
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TOBIAS ACHTERBERG1

TIMO BERTHOLD2

STEFAN HEINZ2

THORSTEN KOCH2

KATI WOLTER2

Constraint Integer Programming:
Techniques and Applications

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany, tachterberg@ilog.de
2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {berthold,heinz,koch,wolter}@zib.de

ZIB-Report 08-43 (October 2008)

Constraint Integer Programming:

Techniques and Applications

Tobias Achterberg Timo Berthold⋆ Stefan Heinz⋆

Thorsten Koch Kati Wolter⋆⋆

October 31, 2008

Abstract

This article introduces constraint integer programming (CIP), which is
a novel way to combine constraint programming (CP) and mixed integer
programming (MIP) methodologies. CIP is a generalization of MIP that
supports the notion of general constraints as in CP. This approach is
supported by the CIP framework SCIP, which also integrates techniques
for solving satisfiability problems. SCIP is available in source code and
free for noncommercial use.

We demonstrate the usefulness of CIP on three tasks. First, we ap-
ply the constraint integer programming approach to pure mixed integer
programs. Computational experiments show that SCIP is almost com-
petitive to current state-of-the-art commercial MIP solvers. Second, we
demonstrate how to use CIP techniques to compute the number of opti-
mal solutions of integer programs. Third, we employ the CIP framework
to solve chip design verification problems, which involve some highly non-
linear constraint types that are very hard to handle by pure MIP solvers.
The CIP approach is very effective here: it can apply the full sophisticated
MIP machinery to the linear part of the problem, while dealing with the
nonlinear constraints by employing constraint programming techniques.

1 Introduction

In the recent years, several authors showed that an integrated approach of con-
straint programming (CP) and mixed integer programming (MIP) can help to
solve optimization problems that were intractable with either of the two meth-
ods alone [21, 36, 56]. Different approaches to integrate CP and MIP into a
single framework have been proposed, [7, 11, 20, 33, 51, 52] amongst others.

Most of the existing work followed the concept of extending a CP framework
by basic MIP techniques. In contrast, this paper introduces a way to incorpo-
rate CP specific solving methods and its strong modeling capability into the
sophisticated MIP solving machinery.

A previous version of this paper can be found in [3].
⋆ Supported by the DFG Research Center Matheon Mathematics for key

technologies in Berlin.
⋆⋆ Supported by the DFG Priority Program 1307 “Algorithm Engineering”.

1

This is achieved by a very low-level integration of the two concepts. The
constraints of a CP usually interact through the domains of the variables. As in
[11, 20, 51, 52], the idea of constraint integer programming (CIP) is to offer a sec-
ond communication interface, namely the linear programming (LP) relaxation.
Furthermore, the definition of CIP restricts the generality of CP modeling as
little as needed to still gain the full power of all primal and dual MIP solving
techniques.

Therefore, CIP is well suited for problems that contain a MIP core comple-
mented by some nonlinear constraints. As an example for such a problem type,
the property checking problem is presented in Section 6.

The concept of constraint integer programming is realized in the branch-and-
cut framework SCIP. It combines solving techniques from CP, MIP, and the
field of solving satisfiability problems (SAT) such that all involved algorithms
operate on a single search tree, which yields a very close interaction. A detailed
description of the concepts and the software can be found in [2].

The plugins that are provided with the standard distribution of SCIP suf-
fice to turn the CIP framework into a full-fledged MIP solver. In combination
with either SoPlex [58] or CLP [25] as LP solver, it is currently one of the
fastest noncommercial MIP solvers, see [45] and the results in Section 4. Us-
ing Cplex [34] as LP solver, the performance of SCIP is even comparable to
state-of-the-art commercial codes.

As a library, SCIP can be used to develop branch-cut-and-price algorithms,
and it can be extended to support additional classes of nonlinear constraints by
providing so-called constraint handler plugins. We present a solver for the chip
design verification problem as one example of this usage.

SCIP is freely available in source code for academic and noncommercial
use and can be downloaded from http://scip.zib.de. The current version
1.1.0—as of this writing—has interfaces to five different LP solvers and consists
of 275 640 lines of C code. The code is actively maintained and extended.

The article is organized as follows: in Section 2, we introduce constraint
integer programs. Section 3 presents the building blocks of the constraint inte-
ger programming framework SCIP. In Sections 4–6, we demonstrate the usage
of SCIP on three applications. First, we employ SCIP as a stand-alone MIP
solver. Second, we count optimal solutions with SCIP. Third, we use SCIP as
a branch-and-cut framework to solve chip design verification problems. Com-
putational results are given in Sections 4, 5 and 6.4.

2 Constraint Integer Programming

The hope of integrating CP, MIP, and SAT techniques is to combine their
advantages and to compensate for their individual weaknesses. A constraint
program is defined as follows.

Definition (constraint program). A constraint program is a triple CP = (C, D, f)
with D = D1 × . . . × Dn representing the domains of finitely many variables
xj ∈ Dj, j = 1, . . . , n, C = {C1, . . . , Cm} being a finite set of constraints
Ci : D → {0, 1}, i = 1, . . . , m, and f : D → R being the objective function.
It consists of solving

(CP) f⋆ = min{f(x) | x ∈ D, C(x)},

2

http://scip.zib.de

with C(x) :⇔ ∀i = 1, . . . , m : Ci(x) = 1. A CP where all domains D ∈ D are
finite is called a finite domain constraint program (CP(FD)).

Note that, with a slight abuse of notation, we use the abbreviation CP for
the term constraint programming as well as for the term constraint program.
The same holds for MIP and CIP. In case the meaning is not clear from context
we use the long versions.

To solve a CP(FD), the problem is recursively split into smaller subprob-
lems, thereby creating a branching tree and implicitly enumerating all potential
solutions. At each subproblem, domain propagation is performed to exclude
further values from the variables’ domains.

Due to the very general definition of a CP, solvers have to rely on constraint
propagators, each of them exploiting the structure of a single constraint class.
Usually, the only communication between the individual constraints takes place
via the variables’ domains. An advantage of CP is, however, the possibility to
model the problem more directly than in MIP, using very expressive constraints,
which maintain the structure of the problem. In MIP, we are restricted to linear
constraints, a linear objective function, and integer or real-valued domains. A
mixed integer program is defined as follows.

Definition (mixed integer program). Given a matrix A ∈ Rm×n, vectors b ∈Rm, and c ∈ Rn, and a subset I ⊆ N = {1, . . . , n}, the corresponding mixed
integer program MIP = (A, b, c, I) is to solve

(MIP) c⋆ = min {cT x | Ax ≤ b, x ∈ Rn, xj ∈ Z for all j ∈ I} .

Note, that MIPs in maximization form can be transformed to minimization
form by multiplying the objective function vector by −1. Similarly, “≥” con-
straints can be multiplied by −1 to obtain “≤” constraints. Equations can be
replaced by two opposite inequalities.

Like CP solvers, most modern MIP solvers recursively split the problem into
smaller subproblems. However, the processing of the subproblems is different.
Because MIP includes only one type of constraints, MIP solvers can apply so-
phisticated techniques that operate on the subproblem as a whole. Usually, for
each subproblem, the LP relaxation is solved, which is constructed from the MIP
by removing the integrality conditions. The LP relaxation can be strengthened
by cutting planes which use the LP information and the integrality restrictions
to derive valid linear inequalities that cut off the solution of the current LP
relaxation without removing feasible MIP solutions. The LP relaxation usually
gives a much stronger bound than the one that is provided by simple dual prop-
agation of CP solvers. Solving the LP relaxation usually requires much more
time, however.

Satisfiability problems is also a very specific case of CPs with only one type
of constraints, namely Boolean clauses. The Boolean truth values false and true
are identified with the values 0 and 1, respectively, and Boolean formulas are
evaluated correspondingly.

Definition (satisfiability problem). Let C = C1 ∧ . . .∧Cm be a logic formula in
conjunctive normal form on Boolean variables x1, . . . , xn. Each clause Ci = ℓi

1∨
. . .∨ ℓi

ki
is a disjunction of literals. A literal ℓ ∈ L = {x1, . . . , xn, x̄1, . . . , x̄n} is

either a variable xj or the negation of a variable x̄j . The task of the satisfiability

3

problem (SAT) is to either find an assignment x⋆ ∈ {0, 1}n, such that the
formula C is satisfied, i.e., each clause Ci evaluates to 1, or to conclude that C

is unsatisfiable, i.e., for all x ∈ {0, 1}n at least one Ci evaluates to 0.

Modern SAT solvers also use a branching scheme to split the problem into
smaller subproblems and they apply Boolean constraint propagation on the sub-
problems, which is a special form of domain propagation. In addition, they
analyze infeasible subproblems to produce conflict clauses. These help to prune
the search tree later on. Furthermore, SAT solvers support periodic restarts of
the search in order to revise the branching decisions after having gained new
knowledge about the structure of the problem instance.

Boolean clauses can easily be linearized, but the LP relaxation is rather
useless, as it cannot detect the infeasibility of subproblems earlier than domain
propagation. Therefore, SAT solvers mainly exploit the special problem struc-
ture to speed up the domain propagation algorithm.

To specify our approach of integrating CP, MIP, and SAT solving techniques,
we propose the following slight restriction of CP, which allows the application
of MIP solving techniques:

Definition (constraint integer program). A constraint integer program
CIP = (C, I, c) consists of solving

(CIP) c⋆ = min{cT x | C(x), x ∈ Rn, xj ∈ Z for all j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = 1, . . . , m,
a subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function
vector c ∈ Rn. A CIP has to fulfill the following additional condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b′} (1)

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.

Restriction (1) ensures that the remaining subproblem after fixing all integer
variables always is a linear program. This means that in the case of finite
domain integer variables, the problem can be—in principle—completely solved
by enumerating all values of the integer variables and then solving the remaining
LPs.

Note, that this does not forbid quadratic or even more involved expressions.
Only the remaining part after fixing (and thus eliminating) the integer variables
must be linear in the continuous variables. Furthermore, the linearity restriction
of the objective function can be compensated by introducing an auxiliary ob-
jective variable z that is linked to the actual nonlinear objective function with a
constraint z = f(x). Analogously, general variable domains can be represented
as additional constraints.

Therefore, every CP that meets Condition (1) can be represented as a CIP.
Especially, the following proposition holds.

Proposition. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming:

(a) Every CP(FD) can be modeled as a CIP.

(b) Every MIP can be modeled as CIP.

4

	Introduction
	Constraint Integer Programming
	A Framework to Solve Constraint Integer Programs
	Constraint Handlers
	Domain Propagation
	Conflict Analysis
	Cutting Plane Separators
	Primal Heuristics
	Node Selection and Branching Rules
	Presolving
	Symmetry Handling

	Solving MIPs with CIP Techniques
	Counting Optimal Solutions with CIP Techniques
	Property Checking with CIPs
	Constraint Programming Techniques
	Mixed Integer Programming Techniques
	SAT Solving Techniques
	Computational Results

	Future Research
	Nonconvex Mixed Integer Nonlinear Programming
	Exact Constraint Integer Programming
	Solving Scheduling Problems with CIP Techniques

	Conclusion

