Si Hwith	a-Si:H	10	< >	40		non-etched		
09C216	different doping + standard laser scribing for the HALF of the substrate	a-Si:H		<n></n>	3	80	700nm Zno non-etched		
000017	about 100nm of a-Si:Hwith different doping + standard laser scribing for the HALF	- 0:44				00	700nm Zno		
090217	about 100nm of a-Si:Hwith different doping + standard laser scribing for the HALE	a-01.11		<11>		80	700nm Zno		
09C222	of the substrate	a-Si:H			3	90nm	non-etched		
09C223	100nm of a-Si:Hwith different doping + standard laser scribing for the HALF of the substrate	a-Si:H			1	75nm	700nm Zno non-etched		
09B386	100nm of uc-Si:H with 20ppm PH3 doping For Algasinger Michael	µc-Si:H		<n></n>	20	370nm	200nm Zno non-etched		
	ZnO substrate for the test measurements of the spatial resolved ESR	ZnO				800nm			
	high defect density a-Si:H cell prepared at 40W + standard laser scribing for the HALF of the substrate second half covered with a standard Cell Ag contacts						Non etched		
10B022	after 5 days of air storage	solar cell		p/i/n		ļ	ZnO		
	Standards a-Sr:H cell + standard laser scribing for the HALF of the substrate second half covered with a standard Cell Ag contacts						Non otchod		
10B026	after 5 days of air storage	solar cell		p/i/n			ZnO		
10B039	standard a-Si:H solar cell laser patterned for EDMR tests	solar cell		p/i/n		300nm	Non etched ZnO on 0.7 mm glass		
	1		1	1.1.1.1.1.1			3.2.00		L

	hreibung	ilal	konzentration		rung [ppm]	-Masse	trat	beitung	ın Kristallinität
robe	3esc	later	silan %]	d	Dotie	Dicke	sqng	Beart	Rame %]
700nm ZnO	etched for 1 second in 0.5% HCl for roughness measurements with a view to use short etching in future to avoid shunts caused by spikes in non- etched ZnO	ZnO	02	F		700nm	0.7mm glass		
10B090_7	standard a-Si:H solarcell laser patterned for EDMR tests	solar cell		p/i/n		300nm	700nm ZnO etched for 2s 0.7mm glass		
10B384	standard a-Si:H solar cell laser patterned for EDMR tests with only Ag back on half of the substrate	solar cell	10	p/i/n		300nm	700nm ZnO 0.7mm glass		0
10B387	a-Si:H solar cell laser patterned for EDMR tests with only Ag back on half of the substrate	solar cell	10	n/i/		300nm	700nm ZnO 0.7mm glass		0
10B-500	Repetition of 10B384 a- Si:H solar cell i-layer: thickness 500nm (!)	solar cell	10	p/i/n		500nm	700nm ZnO 0.7mm glass non etched	laser pattern TUM3	
10B-504	Repetition of 10B387 a- Si:H pi-cell i-layer: thickness 500nm (!)	solar cell	10	p/i/		500nm	700nm ZnO 0.7mm glass non etched	laser pattern TUM3	
11B-146	Standard uc-SI:H	µc-Si:H	5	i	-	350nm	Corning	no scribing	
11B-145	standard µc-Si:H pin with near 1µm thick	solar cell	5	p/i/n		1100nm	800nm ZnO 1.1mm glass	TUM3 Lasered	
11B-147	μc-Si:H layer about 500nm thick prepared on 800nm ZnO layer	µc-Si:H	5	i		350nm	800nm ZnO 1.1mm glass	TUM3 Lasered	
11B-184	µc-Si:H layer	µc-Si:H		i		30nm	Corning		
11B-186	Transition ucSi thickness series	μc-Si:H				80nm	standard ZnO Laser scribed TUM 1		4.4
11B190	Transition ucSi thickness series	μc-Si:H				170nm	standard ZnO Laser scribed TUM 1		17.9
11B188	Transition ucSi thickness series	µc-Si:H				280nm	standard ZnO Laser scribed TUM 1		30.4
11B189	Transition ucSi thickness series	µc-Si:H				350nm	standard ZnO Laser scribed TUM 1		35.5
11B187	Transition ucSi thickness series	μc-Si:Η				450nm	standard ZnO Laser scribed TUM 1		38.1
03C-764	Piece of a-Si:H cell laser scribed with TUM 3 pattern and sent back to TUM	a-SiH cell		p/i/n		300nm	800nm ZnO 1.1mm glass		

Probe	Proben Typ	Silan-Konzentration / Frequenz Bereich	Material	Bestrahlungszeit* [min]
10B-150 I	ESR pulver	3% VHF	µc-Si:H	3
10B-150 II	ESR pulver	3% VHF	µc-Si:H	12
10B-150 III	ESR pulver	3% VHF	µc-Si:H	50
10B-145 III	ESR pulver	5% VHF	µc-Si:H	3
10B-145 II	ESR pulver	5% VHF	μc-Si:H	12
10B-145 I	ESR pulver	5% VHF	μc-Si:H	50
10B-149 III	ESR pulver	10% RF	a-Si:H	3
10B-149 II	ESR pulver	10% RF	a-Si:H	12
10B-149 I	ESR pulver	10% RF	a-Si:H	50
10B-140 II	ESR pulver	10% VHF	a-Si:H	3
10B-140 III	ESR pulver	10% VHF	a-Si:H	12
10B-140 I	ESR pulver	10% VHF	a-Si:H	50
05B-039 I	ESR pulver	100% VHF	a-Si:H	3
05B-039 II	ESR pulver	100% VHF	a-Si:H	12
05B-039 III	ESR pulver	100% VHF	a-Si:H	50
10B-139 I	ESR pulver	17% VHF	a-Si:H	600
10B-139 II	ESR pulver	17% VHF	a-Si:H	600
10B-149 IV	ESR pulver	10% RF	a-Si:H	600
07B-226 I	ESR pulver	3% VHF	µc-Si:D	600
07B-226 II	ESR pulver	3% VHF	µc-Si:D	600
07B-225 I	ESR pulver	6% VHF	µc-Si:D	600
07B-225 II	ESR pulver	6% VHF	µc-Si:D	600
07B-223 I	ESR pulver	10% VHF	a-Si:D	600
07B-223 II	ESR pulver	10% VHF	a-Si:D	600
09B-092 28	Solarzelle	5% VHF	n-i-p µc-Si:H	3
09B-092 29	Solarzelle	5% VHF	n-i-p µc-Si:H	12
09B-092 31	Solarzelle	5% VHF	n-i-p µc-Si:H	50
09B-399 19	Solarzelle	10% RF	n-i-p a-Si:H	3
09B-399 31	Solarzelle	10% RF	n-i-p a-Si:H	12
09B-399 6	Solarzelle	10% RF	n-i-p a-Si:H	50
10C-063 I	Einzelschicht	0.5% RF	n µc-Si:H	3
10C-063 II	Einzelschicht	0.5% RF	n µc-Si:H	12

Tabelle 10: Schichten und Solarzellen. AP2.1E

Probe	Proben Typ	Silan-Konzentration / Frequenz Bereich	Material	Bestrahlungszeit* [min]
10C-063 III	Einzelschicht	0.5% RF	n µc-Si:H	50
10C-062 I	Einzelschicht	10% RF	p a-Si:H	3
10C-062 II	Einzelschicht	10% RF	p a-Si:H	12
10C-062 III	Einzelschicht	10% RF	p a-Si:H	50
11B-025 III	ESR pulver	3% VHF	µc-Si:H	0.3
11B-025 II	ESR pulver	3% VHF	µc-Si:H	3
10B-150 I	ESR pulver	3% VHF	µc-Si:H	0.3
10B-150 II	ESR pulver	3% VHF	μc-Si:H	3
11B-025 I	ESR pulver	3% VHF	μc-Si:H	50
11B-029 III	ESR pulver	5% VHF	µc-Si:H	0.3
11B-029 II	ESR pulver	5% VHF	µc-Si:H	3
10B-145 III	ESR pulver	5% VHF	µc-Si:H	0.3
10B145 II	ESR pulver	5% VHF	µc-Si:H	3
11B-029 I	ESR pulver	5% VHF	µc-Si:H	50
11B-026 III	ESR pulver	10% RF	a-Si:H	0.3
11B-026 II	ESR pulver	10% RF	a-Si:H	3
10B-140 II	ESR pulver	10% VHF	a-Si:H	0.3
10B-140 III	ESR pulver	10% VHF	a-Si:H	3
11B-026 I	ESR pulver	10% RF	a-Si:H	50
11B-028 I	ESR pulver	6% VHF	µc-Si:D	0.3
11B-028 III	ESR pulver	6% VHF	µc-Si:D	3
11B-018 I	ESR pulver	10% VHF	a-Si:D	0.3
11B-018 II	ESR pulver	10% VHF	a-Si:D	3
10B-149 I	ESR pulver	10% RF	a-Si:H	50
11B-016	Solarzelle	10% RF	n-i-p a-Si:H d=0.15µm	50
11B-027	Solarzelle	5% VHF	n-i-p µc-Si:H d=0.3µm	50
11B-019	Solarzelle	10% RF	p-i-n a-Si:H d=0.3µm	50
11B-039	Solarzelle	5% VHF	p-i-n µc -Si:H d=1µm	50
11B-037	Solarzelle	10% RF	n-i-p a-Si:H d=0.3µm	50
11B-006	Solarzelle	5% VHF	n-i-p µc-Si:H d=1µm	50
11B-036	Solarzelle	10% RF	n-i-p a-Si:H d=1µm	50
11B-031	Solarzelle	5% VHF	n-i-p μc -Si:H d=3μm	50
11B-029	Einzelschicht	5% VHF	i μc-Si:Η	50

Probe	Proben Typ	Silan-Konzentration / Frequenz Bereich	Material	Bestrahlungszeit* [min]
11B-026	Einzelschicht	10% RF	i a-Si:H	50
10C-063	Einzelschicht	0.5% RF	n µc-Si:H	50
10C-062	Einzelschicht	10% RF	p a-Si:H	50
11B-010	Einzelschicht	5% VHF	i µc-Si:H	50
11B-014	Einzelschicht	10% RF	i a-Si:H	50
ITO1	Einzelschicht	-	ITO (Asahi U)	50
ZnO1	Einzelschicht	-	ZnO	50
ITO2	Einzelschicht	-	ITO (Asahi U)	50
ZnO2	Einzelschicht	-	ZnO	50
ZnO3	Einzelschicht	-	ZnO	3
ZnO4	Einzelschicht	-	ZnO	12
ZnO5	Einzelschicht	-	ZnO	50
ІТОЗ	Einzelschicht	-	ITO (Asahi U)	3
ITO4	Einzelschicht	-	ITO (Asahi U)	12
ITO5	Einzelschicht	-	ITO (Asahi U)	50