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Abstract

We evaluate the gravitino production rate in supersymmetric QCD at high tem-

perature to leading order in the gauge coupling. The result, which is obtained by

using the resummed gluon propagator, depends logarithmically on the gluon plasma

mass. As a byproduct, a new result for the axion production rate in a QED plasma

is obtained. The implicatons for the cosmological dark matter problem are brie
y

discussed, in particular the intriguing possibility that gravitinos are the dominant

part of cold dark matter.



1 Introduction

Supersymmetric theories, which contain the standard model of particle physics and

gravity, predict the existence of the gravitino [1], a spin-3
2
particle which aquires a mass

from the spontaneous breaking of supersymmetry. Since the couplings of the gravitino

with ordinary matter are strongly constrained by local supersymmetry, processes involving

gravitinos allow stringent tests of the theory.

It was realized long ago that standard cosmology requires gravitinos to be either very

light,m ~G < 1 keV [2], or very heavy,m ~G > 10TeV [3]. These constraints are relaxed if the

standard cosmology is extended to include an in
ationary phase [4, 5]. The cosmologically

relevant gravitino abundance is then created in the reheating phase after in
ation in which

a reheating temperature TR is reached. Gravitinos are dominantly produced by inelastic

2 ! 2 scattering processes of particles from the thermal bath. The gravitino abundance

is essentially linear in the reheating temperature TR.

The gravitino production rate depends on m~g=m ~G, the ratio of gluino and gravitino

masses. The ten 2! 2 gravitino production processes were considered in [5] form~g � m ~G.

The case m~g � m ~G, where the goldstino contribution dominates, was considered in [6].

Four of the ten production processes are logarithmically singular due to the exchange of

massless gluons. As a �rst step this singularity can be regularized by introducing either a

gluon mass or an angular cuto� [5]. The complete result for the logarithmically singular

part of the production rate was obtained in [7]. The �nite part depends on the cuto�

procedure.

To leading order in the gauge coupling the correct �nite result for the gravitino pro-

duction rate can be obtained by means of a hard thermal loop resummation. This has

been shown by Braaten and Yuan in the case of axion production in a QED plasma

[8]. The production rate is de�ned by means of the imaginary part of the thermal axion

self-energy [9]. The di�erent contributions are split into parts with soft and hard loop

momenta by means of a momentum cuto�. For the soft part a resummed photon propaga-

tor is used, and the logarithmic singularity, which appears at leading order, is regularized

by the plasma mass of the photon. The hard part is obtained by computing the 2 ! 2

scattering processes with momentum cuto�. In the sum of both contributions the cuto�

dependence cancels and the �nite part of the production rate remains. For the gravitino

production rate the soft part has been considered in [10] and the expected logarithm of

the gluon plasma mass has been obtained.

Constraints from primordial nucleosynthesis imply an upper bound on the gravitino

number density which subsequently yields an upper bound on the allowed reheating tem-
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perature TR after in
ation [11]-[15]. Typical values for TR range from 107 � 1010 GeV,

although considerably larger temperatures are acceptable in some cases [16]. In models of

baryogenesis where the cosmological baryon asymmetry is generated in heavy Majorana

neutrino decays [17], temperatures TR ' 108 � 1010 GeV are of particular interest [18].

Further, it is intriguing that for such temperatures gravitinos with mass of the electroweak

scale, i.e. m ~G � 100 GeV can be the dominant component of cold dark matter [7]. In

all these considerations the thermal gravitino production rate plays a crucial role. In this

paper we therefore calculate this rate to leading order in the gauge coupling, extending a

previous result [7] and following the procedure of Braaten and Yuan [8].

The paper is organized as follows. In section 2 we summarize some properties of

gravitinos and their interactions which are needed in the following. In order to illustrate

how the hard thermal loop resummation is incorporated we �rst discuss the axion case

in section 3. The most important intermediate steps and the �nal result for the gravitino

production rate are given in section 4. Using the new results the discussion in [7] on

gravitinos as cold dark matter is updated in section 5, which is followed by an outlook in

section 6. The calculation of the hard momentum contribution to the production rates is

technically rather involved. We therefore give the relevant details in the appendices.

2 Gravitino interactions

In the following we brie
y summarize some properties of gravitinos which we shall

need in the following sections. More detailed discussions and references can be found in

[19, 20, 21].

Gravitinos are spin-3=2 particles whose properties are given by the lagrangian for the

vector-spinor �eld  �
�(x),

L = �1
2
"
����

 �
5
�@� � �
1

4
m ~G �[


�
; 


� ] � �
1

2M
 �S

�
: (1)

Here m ~G is the gravitino mass, M = (8�GN )
�1=2 is the Planck mass and S� is the

supercurrent corresponding to supersymmetry transformations.  � and S� are Majorana

�elds, so that  �S
� = S� 

�.

Free gravitinos satisfy the Rarita-Schwinger equation,

� 1

2
"
����


5
�@� � �
1

4
m ~G[


�
; 


�] � = 0 ; (2)

which, using



�
 �(x) = 0 ; @

�
 �(x) = 0 ; (3)
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reduces to the Dirac equation

(i=@ �m ~G) �(x) = 0 : (4)

Consider as matter sector �rst a non-abelian supersymmetric gauge theory with la-

grangian

L = �1
4
F
a
��F

a�� +
1

2
�a (i
�Dab� �m~g�ab)�

b (5)

for the vector boson A
a
� and the gluino �a. Supersymmetry is explicitly broken by the

gluino mass term. Hence, the supercurrent is not conserved,

@�S
� = @�

i

4
[
�; 
�]
��aF a

��

= m~g

1

4
[
�; 
�]�aF a

��

= m~gS : (6)

The calculation of the gravitino production rate in section 4 will involve squared matrix

elements which are summed over all four gravitino polarizations. The corresponding

polarization tensor for a gravitino with momentum P reads

���(P ) =
X
l

 
l
�(P ) 

l

�(P )

= �(=P +m ~G)

 
g�� �

P�P�

m
2
~G

!
� 1

3

 


� +

P�

m ~G

!
(=P �m ~G)

 


� +

P�

m ~G

!
: (7)

Since  �(x) is a solution of the Rarita-Schwinger equation one has for the polarization

tensor



����(P ) = 0 ; P

����(P ) = 0 ; (8)

(=P �m)���(P ) = 0 : (9)

We shall be interested in the production of gravitinos at energies much larger than the

gravitino mass. In this case the polarization tensor simpli�es to

���(P ) ' �=Pg�� +
2

3
=P
P�P�

m
2
~G

; (10)

where we have used 
�S� = 0. Clearly, the �rst term corresponds to the sum over the

helicity �3
2
states and the second term represents the sum over the helicity �1

2
states

which represent the goldstino part of the gravitino. Eq. (10) is the basis for the famil-

iar substitution rule  � !
q

2
3

1
m ~G

@� which is used to obtain the e�ective lagrangian

describing the interaction of goldstinos with matter [22, 23, 24].
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The gravitino production rate at �nite temperature can be expressed in terms of the

imaginary part of the gravitino self-energy [9] which takes the form,

�(P ) = tr
h
���(P )�

��
~G
(P )

i
/ 1

M2
tr
h
���(P )S

�(P ) : : : S
�
(P )

i
/ 1

M2
tr
h
(�=P )S�(P ) : : : S�(P )

i
+

2m2
~g

3m2
~G
M2

tr
h
=PS(P ) : : : S(P )

i
: (11)

Here we have used eq. (6) for the divergence of the supercurrent. Note, that F =
p
3m ~GM

is the scale of spontaneous supersymmetry breaking, which gives the strength of the

goldstino coupling to the supercurrent. The dots denote the sum over the contributions to

the self-energy in the loop expansion. In S�(P ) = i
4
[
�; 
�]
��a(P1)F��(K1) and S(P ) =

1
4
[
�; 
�]�a(P1)F��(K1), with P = P1+K1, �

a(P1) represents one end of an internal gluino

line and F��(K1) stands for the end of one or two internal gluon lines. For m ~G � m~g the

goldstino part dominates the gravitino production cross section.

Eq. (11) is useful to derive relations between the helicity �3
2
and the helicity �1

2

contibutions to the self-energy. As shown in Appendix A, one obtains to two-loop order

�(P ) / g
2

M2

 
1 +

m
2
~g

3m2
~G

!
: (12)

We shall exploit this fact to perform the hard thermal loop resummation, which is neces-

sary because of the infrared divergences, just for the helicity �1
2
part of the rate.

The full supercurrent also involves quarks and squarks in addition to gluons and

gluinos. The divergence of the additional part of the supercurrent that involves the cubic

gravitino-quark-squark coupling is again proportional to the parameter of supersymmetry

breaking, i.e. m2
~q, the squark mass squared. The corresponding goldstino contribution

to the production rate is then proportional to m4
~q, which is suppressed at high energies

compared to the gluino contribution for dimensional reasons.

3 Axion production

Let us now consider the thermal production of axions in a relativistic QED plasma of

electrons and photons. According to the procedure outlined in the introduction the ther-

mal production rate can be obtained as sum of two terms, a soft momentum contribution
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which is extracted from the axion self-energy evaluated with a resummed photon propa-

gator and a hard momentum contribution which is computed from the 2! 2 processes.

a a

γ

γ

Figure 1: Axion self energy; the blob denotes the resummed photon propagator.

The axion-photon interaction is described by the e�ective lagrangian

L = � 1

4f
aF��

eF ��
; (13)

where f is the axion decay constant. The axion self-energy �a(P ) (cf. �g. 1) can be

evaluated in the imaginary-time formalism for external momentum P = (p0;p), with

p0 = i2�nT and p = jpj. In covariant gauge the resummed photon propagator has the

form [25, 26]

i���(K) = i (A���T +B���L + C���) ; (14)

with the tensors

A�� = �g�� �
1

k2

h
K

2
v�v� �K � v(K�v� +K�v�) +K�K�

i
;

B�� = v�v� �
K � v
K2

(K�v� +K�v�) +

�
K � v
K2

�2
K�K� ;

C�� =
K�K�

(K2)
2 ; (15)

and the transverse and longitudinal propagators

�T (k0; k) =
1

k
2
0 � k2 ��T (k0; k)

;

�L(k0; k) =
1

k2 ��L(k0; k)
: (16)

Here K = (k0;k) with k0 = i2�nT and k = jkj, � is a gauge-�xing parameter, v is the

velocity of the thermal bath and �T=L are the transverse and longitudinal self-energies of

the photon. The corresponding propagators �T=L have the spectral representation

�T=L(k0; k) =
Z
1

�1

d!
1

k0 � !
�L=T (!; k) : (17)
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For j!j < k the spectral densities �L=T are given by [26],

�T (!; k) =
3

4m2



x

(1� x2)(AT (x)2 + (z +BT (x))2)
;

�L(!; k) =
3

4m2



2x

AL(x)2 + (z +BL(x))2
; (18)

where m
 = eT=3 is the plasmon mass of the photon, x = !=k, z = k
2
=m

2

 and

AT (x) =
3

4
�x; BT (x) =

3

4

 
2

x
2

1� x2
+ x ln

1 + x

1� x

!
;

AL(x) =
3

2
�x; BL(x) =

3

2

�
2� x ln

1 + x

1� x

�
: (19)

The contribution to the axion production rate from soft virtual photons is obtained by

analytically continuing the axion self energy function �a(P ) from the discrete imaginary

value p0 to the continuous real value E = p [8],

�soft
a (E) = �Im�a(E + i�; p)

E

�����
k<kcut

=
T

8�f2

Z kcut

0
dkk

3

Z k

�k

d!

!

24�L(!; k)
 
1� !

2

k2

!
+ �T (!; k)

 
1 � !

2

k2

!2
35 :(20)

The axion production rate depends logarithmically on kcut. The corresponding coe�cient

can be obtained analytically. The remaining constant has to be evaluated numerically.

This yields the result, �rst obtained in [8],

�soft
a (E) =

3m2

T

16�f2

"
ln
k
2
cut

m2



� 1:379

#
: (21)

The corresponding collision term in the Boltzmann equation is

C
soft
a (T ) =

Z
d
3
p

(2�)3
nB(E)�

soft
a (E)

=
e
2
�(3)T 6

24�3f2

"
ln

 
kcut

m


!
� 0:689

#
; (22)

where

nB(E) =
1

exp (E=T )� 1
(23)

is the Bose-Einstein distribution.
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γ

e-

a

e-

γ

Figure 2: Axion production in electron-photon scattering.

The dependence of �soft
a (E) on the cuto� kcut is cancelled by the contribution from

hard virtual photons to the self-energy. This part of the axion production rate can be

obtained directly from the processes e�
 ! e
�

a (cf. �g. 2) [9],

nB(E)�
hard
a (E) = 2

Z
d
p

4�

1

2E

Z "
3Y
i=1

d
3
pi

(2�)32Ei

#
(2�)4�4(P1 + P2 � P � P3)

nF (E1)nB(E2)(1� nF (E3))jM j2�(jp1 � p3j � kcut) : (24)

Here we have used rotational invariance by averaging over the directions of the axion mo-

mentum; jM j2 is the photon-axion matrix element squared for e�(P1)
(P2)! e
�(P3)a(P ),

jM j2 = e
2

f2

 
�2s

2

t
� 2s� t

!
; (25)

where s = (P1 + P2)
2
; t = (P1 � P3)

2, and nF (E) is the Fermi-Dirac distribution,

nF (E) =
1

exp(E=T ) + 1
: (26)

The phase space integration has to be carried out under the constraint on the virtual

photon momentum k � jp1 � p3j > kcut. For the angular integrations it turns out to be

convenient to de�ne all momenta with respect to k. Some details of this calculation are

given in appendix B. One �nally obtains,

nB(E)�
hard
a (E) =

3e2

28�3f2
1

E2

Z
dE1dE3dknF (E1)nB(E2)(1� nF (E3))

�
h
(E1 � E3)

2 � k
2
i  
�1 + 2

3

E
2
1 + E

2
3 + 2EE2

k2

�(E3 + E1)
2(E + E2)

2

k4

!

 ; (27)
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where E2 = E + E3 �E1 and the integrations are restricted by 
,


 = �(k � kcut)�(k � jE1 � E3j)
�(E1 + E3 � k)�(2E + E3 � E1 � k)

�(E1)�(E3)�(E + E3 � E1) : (28)

After performing the k-integration one is left with several domains for the E1- and E3-

integrations. The logarithmic dependence on kcut can be extracted by means of a partial

integration in E1. In the remaining part of the integral kcut can be set equal to zero. The

�nal result reads

�hard
a (E) =

e
2

16�3f2

(
2�2

3
T
3

 
ln

�
2T

kcut

�
+
17

6
� 
 +

�
0(2)

�(2)

!

+
�
e
E=T � 1

� Z 1

0
dE3 [1 � nF (E3)]

Z E+E3

0
dE1

� ln

 
jE1 � E3j

E3

!
nF (E1)nB(E2)

�
"
�(E � E1)

E
2
2

E2

 
2E1 � 2

E
2
1

E2

+

 
E

2
1 �

E
2
3E

2

E
2
2

!
nF (E1) + nB(E2)

T

!

��(E1 � E3)
E

2
2

E2

 
2E1 � 2

E
2
1 + E

2
3

E2

+ (E2
1 + E

2
3)
nF (E1) + nB(E2)

T

!

+�(E3 �E1)

 
2E1 + (E2

1 + E
2
3)
nF (E1) + nB(E2)

T

! #)
: (29)

This result agrees with the one obtained in [8] except for the �rst expression / �(E�E1)

in the double integral. Integration over the axion energy E yields for the collision term

in the Boltzmann equation

C
hard
a (T ) =

Z
d
3
p

(2�)3
nB(E)�

hard
a (E)

=
e
2
�(3)T 6

24�3f2

"
ln

�
2T

kcut

�
+
17

6
� 
 +

�
0(2)

�(2)
� 1:280

#
: (30)

The numerical constant is about 20% smaller than the one obtained from the axion rate

given in [8].

Consistency requires that the dependence on the cuto� kcut cancels in the total pro-

duction rate. Comparison of eqs. (22) and (29) shows that this is indeed the case. The

result for the total axion collision term reads

Ca(T ) = C
soft
a (T ) + C

hard
a (T )

=
e
2
�(3)T 6

48�3f2

"
ln

 
T
2

m2



!
+ 0:8194

#
: (31)
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4 Gravitino Production

The rate for the thermal production of gravitinos can be calculated in complete analogy

to the axion production rate. It is dominated by QCD processes since the strong coupling

is considerably larger than the electroweak couplings. The contribution due to soft virtual

gluons can again be extracted from the gravitino self-energy with a resummed gluon

propagator to which the contribution from hard 2! 2 processes has to be added.

Properties and interactions of the gravitino have been discussed in section 2. For

supersymmetric QCD with gluons, gluinos, quarks and squarks one obtains [19, 20, 21],

L = � ip
2M

h
(D�

��
�) �


�


�
PL�� (D��)�PR


�


�
 �

i
� i

8M
 � [


�
; 


�] 
��aF a
��: (32)

Here � denotes a left-handed quark or antiquark and � the corresponding squark. For

light gravitinos one can use a simpler e�ective lagrangian [22, 23, 24]. The corresponding

goldstino-gluon-gluino coupling can be read o� from eqs. (6) and (11)

Le� = � m~g

2
p
6Mm ~G

 [
�; 
�]�aF a
�� + : : : : (33)

Here  is the goldstino, the spin-1=2 component of the gravitino. The e�ective theory

contains the same vertices as the full theory, except for the gravitino-quark-squark-gluon

vertex. Instead, there is a new four particle vertex, the gravitino-gluino-squark-squark

vertex [24]. All vertices are proportional to supersymmetry breaking mass terms, i.e., m2
~q

and m~g. At high energies and temperatures, with m~q;m~g � T , contributions involving

the cubic goldstino-quark-squark coupling are suppressed by m2
~q=T

2 relative to the gluino

contribution because of the higher mass dimension of the coupling.

G G

g

g

V1 V2

Figure 3: Gluon-gluino loop diagram, the leading contribution to the imaginary part of

the gravitino self energy. The blob denotes a resummed gluon propagator.
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In the imaginary-time formalism one obtains for the goldstino self-energy (cf. �g. 3)

with momentum P summed over helicities:

�(P ) = tr

24 X
l=�1=2

 
l(P ) 

l
(P )� ~G(P )

35 = T
X
k0

Z
d
3
k

(2�)3
tr

"
=PV

�
2

1

=Q
���(K)V �

1

#
: (34)

Here we have neglected gluino and gravitino masses since m~q;m~g � T ; V �
1;2 are the

vertices, Q = P � K is the momentum of the gluino, and ���(K) is the resummed

gluon propagator, which is obtained from the resummed photon propagator (14) by the

substitution m
 ! mg. The thermal gluon mass for N colours and nf colour triplet and

anti-triplet chiral multiplets is given by

m
2
g =

g
2
T
2

6
(N + nf ) : (35)

This result is easily obtained from the expressions for the gluon vacuum polarization [27]

by adding up the contributions from gluons, gluinos, quarks and squarks.

Inserting gluon propagator and vertices in eq. (34) yields the gauge-independent result

�(P ) =
4

3

m
2
~gT

M2m
2
~G

(N2 � 1)
X
k0

Z
d
3
k

(2�)3
(DL�L +DT�T )

1

Q2
; (36)

where

DT (k0; k; E; p;pk) =
1

32
tr f=P [=K; 
�] =Q [=K; 
�]A��g ;

DL(k0; k; E; p;pk) =
1

32
tr f=P [=K; 
�] =Q [=K; 
�]B��g : (37)

After a straightforward calculation, analogous to the one for the axion self-energy, one

�nds for the gravitino production rate

�soft

~G
(E) = �Im�(E + i�; p)

E

�����
k<kcut

=
m

2
~g(N

2 � 1)T

6�M2m
2
~G

Z kcut

0
dkk

3

Z k

�k

d!

!

�
24�L(!; k)

 
1� !

2

k2

!
+ �T (!; k)

 
1� !

2

k2

!2
35 : (38)

The momentum integral depends logarithmically on the cuto� kcut. The integrand, which

is identical with the one for the axion production rate (20), agrees with the result obtained

in [10]. After performing the momentum integrations one �nally obtains

�soft

~G
(E) =

(N2 � 1)m2
~gm

2
gT

4�M2m
2
~G

"
ln

 
k
2
cut

m2
g

!
� 1:379

#
: (39)
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Note, that the overall normalization di�ers from the expression given in [10] by the factor

4(N2 � 1).

The dependence of the soft part of the gravitino production rate on the cuto� kcut

is again cancelled by the cuto� dependence of the contribution from the hard 2 ! 2

processes. There are 10 processes denoted by A to J [5]:

� A: ga + g
b ! ~gc + ~G

+

ga

gb gc

G
gc

+

ga

gb gc

G

ga +

ga

gb gc

G

gb

ga

gb gc

G

� B: ga + ~gb ! g
c + ~G (crossing of A)

� C: ~qi + g
a ! ~qj + ~G

+

qi

ga qj

G
qj +

qi

ga qj

G

qi +

qi

ga qj

G

ga

qi

ga qj

G

� D: ga + qi ! ~qj + ~G (crossing of C)

� E: �~qi + qj ! g
a + ~G (crossing of C)

� F: ~ga + ~gb ! ~gc + ~G

+

ga

gb gc

G
gc

+

ga

gb gc

G

ga

ga

gb gc

G

gb

� G: qi + ~ga ! qj + ~G

+

qi

ga qj

G
qj +

qi

ga qj

G

qi

qi

ga qj

G

ga

� H: ~qi + ~ga ! ~qj + ~G
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+

qi

ga qj

G
qj +

qi

ga qj

G

qi

qi

ga qj

G

ga

� I: qi + �qj ! ~ga + ~G (crossing of G)

� J: ~qi + �~qj ! ~ga + ~G (crossing of H)

The corresponding matrix elements have been evaluated in [7]. As discussed in section 2,

they must have the form

jMij2 /
1

M2

 
1 +

m
2
~g

3m2
~G

!
(40)

in the high energy limit.

process i jMij2= g2

M2

�
1 +

m2

~g

3m2

~G

�
A g

a + g
b ! ~gc + ~G 4(s + 2t+ 2 t

2

s
)jfabcj2

B g
a + ~gb ! g

c + ~G �4(t+ 2s + 2 s
2

t
)jfabcj2

C ~qi + g
a ! qj + ~G 2sjT a

jij2

D g
a + qi ! ~qj + ~G �2tjT a

jij2

E �~qi + qj ! g
a + ~G �2tjT a

jij2

F ~ga + ~gb ! ~gc + ~G �8 (s2+st+t2)2
st(s+t)

jfabcj2

G qi + ~ga ! qj + ~G �4(s+ s2

t
)jT a

jij2

H ~qi + ~ga ! ~qj + ~G �2(t+ 2s + 2 s
2

t
)jT a

jij2

I qi + �qj ! ~ga + ~G �4(t+ t2

s
)jT a

jij2

J ~qi + �~qj ! ~ga + ~G 2(s + 2t+ 2 t
2

s
)jT a

jij2

Table 1: Squared matrix elements for gravitino ( ~G) production in two-body processes in-

volving left-handed quarks (qi), squarks (~qi), gluons (g
a) and gluinos (~ga). The values are

given for the speci�ed choice of colors and summed over spins in the initial and �nal state.

f
abc and T a

ji are the usual SU(3) colour matrices.
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In table 1 the squared matrix elements of all ten processes are listed. Sums over initial

and �nal spins have been performed. For quarks and squarks the contribution of a single

chirality is given. One easily checks that the matrix elements satisfy the relevant crossing

symmetries. The particle momenta P1, P2, P3, and P used in the calculations correspond

to the particles in the order in which they are written down in the column "process i" of

table 1. This �xes the energies of Bose and Fermi distribution. The matrix elements in

the table correspond to the de�nitions s = (P1 + P2)
2 and t = (P1 � P3)

2.

The di�erent processes fall into three classes depending on the number of bosons and

fermions in initial and �nal state. A, C and J are BBF processes with two bosons in the

initial and a fermion in the �nal state; correspondingly, B, D, E and H are BFB processes,

and F, G and I are FFF processes. Only four processes, B, F, G and H contribute to the

logarithmic cuto� dependence. The gravitino production rate is then given by (cf. [9]),

nF (E)�
hard
~G

(E) =

Z
d
p

4�

1

2E

Z "
3Y
i=1

d
3
pi

(2�)32Ei

#
(2�)4�4(P1 + P2 � P � P3)

�
�
nBBF jMBBF j2 + nBFB jMBFBj2 + nFFF jMFFF j2

�
�(jp1 � p3j � kcut) :(41)

Here, nBBF , nBFB and nFFF are the products of number densities for the corresponding

processes, e.g.,

nBBF = nB(E1)nB(E2)(1 � nF (E3)) : (42)

The matrix elements jMBBF j2 etc. are obtained by summing the corresponding matrix
elements in table 1 with the appropriate multiplicities and statistical factors. Angular and

momentum integrations can now be carried out as in the case of axion production. One

�nally obtains the result

�hard
~G

(E) =

 
1 +

m
2
~g

3m2
~G

!
g
2(N2 � 1)

8�3M2

(
2�2(N + nf)T

3

 
ln

�
2T

kcut

�
+
17

6
� 
 +

�
0(2)

�(2)

!

+(N + nf )
�
e
E=T + 1

� Z 1

0
dE3

Z E+E3

0
dE1 ln

 
jE1 � E3j

E3

!

�
"
�(E � E1)

d

dE1

"
(nBFB + nFFF )(

E
2
1E

2
2

E2
� E

2
3)

#

��(E1 � E3)
d

dE1

"
(nBFB + nFFF )

E
2
2

E2
(E2

1 + E
2
3)

#

+�(E3 �E1)
d

dE1

h
(nBFB + nFFF )(E

2
1 + E

2
3)
i #

+IBBF + IBFB + IFFF

)
: (43)
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Performing the di�erentiations with respect to E1 yields expressions analogous to the one

given in eq. (29). IBBF , IBFB and IFFF , which are not all proportional to N + nf , are

given in appendix C; they contribute to the cuto�-independent part of �hard
~G

.

The dependence on kcut cancels in the sum of soft and hard contributions to the

production rate. From eqs. (39) and (43) one obtains for the collision term

C ~G(T ) =
Z

d
3
p

(2�)3
nF (E)

�
�soft

~G
(E) + �hard

~G
(E)

�
=

 
1 +

m
2
~g

3m2
~G

!
3�(3)g2(N2 � 1)T 6

32�3M2( "
ln

 
T
2

m2
g

!
+ 0:3224

#
(N + nf ) + 0:5781nf

)
: (44)

This is the main result of this paper. It allows to calculate the gravitino abundance to

leading order in the gauge coupling g(T ), contrary to previous estimates which depended

either on ad hoc cuto�s [5, 6] or on an unknown scale of the logarithmic term [7].

An important question concerns the size of higher-order corrections. Note, that g '
0:85 for T � 1010 GeV. This is much better than at the electroweak scale T � 100 GeV

where g ' 1:2, or for the quark-gluon plasma at T � 1 GeV where g ' 2:5. However,

one still has to worry about the usually assumed separation of scales g2T � gT � T ,

which would correspond to �g � mg � T , where �g � g
2
T is the magnetic screening

mass. Note, that for the supersymmetric standard model with N = 3 and nf = 6 one has

mg ' T . For the static Debye and magnetic screening masses the separation of scales has

recently been studied in detail for the case of non-supersymmetric QCD [28]. For real-

time processes almost nothing is presently known about non-perturbative e�ects related

to the magnetic screening mass. This is a challenging theoretical problem.

5 Gravitinos as cold dark matter

We can now study the cosmological implications of our result eq. (44) for the Boltz-

mann collision term of gravitino production. We are particularly interested in the case of

large reheating temperatures after in
ation, i.e. TR ' 108� 1010 GeV, which are relevant

for models of leptogenesis. In the following we shall concentrate on the possibility that

the gravitino is the lightest supersymmetric particle (LSP), updating the discussion in [7],

where it was pointed out that a large gravitino mass m ~G � 100 GeV is compatible with

such reheating temperatures. We shall ignore the non-thermal production of gravitinos

[29, 30] which depends on the model of in
ation.

15



From the Boltzmann equation,

dn ~G

dt
+ 3Hn ~G = C ~G ; (45)

one obtains for the gravitino abundance at temperatures T < TR, assuming constant

entropy,

Y ~G(T ) =
n ~G(T )

nrad(T )
' g?S(T )

g?S(TR)

C ~G(TR)

H(TR)nrad(TR)
; (46)

where g?S(T ) is the number of e�ectivelymassless degrees of freedom [31]. For T < 1 MeV,

i.e. after nucleosynthesis, g?S(T ) =
43
11
, whereas g?S(TR) =

915
4
in the supersymmetric stan-

dard model. WithH(T ) = (g?(T )�
2
=90)1=2T 2

=M one obtains in the case of light gravitinos

(m ~G � m~g(�), � ' 100 GeV) from eqs. (46) and (44) for the gravitino abundance and

for the contribution to 
h2,

Y ~G = 1:1 � 10�10
�

TR

1010GeV

� 
100GeV

m ~G

!2  
m~g(�)

1TeV

!2

; (47)


 ~Gh
2 = m ~GY ~G(T )nrad(T )h

2
�
�1
c

= 0:21

�
TR

1010GeV

� 
100GeV

m ~G

! 
m~g(�)

1TeV

!2

: (48)

Here we have used g(TR) = 0:85, nrad(T ) = �(3)T 3
=�

2, and m~g(T ) = g
2(T )=g2(�)m~g(�);

�c = 3H2
0M

2 = 1:05h210�5GeVcm�3 is the critical energy density. The new result for


 ~Gh
2 is smaller by a factor of 3 compared to the result given in [7]. Due to the large value

of the plasma mass mg an estimate of the gravitino production rate, which is based just

on the logarithmic term of the 2! 2 cross sections as in [7] is rather uncertain.

It is remarkable that reheating temperatures TR ' 108 � 1010 GeV lead to values


 ~Gh
2 = 0:01 : : : 1 in an interesting gravitino mass range. This is illustrated in �g. 4 for

a gluino mass m~g = 700 GeV. As an example, for TR ' 1010 GeV, m ~G ' 80 GeV and

h ' 0:65 [31] one �nds 
 ~G = 0:35, which agrees with recent measurements of 
M [31].

In general, to �nd a viable cosmological scenario one has to avoid two types of grav-

itino problems: For unstable gravitinos their decay products must not alter the observed

abundances of light elements in the universe, which is referred to as the big bang nucle-

osynthesis (BBN) constraint. For stable gravitinos this condition has to be met by other

super particles, in particular the next-to-lightest super particle (NSP), which decay into

gravitinos; further, the contribution of gravitinos to the energy density of the universe

must not exceed the closure limit, i.e. 
 ~G = � ~G=�c < 1. Consider �rst the constraint

from the closure limit. The condition 
 ~G = Y ~Gm ~Gnrad=�c � 1 yields an allowed region
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Figure 4: The density parameter 
 ~Gh
2 for di�erent gravitino masses m ~G as function of

the reheating temperature TR. The gluino mass has been set to m~g = 700 GeV.

in the m ~G-m~g plane which is shown in �g. 5 for three di�erent values of the reheating

temperature TR. The allowed regions are below the solid lines, respectively.

With respect to the BBN constraint, consider a nonrelativistic particle X decaying

into electromagnetically and strongly interacting relativistic particles with a lifetime �X.

X decays change the abundances of light elements the more the longer the lifetime �X

and the higher the energy density mXYXnrad are. These constraints have been studied in

detail by several groups [11, 12, 13]. They rule out the possibility of unstable gravitinos

with m ~G � 100 GeV for TR � 1010 GeV.

For stable gravitinos the NSP plays the role of the particle X. The lifetime of a fermion

decaying into its scalar partner and a gravitino is

�NSP = 48�
m

2
~G
M

2

m
5
NSP

: (49)

For a su�ciently short lifetime, �NSP < 2 � 106 s, the energy density which becomes free in
NSP decays is bounded by mXYX < 4 � 10�10GeV, which corresponds to 
Xh

2
< 0:008.
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Figure 5: Upper and lower bounds on the gluino mass and the NSP mass as functions of the

gravitino mass. The full lines represent the upper bound on the gluino mass m~g > mNSP

for di�erent reheating temperatures from the closure limit constraint. The dashed line is

the lower bound on mNSP which follows from the NSP lifetime.

The lifetime constraint yields a lower bound on super particle masses which is represented

by the dashed line in the m ~G-mNSP=~g plane in Fig. 5.

In order to decide whether the second part of the BBN constraint, 
NSPh
2
< 0:008,

is satis�ed, one has to specify which particle is the NSP. The case of a higgsino-like

neutralino as NSP has been discussed in [7]. A detailed discussion of the case where a

scalar � -lepton is the NSP has been given in [14],[15].

A complete treatment of gravitinos as cold dark matter has to include non-thermal

contributions. The situation is analogous to leptogenesis where, in principle, non-thermal

contributions also have to be added to the thermal part. However, non-thermal contribu-

tions depend on assumptions about the state of the early universe before the hot thermal

phase, for instance the type of in
ationary phase, and they are therefore strongly model

dependent.
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6 Outlook

The main result of the paper is the production rate of gravitinos for supersymmetric

QCD at high temperature to leading order in the gauge coupling. The result is valid for

gravitino masses larger or smaller than the gluino mass.

As expected the gravitino production rate depends logarithmically on the gluon plasma

mass which regularizes an infrared divergence occuring in leading order. Following the

procedure of Braaten and Yuan, the result is obtained by matching contributions to the

gravitino self-energy with soft and hard internal gluon momenta and by using a resummed

gluon propagator for the soft part. As a byproduct a new result for the axion production

rate in a QED plasma is obtained which is slightly smaller than a previously published

result.

The QCD coupling is large, and even at temperatures T � 1010 GeV the usually

assumed separation of scales, g2T � gT � T appears problematic. Hence, higher-order

corrections to the gravitino production rate may be sizeable. Further, it is of crucial

importance to gain some understanding of the in
uence of the non-perturbative magnetic

mass scale �g on real-time processes in general.

The thermal gravitino production rate plays a central role in cosmology since it is

closely related to the dark matter problem. For many supersymmetric extensions of the

standard model this rate de�nes a limiting temperature beyond which the standard hot

big bang picture becomes inconsistent. At present supersymmetric theories o�er several

interesting candidates for cold or hot dark matter. It is an intriguing possibility that the

gravitino itself is the dominant component of cold dark matter.

We would like to thank T. Asaka, O. B�ar, D. B�odeker, O. Philipsen and M. Pl�umacher

for helpful discussions. The work of A.B. has been supported by a Heisenberg grant of

the D.F.G.
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Appendix A

In the following we shall derive the prefactor of the self-energy,

�(P ) /
 
1 +

m
2
~g

3m2
~G

!
; (A.1)

extending the discussion in section 2.

G G

P1

(a)

G G

P1

(b)

P1

G G

P1

(c)

P2

K G G

(d)

P1

Figure 6: Contributions to the gravitino self energy.

The gravitino self-energy takes the form (cf. eq. (11)),

�(P ) / 1

M2
tr
h
���(P )S(P )

�
: : : S

�
(P )

i
/ 1

M2
tr
h
(�=P )[
�; 
�]
��a(P1)F

a
��(K1) : : : F

b
��(K1)�

b
(P1)
�[


�
; 


�]
i

+
2m2

~g

3m2
~G
M2

tr
h
[
� ; 
�]�a(P1)F��(K1) : : : F��(K1)�

a
(P1)[


�
; 


�]
i
: (A.2)

The one- and two-loop contributions for the pure gauge theory in resummed perturbation

theory are depicted in Fig. (6). The contributions (a) and (b) represent for the gluino

line the �rst two terms of the gluino propagator. This corresponds to the substitution,

�(P1) : : : �(P1)! =P1A(P1; v) + =vB(P1; v) : (A.3)

This is the general form of the gluino propagator for m~g = 0 because of chiral symmetry

and the fact that the velocity v appearing in the gluon propagator is the only other vector
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available apart from the momentum P1. With



�


�

� = �2
� (A.4)

one then reads o� the factor (A.1) for the contributions (a) and (b). The same arguments

apply for the contribution Fig. (6d).

For Fig. (6c) one obtains for the gluino line,

�(P1) : : : �(P1)! =P1

�
=P2 : (A.5)

With



�
=P1


�
=P2
� = �2=P2


�
=P1 ; (A.6)

the interchange P1 $ P2 and the property of the gluon propagator �(�K) = �(K) one

obtains the factor (A.1) also for this contribution.

Appendix B

In this appendix we explain the calculation of the contribution of hard virtual photons

to the axion production rate �hard
a (E). We start by reconsidering the de�ning equation

(24):

nB(E)�
hard
a (E) = 2

Z
d
p

4�

1

2E

Z "
3Y
i=1

d
3
pi

(2�)32Ei

#
(2�)4�4(P1 + P2 � P � P3)

n
FBF
total jM j2�(jp1 � p3j � kcut) (B.1)

where the matrix element squared for e�
 ! e
�

a is given in Eq. (25) and

n
FBF
total = nF (E1)nB(E2)(1� nF (E3)): (B.2)

A great simpli�cation is achieved in the computation of (B.1) if one uses as reference

momentum the di�erence vector k = p1 � p3, i.e., we write

d
3
p1

2E1

= �(P 2
1 )�(E1)dE1d

3
p1

=
Z
d
3
k�

3(k+ p3 � p1)�(P
2
1 )�(E1)dE1d

3
p1

= �(E2
1 � jk+ p3j2)�(E1)dE1d

3
k: (B.3)

Further,

d
3
p2

2E2

�
4(P1 + P2 � P � P3) = �(P 2

2 )�(E2)d
4
P2�

4(P1 + P2 � P � P3)

= �((E + E3 � E1)
2 � (p� k)2)�(E + E3 � E1):(B.4)
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We now use rotational invariance to choose

k = k (0; 0; 1);

p = E (0; sin ~�; cos ~�);

p3 = E3 (cos � sin �; sin� sin �; cos �); (B.5)

which implies

s = (P1 + P2)
2 = (P + P3)

2 = 2EE3(1� sin � sin� sin ~� � cos � cos ~�);

t = (P1 � P3)
2 = (E1 �E3)

2 � k
2
; (B.6)

and

jk+ p3j2 = E
2
3 + k

2 + 2E3k cos �;

jp� kj2 = E
2 + k

2 � 2Ek cos ~�: (B.7)

It follows that

�((E + E3 � E1)
2 � (p� k)2) =

1

2kE
�

 
cos ~� � E

2 + k
2 � (E + E3 � E1)

2

2kE

!
;

�(E2
1 � jk+ p3j2) =

1

2kE3

�

 
cos � � E

2
1 � E

2
3 � k2

2kE3

!
: (B.8)

The integrations over the �-functions yield the following �-functions (where we use also

the �-functions �(E1);�(E + E3 � E1) and E = p > 0; E3 = p3 > 0:

1.) From the integration over cos � we get:

cos � < 1 ! k > E1 � E3;

cos � > �1 ! E1 > jE3 � kj: (B.9)

The second of these constraints is equivalent to

E3 � E1 < k < E1 + E3: (B.10)

2.) From the integration over cos ~� we get:

cos ~� < 1 ! jE � kj < E + E3 � E1;

cos ~� > �1 ! k > E3 � E1: (B.11)

The �rst of these constraints is equivalent to

E1 � E3 < k < 2E + E3 �E1: (B.12)
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After integrating out the �-functions we therefore have:

nB(E)�
hard
a (E) =

1

27�4
1

E2

Z
dE1dE3n

FBF
total dkd�jM j2
; (B.13)

where 
 is the product of all �-functions that restrict the integrations over E1; E3 and k,


 = �(k � kcut)�(k � jE1 � E3j)
�(E1 + E3 � k)�(2E + E3 � E1 � k)

�(E1)�(E3)�(E + E3 � E1) : (B.14)

Since only s depends on �, we can integrate out also this angle without di�culty:Z
d�jM j2 =

e
2

f2

Z
d�

 
�2s2
t

� 2s� t

!

=
3e2�

2f2

h
(E1 � E3)

2 � k
2
i  
�1 + 2

3

E
2
1 + E

2
3 + 2EE2

k2

�(E3 + E1)
2(E + E2)

2

k4

!
� g: (B.15)

We thereby obtain the result given in Eq. (27) in the main text. We now rewrite the

expression for (B.14) using

�(E1 + E3 � k) = 1��(k � E1 �E3): (B.16)

We use �(k � E1 � E3)�(k � jE1 � E3j) = �(k � E1 � E3) and thus get


 =
h
�(k � kcut)�(k � jE1 � E3j)�(2E + E3 � E1 � k)

� �(k � kcut)�(k � E1 � E3)�(2E + E3 �E1 � k)
i

� �(E1)�(E3)�(E + E3 � E1): (B.17)

We multiply the second term in the brackets of Eq. (B.17) with 1:

1 = �(kcut � E1 �E3) + �(E1 + E3 � kcut); (B.18)

and note that

�(k � kcut)�(k � E1 � E3)�(kcut � E1 � E3)

= �(k � kcut)�(kcut � E1 � E3); (B.19)

and

�(k � kcut)�(k � E1 � E3)�(E1 + E3 � kcut)

= �(k � E1 �E3)�(E1 + E3 � kcut): (B.20)
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The contribution from the �rst term on the r.h.s. of Eq. (B.18) is zero in the limit

kcut ! 0. We see this by integrating over k from kcut to 2E + E3 � E1. The resulting

expression has terms � 1=k3cut, � 1=k1cut. Since from kcut > E1 + E3 it follows that both

E1 and E3 are smaller than kcut it is easy to see by power counting that the expression

after the k integration is of order kcut. Then we are left to consider:

nB(E)�
hard
a (E) = g1 + g2; (B.21)

where

g1 =
1

27�4
1

E2

Z
1

0
dE3

Z
1

0
dE1n

FBF
total�(E + E3 � E1)

�
Z
dk�(k � kcut)�(k � jE1 � E3j)�(2E + E3 � E1 � k)g;

g2 = � 1

27�4
1

E2

Z
1

0
dE3

Z
1

0
dE1n

FBF
total�(E + E3 � E1)�(E1 + E3 � kcut)

�
Z
dk�(k �E1 � E3)�(2E + E3 � E1 � k)g; (B.22)

The integral over k in g2 is nonzero only if

E1 + E3 < 2E + E3 � E1 , E1 < E: (B.23)

In the limit kcut ! 0 we therefore get:

g2 =
e
2

16�3f2
1

E2

Z
1

0
dE3

Z E

0
dE1n

FBF
total (E1 � E) [(E + E1)E3 + E1(E � E1)] ; (B.24)

We rewrite this result for later use as follows:

g2 =
e
2

16�3f2
1

E2

Z
1

0
dE3

Z E+E3

0
dE1 ln

 
jE1 �E3j

E3

!

� �(E � E1)
d

dE1

h
n
FBF
total (E

2
1E

2
2 � E

2
E

2
3)
i
:

(B.25)

We now turn towards the computation of g1. We �rst multiply by 1:

g1 = g1�(kcut � jE1 � E3j) + g1�(jE1 � E3j � kcut) � g11 + g12 (B.26)

Note that

�(k � kcut)�(k � jE1 �E3j)�(kcut � jE1 � E3j)
= �(k � kcut)�(kcut � jE1 � E3j) (B.27)
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and

�(k � kcut)�(k � jE1 �E3j)�(jE1 �E3j � kcut)

= �(k � jE1 � E3j)�(jE1 � E3j � kcut): (B.28)

We therefore have

g11 =
1

27�4
1

E2

Z
1

0
dE3

Z
1

0
dE1n

FBF
total�(E + E3 � E1)�(kcut � jE1 � E3j)

�
Z
dk�(k � kcut)�(2E + E3 � E1 � k)g (B.29)

g12 =
1

27�4
1

E2

Z
1

0
dE3

Z
1

0
dE1n

FBF
total�(E + E3 � E1)�(jE1 �E3j � kcut)

�
Z
dk�(k � jE1 � E3j)�(2E + E3 � E1 � k)g: (B.30)

Consider �rst g11. The integration of g over k can be carried out easily. We do not write

down the result explicitly but note that it contains terms � 1=k3cut and � 1=kcut. The

integration over E1 is done next. From kcut > jE1 �E3j we get

E3 � kcut < E1 < E3 + kcut: (B.31)

In the limit kcut ! 0 we can therefore set E1 = E3 in the distribution functions n
FBF
total and

get

g11 =
e
2

3�3f2
nB(E)

Z
1

0
dE3E

2
3nF (E3)(1� nF (E3))

=
e
2
T
3

18�f2
nB(E): (B.32)

Now we turn towards the computation of g12. We insert

1 = �(E1 � E3) + �(E3 �E1): (B.33)

Then g12 = g121 + g122 with

g121 =
1

27�4
1

E2

Z
1

0
dE3

Z
1

0
dE1n

FBF
total�(E + E3 � E1)�(E1 � E3 � kcut)

�
Z
dk�(k � E1 + E3)�(2E + E3 � E1 � k)g;

g122 =
1

27�4
1

E2

Z
1

0
dE3

Z
1

0
dE1n

FBF
total�(E3 � E1 � kcut)

�
Z
dk�(k � E3 + E1)�(2E + E3 � E1 � k)g: (B.34)
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The integration over k gives

g121 =
e
2

16�3f2
1

E2

Z
1

0
dE3

Z E3+E

E3+kcut

dE1n
FBF
total

(E2
1 + E

2
3)E

2
2

E1 � E3

;

g122 = � e
2

16�3f2
1

E2

Z
1

0
dE3

Z E3�kcut

0
dE1n

FBF
total

E
2(E2

1 + E
2
3)

E1 �E3

: (B.35)

The logarithmic dependence on kcut is extracted by a partial integration with f 0(E1) =

1=(E1 � E3); f(E1) = ln (jE1 � E3j=E3).

For the surface term we get:

gsurface = � e
2

4�3f2
nB(E)

Z
1

0
dE3 ln

 
kcut

E3

!
E

2
3 exp(E3=T )

(exp(E3=T ) + 1)2

=
e
2
T
3

24�f2
nB(E)

"
ln

�
2T

kcut

�
+
3

2
� 
 +

�
0(2)

�(2)

#
(B.36)

In the remaining term, which is given by � R dE1f(E1)g
0(E1), kcut can be set to zero.

Writing g12 = gsurface + gpartial we obtain:

gpartial = � e
2

16�3f2
1

E2

Z
1

0
dE3

Z
1

0
dE1�(E + E3 � E1) ln

 
jE1 � E3j

E3

!

�
(
�(E1 �E3)

d

dE1

h
n
FBF
total E

2
2(E

2
1 + E

2
3)
i

� �(E3 � E1)
d

dE1

h
n
FBF
total E

2(E2
1 + E

2
3)
i )

(B.37)

Performing the di�erentiation and combining the results for g1 and g2 leads to the �nal

result Eq. (29) given in the main text.

Appendix C

In this appendix we describe in some detail the calculation of the hard virtual gluon

contribution and of the other non-singular contributions to the gravitino production rate

�hard
~G

(E). We start by considering the de�ning equation (41). By summing the cor-

responding squared matrix elements of table 1 with the appropiate multiplicities and

statistical factors, we get

jMBBF j2 =

 
1 +

m
2
~g

3m2
~G

!
2g2(N2 � 1)

M2

" 
s+ 2t+

2t2

s

!
(N + nf) + 2snf

#
; (C.1)
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jMBFBj2 =

 
1 +

m
2
~g

3m2
~G

!
4g2(N2 � 1)

M2

" 
�t� 2s � 2s2

t

!
(N + nf )� 2tnf

#
; (C.2)

jMFFF j2 =

 
1 +

m
2
~g

3m2
~G

!
4g2(N2 � 1)

M2

 
�t� 2s � s

2

t
+

s
2

t+ s
� t

2

s

!
(N + nf) :(C.3)

First we note that since s = �t� u we may write s+ 2t = t� u and

� s
2

t
+

s
2

s+ t
= �s

2

t
� s

2

u
: (C.4)

The di�erence t� u and 1=t� 1=u is odd under exchanging P1 and P2. If the remaining

integrand and the measure is even under this transformation, the integral over such terms

will be zero. Therefore in jMBBF j2, the contribution of s + 2t will give zero. Further we

may trade s in jMBBF j2 with �2t. In jMFFF j2, we may likewise substitute

� s
2

t
+

s
2

s+ t
! �2s

2

t
: (C.5)

Therefore only the following squared matrix elements have to be considered:

jM1j2 = �t� 2s� 2s2

t
;

jM2j2 = t;

jM3j2 =
t
2

s
; (C.6)

and we replace the matrix elements in (41) by

jMBBF j2 !
 
1 +

m
2
~g

3m2
~G

!
4g2(N2 � 1)

M2

h
jM3j3 (N + nf )� 2jM2j2nf

i
; (C.7)

jMBFBj2 =

 
1 +

m
2
~g

3m2
~G

!
4g2(N2 � 1)

M2

h
jM1j2 (N + nf )� 2jM2j2nf

i
; (C.8)

jMFFF j2 !
 
1 +

m
2
~g

3m2
~G

!
4g2(N2 � 1)

M2

�
jM1j2 � jM3j2

�
(N + nf) : (C.9)

jM1j2 is the axion matrix element which has been discussed in appendix B. The di�erent

statistical factors in the case of gravitino production do not change the structure of the

contribution from jM1j2 as compared to the axion case. Again we can extract the loga-

rithmic dependence on the cuto� kcut by a partial integration. In the case of BFB, the

surface term contains an additional term which depends on the energy of the gravitino,

see Eq. (C.14) below. The other two matrix elements do not induce a logarithmic depen-

dence on the cuto� kcut, i.e. one can set kcut = 0 to compute their contribution to the
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gravitino production rate. The contribution from jM2j2 = t can be obtained easily using

the same methods as in the axion case, where now no partial integration is needed. We

obtain

I
t
BBF (BFB) =

Z
d
p

4�

1

2E

Z "
3Y
i=1

d
3
pi

(2�)32Ei

#
(2�)4�4(P1 + P2 � P � P3)nBBF (BFB)jM2j2

=
1

96�3

Z
1

0
dE3

Z E+E3

0
dE1nBBF (BFB)

�
(
�(E � E1)

E � E1

E2

h
2E2 + (3E3 � E1)(E + E1)

i
� �(E1 � E3)

E
2
2

E2
(2E �E3 + E1)

+ �(E3 � E1)(�3E3 + 3E1 � 2E)

)
; (C.10)

To compute the contribution from jM3j2 = t2

s
it is convenient to choose di�erent coordi-

nates to perform the angular integrations, namely

q � p+ p3 = q(0; 0; 1);

p = E (0; sin ~�; cos ~�);

p2 = E2 (cos� sin �; sin� sin �; cos �): (C.11)

The calculation of this contribution to �hard
~G

(E) then goes along similar lines as for the

axion, i.e. the integration of the angular variables cos �; cos ~� can be trivially performed

using the ��functions. This leads to several constraints for the integration over q, which

can be performed without problems. The �nal result is rather compact:

I
t2=s

BBF (FFF ) =

Z
d
p

4�

1

2E

Z "
3Y
i=1

d
3
pi

(2�)32Ei

#
(2�)4�4(P1 + P2 � P � P3)nBBF (FFF )jM3j2

=
1

32�3

Z
1

0
dE3

Z E+E3

0
dE2nBBF (FFF )

�
(

E
2
2

E + E3

+�(E2 � E3)
E3 � E2

E2
[E3(E3 � E2) + E(E3 + E2)]

)
: (C.12)

The full result for �hard
~G

(E) can be written as in Eq. (43) with

IBBF = 32�3
�
e
E=T + 1

� h
(N + nf)I

t2=s
BBF � 2nfI

t
BBF

i
; (C.13)

IBFB = T
3(N + nf )

"
Li2(�e�E=T )�

�
2

6
(1 + 8 ln(2))

#
� 64�3nf

�
e
E=T + 1

�
I
t
BFB;(C.14)
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IFFF = �32�3
�
e
E=T + 1

�
(N + nf )I

t2=s
FFF : (C.15)

The hard contribution to the collision term can be obtained by a numerical integration.

Adding all the contributions we �nally �nd:

C
hard
~G

(T ) =
Z

d
3
p

(2�)3
nF (E)�

hard
~G

(E)

=

 
1 +

m
2
~g

3m2
~G

!
3�(3)g2(N2 � 1)T 6

32�3M2

�
(
(N + nf )

"
ln

 
T
2

k
2
cut

!
+ 1:7014

#
+ 0:5781nf

)
; (C.16)

which yields, after adding the soft contribution, our �nal result for the gravitino collision

term (44).
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