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Abstract

The gradiometer mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) is
simulated by using simpli�ed assumptions. Taking into account the couplings between the di�erent
sensors (e.g. GPS, accelerometers) and control systems (e.g for drag-free control), we investigate the
e�ects of di�erent error sources on the scienti�c end-products like gravity gradients (or spherical
harmonics at a further processing level).
We try to simulate the total mission (i.e. considering all important e�ects from misalignment of
gradiometer axes up to instabilities of the contol loops) by using the standard mathematical software
package SIMULINK.
We control our simulation results by linear control theory; that means, we extract single parts of
the complex mission (e.g. drag-free control or the coupling of misalignments) and compute their
e�ects separately.
Although the possibilities of SIMULINK are limited good results have been obtained. Our prelimi-
nary results show that the aspired accuracy level for GOCE (10�3 E�otv�os/

p
Hz) can be achieved

which enables to derive a gravity �eld up to degree and order 250.

1 Introduction

GOCE is one of the dedicated gravity �eld mission currently under investigation in the context of
the ESA explorer program. Its main objective is the determination of the Earth's gravity �eld with
high spatial resolution and with high homogeneous accuracy by using: Satellite-to-Satellite Tracking
(SST) in high-low mode for the orbit determination and for the retrieval of the long-wavelength part
of the gravity �eld, and Satellite Gravity Gradiometry (SGG) for the derivation of the medium/short-
wavelength parts.
The GOCE orbit will be near circular and sun-synchronous (i � 97o) at an altitude of 250 km. The
mission duration is planned to be about 8 months. During this period the satellite shall be kept drag-
free. The orbit will be determined by GPS with an accuracy of about 1 cm RMS. The measurement
precision of the 3-axis gradiometer that is aimed for, is at the 10�3 E�otv�os/

p
Hz level.

Beside a GPS receiver and an ensemble of 3-axis accelerometers, further instruments are needed;
e.g. star trackers to determine the orientation of the spacecraft or thrusters for attitude and drag-free
control. Each instrument has its own error behaviour which a�ects the measurements and the �nal
products in some typical manner.
For a realistic simulation, the various errors (e.g. misalignments, drag coupling or S/C rotation) as well
as the interactions between the sensors/actuators (e.g. for attitude control) have to be considered and
their e�ect on the scienti�c end-products (e.g. spherical harmonics, geoid heights or gravity anomalies)
has to be investigated.
The di�erent parts of the GOCE simulation are performed by the SID consortium consisting of SRON2,
IAPG and DEOS3. The division of the di�erent tasks within SID is shown in Fig. 1. Additionally,
IAPG is responsible for the validation of the gradiometer simulation.

1This article is published in similar form in the journal Artificial Satellites.
2Space Research Organisation Netherlands, NL-3584 CA Utrecht, NL.
3Delft Institute for Earth Oriented Space Research, Delft University of Technology, NL-2629 JA Delft, NL.
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Figure 1: Simulation of GOCE by SID.
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The global simulation of the gradiometer measurements is performed by SRON (see Hoyng, 1997)
with input from DEOS and ALENIA4. Our (IAPG) goal is the validation of the results of the GOCE
simulator by using simpli�ed assumptions. For this purpose, we use two di�erent techniques: �rst, we
extract single parts of the complex mission (e.g. drag-free control or the coupling of misalignments)
and compute their e�ects by linear control theory; secondly, we simulate the total mission by using
the mathematical software package SIMULINK. There the measurement principles and the relation
between the various instruments are represented by means of a ow chart which is also the computer
program itself in SIMULINK.

2 Basic Equations

The basic equation of gradiometric measurements is given by (e.g. Rummel, 1986)

� = V +

+ _
: (1)

� represents the tensor of the observables and V describes the second derivatives of the gravitational
potential of the Earth. It reads

V =

0
@ Vxx Vxy Vxz

Vyx Vyy Vyz
Vzx Vzy Vzz

1
A : (2)

The tensor is symmetric und trace-free, i.e. in each point along the orbit 5 of its 9 elements are linearly
independent.
Here we adopt a coordinate frame which is co-moving with the satellite, x points in ight direction
(along-track), y is orthonormal to the orbit plane (cross-track) and z is the radial component5.


 and _
 describe the e�ect of the inertial forces on the observations (where a Coriolis-like term has
been neglected because the test masses of the accelerometers almost don't move). They are computed
from the angular velocities 
 resp. their time derivatives (indicated by the dot over the variable).
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The latter matrix is anti-symmetric, whereas the former one is symmetric.

The key payload for GOCE is the gradiometer. It consists of a combination of six 3-axis accelerometers.
The accelerometers are arranged in the so-called diamond con�guration (see Fig. 2) which means the
accelerometers are placed at six locations symetrically about the origin G of the gradiometer at a
distance of about 25 cm from G. The sensitive axes of the accelerometers are oriented along the axes
of an orthogonal triad. In case of the capacitive ONERA6 accelerometer one axis is less sensitive

4The Italian Space Organisation ALENIA Aerospazio - Space Division is the main contractor of ESA for the study

phase A of GOCE.
5In the case of a non-circular orbit, y remains cross-track, z points radially to the geocenter and x completes the

frame to an orthonormal basis; then x is directed not longer exactly along-track.
6O�ce National d'Etudes et de Recherches Aerospatiales.
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Figure 2: Diamond con�guration.

than the two others. This is indicated by the dotted lines. The orientation of the sensitive axes
shown in Fig. 2 is one possible option for GOCE. The two highly sensitive axes are oriented in such
a way that one is able to measure the diagonal components of the gravitational tensor as well as the
�xz and �zx components with highest accuracy. The latter is necessary to be able to solve for the
angular acceleration _
y (resp. the angular velocity 
y after time integration) which is obtained by the
combination of these two o�-diagonals (see Eq. (4)). If choosing another orientation of the sensitive
axes, 
y has to be determined by another method, e.g. by using the trace of the measurement tensor.

 gives the rotation of the earth-pointing, satellite-�xed coordinate frame with respect to an inertial
frame. The rotation about the cross-track axis 
y has to be determined with highest accuracy because
it is the largest angular velocity which can be seen from (here 
 represents a vector)
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where 
0
y is given by the mean motion of the satellite. Therefore 
y produces the largest e�ects in

the corresponding error terms.

The basic equation of gradiometric measurements (1) can also be understood as the measurement of
di�erential accelerations over short baselines. For example the component �xx can be obtained by

�xx =
ax
1
� ax

2

l
(6)

where ax
1
and ax

2
are the accelerations along the x-axis observed with accelerometer 1 and 2, l is the

distance between both accelerometers, i.e. the distance O1O2.
Starting from this point of view one can simulate the gradiometric observations as a combination of
acceleration measurements. The acceleration in a rotating frame at a position r is given by

�r = F+ (V +

+ _
) r: (7)

F stands for the sum over all non-gravitational accelerations, mainly caused by air drag and thruster
�ring.
In the simulation, one can additionally assume that the position is not known perfectly

r = r0 + �r: (8)

That means, the distance GO is known up to a certain accuracy level only (e.g. 50 �m).
The angular velocity 
 is a function of the satellite rotational dynamics (see e.g. Kaplan, 1976;
Schneider, 1992). The (kinematic) Eulerian equations read


 = _RR
t (9)

where R = D1( x)D2( y)D3( z) is the rotation matrix calculated by 3 rotations about 3 angles,
_R its time derivative. Eq. (9) describes the relationship between the angular velocities 
 and the time
derivatives of the angles. In detail one has


x = _ x � _ z sin y;


y = _ z sin x cos y + _ y cos x;


z = _ z cos x cos y � _ y sin x:

(10)

The angular accelerations can be computed by

_
x =Mx=Ix � �
y
z;

_
y =My=Iy � �
x
z;

_
z =Mz=Iz � 
x
y:

(11)

M are the atmospheric torques (provided by ALENIA) and I the principal moments of inertia de�ned
in the satellite-�xed frame; �, � and  are the oblateness parameters to be calculated from the moments
of inertia of the S/C.

It is also appropriate to assume that the orientation of the single accelerometer axes are not perfect, i.e.

�r� = D �r (12)

where the transformation matrix D is a function of misalignments, couplings of accelerometer axes,
scale factors and so on.
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Figure 3: Validation simulator in SIMULINK.
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Figure 4: Computation of 'real' accelerations.

Having computed quasi-real accelerations at selected locations of the diamond con�guration, the
simulation of the measurement process can begin.
Using the capacitive ONERA accelerometers, the test mass is a cube in an electrical �eld within
a housing. When the satellite (and the housing which is mounted on it) is a�ected by external
non-gravitational accelerations the test mass tends to move, but is constrained to stay at rest ('ap-
proximately') by electrical feedback forces.
In the frequency domain, the relationship between the measured quantity, a voltage V o(s), and the
external input acceleration aext(s) is given by

V o(s)

aext(s)
=

H(s)

s2 � !2
p +H(s)

; (13)

with �!2
p � �0:01 (rad/s)2 de�nes the negative parasitic sti�ness and H(s) the corresponding transfer

function of the feed back controller

H(s) = !2

0

�
1 +

s

!D
+
!i
s

�
(14)

where !0 = 2�f0 (f0 = 5 Hz) is the basic frequency of the accelerometer, !D = !0=3 the damping
frequency and !i = !0=10 the integration frequency.
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Additionally internal and external noise a�ect the accelerometer measurements. The resulting voltage
is then again transformed into a 'measured' acceleration.

The combination of the readouts of the six accelerometers and (anti-)symmetrisation gives on the one
hand

_
 =
1

2
(�� �t) (15)

where the integration leads to 
 which is then used to determine on the other hand the pure gravita-
tional part

V =
1

2
(�+ �t)�

: (16)


 is used further in closed loop for attitude control (AC).
The common acceleration of two arbitrary accelerometers

F =
�r2 + �r1

2
(17)

is a direct measure of the linear (non-gravitational) acceleration of the S/C and is used in a further
control loop for drag-free control (DFC).

3 Coding with SIMULINK

SIMULINK is software where the coding is performed by constructing a ow chart, i.e. de�ning blocks
and connecting them. The blocks itself may consist of computer programs, the connections describe
mathematical functions (e.g. summation, but also numerical integration).

The structure of the main part of our GOCE simulator - the validation simulator - is shown in Fig. 3.
Here, the formulas given in the previous section are translated in SIMULINK language. One can divide
the simulation process in four steps indicated by the dotted frames 1, 2, 3 and 4. In frame 1 the input
quantities are provided, in 2 the simulated accelerations are computed, in 3 measured accelerations
are simulated and in 4 the various output quantities are computed.
The grey blocks in frame 1 describe the input quantities: linear non-gravitational forces from air drag,
gravity gradients and possible star tracker observations (not yet implemented). The drag forces are
transformed into linear accelerations (F in Eq. (7)). As seen in Eq. (7), also angular velocities and
accelerations are needed. They are obtained by solving the Eulerian equations which are realised by
the large block in the middle of frame 1.
Now moving from the left to frame 2 one has six large blocks. They stand for the six accelerometers
of the diamond con�guration (see Fig. 2). In each of these blocks, Eq. (7) is calculated for each
accelerometer location (a more detailed description follows below in Fig. 4). The transformation D
(Eq. (12)) is indicated by the short formula (e.g. 'rA + misA') just below each block. The result of
these computations are 'real' accelerations at a certain position in a certain direction (x, y or z).
Moving on to frame 3 one �nds 18 accelerometer axes (3 axes at 6 locations) simulating the mea-
surement process which will be explained in detail below (see Fig. 5). The output is 'measured'
accelerations.
In frame 4, they are now combined to derive common mode accelerations which are needed for DFC
as well as di�erential mode accelerations (like Eq. (6)). For DFC, the loop is closed on the top of
Fig. 3, where the measured accelerations are used to activate some proportional thrusters for drag-free
control in the desired frequency bandwidth (e.g. 5�10�3 { 7�10�2 Hz). The di�erential accelerations of
two measurements have to be divided by their baseline which results in a speci�c component of the
tensor � which is indicated by the large block on the right hand side of frame 4.
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Figure 5: Capacitive Accelerometer.
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Figure 6: Attitude Control System.
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(Anti-)symmetrisation allows to decouple rotational and gravitational parts of the tensor (see Eqs.
(15) and (16)). The rotational parts (angular velocities) are used again in the ACS (the latter loop is
not yet closed, only indicated at the bottom of Fig. 3). But the ACS is simulated with input quantities
from the computation of the Eulerian equations. The ACS block is located at the lower left side of
Fig. 3. It is discussed more detailed below in Fig. 6.

Fig. 4 explains the computation of Eq. (7). On the left, the input quantities enter and are multiplied
by r = (x, y, z)t and summed up 'line-wise'. Then the transformation D (in Fig. 4, the matrix
components are designed by A(1,1), ...) describing misalignments, couplings and so on, is performed.
The output is quasi-real (simulated) accelerations.

The output of Fig. 4 is the input for Fig. 5 where the accelerometer itself is described. It covers the
application of equations (13) and (14). First the input acceleration is integrated twice. Then the ne-
gative parasitic sti�ness (!2

p) and internal and external noise e�ects are considered. Towards the right
side one has still the damping and the integral part which are all combined. After scaling and �ltering
the frequencies above the measurement bandwidth one obtains the quasi-measured accelerations.

Fig. 6 describes shortly a simple attitude control system. Using angular velocities (denoted here as n)
and angles ('Winkel') as input, one can compute torques by an appropriate combination of the scaled
input parameters. The division by the moments of inertia I of the S/C leads to angular accelerations
which are the input quantities to �re the thrusters for attitude control.
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4 First results

We have tested the DFC part by investigating whether we are able to control the required linear
acceleration up to a certain level (10�7 m/s2=

p
Hz in the measurement bandwidth). Fig. 7 shows the

drag spectra in along-track direction (dotted line) and the PSD of the controlled acceleration in the
same direction (solid line). The dashed curve below indicates the expected thruster noise for DFC. It
lies below the required accuracy level. Our investigations have further shown that we can perform the
linear control at least one order of magnitude better (which is probably required for the capacitive
instrument) by tuning the parameters of the corresponding transfer function. This will be discussed
in more detail in a follow-on paper.
Furthermore we have tested whether the theoretically expected accuracy of the accelerometer mea-
surements can be reproduced by our simulator. Fig. 8 gives the expected error curve caused by the
assumed noise levels (one applied as input acceleration noise, one as internal position sensing noise)
already converted to E�otv�os units. For comparison the curve GO1 is shown which represents the base-
line assumption for the error spectrum of the gradiometer. This curve has been provided by ONERA
and is used in the global GOCE simulations as long as one has no better information about the real
error behaviour. It served also as upper limit to derive requirements for the mission parameters like
e.g. pointing stability or misalignments.
Fig. 9 shows the noise spectra which were obtained by running the whole simulator; the in-line tensor
components are plotted simultaneously. The agreement between the noise curve in Fig. 8 and those of
Fig. 9 is excellent, also when high-frequent noise is present. Obviously the measurement precision of the
accelerometer lies well beyond the aspired level of 10�3 E�otv�os/

p
Hz in the measurement bandwidth.
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Figure 9: Observed noise spectra with the simulator.

These �rst tests show that the simulator is a powerful tool for investigating both the gradiometric
part of GOCE as a whole and the various subsystems separately.

5 Outlook

Currently the simulator still su�ers from some shortcomings related to the software itself. The software
runs on a PC which is limited in memory and speed. Therefore a large amount of computer time is
needed (a couple of hours for one orbit). A lot of calculations are done by standard tools which are
provided in SIMULINK and can not be exchanged easily. For example, we use the given integrators
without being able to change their speci�cations. Thus this part functions as a black box. We are
limited in our possibilities to optimise the system in accuracy and speed, but we work on it to make
the system more comfortable.
As a consequence of the current status one has to plan very carefully before running some test cases.
What can be done is to stabilize the program and to increase its robustness. Also the internal modelling
can still be improved (e.g. the right choice of �lters for cutting high-frequent noise). In addition more
realistic noise scenarios for the simulation of misalignments have to be found.
Up to now, we can test various accelerometer parameters and the e�ect of perturbing forces like drag
or satellite rotations. We can simulate di�erent accuracies for each accelerometer axis and introduce
separate misalignments and scale factors for the di�erent directions. We can incorporate an improved
DFC (e.g only in the measurement bandwidth or for all frequencies). A next step will be to close the
loop for attitude control, i.e. to use our own 'measured' angular velocities for S/C control.
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Furthermore we control our simulation results by linear control theory; that means, we extract single
parts of the complex mission (e.g. drag-free control or the coupling of misalignments) and compute
their e�ects separately.
In short our simulator is very well able to validate the results of the GOCE simulator running at SRON.
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