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Abstract

The enormous time lag between fast atomic motion and complex pro-
tein folding events makes it almost impossible to compute molecular dy-
namics on a high resolution. A common way to tackle this problem is to
model the system dynamics as a Markov process. Yet for large molec-
ular systems the resulting Markov chains can hardly be handled due to
the curse of dimensionality. Coarse graining methods can be used to re-
duce the dimension of a Markov chain, but it is still unclear how far the
coarse grained Markov chain resembles the original system. In order to
answer this question, two di�erent coarse-graining methods were analysed
and compared: a classical set-based reduction method and an alternative
subspace-based approach, which is based on membership vectors instead
of sets. On the basis of a small toy system, it could be shown, that in con-
trast to the subset-based approach, the subspace-based reduction method
preserves the Markov property as well as the essential dynamics of the
original system.
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1 Introduction

Atomic motion is extremely fast. Thermal vibrations like rotation, oscillation
or �uctuation have a timescale of only a few femtoseconds. On the contrary,
most essential dynamics, like complex protein-folding or protein-ligand binding
processes, have a timescale of several seconds. The resulting time lag makes it
almost impossible to simulate molecular motion with high resolution. Therefore
a model is needed, which allows the simulation of molecular motion on a coarse
level without loosing the essential dynamics.

1.1 Molecular dynamics as stochastic process

Most molecules have metastable conformations, i.e. on large scales the molecule
has the same geometric structure, whereas on small scales the system may rotate,
oscillate or �uctuate. The essential dynamic of most molecules can therefore be
described as a jump process with the molecule staying in one conformation for
long periods of time and rare switches between these conformations. A physical
explanation for these conformations can be given by the free energy landscape,
which consists of deep wells, representing local minima. In general, each well
is surrounded by large barriers, which separate each well from another. Due to
these high energy barriers, transitions between di�erent local minima are rare
events [2].
Consider now the dynamic of a molecular system in equilibrium, with the con-
formational space decomposed into a set of N disjoint but contiguous states. By
observing a trajectory of this system at discrete time steps t = 0, 1, .. , i the
trajectory can be seen as discrete stochastic process with the system having a
speci�c state q(0), q(1), ..., q(i) ∈ Ω at each of these discrete timesteps [1; 6].
This stochastic process de�nes a Markov chain, if the probability of the current
state Xi = q(i) only depends on its previous state Xi−1 = q(i−1):

P (Xi = q(i)|Xi−1 = q(i−1), .., X0 = q(0)) = P (Xi = q(i)|Xi−1 = q(i−1)),

i.e. it ful�les the Markov property. For a Markov chain with �nite state space
|Ω| = N , the transition matrix P contains the conditional probabilities P (a, b)
for each pair of states q(i−1) = a and q(i) = b. P is a stochastic matrix with
non-negative elements and row sum 1.
However, for large molecular systems this simpli�ed model still su�ers from the
curse of dimensionality, due to the enormous amount of local minima located
on the free energy landscape. Therefore one has to �nd a way to further reduce
the dimension of the Markov chain. This can be done by coarse graining.

1.2 Coarse graining

In order to reduce a given Markov chain, the easiest and most intuitive way
would be a set-based approach. The standard practice contains the following
steps:

• identify all metastable sets

• assign all states uniquely to one set

• calculate the transition frequencies between all pairs of di�erent sets
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