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Non-renormalization of the full hV V Ai correlator at two{loop order
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By explicit calculation of the two{loop QCD corrections we show that for singlet axial and vector currents the full

o�{shell hV V Ai correlation function in the limit of massless fermions is proportional to the one{loop result, when

calculated in the MS scheme. By the same �nite renormalization which is needed to make the one{loop anomaly

exact to all orders, we arrive at the conclusion that two{loop corrections are absent altogether, for the complete

correlator not only its anomalous part. In accordance with the one{loop nature of the hV V Ai correlator, one

possible amplitude, which seems to be missing by accident at the one{loop level, also does not show up at the

two{loop level.

1. INTRODUCTION

Recently, Vainshtein [1] found an important new

relation between form factors of the hV V Ai cor-
relator matching to all orders in perturbation

theory, in some kinematic limit, a transversal

amplitude to the anomalous longitudinal one,

which is known to be subject to the Adler-

Bardeen non-renormalization theorem [2]. Later

Knecht et al. [3] were con�rming this kind of

non-renormalization theorem. These recent in-

vestigations came up in connection with problems

in calculating the leading hadronic e�ects in the

electroweak two{loop contributions to the muon

anomalous magnetic moment a� [4{7].

The diagrams which yield the leading cor-

rections are those including a VVA triangular

fermion{loop (V V A 6= 0 while V V V = 0 ) asso-

ciated with a Z boson exchange

γ Z

f

µ

γ

and a fermion of avor f gives a potentially large

contribution, up to UV singular terms which will

cancel [8],

a(4) EW� ([f ]) ' (1)
p
2G�m

2
�

16�2
�

�
2TfNcfQ

2

f

"
3 ln

M2

Z

m2
f 0

+ Cf

#

where � is the �ne structure constant, G� the

Fermi constant, T3f the 3rd component of the

weak isospin, Qf the charge and Ncf the color fac-

tor, 1 for leptons, 3 for quarks. The mass mf 0 is

m� if mf < m� and mf if mf > m�. Cf denotes

constant terms. Since, as granted in the Standard

Model of elementary particles, anomaly cancella-

tion by lepton{quark duality
P

f
NcfQ

2

f
T3f = 0

is at work, only the sums over complete lepton{

quark families yield meaningful results relevant

to physics. In any case the quark contributions

have to be taken into account, and treating them

as free fermions the leading large log � lnMZ

drops in sum over each family due to the anomaly

cancellation condition of the SM.

However, quarks cannot be treated perturba-

tive and we expect substantial strong interaction

e�ects. A framework to investigate the latter is to

consider the general structure of the VVA three

point function

W���(q1; q2) = i

Z
d4x1d

4x2 e
i(q1 �x1+q2�x2)

�h 0 jTfV�(x1)V�(x2)A�(0)g j 0 i (2)

of the avor and color diagonal fermion currents

V� =  �  ; A� =  �5  (3)

where  is a quark �eld.

To leading order the correlator of interest is

associated with the one{loop triangle diagram
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A�

V�

V�

 q1

 q2

plus its crossed (q1; �$ q2; �) partner.

For the static low energy quantity a� = 1

2
(g �

2)� = FM(0), given by the Pauli form factor at

zero momentum transfer, the VVA correlator is

required in the limit

W���(q1 = k + q; q2 = �k) = (4)

� 1

8�2

�
wL

�
q2; 0; q2

�
q� "���� q

�k�

+wT

�
q2; 0; q2

�
tT ���

�
+O(k2) ;

with

tT ��� =
n
q
2
"����k

� + q�"����q
�
k
�
� q�"����q

�
k
�
o

:

Indeed, in this kinematic region, the leading

strong interaction e�ects may be parametrized

by two VVA amplitudes, a longitudinal wL(Q
2)

and a transversal wT (Q
2) one as functions of

Q2 = �q2, which contribute as [6,7]

�a(4) EW� ([f ])VVA '
p
2G� m

2
�

16�2
�

�
� (5)Z �

2

m2
�

dQ2

�
wL(Q

2) +
M2

Z

M2

Z
+Q2

wT (Q
2)

�
;

where � is a cuto� to be taken to 1 at the end.

Vainshtein [1] has shown that in the chiral limit

the relation

wT (Q
2)pQCD

��
m=0

=
1

2
wL(Q

2)
��
m=0

; (6)

which was known to hold at one{loop [9], is

valid actually to all orders of perturbative QCD.

Vainshtein's theorem follows from the symmetry

(�; q $ �; q + k) (k ! 0). Formally, discarding

regularization problems, the asymptotic symme-

try derives from the fact that 5 may be moved

from the A� vertex to the V� vertex by anticom-

muting it an even number of times [1]. Thus for

the quarks the non-renormalization theorem valid

beyond pQCD for the anomalous amplitude wL

wL(Q
2)
��
m=0

= w
1�loop

L
(Q2)

���
m=0

=
X
q

4NcTqQq

Q2

carries over to the perturbative part of the

transversal amplitude. Thus in the chiral limit

the perturbative QPM result for wT is exact.

This may be somewhat puzzling, since in low

energy e�ective QCD, which encodes the non-

perturbative strong interaction e�ects, this kind

of term seems to be absent. The term is recovered

however by taking into account all relevant terms

in the operator product expansion [3,7].

In Vainshtein's kinematic limit, what mat-

ters is the derivative with respect to k taken at

k = 0. In this case actually the vertex problem

reduces to a propagator type problem. In the

calculation described below we have extended

this to a genuine vertex type statement at the

two{loop level. As the extensions of the Adler-

Bardeen non-renormalization theorem for the

anomalous Ward identity hV V @Ai turn out to

play an important role in new phenomenological

applications, we will study in the following such

possible generalizations by an explicit calculation

of the leading QCD corrections to the Z trian-

gle.

The vector currents are strictly conserved

@�V
� = 0, while the axial vector current satis-

�es a PCAC relation plus the anomaly @�A
� =

2im0
� 5 + �0

4�
"����F

��(x)F ��(x). We will be

mainly interested in the properties of strongly

interacting quark avor currents in perturbative

QCD. Our notation closely follows [3].

The Ward identities restrict the general covari-

ant decomposition of W���(q1; q2) into invariant

functions to four terms

� 8�2W���(q1; q2) =

wL

�
q2
1
; q2
2
; q2
3

�
q3� "���� q

�

1
q
�

2

+w
(+)

T

�
q21; q

2

2; q
2

3

�
t(+)���(q1; q2)

+w
(�)

T

�
q21; q

2

2; q
2

3

�
t(�)���(q1; q2)

+ ew(�)
T

�
q21; q

2

2; q
2

3

� et(�)���(q1; q2) ; (7)

with �q3 = q1 + q2 and transverse tensors given
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by

t(+)���
(q1; q2) = q1� "���� q

�

1 q
�

2
� q2� "���� q�1 q�2

� q1q2 "���� (q1 � q2)� + 2 q1q2

q2
3

"���� q
�

1 q
�

2
q3�

t(�)���(q1; q2) =�
(q1 � q2)� +

q2
1
� q2

2

q2
3

q3�

�
"���� q

�

1 q
�

2

et(�)
���(q1; q2) = q1� "���� q

�

1 q
�

2

+ q2� "���� q
�

1
q
�

2
+ q1q2 "���� q

�

3
:

The longitudinal part is entirely �xed by the

anomaly,

wL

�
q21; q

2

2; q
2

3

�
= �2Nc

q2
3

(8)

which is exact to all orders of perturbation theory,

the famous Adler-Bardeen non-renormalization

theorem. The Vainshtein relation is obtained in

the limit (4) upon identifying

wL(Q
2) � wL(q

2; 0; q2) ;

wT (Q
2) � w

(+)

T
(q2; 0; q2) + ew(�)

T
(q2; 0; q2) ;

with Q2 = �q2.

2. THE CALCULATION

Here we report on recent progress we made in ex-

tending non-renormalization phenomenon at the

two{loop level [10] . For details and further refer-

ences we refer to the latter paper in the following.

We perform the calculation with conventional di-

mensional regularization in d = 4�2" dimensions

and use a linear covariant gauge with arbitrary

gauge parameter throughout the calculation. Our

procedure of treating 5 is similar to the one used

in [11]. We write down all fermion loops starting

with the axial-vector vertex, and then perform

Feynman integrals and Dirac algebra without as-

suming any property of 5 at all. In this way all

diagrams will be expressed in terms of traces of

10 combinations of  matrices. The prescription

is suÆcient to enable us to arrive at amplitudes

which have �nite limits as d ! 4 in the corre-

sponding covariant decomposition. After this the

usual formulas

Tr[5���� ] = 4i"���� ; Tr[5�� ] = 0

valid in d = 4 dimensions were used. In our con-

vention "0123 = +1 and (1 � 5)=2 projects to

left{handed fermion �elds.

Tensor integrals were expressed in terms of in-

tegrals with di�erent shifts of the space-time di-

mension [12]. All scalar integrals could be re-

duced to 6 master integrals by using the Gr�obner

basis technique proposed in [13]. The expres-

sions for the individual diagrams are sums over

21 terms which are combinations of the 6 master

integrals

I
(d)

2
(q21) =

Z gddk1
D1D3

; gddkj = ddkj

i�d=2
;

I
(d)

3
(q2
1
; q2
2
; q2
3
) =

Z gddk1
D1D3D4

J
(d)

3
(q2
1
) =

Z Z gddk1gddk2
D1D5D6

;

R1(q
2

1; q
2

2; q
2

3) =

Z Z gddk1gddk2
D1D5D6D7

R2(q
2

1; q
2

2; q
2

3) =

Z Z gddk1gddk2
D2
1
D5D6D7

;

P5(q
2

1; q
2

2; q
2

3) =

Z Z gddk1gddk2
D1D2D5D3D7

; (9)

multiplied by ratios of polynomials in q2
j
and d.

Here D1 = k2
1
, D2 = k2

2
, D3 = (k1 � q1)

2,

D4 = (k1+q2)
2, D5 = (k1�k2)2, D6 = (k2�q1)2

and D7 = (k2 + q2)
2. The integrals (9) form a

complete set of master integrals needed for the

calculation of massless vertex diagrams with pla-

nar topology. The planar integral with 6 denom-

inators

P6(q
2

1; q
2

2; q
2

3) =

Z Z gddk1gddk2
D1D3D4D5D6D7

can be reduced to integrals (9) using

q23"P6 = (1 � 2")I3(q
2

2; q
2

3; q
2

1)I
(d)

2
(q23)

�R2(q
2

1
; q2
2
; q2
3
) +R2(q

2

1
; q2
3
; q2
2
) +R2(q

2

2
; q2
3
; q2
1
)

+"(P5(q
2

1; q
2

3; q
2

2) + P5(q
2

2; q
2

3; q
2

1)):



4

R1 satis�es the system of di�erential equations:

fx(1� x)@2x � y2@2y + [ � (�+ � + 1)x]@x

�2xy@x@y � (�+ � + 1)y@y � ��gR1 = 0;

fy(1� y)@2y � x2@2x + [ � (�+ � + 1)y]@y

�2xy@x@y � (�+ � + 1)x@x � ��gR1 = 0;

where � =  = 2� = 2" and

x =
q21
q2
3

; y =
q22
q2
3

; @x =
@

@x
; @y =

@

@y
:

The general solution of this system may be writ-

ten in terms of Appell functions F4

(�q23)2"R1 = AF4("; 2"; 2"; 2";x; y)

+BF4(1� "; 1; 2� 2"; 2";x; y)x1�2"

+CF4(1 � "; 1; 2"; 2� 2";x; y)y1�2"

+DF4(2� 3"; 2� 2"; 2� 2"; 2� 2";x; y);

where

A =
�(2")�2(1� ")�(")�(1 � 2")

(1� 2")�(2� 3")
;

B = C =
�(�1 + 2")�3(1� ")
(1� 2")�(2 � 3")

;

D = �2(1� ")�2(�1 + 2")x1�2"y1�2":

The F4 functions can be simpli�ed yielding

(�q2
3
)2"R1 =

�(2")�3 (1� ")
"(1� 2")� (2� 3")

�
�
(Q1 + �)

2yx2"�1
F

�
Q1 + �

2y
;
Q1 + �

Q1 � �
�

+
(Q2 + �)

2xy2"�1
F

�
Q2 + �

2x
;
Q2 + �

Q2 � �
��

+
��2

�
"� 1

2

�
161�" sin(�")2

�
M G

�
Q3 + �

2�

�
+
21+" cos(�")

(�� Q3)"
G

�
2�

� �Q3

��
(10)

where � =
p
� and

� = 1 + x2 + y2 � 2xy � 2x� 2y;

Q1 = y+1�x; Q2 = x+1�y; Q3 = x+y�1;

G(z) = 2F1 ("; 1� "; 2� 2"; z) ;

F (z; !) = F1 (1; 1� "; 1� "; 1 + "; z; !) ;

M =

�
Q3 + �

�2�
�1�2"

1

�"

+
x1�2"y1�2"

�1�"

�
Q3 + �

�2xy
�1�2"

� (1 � 4 cos(�")2)

�1�"

"�
Q3 + �

2x

�1�2"
x1�2"

+

�
Q3 + �

2y

�1�2"
y1�2"

#
: (11)

The Gauss' hypergeometric function has an in-

tegral representation

G(z) =
�(2� 2")

�2(1� ")
Z 1

0

du

[u(1� u)(1� zu)]" (12)

which is convenient for performing the " expan-

sion. For the expansion of F (x; y) the relation

(1 + ")(1� y)(1 � x)(x� y)F (x; y) =
(x� y)[1 + (1� x)(1� y)"]�(x; y)
+ x(x� y � x2y + x2)@x�(x; y)

+ y(x � y � y2 + xy2)@y�(x; y); (13)

may be used to express this function in terms of

another F1 function which is more suitable for "

expansion

�(x; y) = F1 (1;�";�"; 2 + ";x; y) =

(1 + ")

Z
1

0

du[(1� u)(1� xu)(1� yu)]": (14)

An expression forR2 may be obtained by di�eren-

tiating the one given for R1. The hypergeometric

representation for P5 is obtained by solving the

�rst order di�erence equation with respect to d.

Details of these calculations will be given in a

separate publication. Series expansion in " for

various master integrals to the order needed in

our calculations was given in [14, 15]. Recently,

further terms of the " expansion for these master

integrals were calculated in [16].

The sum of all diagrams turns out to be gauge

parameter independent. In the Feynman gauge

at q3 = 0 and for arbitrary d, the results of our

calculation are in agreement with the ones pre-

sented in [11] diagram by diagram.
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