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Abstract

In this paper we are concerned with the application of interior point meth-
ods in function space to gradient constrained optimal control problems, gov-
erned by partial differential equations. We will derive existence of solutions
together with first order optimality conditions. Afterwards we show continuity
of the central path, together with convergence rates depending on the interior
point parameter.
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1 Introduction

In a large number of processes that are modeled using partial differential equations
bounds on the gradient of the state variable are of vital importance for the under-
lying model: large temperature gradients during cooling or heating processes may
lead to destruction of the object, that is being cooled or heated; in elasticity the
gradient of the deformation determines the change between elastic and plastic mate-
rial behavior. In any attempt to optimize such processes the gradient therefore has
to be regarded. However, not much attention was given to constraints of gradient
type, see [4–7,11,25]

Problems with constraints on the state (pointwise or regarding the gradient)
form a class of highly nonlinear and non-smooth problems. A popular approach for
their efficient solution are path-following methods, which solve a sequence of easier
to tackle problems. These methods are constructed in a way such that the sequence
of the solutions converges to the solution of the original problem. Among these
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methods one can distinguish three main lines of research. Lavrentiev regulariza-
tion methods due to Tröltzsch et al. [8,18,19,24], Moreau-Yoshida approxima-
tion methods due to Hintermüller and Kunisch [1, 2, 16,17] and interior point
methods [22,23]. While the first two candidates abandon feasibility to improve the
regularity of the dual variables, interior point methods yield feasible solutions and
aim towards smooth systems of equations.

Application of interior point methods to gradient bounds has been proposed
in [25] together with a posteriori error estimates with respect to the interior point
parameter and the discretization error.

In this paper we perform the analysis of the homotopy path generated by barrier
methods to problems with gradient bounds. We approach this problem on the base
of the analysis in [23], where pointwise state constraints are considered. Although
we can build up on techniques and results established there, it will turn out that
a number of interesting, additional issues arise in the case of gradient bounds. For
example, the topological framework has to be chosen differently with a C1-norm,
and in contrast to pointwise state constraints the gradient bounds considered here
are nonlinear.

Our paper is structured as follows. In Section 2 we establish an abstract theo-
retical framework for our analysis and illustrate the application of the framework to
some PDE constrained optimal control problems. In Section 3 we consider barrier
functionals for gradient bounds and characterize their subdifferentials. Then exis-
tence of minimizers and first order optimality conditions are established, together
with uniform bounds on the barrier gradients. Finally we consider the convergence
of the path of minimizers and derive an order of convergence for a typical case.

2 Gradient Constrained Optimal Control Problems

Let Ω be a bounded Lipschitz domain in R
d, ∅ 6= ΩC ⊆ Ω be an open subset,

and let ΩC be its closure. Define the space of states U as a closed subspace of
C1(ΩC) × L2(Ω \ ΩC), which is clearly a Banach space, and let W ⊂ U be a dense
subspace of U . Consider W = W 2,p(Ω) ⊂ U = C1(ΩC)×L2(Ω \ΩC) with p > d for
an example.

Further, consider two reflexive Banach spaces Q and Z, which will denote the
space of controls and the space for the adjoint state, respectively. We denote the
corresponding dual spaces by U∗, Q∗, and Z∗. Consider the following abstract linear
partial differential equation on Ω:

Au = Bq (2.1)

where we require the following properties:

Assumption 1. Assume that A : U ⊃ domA = W → Z∗ is densely defined and
possesses a bounded inverse. Further let B : Q→ Z∗ be a continuous operator.
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We will see later that continuous invertibility of A is equivalent to closedness and
bijectivity. The distinction between the state space U and the domain of definition
W of A allows us to consider our optimal control problem in a convenient topological
framework (the topology of U), while being able to model differential operators by
A, which are only defined on a dense subspace W .

To define an optimal control problem, we specify an objective functional J with
some basic regularity assumptions:

Assumption 2. Let J = J1 + J2. We assume that J1 : U → R and J2 : Q → R

are lower semi-continuous, convex and Gâteaux differentiable. In addition let J1

be bounded from below and J2 be strictly convex. Assume that the derivatives are
uniformly bounded on bounded sets. This means that there exists a continuous
g : R+ → R+ such that ‖J ′

1(u)‖U∗ ≤ g(‖u‖U ) and ‖J ′
2(q)‖Q∗ ≤ g(‖q‖Q).

We now consider the following minimization problem

min
Qad×W

J(q, u) = J1(u) + J2(q), (2.2a)

s.t. Au = Bq, (2.2b)

and |∇u(x)|2 ≤ ψ(x) on ΩC (2.2c)

where ψ ∈ C(ΩC) with ψ ≥ δ > 0 and Qad ⊂ Q closed and convex.

In order to ensure that there exists a solution we require that the following
assumption holds

Assumption 3. We assume that at least one of the following holds:

(1) Qad is bounded in Q.

(2) J2 is coercive on Q.

For the discussion of interior point methods for the gradient constraint we have
to require an additional property, which is of Slater type

Assumption 4. Assume there exists a feasible control q̆ ∈ Qad, such that the
corresponding state ŭ given by Aŭ = Bq̆ is strictly feasible, that is, |∇ŭ|2 < ψ.

Lemma 2.1. Let U be a Banach space. An operator A : U ⊃ W → Z∗ has a
continuous inverse if and only if A is closed and bijective.

If Assumption 1 holds, then there exists a continuous “control-to-state” mapping

S : Q→ U, S := A−1B.

Proof. For our first assertion, cf. [22]. By Assumption 1 both A−1 and B exist and
are continuous, and thus S := A−1B, too.




