
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANTON SCHIELA

An Interior Point Method in Function Space
for the Efficient Solution of State Constrained

Optimal Control Problems 1

1Supported by the DFG Research Center Matheon ”Mathematics for key technologies”

ZIB-Report 07-44 (March 2008)





An Interior Point Method in Function Space for the

Efficient Solution of State Constrained Optimal Control

Problems †

Anton Schiela

March 14, 2008

Abstract

We propose and analyse an interior point path-following method in func-
tion space for state constrained optimal control. Our emphasis is on proving
convergence in function space and on constructing a practical path-following
algorithm. In particular, the introduction of a pointwise damping step leads
to a very efficient method, as verified by numerical experiments.
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1 Introduction

The construction and analysis of efficient algorithms for state constrained optimal
control problems is still a considerable challenge. Presently, most popular methods
that admit a (partial) analysis in function space are path-following methods, such
as exterior penalty methods [7], Lavrentiev regularization [9, 10] and interior point
methods [13, 14, 15]. Except for [13] and partially [10] (for a fixed Lavrentiev
parameter) the available results are restricted to properties of the homotopy path,
such as its existence, convergence and continuity. Except for these two works, not
much is known about convergence of the associated path-following algorithms. This
includes the important question if it is at all possible to follow the homotopy path
by a practical algorithm, or if the sequence of iterates may stagnate far away from
the desired solution. Closely connected and even more relevant from a practical
point of view is the question how to choose homotopy parameters to obtain a fast
and robust algorithm. These questions can certainly not be answered by an analysis
of the path alone.

The aim of this paper is to propose and analyse an interior point method in
function space that is capable of solving state constrained optimal control problems
efficiently. The corresponding homotopy path has been analysed in [14, 15], so
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our emphasis here is on the Newton path-following method and on giving positive
answers to the above questions. We establish qualitative convergence results in
the following sense. Under suitable conditions there is a sequence of homotopy
parameters µk that converges to 0 and a sequence of corresponding iterates xk

produced by a Newton corrector scheme that converges to the solution of the original
problem x∗. The quantities used in the analysis, which yields convergence of the
scheme as an a-priori result, can be modelled and estimated inside a numerical
algorithm to yield a criterion for controlling the path-following algorithm efficiently.
This is done in the spirit of [4, Chapter 5], but modified in a way that fits into our
particular setting in function space.

To establish a rigorous analysis we essentially need estimates for two quantities.
The first one, which reflects the most basic analytic properties of the homotopy
path, is its local Lipschitz constant η(µ). The second captures the nonlinearity
of the equations that define the homotopy path. This quantity, which governs
the local convergence behaviour of Newton’s method and in particular its radius
of convergence, is an affine covariant Lipschitz constant for the Jacobian, denoted
by ω(µ). Since good a-posteriori estimates are available for η and ω, their role is
not a purely analytic one, but they establish a close connection between a-priori
theory and algorithmic implementation. In some sense, the algorithm is driven by
an a-posteriori counterpart of the convergence theory established in this work.

Compared to [13] we introduce, as an algorithmic modification, a pointwise
damping step, which prevents Newton’s method from leaving the feasible domain
and enhances the efficiency of the path-following scheme significantly. It is moti-
vated by the idea to exploit the pointwise structure of the problem and has several
useful interpretations. In our numerical experiments we observe that this modifi-
cation allows the solution of state constrained optimal control problems in a few
Newton steps.

Acknowledgement. The author wishes to thank Dr. Martin Weiser for helpful
discussions and the close cooperation during the development of the computational
framework.

2 A Class of State Constrained Optimal Control Prob-

lems

Let Ω be an open and smoothly bounded domain in R
d, d = 1 . . . 3 and Ω its closure.

Let Y denote the space of states and U the space of controls. Define Z := Y × U
with z := (y, u) and consider the following convex minimization problem, the details
of which are fixed in the remaining section.

min
z∈Z

J(z) s.t. Ay −Bu = 0

y ≤ y.
(1)
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We set Y = C(Ω), and U = L2(Q) for a measurable set Q equipped with an
appropriate norm. This setting includes optimal control problems subject to linear
elliptic partial differential equations with distributed control (Q = Ω), boundary
control (Q = ∂Ω) and finite dimensional control (Q = {1, . . . , n}, equipped with
the counting measure).

We will now specify our abstract theoretical framework, which holds throughout
this work and collect a couple of basic results about this class of problems. Our
framework is placed in the context of convex analysis, whose fundamentals can e.g.
be looked up in [5].

Convex Functionals. For simplicity, let J be a quadratic tracking type func-
tional with Tychonov regularization term:

J(z) =
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

Obviously, this functional is strictly convex and continuous in Z, and hence subd-
ifferentiable. Its subdifferential is single valued and given by

Z∗ ∋ ∂J(z) =

(
y − yd

αu

)
.

Equality Constraints. The equality constraint Ay − Bu = 0 is introduced to
model a partial differential equation.

Let R be a reflexive Banach space and B : U → R be continuous. We assume
that A : Y ⊃ domA→ R is a linear operator, which is densely defined, closed that
maps domA to R bijectively.

In the context of optimal control R is often the dual of a Sobolev space and the
operator B is usually defined as the adjoint of an embedding or a trace operator
(cf. e.g. the discussion in [8] or [15]).

We consider A as a model of a differential operator, which may be unbounded.
This depends of course on the choice of topology in Y . Closed, densely defined
operators between Banach spaces are a classical concept of functional analysis. They
generalize the concept of continuous operators and retain much of their structure. In
particular, there is an open-mapping theorem, a closed range theorem, and adjoint
operators are well defined. In this work and in [14, 15] only these basic properties
of A are needed for a successful analysis. A classical introduction to unbounded
operators is [6], but most elementary facts can also be found in standard textbooks
on functional analysis.

There is a simple correspondence between a bijective closed operator and its
inverse.

Lemma 2.1. For Banach spaces Y and R let A : Y ⊃ domA → R be a linear
operator. A is closed and bijective if and only if A possesses a continuous inverse
A−1 : R→ domA ⊂ Y in the sense that A−1A = iddom A and AA−1 = idR.
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