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Executive Summary 

RobustSENSE is a collaborative project funded by the European Commission under the ECSEL 

JU. It is composed of 15 partners including OEMs, scientific organisations and public entities 

from 5 European countries. 

Automated driving is one of the technological mega-trends in automotive industry today. Semi-

autonomous vehicles (SAE L3) are planned to be introduced on the market in a few years. 

Already today, partial automation is taking a role in normal driving (e.g. highway, intersection, 

etc.). The main challenge, which still remains, is the reliability and robustness of the sensor 

systems in all possible environmental conditions which can be a challenge for a human driver 

- also in conditions where driver support is especially needed.  

This document contains a high level description of the project collaborative work in terms of 

goals, achievements and results. We first discuss the project’s context and the reasons behind 

the need for a sensor platform followed by a brief overview of the project’s vision and 

objectives. Next we analyse the architectural requirements and describe the designed 

validation criteria and metrics. We then proceed to describe a state-of-the-art architecture 

with four layers, detailing the roles of the main components, their interactions, and the 

interfaces through which they operate. We also briefly discuss the different major sensor 

developments and specific innovations in order to give a realistic overview of what was 

achieved in terms of reliability of automated and autonomous driving functions for safe 

operation under all driving conditions. 

Chapter 7 highlights the perspectives of exploitation, addressing both technology and market 

aspects. Finally, a concluding section in chapter 8 reports about the major lessons learnt in 

the project with the aim to provide guidance for future initiatives. 

The project vision is a robust and reliable sensor platform for automated and assisted driving 

that will keep on working in harsh environmental conditions like snow, rain or sun-flare. While 

many of automated driving enabling technologies are still in a developmental or testing stage, 

advantages of the systems are visible: the ability to constantly scan the road for other vehicles, 

pedestrians, bicyclists, and potential hazards, and accurately navigate via a combination of 

onboard sensors and GPS data. 

The objective of the RobustSENSE project was to focus on the development of essential 

components and sensors for the realisation of sensor data fusion, scene understanding, 

behavioural planning, trajectory planning and improved sensor technologies. Furthermore, by 

implementing the resulting sensor platform in the demonstration vehicles, it showcased the 

potential these novel technologies will have in future driver assistance functions which are far 

more robust against adverse weather and light conditions. 
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Consequently, the main technical goal was to define, develop and evaluate measures for 

detecting performance degradation and reacting to adverse conditions on every level of an 

automated system all the way from a sensor level up to a strategy planning. 

The project architecture was designed to have a generic nature. It is scalable up for new 

sensors, modules or interfaces which cannot be foreseen today.  

The RobustSENSE system architecture is built on different layers. The layers relate to the 

data/information flow within an intelligent sensor system reacting to real world conditions, 

managing diversity and complexity: 

● Sensor layer: Sensor level components (hardware and software) and their output signals. 

Exact format of the sensor signal is not defined to remain flexible for new sensor units. 

● Data fusion layer: Having both low level sensor fusion for raw sensor data and high-level 

fusion modules for fusing object level data. 

● Understanding and planning layer: This takes care of scene understanding and decision 

making concerning desired vehicle control and intervention functions and planning of the 

right trajectory. 

All layers include performance assessment sub-modules, checking whether their performance 

over the time remain and correspond to the initial parameters. In addition, the specific system 

performance assessment sub-module exists for having overall assessment of the vehicle 

capability to survey the actual driving conditions. This is the most important contribution of 

RobustSENSE for increasing situation awareness performance of future autonomous vehicles. 

The key result from the RobustSENSE project was the introduction of reliable, secure, trustable 

sensors and software by implementing self-diagnosis, adaptation and robustness. A core 

concept of the project was to use ”metrics” to measure sensor system reliability at every level 

of an assistance and automation system. 
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1 The project context 

1.1 What is vehicle perception 

RobustSENSE was a collaborative project funded by the European Commission under the ECSEL 

JU. It was composed of 15 partners including OEMs, scientific organisations and public entities 

from 5 European countries. 

In this section, we offer a brief description of what constitutes environment perception on 

automated vehicles (AV).  

Perception is the process of transforming measures of the environment into an internal model. 

The kind of model (and the choice of the sensors) depends on the application. The advances 

in the field of AVs in recent years have been significant. The extent to which a vehicle is 

automated can vary from fully human operated (SAE L0) to fully autonomous (SAE L5). The SAE 

J3016 standard (1) introduces a scale from 0 to 5 classifying vehicle automation. 

To be able to release safe and reliable automated driving in real-world traffic, precise and 

comprehensive perception of the environment is fundamental. For perceiving the environment, 

today’s AVs use a combination of vehicular sensors. Several projects over the past 30 years 

have been carried out to push forward the development and testing of algorithms for 

environment perception and navigation of AVs. The main functions of environment perception 

for AVs are based on a lane and road detection, traffic sign recognition, vehicle tracking and 

scene understanding. 

One main requirement on AVs is that they need to be able to perceive and understand their 

surroundings in real time. It also faces the challenge of processing large amount of data from 

multiple sensors such as camera, radar or LiDAR. With perfect perception with a combination 

of sensor data gathering and interpretation of this data AVs would plan and act perfectly, 

achieving the reliability and robustness needed for higher level automation (SAE 4 and 5). 

1.2 RobustSENSE vision 

The RobustSENSE vision is a robust and reliable sensor platform for automated and assisted 

driving that will keep on working in harsh environmental conditions like snow, rain or sun-flare. 

While many of automated driving enabling technologies are still in a developmental or testing 

stage, advantages of the systems are visible: the ability to constantly scan the road for other 

vehicles, pedestrians, bicyclists, and potential hazards, and accurately navigate via a 

combination of onboard sensors and GPS data. These autonomous guidance systems also 

interact with vehicle communication systems integrated in autonomated and traditionally 

operated vehicles that will share the information on driver actions, traffic patterns, and 

roadway conditions. As a result, vehicles will perceive the road ahead in far greater detail than 
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a human driver or environment perception sensors alone. By combining these systems and 

capabilities with the state-of-the-art vehicle construction and physical safety equipment, the 

autonomated vehicle of the near future may very well represent a major advancement in safe 

transportation. 

 

To fully realise the safety promise of driving autonomously and overcome any limitations, new 

features and robustness should be added to existing systems. Success in these endeavours 

depend on the vehicle’s ability to adapt to driver expectations which will be crucial for winning 

user confidence and acceptance. 

1.3 RobustSENSE objectives 

Sensing systems are the most important enablers for adding intelligence in the automotive 

world. The road to safer driving will require highly precise and real-time information of a 

vehicle’s location and other traffic participants in its surrounding environment. 

The main aim of the RobustSENSE project is to: 

 

The RobustSENSE project is focused on the development of essential components and sensors 

for the realisation of sensor data fusion, scene understanding, behavioural planning, trajectory 

planning and improved sensor technologies. Furthermore, by implementing the resulting sensor 

platform in demonstration vehicles it will showcase the potential these novel technologies will 

have for future driver assistance functions which are far more robust against the influences of 

adverse weather and light conditions. 

Consequently, the main technical goal is to define, develop and evaluate measures for 

detecting performance degradation and for reacting to adverse conditions – for assistance 

systems on every level of an automated system all the way from sensor level up to strategy 

planning. 

RobustSENSE vision is an autonomous vehicle capable of ensuring safe and comfortable 

travel to its occupants and other road users under all existing driving conditions. 

Develop a sensor platform for automated and autonomous driving, that overcomes the 

limitations of existing sensors and provides enhanced sensing capabilities. 
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2 RobustSENSE concept 

2.1 Towards a robust sensor system 

Sensor systems are vital enablers for understanding of our surroundings and providing with 

safety to vehicle occupants and other traffic participants. A transformative advance in the 

field of sensor technology has been the development of sensor elements with embedded 

intelligence. 

A driving goal in the development of the sensor platform is the implementation of a system in 

a manner that the information is provided to the user wherever and whenever it is needed as 

well as in whatever form it is needed for the application. 

The RobustSENSE project generally aims at the development of an automated vehicle sensorial 

platform that can operate and ensure the safety of roads users in all environmental conditions. 

2.2 Top-level architecture 

The project architecture is designed to have a generic nature. It is extendable for new sensors, 

modules or interfaces which cannot be foreseen today.  

The RobustSENSE system architecture is built on different layers. The layers relate to the 

data/information flow within an intelligent sensor system reacting to real world conditions, 

managing diversity and complexity. Hence, the architecture is divided into three different 

layers: 

● Sensor layer: Sensor level components (hardware and software) and their output signals. 

Exact format of the sensor signal is not defined to remain flexible for new sensor units. 

● Data fusion layer: Having both low level sensor fusion for raw sensor data and high-level 

fusion modules for fusing object level data. 

● Understanding and planning layer: This takes care of scene understanding and decision 

making concerning desired vehicle control and intervention functions and planning of the 

right trajectory. 

All layers include performance assessment sub-modules, checking whether the performance 

over time remains and corresponds to the initial parameters. In addition, the specific system 

performance assessment sub-module exists for making an overall assessment of the vehicle 

capability to survey the actual driving conditions. This is the most important contribution of 

RobustSENSE for increasing situation awareness performance of future automated vehicles. 
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2.3 RobustSENSE structure and work areas 

RobustSENSE was a complex project involving 15 partners and closely interrelated activities. 

In order to properly manage the cooperative work, it was structured into six work packages 

reflecting the different tasks to be carried out (Figure 2.1). 

 

Figure 2.1: The interaction of work packages in RobustSENSE. 

Two vertical work packages (WP3 – Environment perception, WP4 – Situation understanding and 

planning) focused on the actual system development, implementing the lower levels of an 

environment sensing system for automated driving and becoming the main input for WP4. The 

latter implemented the upper levels of the sensing system with scene understanding, situation 

prediction, behavioural planning and trajectory planning. 

Horizontal work packages were:  

● WP2 laying the foundation for all further technical work in the project by specifying the 

complete system, its components and the needed interfaces with external modules. 

● WP5 dealt with the integration of the soft- and hardware components into a working sensor 

platform and integration into existing test vehicles.  

● WP6 disseminated project advances during the course of the project and prepared the final 

event which included presenting the demonstrator vehicles to the public. 

An additional work package, WP1 Management, was included for handling project coordination, 

links to external activities and for the general administration.  
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3 Requirements and specification (WP2) 

3.1 Introduction 

The orientation phase of requirements and specification laid the foundation for all the 

technical work. WP2 aimed at creating a common architecture description for the 

implementation of the modules. This architecture was designed to have a generic nature and 

is therefore extendable when new sensors, modules or interface which cannot be foreseen 

today, are available. The RobustSENSE platform consists of the following modules: 

1. Sensor layer, 

2. Data fusion layer, 

3. Understanding and planning layer and 

4. System performance assessment. 

The primary goal of WP2 was to set up a joint system architecture describing hardware and 

software components and their specific interfaces. This architecture should describe 

component properties, data flow and interface data specifications ensuring communication for 

connecting sensor and application level modules. 

In order to realise this goal, it was necessary to describe an evaluation layer. This layer 

gathered measurements from all the aforementioned components over dedicated interfaces. 

These measurements served to apply metrics to judge the component and system status. 

Hence, a reliable set of metrics for performance and reliability measurements on components 

and system level was specified in WP2 as well. 

3.2 Objectives 

The main objectives of WP2 were to: 

● Gather and manage requirements and specifications for components developed and 

integrated in WP3, WP4 and WP5. 

● Component-wide integration of online- and offline-quality and performance measurement 

interfaces. These connect the developed components to WP5 components. 

The outcome sought in WP2 is the high level architecture whereas use case and sensor specific 

specifications are dealt with in WP3, WP4 and WP5. This architecture is a general description 

giving inputs and outputs of all the considered system modules. The RobustSENSE 

demonstration vehicles may not cover all of the specified modules, but rather showed 

feasibility and modularity of this approach. 
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3.3 Key achievements 

 

Architecture specification, metrics definition and validation criteria were designed in D2.1 

(Initial System specification) and D2.2 (Metrics and validation criteria). The different sub-

modules were specified as well as the interfaces between components. The system 

architecture follows the general automotive sensor data fusion framework in which system 

performance assessment modules have been integrated. 

The components developed in RobustSENSE needed a common framework to allow 

collaboration between the partners. Thus, a joint system architecture describing hardware and 

software components and their specific interfaces was set up. 

The generated overall architecture design was investigated in during the first months of the 

project and described in an early deliverable (D2.1 ‘Initial system specification’). The 

framework takes into account the specific hardware and software requirements for automated 

driving in adverse weather. Component specifications and installation requirements have also 

been drawn up. 

The architecture features the back-bone of the system module development and 

implementation. The different RobustSENSE pilot vehicles were designed to meet the 

component specifications. The performance assessment modules were integrated in the 

different layers of the RobustSENSE system. Based on RobustSENSE architecture, a fusion 

system was developed as reported in D3.4. The modularity and sensor-set independence of the 

architecture ensured a continuing functionality even if one or more sensor components fails. 

 

A comprehensive validation methodology was generated. This methodology allows a safe and 

efficient validation of all platform layers without a need for comprehensive real world driving 

tests in adverse weather conditions. 

The structure and interactions between the different elements of the methodology are shown 

below in Figure 3.1. 

System Architecture 

Validation Methodology 
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Figure 3.1: RobustSENSE Validation Methodology. 

In Stage 1 the implementation of the sensor performance in the different sensor modules was 

validated with recorded and labelled real world data. The sensor data were recorded either in 

laboratory or real world driving tests. 

In Stage 2 for all specified real sensors on the platform the adequate augmented sensor model 

was selected and validated with the test results of stage 1. 

In Stage 3 the specified critical driving scenarios were selected when already available or newly 

generated in the test system. The scenarios were then simulated in different weather 

conditions to validate the fusion performance. For this purpose, the validated sensor models 

from Stage 2 were used. 

In Stage 4 the specified functions of the understanding and planning layer were implemented 

in the platform and the specified scenarios were simulated. In this stage the algorithm 

performance of the layer and the performance of the SPAM were also validated. 
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4 Environment perception (WP3) 

4.1 Introduction 

The development of environment perception and modelling technology is one of the key 

aspects for autonomous vehicles (AVs). Upcoming automated driving will only be possible by 

means of reliable and robust sensing systems. Today, vehicle sensing and environment 

perception is still an active area of research, and is so far only capable for supporting simple 

lateral and longitudinal control with the driver constantly monitoring the driving task 

corresponding to that of SAE L2 driving. Current challenges are the complex outdoor 

environments and the need for efficient methods for their perception in real time. WP3 aimed 

at defining a conceptual design of the Environment Model Architecture. The environment 

perception module is directly addressing among others two of the main problems of the current 

systems: 

● Malfunction of a single sensor often causes deactivation of the complete automated driving 

function. 

● Sensor degradation, e.g. due to foggy and rainy road weather conditions, is treated as a 

malfunction, and consequently, it is also often causing the deactivation of automated 

driving functions. 

The RobustSENSE system aimed at overcoming the problem of limited perception capability in 

restricted visibility conditions. Natural characteristics of adverse weather that may affect 

modern driver assistant systems such as fog, rain, and snow were investigated in a new sensor 

platform that is able to provide sufficient sensor data even in such weather conditions. This 

will result in enhancing the weather robustness of current sensors. 

Hence, the main aim for WP3 was to exploit redundant sensor information from a multi-sensor 

platform with distinct measurement principles directly addressing the negative impacts of 

single sensor malfunction or degradation on perception performance. 

4.2 Objectives 

The objective of work package 3 was to deliver a consistent environment model including all 

traffic participants and infrastructure elements with respect to both spatial temporal status 

and reliability of the information.  

Moreover, an overall performance measure of the environment description was delivered. 

In particular, WP3 had the following goals: 

● Strictly modular system architecture on all levels of information processing, 

● Self-monitoring ability on a sensor level, 
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● Generic quality metric for both, each data item and fused data, 

● Data Fusion and Multi-Object-Tracking algorithm able to handle a varying number of input 

data with changing performance, 

● Overall performance value of the present environment model and individual performance 

measures of all objects included in the environment model. 

All modules should be developed and tested in a simulation environment and provided for 

vehicle integration and assessment in WP5. 

4.3 Key achievements 

 

An environmental perception system architecture was defined together with the relevant 

project partners. Together with the other consortium partners sensor performance monitoring 

metrics and an overall performance and reliability monitoring module at an environment model 

level were defined and specified. Furthermore, the performance of sensors in winter conditions 

was evaluated including the collection and integration of winter data (i.e. dark, wet, snowy) 

set into the overall fusion concept. 

The analysis of different wavelengths was conducted for adapting the performance of LiDARs 

for automated vehicles. The spectral responses of different LiDARs were analysed for modifying 

the components in the existing SICK LD-MRS LiDAR for better penetration in foggy conditions. 

Fog chamber facilities were used for having exhaustive understanding of different droplet and 

water content parameter influencing the spectral response. The droplet size and wavelength 

analysis were carried out in another fog chamber (Figure 4.1) where the parameters could be 

varied.  

 

Figure 4.1: Fog chamber for LIDAR testing. 

Environment perception modules developed and tested 
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The specific spectral measurement devices with illumination and cameras were built-up. The 

results were analysed and reported (Figure 4.2). 

 

Figure 4.2: Absorbance of wavelength in atmosphere. 

The spectral analysis resulted in developing a 4-layer 1550 nm LiDAR for seeing through the 

fog. The analysis also revealed the narrow SWIR bands (1385 - 1390 nm) where the ambient 

light from the sun does not absorb light but is still eye-safe. A comprehensive understanding 

of the temperature influence has been performed. 

The implementation architecture fits the reference architecture given in WP2. The focus was 

on the development of a high level fusion layer with two different environment representations 

i.e. model-based for dynamic elements and model-free fusion for static elements. Both 

representations have complementing advantages. On one hand, a model-based fusion, i.e. 

object tracking, can be designed to focus on dynamic objects reducing computational demand 

by avoiding tracking a static environment. On the other hand, model-free fusion can track the 

entire environment without the challenge to establish object models, avoiding measurement 

to an object association and clutter assessment. 

The environment perception for RobustSENSE was tested in harsh winter weather conditions. 

Therefore, the developed environment modelling and fusion methods needed to be adapted to 

incorporate bad/winter weather data e.g. improved false positive detection ("ghost objects") 

induced through snow banks/walls or guard rails, improved tracking in low light and dark 

conditions and improved object spawning in feature-reduced environments. Moreover, to 

ensure the functionality under degradation, further testing and adaptation was done with 
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degraded data resulting from performance reduced/degraded (iced over) sensors and the 

middleware was prepared for fail operational functionalities in order to compensate for 

(sub-) system outages and degraded operation. 

 

Contributing organisations of D3.3 (Package of generic sensor models for the sensor platform) 

generated a new concept of augmented generic sensor models to be used and demonstrated 

in different configurations of a simulation-based validation methodology (Figure 4.3). 

 

Figure 4.3: Augmented generic sensor model. 

The notation of augmented sensor models was introduced to describe generic sensor models 

combined with low-level performance indication functions based on an environmental 

condition assessment (ECA) as shown in Figure 4.4 below. 

Augmented generic sensor models 
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Figure 4.4: ECA & Real environment. 

The developed framework of augmented generic sensor models resulted in a relative low effort 

for simulation of sensor behaviour in different environmental conditions and therefore enabled 

an effective validation of the high-level functions of the RobustSENSE architecture in 

simulation-based test environments. 

 

The prepared functional study of a 1550-nm-LiDAR was based on a 1-layer LMS-151. The final 

RobustSENSE prototype is a 4-layer LiDAR based on a standard LD-MRS. With the new 1550-nm-

laser-source both the transmitting as well as the receiving optics had to be adapted to the new 

wavelength. Therefore, new optical components for the transmitting and receiving path had 

been developed. Also the receiving array had to be coated with a filter designed for 1550 nm 

(Figure 4.5, Figure 4.6). The internal LiDAR firmware was adapted to the new needed output 

power control behaviour and the receiving characteristics caused by the new APD receiving 

array. All components had been combined into a working prototype which was reported in D3.2 

(Final laser, optics and detector assembly integrated in the LiDAR prototype).  

4-layer LIDAR at 1550nm 
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Figure 4.5: Transiving optics (left), coated receiving lenses (middle) and coated housing (right) 

for 1550 nm 

 

   

Figure 4.6: Prototype of a multi-layer LiDAR at 1550nm 

The current prototype was consciously optimized to reach a maximum measuring distance. This 

was done by an optimized mechanical calibration of the laser source to the optical components 

and by an optimization of the receiving array to minimize noise influences. Additionally, a 

more IP67-proof housing was designed to use the LiDAR more easily in harsh weather 

conditions. 

 

A polarimetric automotive radar measurement setup was successfully implemented to study 

clutter from road surfaces in variable weather conditions. The clutter was analysed for the 

different polarisations, and important trends were revealed (Figure 4.7). Measurements were 

carried out in dry and snowy conditions on public roads. The radar data was processed as post-

measurements to identify the behaviour of the clutter for the different polarisations and to 

recognise trends which would signify important clues to the way various road surfaces ‘behave’ 

in varying weather conditions. 

Measurements and signal evaluation 
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Figure 4.7: Clutter analysis by polarisation level. 

The polarimetric behaviour of the clutter could be used to obtain additional information on 

the road surface. This information could then be passed onto the higher layers for the 

implementation of specific functions. They would act to mitigate or exploit the detected road 

surface conditions e.g. applying extra braking force to the wheels or giving less torque to the 

wheels to prevent them from spinning in given situations. 
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5 Situation understanding and planning (WP4) 

5.1 Introduction 

In WP4 the algorithms were developed to process the information about the environment 

provided by the various sensing components, to understand the current traffic situation and 

predict its potential evolution in the future. A particular feature of these algorithms for scene 

understanding and situation prediction is the capability to infer classified relations and 

interactions among traffic participants and ongoing manoeuvres. This information allows 

predicting the traffic scene at a higher abstraction level as compared to standard Bayesian 

filtering. 

WP4 also developed the algorithms for behavioural planning for a given traffic situation and its 

anticipated evolution. They provide suitable abstract behaviour and concise driving 

trajectories. Similar to monitoring the performance of the various sensor components of the 

RobustSENSE sensor platform, also the performance of the various algorithms employed could 

be monitored. These consider in particular the uncertainties of perception and prediction by 

computing a metric to quantify the safety margin of the planned trajectories. Thus, the output 

of this work package did not only include a trajectory set that can be propagated to the 

controller. Additionally, information is provided on inherent safety and reliability levels crucial 

to safe driving. 

5.2 Objectives 

The overall objective of WP4 was to generate safe driving behaviour based on the perceived 

information and its inherent uncertainty.  

This work package had the following goals: 

● Analyse the information provided from the environment perception and its uncertainties to 

create a holistic scene description. 

● Identify interactions among traffic participants that impact their future behaviour. 

● Determine the possible evolution of the traffic situation with associated probability 

measures. 

● Establish possible behaviours for the ego vehicle and assess their safety. 

● Determine a suitable future trajectory with an associated safety metric and identify crucial 

postulations for these (such as rule compliance of selected traffic participants). 

All modules were developed and tested in a simulation environment and were provided for 

vehicle integration and assessment in WP5. 
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5.3 Key achievements 

 

Efforts in this WP were organized regarding the understanding of a road in two major directions 

and then, as a third activity using and training Convolutional Neural Networks (CNN) for the 

data collected. 

1. Road condition: prediction of the friction relevant intermediate layer between the road 

surface and the tyre ahead of the ego-vehicle (Figure 5.1).  

 

Figure 5.1: Road condition classification. 

The sensor used was a mono camera system which was mounted behind the windshield 

(Figure 5.2). 

 

Figure 5.2: Data processing for road condition classification. 

The database which is continually growing consists of a multitude of situations. The following 

figure gives some examples of snow covered road environments (Figure 5.3). 

Road understanding 
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Figure 5.3: Examples of snow covered road environment for the classification of road surface. 

The research and development was also carried out to enable more robust detection of water 

in addition to snow on the road surface. 

2. Road layout estimation: prediction of the path of the lane ahead (e.g. when lane markings 

are not clearly visible – Figure 5.4) 

 

Figure 5.4: Road layout estimation. 

The path is represented by 4 points on the image that correspond to real world points in 10m, 

15m, 20m and 25m distance in front of the vehicle, respectively. For the training process, 

these real world points were recorded during the test drives. In the next step they were 

projected into the image by a given camera projection. The x coordinates of the image points 

were normalized and computed mean free to use them as labels to learn by a CNN. Figure 5.5 

below shows the labelling tool programmed to exclude certain scenarios and create the ground 

truth. 
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Figure 5.5: Labelling tool in use. 

3. Development of a framework which allowed us to efficiently train Convolutional Neural 

Networks (CNN). One key challenge in these training tasks was to guarantee that the 

underlying data set is: 

 huge (lots of data), 

 well defined and 

 labelled. 

Figure 5.6 below gives an overview of the integration and testing workflow: 

 

Figure 5.6: Testing workflow. 

For an automated car it is of utmost importance to be able to handle also adverse weather 

conditions sometimes occurring spontaneously. It is already today listed as a requirement for 

future car generations. 
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For safe autonomous driving, interactions between traffic participants need to be detected 

and planned routes and trajectories predicted respecting the detected interactions. The 

system needs to know whether all traffic participants interact and react to each other (in a 

compliant or noncompliant behaviour) in a machine-readable way. 

The key elements in the approach taken in RobustSENSE are the relation estimation and a 

filtering and prediction. Work on the relation estimation done as follows: For every object 

relations between possible routes, interactions and behaviours are estimated (Figure 5.7). Each 

behaviour matches a motion model. In the filtering and prediction steps we used Intelligent 

Driver Model-based motion models to estimate the current behaviour and predict future 

trajectories. 

 

Figure 5.7: Relations between objects estimated by the scene understanding module. 

The key achievements can be used to detect noncompliant behaviour. This allows the ego 

vehicle to handle harsh environment conditions including traffic participants that do not 

observe traffic rules. The basis for cooperative driving is always to consider the possibility of 

traffic participants not following traffic rules or safe behaviour overall. The planning 

algorithms that lead to cooperative automated vehicle behaviour need such a scene 

understanding. 

Interaction detection and route prediction 
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The algorithm aims at the probabilistic estimation of behaviour describing parameters 𝐱 of 

traffic participants enumerated by 𝛼. The parameters were used to model object acceleration 

depending on the relation to other objects in the current scene. 

The considered scenario is illustrated in Figure 5.8. Vehicles with driving style parameters 𝐱(𝛼) 

were tracked ahead of the ego vehicle. A third vehicle may be present, but is not detected. 

The influence of leading objects is modelled with relative kinematics in 𝐮(𝛼). 

 

 

Figure 5.8: Vehicles with driving style parameters 𝐱(𝛼).  

Past research in the field of traffic flow modelling yielded parametric models of interacting 

driving scenarios. A well-studied model is the Intelligent Driver Model (IDM) describing a car-

following scenario by means of ordinary differential equations. Among other models, the IDM 

parameters allow a physical interpretation. While the original use of the model is a simulation 

with fixed parameters, but the studies in RobustSENSE showed the applicability of the model 

to real-world data considering the model parameters as random variables. The decisive 

property for a real world application is that the estimated parameter distribution changes 

slowly as compared to a perception update.  

Performance assessment relies on a probabilistic estimation. Filter divagation is a good 

indicator whether the model used and its assumptions suit the true situation. 

The IDM targets car following scenarios including start- and stop-situations. The estimated 

parameters were later used for predicting start/stop-manoeuvres to support trajectory 

planning.  

A Monte-Carlo based estimator was implemented, where particles approximate the PDF over 

behaviour parameters, vehicle dynamics and relations to the leading vehicle. Experiments with 

recorded trajectories were carried out to investigate the real-world applicability of the model 

in terms of parameter change rate and distribution modes i.e. unimodality. 

To investigate the suitability of the model to the current situation, filter divergence was 

measured by the effective number of particles. For this, re-sampling was applied in every 

update step to achieve equal particle weights. The effective number of particles �̂� is 

considered as the number of unique particles. We assume the model to be suitable if �̂� > 0.5 ⋅

Behaviour parameter estimation (incl. performance assessment) 
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𝑁 and define an performance indicator 𝜂𝐼𝐷𝑀 = max (1,
2�̂�

𝑁
). Typically, the performance 

indication will decrease if the model doesn’t fit in the situation e.g. shortly before a crash. 

The behaviour parameter estimation was used for trajectory prediction in car-following 

scenarios, where the main benefit can be seen in start/stop scenarios. The performance 

indicator will be used in the overall system monitoring to increase robustness. 

 

As a complementing alternative to the object trajectory prediction, a model-free prediction 

was developed to predict future occupancy in a grid map. It was intentionally avoided to 

establish object hypothesis e.g. rotated rectangles, since a misinterpretation e.g. interpreting 

clutter as an object or missing objects, can lead to fatal accidents as has recently happened 

overseas. Instead, all regions occupied either by static or dynamic objects are fed to a long-

term predictor. 

A complex inner-city scene was recorded for multiple hours with multiple laser scanners. The 

sensors were fused in a dynamic occupancy grid map estimating dynamic states and occupancy 

in grid cells. A neural network was trained to predict occupancy of future time steps, given 

the current perception. The predicted occupancy compared to a simple particle prediction 

approach is illustrated in Figure 5.9. Model-free occupancy prediction: A dynamic occupancy 

grid map (left) was fed to a convolutional neural network to predict future occupancy at 0.5s, 

1.0s and 1.5s. The output RGB images (three images right) illustrate the true occupancy in the 

red channel, learned prediction in the green channel and a simple particle prediction for 

comparison in the blue channel. An overlap results in mixed colours e.g. white at static regions. 

 

Figure 5.9: Model-free occupancy prediction. 

Grid based model free prediction 
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The learned prediction was used as a redundant alternative to an engineered trajectory 

prediction. 

 

Different possible environment configurations resulting from harsh weather or uncertain 

driving behaviours were respected when building up constraints for trajectory planning. These 

constraints are represented as high level semantic manoeuvre chains, so called behaviour 

plans. 

The probabilistic object information and route information were used to generate a semantic 

scene representation based on a special designed ontology. This scene representation was then 

used to build up a planning space for the ego vehicle. As the planning space has the structure 

of a directed graph, classic graph search algorithms like depth first search can be applied to 

generate semantic manoeuvre chains within the state space. Special adoptions and 

optimizations like heuristic-based search and integrated speed profile verification led to 

feasible semantic manoeuvre chains as results of the planning. 

The created manoeuvre chains open up a new field of applications. While the application in 

the trajectory planning is straightforward, the condensed plan representation is also useful for 

the high level performance assessment and visualization of inner states for human operators 

and users. 

 

A lateral and longitudinal trajectory planner based on Model Predictive Control (MPC) theory 

was developed and implemented. 

In particular, a trajectory planning method was enlightened based on constrained 

optimizations that is able to generate a vehicle dynamically feasible, comfortable and 

customizable trajectory for highly automated vehicles at mid to high speed (Figure 5.10, Figure 

5.11). The proposed algorithm aims at reducing computational cost of nonlinear optimization 

by decoupling longitudinal and lateral dynamics planning. This is achieved by using a sequential 

behavioural algorithm that combines a model-based scenario reconstruction with the planning 

of longitudinal dynamics manoeuvre and lateral dynamics planning if a lane change is 

considered. 

The Trajectory Planning Model-based approach uses a series of Kalman filters in order to: 

● Filter noisy signals (vehicle/obstacles accelerations, yaw rate, etc.). 

● Reconstruct obstacle states in areas not covered by sensors. 

Probabilistic behaviour planning based on semantic state 

space 

 

Driver state dependent behaviour planning  
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● Reconstruct unavailable vehicle information (lateral vehicle speed). 

 

Figure 5.10: Block diagram for the trajectory planning model. 

 

Figure 5.11: Flow-chart for the trajectory planning model. 

Filtered and indirect measured signals are fundamental for the steps of ‘Scenario 

Reconstruction’ and ‘Behavioural Planning’ where the obstacle states are mainly used in this 

block: the filtered/reconstructed signals are the starting point to evaluate vehicle behaviour.  
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The host-vehicle motion was divided in a lateral and longitudinal direction. In particular, both 

lateral and longitudinal trajectory planners were based on the Model Predictive Control (MPC) 

theory. This approach uses a mathematical dynamic process model to predict a future value 

and to optimize the control performances. By means of the MPC it is possible to:  

● Concurrently solve problems of obstacle avoidance, feasible trajectory selection and 

trajectory following. So trajectory planning and trajectory tracking are handled together. 

● Guarantee theoretical closed loop stability obtained by a model based design. 

● Integrate forward information resulting from traffic predictions or road geometry, obtaining 

smoother control actions and better control performances. 

● Explicitly consider constraints on actuators and states/output values.  

Thus, vehicle Longitudinal and Lateral dynamics are managed by means of two different 

trajectory planners where the longitudinal trajectory is planned before lateral planning. A 

real-time non-linear convex optimization problem is solved on a finite horizon based on an 

experimental validated linear model of dynamics to control/plan as well as a cost function of 

target variables and inputs to be minimized on a finite horizon. 

This model takes into account also a series of constraints on system state variables useful to 

represent the ‘free corridor’ on the considered horizon as well as control targets as linear 

combination of system states to track the considered horizon. 

Finally, the outputs of the Driver Monitoring System (DMS) can be used by the behavioural 

planning module as input, to change the selected action. So, for example, if the host-vehicle 

is approaching a slower obstacle ahead and all the conditions allow an overtaking manoeuvre, 

this can be delayed if the driver is classified as distracted (and executed when the driver is in 

the control loop again). 

The next steps of development included: 

● Improvements of low-level actuation control loops and actuators (e.g. tuning of algorithms 

to reduce the minimal fluctuations). 

● Testing on more extensive and complex scenarios on real roads. 

The first application of this approach (and of these algorithms) will be carried out on the 

Advanced Lane Support and Autonomous Emergency Avoidance (foreseen by FCA in 2021). 
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The trajectory planning module processes the environment information and calculates safe 

trajectories that are sent to the vehicle actuators and controllers for executing the driving 

directives. The uncertainties in the environment model accumulate up to this module and 

hence, the trajectory planner reliably deals with these and makes a trade-off between the 

driving targets and the level of criticality. It considers the actions that the automated vehicle 

can execute while continuously evaluating its performance. In this way, considering the 

operational status of the system, safe and at the same time not over-conservative trajectories 

are planned. 

For safe motion planning hypotheses for hypothetic vehicles at the borders of visibility range 

were utilized (Figure 5.12). The hypotheses correspond to worst case scenarios from the point 

of the automated vehicle. The automated vehicle plans trajectories so that the vehicle can 

react to the hypothesis in case the hypothetic vehicle really exists. In this way, safe driving at 

blind corners is achieved. By further taking the braking distance of another vehicle into 

account, incompliant behaviours of others can be compensated (2). 

 

Figure 5.12: An automated vehicle, shown in blue approaches an intersection. It considers the 

hypothesis that there might be a vehicle approaching the intersection with allowed speed limit. 

The trajectory planning approach developed in RobustSENSE also considers the uncertainties 

in localization and perception. The perception errors are propagated and dealt with in the 

trajectory planner (2). 

In Figure 5.13 below right after the visible range of the ego vehicle, again shown in blue, there 

are vehicles stopped. The localization is uncertain. Hence, the stop position of the ego vehicle 

Safe trajectory generation considering traffic uncertainties 
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itself is uncertain as well. Given a confidence interval, the braking distance is not allowed to 

deviate from that interval. The trajectory planner considers this during its operation. 

 

Figure 5.13: Right after the visible range of the ego vehicle 

RobustSENSE trajectory planning further evaluates its performance during its operation. It 

considers the quality and criticality of the resulting trajectory and the operational performance 

of the planner itself (Figure 5.14) (3). 

 

Figure 5.14: The metrics reflecting the operational performance of the planner. 

State of the art trajectory planners typically do not consider the reactive manoeuvres that the 

vehicle could execute for the worst case evolution of the current scene. Furthermore, they do 

not monitor their own performance. By combining both, the key requirements in RobustSENSE 

trajectory planning, safe and reliable driving were achieved, and it lays the foundation for 

future trajectory planning development. 
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6 Integration and validation (WP5)  

6.1 Introduction 

In WP5 the various hardware and software components of the RobustSENSE platform were put 

together into a working prototype system. Firstly, its proper functioning along the 

specifications set up in WP2 was assessed under laboratory conditions. Once proper functioning 

was confirmed, the sensor platform was integrated in the demonstration vehicles of the 

partners in order to use the RobustSENSE platform to enhance the functional range of these 

vehicles. Apart from the work needed to implement the sensor platform in the vehicles, this 

task also included an adaptation and partial new development of the algorithms for vehicle 

control. Functional tests completed the vehicle integration. 

Last but not least, the completed vehicles were extensively tested on real roads and simulation 

environments in order to validate the sensor platform and the functional enhancements 

provided for driver assistance systems. Particular care was taken to cover all relevant weather 

and light conditions through testing in Nordic winter and under reproducible conditions in a 

fog chamber. 

6.2 Objectives 

The main objective of WP5 was to perform the integration and global testing of the 

RobustSENSE perception platform in prototype vehicles to validate the enhanced level of 

robustness. 

This objective was reached through the following steps: 

● Develop a system performance assessment module able to collect the performance 

measurements from the whole system. 

● Integrate all resulting modules in a global sensor perception platform. 

● Integrate the perception platform in a/several vehicle prototype/s. 

● Develop a suitable validation methodology considering sensor robustness level for 

automotive systems with a high level of automation. 

● Perform RobustSENSE validation in the laboratory and in realistic outdoors test sites. 

To construct the prototypes from the modified existing ones, the electronics and interfaces 

for the use of the computational platforms were integrated. Thereafter, laboratory and 

environmental testing of the integrated systems were carried out, and the integrated systems 

were assembled in the test vehicles. The validation was specified and conducted in the realistic 

test sites. 
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The main result were seven working demonstrator vehicles together with validation results and 

conclusions to be drawn in WP6. 

6.3 Key achievements 

 

The integration of the new LiDAR to the Marilyn automated vehicle for evaluating whether the 

1550 nm improved performance in foggy conditions. The two standard SICK LD-MRS 4-layer and 

two 1-layer LiDARs were implemented to balance the performance of the LiDAR sub-system in 

foggy conditions. 

A Volkswagen Golf Variant, depicted in Figure 6.1, served as the main demonstrator vehicle 

testbed for the RobustSENSE system and provided and integrated long-range radars (LRR), 

medium-range radars (MRR), and a stereo video camera (SVC). 

 

Figure 6.1: The prototype vehicle on a test track. 

The prototype vehicle was equipped with Sensors, actuators and additional vehicle specific 

parts such as measurement equipment and gateways. The work consisted of software 

development and an integration of the LiDARs into the vehicle DDS interfaces (Figure 6.2).  

 

Figure 6.2: Vehicle DDS interface. 

An integrated multi-sensor perception system 
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The RobustSENSE compliant fusion architecture was integrated in the overall system. To ensure 

the reliability of the input data on the fusion layer, the sensor level validation of the mounting 

position and pose information was performed. Degradation was achieved by switching off 

individual sensors one by one. The integration and evaluation focused on the verification of 

RobustSENSE architecture for robust environmental sensing in the presence of harsh winter 

weather and light conditions. 

Visibility in fog is improved at least by a factor of 2.5 compared to standard lidars. Thus, e.g. 

in fog and snow, snowbanks are automatically detected much earlier, which in turn allows 

automatic driving in winter. The penetration through fog is also improved followed by a better 

pedestrian detection. The penetration through fog is also improved followed by a better 

pedestrian detection. 

 

The fog chamber measurements conducted in WP3 were reported for different spectral 

responses. The validation of the real 1550 nm LIDAR prototype was carried out in the end of 

the project. 

Software was developed for reading LiDARs and estimating sensor performance. The software 

takes point cloud input and optimises the parameters. The snow error removal filter was also 

developed. 

The specified validation methodology was demonstrated on the implemented RobustSENSE 

platform of a prototype vehicle as shown in Figure 6.3 below. 

 

Figure 6.3: The prototype vehicle. 

The testbed was set up AVL for tests of automated driving in harsh weather conditions. The 

laboratory environment allows the simulation of adverse weather testing independent of actual 

A RobustSENSE validation methodology 
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weather conditions. The test vehicle for RobustSENSE on a vehicular testbed is shown in 

Figure 6.4. 

 

Figure 6.4: RobustSENSE vehicular testbed. 

As RobustSENSE use cases base on a harsh winter weather conditions, the main test was 

conducted at Bosch’s winter test center in Arjeplog, Sweden. The test aimed at analysing the 

effects of a sensor unavailability on the overall performance of the fusion system. Individual 

sensors were switched off, and the influence of the respective sensor degradation on the fusion 

performance was analysed. 

The fog chamber tests carried out in WP3 has been used as a seed to further elaborate the new 

LiDAR which bases on old electronics but uses new optical components and laser source. The 

bandwidth analysis forms the basics for developing the performance assessment module for 

the automated car “Marilyn”. The reference sensors have been implemented for evaluating 

performance improvements. Snow removal filter technique was developed for removing the 

noise from the LiDAR data caused by turbulent drifting snow (Figure 6.5). 
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Figure 6.5: Filtering technique. 

The developed augmented generic sensor models were used to interface a simulation platform 

with the RobustSENSE platform inside the vehicle as shown below (Figure 6.6). 
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Figure 6.6: Interfacing a simulation platform with the RobustSENSE platform inside the vehicle. 

As a use-case for higher-level functions a combined ACC (Adaptive Cruise Control) and LKA 

(Lane Keeping Assistant) was selected and implemented in the RobustSENSE platform together 

with an ECA and SPAM module. Different virtual scenarios were tested on a driving simulator 

and vehicle test bed was used to validate the performance of the RobustSENSE platform in 

different environment conditions as shown below (Figure 6.7). 

 

Figure 6.7: RobustSENSE test facilities. 
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The scenarios have been applied directly to the vehicle with the AVL DrivingCube™. The 

pictures below shows the setup of the testbed (Figure 6.8). 

 

  

Figure 6.8: Setup of the testbed. 

The validation results were used to tune the parameters and improve the performance of the 

automated driving functions in foggy conditions. The performance assessment module was 

developed to optimise three different LiDAR principles: 1) 905 nm, 4 layers, 2) 905 nm, 1 layer 

and 3) 1550 nm, 1 layer when the visibility degrades. The snow removal filter patenting process 

has been started, and the module will be commercially utilised to improve LiDAR performance 

in snowy conditions. 
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The specified validation methodology from WP2 and the lessons learned from the prototypical 

implementation and demonstration in WP5 will be used as an asset for an efficient validation 

and even a possible homologation of safety critical driving functions in adverse weather 

conditions in the future.  

The system validation was done mainly based on an expert opinion. A quantitative measure for 

verifying and validating the performance of the fusion system needs to be provided for 

successful release of the function. Further work should be invested in the fusion system 

validation. 

 

Several performance measures are fused into an overall system performance measure. Single 

performance values that are not significant on their own are combined to derive a clear 

statement. It was shown that problems that were not able to be detected by probabilistic 

processing alone can now be detected by means of an overall system performance assessment. 

An exemplary implementation of a Bayesian Network approach was integrated using 

components from all three layers of the system architecture. The idea of the Bayesian Network 

approach is to factorize the big, hardly modelled conditional dependency of several 

performance metrics into challenges with less complexity. Per module performance assessment 

metrics are discretized into discrete qualitative values that are brought into relation in the 

discrete Bayesian network. Figure 6.9 shows a Bayesian network of an exemplary ghost object 

scenario. 

Bayesian fusion of performance assessments 
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Figure 6.9: Performance Assessment for the ghost object scenario as a discrete Bayesian 

Network. 

The Bayesian Approach is the first idea of realizing such a fusion of several performance 

measures in a probabilistic way. It lays the foundation for future research including the 

integration of Dempster Shafer Evidence Theory to detect and handle inconsistencies among 

these measures. 
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7 Future exploitation 

7.1 RobustSENSE exploitation approach 

One of the key objectives within the project work package 6 was to investigate the business 

potential of the RobustSENSE system and develop exploitation perspectives for the European 

automotive, electronics and supplier industry. Different applications of the system in the 

automotive sector but also in other fields related to automation have been elaborated and 

market requirements have been evaluated. 

A holistic and integrated methodological approach was developed to analyse the exploitation 

perspectives, including four main building blocks: 1) partner specific exploitation plans, 2) 

online expert survey, 3) exploitation workshop (D6.3) and 4) final exploitation report (D6.5). 

The deliverable D6.5 Exploitation Plan outlines the major outcomes of all the four building 

blocks and provides a deeper outlook on the deployment perspectives of the technological 

solutions developed. It also includes partners’ specific exploitation plans.   

This chapter summarises the main findings concerning general exploitation perspectives and 

business potential of the RobustSENSE technologies.  

7.2 Exploitation perspectives of the project results 

The project identified nine categories of major exploitation fields for the RobustSENSE results 

which are captured in the Figure 7.1 below  

 

Figure 7.1: Exploitation perspectives 

Four of the fields were analysed in more detail, seeing as major potential fields where project 

results could be further exploited.  
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In the area of product development and application the development of a new automotive 

LiDAR is promising and the time frame for market implementation is seen within the next five 

years. Another important topic is the upgrade of regular sensors including output self-

assessment information and ECA input acceptance. In order to achieve this objective joint 

effort of all sensor manufacturers and other stakeholder groups is necessary in terms of working 

groups and standardization bodies to determine interfaces, data formats etc. 

Concerning launching new research projects and integration into university education a variety 

of new research topics were identified. In order to address the topics the partners indicated 

the initiation of new research projects, customer assignments (from OEMs, Tier1 suppliers) or 

the setup of new partnerships to combine complementary resources and push the 

development. An early integration of research project results into university education to train 

young talents, spin-offs or transfer workshops with the wider expert community are further 

means to drive the development. 

In addition to the technology-based exploitation issues exploiting methodological and process-

related knowledge gained in RobustSENSE was discussed. Notably the academic partners will 

exploit new knowledge on failure tolerant algorithms and performance self-assessment of 

systems making the RobustSENSE concept a fundamental basis for future robust AD 

architectures. New methods will be made available on how to guarantee machine vision 

performance in practice. First insights into interactions between the platform’s modularity 

approach – using different sensors from different manufacturers – and the various fusion levels 

will be deployed by system integrators and manufacturers in further R&D projects.  

Integration into automotive value chain is a clear focus of the RobustSENSE as the project is 

developing hard- and software technologies for ADF. The developed technologies will mainly 

find their future exploitation in automotive applications, like passenger cars, vans, trucks and 

busses. But exploitation is not limited to automotive fields. Some of the project partners 

already named in their exploitation plans non-automotive fields. There are a lot of possible 

applications beyond automotive, where objects or vehicles have to move in bad weather and 

sight conditions. Improved sensing capabilities, elaborated in RobustSENSE, can support 

automation of movements and non-automated safety improvements, as well as a higher safety 

and security by better surveillance of areas affected by bad weather or sight conditions. The 

RobustSENSE exploitation workshop was used as a mean to open up the partners’ exploitation 

focus on non-automotive applications. The outcomes of the workshop were analysed and 

clustered as shown in the Figure 7.2 below. 
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Figure 7.2: Clusters - Application fields for non-automotive use cases. 

The exploitation perspectives of the sensor platform were also inquired through an online 

expert survey with project internal and external experts. The survey provides insights from 

various fields of expertise, covering not only technical but also market related aspects. The 

main results can be summarised as following:  

● The RobustSENSE sensor platform is seen as a really necessary and promising approach to 

ensure ADF under harsh weather conditions. 

● There are still relevant concerns about the required technical performance and the 

associated cost of the components and the whole system. 

● The willingness of OEMs and suppliers to cooperate in that field (to develop open and 

standardized solutions) is crucial for a broad application of the RobustSENSE sensor 

platform in the automotive sector. 

● A success in the automotive sector can open more business opportunities for the 

RobustSENSE sensor platform in various non-automotive application fields. 

7.3 Business potential of the sensor platform 

The business potential of the RobustSENSE sensor platform in the automotive sector is 

promising and use cases here are easy to describe: Every car ready for automated drive on 

level 3 or higher needs the ability to drive under harsh weather conditions. A suddenly 

appearing fogbank or drifting snow from a car or a truck running ahead, causing blindness of 

e.g. an optical sensor, should not necessarily lead to an emergency break of the automated 

driving vehicle. In the consequence, every level 3+ vehicle has to be equipped with a robust 

sensing function, be it based on the RobustSENSE sensor platform or on any other technology. 
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Nevertheless, it is difficult to make detailed analysis of potential market shares as many factors 

remain still uncertain. For example the estimations on the number of the level 3+ cars on the 

market by 2030 varies. The span of projections reflects the big uncertainties related to the 

expected development. Precautious estimations expect about 17.5 million level3+ car sales in 

2030, more optimistic institutes expect up to 40 million level 3+ car sales. McKinsey is framing 

these estimations with two very different scenarios, where sales figures vary strongly between 

2 million vehicles up to 63 million vehicles. Assuming total global sales of about 100 to 120 

million cars in 2030, level 3+ cars are expected to have a share between 2% and 55% of the 

total global market. Aside from the McKinsey low penetration scenario, that are really relevant 

numbers and show in total a relevant business potential for the corresponding technical 

solutions.  

 

Figure 7.3: Overview on published estimations for level 3+ cars in 2030. 

(Own graph, based on McKinsey, 2016; PWC, 2017, BCG, 2016 and Ptomelus, 2017) 

Besides, the RobustSENSE sensor platform will not be the only future technical solution for 

handling harsh weather conditions. A lot of companies are working on this issue, also outside 

Europe. It can be said that the competitive starting point for the European automotive industry 

is quite good, but the efforts need to be continued and intensified to strengthen the research 

and development activities in order to remain the leading role in the future. 

Especially during the next years, the competition will likely get harder as all automotive 

manufacturers, big suppliers, and IT companies will increase their R&D activities. This situation 

will probably lead into a consolidation phase, where cooperation and merger & acquisitions 

take place to bundle power and budgets, and to push standardization. 
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As said, the future business potential for a RobustSENSE sensor platform is really relevant in 

the automotive business but can be driven additionally by non-automotive application fields. 

The system has the potential for creating cross-industry innovation from automotive industry 

to other sectors and vice versa. Nevertheless, the willingness of OEMs to cooperate with 

suppliers and SMEs from other industries seems to be crucial for a broad application of the 

RobustSENSE sensor platform and its components. 
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8 Conclusions 

8.1 Lessons learnt 

This section presents the major lessons learnt in the project which turned out at different 

project stages. 

8.1.1 Project planning 

● Provide an overview on the various SW modules and their interfaces. Show feasibility by 

integrating and demonstrating the complete SW architecture in one of the test vehicles. 

● Existing and planned TRL levels need to be communicated thoroughly.  

● Software interfaces towards actuators need to be considered as part of the architecture.  

● Employ metrics to determine whether a test case succeeds or fails. 

● Provide an adequate quantifiable baseline and clear evaluation criteria regarding the 

sensing robustness in harsh environmental conditions. 

8.1.2 Project management 

● Develop and implement a proper method to monitor the technical progress regularly and 

ask for input from all consortium partners. 

● Risk management activities should be technically oriented, with involvement of all partners 

on a more regular basis.  

● Establish an integration plan early in the project, including early prototypes and 

demonstrators. Provide pre-prototypes in reviews with the funding authorities. 

8.2 Project results 

RobustSENSE designed, developed, and evaluated a sensing system to cope with real world 

requirements under all environmental conditions. The RobustSENSE system introduced reliable, 

secure and trustable sensors and software by implementing self-diagnosis, adaptation and 

robustness. 

The four main pillars developed in the project were presented in the previous chapters, and 

a brief summary of the corresponding results is given below. 

Requirements and specification 

● Development of an overall system architecture including component and interface 

definitions. 
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● Definition of additional functional and non-functional components responsible for 

performance assessment. 

● Metrics specification and validation plans development for each component. 

Environment perception 

● Development of first prototype scanner with 1550nm wavelength. 

● Setup of a fog chamber for LiDAR validation. 

● Definition of quality metrics and concept for the camera optics cleaning system. 

Situation understanding and planning 

● Develop CNN system concept 

● Software design for algorithm performance monitoring. 

● Modification of existing LiDAR for easy interchange of their laser and sensor parts. 

Integration and validation 

● Development of the system performance assessment module. 

● Definition of the main inputs, levels of degradation for each sensor and the architecture of 

this module Demonstration and exploitation. 

● Test case description and validation tools definition. 

8.3 Success Stories 

Despite the technical and organisational challenges that were overcome in the course of the 

project, there emerged some success stories that are worth mentioning herein.  

Project Animation 

Communication and dissemination of the foreground are always central topics in projects like 

RobustSENSE. Since these projects usually take place in a pre-competitive setting the content 

and information is almost always of a very special interest, meaning that usually only specialists 

and experts are reachable for these efforts. In RobustSENSE we managed to develop a project 

animation that addresses the general public explaining the approach and aim as well as the 

main results of the project in an easy to understand manner thus making it even possible for 

kids to understand what the project did. See www.youtube.com/watch?v=ol4F-H1RlJM to 

watch the whole animation film. 

http://www.youtube.com/watch?v=ol4F-H1RlJM
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Setting a potential world record 

RobustSENSE partner VTT showcased some RobustSENSE aspects in January 2018 at the Aurora 

Summit in Olos, Finland potentially setting a world record for autonomously driving in snow 

when the robotcar “Martti” reached 40 km/h. See www.youtube.com/watch?v=C3GgJoVTHSU 

for a video of this ride. 

The press release by VTT accompanying the Aurora Summit resulted in global press coverage 

picking up on the topic of autonomous driving in snow and other adverse weather conditions 

ranging from the Americas to India and Australia. This clearly shows how important this 

research is considered. 

 

The robot car “Martti” at the Aurora Summit, January 2018 

Final Event 

In May 2018 the project held its concluding Final Event in Ulm, Germany. In this one-day event 

six driving demonstrations showing various aspects of the RobustSENSE sensor platform were 

presented, a conference with presentations about the key features and results and an 

extensive exhibition with posters, videos, a live-stream, hardware exhibits and a workshop 

took place. Over 80 guests attended this event, 25 of which from companies and institutions 

outside of the RobustSENSE consortium. Again, for such a relatively small and very special 

interest project, this is an impressive reach. 

http://www.youtube.com/watch?v=C3GgJoVTHSU
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List of abbreviations and acronyms 

Abbreviation Meaning 

ACC Adaptive cruise Control 

APD Avalanche photodiodes 

AV Automated vehicle 

AVL DrivingCube Virtual development and validation environment for intelligent vehicles 

Clutter Unwanted echoes in electronic systems, particularly in reference to radars 

CNN Convolutional Neural Network 

DDS Data Distribution Service 

ECA Environment Condition Assessment 

ECSEL  Electronic Components and Systems for European Leadership 

ECSEL JU Electronic Components and Systems for European Leadership Joint Undertaking 

Ego-vehicle Reference vehicle in relation to which other traffic participants’ movements 
are measured; or traffic environment’s objects; ‘test vehicle’ 

FCA FIAT Chrysler Automobiles 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

H2020  Horizon 2020 

IDM Intelligent Driver Model 

IP67 Most environmentally sealed housing is rated ‘IP67’ 

LiDAR Light detection and ranging 

LKA Lane Keeping Assistant 

LRR Long-range radar  

MPC Model Predictive Control (theory) 

MRR Medium-range radar 

OEM Original equipment manufacturer 

PDF Probability density Function 

RGB- image Data array that defines red, green, and blue colour components for each 
individual pixel 

SAE Society of Automotive Engineers 

SPAM Smart Power Assisted Module 

SVC Stereo video camera 

SWIR Short-Wave Infrared 

TRL  Technology Readiness Level 

V2X  Vehicle to X 

WBS Work Breakdown Structure  

WP Work package 
 


