

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Endbericht

Projekt:	Hybrides Fügen von Multimaterial-
	systemen für Kraftfahrzeuge
Förderkennzeichen:	03X3032F

Datum: 14.07.2014

Ersteller: G. Lauer, WE-T

Inhalt

1 1.1	Aufgabenstellung	3 3
1.2	Vorraussetzungen	3
1.3	Planung und Ablauf	4
1.4	wissenschaftlicher und technischer Stand	4
1.5	Zusammenarbeit	5
2 2.1	Darstellung der Ergebnisse	6 6
	 2.1.1 AP1 Lastenheft Versuchsplanung 2.1.2 AP2 Umformsimulation 2.1.3 AP3 Versuchsaufbau Rollformen 2.1.4 AP4 Umformversuch 2.1.4.1 Rollformen 2.1.4.2 Abkanten 2.1.5 AP5 Versuchsdurchführung Fügen 2.1.5.1 Artgleiche Verbindung DX56+Z – DX56+Z 0,5mm 2.1.5.2 Mischverbindungen - verzinkter Stahl mit Aluminium 2.1.5.3 Mischverbindungen - verzinkter Stahl mit Magnesium 2.1.5.4 Mischverbindungen - Borstahl mit Aluminium 2.1.5.5 Mischverbindungen - Borstahl mit Magnesium 2.1.6 AP6 Funktionsmuster 2.1.6.1 Wirkweise Fallturm 2.1.6.3 Dynamischer Fallturmversuch 2.1.7 Zusammenfassung 	6 8 9 15 17 19 20 23 26 30 33 33 37 38 40

1.1 Aufgabenstellung

Ziel dieses Forschungsprojektes war es ein Schmelzschweißverfahren zu modifizieren, um damit Borstahl mit Aluminium oder Magnesium zu verbinden. Die Herausforderung bestand neben den unterschiedlichen

Schmelztemperaturen auch in der unbekannten Zusammensetzung der verzunderten AlSi-Oberfläche des Borstahls. Diese Verzunderung erhält man aufgrund der Warmumformung, die zudem bei Diffusionstemperatur

verschiedener Elemente stattfindet. Die Forschungsgruppe einigte sich auf die Nahtgeometrie Kehlnaht am Überlappstoß.

Waldaschaff Automotive GmbH (WAG) war Anwender in diesem Konsortium. Aus diesem Grund wurden in unserem Vorhaben weitergehende Ziele definiert. So wurde neben dem Borstahl auch kaltformbarer hochfester Stahl und dickere Wanddicken für Aluminium abgeprüft. Neben der Nahtgeometrie Kehlnaht am Überlappstoß wurde auch die klassische Kehlnaht betrachtet. Gleichzeitig wurde die Simulation und Herstellung von Rollform- und Kantteilen untersucht. Abschließend wurde ein Fallturm entwickelt und gebaut, um hier die dynamische Bauteilprüfung zu dem statischen 3-Punkt-Biegeversuch gegenüberzustellen. Ziel des ganzen Forschungsvorhabens war sein hybrides Crash-Managementsystem zu entwickeln.

1.2 Vorraussetzungen

Die Rollform- und Kantversuche wurde hier im Haus simuliert. Die Rollformversuche wurden hier bei uns auf einer Serienrollformmaschine durchgeführt.

Kantversuche wurden extern unter unserer Aufsicht und Vorgabe gefahren. Der Fallturm wurde im Haus entwickelt, konstruiert, gebaut, getestet und modifiziert.

Die Schweißversuche wurden auf einer Serienroboteranlage mit CMT-Ausrüstung getätigt, wobei hier eine eigene Schweißkennlinie entwickelt wurde.

Der 3-Punktbiegeversuch wurde auf einer Thöni Stauchprüfmaschine statisch durchgeführt. Mit dem Fallturmversuch konnten wir anschließend die Ergebnisse der Bauteilprüfung dynamisch zu statisch vergleichen.

1.3 Planung und Ablauf

Gemäß Antrag wurden die vorhabenspezifischen Schwerpunkte definiert und mit Terminen, bzw. Meilensteinen versehen:

- AP1: Lastenheft Versuchsplanung
- AP2: Umformsimulation
- AP3: Versuchsaufbau Rollformen
- AP4: Versuchsdurchführung Rollformen und Kanten
- AP5: Versuchsdurchführung Fügen
- AP6: Funktionsmuster
- AP7: Abschlußbericht

Abb. 01: Terminplan

Während der Versuchsplanung wurde abgestimmt, dass der Bau des Fallturms vorgezogen wird, da die Schwierigkeiten nicht klar voraussehbar waren. Am Ende war diese Entscheidung korrekt, da kurz vor Ende des Projektes nochmals das Fundament, auf dem der Fallturm stand, verstärkt werden mußte. So wurde der Fallturm noch rechtzeitig innerhalb der Projektlaufzeit fertiggestellt, um die Funktionsmuster dynamisch abzuprüfen.

Ansonsten konnten alle Verzögerungen innerhalb der Projektlaufzeit kompensiert werden.

1.4 wissenschaftlicher und technischer Stand

Fügetechnik:

Das CMT-Schweiß-/Lötverfahren ist ein patentrechtlich geschütztes Verfahren der Fa. Fronius. Aufgrund zur Verfügung gestellter Software ist ein Eingriff in eine parametrisierte Kennlinie möglich. Dadurch kann man seine eigene Kennlinie entwickeln, um auf die Bedürfnisse des Grundmaterials oder dessen Beschichtung eingehen zu können.

Das CMT-Löten von verzinkten Stahl mit Aluminium ist als Nahtgeometrie Kehlnaht am Überlappstoß bekannt, als reine Kehlnaht jedoch nicht. Hier gab es auch größere Schwierigkeiten. Für die Anwendung verzinkter Stahl mit Magnesium gibt es keine wirtschaftlichen Beispiele.

Die Verbindung Borstahl mit Aluminium oder Magnesium wurde bisher nicht untersucht.

Rollformen/Kanten:

Die Umformung von hochfesten Stählen wird bereits praktiziert. Was jedoch fehlt sind Erfahrungswerte für Rückfederverhalten und sonstige Formänderungsfaktoren, die man sich in der Umformsimulation zu Nutze machen kann.

Fallturm:

Ein Fallturm in dieser Größe und der Möglichkeit mittels Kraftaufnehmer die vom Bauteil aufgenommene Energie aufzunehmen existiert nicht. Die Konzeptionierung fand mittels Versuche und mit Hilfe der Simulation statt.

1.5 Zusammenarbeit

Das Forschungskonsortium bestand aus folgenden Unternehmen, Instituten und Hochschulen:

Thyssen-Krupp AG	-	Bereitstellung von Coils und Blechtafeln von hochfesten Stählen
	-	Bereitstellung von ungehärtetem Borstahl
	-	Informationsaustausch über Temperaturen und Fügetechnik
Volkswagen AG	-	Bereitstellung von Aluminiumblech
5	-	Aufhärtung der von TK AG bereitgestellten
		Borstahlblechen und U-Profile in Borstahl
Stereomat	-	aufgrund der Insolvenz wurde ohne Induktor
		begonnen und dann auch ohne weitergemacht
WAG	-	Beizpassivieren der Aluminiumbleche von VW
		mit anschließendem zur Verfügung stellen
	-	Bereitstellung von dickem Aluminiumblech
	-	Bereitstellung von Magnesiumblech
	-	Durchführung der dynamischen und
		statischen Bauteilprüfungen
	-	Aufbau der Demonstratoren

WALDASCHAFF automotive Ein Unternehmen GmbH der KWD Automotive AG & Co KG	esróhesmi vox Bundesministerium für Bildung und Forschung	Abt. WE-T
BIAS	-	Unterauftragnehmer von VW, TK und WAG – Unterstützung mit Strahltechnik, um Werkstoffverhalten zielgenauer zu verstehen. Abtrag der Verzunderung des Borstahls mittels Laser
RUB	-	Untersuchung der Randschichten, um hier mehr Verständnis über die Systeme zu erhalten Erste Zugversuche von Kehlnähte
HS-La	ausitz - -	Abtrag der Verzunderung des Borstahls mittels Strahlen Informationsaustausch über die Fügetechnik

2

2.1 Darstellung der Ergebnisse

2.1.1 AP1 Lastenheft Versuchsplanung

Es erfolgte die Erarbeitung des Lastenheftes sowie die inhaltliche und zeitliche Abstimmung mit den Projektpartnern. In der Abstimmung der unterschiedlichen Arbeitsinhalte wurde beschlossen den Fallturm vorzuziehen, da hier mehr Abstimmungen zu erwarten waren als zuvor geplant.

2.1.2 AP2 Umformsimulation

Aufgebaut wurden FE-Modelle der Rollanlage mit Ober- und Unterrolle für jede Rollstation. Aufgrund der verwendeten Software (PAM-Crash) wurde eine minimale Netzgröße der Schalenelemente von 4mm verwendet. Die dargestellten Ergebnisse zeigen das Rollprofilieren von 1,5mm DP1000 Coils. Die verwendeten Materialdaten wurden anhand von Zugproben validiert.

Zunächst wurde ein Profilstreifen über alle 7 Rollenpaare modelliert, so daß zu Beginn der Rechnung alle Zwischenräume zwischen den Rollstationen mit Material gefüllt ist. Im Verlauf der Rechnung wurde das flache Band mit konstanter Geschwindigkeit in die Rollstationen eingeschoben, wodurch sich nach einem Gesamtdurchlauf von 7*460mm erstmals eine komplett rollprofilierte Profilblume im Bereich der Rollwerkzeuge befindet. Nach weiteren 1000mm Vorschub wurde die Auswertung des Rollprofiles vorgenommen.

Es zeigt sich ein deutliches Aufspringen des U-Profile zu einem Öffnungswinkel der Schenkel von 13°. Der Profilboden zeigt eine ge ringe Überwölbung von ca. 1,25mm. Die plastischen Dehnungen im Radius betragen deutlich über 12%, so daß in weiteren Rechnungen die Versagenswahrscheinlichkeit überprüft werden wird.

Abb. 02: Simulation des Rollfomwerkzeuges

Abb. 03: Simulation der Umformschritte

Abb. 04: Rückfederverhalten

Die Ergebnisse aus den Rollform- und Kantversuchen wurden mit den Ergebnissen der Simulation verglichen und Maßnahmen ergriffen um die Rechenmethodik zu korrelieren.

2.1.3 AP3 Versuchsaufbau Rollformen

Material:

Für die Versuche in Stahl wurden die Materialien DP600, CPW1000, MSW1200 und DOCOL 1400 mit verzinkter Oberfläche verwendet. Für Aluminium wurden Bänder in EN-AW 5083 H24 gewählt. Blechtafeln in den gleichen Güten stehen für die Kantversuche zur Verfügung.

Rollformwerkzeug:

Das Rollformwerkzeug für die Stahlsorten wurde konstruiert und aufgebaut. Erkenntnisse aus der Simulation sind hier in die Konstruktion eingeflossen. Es wurden 7 Rollenpaare, wie in der Rollblume ersichtlich, verwendet.

Rollmaschine:

Das Rollformwerkzeug wurde auf einer Serienrollformmaschine eingefahren. Zusätzlich wurde eine Haspel mit hydraulischen Andrückarm verwendet. Dieser wurde aufgrund der erhöhten Aufspringkraft der Coils erforderlich.

Abb. 05: Profilblume für das Rollprofil

Abt. WE-T

Abb. 06: Konstruktion einer Rolle

Abb. 07: gedrehter Rollensatz

2.1.4 AP4 Umformversuch

2.1.4.1 Rollformen

Ziel der Untersuchung ist es für die unterschiedlichen Materialgüten (DP 600 / CPW 1000 / MSW 1200 / Docol 1400) die Rückfederung der Umformwinkel der Profilschenkel sowie die Bodenwölbung zu ermitteln und diese mit den Simulationsergebnissen zu vergleichen um daraus Rückschlüsse für die Auslegung eines Rollensatzes zu ziehen.

In Bild 01 können Sie das Rückfederverhalten der beiden Schenkel und die Bodenwölbung von DP600 und DP1000 erkennen.

Besonders die Rückfederung der Profilschenkel zeigt eine hohe Korrelation zwischen der Simulation und den Praxisversuchen.

Wie in AP2 beschrieben fand ein Abgleich mit der Simulation statt, um die zukünftigen Ergebnisse aus der Simulation sinnvoll bei der Anfertigung eines Rollensatzes für hochfesten Stahl einfließen zu lassen.

Probe: Rol	Iprofil (U-Profil)
------------	--------------------

- Material: DP 600
- Prüfmerkmal: Ermittlung der Rückfederung der beiden Schenkel [°] Ermittlung der verbleibenden Bodenwölbung [mm]

Durchführung der Messreihe an 10 Bauteilen mit je 5 Messstellen

Bauteil-Nr.:		Messwert M1			
	Α	В	C	D	E
1	90,5	91,0	91,0	91,0	90,5
2	91,5	91,0	91,0	91,0	91,0
3	91,0	90,5	90,5	90,5	91,0
4	91,5	91,0	91,0	90,5	90,5
5	90,5	90,5	90,5	91,0	91,0
6	90,5	91,0	91,5	91,5	91,0
7	90,5	90,5	90,5	90,5	90,5
8	91,0	91,0	91,0	90,5	91,0
9	91,0	91,0	91,0	91,5	91,5
10	91,0	90,5	90,5	90,5	91,0

Messwert M2								
Α	В	С	D	E				
0,12	0,14	0,15	0,13	0,12				
0,12	0,13	0,12	0,10	0,09				
0,11	0,11	0,13	0,14	0,14				
0,07	0,08	0,09	0,11	0,13				
0,11	0,14	0,12	0,12	0,14				
0,13	0,12	0,13	0,11	0,15				
0,13	0,14	0,11	0,12	0,10				
0,13	0,12	0,09	0,10	0,13				
0,12	0,12	0,14	0,15	0,11				
0,11	0,13	0,12	0,14	0,11				

Mittelwert: 90,86°

Mittelwert: 0,12

Vergleichswerte aus der Simulation Winkel: 90,4°

0,72mm

Abb 08: Messprotokoll rollgeformter Bauteile in DP600

- Probe: Rollprofil (U-Profil)
- Material: DP 1000
- Prüfmerkmal: Ermittlung der Rückfederung der beiden Schenkel [°] Ermittlung der verbleibenden Bodenwölbung [mm]

Musterteil

Durchführung der Messreihe an 10 Bauteilen mit je 5 Messstellen

Bauteil-Nr.:		Mes	swei	rt M1	
	Α	В	C	D	Ε
1	94,5	95,0	95,0	95,0	94,5
2	95,0	95,0	94,5	94,0	95,5
3	94,0	94,5	95,5	94,5	94,0
4	94,5	94,0	95,0	95,0	94,5
5	95,5	95,0	95,0	95,0	95,0
6	94,5	95,0	94,5	94,0	95,5
7	94,0	95,0	95,5	95,5	94,5
8	95,5	94,5	94,0	95,0	95,0
9	95,0	95,0	95,0	94,5	95,5
10	95,5	94,5	95,0	95,0	94,5
	Mitt	elwe	rt:	94.	81°

Messwert M2									
Α	В	С	D	Ε					
0,86	0,85	0,86	0,86	0,84					
0,88	0,86	0,85	0,85	0,91					
0,87	0,94	0,86	0,86	0,84					
88,0	0,86	0,87	0,85	0,85					
0,86	0,84	0,86	0,84	0,87					
88,0	0,86	0,86	0,86	0,85					
0,88	0,85	0,97	0,84	0,82					
0,85	0,86	0,88	0,86	0,87					
0,79	0,86	0,88	0,84	0,85					
0,85	0,84	0,86	0,87	0,85					

ttelwert: 0,86

Vergleichswerte aus der Simulation

Winkel: 98,7° 1,58mm

Abb 09: Messprotokoll rollgeformter Bauteile in CPW 1000

Probe:	Rollprofil	(U-Profil)

Material: DP 1200

Prüfmerkmal: Ermittlung der Rückfederung der beiden Schenkel [°] Ermittlung der verbleibenden Bodenwölbung [mm]

Durchführung der Messreihe an 10 Bauteilen mit je 5 Messstellen

Bauteil-Nr.:	Messwert M1				
	Α	В	С	D	Ε
1	97,0	98,0	97,5	97,0	98,0
2	97,0	97,5	97,0	98,5	98,0
3	97,5	98,0	97,0	97,0	98,0
4	97,0	97,0	98,0	97,5	96,5
5	96,5	98.0	97.0	97.0	98,5
6	97,5	97,5	97,0	97,5	96,5
7	98,5	97,0	98,0	97,5	97,0
8	97,0	98,0	97,0	97,5	98,0
9	96,5	97,0	97,0	97,5	98,5
10	97,0	97,5	97,0	98,0	97,0

Mittelwert:

Messwert M2								
Α	В	С	D	Ε				
0,85	0,86	0,84	0,86	0,87				
0,85	0,85	0,87	0,85	0,86				
0,84	0,92	0,85	0,85	0,86				
0,85	0,85	0,85	0,86	0,87				
0,87	0,84	0,86	0,94	0,84				
0,85	0,86	0,85	0,85	0,87				
0,84	0,82	0,85	0,86	0,84				
0,87	0,86	0,86	0,85	0,80				
0,85	0,84	0,85	0,87	0,84				
0,85	0,85	0,81	0,86	0,86				

Mittelwert: 0,85

97,41°

1,48

Abb 10: Messprotokoll rollgeformter Bauteile in MSW 1200

Material: DP 1400

Prüfmerkmal: Ermittlung der Rückfederung der beiden Schenkel [°] Ermittlung der verbleibenden Bodenwölbung [mm]

Simulation

Durchführung der Messreihe an 10 Bauteilen mit je 5 Messstellen

Bauteil-Nr.:	Messwert M1						
	A	В	С	D	Ε		
1	101,0	102,0	100,0	102,0	101,5		
2	103,0	102,0	101,0	101,5	101,0		
3	103,5	100,5	103,0	100,0	102,0		
4	101,0	100,0	101,5	103,0	103,0		
5	103,0	102,0	102,0	101,0	100,0		
6	100,0	101,5	102,5	102,0	103,0		
7	103,5	101,0	101,5	103,0	103,5		
8	103,0	100,0	102,0	101,0	100,0		
9	101,5	102,0	101,5	102,0	102,0		
10	103,5	101,0	100,0	103,0	101,0		

Messwert M2								
Α	В	С	D	E				
0,96	1,04	1,02	1,04	1,06				
1,04	1,05	1,13	1,05	1,02				
1,13	1,06	1,09	1,00	1,15				
1,05	1,04	1,16	1,04	1,06				
1,09	1,05	1,13	1,05	0,97				
1,02	1,00	1,06	0,97	1,04				
1,04	0,95	0,97	1,05	1,09				
1,09	1,02	1,04	1,13	1,02				
0,96	1,06	1,05	1,00	1,04				
1,05	0,96	1,04	1,06	1,13				

Mittelwert: 101,71°

Mittelwert: 1,05

1,54mm

Abb. 11: Messprotokoll rollgeformter Bauteile in Docol 1400

Abb. 12: Vergleich Rückfederung der Materialien Simulation zu Realrollformversuch

Zusammengefasst in einem Graphen erkennt man, den Unterschied Realversuch zu Simulation. Bei dem relativ weichen DP600 hat die Simulation noch gepasst. Bei höherfesteren Stählen muß eine Anpassung erfolgen.

2.1.4.2 Abkanten

Beim Abkanten wurde die Kantbank bei DP600 auf 90° eingestellt. Die anderen Materialien CPW 1000, MSW 1200, DP 1400 wurden mit der gleichen Maschineneinstellung gefahren. Als Ergebnis gab es hier ein unterschiedliches Rückfederverhalten, das ähnlich wie beim Rollformen ist.

In einer weiteren Versuchsreihe wurde der Mindestbiegeradius ermittelt, bei dem das Material nicht aufreißt.

Wie in AP2 beschrieben fand ein Abgleich mit der Simulation statt, um die zukünftigen Ergebnisse aus der Simulation sinnvoll bei der Anfertigung von Kantteilen einfließen zu lassen.

		Rů	ickfederverhalten Rückfederverhalten					Rückfederverhalten		
	Kantwerkzeug auf 90° fahren, um Kantwerkzeug a Rückfederverhalten zu prüfen Rückfederverh R8 F					eug auf 90° erverhalten z R8	fahren, um tu prüfen	<u>Ergebnis</u> <u>Kanten</u>	Ergebnis Simulatio	
		T	eile [HH:MM:SS]		1	Teile [*]		Teile [°]	Teile [°]	
Material	Stärke	1	2	3	1	2	3	Mittelwert	Mittelwert	
DP-K 600	1,5mm	90:00:00	90:05:00	90:10:00	90,00	90,08	90,17	90,08	90,50	
DP-W 1000	1,5mm	95:30:00	95:35:00	95:40:00	95,50	95,58	95,67	95,58	90,80	
MSW 1200	1.5mm	99:45:00	100:00:00	99:30:00	99,75	100,00	99,50	99,75	91,00	
DP 1400	1,5mm	103:10:00	103:30:00	104:10:00	103,17	103,50	104,17	103,61	92,00	
Bauteili Biegewinkel a	änge m Fertigteil	350mm Referenz DP600, Rest wie sich ergibt	350mm Referenz DP600, Rest wie sich ergibt	350mm Referenz DP600, Rest wie sich ergibt						

Versuchsreihe 1:	In der Versuchsreihe 1, wird in einem ersten Schritt die Kantbank mit dem Radius R8 und dem Materia DP600 auf den Entwinkel 90° gebogen. Anschließend werden die Werkstoffe MSW1000, MSW1200, DP1400 mit den <u>unveränderten</u> Winkeleinstellungen des DP600 gebogen. Hierbei wird nach der Biegung das Rückfederverhalten des jeweiligen Materials gemessen. Es werden pro Material dreil Teile mit den Einstellung des DP600 gebogen und gemessen um einen Mittelwert zu erhalten.
------------------	---

Abb. 13: Rückfederverhalten beim Kanten

Radius R7.5 R1 R1 R4+R5 **R6**

	Ergebniss					
Bauteile mit						
90° Winkel	90° und kleinst					
kanten, mit	noch					
Innenradius	Innenradius	Innenradius	Innenradius	Innenradius	Innenradius	möglichem
R6	R5	R4	R3	R2	R1	Radius kanten

Material	Stärke	Teile			
EN-AW 5083 H24	3.0 mm				
DP-K 600	1,5mm				
DP-W 1000	1,5mm				
MSW 1200	1.5mm				
DP 1400	1,5mm				

Bauteillänge	350mm	350mm	350mm	350mm	350mm	350mm	2000mm
Biegewinkel am Fertigteil	90°	90°	90°	90°	90°	90°	90°

Material gerissen Biegung erfolgreich

eminiete

Bundesministe für Bildung und Forschung

In der Versuchreihe 3 soll getestet werden, bis zu welchem Radius das Material gebogen werden kann, bevor erste Risse in der Biegekante entstehen.

Hierzu werden die Proben beginnend mit dem Radius R6 auf den Entwinkel 90° gebogen.

Bei erfolgreicher Biegung, wird das Material mit dem nächst kleineren Biegeradius gebogen.

Diese Reihenfolge wird eingehalten bis erste Risse im Material zu sehen sind.

Sind Risse entstanden ist die Versuchsreihe 3 für dieses Material beendet.

Sobald alle noch biegbaren Radien für die jeweiligen Materialien ermittelt sind, wird mit diesem Radius pro Material 10 Proben auf 90° Entwinkel und 2000mm Länge gebogen

Diese werden für spätere Versuche im Haus Waldaschaff Automotive verwendet

Abb 14: Ermittlung des Mindestbiegeradius beim Kanten

2.1.5 AP5 Versuchsdurchführung Fügen

Mittels einer reinen Kehlnaht und einer Kehlnaht am Überlappstoß wurden diverse Stähle mit Aluminium und Magnesium verbunden. Zum Einsatz kamen hier DP600, CPW1000, MSW1200 und Docol1400 für verzinkten Stahl und Borstahl 22MnB5 mit der Beschichtung AlSi. Als Fügepartner wurden EN AW-AIMg0,4Si1,2 und EN MW-MgAl3Zn1 gewählt. In Vorversuchen wurde der Lötzusatz ZnAl15 eingesetzt. Hierbei wurde mit einer abgewandelten Schweißkennlinie ZnAl15 cmt-gelötet. Anschließend wurden die artgleichen Lötzusätze EN AW-AlSi3Mn und EN MW-Al3Zn1 verwendet. Bei den Mischverbindungen wurde stets darauf geachtet, dass der Stahl unten und das Leichtmetall oben ist. Brenner war im 45°W inkel etwas mehr auf das Aluminium gerichtet. Um die geeignete Position des Bauteils zum Brenner zu gewährleisten wurde die Vorrichtung gedreht, so dass die Kehlnaht in Wannenlage geschweißt werden konnte.

Abb. 15: reine Kehlnaht

Abb. 16: Kehlnaht am Überlappstoß

Nach den Lötversuchen wurden Proben aus den Versuchsteilen entnommen um damit Zugversuche durchzuführen. Für die Kehlnähte wurde eine spezielle Adaption gebaut, damit der Zug rein auf die Schweißnaht wirkt. Ferner wurden Versuchsteile einem reinen statischen 3-Punkt-Biegeversuch unterworfen. Abschließend wurden weitere Versuchsteile unter dem Fallturm dynamisch getestet, um hier Unterschiede zwischen der statischen und dynamischen Beanspruchung herauszufinden. Die Lötversuche wurden mit Kantteilen durchgeführt, da in Vorversuchen bei den Rollformteilen eine prozessbedingte Beschädigung der Zinkschicht festgestellt wurde. Im Serienfall ist hier besonders darauf zu achten.

Abb. 17: Zugproben für Kehlnaht und Kehlnaht am Überlappstoß

Abb 18: Zugversuchsadaption für Kehlnähte

Abb 19: 3-Punkt-Biegeversuch - statisch

2.1.5.1 Artgleiche Verbindung DX56+Z – DX56+Z 0,5mm

Zn-Basis-Lote sind für das Fügen dieser Blechdicken-Kombination besonders geeignet. Es werden Kehlnähte am Überlappstoß und Bördelnähte hergestellt. Die Verbindungen können ausreichend sicher mit dem Zusatzwerkstoff ZnAl4 gelötet werden. Der 1,0 mm dicke Draht kommt hierbei zur Anwendung. Lötungen in der Position PA sind reproduzierbar herstellbar. Als Schutzgas bietet sich Ar an. Bei den Überlappverbindungen ist ein Spalt zwischen den Blechen von 0,2 mm vorteilhaft.

Bei einer Lötgeschwindigkeit von 8 mm/s ist im ILB eine Drahtgeschwindigkeit von 4,5 m/min einzustellen.

Die Zugversuche verdeutlichen, dass dieser Werkstoff unter den Bedingungen des Pulsprozesses sicher zu löten ist. Es sind mittlere Festigkeiten von R_m =270 N/mm² ermittelt worden.

Abb 20: Zugversuch an gelöteten Proben

Es ist eine mittlere Scherzugfestigkeit von $R_m=288$ N/mm² ermittelt worden. Die Bruchdehnungen liegen bei ca. 35%.

Das dargestellte Makroschliffbild in Bild 5-3-4 zeigt eine gute Anbindung des Lotwerkstoffes an den Grundwerkstoff und die damit verbundene sehr gute Spaltfüllung. Die erzielte große Anbindungsfläche zum Grundwerkstoff wirkt sich positiv auf die Verbindungsfestigkeit aus. Es sind keine Poren in der Lötung festzustellen.

Abb. 21: Makroschliff der Verbindung DX56D+Z; ZnAl4

2.1.5.2 Mischverbindungen - verzinkter Stahl mit Aluminium

...

Nahtform:	Kehlnaht am Uberlappstoß in PA						
Material:	DP-K600, CPW1000, MS	W1200, DP1500 in 1,5mm					
	EN AW-AIMg0,41Si1,2 in	1,5mm					
Lötzusatz:	SG-AlSi3Mn 1,2mm						
Stromquelle:	Fronius CMT 4000						
Schweißgas	: Argon 4.6						
Parameter:	Schweißgeschwindigkeit	6mm/s					
	Drahtvorschub	3,9m/min					
	Lichtbogenkorrektur	0%					
	Stromstärke	66A					
	Spannung	11,8V					

Ergebnisse:

Nr	L0 mm	Fmax N	F _{Bruch}	ε-Bruch %	ε-F max %
1	25,02	2976	1323	9,96	8,31
2	25,01	3340	2395	9,64	9,01
3	25,02	2990	2983	8,64	8,60
4	25,02	2166	2166	5,67	5,67

Seriengrafik:

Abb. 22: Zugversuch Kehlnaht am Überlappstoß CPW1000 mit EN AW-AlMg0,4Si1,2

Die Lötversuche an einer Kehlnaht am Überlappstoß haben sich als sehr konstant erwiesen. Fügepartner Aluminium war stets oben. Nähte größer 60mm waren schwierig aufgrund der Temperaturverteilung herzustellen. Zugproben versagten zum Teil im Grundwerkstoff.

Die geringere Zinkschichtdicke am DP600 hat sich hier als hinderlich erwiesen. Zugversuch war gleichfalls sehr konstant. Eine Zinkschichtdicke größer 12µm, besser größer 15µm ist anzustreben. 3-Punkt-Biegeversuch war für diese Konstellation nicht anwendbar.

Nahtform:	Kehlnaht in PA					
Material:	DP-K600, CPW1000, MS\	N1200, DP1500 in 1,5mm				
	EN AW-AIMg0,41Si1,2 in	1,5mm				
Lötzusatz:	SG-AlSi3Mn 1,2mm					
Stromquelle:	Fronius CMT 4000					
Schweißgas:	Argon 4.6					
Parameter:	Schweißgeschwindigkeit	6mm/s				
	Drahtvorschub	3,2m/min				
	Lichtbogenkorrektur	-20%				
	Stromstärke	65A				
	Spannung	14,5V				

Ergebnisse:

Nr	a0 mm	b0 mm	L0 mm	Fmax N	FBruch N	ε-Bruch %	ε-F max %
1	0,46	20	58,26	2761	2609	4,17	3,94
2	0,46	20	58,35	2830	2523	3,76	3,47
3	0,46	20	58,42	2561	2111	4,20	3,88
4	0,46	20	58,52	2526	2110	3,99	3,69
5	0,46	20	58,31	2657	2650	4,20	4,17
6	0,46	20	58,39	2546	2475	4,02	3,98
7	0,46	20	58,53	2850	2835	5,02	5,00
8	0,46	20	58,26	2969	2962	4,79	4,77
9	0,46	20	58,16	3140	3045	5,27	5,21
10	0,46	20	58,52	2815	2673	4,14	4,08
11	0,46	20	58,52	2514	2226	3,99	3,85
12	0,46	20	58,42	2312	2312	2,98	2,98
13	0,46	20	58,50	2236	2236	2,74	2,74

Seriengrafik:

Abb. 23: Zugversuch Kehlnaht verzinkter Stahl mit Aluminium

Abt. WE-T

Ergebnisse:

Nr	Datum	ID	Fm kN	W _{end} Nm
1	06.02.2014	DP1400	59,91	1203,65
2	07.02.2014	DP1200	60,80	1817,00
3	07.02.2014	DP1000 Blech unten	64,36	1802,83
4	07.02.2014	DP1000	57,02	1779,06
5	07.02.2014	DP600	29,65	593,04

Seriengrafik:

Abb. 24: 3-Punkt-Biegeversuch Kehlnaht verzinkter Stahl mit Aluminium

Das Prozessfenster für eine reine Kehlnaht im Mischbau verzinkten Stahl mit Aluminium ist deutlich eingeschränkter als bei einer Kehlnaht am Überlappstoß. Wir haben hier mit Pendelbewegungen am Brenner gearbeitet, um die Wärme besser verteilen zu können. Gleichzeitig wurden Start- und Endpunkt der Nähte auf das Aluminium gelegt. Nähte größer 60mm waren schwierig herzustellen. Die Benetzung der Zinkoberfläche des Stahls konnte nur in einem engen Prozeßfenster sichergestellt werden.

2.1.5.3 Mischverbindungen - verzinkter Stahl mit Magnesium

Nahtform:	Kehlnaht am Uberlappstoß in PA				
Material:	CPW1000 in 1,5mm				
	EN AW-MgAl3Zn1 in 1,5m	าฑ			
Lötzusatz:	SG-MgAl3Zn1 1,2mm				
Stromquelle:	Fronius CMT 4000				
Schweißgas	: ArHe30				
Parameter:	Schweißgeschwindigkeit	6mm/s			
	Drahtvorschub	5,3m/min			
	Lichtbogenkorrektur	0%			
	Stromstärke	59A			
	Spannung	10,7V			

Ergebnisse:

Nr	L0 mm	Fmax N	F _{Bruch}	ε-Bruch %	ε-F max %
1	25,01	3561	1310	11,91	10,17
2	25,02	2982	2953	7,84	7,75
3	25,01	3650	2639	11,07	10,49
4	25,08	2916	2866	9,36	9,27

Seriengrafik:

Abb. 25: Zugversuch Kehlnaht am Überlappstoß CPW1000 mit EN MW-MgAl3Zn1

Die Lötversuche an einer Kehlnaht am Überlappstoß verzinkter Stahl mit Magnesium waren erfolgreich. Fügepartner Magnesium war stets oben. Nähte größer 60mm waren auch hier schwierig herzustellen. Zugproben versagten zum Teil im Grundwerkstoff. Das Magnesium "lief" besser, das heißt die Benetzung am Stahl war besser.

Aufgrund der Zinkdicke und dem konstanten Verhalten der Stähle mit unterschiedlichen Festigkeiten, wurde in den Versuchen der CPW-1000 verwendet. Zugversuchsergebnisse waren gleichfalls sehr konstant. 3-Punkt-Biegeversuch war für diese Konstellation wiederum nicht anwendbar.

Nahtform: Material:	Kehlnaht in PA CPW1000 in 1,5mm			
	EN AW-MgAl3Zn1 in 1,5n	nm		
Lötzusatz:	SG-MgAl3Zn1 1,2mm			
Stromquelle	Fronius CMT 4000			
Schweißgas	: ArHe30			
Parameter:	Schweißgeschwindigkeit	6mm/s		
	Drahtvorschub	6,9m/min		
	Lichtbogenkorrektur	0%		
	Stromstärke	61A		
	Spannung	10,1V		

Ergebnisse:

für Bildung und Forschung

	Nr	L0 mm	Fmax N	F _{Bruch}	ε-Bruch %	ε-F max %
1	1	25,02	1681	1681	4,49	4,49
1	2	25,02	1739	1739	4,41	4,41
1	3	25,02	1839	1839	4,86	4,86
1	4	25.03	2119	1065	9.01	6.17

Seriengrafik:

Abb. 26: Zugversuch Kehlnaht verzinkter Stahl (CPW-1000) mit Magnesium

Ergebnisse:

Nr	Datum	ID	Fm kN	W _{end} Nm
1	07.02.2014	CPW-1000 / Mg	57,21	1811,77
2	07.02.2014	CPW-1000 / Mg	55,07	1804,26
3	07.02.2014	CPW-1000 / Mg	57,02	1779,06
4	07.02.2014	CPW-1000 / Mg	55,32	1671,25

Seriengrafik:

Bild 26: 3-Punkt-Biegeversuch Kehlnaht verzinkter Stahl (CPW-1000) mit Magnesium

Die Lötversuche an einer Kehlnaht verzinkter Stahl mit Magnesium waren erfolgreich. Fügepartner Magnesium war stets oben. Nähte größer 60mm waren auch hier schwierig herzustellen. Aufgrund der Zinkdicke und dem konstanten Verhalten der Stähle mit unterschiedlichen Festigkeiten, wurde in den Versuchen der CPW-1000 verwendet. Zugversuchsergebnisse waren gleichfalls sehr konstant.

2.1.5.4 Mischverbindungen - Borstahl mit Aluminium

Beim Borstahl wurden Vorversuche mit verzundertem Material durchgeführt, die mit äußerst schlechtem Ergebnis abgeschlossen wurden. Danach wurden die Versuche mit gestrahltem Borstahl durchgeführt. Strahlbehandlung wurde durch BTU Cottbus mit Strahlgeschwindigkeit 800mm/min bei einem Strahldruck von 8,5 bar durchgeführt. Als Strahlgut wurde von der BTU AlZrO (F80) verwendet. Anschließend wurden die Lötbereiche des Borstahls mit dem Flussmittel Al-Flux 028 Cs/D der Firma Flux GmbH benetzt. Durch die Verwendung des Flussmittels gab es erhöhte Porosität innerhalb der Lötnaht. Kehlnähte wurden gleichfalls in Wannenlage geschweißt. Pendelbewegung des Brenners wurde beibehalten, um eine größere Benetzung zu erreichen. Fügepartner Aluminium war stets oben.

Nahtform:	Kehlnaht am Überlappstoß in PA
Material:	22MnB5 in 1,5mm
	EN AW-AIMg0,41Si1,2 in 1,5mm
Lötzusatz:	SG-AISi3Mn 1,2mm
Stromquelle:	Fronius CMT 4000
Schweißgas:	Argon 4.6
Parameter [.]	Schweißgeschwindigkeit 6mm/s

Parameter:	Schweißgeschwindigkeit	6mm/s
	Drahtvorschub	3,2m/min
	Lichtbogenkorrektur	-20%
	Stromstärke	65A
	Spannung	14,5V

Bundesministerium für Bildung und Forschung

Ergebnisse:

Nr	L0 mm	Fmax N	FBruch N	ε-Bruch %	ε-F max %
1	40,02	861	861	0,27	0,27
2	40,02	1861	1819	4,36	4,15
3	40,02	1098	1098	0,71	0,71
4	38,03	1182	1182	4,00	4,00
5	38,02	2387	2179	13,64	12,41
6	38,03	840	840	3,34	3,34
7	38,02	1069	1069	2,70	2,70
8	38,02	1630	1455	5,86	5,76
9	38,02	888	888	1,34	1,34
10	38,01	2583	2252	19,34	17,17
11	38,02	1176	1176	2,15	2,15
12	38,02	1982	1982	5,14	5,14
13	38,02	2033	2033	4,83	4,83

Seriengrafik:

Abb 28: Zugversuch Kehlnaht am Überlappstoß Borstahl mit Aluminium

Die Lötversuche an einer Kehlnaht am Überlappstoß variierten beträchtlich. Dies kann man an den Ergebnissen des Zugversuchs erkennen. Zugproben versagten zum Teil im Grundwerkstoff. Zum Teil war keine richtige Haftung der Lötnaht am Borstahl feststellbar.

Dies ist wahrscheinlich an der wenig konstanten Oberfläche des Borstahls festzumachen. Variationen aus dem Strahlen gingen hier zusätzlich ein. 3-Punkt-Biegeversuch war für diese Konstellation nicht anwendbar.

Nahtform:	Kehlnaht in PA
Material:	22MnB5 in 1,5mm
	EN AW-AIMg0,41Si1,2 in 1,5mm
Lötzusatz:	SG-AISi3Mn 1,2mm
Stromquelle:	Fronius CMT 4000
Schweißgas:	Argon 4.6

Parameter:	Schweißgeschwindigkeit	6mm/s
	Drahtvorschub	4,2m/min
	Lichtbogenkorrektur	-20%
	Stromstärke	92A
	Spannung	15,9V

Ergebnisse:

Nr	L0 mm	Fmax N	FBruch N	ε-Bruch %	ε-F max %
1	50,04	892	892	1,04	1,04
2	50,04	1474	1474	2,12	2,12
3	50,05	1505	1505	1,94	1,94
4	50,05	815	815	0,97	0,97
5	52,04	1179	1172	2,28	2,25
6	52,03	1949	1912	3,43	3,39
7	52,03	1626	1605	1,75	1,73
8	52,03	1777	1777	2,60	2,60
9	52,03	1020	1020	0,91	0,91
10	52,03	1128	1128	1,10	1,10
11	51,03	2109	2030	4,38	4,33
12	51,03	1531	1531	2,06	2,06
13	51,03	1465	1465	1,98	1,98
14	51,03	1471	1471	2,05	2,05

Seriengrafik:

Abb 29: Zugversuch Kehlnaht Borstahl mit Aluminium

Ergebnisse:

Nr	Datum	ID	Fm kN	W _{end} Nm
1	07.02.2014	Bor / Al	29,65	593,04
2	07.02.2014	Bor / Al	21,53	508,34
3	07.02.2014	Bor / Al	31,09	752,21
4	07.02.2014	Bor / Al	33,63	763,33

Abb. 30: 3-Punkt-Biegeversuch Kehlnaht Borstahl mit Aluminium

Die Lötversuche an einer Kehlnaht variierten auch hier beträchtlich. Anhand den Ergebnissen des Zugversuchs ist dies zu erkennen. Zum Teil war keine richtige Haftung der Lötnaht am Borstahl feststellbar. Dies ist wahrscheinlich an der wenig konstanten Oberfläche des Borstahls festzumachen. Variationen aus dem Strahlen gingen hier zusätzlich ein. Ein stellenweise "Tänzeln" des Lichtbogens konnte beobachtet werden. Der 3-Punkt-Biegeversuch weist eine gute Gleichmäßigkeit auf.

2.1.5.5 Mischverbindungen - Borstahl mit Magnesium

Nahtform:	Kehlnaht am Überlappstoß in PA		
Material:	22MnB5 in 1,5mm		
	EN AW-MgAl3Zn1 in 1,5m	nm	
Lötzusatz:	SG-MgAl3Zn1 1,2mm		
Stromquelle:	Fronius CMT 4000		
Schweißgas	: ArHe30		
Parameter:	Schweißgeschwindigkeit	6mm/s	
	Drahtvorschub	10,5m/min	
	Lichtbogenkorrektur	0%	
	Stromstärke	107A	
	Spannung	12,1V	

Ergebnisse:

Nr	L0 mm	Fmax N	FBruch N	ε-Bruch %	ε-F max %
1	25,01	3291	3215	11,00	10,88
2	25,01	4678	935	21,31	17,80
3	25,02	2110	2107	8,34	8,28
4	25,02	4294	3944	17,24	16,43
5	25,08	901	901	3,65	3,65
6	25,03	2391	1744	12,48	11,34
7	25,02	2853	2566	10,79	9,96
8	25,03	3761	3574	13,34	12,90
9	25,03	1324	736	13,50	8,82
10	25,16	1223	613	9,22	5,18
11	25,15	3709	2392	14,72	13,52
12	25,12	2378	2178	9,53	9,01
13	25,46	1194	1189	7,22	7,08
14	25,22	3039	2380	11,41	10,26
15	25,39	3039	2959	10,46	10,31
16	25,02	3505	3503	11,47	11,43
17	25,15	3699	3331	12,69	12,39
18	25,01	464	296	5,24	2,85

Seriengrafik:

Die Lötversuche an einer Kehlnaht am Überlappstoß variierten auch mit Magnesium beträchtlich. Dies kann man an den Ergebnissen des Zugversuchs erkennen. Zugproben versagten zum Teil im Grundwerkstoff. Zum Teil war keine richtige Haftung der Lötnaht am Borstahl feststellbar. Dies ist wahrscheinlich an der wenig konstanten Oberfläche des Borstahls festzumachen. Variationen aus dem Strahlen gingen hier zusätzlich ein.

3-Punkt-Biegeversuch war für diese Konstellation nicht anwendbar.
 Nahtform: Kehlnaht in PA
 Material: 22MnB5 in 1,5mm
 EN AW-MgAl3Zn1 in 1,5mm
 Lötzusatz: SG-MgAl3Zn1 1,2mm
 Stromquelle: Fronius CMT 4000
 Schweißgas: ArHe30

Parameter:	Schweißgeschwindigkeit	6mm/s
	Drahtvorschub	8,0m/min
	Lichtbogenkorrektur	0%
	Stromstärke	87A
	Spannung	11,3 V

Ergebnisse:

Nr	L0 mm	Fmax N	F _{Bruch}	ε-Bruch %	ε-F max %
1	55,21	1830	1818	3,80	3,78
2	55,35	2181	2120	5,05	4,94
3	55,31	2088	2062	4,61	4,43
4	55,43	1400	1395	2,95	2,84
5	55,17	1066	1066	2,44	2,44
6	55,40	756	756	2,09	2,09
7	55,36	1875	1874	4,03	4,01
8	55,84	776	748	3,50	3,39
9	55,19	1683	1683	3,38	3,38
10	55,37	1820	1793	4,52	4,43
11	55,88	952	952	2,50	2,50
12	55,69	1206	1194	2,23	2,22
13	55,67	2015	1991	2,99	2,95
14	55,58	737	719	1,70	1,65

Seriengrafik:

Abb. 32: Zugversuch Kehlnaht Borstahl mit Magnesium

Ergebnisse:

Abb. 33: 3-Punkt-Biegeversuch Kehlnaht Borstahl mit Magnesium

Die Lötversuche an einer Kehlnaht variierten auch hier beträchtlich. Anhand den Ergebnissen des Zugversuchs ist dies zu erkennen. Zum Teil war keine richtige Haftung der Lötnaht am Borstahl feststellbar. Dies ist wahrscheinlich an der wenig konstanten Oberfläche des Borstahls festzumachen. Variationen aus dem Strahlen gingen hier zusätzlich ein. Ein stellenweise "Tänzeln" des Lichtbogens konnte beobachtet werden. Der 3-Punkt-Biegeversuch weist eine gute Gleichmäßigkeit auf.

2.1.6 AP6 Funktionsmuster

Mittels Zugproben und 3-Punkt-Biegeprüfkörper wurden die Schweißnähten in Form von Kehlnaht am Überlappstoß und reine Kehlnähte qualifiziert. Dies geschah rein unter statischer Belastung.

Um hier gleichfalls einen Vergleich mit dynamischer Belastung zu erhalten, wurde ein Fallturm konzeptioniert, entwickelt und gebaut. Hier wurden 3-Punkt-Biegeprüfkörper und zusammengeschweißte Crash-Management-Systeme dynamisch geprüft. Für die Crash-Management-Systeme wurden spezielle Aufnahmeplatten mit Drucksensoren gebaut, damit hier die Kraftaufnehmern dokumentiert werden konnten. Die von VW zur Verfügung gestellten Proben in Borstahl haben eine Länge von 400mm. Dadurch sind sie für den Aufbau als Crashmanagementsystem für den Fallturm zu kurz. Es wurde eine Sondervorrichtung entwickelt, um die kurzen Stücke zu prüfen.

2.1.6.1 Wirkweise Fallturm

Der Fallturm besteht im Wesentlichen aus einem an vier Säulen geführten Schlitten, der mittels einer Seilwinde in verschiedenen Höhen positioniert werden kann. An diesem Fallschlitten können je nach Lastfall unterschiedliche Barrieren montiert werden. Das Gewicht des Schlittens lässt sich mittels Stahlgewichten an den jeweiligen Versuch anpassen. Das Fallgewicht wird nach unten hin durch das Eigengewicht des Schlittens inklusive der leichtesten Barriere auf 680 kg begrenzt. Die obere Grenze liegt bei 1500kg und wird derzeit durch die zulässige Tragkraft der Seilwinde vorgegeben. Aus der maximalen Fallhöhe von 1,5 m ergibt sich eine maximale Auftreffgeschwindigkeit von 5,43 m/s.

Die während des Versuchs auftretenden Kräfte werden durch zwei Kraftaufnehmer gemessen, wobei diese vorzugsweise auf der Grundplatte oder aber direkt zwischen Barriere und Schlitten montiert werden können. Zur vereinfachten Montage und zur gezielten Krafteileitung sind die Kraftaufnehmer in entsprechenden Messwippen platziert.

Abt. WE-T

Abb. 34: Kraftaufnehmer in Messwippe

Die Bewegungen des Schlittens werden mittels eines Fadenpotentiometers erfasst. Zusammen mit der vom DAS (Data Aquisition System) aufgezeichneten Zeit, kann der Geschwindigkeitsverlauf des Schlittens ermittelt werden.

Abbildung 35: Fadenpotentiometer

Kraftmessung:

Wie bereits erwähnt erfolgt die Kraftmessung durch zwei Kraftaufnehmer mit einer Nennkraft von jeweils 200kN. Das Signal der jeweiligen Kraftmessdose wird zunächst einem analogen Messverstärker zugeführt. Dieser hat in erster Linie, die Aufgabe das Nutzsignal zu verstärken und Störsignale auszufiltern. Außerdem liefert er die benötigte Speisespannung für die Kraftaufnehmer von 10V.

Wegmessung:

Das Seilzug- oder Fadenpotentiometer zur Wegmessung ist als Spannungsteiler verschaltet und wird über ein externes Netzteil mit 10V Speisespannung versorgt. Durch das Aus- bzw. Einziehen des Seils, verändert sich das Verhältnis der beiden Teilwiderstände des Spannungsteilers und dementsprechend auch die am Schleifer abfallende Spannung. Diese wird letztendlich als Nutzsignal abgegriffen. Da die Spannungsänderung pro Wegdifferenz groß genug ist um vom DAS erfasst werden zu können, bedarf es an dieser Stelle keine vorherige Verstärkung des Signals.

Zeitmessung:

Die Zeitmessung ergibt sich aus den Intervallen der Messwertabtastung. Jeder Kanal wird mit 8,3 kS/s (Kilosamples per second) abgetastet. Daraus ergeben sich einzelne Zeitschritte zwischen den Messwerten von 0,00012 ms eines Kanals. Somit kann jedem Messwert eindeutig eine Zeit zugeordnet werden bzw. die zeitlich Differenz zwischen zwei entsprechenden Werten.

Datenerfassung:

Filtertyp	Tiefpassfilter (Bessel 2.Ordnung)
Filterfrequenz	5 kHz
Abstastrate	8,3 kS/s (pro Kanäle) , 25kS/s (alle Kanäle)
Bildaufnahmerate	833 fps
Aufnahmedauer	955 frames = 1,146 s

Abbildung 36 : schematische Darstellung der Messkette

Abbildung 37: Fallturm

Abbildung 38: schematische Skizze

Technische Daten			
max. Fallhöhe	1,5 m		
max. Fallgewicht	1500 kg		
max. Auftreffgeschwindigkeit	5,43 m/s		
max. zulässige Kraftaufnahme	(2x) 200kN		

Mittels realen Crashversuchen mit Rollwagen fand ein Abgleich der Ergebnisse statt. Dies führte zum Austausch geeigneterer Kraftaufnehmern und zur Überarbeitung des Messverstärkers. Ferner wurde aufgrund dieser Erkenntnissen das Fundament verstärkt.

Nach Abschluß aller Optimierungsmaßnahmen korrelieren die Ergebnisse des Fallturms mit den ergebnissen der Simulation und der Rollwagen Crashtests bei AZT, RCAR und Pendel-Versuchen.

2.1.6.2 Aufbau der Crashteile

Verzinkter Stahl:

Beim hochfesten verzinkten Stahl war dies einfach, da die Einzelteile in entsprechender Länge verfügbar waren. Mittels Kehlnaht wurde das Deckblech an da U-Profil gefügt. Crashboxen in Aluminium wurden modifiziert, damit das U-Profil umschlossen werden kann, um hier mittels Kehlnähte am Überlappstoß zu fügen.

Bild 39: Versuchsteil verzinkter Stahl mit Aluminium / Magnesium

Borstahl:

Beim Borstahl war der Aufbau von Crashteilen aufgrund der begrenzten Länge von 400mm nicht möglich. Daher wurde hier der dynamische 3-Punkt-Biegeversuch gewählt. Ein reines U-Profil in Borstahl wurde mit einem Deckblech aus Aluminium / Magnesium mittels reinen Kehlnähten gefügt. Als Projektabschluß wurde ein Demonstrator aus 3 gefügten Borstahl-Profilen von Hand zusammengeschweißt. Crashboxen in Aluminium wurden modifiziert und mit dem Roboter mittels Kehlnähten am Überlappstoß mit dem Borstahl verbunden.

Abt. WE-T

Bild 40: Demonstrator Borstahl mit Aluminium

2.1.6.3 Dynamischer Fallturmversuch

Borstahl:

	Aluminium	Aluminium	Magnesium	Magnesium
Fallhöhe	250 mm	150 mm	150 mm	150 mm
Fallgewicht	680 kg	680 kg	680 kg	680 kg
max. Eindringung	90 mm	93 mm	104 mm	70 mm
eingebrachte Energie	2,3 kJ	1,6 kJ	1,7 kJ	1,5 kJ
max. Kraft:	62,6 kN	65,2 kN	50,4 kN	32,1 kN
Auftreffgeschwindigkeit	2,21 m/s	1,72 m/s	1,72 m/s	1,72 m/s

Bild 41: Fallturm – dynamischer 3-Punkt-Biegeversuch Kehlnaht Borstahl mit Aluminium / Magnesium

Verzinkter Stahl (CPW-1000):

	Aluminium	Aluminium	Magnesium
Fallhöhe	300 mm	200 mm	200 mm
Fallgewicht	950 kg	950 kg	950 kg
max. Eindringung	90 mm	70 mm	104 mm
eingebrachte Energie	3,6 kJ	2,8 kJ	2,5 kJ
max. Kraft:	23,7 kN	17,0 kN	17,4 kN
Auftreffgeschwindigkeit	2,43 m/s	1,98 m/s	1,98 m/s

Bild 42: dynamischer Fallturm-Test - Crashmanagementsystem mit Kehlnaht Borstahl mit Aluminium / Magnesium

2.1.7 Zusammenfassung

Kaltumformung von hochfesten, verzinkten Stählen ist mit gewissen Umformradien sehr gut möglich. Borstahl im weichen Zustand rollformen würde funktionieren, so dass im anschließenden Prozess jedoch die Wärmebehandlung anstehen würde. Aus kaufmännischer Sicht macht das keinen Sinn. Den Borstahl bereits vergütet einzukaufen und dann zu rollformen ist deutlich teurer als auf einen hochfesten, verzinkten Stahl mit gleichen technologischen Eigenschaften zu gehen.

Beim Fügen kann man generell sagen, dass Kehlnähte am Überlappstoß wiederholgenauer waren. Prinzipiell war der Lichtbogen in reinen Kehlnähten weniger stabil und ließ sich leichter ablenken.

Die Lötungen mit dem Fügepartner Magnesium wiesen schönere Schweißnähte als bei Aluminium auf. Vermutlich war die Benetzung der Stahloberflächen besser durch den niedrigeren Schmelzpunkt von Magnesium zu Aluminium. Während beim verzinkten Stahl die Zinkschicht sehr gleichmäßig war, konnte man beim Borstahl, wahrscheinlich prozessbedingt durch den Strahlarbeitsgang, starke Variationen wahrnehmen. Dies wurde auch durch die anschließenden Zugversuche bestätigt.

Bei den statischen Tests konnte man keinen großen Unterschied von den Lötungen zu Schweißungen bei Kehlnähten am Überlappstoß feststellen. Im Zugversuch versagte in den meisten Fällen das Grundmaterial. Auch beim Borstahl kam dies manchmal vor.

Im statischen 3-Punkt-Biegeversuch konnten die gelöteten Proben geringfügig kleinere Kräfte erfolgreich aufnehmen wie geschweißte Stahlproben. Den großen Unterschied gab es in den dynamischen Tests. Hier wiesen die gelöteten Proben ein schlechteres Verhalten auf, als wir es von geschweißten Bauteilen gewohnt sind.

In Vorversuchen wurden bei dem Fügepartner Aluminium Bleche mit Wanddicke 2,5mm verwendet. Hier konnte man aufgrund der Wärmeeinbringung eine geringere Konstanz beim verzinkten Stahl feststellen. Gravierender waren die Auswirkungen beim Borstahl. Hier war die Variation der Ergebnisse enorm, vielleicht auch resultierend durch schwankende Oberflächenqualitäten.

Abschließend ist festzuhalten, dass sich Magnesium besser verhält als Aluminium, Kehlnaht am Überlappstoß besser als die reine Kehlnaht ist, verzinkter Stahl deutlich konstantere Ergebnisse liefert als gestrahlter, flußmittelbehandelter Borstahl.