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Abstract

A recurrence relation between equal mass two-loop sunrise diagrams di�ering in dimensionality
by 2 is derived and it's solution in terms of Gauss' 2F1 and Appell's F2 hypergeometric functions
is presented. For arbitrary space-time dimension d the imaginary part of the diagram on the cut is
found to be the 2F1 hypergeometric function with argument proportional to the maximum of the
Kibble cubic form. The analytic expression for the threshold value of the diagram in terms of the
hypergeometric function 3F2 of argument �1=3 is given.

1On leave of absence from JINR, 141980 Dubna (Moscow Region), Russian Federation.



1 Introduction

The evaluation of radiative corrections for modern high precision particle physics is becoming a more

and more demanding task. Without inventing new mathematical methods and new computer al-

gorithms the progress in calculating multi-loop, multi-leg Feynman diagrams depending on several

momentum and mass scales will be not possible.

An important class of radiative corrections comes from self-energy type of Feynman diagrams,

which also occur in evaluating vertex, box and higher multileg diagrams. At the two-loop level di�erent

approaches for calculating self-energy diagrams are available [1]. A general algorithm for reduction of

propagator type of diagrams to a minimal set of master integrals was proposed in [2]. This recurrence

relations algorithm has been implemented in computer packages in [3] and [4],[5]. At present the

most advanced package available for calculating two-loop self-energy diagrams with arbitrary massive

particles was written by Stephen Martin and David Robertson [5]. It includes procedures for numerical

evaluation of master integrals with arbitrary masses and also a database of analytically known master

integrals. Integral representation for master integrals with arbitrary masses in four dimensional space

time was proposed in [6].

Despite intensive e�orts by many authors not all two-loop self-energy integrals with a mass are

known analytically. Even the imaginary part of the simplest sunrise self-energy diagram with three

equal mass propagators was not known for arbitrary space-time dimension d until now. The two-loop

sunrise integral with three equal masses was investigated in many publications [7]- [15]. Small and

large momentum expansions of this integral for arbitrary space-time dimension d can be found in [11].

It's threshold expansion was given in [14]. A numerical procedure for evaluating the sunrise integral

was described in [13]. The very latest e�ort of an analytic calculation of the diagram, by using the

di�erential equation approach [16], was undertaken in Ref. [17].

It is the purpose of this paper to describe a new method and to present the analytic result for the

equal mass two-loop sunrise master integral. To accomplish our goal we use the method of evaluation

of master integrals by dimensional recurrences proposed in [18]. The application of this method to

one-loop integrals was presented in [19] and [20]. In the present publication we extend the method to

two-loop integrals.

As was already discovered in the one-loop case, the solutions of dimensional recurrences are com-

binations of hypergeometric functions. The knowledge of the hypergeometric representation of an

integral means that we possess the most complete mathematical information available. This infor-

mation can be e�ectively used in several respects. First, through analytic continuation formulae, the

hypergeometric functions valid in one kinematic domain can be re-expressed in a di�erent kinematic

region. Second, these hypergeometric functions often have integral representation themselves, in which

an expansion in " = (4� d)=2 can be made, yielding expressions in logarithms, dilogarithms, elliptic

integrals, etc.. Since very similar hypergeometric functions come from di�erent kind of Feynman in-

tegrals the " expansion derived in solving one problem can be used in other applications. Essential

progress in the " expansion of hypergeometric functions encountered in evaluating Feynman diagrams

was achieved in [11],[13], [21] and [22]. Third, because the hypergeometric series is convergent and

well behaved in a particular region of kinematical variables, it can be numerically evaluated [23], [24].

In addition a hypergeometric representation allows an asymptotic expansion of the integral in terms

of ratios of di�erent Gram determinants or ratios of momentum and mass scales which can provide

fast numerical convergence of the result.

Our paper is organized as follows. In Sec. 2, we present the relevant di�erence equation connecting

sunrise integrals with dimensionality di�ering by 2 as well as the di�erential equation for this integral.

In Sec. 3. the method for �nding the full solution of the dimensional recurrency is elaborated. Explicit

expression for the sunrise integral in terms of Appell's function F2 and Gauss' hypergeometric function

2F1 is constructed in Sec. 4 and in Sec. 5 the di�erential equation approach and the method of

dimensional recurrences is compared. In the Appendix some useful formulae for the hypergeometric
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functions 2F1 , F1 and F2 are given together with their integral representations.

2 Di�erence and di�erential equations for the sunrise integral

The generic two-loop self-energy type diagram in d dimensional Minkowski space with three equal

mass propagators is given by the following integral:

J
(d)
3 (�1; �2; �3) �

Z Z
ddk1d

dk2

(i�d=2)2
1

(k21 �m2)�1((k1 � k2)2 �m2)�2((k2� q)2 �m2)�3
: (2.1)

For integer values of �j the integrals (2.1) can be expressed in terms of only three basis integrals

J
(d)
3 (1; 1; 1), J

(d)
3 (2; 1; 1) and J

(d)
3 (0; 1; 1) = (T

(d)
1 (m2))2 where

T
(d)
1 (m2) =

Z
ddk

[i�
d

2 ]

1

k2 �m2
= � �

�
1�

d

2

�
md�2: (2.2)

The relation connecting d� 2 and d dimensional integrals J
(d)
3 (�1; �2; �3) follows from the relationship

given in Ref. [2]:

J
(d�2)
3 (�1; �2; �3) = �1�2J

(d)
3 (�1 + 1; �2 + 1; �3)

+ �1�3J
(d)
3 (�1 + 1; �2; �3 + 1) + �2�3J

(d)
3 (�1; �2 + 1; �3 + 1): (2.3)

Relation (2.3) taken at �1 = �2 = �3 = 1 and �1 = 2; �2 = �3 = 1 gives two equations. To simplify

these equations we use the recurrence relations proposed in [2]. From these two equations by shifting

d! d+ 2 two more relations follow. They are used to exclude J
(d)
3 (2; 1; 1) from one of the relations,

so that we obtain a di�erence equation for the master integral J
(d)
3 (1; 1; 1)� J

(d)
3 :

12z3(d+ 1)(d� 1)(3d+ 4)(3d+ 2) J
(d+4)
3

�4m4(1� 3z)(1� 42z + 9z2)z(d� 1)d J
(d+2)
3

�4m8(1� z)2(1� 9z)2 J
(d)
3

= 3z[(z + 1)(27z2+ 18z � 1)d2 � 4z(1 + 9z)d� 48z2]m2d+2 �

�
�
d

2

�2
; (2.4)

where

z =
m2

q2
: (2.5)

The integral J
(d)
3 satis�es also a second order di�erential equation [11]. Taking the second derivative

of J
(d)
3 with respect to mass gives

d2

dm2 dm2
J
(d)
3 (1; 1; 1) = 6J

(d)
3 (2; 2; 1)+ 6J

(d)
3 (3; 1; 1): (2.6)

Again using the recurrence relations from [2], the integrals on the r.h.s can be reduced to the same

three basis integrals. Using

J
(d)
3 (2; 1; 1) =

1

3

d

dm2
J
(d)
3 (1; 1; 1) (2.7)

from (2.6) we obtain:

2(1� z)(1� 9z)z2
d2J

(d)
3

dz2
� z[9z2(d� 4) + 10z(d� 2) + 8� 3d]

dJ
(d)
3

dz

+ (d� 3)[z(d+ 4) + d� 4]J
(d)
3 = 12zm(2d�6)�2

�
2�

d

2

�
: (2.8)

The di�erential equation (2.8) will be used in Sec.4 to �nd the momentum dependence of arbitrary

periodic constants in the solution of the di�erence equation (2.4).

2



3 Solution of the dimensional recurrency

Equation (2.4) is a second order inhomogeneous equation with polynomial coeÆcients in d. The full

solution of this equation is given by (see Ref. [25] and references therein):

J
(d)
3 = J

(d)
3p + ewa(d)J

(d)
3a + ewb(d)J

(d)
3b ; (3.9)

where J
(d)
3p is a particular solution of (2.4), J

(d)
3a ; J

(d)
3b is a fundamental system of solutions of the

associated homogeneous equation and ewa(d), ewb(d) are arbitrary periodic functions of d satisfying

relations: ewa(d+ 2) = ewa(d); ewb(d+ 2) = ewb(d): (3.10)

The order of the polynomials in d of the associated homogeneous di�erence equation can be reduced

by making the substitution

J
(d)
3 =

�
�
d�2
2

�
�
�
3d
2
� 3

�
�
�
d�1
2

�J(d)3 : (3.11)

The associated homogeneous equation for J
(d)
3 takes the simpler form

16z3

27m8(1� z)2(1� 9z)2
J
(d+4)
3

�
2d(1� 3z)(1� 42z + 9z2)z

27m4(1� z)2(1� 9z)2
J
(d+2)
3 �

(3d� 2)(3d� 4)

36
J
(d)
3 = 0: (3.12)

Putting

d = 2k � 2"; y(k) = ��k J
(2k�2")
3 ; (3.13)

we transform Eq.(3.12) to a standard form

A�2y(k+2) + (B + C k)�y(k+1) � (�+ k)(� + k)y(k) = 0; (3.14)

where

A =
16z3

27m8(1� z)2(1� 9z)2
; B =

4"

27

(1� 3z)(1� 42z + 9z2)z

m4(1� z)2(1� 9z)2
;

C = �
B

"
; � = �"�

1

3
; � = �" �

2

3
; (3.15)

and � is for the time being, an arbitrary constant. In order to get Eq.(3.14) into a more convenient

form, we will de�ne three parameters �, x and  by the equations

A�2 = x(1� x); B� =  � (�+ � + 1)x; C� = 1� 2x: (3.16)

These have the solution

x =
1� 2C�

2
=

(1� 9z)2

(1 + 3z)3
=

q2(q2 � 9m2)2

(q2 + 3m2)3
; (3.17)

� =
1

p
4A+ C2

=
27

4

m4(1� z)2(1� 9z)2

z(1 + 3z)3
=

27

4

m2(q2 �m2)2(q2 � 9m2)2

(q2 + 3m2)3
; (3.18)

 = B�+ (�+ � + 1)x = �"; (3.19)

and Eq. (3.14) can accordingly be written in the form

x(1� x)y(k+2) + [(1� 2x)k+  � (�+ � + 1)x]y(k+1)� (�+ k)(� + k)y(k) = 0: (3.20)
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The fundamental system of solutions of this equation consists of two hypergeometric functions [25].

For example, in the case when j1� xj < 1 (large q2) the solutions are

y
(k)
1 = (�1)k

�(�+ k)�(� + k)

�(� + � �  + k + 1)
2F1(�+ k; � + k; �+ � �  + k + 1; 1� x);

y
(k)
2 =

�(�+ � �  + k)

(1� x)k
2F1( � �;  � �;  � �� � + 1� k; 1� x): (3.21)

Once we know the solutions of the homogeneous equation, a particular solution J
(d)
3p can be obtained by

using Lagrange's method of variation of parameters. Lagrange method for �nding a particular solution

is well described in [25]. The application of the method is straightforward but tedious. Explicit result

will be given in the next section.

It is interesting to note that the argument of the Gauss' hypergeometric function is related to the

maximum of the Kibble cubic form [26]:

�(s; t; u) = stu � (s+ t+ u)m2(m2 + q2) + 2m4(m2 + 3q2); (3.22)

provided that the following condition is satis�ed:

s+ t+ u = q2 + 3m2: (3.23)

The maximal value �max =
1
27

q2(q2 � 9m2)2 occurs at s = t = u = 1
3
(q2 + 3m2) and we see that the

kinematical variable (3.17 ) can be written as

x =
�(s; t; u)

stu

���s=t=u= 1

3
(q2+3m2) : (3.24)

This observation may be useful in �nding the characteristic variable in the general mass case [27]. Also

one can try to apply the method described above to �nd the imaginary part of the sunrise integral in

the general mass case in arbitrary space-time dimension.

4 Explicit analytic expression for J
(d)
3

To �nd the full solution of Eq. (2.4) we assume that q2 is large. The region of large momentum

squared corresponds to x � 1 and therefore as a fundamental system of solutions of the homogeneous

equation we take y
(k)
1 and y

(k)
2 . According to (3.11), (3.13) and (3.21) the solution of the associated

homogeneous di�erence equation will be of the form

J
(d)
3;h = w1(z)

�
�
d
2
� 1

3

�
�
�
d
2
� 2

3

�
�
�
d�2
2

�
�
�
d
2

�
�
�
3d
2
� 3

�
�
�
d�1
2

� �
d

2 ei�
d

2 2F1

"
d
2
� 1

3
; d
2
� 2

3
;

d
2 ;

1� x

#

+ w2(z)
�2
�
d�2
2

�
�
�
3d
2
� 3

�
�
�
d�1
2

� �
d

2

(1� x)
d

2

2F1

"
1
3 ;

2
3 ;

2� d
2
;
1� x

#
: (4.25)

The arbitrary periodic functions w1(z) and w2(z) can be determined either from the d !1 asymp-

totics or using the di�erential equation (2.8). Substituting (4.25) into (2.8) we obtain two simple

equations

z(1� z)(1 + 3z)(1� 9z)
dw1(z)

dz
� 2(1 + 6z � 39z2)w1(z) = 0;

z(1 + 3z)(1� 9z)
dw2(z)

dz
+ 3(1� z)w2(z) = 0: (4.26)
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Both equations are independent of d and their solutions

w1(z) =
�1z

2(1 + 3z)2

(1� 9z)2(1� z)2
; w2(z) =

�2z
3

(1 + 3z)(1� 9z)2
; (4.27)

determine the periodic functions up to integration constants �1; �2 which we �x from the �rst two

terms of the large momentum expansion of J
(d)
3 presented in [11]:

J
(d)
3 = m2�4"�2(1 + ")

"
�(�1 + 2")�3(1� ")

z�2(1 + ")�(3� 3")
(�z)2" +

6�2(�")
�(3� 2")

(�z)"
#
+ O(z): (4.28)

The application of Lagrange's method of �nding a particular solution gives

J
(d)
3p =

3zm2d�6

(1 +
p
z)2

�2
�
1�

d

2

�
F2

�
1;
1

2
;
d� 1

2
;
d

2
; d� 1;

p
zR;R

�
; (4.29)

where

R =
4
p
z

(1 +
p
z)2

; (4.30)

F2 is the Appell function [28] de�ned as

F2(�; �; �
0; ; 0; x; y) =

1X
k;l=0

(�)k+l(�)k(�
0)l

()k(0)l

xk yl

k! l!
; jxj+ jyj < 1; (4.31)

and (a)n = �(a + n)=�(a) denotes the Pochhammer symbol. Collecting all contributions, setting

d = 4�2", applying Euler's transformation for the �rst 2F1 function in (4.25) we obtain the following

solution of the di�erence equation (2.4):

J
(d)
3 =

6�2(�")�2(1 + ")(�z)"(1� z)2�2"

m4"�2 �(3� 2")(1 + 3z)
2F1

"
1
3
; 2
3
;

2� " ;

27(1� z)2z

(1 + 3z)3

#

+
�(�1 + 2")�3(1� ")(�z)2"(1� 9z)2�2"

m4"�2 �(3� 3")z(1 + 3z)
2F1

"
1
3
; 2
3
;

" ;

27(1� z)2z

(1 + 3z)3

#

+
3zm2�4"

(1 +
p
z)2

�2 (�1 + ")F2

�
1;
1

2
;
3

2
� "; 2� "; 3� 2";

p
zR;R

�
: (4.32)

This is our main result.

The imaginary part of J
(d)
3 on the cut comes from the �rst two terms in (4.32). The analytic

continuation of the two 2F1 functions gives the relatively simple expression:

ImJ
(d)
3 =

�4z �2
p
3�m2�4"

�
�
3
2 � "

�
� (2� ") (1 + 3z)

"
(1� 9z)2

108z2

#1�"
2F1

"
1
3
; 2
3
;

2� " ;

(1� 9z)2

(1 + 3z)3

#
: (4.33)

At d = 4 for the imaginary part this veri�es the result of [23]. Expanding J
(d)
3 at q2 = 9m2 we

reproduced the singular and �nite in " parts of several terms of the on-threshold asymptotic expansion

presented in Ref. [14].

We found the following integral representation for Appell's F2 function in (4.32)

F2

�
1;
1

2
;
3

2
� "; 2� "; 3� 2";

p
zR;R

�

=
2�(3� 2")

�2
�
3
2
� "

�(1 +pz)2 Z 1

0

dt [t(1� t)]
1

2
�"

(4zt + 1� z + L)
2F1

"
1; " ;

2� " ;

4tz + 1� z � L

4tz + 1� z + L

#
; (4.34)
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where

L =
q
(4zt � 1� z)2 � 4z : (4.35)

This integral representation can be used for the " expansion of the F2 function. Integral representation

for the 2F1 functions convenient for " expansion is given in the Appendix.

The analytic continuation of J
(d)
3 valid near the singular points q2 = 0; m2; 9m2 can be directly

obtained from (4.32) by performing the analytic continuation of the hypergeometric functions. Explicit

formulae of the analytic continuations of J
(d)
3 in terms of Olsson functions [29] as well as the " expansion

of the result we are planning to present in a separate publication [30].

Using (4.32) we can �nd the on-threshold value of the integral. In formula (4.32) at q2 = 9m2

the imaginary part of the �rst term cancels the imaginary part of the second term. The real part

coming from the 2F1 terms cancels the term with 2F1 which comes from the Appell function F2 at

the threshold

F2

�
1;
3

2
� ";

1

2
; 3� 2"; 2� ";

3

4
;
1

4

�
=

+
16(1� ")

3(1� 2")
3F2

"
1;�1 + 2"; 3

2 � " ;
1
2
+ "; 2� " ;

�
1

3

#

+
4�(3� 2")�(2� ")�

�
�1

2
+ "

�
�(2� 2")

3
3

2
�" �2

�
3
2 � "

�
�
�
5
2 � 2"

� 2F1

"
�1

2
+ "; 2� 2" ;
5
2 � 2" ;

�
1

3

#
: (4.36)

The cancellation of the 2F1 functions happens due to the fact that

2F1

"
2� 2";�1

2
+ " ;

5
2
� 2" ;

�
1

3

#
=

2
5

2
�2"

3
3

2
�"

�
�
5
4
� "

�
�
�
7
4
� "

�
�
�
4
3 � "

�
�
�
5
3 � "

� : (4.37)

Adding contributions from di�erent hypergeometric functions gives a rather simple expression for the

diagram at q2 = 9m2

J
(d)
3

���
q2=9m2

=
�2(")

(1� ")(1� 2")
3F2

"
1;�1 + 2"; 32 � " ;

1
2
+ "; 2� " ;

�
1

3

#

=
�2(1 + ")

(1� ")(1� 2")

�
�

3

2"2
+

9

4"
+

75

8
�

8�
p
3
+ O(")

�
: (4.38)

The �rst several terms in the " expansion are in agreement with the result of Ref.[14].

5 Conclusions

Here we would like to add several remarks, which underline the most important points which follow

from the results of this paper.

Using a new method, for the �rst time, we were able to obtain an analytic expression for the

two-loop sunrise, self-energy diagram with equal mass propagators. Until now all attempts to �nd

such a result with other methods failed for this integral. This clearly demonstrates that the method

of dimensional recurrences is a powerful tool for calculating Feynman integrals. In our opinion there

is a deep reason why, for example, with the di�erential equation method [16] used in [17] an explicit

formula could not be found. It turns out that even the associated homogeneous di�erential equation is

rather complicated. Relevant for this case is the Heun equation [31] with four regular singular points,

located at q2 = 0; m2; 9m2;1. In general the reduction of the Heun equation to the hypergeometric

equation is a complicated mathematical problem [32] which is not completely solved until now.
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At the same time the associated homogeneous di�erence equation for J
(d)
3 is rather simple, and

admits a reduction to a hypergeometric type of equation with linear coeÆcients.

In fact this is a rather general situation. Kinematical singularities of Feynman integrals are located

on complicated manifolds. In the case when the di�erential equations are of the �rst order there are

no problems to solve them. However, to solve a second or higher order di�erential equations in general

will be a problem because of complicated structure of the kinematical singularities.

The location of the singularities of Feynman integrals with respect to the space time dimension d

is well known. This has been used for a rather evident rescaling of the integral by ratios of � functions

which allowed us to signi�cantly reduce the order of the polynomial coeÆcients in the di�erence

equation as we have seen in Sec. 3. Finally this simpli�cation allowed us to obtain the explicit result.

We expect that a further development of the method we used in the present paper will help to �nd

analytic results for other more complicated Feynman integrals.

6 Appendix

The series representation for the Appell function F2:

F2(�; �; �
0; ;  0; x; y) =

1X
k=0

(�)k(�)k

()kk!
xk 2F1(�+ k; �0; 0; y) (6.39)

is convenient for the analytic continuations and also for the evaluation of F2 at some particular values

of their arguments. The most frequently used integral representations for F2 is

F2(�; �; �
0; ; 0;w; z) =

�()�(0)

�(�)�(�0)�( � �)�(0 � �0)

�
Z 1

0

Z 1

0
du dv u��1v�

0
�1(1� u)���1(1� v)

0
��0

�1(1� uw � vz)��: (6.40)

For the special parameters which appear in the explicit result (4.32) we have:

F2

�
1;
3

2
� ";

1

2
; 3� 2"; 2� "; x; y

�

=
�(3� 2")�(2� ")

�3
�
3
2 � "

�
�
�
1
2

� Z 1

0

Z 1

0

dudv
p
v

[u(1� u)(1� v)]
1

2
�"

(1� uw � vz)
: (6.41)

Furthermore, we found the following speci�c relation between the 2F1 function and yet another

Appell's function F1

2F1

"
1
3
; 2
3
;

2� " ;

27(1� z)2z

(1 + 3z)3

#
=

(1 + 3z)

(1� z)
F1

�
1

2
;�

1

2
+ ";�

1

2
+ "; 2� ";

4z

(1 +
p
z)2

;
4z

(1�
p
z)2

�
: (6.42)

To our knowledge such a relation has not been found sofar in the mathematical literature. The integral

representation for the F1 function reads

F1

�
1

2
;�

1

2
+ ";�

1

2
+ "; 2� ";w; z

�
=

�(2� ")

�
�
1
2

�
�
�
3
2
� "

� Z 1

0

du
p
u
[(1� u)(1� wu)(1� zu)]

1

2
�" (6.43)

and is convenient for the " expansion. This F1 function can be considered as a generating function of

a new generalization of elliptic integrals which may appear in evaluating Feynman integrals.
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