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Abstract Most data networks nowadays use shortest path protocols to
route the traffic. Given administrative routing lengths for the links of
the network, all data packets are sent along shortest paths with respect
to these lengths from their source to their destination.
In this paper, we present an integer programming algorithm for the mini-
mum congestion unsplittable shortest path routing problem, which arises
in the operational planning of such networks. Given a capacitated di-
rected graph and a set of communication demands, the goal is to find
routing lengths that define a unique shortest path for each demand and
minimize the maximum congestion over all links in the resulting routing.
We illustrate the general decomposition approach our algorithm is based
on, present the integer and linear programming models used to solve the
master and the client problem, and discuss the most important imple-
mentational aspects. Finally, we report computational results for various
benchmark problems, which demonstrate the efficiency of our algorithm.
Keywords: Shortest Path Routing, Integer Programming

1 Introduction

In this paper, we present an integer programming algorithm to optimize the
routing in communication networks based on shortest path routing protocols
such as OSPF [22] or IS-IS [16], which are widely used in the Internet. With
these routing protocols, all end-to-end traffic streams are routed along shortest
paths with respect to some administrative link lengths (or routing weights),
that form the so-called routing metric. Finding a routing metric that induces
a set of globally efficient end-to-end routing paths is a major difficulty in such
networks. The shortest path routing paradigm enforces rather complicated and
subtle interdependencies among the paths that comprise a valid routing. The
routing paths can be controlled only jointly and only indirectly via the link
lengths. In this paper, we consider the unsplittable shortest path routing variant,
where the lengths must be chosen such that the shortest paths are unique and
each traffic stream is sent unsplit via its single shortest path.

One of the most important operational planning tasks in such networks is
traffic engineering. Its goal is to improve the service quality in the existing
network by (re-)optimizing the routing of the traffic, but leaving the network



topology and hardware configuration unchanged. Mathematically, this can be
formulated as the minimum congestion unsplittable shortest path routing prob-
lem (Min-Con-USPR). The problem input consists of a digraph D = (V, A)
with arc capacities ca ∈ Z for all a ∈ A, and a set of directed commodities
K ⊆ V × V with demand values dst ∈ Z for all (s, t) ∈ K. A feasible solution is
an unsplittable shortest path routing (USPR) of the commodities, i.e., a metric
of link lengths wa ∈ Z, a ∈ A, that induce a unique shortest (s, t)-path for
each commodity (s, t) ∈ K. Each commodity’s demand is sent unsplit along its
shortest path. The objective is to minimize the maximum congestion (i.e., the
flow to capacity ratio) over all arcs. The maximum congestion is a good measure
and typically used as a key indicator for the overall network service quality.

Due to their great practical relevance, shortest path routing problems have
been studied quite intensively in the last decade. Ben-Ameur and Gourdin [3],
Broström and Holmberg [13,14] studied the combinatorial properties of path sets
that correspond to shortest (multi-)path routings and devised linear program-
ming models to find lengths that induce a set of presumed shortest paths (or
prove that no such lengths exist). Bley [5,9], on the other hand, showed that
finding a smallest shortest-path conflict in a set of presumed shortest paths or
the smallest integer lengths inducing these paths is NP-hard. Bley [6,7] also
proved that Min-Con-USPR is inapproximable within a factor of Ω(|V |1−ǫ)
for any ǫ > 0, presented examples where the smallest link congestion that can
be obtained with unsplittable shortest path routing exceeds the congestion that
can be obtained with multicommodity flow or unsplittable flow routing by a
factor of Ω(|V |2), and proposed polynomial time approximation algorithms for
several special cases of Min-Con-USPR and related network design problems.
The minimum congestion shortest multi-path routing problem has been shown
to be inapproximable within a factor less than 3/2 by Fortz and Thorup [18].

Various approaches for the solution of network design and routing problems in
shortest path networks have been proposed. Algorithms using local search, sim-
ulated annealing, or Lagrangian relaxation techniques with the routing lengths
as primary decision variables are presented in [4,10,15,17,18], for example. These
length-based methods work well for shortest multi-path routing problems, where
traffic may be split among several equally long shortest paths, but they often
produce only suboptimal solutions for hard unsplittable shortest path routing
problems. As they deliver no or only weak quality guarantees, they cannot guar-
antee to find provenly optimal solutions.

Using mixed integer programming formulations that contain variables for
the routing lengths as well as for the resulting shortest paths and traffic flows,
shortest path routing problems can – in principle – be solved to optimality.
Formulations of this type are discussed in [10,19,24,26,29], for example. Unfor-
tunately, the relation between the shortest paths and the routing length always
leads to quadratic or very large big-M models, which are computationally ex-
tremely hard and not suitable for practical problems.

In this paper, we present an integer programming algorithm that decomposes
the routing problem into the two tasks of first finding the optimal end-to-end
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routing paths and then, secondly, finding a routing metric that induce these
paths. As we will show, this approach permits the solution of real-world prob-
lems. An implementation of this algorithm [11,9] is used successfully in the plan-
ning of the German national education and research network for several years.
Variants of this decomposition approach for shortest multi-path and shortest
path multicast routing problems are discussed in [12,20,27,28,29].

The remainder of this paper is organized as follows. In Section 2, we for-
mally define the problem addressed in this paper and introduce the basic notion
and notation. The overall decomposition algorithm, the integer and linear pro-
gramming models and sub-algorithms used for the solution of the master and
the client problem, and the most important aspects of our implementation are
described in Section 3. In Section 4, we finally report on numerical results ob-
tained with this algorithm for numerous real-world and benchmark problems
and illustrate the relevance of optimizing the routing in practice.

2 Notation and Preliminaries

Let D = (V, A) be a directed graph with arc capacities ca ∈ Z for all a ∈ A and
let K ⊆ V × V be a set of directed commodities with demand values dst ∈ Z

for all (s, t) ∈ K. A metric w = (wa) ∈ Z
A of arc lengths is said to define an

unsplittable shortest path routing (USPR) for the commodities K, if the shortest
(s, t)-path P ∗

st with respect to w is uniquely determined for each commodity
(s, t) ∈ K. The demand of each commodity is routed unsplit along the respective
shortest path. For a metric w that defines such an USPR, the total flow through
an arc a ∈ A then is

fa(w) :=
∑

(s,t)∈K: a∈P∗

st
(w)

dst . (1)

The task in the minimum congestion unsplittable shortest path routing problem
Min-Con-USPR is to find a metric w ∈ Z

A that defines an USPR for the given
commodity set K and minimizes the maximum congestion L := max{fa(w)/ca :
a ∈ A}.

Before presenting of our algorithm, we need to introduce some further nota-
tion. We say that a metric w is compatible with a set P of end-to-end routing
paths, if each path P ∈ P is the unique shortest path between its terminals with
respect to w. A metric w is said to be compatible with set of node-arc pairs
F ⊂ V × A, if arc a is on a unique shortest path towards t for all (t, a) ∈ F . If
there exists such a metric, we say that the set F is a valid unique shortest path
forwarding (USPF), otherwise we call it an (USPF-) conflict. One easily verifies
that a metric is compatible with a path set P if and only if it is compatible with
the set of node-arc pairs F :=

⋃

P∈P
{(t, a) : t is destination of P , a ∈ P}.

Clearly, any subset (including the empty set) of an USPF is an USPF as well.
Hence, the family of all USPF in the digraph D forms an independence system
(or hereditary family) I ⊂ 2V ×A. The circuits of this independence system are
exactly the irreducible conflicts. The family of all irreducible conflicts is denoted
by C ⊂ 2V ×A.
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In general, these set families can be extremely complex and computationally
intractable [9]. Given an arbitrary set F ⊂ V × A, the smallest conflict (with
respect to the number of node-arc pairs) in F may be arbitrarily large and even
approximating its size within a factor less than 7/6 is NP-hard. Approximating
the size of the largest valid USPF in F within a factor less than 8/7 is NP-hard
as well. However, one can decide in polynomial time whether or not a given set
F ⊂ V × A is a valid USPF and, depending on that, either find a compatible
metric or some (not necessarily minimal) irreducible conflict in F , which is the
foundation of the algorithm described in this paper.

3 Integer Programming Algorithm

Similar to Bender’s decomposition, our algorithm decomposes the problem of
finding an optimal shortest path routing into the master problem of finding the
optimal end-to-end paths and the client problem of finding compatible routing
lengths for these paths.

The master problem is formulated as an integer linear program and solved
with a branch-and-cut algorithm. Instead of using routing weight variables, the
underlying formulation contains special inequalities to exclude routing path con-
figurations that are no valid unsplittable shortest path routings. These inequal-
ities are generated dynamically as cutting planes by the client problem during
the execution or the branch-and-cut algorithm.

Given a set of routing paths computed by the master problem’s branch-and-
cut algorithm, the client problem then is to find a metric of routing lengths that
induce exactly these paths. As we will see in Section 3.2, this problem can be for-
mulated and solved as a linear program. If the given paths indeed form a valid
shortest path routing, the solution of this linear program yields a compatible
metric. If the given paths do not form a valid unsplittable shortest path routing,
the client linear program is infeasible. In this case, the given routing paths con-
tain a conflict that must not occur in any admissible shortest path routing. This
conflict, which can be derived from the dual solution of the infeasible client linear
program, then can be turned into an inequality for the master problem, which is
valid for all admissible shortest path routings, but violated by the current rout-
ing. Adding this inequality to the master problem, we then cut off the current
non-admissible routing and proceed with the master branch-and-cut algorithm
to compute another candidate routing.

3.1 Master Problem

There are several ways to formulate the master problem of Min-Con-USPR

as a mixed integer program. For notational simplicity, we present a variation of
the disaggregated arc-routing formulation used in our algorithm, which contains
additional artificial variables that describe the unique shortest path forwarding
defined by the routing.
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