

Entwicklung von Oxidationskatalysatoren mit minimiertem Edelmetall-Gehalt für die Abgasreinigung von Non-Road-Maschinen (EDMIN)

Abschlussbericht

Zuwendungsempfänger:	Heraeus Deutschland GmbH & Co. KG
Förderkennzeichen:	03X3580B
Laufzeit des Vorhabens:	01. Mai 2013 bis 31. Juli 2016
Berichtzeitraum:	01. Mai 2013 bis 31. Juli 2016
Projektpartner:	HJS Emission Technology GmbH & Co. KG Ansprechpartner: DiplIng. Simon Steigert Dieselweg 12 D-58706 Menden/Sauerland Tel.: +49 2373 987-262 E-Mail: simon.steigert@hjs.com TU Bergakademie Freiberg Institut für Energieverfahrenstechnik und Chemieingenieurwesen Lehrstuhl Reaktionstechnik Ansprechpartner: Prof. Dr. Sven Kureti Fuchsmühlenweg 9 09596 Freiberg Tel.: +49 3731 39-4555 E-Mail: sven.kureti@iec.tu-freiberg.de Heraeus Deutschland GmbH & Co. KG Ansprechpartner: Dr. Rainer Kiemel Heraeusstrasse 12-14 63450 Hanau Tel.: +49 6181-35-5565 E-Mail: rainer.kiemel@heraeus.com
	-

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor

Inhaltsverzeichnis

1. Kurze	Darstellung	4
1.1. Aufg	gabenstellung	4
1.2. Vor	aussetzungen zur Vorhabensdurchführung	4
1.3. Plan	nung und Ablauf des Vorhabens	4
1.4. Star	nd der Wissenschaft und Technik	5
1.4.1. P	roblembeschreibung und Ausgangsituation	5
1.4.2. V	ergleich mit dem internationalen Stand der Technik	7
2. Eingeh	ende Darstellung	9
2.1. Erzie	elte Ergebnisse	9
2.1.1. To	eststand und Messapparatur	9
2.1.2. B	emusterung einer Referenz 1	.0
2.1.3. E	ntwicklung neuer EM-armer Oxidations-Katalysatoren1	.1
2.1.3.1.	Al ₂ O ₃ Screening	.1
2.1.3.1.1.	Einfluss der Dotierung1	.1
2.1.3.1.2.	Einfluss der Porendurchmesser1	.2
2.1.3.1.3.	Einfluss der Partikelgröße1	.3
2.1.3.2.	Einfluss der Herstellungsverfahren und Pt/Pd Verhältnisses	.4
2.1.3.2.1.	Einfluss des Herstellungsverfahrens1	.4
2.1.3.2.2.	Einfluss des Pt/Pd Verhältnisses1	.6
2.1.3.3.	Katalysatoranordnung1	.7
2.1.3.4.	Meilenstein nach 21 Monaten1	.8
2.1.3.5.	Einfluss der Edelmetallkonzentration	1
2.1.3.5.1.	Synthese (1)	1
2.1.3.5.2.	Einfluss des Pt/Pd Verhältnisses2	.5
2.1.3.5.3.	Einfluss eines Pre-coatings	6
2.1.3.5.4.	Synthese (2)	8
2.1.3.5.5.	Einfluss eines Pre-coatings	9
2.1.3.6.	Einfluss von Promotoren und EM-Kombinationen	1
2.1.3.7.	Mechanistische Studie – Vergiftung mit Schwefel	3
2.1.3.7.1.	Einfluss der Acidität des Aluminiumoxids	3
2.1.4. A	ufskalierung - Motorprüfstandmessungen3	5
2.2. Zah	lenmäßiger Nachweis	6
2.3. Not	wendigkeit und Angemessenheit der geleisteten Arbeiten	6
2.4. Nut	zen, Verwertbarkeit und Fortschreibung der Verwertung	6

2.5.	Fortschritt während des Vorhabens bei anderen Stellen	
2.6.	Veröffentlichung der Ergebnisse	
Abbilo	dungsverzeichnis	
Tabel	lenverzeichnis	
A 1.1	Berichtblatt deutsch	
A 1.2	Berichtblatt englisch	

1. Kurze Darstellung

1.1. Aufgabenstellung

Das wesentliche Ziel des Vorhabens war es, Oxidationskatalysatoren mit minimierten Edelmetall(EM)-Gehalten zur Entfernung der Schadstoffe CO und Kohlenwasserstoffe (HC) aus dem Abgas zu entwickeln. Angestrebt war eine Verringerung der EM-Beladung um mindestens 30 % gegenüber dem derzeitigen Stand der Technik.

Der Fokus lag dabei auf Dieselmotoren von sogenannten Non-Road-Maschinen wie z.B. Baumaschinen, Landmaschinen, Flurförderfahrzeugen, Kränen und sonstigen mobilen Maschinen.

Die wesentlichen Vorteile der Verringerung des Edelmetall-Gehalts der Oxidationskatalysatoren bei gleicher bzw. verbesserter Performance sind Ressourcenschonung und eine Verbesserung der Marktposition der beteiligten Firmen etwa durch Minimierung der Abhängigkeit von den Edelmetall-Weltmarktpreisen, flexiblere Produktionshöhen sowie der Erschließung neuer Anwendungen.

1.2. Voraussetzungen zur Vorhabensdurchführung

Die Heraeus Deutschland GmbH & Co. KG (HDE) besitzt langjährige Erfahrungen in der Entwicklung, Fertigung und Auslegung von Edelmetall-Trägerkatalysatoren zur Reinigung von industriellen und motorischen Abgasen. In Bezug auf die Projektziele bringt HDE somit umfangreiches Know-How in der Katalysator-Formulierung sowie der Beschichtung von Keramik- und Metallsubstraten und der Überführung entsprechender Entwicklungsergebnisse in den Produktionsmaßstab mit.

1.3. Planung und Ablauf des Vorhabens

Die Bearbeitung des Projektes wurde anhand von den vier folgenden Arbeitspaketen (AP) vorgenommen.

Arbeitspaket #1	Bemusterung einer Referenz
Arbeitspaket #2	Entwicklung und parallele Bemusterung neuer EM-armer Oxidations-
	Katalysatoren, interne Tests (mehrere Iterationen)
Arbeitspaket #3	Optimierung der EM-Beschichtungen auf Basis der TUF-Ergebnisse
Arbeitspaket #4	Scale-up / Musterfertigung für einen Demonstrator bei HJS

Im ersten Arbeitspaket war somit vorgesehen, einen geeigneten Referenzkatalysator zu wählen. Dieser wurde von HDE den übrigen Projektpartnern zur Vermessung zur Verfügung gestellt und diente der TUF zur Einrichtung Ihrer Messanalytik.

In Folge war es das Ziel, Katalysatoren auf Basis der Referenz durch gezielte Variation von Basisoxiden, Promotoren, Edelmetall-Vorläuferverbindungen oder Präparationstechniken so weiterzuentwickeln, dass eine Absenkung des Edelmetallgehaltes und der Gesamtkosten des Katalysators gelingt, ohne dass damit ein Verlust an Performance, thermischer/hydrothermaler Stabilität und Vergiftungsresistenz einhergeht.

Ziel des vierten Arbeitspakets war es, die Entwicklungsergebnisse im Produktion Maßstab überzuführen. Dafür wurden Waben sowie ein Demonstrator mit der Referenz bzw. den neu entwickelten Formulierungen beschichtet. Die Katalysatoren wurden dem Projektpartner HJS zur Verfügung gestellt für Motorprüfstandmessungen und Feldmessungen unter realen Bedingungen. Auf Grund Verzögerungen in der Entwicklungsphase und bei der Herstellung der Motorprüfstandprobe wurde im März 2016 durch die Projektpartner ein Auftrag auf kostenneutrale Verlängerung beim Projektträger gestellt. Der Antrag wurde genehmigt und damit wurde die Laufzeit des Projektes bis Juli 2016 verlängert.

1.4. Stand der Wissenschaft und Technik

1.4.1. Problembeschreibung und Ausgangsituation

Der Dieselmotor ist aufgrund seiner Wirtschaftlichkeit und Leistungsdichte die effektivste Antriebsquelle für Fahrzeuge und Maschinen. Er wird daher seit längerem nicht nur für mobile Anwendungen (z.B. Pkw und Lkw), sondern auch für den Stationärbereich bzw. Non-Road-Bereich, wie etwa bei Arbeitsmaschinen (z.B. Bagger, Traktoren, usw.), Schiffen, Blockheizkraftwerken, Notstromaggregaten und Off-Shore-Anwendungen (z.B. Bohrplattformen), eingesetzt. Wegen seiner Effizienz ist das Erreichen zukünftiger Ziele der Kraftstoffeinsparung und Verminderung der CO₂-Emission ohne den Dieselmotor nicht vorstellbar. Hieraus ergeben sich jedoch Konflikte mit den geltenden und insbesondere zukünftigen Normen der Abgasemissionen, insbesondere in Bezug auf HC, CO, NO_x und Rußpartikel.

Um die hohen gesetzlichen Anforderungen an geringere Emissionen erfüllen zu können, muss der Ausstoß der Schadstoffe drastisch verringert werden. Die Optimierung der dieselmotorischen Verbrennung verfolgte in den letzten Jahren das Ziel, eine Verringerung der Emissionen durch innermotorische Maßnahmen zu erreichen. Allerdings sind die aktuellen Grenzwerte der 39. BImSchV, der EURO-V- bzw. EURO-VI-Norm, respektive die Abgasstufen der USA TIER 4i sowie TIER 4f und die Vorschriften zur Verminderung von Dieselmotoremissionen (DME) für den Baumaschinensektor allein durch diese Maßnahmen nicht zu erreichen. Dies macht den Einsatz effizient arbeitender Abgasnachbehandlungssysteme erforderlich.

Zur Eliminierung von CO und HC sind bei Dieselanwendungen seit den 1990er Jahren EM-Katalysatoren im Einsatz, die hohen Beladungen an Platin und teilweise auch Palladium besitzen (ca. 3,5 g EM/L). Darüber hinaus werden edelmetallbasierte Katalysatoren auch bei Drei-Wege-Katalysatoren (Otto-Motoren) eingesetzt, die allerdings deutlich geringe EM-Beladungen (ca. 1,7 g EM/L, typischerweise Pt/Rh oder Pt/Pd/Rh) aufweisen. Bei Dieselmotoren bewirken die Edelmetallkatalysatoren zudem auch die Oxidation des emittierten NO zu NO₂, welches dann die Effizienz nachgeschalteter Reinigungsstufen deutlich erhöht. Beispielsweise dient NO₂ zur Regeneration von Diesel-Partikelfiltern (CRT[®]-Verfahren¹) und erhöht die Performance einer nach dem SCR-Prinzip (Selective Catalytic Reduction) arbeitenden deNO_x-Stufe. Das SCR-Verfahren wird schon seit den 1970er Jahren bei Stationäranlagen, wie etwa Kraftwerken, eingesetzt und beinhaltet die Reduktion von NO_x durch Ammoniak oder Harnstoff an V₂O₅/WO₃/TiO₂- oder Zeolith-Katalysatoren. Darüber hinaus finden teilweise die mit sehr hohen Edelmetall-Gehalten versehenen NO_x-Speicher-Katalysatoren (3,5 - 4,5 g EM/L, primär Platin und Rhodium) Anwendung für die NO_x-Minderung bei schweren Pkw.

¹ Cooper, B.: Patent EP0341832 (B1)

Insgesamt werden weltweit etwa 35,5 Mio. Katalysatoreinheiten pro Jahr auf der Basis von Edelmetallen hergestellt. Damit kommen knapp zwei Drittel des weltweit produzierten Platins allein in der Katalysatortechnik zum Einsatz, wobei der überwiegende Anteil den Abgaskatalysatoren (ca. 95 %) zuzuordnen ist. Durch die weltweit sich ständig verschärfenden Emissionsgrenzwerte bei gleichzeitiger Zunahme der Emissionsquellen, vor allem Automobile, hält der steigende Bedarf an Abgaskatalysatoren seit gut 15 Jahren ungebrochen an. Mit dieser wachsenden Nachfrage nach Edelmetallen (Abb. 1) und der daraus resultierenden Rohstoffverknappung geht eine dramatische Preisentwicklung einher, die schon seit über eine Dekade nahezu ungebremst anhält (Abb. 2). So stieg der Handelspreis von Platin innerhalb der letzten 10 Jahre von 450 auf ca. 1850 US\$/Unze, also um gut 400 %. Der Preis für Palladium wuchs in den letzten 5 Jahren immerhin um 270 % an.

Abbildung 2: Entwicklung des Platin- und Palladium-Handelspreises an der Londoner Börse³

² http://www.kitco.com/reports/standard_feb092011_monthly.pdf

³ http://www.kitco.com/script/hist_charts/yearly_graphs.plx

Vor dem Hintergrund der Verknappung der Ressource Edelmetall, der weltweit anwachsenden Nachfrage nach Abgaskatalysatoren sowie der Tatsache, dass bis zu 90 % der Kosten von Abgaskatalysatoren allein auf die Edelmetalle entfallen, wird deutlich, dass dringender Handlungsbedarf besteht, den EM-Gehalt von Abgaskatalysatoren entscheidend zu minimieren.

Die mögliche Umweltrelevanz hochbeladener Edelmetall-Katalysatoren ist bis dato nicht abschließend geklärt. Bedingt durch den vermuteten mechanischen Abrieb wird ein Austrag an nanoskaligen EMhaltigen Partikeln diskutiert. Für Drei-Wege-Katalysatoren werden Angaben von 0,009 bis 10 µg pro gefahrenem km genannt. In einer Studie des Büros für Technikfolgenabschätzung beim Deutschen Bundestag werden den Platingruppenmetallen Platin, Palladium und Rhodium als Komponenten von Kfz-Motorabgasen sensibilisierende und/oder allergisierende Wirkungen zugeschrieben⁴.

1.4.2. Vergleich mit dem internationalen Stand der Technik

Im sauerstoffreichen Abgas von Dieselmotoren werden zur Minderung der CO- und HC-Emissionen seit den 1990er Jahren hoch beladene Pt- und Pt/Pd-Katalysatoren (ca. 3,5 g EM/L) eingesetzt, an denen die Schadgase zu CO₂ bzw. H₂O umgesetzt werden⁵. Durch den hohen Sauerstoffüberschuss im Abgas findet an diesen Katalysatoren jedoch keine wirkungsvolle NO_x-Reduktion statt, so dass hierfür eine zusätzliche Reinigungsstufe erforderlich ist. In Otto-motorischem Abgas sind seit den 1980er Jahren Drei-Wege-Katalysatoren im Einsatz, die aufgrund der höheren Abgastemperaturen mit geringeren EM-Beladungen von ca. 1,7 g/L ausgestattet werden. Da der Drei-Wege-Katalysator bei stöchiometrischen Verbrennungsbedingungen arbeitet, erfolgt neben der Umsetzung von HC und CO auch eine hohe NO_x-Konvertierung⁵.

Darüber hinaus sind bei der CO-Oxidation nanoskalige Gold-Partikel als sehr effektiv bekannt geworden^{6,7}, diese besitzen jedoch keine ausreichende thermische Beständigkeit für den praktischen Einsatz. Eine deutlich höhere thermische Stabilität weisen hingegen Fe-basierte Katalysatormaterialien auf, wie etwa LaFeO₃⁸, Fe₂O₃/SiO₂⁹, Fe₂O₃/Cr₂O₃/Al₂O₃¹⁰ und Cu-Ce-Fe-O-Komposite¹¹, CuMn-Mischoxide¹². Ferner sind Eisenoxid-Materialien auch als effektive Katalysatoren bei der Isobutan-Oxidation bekannt¹³.Weiterhin wurde von Ceroxid-basierten Katalysatoren berichtet, die neben Ruß auch CO effektiv oxidieren^{14,15}. Ferner sind in der Literatur auch MnO/Mn₂O₃- und MnO_x/ZrO₂-Systeme als aktiv für die HC-Oxidation beschrieben worden^{16,17}. Auch Cr₂O₃-basierte Materialien sind als wirksam bekannt, auch für die Oxidation chlorierter HC¹⁸, jedoch besteht bei letzteren die Gefahr eines Chromaustrages über flüchtige Chrom(yl)chloride.

⁴ W.J. Bartz, E. Wippler (Hrsg.), Autoabgaskatalysatoren, Expert-Verlag.

⁵ R.M. Heck, R.J. Farrauto, S.T. Gulati, Catalytic air pollution control, J. Wiley.

⁶ J.D. Grunwaldt, C. Kiener, C. Woegerbauer, A. Baiker, J. Catal. 181 (1999) 223.

⁷ M. Bandyopadhyay, O. Korsak, M.W.E. van den Berg, W. Grünert, A. Birkner, W. Li, F. Schüth, H. Gies, MicroporousMesoporous Mater. 89 (2006) 158.

⁸ R.J.H. Voorhoeve, J.P. Remeika, L.E. Trimble, Ann. N.Y. Acad. Sci.272 (1976) 3.

⁹ H. Randall, R. Doepper, A. Renken, Can. J. Chem. Eng. 74 (1996) 586.

¹⁰ H. Randall, R. Doepper, A. Renken, Ind. Eng. Chem. Res. 36 (1997) 2996.

¹¹ K. Sirichaiprasert, A. Luengnaruemitchai, S. Pongstabodee, Int. J. Hydrogen Energy 32 (2007) 915.

¹² G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui, Appl. Catal. A 166 (1998) 14.

¹³ M. Santosh Kumar, M. Schwidder, W. Grünert, U. Bentrup, A. Brückner, J. Catal. 239 (2006) 173.

¹⁴ A.B. Lamb, W.C. Bray, J.C. Wrazer, J. Ind. Eng. Chem. 12 (1920) 213.

¹⁵ M. Machida, Chem. Mater. 20 (2008) 13.

¹⁶ E.R. Stobbe, B.A. de Boer, J.W. Geus, Catal. Today 47 (1999) 161.

¹⁷ D. Döbber, D. Kießling, W. Schmitz, G. Wendt, Appl. Catal.B 52 (2004) 135.

¹⁸ I. Imamura, Catal. Today 11 (1992) 547.

Es ist allerdings zu erwähnen, dass die genannten Metalloxid-Katalysatoren derzeit im Vergleich zu den Edelmetallen Pt und Pt/Pd ein um mindestens 150-200 °C schlechteres Light-Off-Verhalten bei geringerer Langzeitstabilität besitzen. Für technische Abgasreinigungsanlagen werden daher heutzutage nahezu ausschließlich EM-haltige Katalysatoren verbaut.

2. Eingehende Darstellung

2.1. Erzielte Ergebnisse

2.1.1. Teststand und Messapparatur

Die in diesem Bericht dargestellten Test-Ergebnisse wurden unter Verwendung der in Abbildung 3 dargestellten Synthesegasanlage erhalten. Die genauen Messbedingungen sind in Tabelle 1 zusammengefasst.

Abbildung 3: Synthesegasanlage bei HDE

CO	C_3H_6	NO	O ₂	CO ₂	GHSV
130 ppm	50 ppm	180 ppm	7 %	3,6 %	150.000 h ⁻¹

Tabelle 1: Gaszusammensetzung und Messbedingungen bei HDE

Die Charakterisierungen unserer Katalysatoren, insbesondere die Dispersionsmessungen, wurden überwiegend bei dem Partner TUF durchgeführt. Die ersten Dispersionsergebnisse wurden im Hause Heraeus mittels des in Abbildung 4 dargestellten Pulverreaktors verifiziert.

Eingehende Darstellung

Abbildung 4: Pulverreaktor verwendet bei HDE

2.1.2. Bemusterung einer Referenz

Für das Projekt wurde ein Katalysator gewählt, der seit dem Jahre 2009 (Euro 4 und Euro 5) bei HJS für diverse Abgasnachbehandlungssysteme und Technologien eingesetzt wird. Der Katalysator des Typs H1444 wurde vor seiner Einführung in die HJS-Produktpalette umfangreich gegenüber Katalysatoren von namhaften Mitbewerbern verglichen und konnte seine Leistungsfähigkeit bei der wichtigen NO₂-Bildung beweisen. Innerhalb des Projektteams wurde die Referenzbeladung auf anwendungstypische 45 g/ft³ festgelegt. In einigen Anwendungen sind auch höhere Edelmetallbeladungen üblich (ca. 75 g/ft³). Ziel für das EDMIN Projekt war es, den Edelmetallgehalt um 30 % zu senken. Rechnerisch bedeutet dies bezogen auf den Referenzkatalysator eine Minderung der Edelmetallbeladung von 45 g/ft³ auf 30 g/ft³.

Keramik Waben (4" x 3") sowie Keramikbohrkerne (23 mm x 50 mm) wurden mit H1444 auf 45 g/ft³ beschichtet und dem Partner TUF für statistische Messungen zur Verfügung gestellt. Die Leistungsfähigkeit dieser Referenzkatalysatoren wurde mittels Synthesegasmessungen bei der TUF ermittelt. Die systematische Untersuchung von 17 Bohrkernen im Frischzustand ergaben die Referenz light-off Temperaturen (T₅₀-Wert: Temperatur bei der 50 % des im Test gas enthaltenen Zielsubstrats umgesetzt werden) und maximale NO_x Umsätze (X_{max} NO_x) in der nachfolgenden Tabelle 2. Schon zu Beginn des Projektes wurde unter den Projektpartnern Einigkeit erzielt, dass die in der Praxis unvermeidliche Alterung von Katalysatoren zwingender Bestandteil für die Bewertung sein soll. Daher wurden Referenzproben auch einer synthetischen hydrothermalen Alterung (HT-Alterung) und einer Alterung mit Schwefel (S-Alterung) unterzogen. Die genauen Bedingungen für beide Alterungsstufen sind in der Tabelle 3 zusammengefasst. Die Referenzwerte nach Alterung sind in der nachstehenden Tabelle 2 dargestellt. Diese an der TU Freiberg ermittelten Werte wurden als Referenzwerte festgelegt und für die weiteren Untersuchungen als Benchmark verwendet.

Eingehende Darstellung

Zustand	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
frisch	165	186	70	308
Nach HT-Alterung	200	221	24	430
Nach S-Alterung	181	197	68	315

Tabelle 2: Referenzwerte im frischen Zustand und nach Alterung für die Referenzprobe mit 45 g/ft³ Pt

Alterung	T (°C)	Zeit (h)	O ₂ (%)	H ₂ O (%)	SO ₂ (ppm)	Durchfluss (L/min)
Hydrothermal	750	16	-	10	-	5 (balance Luft)
S-Alterung	250	16	5	8	120	1 (balance N ₂)

Tabelle 3: Alterungsbedingungen (hydrothermale Alterung und Schwefel Alterung

2.1.3. Entwicklung neuer EM-armer Oxidations-Katalysatoren

2.1.3.1. Al₂O₃ Screening

2.1.3.1.1. Einfluss der Dotierung

Die Aktivität der Katalysatoren kann durch die Wahl unterschiedlicher Dotierungen stark beeinflusst werden¹⁹. Unterschiedlich dotierte Aluminiumoxide wurden mit Pt imprägniert und daraus Testwabenkörpern mit einem EM-Gehalt von 80 g/ft³ gefertigt. Diese Waben wurden auf der Heraeus-Testanlage vermessen und verglichen mit einem mit 80 g/ft³ beschichteten Referenzbohrkern. Das folgende Diagramm (Abbildung 5) zeigt exemplarisch die Umsatzkurven von Kohlenstoffmonoxid (CO), Kohlenwasserstoffen (HC) und Stickstoffmonoxid (NO) für die Variante präpariert mit Al₂O₃ (3) im Vergleich zur Referenzprobe. Für die Variante präpariert mir Al₂O₃ (3) konnten eine erste Verbesserung des HC Light-Offs (T₅₀ - Temperatur bei 50 % Umsatz einer Komponente) um 10 °C und eine Verbesserung des maximalen NO_x-Umsatzes um 10 % erzielt werden.

Abbildung 5: Umsatzkurven von CO, HC und NO für Variante mit Al₂O₃ (3) (farbig) und die Referenzprobe (grau)

¹⁹ J. Dawody, J. Mol. Catal. A: Chem. 209 (2004) 215.

Dieses Al₂O₃ (3) und drei weitere dotierte Aluminiumoxide, die bei unseren Untersuchungen als vielversprechend identifiziert wurden, wurden als erste Iteration an die TUF bemustert. Um die Proben mit der entsprechenden Referenzprobe zu vergleichen, wurden diese mit 45 g/ft³ Pt edelmetallisiert. Die Light-off Temperaturen und NO_x-Konversion der Katalysatoren der ersten Iteration sind in Tabelle 4 (unten) aufgelistet. Zum Vergleich wurden die Werte der Referenz in die Tabelle mit eingefügt.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Ref. 45 g/ft ³ Pt	165	186	70	308
45 g/ft ³ Pt auf Al_2O_3 (1)	152	176	74	300
45 g/ft ³ Pt auf AI_2O_3 (2)	162	185	69	315
45 g/ft ³ Pt auf AI_2O_3 (3)	153	177	78	288
45 g/ft ³ Pt auf AI_2O_3 (4)	153	175	76	300

Tabelle 4: frische Aktivität der Katalysatoren der ersten Iteration verglichen mit der Referenz

Aluminiumoxide (3) und (4) zeigen deutlich bessere NO_x-Oxidationsaktivität verglichen mit der Referenzprobe mit eine Verbesserung des NO_x-Umsatzes um 8 % bzw. 6 %. Mit der Verwendung von dotierten Al₂O₃ (3) und (4) konnte auch eine Verbesserung des HC und CO Light-Offs (T50 - Temperatur bei 50 % Umsatz einer Komponente) um 10 °C erzielt werden.

Diese Verbesserung der Aktivität bei gleicher Edelmetallbeladung (45 g/ft³) sollte in der nächsten Phase in eine Verringerung der Edelmetallbeladung umgesetzt werden.

2.1.3.1.2. Einfluss der Porendurchmesser

An der TU Freiberg durchgeführte Simulationen ergaben Hinweise, dass die Porendurchmesser der verwendeten Al₂O₃ einen Einfluss auf die katalytische Aktivität, insbesondere die NO_x-Oxidation aufweisen. Unter den verschiedenen während der 1. Iteration an der TU Freiberg getesteten Aluminiumoxiden zeigte Al₂O₃ (3) besonders positive Eigenschaften. Neue Materialien basierend auf Al₂O₃ (3), aber mit veränderten Porengrößen wurden vom Hersteller bezogen. Diese drei Träger sind mit k (klein), m (medium) und g (groß) entsprechend des durchschnittlichen Porendurchmessers gekennzeichnet. Der mittlere Porendurchmesser entspricht dem Standard Al₂O₃ (3), welches bis dato für Katalysatoren der ersten Iteration verwendet wurde. Drei Katalysatoren mit 35 g/ft³ Pt wurden unter Verwendung dieser drei Materialien präpariert und in unserer Testanlage im frischen Zustand und nach HT-Alterung vermessen. Die NO_x-Umsatzkurven der Frischmessungen dieser drei Katalysatoren sind in Abbildung 6 (unten) dargestellt, die dazugehörigen Light-off Temperaturen wurden in Tabelle 5 zusammengefasst.

Abbildung 6: Umsatzkurven von NO_x für die Katalysatoren mit veränderten Porengrößen

Die in Abbildung 6 dargestellten NO_x-Umsatzkurven zeigen, dass der Porendurchmesser einen marginalen Einfluss auf die NO_x-Oxidation der Frischproben hat und der Katalysator mit dem kleinsten Porendurchmesser eine leicht bessere Aktivität aufweist. Nach HT-Alterung können wir keine Unterschiede zwischen den drei Katalysatoren feststellen; alle zeigen eine ähnliche Aktivität für CO-, HC- und NO_x-Umsatz. Proben dieser Formulierungen wurden nicht zur TU Freiberg versandt, da wir keine signifikante Verbesserung der Aktivität durch Variieren des Porendurchmessers erkennen konnten.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
35 g/ft ³ Pt auf Al₂O ₃ (3) – k frisch	181	191	47	325
35 g/ft ³ Pt auf Al ₂ O ₃ (3) – m frisch	187	198	44	334
35 g/ft ³ Pt auf Al₂O ₃ (3) – g frisch	180	192	43	338
35 g/ft ³ Pt auf Al ₂ O ₃ (3) – k gealtert	194	210	12	352
35 g/ft ³ Pt auf Al ₂ O ₃ (3) – m gealtert	201	215	11	329
$35 \text{ g/ft}^3 \text{ Pt} \text{ auf Al}_2\text{O}_3 (3) - \text{g} \text{ gealtert}$	192	204	12	330

Tabelle 5: light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit veränderten Porengrößen

2.1.3.1.3. Einfluss der Partikelgröße

Bei der Herstellung der Washcoats werden die Partikel auf eine bestimmte Korngröße gemahlen. Wir entschlossen uns, den Einfluss dieses Parameters näher zu untersuchen, indem drei Washcoats mit steigender Korngrößen (zwischen 4 μ m und 15 μ m) herstellt wurden. Keramikwaben wurden dann beschichtet, um einen Gehalt an Pt in allen Waben von 35 g/ft³ zu erreichen. Die Ergebnisse der an diesen Katalysatoren durchgeführten Tests sind in Tabelle 6 und Abbildung 7 dargestellt.

Heraeus

Heraeus

Abbildung 7: Umsatzkurven von NO_x für die Katalysatoren mit veränderten Korngrößen

Katalycatorop	T ₅₀ CO	T ₅₀ HC	X _{max} NO _x	T _{Xmax} NO _x
Katalysatoleli	(°C)	(°C)	(%)	(°C)
35 g/ft ³ Pt auf Al ₂ O ₃ (3) < 4 μ m - frisch	183	191	47	337
35 g/ft 3 Pt auf Al $_2O_3$ (3) 6-7 μm - frisch	185	197	46	327
35 g/ft ³ Pt auf Al ₂ O ₃ (3) 12-15 μm - frisch	187	198	44	334
$35 \text{ g/ft}^3 \text{ Pt} \text{ auf Al}_2O_3 (3) < 4 \mu\text{m}$ - gealtert	197	215	10	390
35 g/ft 3 Pt auf Al $_2O_3$ (3) 6-7 μm - gealtert	196	213	13	351
35 g/ft^3 Pt auf Al ₂ O ₃ (3) 12-15 μ m - gealtert	201	215	11	329

Tabelle 6: light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit veränderten Korngrößen

Die in Tabelle 6 dargestellten Testergebnisse zeigen, dass der Mahlgrad keinen Einfluss auf die Aktivität der Katalysatoren besitzt. Die light-off Temperaturen und NO_x-Umsätze sind für diese drei Katalysatoren sowohl im frischen Zustand als auch nach Alterung sehr ähnlich.

2.1.3.2. Einfluss der Herstellungsverfahren und Pt/Pd Verhältnisses

2.1.3.2.1. Einfluss des Herstellungsverfahrens

Unter den verschiedenen während der 1. Iteration an der TU Freiberg getesteten Al_2O_3 zeigten besonders Al_2O_3 (3) und (4) besonders positive Eigenschaften. Zwei neue Katalysatoren wurden auf den gleichen Aluminiumoxiden (3) und (4), jedoch mit einer abweichenden Methode (Synthese 2) präpariert. Diese zwei Katalysatoren wurden in der Testanlage des Partners TUF vermessen. Die NO_{x} -Umsatzkurven der Frischmessungen dieser zwei Katalysatoren sind in Abbildung 8 (unten) dargestellt, die dazugehörigen Light-off Temperaturen wurden in Tabelle 7 zusammengefasst. Zum Vergleich wurden die Umsatzkurven sowie die Werte der mit Synthese 1 präpariert Katalysatoren (1. Iteration) mit eingefügt.

Abbildung 8: Umsatzkurven von NO für Katalysatoren präpariert mit unterschiedlichen Methoden

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
45 g/ft ³ Pt auf Al₂O ₃ (3) – Synthese 1	153	177	78	288
$45 \text{ g/ft}^3 \text{ Pt} \text{ auf Al}_2\text{O}_3$ (3) – Synthese 2	147	175	58	335
45 g/ft ³ Pt auf Al ₂ O ₃ (4) – Synthese 1	153	175	76	300
$45 \text{ g/ft}^3 \text{ Pt} \text{ auf Al}_2\text{O}_3$ (4) – Synthese 2	154	183	57	343

Tabelle 7: light-off Temperaturen und NOx-Umsätze für Katalysatoren präpariert mit unterschiedlichen Methoden

In Abbildung 8 ist dargestellt, dass beide mittels Synthese 2 präparierten Varianten eine niedrigere NO_x-Oxidationsaktivität aufweisen. Im Rahmen des Projekts wurde die Dispersion der geträgerten Edelmetallpartikel durch der TU Freiberg vermessen. Die EM-imprägnierten Washcoats (welche für die obengenannten Katalysatoren verwendet wurden) wurden der TU Freiberg zur Verfügung gestellt. Darüber hinaus wurden der TUF die reinen Trägeroxide bereitgestellt, um etwaige Messartefakte eliminieren zu können. Die gemessenen Dispersionen sind in der nachstehenden Tabelle 8 dargestellt.

Katalysatoren	Dispersion (%)
45 g/ft ³ Pt auf Al₂O ₃ (3) – Synthese 1	26
45 g/ft ³ Pt auf Al ₂ O ₃ (3) – Synthese 2	36
45 g/ft ³ Pt auf Al ₂ O ₃ (4) – Synthese 1	24
45 g/ft ³ Pt auf Al ₂ O ₃ (4) – Synthese 2	35

Tabelle 8: Dispersionsmessungen für Katalysatoren präpariert mit unterschiedlichen Methoden

Gemäß der Literatur ist die NO_x-Oxidationsreaktion abhängig von der Pt-Partikelgröße²⁰. Größere Pt-Partikel sind hierbei aktiver als kleinere. Dies kann erklären, warum die mit Synthese 2 präparierten Varianten mit ihrer höheren Pt-Dispersion (und kleineren Partikeln) hier weniger aktiv sind als die Varianten präpariert mit Synthese 1. Diese Dispersionsmessungen wurden im Hause Heraeus mittels des Pulverreaktors bestätigt.

²⁰ P.J. Schmitz, Appl. Catal.B 67 (2006) 246.

Heraeus

2.1.3.2.2. Einfluss des Pt/Pd Verhältnisses

Pt ist bekannt dafür, das für die NO-Oxidation aktivste Edelmetall zu sein. Andererseits kann die Zugabe von Pd die hydrothermale Stabilität der Katalysatoren stark beeinflussen. Drei Katalysatoren mit unterschiedlichen Pt/Pd Verhältnissen wurden präpariert, um den Einfluss dieses Parameters zu untersuchen. Diese drei Katalysatoren wurden in unserer Testanlage vermessen. Die NO_x-Umsatzkurven der Frischmessungen dieser drei Katalysatoren sind in Abbildung 9 (unten) dargestellt, die dazugehörigen Light-off Temperaturen (sowie die Light-off Temperaturen nach HT-Alterung) wurden in Tabelle 9 zusammengefasst. Zum Vergleich wurden die Umsatzkurven sowie die Werte eines mit 45 g/ft³ Pt beschichtet Katalysators mit eingefügt. Es wurde erwartet, dass mit steigendem Anteil von Pd im Katalysatorsystem die NO-Oxidationsaktivität stark nachlässt²¹. Überraschenderweise zeigen jedoch die von uns hergestellten Katalysatoren im Frischzustand, wie in Abbildung 9 dargestellt, ein sehr ähnliches Verhalten für die NO_x-Oxidation mit einem maximalen NO_x-Umsatz von ca. 30 % bei 350 °C. Nach hydrothermale Alterung erweisen sich die Katalysatoren mit hohem Pd Anteil als deutlich besser in Hinblick auf die Aktivität für CO- und HC-Oxidation mit bis zu 20°C niedrigeren Light-off Temperaturen verglichen mit dem reinen Pt-System.

Abbildung 9: Umsatzkurven von NO für die Katalysatoren präpariert mit unterschiedlichen Pt/Pd Verhältnissen

Die Aktivitätstests, die an den Katalysatorproben der 2. Iteration durchgeführt wurden, zeigen, dass die Katalysatoren, bei denen ein Teil des Pt durch Pd ersetzt wurde, gegenüber reinen Pt-Systemen im Frischzustand durchaus konkurrieren können. Diese PtPd-Systeme weisen auch eine höhere thermische Stabilität auf.

²¹ C. Kim, SAE Technical Paper 2011-01-1134, 2011.

Eingehende Darstellung

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
45 g/ft ³ PtPd 1:0 auf Al ₂ O ₃ (4) – frisch	161	194	33	355
45 g/ft ³ PtPd 10:1 auf Al ₂ O ₃ (4) – frisch	173	200	32	337
45 g/ft ³ PtPd 4:1 auf Al ₂ O ₃ (4) – frisch	181	196	34	338
45 g/ft ³ PtPd 2:1 auf Al ₂ O ₃ (4) – frisch	184	195	32	342
45 g/ft ³ PtPd 1:0 auf Al ₂ O ₃ (4) – gealtert	208	218	20	329
$45 \text{ g/ft}^3 \text{ PtPd } 10:1 \text{ auf Al}_2\text{O}_3 (4) - \text{gealtert}$	203	206	25	344
$45 \text{ g/ft}^3 \text{ PtPd } 4:1 \text{ auf Al}_2O_3 (4) - \text{gealtert}$	193	202	19	385
45 g/ft ³ PtPd 2:1 auf Al ₂ O ₃ (4) – gealtert	185	202	17	391

Tabelle 9: light-off Temperaturen und NOx-Umsätze für Katalysatoren mit unterschiedlichen Pt/Pd Verhältnissen

2.1.3.3. Katalysatoranordnung

Die intern erhaltenen Ergebnisse der Katalysatoren aus der 2. Iteration zeigen deutlich, dass die bimetallischen PtPd-Katalysatoren im Vergleich zu reinen Pt-Katalysatoren bessere thermische Stabilität aufweisen. Andererseits sind reine Pt-Katalysatoren die beste Lösung, um die höchste NO_x-Konversion zu erhalten²¹. In Abbildung 10 ist dargestellt, wie diese Eigenschaften sinnvoll in einem Katalysator kombiniert werden können.

Die erste Möglichkeit zur Kombination besteht darin, zwei unterschiedliche Washcoats homogen zu vermischen und damit die Substrate (Waben) zu beschichten.

Als zweite Option ist eine Zonenbeschichtung möglich. In diesem Fall werden 50 % der Wabenlänge mit einem Washcoat beschichtet, der zweite Washcoat wird anschließend auf die verbleibenden 50 % der Wabenlänge aufgebracht.

Die dritte Alternative ist eine Doppellagenbeschichtung. Um diese Lagenbeschichtung zu erreichen, wird zunächst ein erster Washcoat aufgebracht und nach einem Trocknungs- und Kalzinierschritt wird die nächste Lage mit einem zweiten Washcoat beschichtet. Diese verschiedenen Coating-Prozesse erlauben die Herstellung von fünf in Abb. 10 dargestellten Katalysatoren. Diese Katalysatoren wurden mit einer Beladung von 45 g/ft³ und dem PtPd Verhältnis von 7:1 hergestellt.

Abbildung 10: Katalysatoranordnung – Washcoat Mischung, Zonenbeschichtung und Lagenbeschichtung

Eingehende Darstellung

Diese fünf Katalysatoren wurden intern getestet. Die Light-off-Temperaturen und maximale NO_{x} -Konversion im frischen Zustand sind in der nachfolgenden Tabelle 8 im Vergleich zum Referenzkatalysator dargestellt.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Ref. 45 g/ft ³ Pt only	186	201	44	324
WC Mischung	172	180	38	320
Lagenbeschichtung PtPd oben	175	182	41	332
Lagenbeschichtung Pt only oben	172	183	30	331
Zonenbeschichtung PtPd vorn	171	181	41	314
Zonenbeschichutng Pt only vorn	170	179	30	340

Tabelle 10: frischen light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit unterschiedlichen Anordnungen

Die PtPd-Systeme zeigen im frischen Zustand deutlich bessere Aktivität für CO und HC Oxidation mit bis zu 20°C niedrigeren Light-off Temperaturen verglichen mit dem reinen Pt Referenz Katalysator. Wie erwartet zeigen die Katalysatoren, bei denen ein Teil des Pt durch Pd ersetzt wurde, niedrigere Aktivität für die NO-Oxidation. Die Light-off Temperaturen und NO_x-Umsätze nach HT-Alterung sind in der nachstehenden Tabelle 11 zusammengefasst.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Ref. 45 g/ft ³ Pt only	200	217	11	324
WC Mischung	179	184	18	351
Lagenbeschichtung PtPd oben	182	189	20	342
Lagenbeschichtung Pt only oben	178	185	15	354
Zonenbeschichtung PtPd vorn	174	180	12	366
Zonenbeschichutng Pt only vorn	178	186	22	356

Tabelle 11: gealterten light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit unterschiedlichen Anordnungen

Wie in der Tabelle oben dargestellt weisen die bimetallischen Systeme deutlich bessere thermische Stabilität auf. Die CO und HC Light-off Temperaturen nach HT-Alterung sind bis zu 20 °C bzw. 30 °C niedriger verglichen mit dem reinen Pt-Referenzkatalysator. Die PtPd-Katalysatoren zeigen auch verbesserte gealterte NO_x-Oxidationsaktivität mit maximalen NO_x-Umsätzen bis zu 10 % höher als die Referenz.

Die fünf Katalysatoren mit unterschiedlichen Anordnungen wurden auch in der Testanlage des Partners TUF vermessen und die Ergebnisse bestätigt die im Hause Heraeus beobachtet wurde.

Aus dieser Iteration abschließend festzuhalten ist das Ergebnis, dass mit der Zudotierung von Pd zum Pt insbesondere positive Effekte auf das Hydrothermale Alterungsverhalten erzielt werden können, sich jedoch unter den getesteten Bedingungen bezogen auf die Zielstellung keine signifikante Verbesserung durch aufwändigeres Anordnungsdesign mit definierter Verteilung ergab.

2.1.3.4. Meilenstein nach 21 Monaten

Ziel des Meilensteins nach 21 Monaten war es, den Edelmetallgehalt um 20 % zu senken. Rechnerisch bedeutet dies bezogen auf den Referenzkatalysator eine Minderung der Edelmetallbeladung von 45 g/ft³ auf 36 g/ft³. Die Partner einigten sich darauf, die Nennbeladung für die Proben mit reduziertem Edelmetallgehalt auf 35 g/ft³ einzustellen. Damit hat man einen kleinen prozessbedingten Puffer. Bei

Heraeus

allen angefertigten Proben wurden die genauen Edelmetallbeladungen durch Massenbilanzierung ermittelt und festgehalten. In der Gesamt-Edelmetallkette muss man aber mit einer analysentechnischen Ungenauigkeit von ca. 2 bis 3 % vom Messwert rechnen. Eine einzelteilbezogene Edelmetallangabe von 35 g/ft³ für einen Katalysator kann daher real durchaus im Bereich 33,95 bis 36,05 g/ft³ liegen.

Die positiven Einzelergebnisse der vorherigen Iterationen (z. B. Rohstoffvariation, Synthesevariation, usw.) wurden in dieser 4. Entwicklungsphase zusammengeführt. Zwei Katalysatoren mit 35 g/ft³ EM-Gehalt wurden zur Erreichung dieses Meilensteins präpariert. Der erste Katalysator basiert auf Pt geträgert auf Al₂O₃ (3), welches die beste Performance beim Al₂O₃-Screening gezeigt hatte. Der zweite Katalysator mit einer EM-Beladung aus PtPd 6:1 wurde analog dem erfolgversprechendsten Design der 3. Iteration gefertigt. Die Katalysatoren wurden zunächst intern getestet. Abbildung 11 zeigt die NO_x-Umsatzkurven (im frischen Zustand und nach HT-Alterung) der Meilensteinkatalysatoren im Vergleich zur Referenz. Die zugehörigen Temperaturdaten sind in der nachfolgenden Tabelle 12 dargestellt.

Abbildung 11: Umsatzkurven von NO für die Meilensteinkatalysatoren im Vergleich zur Referenz (HDE)

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Ref. 45 g/ft ³ Pt - frisch	186	201	44	324
35 g/ft ³ Pt auf Al ₂ O ₃ (3) - frisch	187	198	44	334
35 g/ft ³ PtPd 6:1 Doppellage - frisch	176	185	44	344
Ref. 45 g/ft ³ Pt - gealtert	200	217	11	324
35 g/ft ³ Pt auf Al ₂ O ₃ (3) - gealtert	201	215	11	329
35 g/ft ³ PtPd 6:1 Doppellage - gealtert	170	180	20	343

Tabelle 12: light-off Temperaturen und NO_x-Umsätze für die Meilensteinkatalysatoren im Vergleich zur Referenz (HDE)

Trotz der 20% geringeren EM-Beladung weist der Katalysator auf Al_2O_3 (3) nahezu dieselbe Performance wie die Referenz auf. Nicht nur im frischen Zustand sondern auch nach hydrothermalen

Heraeus

Alterung liegen die Light-off Temperaturen für CO und HC, sowie die NO-Konversion bei vergleichbaren Werten.

Der neue Doppellagenkatalysator zeigt im Frischzustand eine ähnliche Performance hinsichtlich der NO_x-Konversion wie die Referenz. Nach hydrothermaler Alterung erweist sich der Katalysator mit PtPd-Lage als deutlich aktiver. Die Light-off Temperaturen für CO und HC liegen um ca. 30°C niedriger. Die NO_x-Konversion stabilisiert sich auf relativ hohem Niveau (ca. 10% Punkte höher im Vergleich zur Referenz).

Die Leistungsfähigkeit der neuen Katalysatorsysteme wurde auch bei der TUB Freiberg ermittelt. Die in der Tabelle 13 und Abbildung 12 dargestellten Light-off Temperaturen und NO_x-Umsatzkurven zeigen die gleiche Tendenz im Vergleich zu den HDE Ergebnissen.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Ref. 45 g/ft ³ Pt - frisch	165	186	70	308
35 g/ft ³ Pt auf Al ₂ O ₃ (3) - frisch	156	183	75	290
35 g/ft ³ PtPd 6:1 doppellage - frisch	152	168	65	320
Ref. 45 g/ft ³ Pt - gealtert	200	221	24	430
35 g/ft ³ Pt auf Al ₂ O ₃ (3) - gealtert	171	205	25	415
35 g/ft ³ PtPd 6:1 doppellage - gealtert	142	178	32	380

Tabelle 13: light-off Temperaturen und NOx Umsätze für die Meilensteinkatalysatoren im Vergleich zur Referenz (TUF)

Abbildung 12: Umsatzkurven von NO für die Meilensteinkatalysatoren im Vergleich zur Referenz (TUF)

2.1.3.5. Einfluss der Edelmetallkonzentration

2.1.3.5.1. Synthese (1)

Die bisher präparierten neuen Katalysatoren wurden alle mit einer höheren Washcoatmenge beschichtet, um die thermische Stabilität zu erhöhen. Anhand der Ergebnisse, die bei Messungen am Motorenprüfstand erhalten wurden, muss festgestellt werden, dass diese höheren Washcoatbeladungen nicht die erwarteten Verbesserungen gebracht haben und wir es nicht geschafft haben, die thermische Stabilität unserer Formulierungen zu erhöhen. Eine mögliche Erklärung dafür, warum damit das Endziel des Projekts noch nicht erreicht werden konnte, könnte sein, dass die lokale Edelmetallkonzentration bei den höheren Washcoatbeladungen tendenziell abnimmt. Wir entschlossen uns deshalb, den Einfluss der Edelmetallkonzentration näher zu untersuchen, indem wir sechs Washcoats mit steigender Pt-Konzentration herstellten (Konzentration 1 bis 6 in der Tabelle 14 unten). Keramikwaben wurden dann mit abnehmender Washcoatmenge beschichtet, um den Gehalt an Pt in allen Waben bei 30 g/ft³ (Ziel des EDMIN-Projekts) zu halten. Diese Katalysatoren wurden dann an unserer Synthesegasmessanlage vermessen und die Ergebnisse sind unten in Tabelle 14 und Abbildung 13 dargestellt.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Konz. 1 - Synthese 1 - frisch	177	189	42	342
Konz. 2 - Synthese 1 - frisch	179	192	47	335
Konz. 3 - Synthese 1 - frisch	177	196	51	323
Konz. 4 - Synthese 1 - frisch	166	190	59	308
Konz. 5 - Synthese 1 - frisch	172	193	54	314
Konz. 6 - Synthese 1 - frisch	173	192	53	325
Konz. 1 - Synthese 1 - gealtert	198	217	7	368
Konz. 2 - Synthese 1 - gealtert	201	215	10	375
Konz. 3 - Synthese 1 - gealtert	199	214	12	339
Konz. 4 - Synthese 1 - gealtert	191	216	17	324
Konz. 5 - Synthese 1 - gealtert	192	218	19	341
Konz. 6 - Synthese 1 - gealtert	186	215	19	347

Tabelle 14: light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit unterschiedlichen Pt-Konzentrationen

Heraeus

Abbildung 13: Maximale NO_x-Konversion für diverse Pt-Konzentrationen

Die in Tabelle 14 enthaltenen Werte zeigen klar, dass die Pt-Konzentration im Washcoat nur einen sehr geringen Einfluss auf die CO- und HC-Oxidation hat und alle Katalysatoren zeigen ähnliche Light-off Temperaturen im frischen wie im gealterten Zustand. Auf der anderen Seite ist zu beobachten, dass die NO_x-Oxidation stark von der Pt-Konzentration abhängig ist und mit höher werdenden Pt-Konzentrationen im Washcoat zunimmt. Die optimale Pt-Konzentration ist Konzentration 4. Bei weiterer Erhöhung der Konzentration sinkt der maximale NO_x-Umsatz wieder.

Vier Keramikwaben wurden dann mit verschiedenen Mengen von dem optimal konzentrierten Washcoat beschichtet, um den Gehalt an Pt in Waben zwischen 15 g/ft³ und 100 g/ft³ zu variieren. Diese vier Waben wurden anschließend intern vermessen und die Ergebnisse dieser Tests sind in Tabelle 15 und Abbildung 14 dargestellt.

Heraeus

Abbildung 14: Maximale NO_x-Konversion für diverse Pt-Gehalte

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
100 g/ft ³ - frisch	139	165	56	302
60 g/ft ³ - frisch	158	179	59	312
30 g/ft ³ - frisch	166	190	59	308
15 g/ft ³ - frisch	189	203	49	325
100 g/ft ³ - gealtert	171	191	25	327
60 g/ft ³ - gealtert	178	202	20	349
30 g/ft ³ - gealtert	191	216	17	324
15 g/ft ³ - gealtert	205	228	8	388

Tabelle 15: light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit unterschiedlichen Pt-Gehalten

Wie erwartet steigt die Aktivität für CO und HC mit steigendem Pt-Gehalt in den Waben. Die Light-off Temperaturen für die mit 100 g/ft³ Pt beschichtete Wabe sind bis zu 50 °C bzw. 40 °C niedriger verglichen mit dem Katalysator, der mit 15 g/ft³ Pt beschichtet wurde. Erstaunlicherweise weisen die Katalysatoren beschichtet mit 30, 60 und 100 g/ft³ ähnliche frische NO_x-Konversion auf. Bei weiterer Verminderung des Pt-Gehalts nimmt die NO_x-Konversion tendenziell wieder ab. Diese Ergebnisse zeigen deutlich, dass die frische NO_x-Aktivität hauptsächlich von der Pt-Konzentration (im Washcoat) und nicht von der Gesamt-Pt-Menge (auf der Wabe) abhängt.

Die Washcoats mit Pt-Konzentration 1 und 4 wurden getrocknet und kalziniert. Die erhaltenen Pulver wurden mit Transmissionselektronenmikroskopie (TEM) untersucht, um den Einfluss der Pt-Konzentration auf die Aktivität zu verstehen. Abbildung 15 unten zeigt die TEM-Bilder für die beiden untersuchten Washcoatproben. Auf den Bildern sind die unterschiedlichen Pt-Konzentrationen deutlich zu erkennen, die Partikelgröße scheint in beiden Proben aber sehr ähnlich zu sein. Das wurde auch durch die Bestimmung der Partikelgrößenverteilung (s. Abbildung 16 unten) bestätigt. Beide Katalysatoren zeigen sehr ähnliche Partikelgrößen und die meisten Partikel haben einen Durchmesser zwischen 2 nm bis 3 nm. Die Differenz in der Aktivität kann damit durch Unterschiede in der Pt-Partikelgröße nicht erklärt werden.

Eingehende Darstellung

Abbildung 15: TEM Bilder der Washcoatpulver mit unterschiedlichen Pt-Konzentrationen (Konz. 1- Konz. 4)

Abbildung 16: Partikelgrößeverteilung für unterschiedlichen Pt-Konzentrationen (Konz. 1 – Konz. 4)

Washcoatpulver mit verschiedenen Pt-Konzentrationen wurden schon früher dem Partner TUF für DRIFTS Messungen zur Verfügung gestellt. Einige dieser Washcoats wurden für Beschichtungen benutzt, die dann an die TU Freiberg verschickt wurden. Die Ergebnisse dieser Tests sind in Abbildung 17 zusammengefasst. Die Pt-Konzentrationen sind nicht exakt gleich wie in den Proben, die wir intern verwendet haben, aber wir sehen eine ähnliche Tendenz. Der Katalysator, der mit dem Washcoat mit einer ähnlichen Konzentration wie Konzentration 4 beschichtet wurde, zeigt den höchsten NO_x-Umsatz (66%).

Die NO_x-Aktivität von reinen Pt-Katalysatoren ist stark abhängig von der EM-Konzentration in dem verwendeten Washcoat und die höchste NO_x-Konversion wurde mit der optimalen Pt-Konzentration 4 erreicht. Wir entschlossen uns, den Einfluss des Pt/Pd Verhältnisses bei dieser EM-Konzentration näher zu untersuchen, indem wir drei neue Washcoats mit steigendem Pd-Anteil herstellten. Keramikwaben wurden dann so beschichtet, dass der Gehalt an EM in allen Waben bei 30 g/ft³ (Ziel des EDMIN-Projekts) liegt. Die Waben wurden anschließend im frischen Zustand und nach hydrothermaler Alterung intern vermessen. Die Ergebnisse dieser Tests sind in Tabelle 16 und Abbildung 18 unten dargestellt. Die Ergebnisse der Referenz (45 g/ft³ Pt) sowie die Ergebnisse einer 30 g/ft³ Pt only Wabe (beschichtet mit einem optimal konzentrierten Washcoat) sind ebenfalls zum Vergleich eingefügt.

Heraeus

Abbildung 18: Maximale NO_x-Konversion für diverse Pt/Pd Verhältnisse

Wie erwartet, lässt die frische NO-Oxidationsaktivität von Katalysatoren mit steigendem Pd-Anteil nach. Die Katalysatoren mit relativ niedrigen Pd-Anteilen (7:1 und 4:1) weisen trotzdem eine höhere Aktivität im Vergleich zu der Referenz auf. Bei weiterer Erhöhung des Pd-Anteils (2:1) nimmt die frische NO_x-Konversion deutlich ab. Nach hydrothermale Alterung zeigen die Katalysatoren mit hohem Pd-Anteil deutlich bessere Aktivität für CO und HC Oxidation mit bis zu 30 °C bzw. 40 °C niedrigen Light-off Temperaturen verglichen mit dem reinen Pt-System. Die bimetallischen Syteme zeigen auch eine verbesserte NO_x-Oxidationsaktivität mit bis zu 5% höheren NO_x-Umsätzen im Vergleich zu dem reinen Pt-Katalysator.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
30 g/ft ³ Pt only frisch	166	190	59	308
30 g/ft ³ PtPd 7:1 frisch	169	182	51	311
30 g/ft ³ PtPd 4:1 frisch	163	177	47	320
30 g/ft ³ PtPd 2:1 frisch	160	175	36	344
45 g/ft ³ Pt only Ref. frisch	186	201	44	324
30 g/ft ³ Pt only gealtert	191	216	17	324
30 g/ft ³ PtPd 7:1 gealtert	171	180	23	349
30 g/ft ³ PtPd 4:1 gealtert	161	173	23	346
30 g/ft ³ PtPd 2:1 gealtert	159	177	17	397
45 g/ft ³ Pt only Ref. gealtert	200	217	11	324

Tabelle 16: light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit unterschiedlichen Pt/Pd Verhältnissen

2.1.3.5.3. Einfluss eines Pre-coatings

Die mit hoher EM-Konzentration beschichteten Katalysatoren zeigen eine deutlich bessere NOx-Oxidationsaktivität. Die Washcoatmengen auf diesen Katalysatoren sind aber relativ niedrig und könnten zu einer schlechten thermischen Stabilität bei realen Motorbedingungen führen. Eine mögliche Lösung zur Verbesserung dieser Stabilität könnte ein Pre-coating des monolithischen Trägers sein, auch um das aktive Material bestmöglich im Kanal zu verteilen. Einige Katalysatoren wurden auf

Eingehende Darstellung

dieser Basis hergestellt. Diese Systeme wurden zuerst mit einem reinen Aluminiumoxid-Washcoat beschichtet. Nach einem Kalzinierungsschritt wurden die Katalysatoren dann mit einer optimal konzentrierten Washcoatbeschichtung (Pt only oder Pt/Pd 7:1) beschichtet, um eine gesamte EM-Beladung von 30 g/ft³ auf den Waben zu erreichen. Die Katalysatoren wurden anschließend intern vermessen und die Ergebnisse dieser Tests sind in Tabelle 17 und Abbildung 19 unten dargestellt. Die Ergebnisse der entsprechen Katalysatoren ohne Pre-coating sind ebenfalls zum Vergleich eingefügt.

T ₅₀ CO	T ₅₀ HC	$X_{max} NO_x$	$T_{Xmax} NO_x$
(°C)	(°C)	(%)	(°C)
166	190	59	308
177	193	49	328
169	182	51	311
160	175	45	334
191	216	17	324
196	218	13	348
171	180	23	349
171	182	23	342
	T ₅₀ CO (°C) 166 177 169 160 191 196 171 171	T ₅₀ CO T ₅₀ HC (°C) (°C) 166 190 177 193 169 182 160 175 191 216 196 218 171 180 171 182	T ₅₀ CO T ₅₀ HC X _{max} NO _x (°C) (°C) (%) 166 190 59 177 193 49 169 182 51 160 175 45 191 216 17 196 218 13 171 180 23 171 182 23

Tabelle 17: Einfluss vom Pre-coating auf die light-off Temperaturen und NO_x-Umsätze

Abbildung 19: Einfluss vom Pre-coating auf die maximale NO_x-Konversion

Die Zugabe eines Pre-coatings bringt leider keine Verbesserung in Vergleich zu den ohne dieses zusätzliche Pre-coating hergestellten Katalysatoren. Die light-off Temperaturen für CO und HC (sowohl frisch als auch gealtert) der mit Pre-coating beschichteten Katalysatoren sind ähnlich verglichen mit denen, die für die ohne Pre-coating Systeme beobachtet worden sind. Weiterhin führt die Zugabe dieses Pre-coatings zu einer Verringerung des maximalen NO_x-Umsatzes, insbesondere im frischen Zustand. Eine mögliche Erklärung für diesen Effekt könnte sein, dass Pt nicht perfekt auf dem Aluminiumoxid fixiert ist, wenn der Washcoat mittels Synthese 1 hergestellt wird. Das Pt ist somit während der zweiten Schichtbeschichtung in der Lage, in das Pre-coating zu wandern. Dies führt zu einer Abnahme der Pt-Konzentration, die bereits einen negativen Einfluss auf die NO_x-Oxidationsaktivität der Katalysatoren hatte.

Eingehende Darstellung

2.1.3.5.4. Synthese (2)

Die Edelmetallkonzentration kann einen großen Einfluss auf die NO_x-Oxidation haben. Da die Waben bisher nach Synthese 1 präpariert wurden, wollten wir ermitteln, ob dieselbe Tendenz auch für Katalysatoren gilt, die nach Synthese 2 präpariert wurden. Washcoats mit verschiedenen Pt-Konzentrationen (Konz. 1 bis 6 in der Tabelle 18 unten) wurden präpariert und auf Waben beschichtet. Die Washcoatmengen wurden entsprechend angepasst, um eine Edelmetallkonzentration von 30g/ft³ auf den Waben zu erreichen. Die Ergebnisse dieser Tests sind in Tabelle 18 und Abbildung 20 unten dargestellt.

Wieder einmal zeigt sich, dass die Pt-Konzentration einen sehr begrenzten Einfluss auf die CO- und HC-Oxidation hat. Alle Katalysatoren zeigen ähnliche Light-Off-Temperaturen im frischen wie gealterten Zustand. Die maximale NO_x-Konversion zeigt einen ähnlichen Trend im Vergleich zu den Waben, die anhand der Synthese 1 präpariert wurden, und tendenziell steigt die NO_x-Konversion mit steigender Pt-Konzentration im Washcoat. Die optimale Konzentration für Synthese 2 ist leicht verschoben verglichen zu Synthese 1 Katalysatoren. Die höchste NO_x-Konversion wird beim Washcoat mit Pt Konzentration 5 erreicht. Bei weiterer Erhöhung der EM-Konzentration nimmt die NO_x-Konversion tendenziell wieder ab.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Konz. 1 - Synthese 2 - frisch	172	185	25	351
Konz. 2 - Synthese 2 - frisch	170	187	32	350
Konz. 3 - Synthese 2 - frisch	160	183	42	336
Konz. 4 - Synthese 2 - frisch	163	187	52	318
Konz. 5 - Synthese 2 - frisch	171	194	57	309
Konz. 6 - Synthese 2 - frisch	163	187	51	314
Konz. 1 - Synthese 2 - gealtert	200	217	7	378
Konz. 2 - Synthese 2 - gealtert	196	219	9	349
Konz. 3 - Synthese 2 - gealtert	187	213	13	349
Konz. 4 - Synthese 2 - gealtert	189	217	15	350
Konz. 5 - Synthese 2 - gealtert	190	217	18	332
Konz. 6 - Synthese 2 - gealtert	186	216	21	333

Tabelle 18: Light-off Temperaturen und NO_x-Umsätze für Katalysatoren mit unterschiedlichen Pt-Konzentrationen

Eingehende Darstellung

2.1.3.5.5. Einfluss eines Pre-coatings

Für die mit Synthese 1 hergestellten Washcoats wirkt sich der Zusatz eines Pre-coatings negativ auf die NO_x-Oxidationsaktivität aus, da das Pt nicht perfekt auf dem Träger fixiert ist. Die mit Synthese 2 hergestellten Katalysatoren sollten eine verbesserte Pt-Fixierung aufweisen und daher bei Zugabe eines Pre-coatings ein unterschiedliches Verhalten zeigen. Einige Waben wurden zuerst mit einem reinen Aluminiumoxid-Washcoat (ohne EM) beschichtet. Drei verschiedene Schichtdicken wurden getestet, um die gleichen Gesamtkonzentrationen zu erreichen wie diejenige, die für die Konzentrationsuntersuchung verwendet worden sind (Konzentration 1 bis 3). Nach einem Kalzinierungsschritt wurden die Katalysatoren weiter mit einem Pt-Washcoat (Konzentration 4, Synthese 2) beschichtet, um eine Pt-Beladung von 30 g/ft³ auf den Waben zu erreichen. Die Ergebnisse der an diesen Systemen durchgeführten Tests sind in Tabelle 19 und Abbildung 21 dargestellt.

Heraeus

Katalysatoren		T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
Konz. 1 - Synthese 2 - frisch	172	185	25	351
Konz. 2 - Synthese 2 - frisch	170	187	32	350
Konz. 3 - Synthese 2 - frisch	160	183	42	336
Konz. 4 - Synthese 2 - frisch	163	187	52	318
Konz. 1 - Synthese 2 + Pre-coating - frisch	171	188	51	314
Konz. 2 - Synthese 2 + Pre-coating - frisch	166	189	50	321
Konz. 3 - Synthese 2 + Pre-coating - frisch	164	185	49	321
Konz. 1 - Synthese 2 - gealtert	200	217	7	378
Konz. 2 - Synthese 2 - gealtert	196	219	9	349
Konz. 3 - Synthese 2 - gealtert	187	213	13	349
Konz. 4 - Synthese 2 - gealtert	189	217	15	350
Konz. 1 - Synthese 2 + Pre-coating - gealtert	189	214	16	330
Konz. 2 - Synthese 2 + Pre-coating - gealtert	190	217	15	319
Konz. 3 - Synthese 2 + Pre-coating - gealtert	186	213	16	330

Tabelle 19: Einfluss vom Pre-coating auf die light-off Temperaturen und NO_x-Umsätze

Abbildung 21: Einfluss vom Pre-coating auf die maximale NO_x-Konversion

Es bestätigt sich, dass die Zugabe eines Pre-coatings keinen Einfluss auf die CO- und HC-Oxidationsaktivität und die light-off Temperaturen für CO und HC (sowohl frisch als auch gealtert) hat. Die mit Pre-coating beschichteten Katalysatoren sind ähnlich im Vergleich zu denen, die ohne Precoating beschichtet wurden. Darüber hinaus zeigen auch die mit Zusatz eines Pre-coating hergestellten Systeme einen sehr ähnlichen NO_x-Umsatz gegenüber dem ursprünglichen mit Konzentration 4 beschichteten Katalysator (sowohl im frischen Zustand als auch nach HT-Alterung). Dies lässt den Schluss zu, dass die zur Herstellung dieser Katalysatoren verwendete Synthese 2 zu einer besseren

Heraeus

Fixierung des Pt auf dem Aluminiumoxid Träger führt. Damit ist das Pt nicht mehr in der Lage, in die Pre-coat-Schicht zu wandern, und die Konzentration in der aktiven Schicht bleibt konstant und gleich wie bei der ursprünglichen Konzentration 4.

2.1.3.6. Einfluss von Promotoren und EM-Kombinationen

Die NO_x-Aktivität von reinen Pt-Katalysatoren ist stark abhängig von der EM-Konzentration in dem verwendeten Washcoat und die höchste frische NO_x-Konversion wurde mit der optimalen Pt-Konzentration 4 erreicht. Diese reinen Pt-Systeme zeigen aber relativ geringe thermische Stabilität und die Aktivität, insbesondere die NO_x-Oxidationsaktivität nimmt nach hydrothermaler Alterung stark ab. Pt/Pd bimetallische Systeme zeigten zwar eine verbesserte thermische Stabilität aber die Zugabe von Pd kann auch einen negativen Effekt auf die Schwefeltoleranz dieser Katalysatoren haben. Wir entschlossen uns, den Einfluss von anderen Edelmetallkombinationen näher zu untersuchen, indem zwei optimal konzentrierte EM-Washcoats mit verschiedenen EM-Kombinationen (Pt/Ir und Pt/Re) herstellt wurden. Einige Waben wurden dann beschichtet, um einen Gehalt an EM von 30 g/ft³ zu erreichen. Die Light-off Temperaturen und NO_x-Konversion dieser Katalysatoren sind in Tabelle 20 (unten) aufgelistet. Zum Vergleich wurden die Werte der Pt- und Pt/Pd-Systeme in die Tabelle mit eingefügt. Die Zugabe von Ir oder Re führt leider zu keiner Verbesserung der thermischen Stabilität der Katalysatoren und die zwei neuen bimetallischen Systeme zeigen nach Alterung ähnlichen oder sogar leicht niedrigeren NO_x-Umsätze verglichen mit dem reinen Pt-Katalysator.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
30 g/ft ³ Pt only frisch	166	190	59	308
30 g/ft ³ PtPd 7:1 frisch	169	169 182 51 311		311
30 g/ft ³ PtRe 7:1 frisch	178	196	53	332
30 g/ft ³ PtIr 7:1 frisch	173	196	40	334
30 g/ft ³ Pt only gealtert	191	216	17	324
30 g/ft ³ PtPd 7:1 gealtert	171	180	23	349
30 g/ft ³ PtRe 7:1 gealtert	199	225	12	361
30 g/ft ³ PtIr 7:1 gealtert	187	216	14	448

 Tabelle 20: light-off Temperaturen und NOx-Umsätze für verschiedene EM-Kombinationen

Eine andere Möglichkeit, um die thermische Stabilität der Katalysatoren zu verbessern, ist die Zugabe von Nichtedelmetall-Promotoren. Um den Einfluss von Promotor (1) zu untersuchen, wurden vier Pt-Washcoats präpariert mit steigendem Promotor-Anteil (zwischen 1 % und 10 %). Die optimale EM-Konzentration 4 wurde gehalten und die Waben wurden beschichtet, um einen Pt-Gehalt von 30 g/ft³ zu erreichen. Die Ergebnisse der an diesen Systemen geführten Tests sind in Tabelle 21 und Abbildung 22 dargestellt. Die Ergebnisse einer 30 g/ft³ Pt only Wabe ohne Promotor (1) sind ebenfalls zum Vergleich eingefügt.

Heraeus

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
30 g/ft ³ Pt frisch	166	190	59	308
30 g/ft ³ Pt + 1 % Promotor (1) frisch	193	208	43	350
30 g/ft ³ Pt + 3 % Promotor (1) frisch	203	222	17	356
30 g/ft ³ Pt + 5 % Promotor (1) frisch	202	221	21	375
30 g/ft ³ Pt + 10 % Promotor (1) frisch	200	220	16	385
30 g/ft ³ Pt gealtert	191	216	17	324
30 g/ft ³ Pt + 1 % Promotor (1) gealtert	211	226	23	346
30 g/ft ³ Pt + 3 % Promotor (1) gealtert	217	230	25	318
30 g/ft ³ Pt + 5 % Promotor (1) gealtert	227	238	24	321
30 g/ft ³ Pt + 10 % Promotor (1) gealtert	219	230	24	341

Tabelle 21: Einfluss vom Promotor (1) auf die light-off Temperaturen und NO_x-Umsätze

Abbildung 22: Einfluss vom Promotor (1) auf die NO_x-Oxidationsaktivität

Die Zugabe von Promotor (1) führt leider zur Abnahme der frischen Aktivität und die neuen Katalysatoren zeigen im frischen Zustand deutlichen höheren CO- und HC-Light-off Temperaturen im Vergleich zu dem Katalysator ohne Promotor (1). Die frische NO_x-Oxidationsaktivität nimmt auch mit steigenden Promotor-Anteil ab und die neuen Katalysatoren zeigen NO_x-Umsätze bis 40 % niedriger verglichen mit dem Katalysator ohne Promotor (1). Nach hydrothermaler Alterung zeigen die neuen mit Promotor (1) präparierten Systeme eine deutlich bessere NO_x-Konversion im Vergleich zu dem Pt only Katalysator. Proben dieser Formulierungen wurden nicht zur TU Freiberg versandt, da wir keine Verbesserung der Frischaktivität durch Zugabe vom Promotor (1) erkennen konnten.

Eingehende Darstellung

2.1.3.7. Mechanistische Studie – Vergiftung mit Schwefel

Washcoatpulver wurden dem Partner TU Freiberg zur Verfügung gestellt, um eine mechanistische Studie durchzuführen. Ziel der Studie war es, den Einfluss von verschiedenen Parametern auf die Vergiftung mit Schwefel mittels DRIFTS-Messungen zu untersuchen. Diese Washcoats wurden auch für Beschichtungen benutzt, die intern vermessen wurden und dann auch an die TU Freiberg verschickt wurden.

2.1.3.7.1. Einfluss der Acidität des Aluminiumoxids

Drei neuen Materialien, basierend auf Al₂O₃, aber mit veränderter Acidität wurden vom Hersteller bezogen. Diese drei Träger sind mit b (basisch), a (amphoter) und s (sauer) gekennzeichnet. Diese drei neuen Materialien wurden mit der optimalen Konzentration 4 edelmetallisiert und einige Waben wurden anschließend beschichtet, um einen Pt-Gehalt von 30 g/ft³ zu erreichen. Die Ergebnisse der an diesen Katalysatoren durchgeführten Tests sind in Tabelle 22 und Abbildung 23 dargestellt.

Abbildung 23: Umsatzkurven von NO_x für die Katalysatoren mit veränderter Acidität (HDE)

Die in Abbildung 23 dargestellten NO_x-Umsatzkurven zeigen, dass die frische NO_x-Oxidationsaktivität stark von der Acidität des Aluminiumoxids abhängt. Die maximale NO_x-Konversion für den mit Al₂O₃ (s) präparierten Katalysator liegt 30% höher im Vergleich zum dem mit basischen Aluminiumoxid hergestellten System. Eine mögliche Erklärung für diesen Effekt könnte sein, dass die Acidität des Aluminiumoxids zu einer Verminderung der Elektrondichte des Pt führt. Diese Pt-Partikeln mit niedrigerer Elektrondichte können nicht so leicht oxidiert werden und bleiben deswegen in einem reduzierten Zustand, der bekannt dafür ist, der aktivste Zustand für die NO_x-Oxidation zu sein.

Eingehende Darstellung

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
30 g/ft ³ Pt only auf Al ₂ O ₃ (b) - frisch	157	193	24	355
30 g/ft ³ Pt only auf Al ₂ O ₃ (a) - frisch	174	192	46	333
$30 \text{ g/ft}^3 \text{ Pt only auf Al}_2O_3$ (s) - frisch	175	196	54	334
$30 \text{ g/ft}^3 \text{ Pt only auf Al}_2\text{O}_3 \text{ (b) - gealtert}$	205	226	7	387
30 g/ft ³ Pt only auf Al ₂ O ₃ (a) - gealtert	198	220	14	339
30 g/ft ³ Pt only auf Al ₂ O ₃ (s) - gealtert	193	219	13	367

 Tabelle 22: Einfluss von der Acidität auf die light-off Temperaturen und NOx-Umsätze (Pt only Katalysatoren)

Die drei Aluminiumoxide wurden dann mit einer PtPd-Kombination (Verhältnis 7:1) beschichtet, um den Einfluss der Acidität auf solchen bimetallischen Systemen zu untersuchen. Einige Waben wurden anschließend beschichtet, um einen EM-Gehalt von 30 g/ft³ zu erreichen. Die light-off Temperaturen und maximalen NO_x-Umsätze sind in der Tabelle 23 unten zusammengefasst.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
30 g/ft ³ PtPd 7:1 auf Al ₂ O ₃ (b) - frisch	164	181	41	336
30 g/ft ³ PtPd 7:1 auf Al ₂ O ₃ (a) - frisch	155	174	43	335
30 g/ft ³ PtPd 7:1 auf Al ₂ O ₃ (s) - frisch	171	187	50	331
$30 \text{ g/ft}^3 \text{ PtPd 7:1 auf Al}_2\text{O}_3 \text{ (b) - gealtert}$	181	190	21	364
$30 \text{ g/ft}^3 \text{ PtPd 7:1 auf Al}_2\text{O}_3 (a) - \text{gealtert}$	171	182	22	369
$30 \text{ g/ft}^3 \text{ PtPd 7:1 auf Al}_2\text{O}_3 (s) - \text{gealtert}$	178	189	21	354

 Tabelle 23: Einfluss von der Acidität auf die light-off Temperaturen und NOx-Umsätze (Pt/Pd Katalysatoren)

Wie erwartet zeigen die mit Al₂O₃ (a) und (s) hergestellten bimetallischen Systeme eine leicht niedrigere frische NO_x-Konversion im Vergleich zu den entsprechenden Pt only Katalysatoren. Erstaunlicherweise zeigt das auf basischem Al₂O₃ (b) geträgerte PtPd-System eine deutlich bessere frische NOx-Oxidationaktivität verglichen mit dem Pt only Katalysator. Für diesen Effekt wurde noch keine Erklärung gefunden. Darüber hinaus weisen die bimetallischen Systeme eine bessere thermische Stabilität auf, was bereits bei den bisherigen Studien beobachtet wurde, und die Acidität hat keinen Einfluss auf diese Stabilität.

Diese internen Ergebnisse wurden bei der in Freiberg durchgeführten Messungen bestätigt. Abbildung 24 und Tabelle 24 stellen die maximalen NO_x-Umsätze sowie die Light-off Temperaturen für CO und HC dar.

Katalysatoren	T ₅₀ CO (°C)	T ₅₀ HC (°C)	X _{max} NO _x (%)	T _{Xmax} NO _x (°C)
30 g/ft ³ Pt only auf Al ₂ O ₃ (b) - frisch	186	199	44	360
$30 \text{ g/ft}^3 \text{ Pt only auf Al}_2O_3$ (a) - frisch	169	194	68	310
$30 \text{ g/ft}^3 \text{ Pt only auf Al}_2O_3$ (s) - frisch	155	187	72	310
30 g/ft ³ PtPd 7: 1auf Al ₂ O ₃ (b) - frisch	172	185	56	330
30 g/ft ³ PtPd 7:1 auf Al ₂ O ₃ (a) - frisch	180	192	58	340
30 g/ft ³ PtPd 7:1 auf Al ₂ O ₃ (s) - frisch	174	185	60	320

Tabelle 24: Einfluss von der Acidität auf die light-off Temperaturen und NO_x-Umsätze (TUF)

Abbildung 24: Umsatzkurven von NO_x für die Katalysatoren mit veränderter Acidität (TUF)

2.1.4. Aufskalierung - Motorprüfstandmessungen

Schon bei der Auswahl von neuartigen Katalysatorrohstoffen und auch bei der Anwendung neuer Syntheserouten wurde großer Wert auf eine später mögliche Übertragbarkeit in den industriellen Maßstab Produktionsübertragung gelegt. Eine Demonstration der erfolgte beim Meilensteinkatalysators indem motorenprüfstandstaugliche Katalysatoren gefertigt wurden. Zwei Keramikwaben (5,66" x 6" – 400 cpsi) wurden mit unserem Referenz-Washcoat auf 45 g/ft³ Pt beschichtet und zwei weitere Waben wurden mit dem neuentwickelten Pt only Meilenstein-Washcoat auf 35 g/ft³ (20% EM-Verminderung) bzw. 30 g/ft³ (30% EM-Verminderung) beschichtet. Diese drei Katalysatoren wurden dem Projektpartner HJS übergeben. Die Motorprüfstandergebnisse zeigen, dass der neuentwickelte 35 g/ft³ Pt Katalysator eine ähnliche Performanz aufweist im Vergleich zu dem 45g/ft³ Pt Referenzkatalysator. Der auf 30 g/ft³ Pt beschichtete Katalysator zeigt leider deutlich schlechtere NO_x-Oxidationsaktivität nach Alterung.

Nach unsere Studie über die lokale EM-Konzentration im Washcoat wurden zwei neuen Waben beschichtet. Eine Wabe wurde auf 30 g/ft³ Pt only beschichtet und die andere auf 30 g/ft³ PtPd 7:1. Die bimetallische Formulierung hat sich als die vielversprechendste Formulierung erwiesen und wurde dann für die Herstellung der Demonstratoren verwendet. Für die reale Anwendung wurden 4 Keramik Waben (10,3" x 3" – 400 cpsi) hergestellt. Zwei Waben wurden mit dem Referenz-Washcoat auf 45 g/ft³ Pt beschichtet und die zwei anderen wurden mit dem neuentwickelten PtPd 7:1 Washcoat auf 30 g/ft³ EM (30% EM-Verminderung) beschichtet. Diese Katalysatoren wurden dem Projektpartner HJS übergeben und sind seit Februar 2016 in einer realen Anwendung platziert worden.

Die Ergebnisse der beim Projektpartner HJS geleiteten Untersuchungen können dem von diesem Partner erstellten Abschlussbericht entnommen werden.

2.2. Zahlenmäßiger Nachweis

Der zahlenmäßige Nachweis wurde durch die Administration erstellt und wird dementsprechend gesondert der Projektträger/Fördermittelgeber zur Verfügung gestellt.

2.3. Notwendigkeit und Angemessenheit der geleisteten Arbeiten

Im Rahmen dieses Projekts konnte die gesamte Entwicklungskette eines Oxidationskatalysators mit reduziertem Edelmetall-Gehalt zur Abgasnachbehandlung von Non-Road-Maschinen von der Grundlagen bis zur Anwendung im Praxisbetrieb durchlaufen werden. Dabei konnten die Projektpartner auf den einzelnen Teilgebieten bzw. Entwicklungsschritten sehr weit voranschreiten und interessante Ergebnisse erzielen.

Die Laboruntersuchungen zur Verminderung der EM-Gehalt sowie das Upscaling und die Vorbereitung der Proben für Motorprüfstanduntersuchungen waren aufwendig und schwierig, so dass der Terminplan fortgeschrieben werden musste.

Aus den bisherigen Untersuchungen zeigte sich, dass Katalysatorformulierungen mit vermindertem EM-Gehalt gefunden wurden, die im Vergleich zum Referenzkatalysator eine ähnliche frische Aktivität aufweisen. Das Alterungsverhalten dieser Formulierungen war auch von zentralem Interesse für die Eignung in einem späteren realen System. Um hier aussagekräftige Ergebnisse zu erhalten waren Alterungszyklen erforderlich, die einen hohen zeitlichen Aufwand erforderten und die iterative Weiterentwicklung und Optimierung der Formulierungen verlangsamte.

Im Rahmen des Projektes wurde wie vorgesehen ein Demonstrator entwickelt. Der Einsatz der neuentwickelten Katalysatoren in einer realitätsnahen Anwendung über einen hinreichend langen Zeitraum ist ein wichtiges Kriterium für die Katalysatorentwicklung und Verifizierung des Projektzieles. Die Projektverlängerung ermöglichte die notwendigen Arbeiten zur Katalysatorbewertung durchzuführen.

2.4. Nutzen, Verwertbarkeit und Fortschreibung der Verwertung

Abgaskatalysatoren von Heraeus zur Reinigung von motorischen und industriellen Abgasen werden in verschiedenen Gebieten, darunter auch in dem betrachteten Bereich der Non-Road Machinery eingesetzt um Emissionen zu vermindern und somit zum Umweltschutz beizutragen. Mit dem Erfolg des Projektes ist es gelungen einen wesentlichen Teil der Materialkosten dieser Katalysatoren signifikant zu reduzieren und damit auch die Anschaffungskosten der Heraeus-Produkte erheblich zu senken. Durch diesen Vorteil wird es Heraeus möglich neue Märkte zu erschließen und den Umsatz in diesem Geschäftssegment zu steigern.

2.5. Fortschritt während des Vorhabens bei anderen Stellen

Bis zum Projektende sind keine weiteren relevanten Forschungsergebnisse Dritter bekannt geworden.

2.6. Veröffentlichung der Ergebnisse

- Auf dem BMBF Forum MatRessource vom 24.09.2014 bis 25.09.2014 im Darmstadt wurden die Zwischenergebnisse des Vorhabens in Form eines Vortrages und eines Posters dargestellt.
- Im November 2015 erfolgte bei der 13. FAD-Konferenz "Herausforderung Abgasnachbehandlung für Dieselmotoren" die Vorstellung des Projekts EDMIN in Form eines Vortrages.
- Auf dem BMBF Forum MatRessource vom 28.09.2016 bis 29.09.2016 im Darmstadt wurden die Endergebnisse des Projekts EDMIN in Form eines Vortrages und eines Posters präsentiert.

Abbildungsverzeichnis

Heraeus

Abbildungsverzeichnis

Abbildung 1: Nachfrage nach den Edelmetallen Platin und Palladium	6
Abbildung 2: Entwicklung des Platin- und Palladium-Handelspreises an der Londoner Börse	6
Abbildung 3: Synthesegasanlage bei HDE	9
Abbildung 4: Pulverreaktor verwendet bei HDE	0
Abbildung 5: Umsatzkurven von CO, HC und NO für Variante mit Al_2O_3 (3) (farbig) und die	
Referenzprobe (grau)11	1
Abbildung 6: Umsatzkurven von NO _x für die Katalysatoren mit veränderten Porengrößen 13	3
Abbildung 7: Umsatzkurven von NO _x für die Katalysatoren mit veränderten Korngrößen 14	4
Abbildung 8: Umsatzkurven von NO für Katalysatoren präpariert mit unterschiedlichen Methoden. 1	5
Abbildung 9: Umsatzkurven von NO für die Katalysatoren präpariert mit unterschiedlichen Pt/Pd	
Verhältnissen10	6
Abbildung 10: Katalysatoranordnung – Washcoat Mischung, Zonenbeschichtung und	
Lagenbeschichtung	7
Abbildung 11: Umsatzkurven von NO für die Meilensteinkatalysatoren im Vergleich zur Referenz	
(HDE)	9
Abbildung 12: Umsatzkurven von NO für die Meilensteinkatalysatoren im Vergleich zur Referenz	
(TUF)	0
Abbildung 13: Maximale NO _x -Konversion für diverse Pt-Konzentrationen	2
Abbildung 14: Maximale NO _x -Konversion für diverse Pt-Gehalte	3
Abbildung 15: TEM Bilder der Washcoatpulver mit unterschiedlichen Pt-Konzentrationen (0,81 % -	
2,82 %)	4
Abbildung 16: Partikelgrößeverteilung für unterschiedlichen Pt-Konzentrationen (0,81 % - 2,82 %). 24	4
Abbildung 17: Maximale NO _x -Konversion für diverse Pt-Konzentrationen (TUF) 2!	5
Abbildung 18: Maximale NO _x -Konversion für diverse Pt/Pd Verhältnisse	6
Abbildung 19: Einfluss vom "edge-filler" Schicht auf die maximale NO _x -Konversion 2 ⁻	7
Abbildung 20: Maximale NO _x -Konversion für diverse Pt-Konzentrationen 29	9
Abbildung 21: Einfluss vom "edge-filler" Schicht auf die maximale NO _x -Konversion	0
Abbildung 22: Einfluss vom Promotor (1) auf die NOx-Oxidationsaktivität	2
Abbildung 23: Umsatzkurven von NOx für die Katalysatoren mit veränderter Acidität (HDE)	3
Abbildung 24: Umsatzkurven von NO _x für die Katalysatoren mit veränderter Acidität (TUF)	5

Tabellenverzeichnis

Heraeus

Tabellenverzeichnis

Tabelle 1: Gaszusammensetzung und Messbedingungen bei HDE
Tabelle 2: Referenzwerte im frischen Zustand und nach Alterung für die Referenzprobe mit 45 g/ft3
Pt
Tabelle 3: Alterungsbedingungen (hydrothermale Alterung und Schwefel Alterung
Tabelle 4: frische Aktivität der Katalysatoren der ersten Iteration verglichen mit der Referenz 12
Tabelle 5: light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit veränderten Porengrößen
Tabelle 6: light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit veränderten Korngrößen 14
Tabelle 7: light-off Temperaturen und NO _x -Umsätze für Katalysatoren präpariert mit
unterschiedlichen Methoden
Tabelle 8: Dispersionsmessungen für Katalysatoren präpariert mit unterschiedlichen Methoden 15
Tabelle 9: light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit unterschiedlichen Pt/Pd
Verhältnissen
Tabelle 10: frischen light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit unterschiedlichen
Anordnungen
Tabelle 11: gealterten light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit
unterschiedlichen Anordnungen
Tabelle 12: light-off Temperaturen und NO _x -Umsätze für die Meilensteinkatalysatoren im Vergleich
zur Referenz (HDE)
Tabelle 13: light-off Temperaturen und NOx Umsätze für die Meilensteinkatalysatoren im Vergleich
zur Referenz (TUF)
Tabelle 14: light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit unterschiedlichen Pt-
Konzentrationen
Tabelle 15: light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit unterschiedlichen Pt-
Gehalten
Tabelle 16: light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit untershiedlichen Pt/Pd
Verhältnissen
Tabelle 17: Einfluss vom "edge-filler" Schicht auf die light-off Temperaturen und NO _x -Umsätze 27
Tabelle 18: Light-off Temperaturen und NO _x -Umsätze für Katalysatoren mit unterschiedlichen Pt-
Konzentrationen
Tabelle 19: Einfluss vom "edge-filler" Schicht auf die light-off Temperaturen und NO _x -Umsätze 30
Tabelle 20: light-off Temperaturen und NO _x -Umsätze für verschiedene EM-Kombinationen
Tabelle 21: Einfluss vom Promotor (1) auf die light-off Temperaturen und NO _x -Umsätze
Tabelle 22: Einfluss von der Acidität auf die light-off Temperaturen und NO _x -Umsätze (Pt only
Katalysatoren)
Tabelle 23: Einfluss von der Acidität auf die light-off Temperaturen und NO _x -Umsätze (Pt/Pd
Katalysatoren)
Tabelle 24: Einfluss von der Acidität auf die light-off Temperaturen und NO _x -Umsätze (TUF)

Berichtblatt

A 1.1 Berichtblatt deutsch

1.	ISBN oder ISSN	2. Berichtsart (Schlussbericht oder Veröffentlichung)				
		Schlussbericht				
3.	litel					
	boi Non Road Maschin	op (EDMIN)	rten Edelm	etali-Genalt für die Abgasternigung		
4	Autor(on) [Namo(n))/		E C	Absoblyssedatum das Varbabans		
4.	Autor(en) [Name(n), vorname(n)]		5. 7	Abschlussuatum des vorhabens		
	Dr. Rainer Kiemel		6 1	Veröffentlichungsdatum		
	Dr. Christian Breuer		0.	31 01 2016		
	Dr. Santiago Casu		7 1	Form der Publikation		
			7. 6	Schlussbericht		
8.	Durchführende Institut	ion(en) [Name, Adresse]	9. 1	Ber. Nr. Durchführende Institution		
			-			
	Heraeus Deutschland G	SmbH & Co. KG	10.	Förderkennzeichen		
	Heraeusstraße 12-14		(03X3580B		
	63450 Hanau		11. 9	Seitenzahl		
			41			
12.	Fördernde Institution (Name, Adresse)	13. I	Literaturangaben		
	·	. ,		21		
	Bundesministerium für		14. 1	Tabellen		
	Bildung und Forschung	(BMBF)		24		
	53175 Bonn		15. /	Abbildungen		
			Ĩ	24		
16.	Zusätzliche Angaben					
	-					
17.	Vorgelegt bei (Titel, Or	t, Datum)				
	Projektträger Jülich, Forschungszentrum Jülich GmbH, 52425 Jülich					
18.	. Kurzfassung					
	Ziel des Projekts war die	e Entwicklung von Oxidationskal	talysatoren	mit minimierten Edelmetall-Gehalt		
	zur Entfernung der Schadstoffe CO, Kohlenwasserstoffe und NO _x aus dem Abgas von Non-Road-					
	Maschinen. Angestrebt war eine Verringerung der EM-Beladung um mindestens 30 % gegenüber			g um mindestens 30 % gegenüber		
	thermischer/hydrother	maler Stabilität und Vergiftung	ss udillit srosistonz (ein venust an Performance,		
	Die Katalysatorentwic	klung erfolgte durch gezielt.	Nariation	n von Basisoviden Promotoren		
	Edelmetall-Vorläuferve	arhindungen oder Pränarati	- variation	en Die Leistungsfähigkeit der		
	neuentwickelten Syst	eme wurde mittels Synthes	egasmessu	ngen ermittelt und mit einem		
	Referenzkatalysator verglichen			ingen erintten und inte einem		
	Die Erkenntnisse welche im Rahmen des Vorhabens gesammelt werden konnten führten zur			nelt werden konnten, führten zur		
	Präparation einer PtPc	l (Verhältnis 7:1) bimetallischer	n Formulie	rung mit hoher EM-Konzentration.		
	Diese Formulierung wu	urde mit der Herstellung eines I	Demonstrat	tors im realen Maßstab umgesetzt,		
	welcher in einer realen Anwendung eingebaut wurde um die Wirksamkeit des neuentwickelten Katalysatorsystems nachzuweisen bzw. dessen Alterungsverhalten zu untersuchen. Der Demonstrator konnte im Berichtzeitraum über eine Dauer von ca. 500 h getestet werden. Im frischen			Wirksamkeit des neuentwickelten		
				verhalten zu untersuchen. Der		
	Zustand sowie nach	diese 500 h Alterung zeigt	der mit	30 g/ft ³ Edelmetall beschichtete		
	neuentwickelte Katalys	ator eine ähnliche Performanz i	m Vergleicl	h zu dem mit 45 g/ft ³ beschichteten		
	Referenzkatalysator.					
19.	Schlagwörter					
	Oxidationskatalysator,	minimierter Edelmetall-Gehalt,	thermische	er Stabilität, Synthesegasmessung,		
	reale Anwendung					
20.	verlag		21.	Preis		

Berichtblatt

A 1.2 Berichtblatt englisch

1.	ISBN oder ISSN	2. Type of document (eg. report, publication)			
		Final report			
3.	Title				
	Development of oxidat	ion catalysts with lower preciou	is metal content for the exhaust gas		
	treatment of non-road	eatment of non-road applications.			
4.	Author(s) [family name	e(s), first name(s)]	5. End of project		
	-		31.07.2016		
	Dr. Rainer Kiemel		6. Publication date		
	Dr. Christian Breuer		31.01.2017		
	Dr. Santiago Casu		7. Form of publication		
			Final report		
8.	Performing organizatio	on(s) [name, adress]	9. Originator's report number		
	Line and Dente shier of C		-		
	Heraeus Deutschland G	SMDH & CO. KG	10. Reference number		
	Refacussificate 12-14		U3X3580B		
	05450 Halldu		11. Number of pages		
12	Chancering aganay (na)	ma adrass)	41 12 Number of references		
12.	sponsoring agency (nai	me, auress)	13. Number of references		
	Bundesministerium für		14 Number of tables		
	Bildung und Forschung	(BMBE)	24		
	53175 Bonn		15 Number of figures		
	001/0 00111		24		
16.	Supplementary notes				
_	-				
17.	Presented at (Title, Place, Date)				
	Projektträger Jülich, Fo	ger Jülich, Forschungszentrum Jülich GmbH, 52425 Jülich			
18.	Abstract				
	The aim of the project v	was the development of oxidatio	on catalysts with lower precious metal content		
	for the removal of CO,	, hydrocarbons and NO $_{\rm x}$ from t	he exhaust gas of non-road applications. The		
	final target was a diminution of the precious metal loading of at least 30 % compared to the current				
	state of the art without	ut any losses of the performan	ce, the thermal stability of the resistance to		
	poisoning.				
	nrecursors or prepara	tions methods. The performan	aces of the newly developed systems were		
	determined by means of synthetic gas measurements and compared with a reference catalyst				
	The findings, which w	ere collected during the project	t, led to the preparation of PtPd (ratio 7:1)		
	bimetallic formulation	with a high precious metal cond	entration. This formulation was implemented		
	on a real scale with the production of a prototype sample, which was incorporated in a real				
	application to evaluate the effectiveness of the newly developed catalytic system and to investigate				
	its ageing behavior. The sample could be tested for about 500 h during the reporting period. The new				
	catalyst prepared with	alyst prepared with a precious metal loading of 30 g/ft ³ shows similar performance compared to			
	the reference catalyst	alyst containing 45 g/ft ³ , both in the fresh state as well as after the 500 h ageing			
	period.				
19.	Keywords				
	Oxidation catalyst, low	dation catalyst, lower precious metal content, thermal stability, synthetic gas measurements,			
ļ	real application				
20.	Publisher		21. Price		