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Abstract

The increasing precision of many experiments in elementary particle physics leads to

continuing interest in perturbative higher order calculations in the electroweak Standard

Model or extensions of it. Such calculations are of increasing complexity because more

loops and/or more legs are considered. Correspondingly e�cient computational methods

are mandatory for many calculations. One problem which a�ects the feasibility of higher

order calculations is the problem with 5 in dimensional regularization. Since the subject

thirty years after its invention is still controversial I advocate here some ideas which seem

not to be common knowledge but might shed some new light on the problem. I present

arguments in favor of utilizing an anticommuting 5 and a simple 4{dimensional treatment

of the hard anomalies.
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1. Introduction

The electroweak Standard Model (SM) [1] has been extremely successful in the interpretation

of LEP/SLC data and higher order e�ects typically amount to 10 � deviations if not taken into

account [2]. These precise predictions are only possible due to the renormalizability [3] of the

SM and the by now very precise knowledge of the relevant input parameters. Last but not least

the relevant coupling constants are small enough such that perturbation theory mostly works

very well.

The formal proofs of renormalizability of the SM [4] often relied on the assumption that a

gauge invariant regularization exists. The question whether such a regularization exists is

non{trivial because of the chiral structure of the fermions involved. At present the only regu-

larization, which makes elaborate computations of radiative corrections feasible, is the dimen-

sional regularization (DR) scheme [5, 6] which is well-de�ned for �eld theories with vectorial

gauge symmetries only. However, in theories exhibiting chiral fermions, like the electroweak

SM, problems with the continuation of the Dirac matrix 5 to dimensions D 6= 4 remain

open within this context and several modi�cations of the 't Hooft{Veltman DR have been pro-

posed [7, 8, 9, 10, 11, 12, 13, 14, 15]. It turns out that starting from the standard SM-Lagrangian

and using a 5, which does not anticommute with the other Dirac matrices �, leads to \spu-

rious anomalies" which violate chiral symmetry and hence gauge invariance. These anomalies

would spoil renormalizability if we would not get rid of them by imposing \by hand" the rel-

evant Ward-Takahashi (WT) [16] and Slavnov-Taylor (ST) [17, 18] identities order by order

in perturbation theory [13, 19, 20, 21, 22]. At �rst sight this might not look to be a serious

problem, however, violating the symmetries of the SM makes practical calculations much more

di�cult and tedious than they are anyway.

The problems of course are related to the existence of the Adler{Bell{Jackiw (ABJ) anomaly [23],

which must cancel in the SM in order not to spoil its renormalizability [24].

Surprisingly, the prescriptions proposed and/or used by many authors continue to be contro-

versial [9, 11, 13, 15, 20, 25, 26, 27, 28, 29, 30, 31, 32], and hence it seems to be necessary to

reconsider the problem once again. We shall emphasize, in particular, the advantage of working

with chiral �elds. The consequences of working as closely as possible with chiral �elds, it seems

to me, has not been stressed su�ciently in the literature so far.

As a matter of principle it is important to mention two other approaches which both work

in D = 4 dimensions. i) In quantum �eld theories on the lattice a recent breakthrough was

the discovery of exact chiral invariance on the lattice [33] which circumvents the Nielsen{

Ninomiya no{go theorem [34]. A well de�ned regularization which preserves simultaneously

chiral{and gauge{symmetries is thus known and could be applied to the SM. ii) The algebraic

renormalization of the electroweak SM to all orders [35] within the Bogoliubov-Parasiuk-Hepp-

Zimmermann (BPHZ) framework is a mathematically well de�ned scheme, which is much more

involved because it breaks the symmetries at intermediate stages and hence leads to much

longer expressions which are extremely tedious to handle in practice. In cases of doubt this

is the only known scheme which is free of ambiguities and works directly in 4{dimensional

continuum �eld theory.

For perturbative calculations in the continuum we have to stick as much as possible to the

more practical route of dimensional regularization. In the following tensor quantities in D = 4
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dimensions are supposed to be de�ned by interpolation of D = 2n (n � 2, integer ) dimensions

to dimensions belowD = 4. It is well known that the {algebra, the so called \naive dimensional

regularization" (NDR) �

f�; �g = 2g�� � 1 ; g
�

�
= D ; AC(�) � f�; 5g = 0 (1)

for dimensions of space{time D = 4� 2�, � 6= 0 is inconsistent with

Tr(����5) 6= 0 : (2)

The latter condition is often considered to be necessary, however, for an acceptable regulariza-

tion since at D = 4 we must �nd

Tr(����5) = 4i"���� : (3)

Generally, for 5 odd traces one obtains trace conditions from the cyclic property of traces.

They are not ful�lled automatically, as we shall see, and hence the algebra is ill-de�ned in

general. Considering Tr(
4Q

j=0


�j5

�) cyclicity requires

Tr(
4Y

j=0


�jAC(�))� 2

4X
i=0

(�1)ig��iTr(
4Y

j=0; j 6=i


�j5) = 0 : (4)

Contraction with the metric tensor g��0 yields

2 (g�
�
� 4) Tr(

4Y
j=1


�j5) + Tr(

4Y
j=1


�jAC()) = 0 (5)

with AC() � �AC(�). Thus g�
�

= D 6= 4 together with (2) implies AC(�) 6= 0. However,

non-anti-commutativity of 5 is in conict with the chiral structure and hence with gauge

invariance of the SM, in general. It is the purpose of this note to study the possibility of

restoring gauge invariance by employing chiral �elds systematically.

2. Formally gauge invariant Feynman rules

Obviously only terms involving � in the standard SM Lagrangian can be a�ected by a non{

anticommuting 5. As an example we consider the leptonic part, given by

L` = �̀
Ri

� (@� + ig
0
B�)`R + ��`Ri

�
@��`R

+ �L`i
� (@� + i

g
0

2
B� � ig

�a

2
W�a) L` (6)

using standard notation. As usual the chiral �elds

`R = �+` ; �`R = �+�` ; L` =

0
B@ �

`

1
CA
L

= ��

0
B@ �

`

1
CA (7)

�I read it as \normal dimensional regularization"
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may be represented in terms of the lepton �elds `(x) and the neutrino �eld �`(x) with the help

of the chiral projectors

�� � 1

2
(1� 5) : (8)

In order that �� are Hermitean projection operators 5 must have the properties


2
5 = 1 ; 

+
5 = 5 : (9)

Furthermore, we demand �� to be chiral projectors also for the adjoint � =  
+

0 of a Dirac

�eld  . This implies

f0; 5g = 0 : (10)

By Lorentz covariance in the 4{dimensional physical subspace the latter condition extends to

f�; 5g = 0 for � = 0; 1; 2; 3 : (11)

It is easy to verify that L` is invariant under local SU(2)L 
 U(1)Y gauge transformations,

irrespective of AC(�) 6= 0. Since the chiral �elds have the simple transformation properties

L` ! expf�i=2 (g0� � g�a!a) ��gL` = expf�i=2 (g0� � g�a!a)gL`

`R ! expf�ig0��+g`R = expf�ig0�g`R
�R ! �R ; (12)

the invariance of L` follows immediately from the properties of �� alone.

We notice that in utilizing chiral �elds there seems to be no conict with the non{anti-

commutativity of 5 and the formal validity of the ST{identities.

Usually, one prefers to write Feynman rules in terms of the Dirac �elds ` and �`. The standard

Feynman rules are obtained using the relations

� ��
��� = � ��� ; (13)

which are valid only, provided AC(�) = 0.

If AC(�) 6= 0 inD 6= 4 dimensional space{time, the above relations no longer hold and hence the

standard Feynman rules manifestly violate gauge invariance. The correct relations, replacing

(13), read

� ��
��� =

1

2
� (�� � �

�

5)  ; (14)

with

�� � 
� � 1

2
AC(�)5 =

1

2
(� � 5

�
5) (15)

and

��

5 =
1

2
[�; 5] = ��

5 : (16)

We notice that by de�nition all �'s are anticommuting with 5

f��
; 5g � 0 : (17)
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According to (14) the proper expressions for the vector current and for the axial{vector current

read

V
�(x) = � ��

 = � � � 1

2
� AC(�)5 (18)

and

A
�(x) = � ��

5 = � �5 � 1

2
� AC(�) ; (19)

respectively. It might be worthwhile to point out that the standard form of the axial current
� �5 is not Hermitean when AC(�) 6= 0. The above consideration also shows how anomalies

may come about in the vector current when 5
�
5 6= ��.

The fermion kinetic term changes to

� i��
@� = � i�@� � 1

2
� iAC(�)5@� : (20)

Correspondingly, the free massless fermion �elds must satisfy the �eld equation

�

� � 1

2
AC(�)5

�
@� = 0 : (21)

This formally implies that the conserved canonical Noether currents are precisely the ones given

above.

By the �eld equation the fermion spinors satisfy

�
k= � 1

2
AC(k)5 �m

�
u(k; s) = 0

�
k= � 1

2
AC(k)5 +m

�
v(k; s) = 0 (22)

and the free fermion propagator reads (AC(k) � k�AC(�))

SF (k) =
1

k= � 1

2
AC(k)5 �m+ i0

=
k=� 1

2
AC(k)5 +m

K2 �m2 + i0
(23)

with

K
2 � k

2 � 1

4
AC(k)AC(k) : (24)

Formally, we have obtained chiral and gauge invariant Feynman rules for non-anticommuting

5. Eqs. (18), (19) and (23) replace the standard expressions valid for AC(�) = 0.

3. Non-existence of a chirally invariant DR

The gauge invariant Feynman rules presented in the preceding section do not permit a regular-

ization by continuation in the dimension D when AC(�) is chosen compatible with the trace

condition (2). This can be proven as follows. First we consider the Dirac algebra extended

to D = 2n (n � 2, integer). In this case 2n{dimensional representations of the {algebra are

well known [8]. A basis for the algebra is given by the set of matrices 1; 5 and the anti-

symmetrized products [�1:::�p] associated with p{dimensional subspaces of MD. We will split
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the SO(1;D � 1) vectors (tensors) into 4{dimensional vectors p�
k

= p̂
� (� = 0; 1; 2; 3), in the

physical subspace M4, and their orthogonal complements p
�

? = �p� (� = 4; : : : ;D � 1). If we

impose the trace condition (2) in the physical subspace (see Eq. (11) above) we obtain the

't Hooft{Veltman algebra [5]:

AC(�) =

8><
>:

0 ; � = 0; 1; 2; 3

2��5 ; � = 4; : : : ;D � 1
(25)

with 5 = i

4!
"���� ̂

�
̂
�
̂
�
̂
�. Here, it is important to notice that AC(�) is a matrix of rank

�� � D � 4. The matrix{elements themselves are of order O(1). As a consequence higher

products of AC-terms are not of higher order in �� for D ! 4. This is the reason why the extra

terms needed to restore the Ward-Takahashi identities cannot be considered as perturbations.

They a�ect the free part of the Lagrangian! and hence the form of the fermion propagators, as

shown above. The symmetry at the end can only be there if the free and the interacting parts

of the Lagrangian match appropriately.

We are now ready to reconsider the fermion propagator (23). Using (25), we get for the scalar

product (24)

K
2 = k

2 � �k2 = k̂
2 (26)

and thus

SF (k) =
k̂= +m

k̂2 �m2 + i0
(27)

takes its 4{dimensional form, independent of D! It is then impossible to regularize fermion-

loop integrals by continuation in D. The crucial point is that the consistency with the trace

condition requires that in (24) the extra term proportional to AC(k)2 like AC is a matrix of

rank �� � D � 4 and not a correction of order O(�2) in the �{expansion!

The problem may be reconsidered in terms of the �{algebra de�ned by (15), which may be

associated to any {algebra:

f��
;��g = 2g�� � 1� 1

4
fAC(�);AC(�)g ; f��

; 5g = 0 : (28)

For any �{algebra in order to be closed, we must require

f��
;��g = 2G�� � 1 (29)

for some symmetric D �D{matrix G, which satis�es

g
�

�
G

�� = G
��
: (30)

The trace condition (4) must hold with the replacements

(�; g�� ; AC(�) 6= 0) ! (��
; G

��
; AC(�) = 0) (31)

which implies

g��G
�� = G

�

�
= 4 : (32)

6



Assuming G to have block{diagonal form

G =

0
B@ ĝ 0

0 �g

1
CA (33)

the condition (2) can be satis�ed with a singular metric G only:

�g = 0 ; G = ĝ (34)

where ĝ must be the Minkowski metric. Thus, starting from the 't Hooft{Veltman scheme,

we are lead to a dimensional reduction (DRED) scheme [10] by adding just some terms in the

Feynman rules which vanish in D = 4.

As a result, the �{form of the 't Hooft{Veltman algebra is identical to the 4{dimensional

Dirac algebra. In other words, using the 't Hooft{Veltman algebra (in its D{dimensional form)

together with the chiral �elds, which are adapted to the gauge symmetry, \non-regularization"

of fermion{loops is implied. Again, a regularization can only be obtained by giving up either

the trace condition (2) or gauge invariance.

This last statement, of course, is not terribly new. What we have shown is that the Dirac algebra

assuming anticommuting 5 on the one hand and the 't Hooft{Veltman algebra on the other

hand are not really di�erent, since the latter can always be rewritten in the anticommuting �{

form by means of the relations (15) and (16). In any case, for theories involving 5, \dimensional

regularization" compatible with (4), does not provide well{de�ned integrals for loops involving

fermion lines. This has been noticed by 't Hooft and Veltman in their original paper [5] where

they state: \the usual ambiguity of choice of integration variables is replaced in our formalism

by the ambiguity of location of 5 in the trace". Statements to the contrary, frequently found

in the literature, are misleading. Usually, extra \prescriptions" about where to put the 5 in a

particular calculation are proposed. These prescriptions, however, do not resolve the problem

of mathematical inconsistencies, i.e., they still require an explicit check and the restoration of

the Ward-Takahashi identities.

The use of chiral �elds provides an unambiguous rule for the proper location of the 5{matrices

before generalization to D 6= 4. Unfortunately, this has lead to the \non-regularization" by di-

mensional continuation when the D 6= 4 trace condition (2) is imposed, which in turn essentially

implies the 't Hooft{Veltman scheme.

If we violate gauge invariance by the naive application of the 't Hooft{Veltman prescription, we

have to restore the symmetry by imposing the relevant Ward{Takahashi identities and �xing

appropriate counter terms. But this precisely amounts to including the extra AC(�) terms

given in Eqs. (18) and (19). Which in turn is nothing but another way of utilizing the naive

anticommuting 5.

4. Conclusion for the practitioner

According to our considerations above we are left with two possible strategies:
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i) AC(�) 6= 0: the chirally improved 't Hooft{Veltman scheme

If we insist on the trace condition (2) the gauge invariance must be manifestly broken in order

to obtain the \pseudo regularization" by dimensional continuation. Again we start at the level

of the chiral �elds but must avoid the non{regularization by treating the AC{terms in the free

part of the Lagrangian as interaction terms, i.e., we use the standard D{dimensional Fermi

propagator

SF (k) =
k= +m

k2 �m2 + i0
(35)

together with the chiral currents (18, 19) as our \chiral Feynman rules". Since AC(�) 6= 0, the

choice of the Fermi propagator (35) amounts to adding the symmetry breaking term

�LSB =
1

2
� iAC(�)5@� = � i��@� (36)

to the Lagrangian. Besides the fact that this operator has no 4{dimensional representation, it

is not a higher order term for D 6= 4 as it would be necessary for treating it as a counter-term

(perturbation). Expanding �LSB perturbatively amounts to the assumption that AC(�) = O(�)

in the sense of matrix elements, which conicts with (2). As we have mentioned earlier, (2)

requires AC(�) to be a matrix of rank �� = D � 4 with matrix elements of order O(1). A

mathematically satisfactory way out of the dilemma within the framework of DR is not possible

as a result of the existence of the ABJ{anomaly.

Our considerations show that \quasi gauge invariant" Feynman rules may be obtained for non-

anticommuting 5 provided AC(�) is treated as a perturbation i.e. AC(�) = O(�). Examples

are briey considered in the Appendix. Results turn out to be AC{independent in this case.

AC{invariance may be used as a helpful tool for checking the gauge invariance of fermionic loop

contributions to amplitudes. Usually such checks are possible only by explicit consideration of

WT- and/or ST-identities. We stress, once again, that any approach which treats the AC{term

as a perturbation conicts with the trace condition (2) at some point. Ignoring this point

leads to \standard" confusions, frequently appearing in the literature. While working with

the 't Hooft{Veltman prescription in the standard form requires the subsequent check of the

Ward-Takahashi identities,after utilizing the chiral version of the Feynman rules we may restrict

ourselves to check the hard anomaly diagrams.

Since amplitudes exhibiting spurious anomalies only may be chiralized either by our chirally

improved Feynman rules or by imposing the Ward-Takahashi identities which makes them AC{

invariant we obviously may directly choose the scheme AC(�) = 0, which is our second and

preferred option:

ii) AC(�) = 0: the quasi self-chiral scheme

From a practical point of view an acceptable computational scheme should avoid spurious

anomalies in the �rst place. This is possible only if the trace condition (2) is given up. Gauge

invariance can be preserved then by using an anticommuting 5. This has been noticed in [7]

(see also [25, 26, 28, 38]).

We observe that taking chiral �elds seriously on a formal level, the only consistent way to avoid

the above non-regularization is the simple one: use anticommuting 5 from the very beginning,
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i.e., choose the NDR algebra (1). Since �� � 
� in this case we do not get the non-regularization

of the fermion propagators. The ABJ{anomaly must be considered separately as we are going

to discuss now y.

In the gauge invariant approach, closed fermion loops exhibiting 5 odd traces and hard anoma-

lies, cannot be obtained by dimensional continuation, merely, 5 odd traces are to be considered

as intrinsically 4-dimensional quantities. Since charge conjugation properties and the related

Bose symmetry are not automatically satis�ed one has to account left- and right-circulation of

the fermions in closed loops separately. In any case Adler's approach [39] can be utilized to re-

solve the remaining ambiguities. For this purpose, let us briey consider the ABJ{anomaly [23]

exhibited by the current correlator < 0jTfV �(x1)V
�(x2)A

�(y)gj0 > of two vector currents and

an axial{vector current. The one{loop diagrams are shown in Fig. 1.

�(p1 + p2); �

p1; �

p2; �

+
�(p1 + p2); �

p1; �

p2; �

Figure 1: The VVA triangle diagrams.

In D = 4, working as usual in momentum space, we may perform a covariant decomposition of

the third rank pseudotensor which depends on the two independent momenta p1 and p2:

A
���(p1; p2) = "

���� (p1� A1 + p2� A2)

+ "
����

p1�p2� (p�1 A3 + p
�

2 A4)

+ "
����

p1�p2� (p
�

1 A5 + p
�

2 A6)

+ "
����

p1�p2�

�
p
�

1 A7 + p
�

2 A8

�
(37)

where the amplitudes Ai are Lorentz scalars. We now impose

� Bose symmetry (i.e. consider the sum of the two diagrams of Fig. 1):

A
���(p1; p2) = A

���(p2; p1)

yThe terminology introduced in [9, 13] which calls a scheme \consistent" if it respects the trace condition

(2) and \inconsistent" otherwise is de�nitely misleading by the considerations presented in this paper. Since we

cannot satisfy the Ward-Takahashi identities and the trace condition simultaneously we have the choice which

one we want to consider more fundamental. Something has to be restored at the end by hand in any case. To

put into place the model independent ABJ{anomalies, is by far simpler, than restoring the chiral symmetry

which is broken by non{NDR schemes.
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which implies

A1(p1; p2) = �A2(p2; p1); A3(p1; p2) = �A6(p2; p1);

A4(p1; p2) = �A5(p2; p1); A7(p1; p2) = +A8(p2; p1):
(38)

� Vector current conservation:

p1�A
��� = p2�A

��� = 0

which implies

A1 = �
�
p
2
2 A4 + p1p2 A3

�

A2 = �
�
p
2
1 A5 + p1p2 A6

�
: (39)

We thus �nd that the amplitudes A1 and A2 are determined uniquely in terms of the Ai, i =

3; : : : ; 6. The crucial observation, made by Adler long time ago [39], is that the amplitudes Ai,

i = 3; : : : ; 8, have dimension de� = 1�3 = �2 and hence are represented by convergent integrals.

In contrast, Ai, i = 1; 2, have dimension de� = 1 � 1 = 0 (logarithmically divergent) and thus

require regularization and renormalization. However, imposing Bose symmetry and vector

current conservation uniquely determines the two regularization/renormalization dependent

amplitudes in terms of the other convergent and hence unambiguous ones, i.e., the result is

unique without need to refer to a speci�c renormalization scheme. The divergence of the axial{

vector current takes the form

�(p1 + p2)�A
��� = 2mR�� + 8�2p1�p2�"

���� 6= 0

where the �rst term on the r.h.s. is the normal term which vanishes for vanishing fermion

mass m while the second term is the mass independent anomaly. Formal axial{vector current

conservation in the limit of vanishing fermion mass would require

A1 �A2 � (p21 + p1p2)A7 � (p22 + p1p2)A8 = 0 ?

with A1 and A2 �xed already by vector current conservation, this expression as we know does

not vanish but yields the famous axial{vector current anomaly. All true anomalies, i.e.,quantum

e�ects like the triangle anomaly which cannot be removed by adding a corresponding counter

term to the Lagrangian, are well known to be related to the triangle diagram. Besides the tri-

angle diagram itself they appear by tensor reduction from one{loop box and pentagon diagrams

and diagrams which contain the one{loop anomalous graphs as subgraphs.

The Adler{Bardeen non-renormalization theorem [36] of the one{loop anomalies implies that

matters are under control provided Bose symmetry and vector current conservation are imposed,

if necessary by hand. In DR it has been reconsidered in [37, 38]. Last but not least we must

have the anomaly cancelation, possible by virtue of the quark lepton duality, in order to have

the SM renormalizable [24].

Summary: we have shown that di�erent 5{schemes may be related by adding suitable terms

in the D{dimensional Lagrangian which vanish at D = 4. In any scheme we can mimic

chiral �elds by the appropriate choice of the Feynman rules. We consider this to be crucial
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since the physical SM derives via a Higgs mechanism from a symmetric phase which exhibits

chiral fermions only. The corresponding \chiral completion" (see (18,19)) of the Feynman rules

cannot make a consistent scheme inconsistent or vice versa. Avoidable (often called \spurious")

anomalies are then absent. Our arguments strongly support the application of the NDR scheme

(1), i.e., the D{dimensional {algebra together with a strictly anticommuting 5, together with

the simple 4{dimensional treatment of the hard anomalies discussed above. The NDR is easily

implemented into computer codes and is by far the most convenient and e�cient approach in

calculations of radiative corrections. Removable anomalies are avoided and hence a tedious

procedure of restoration of WT- and ST-identities is not needed.

The rules advocated here have been utilized successfully in the last twenty years by many

authors at the one{ and the two{loop level and beyond. Most SM calculations of higher order

e�ects adopted the NDR scheme without encountering any inconsistencies. Of course, the NDR

scheme has been advocated by several authors [7, 11, 25, 26, 28, 38] (see also [30]) in the past.

I hope the present paper contributes to clarify part of the ongoing controversy.
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Appendix:

Calculations with AC(�) 6= 0 in the SM: Two examples.

We [40] have veri�ed explicitly that all spurious anomalies disappear from fermion propagators

and fermion form factors at one-loop order for the case where we use Feynman rules as proposed

in Sec. 4. in case AC(�) 6= 0. As explained earlier, in order to avoid the \non-regularization" of

fermion lines, we must treat AC as a perturbation AC(�) = O(�) and work to linear order in AC.

All calculations have been performed in the 't Hooft gauge with an arbitrary gauge parameter

�, which makes possible direct analytical checks of gauge invariance. We only summarize the

structure of the results.

The irreducible self-energy �(k) we obtained has the following form

�(k) =

�
k=�m� 1

2
AC(k)5

�
A+

1

2
[k=; 5]B +mC : (40)

This implies that the mass- and wave-function renormalization are completely AC{independent:

�m = �mc0 ;
q
Z2 = 1� 1

2
a0 � 1

2
b05 : (41)

Here the wave-function renormalization constant is given by the matrix

q
Z2 =

q
ZR �+ +

q
ZL �� (42)
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where
p
ZR and

p
ZL are the independent wave{function renormalizations of the right{handed

and left{handed �elds, respectively. Thus the renormalized self{energy reads

�r(k) =

�
k= �m� 1

2
AC(k)5

�
(A� a0) +

1

2
[k=; 5] (B � b0) +m (C � c0) (43)

with A� a0, B � b0 and C � c0 �nite, and hence

�r(k) = (k= �m) (A� a0) + k=5 (B � b0) +m (C � c0) +O(�) (44)

By contrast, using standard Feynman rules, we obtain

�(k) = (k= �m) A+
1

2
[k=; 5]B +mC

+ AC(k)5 D + [k=;AC()]E + [k=;AC()] 5 F (45)

for the bare self-energy. In this case it is not possible to perform the renormalization in the

standard way without imposing the Ward-Takahashi identities �rst, which must lead to the

form (40).

Similar results can be found for form-factors. The following applies to the �̀̀  and �̀̀ Z vertices.

The general form of the irreducible vertices reads

��(p1; p2) =

�

� �m� 1

2
AC(�)5

�
F1 +

1

2
[�; 5] F2 + p

�

1F3 + p
�

2F4 : (46)

We notice that the only surviving AC{term is AC(�)5 which appears in the canonical from (15)

as in the Born term. Thus the vertex renormalization can be performed in an AC{independent

way, i.e., the renormalized vertex is given by

��

r
(p1; p2) =

�

� �m� 1

2
AC(�)5

�
(F1 � c1) +

1

2
[�; 5] (F2 � c2) + p

�

1F3 + p
�

2F4 (47)

with F1 � c1, F2 � c2, F3 and F4 �nite. Hence, we have

��

r
(p1; p2) = 

� (F1 � c1) + 
�
5 (F2 � c2) + p

�

1F3 + p
�

2F4 +O(�) (48)

independent of any AC{term. In contrast, by applying standard Feynman rules, we �nd ad-

ditional terms of the form AC(�)5, [�;AC()] and f�;AC()g5 which cannot be removed

by renormalization, unless we impose the Ward-Takahashi identities �rst. In the chiral scheme

we obtain gauge invariant form factors directly without imposing Ward-Takahashi identities by

hand. Calculations in this \chiral" scheme in fact look very similar to the ones performed with

anticommuting 5.

As a result of these �ndings we decided to work with an anti-commuting 5 henceforth, �rst at

the one{loop level [41, 42], later at the two{loop level [43, 44, 45]. In most of these calculations

we worked in the 't Hooft gauge with a free gauge parameter which allowed us to check explicitly

the gauge invariance of on-shell matrix elements.
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