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Abstract

We give the basic definitions and some theoretical results about hyperdeter-
minants, introduced by A. Cayley in 1845. We prove integrability (understood
as 4d-consistency) of a nonlinear difference equation defined by the 2×2×2 - hy-
perdeterminant. This result gives rise to the following hypothesis: the difference
equations defined by hyperdeterminants of any size are integrable.

We show that this hypothesis already fails in the case of the 2 × 2 × 2 × 2 -
hyperdeterminant.

1 Introduction

Discrete integrable equations have become a very vivid topic in the last decade. A
number of important results on the classification of different classes of such equations,
based on the notion of consistency [3], were obtained in [1, 2, 17] (cf. also references to
earlier publications given there). As a rule, discrete equations describe relations on the
scalar field variables fi1...in ∈ C associated with the points of a lattice Zn with vertices
at integer points in the n-dimensional space R

n = {(x1, . . . , xn)|xs ∈ R}. If we take
the elementary cubic cell Kn = {(i1, . . . , in) | is ∈ {0, 1}} of this lattice and the field
variables fi1...in associated to its 2n vertices, an n-dimensional discrete system of the
type considered here is given by an equation of the form

Qn(f) = 0. (1)

‡SPT acknowledges partial financial support from a grant of Siberian Federal University and the
RFBR grant 09-01-00762-a.
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Hereafter we use the short notation f for the set (f00...0, . . . , f11...1) of all these 2n

variables. For the other elementary cubic cells of Zn the equation is the same, after
shifting the indices of f suitably.

The equations mostly investigated so far [1, 2, 17] were supposed to have the fol-
lowing properties:

1) Quasilinearity. Equation (1) is affine linear w.r.t. every fi1i2...in , i.e. Q has
degree 1 in any of its four variables.

2) Symmetry. Equation (1) should be invariant w.r.t. the symmetry group of
elementary cubic cell Kn or its suitably chosen subgroup.

On the other hand a number of interesting discrete equations which do not enjoy
one or both of these properties has been found. In this publication we investigate an
important class of symmetric discrete equations which do not have the quasilinearity
property and are given by the equations Hn(f00...0, . . . , f11...1) = 0, were Hn denotes the
n-dimensional hyperdeterminant of the corresponding n-index array (f00...0, . . . , f11...1).
We give the precise definition of hyperdeterminants in Section 2. In the simplest two-
dimensional case of the 2×2 matrix the hyperdeterminant is just the usual determinant:

H2(f) = f00f11 − f01f10. (2)

The next nontrivial case is the 3-dimensional 2 × 2 × 2 - hyperdeterminant:

H3(f) = f 2
111f

2
000 + f 2

100f
2
011 + f 2

101f
2
010 + f 2

110f
2
001

−2f111f110f001f000 − 2f111f101f010f000

−2f111f100f011f000 − 2f110f101f010f001

−2f110f100f011f001 − 2f101f100f011f010

+4f111f100f010f001 + 4f110f101f011f000.

(3)

f00

f01

f10

f11

Figure 1: Square K2.
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Figure 2: Cube K3.

The corresponding elementary cells K2, K3 and the field variables associated with
the vertices are shown on Figures 1, 2.

The general definition of hyperdeterminants was given by A. Cayley [7], who also
gave the explicit form (3) of the first nontrivial 2×2×2 - hyperdeterminant. In the last
decades, following the modern and much more general approach of A-discriminants [9],
the theory of hyperdeterminants found important applications in quantum informatics
[4], biomathematics [5], numerical analysis and data analysis [6] as well as other fields.

As one can easily see, the expressions (3.7) in [15] and (6.11) in [16], describing
some discrete integrable equations, are nothing but the classical Cayley’s 2 × 2 × 2 -
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hyperdeterminant (3). We prove below in Section 3 that (3) is also integrable in the
sense of (n + 1)-dimensional consistency [3]:

An n-dimensional discrete equation (1) is called consistent, if it may be imposed in
a consistent way on all n-dimensional faces of a (n + 1)-dimensional cube.

We give the accurate formulation of this general consistency principle for the case
of non-quasilinear expressions similar to (3) in Section 3. For the two-dimensional de-
terminant (2) (which is quasilinear) consistency can be established by a trivial compu-
tation; the equation H2(f00, f11, f01, f10) = 0 is obviously linearized by the substitution
fij = exp f̃ij. Using a result on Principal Minor Assignment Problem proved in [14]
we establish 4d-consistency of the 2 × 2 × 2 - hyperdeterminant (3) in Section 3, cf.
Theorem 2 below for the precise formulation.

This result gives rise to the following Conjecture: the difference equations defined
by hyperdeterminants of any size are integrable in the sense of (n+1)-dimensional con-
sistency. Nevertheless as we show in Section 4, this Conjecture fails already in the case
of the 2×2×2×2 - hyperdeterminant. The computation of this 4d - hyperdeterminant
turns out to be highly nontrivial (compared to the relatively simple expressions (2),
(3)) and was completed only recently [13]. We report in Section 4 a more straightfor-
ward and simpler computation of the same hyperdeterminant with the free symbolic
computation program Form [18]. The size of this hyperdeterminant (2 894 276 terms,
total degree 24, degree 9 w.r.t. each of the field variables) implies that checking its 5d-
consistency can be done only numerically, using high precision computation of roots
of respective polynomial equations on the 4d-faces of the 5-dimensional cube K5. This
was done using two different computer algebra systems Reduce [19] and Singular

[20]. As our computations have shown (cf. their description in Section 4), the 4d -
hyperdeterminantal equation H4(f) = 0 is not 5d-consistent. This non-integrability
result should be investigated further since recent examples [11] show that consistency
is not the only possible definition for discrete integrability.

2 The definition of hyperdeterminants and its vari-

ations

The remarkable definition of hyperdeterminants given by A. Cayley in 1845 [7] and still
used today [9] describes the condition of singularity of an appropriate hypersurface.
Let A = (ai1i2···ir) be a hypermatrix (an array with r indices) with is = 0, . . . , ns. The
polylinear form

U =
∑

i1···ir

ai1···irx
(1)
i1

· · ·x
(r)
ir

defines a hypersurface U = 0 in CP n1 × . . .×CP nr . Here x
(k)
ik

denote the homogeneous
coordinates in the respective complex projective space CP nk. This hypersurface is
singular, i.e. has at least one point where the condition of smoothness is not satisfied
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iff the following set of (n1 + 1) · . . . · (nr + 1) equations
{

∀s = 1, . . . , r, ∀k = 1, . . . , ns,
∂U

∂x
(k)
is

= 0

}

(4)

has a nontrivial solution x
(k)
is

∈ CP nk. As one can show (cf. [9]), if a certain condition (5)

on the dimensions nk of the array A is satisfied, elimination of the variables x
(k)
is from (4)

results in a single polynomial equation in the array elements ai1i2···ir : Hr(A) = 0. This
polynomial is irreducible and enjoys practically the same symmetry properties as the
usual determinant of a square matrix. Following Cayley this polynomial Hr(A) (defined
uniquely up to a constant factor) is called the hyperdeterminant of the array A. The
necessary and sufficient condition of existence of a single polynomial condition Hr(A) =
0 for the hypersurface U = 0 to be singular, i.e. the condition for the corresponding
hyperdeterminant of A to be correctly defined, is as follows:

∀k, nk ≤
∑

s 6=k

ns. (5)

In particular, if r = 2, so for usual (n1+1)×(n2+1)-matrices, this condition implies n1 =
n2, and in this case the hyperdeterminant H2 coincides with the classical determinant
of the matrix Ai1i2 . Note that for a given set {n1, . . . , nr} of array dimensions one says
that we have the corresponding (n1+1)×. . .×(nr+1) - hyperdeterminant since the array
indices range from 0 to nk. The hyperdeterminant is SL(C, n1+1)×· · ·×SL(C, nr+1)-
invariant, which means that if one adds to one slice Ak,p = {(ai1i2···ir) with fixed ik =
p} another parallel slice Ak,q, q 6= p, multiplied by some constant λ, the value of Hr is
unchanged; swapping the slices Ak,p, Ak,q either leave Hr again invariant or changes its
sign depending on the parity of the dimensions ni; finally, multiplication of a slice Ak,p

with a constant λ results in multiplication of the hyperdeterminant by an appropriate
power of λ. Hr is also invariant w.r.t. the transposition of any two indices il, im of the
hypermatrix A = (ai1i2···ir).

As we have stated in the introduction, the first nontrivial 2 × 2 × 2 - hyperde-
terminant (3) was computed by A. Cayley himself [7]. Amazingly enough, already
the next step, computation of the 2 × 2 × 2 × 2 - hyperdeterminant is very difficult.
The problem of computation of an explicit polynomial expression for this case was
proposed by I. M. Gel’fand in his Fall 2005 research seminar at Rutgers University.
The monomial expansion of the 2 × 2 × 2 × 2 - hyperdeterminant is related to some
combinatorial problems, and was done (using an inductive algorithm of L. Schläfli [8])
for the first time in [13], using a dedicated C code; this computation required a serious
programming effort since the standard computer algebra systems like Maple can not
cope with the intermediate large expressions. The resulting polynomial expression for
the 2 × 2 × 2 × 2 - hyperdeterminant has 2 894 276 terms, total degree 24, and has
degree 9 w.r.t. each of the array entries ai1i2i3i4 . The size of this expression in usual
text format is around 200 megabytes.

In October 2007 we re-checked this computation of the 2 × 2× 2 × 2 - hyperdeter-
minant using a free symbolic computation program Form [18] and the same inductive
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