
Aachen
Department of Computer Science

Technical Report

Derandomizing Non-uniform

Color-Coding I

Joachim Kneis, Alexander Langer, Peter Rossmanith

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2009-07

RWTH Aachen · Department of Computer Science · March 2009



The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/



Derandomizing Non-uniform Color-Coding I⋆

Joachim Kneis, Alexander Langer, Peter Rossmanith

Theoretical Computer Science Group
RWTH Aachen University, Germany

Email: {kneis,langer,rossmani}@cs.rwth-aachen.de

Abstract. Color-coding, as introduced by Alon, Yuster, and Zwick, is a well-
known tool for algorithm design and can often be efficiently derandomized us-
ing universal hash functions. In the special case of only two colors, one can use
(n, k)-universal sets for the derandomization. In this paper, we introduce (n, k, l)-
universal sets that are typically smaller and can be constructed faster. Neverthe-
less, for some problems they are still sufficient for derandomization and faster
deterministic algorithms can be obtained. This particularly works well when the
color-coding does not use a uniform probability distribution. To exemplify the
concept, we present an algorithm for the Unique Coverage problem introduced
by Demaine, Feige, Hajiaghayi, and Salavatipour. The example also shows how
to extend the concept to multiple colors.

1 Introduction

The principle of randomization is well-established in the field of algorithm design.
Due to the sometimes non-intuitive, even surprising laws of probability theory
(cf., the birthday paradoxon), randomized algorithms often can find correct so-
lutions faster than any known deterministic algorithm.

Consider, for example, the popular 3-SAT problem, which can be solved
in time bounded by O∗(1.324n) using a randomized algorithm with constant
error probability [10, 17], but only in time bounded by O∗(1.473n) when a purely
deterministic approach is used [6, 2].

Even worse, it can be shown that there are problems, for which every de-
terministic approach has a certain worst-case lower bound, while a randomized
algorithm typically runs much faster. Suppose, for example, that there are 100
boxes and exactly half of them contain a present. How long does it take to find
one? Every deterministic algorithm can be forced to look into at least 51 boxes
before finding a present. However, a randomized algorithm repeatedly choos-
ing an arbitrary box with uniform probability 1/100 until finding a present is
expected to guess only two times. Here, the worst- and average-case coincide,
which explains the large gap between deterministic and randomized bounds.

Similarly, there are examples that are not so näıve, yet surprising: Let’s say,
we are are given an array of n integers, and we know that either the array is
sorted, or it is not sorted and you have to delete at least n/10 elements to obtain
a sorted array. The goal is to design an algorithm that decides which of the two
cases holds. Intuitively, one could argue you always have to compare all pairs
of subsequent elements, and in fact deterministically Ω(n) elements have to be
examined. Surprisingly, there is a randomized algorithm that runs in O(log n)
time [8].

⋆ Supported by the DFG under grant RO 927/8



Randomized algorithms are algorithms that have access to true random bits.
They can be classified into Monte Carlo and Las Vegas algorithms: Monte Carlo
algorithms have a fixed running time, but the outcome has to be correct with a
probability of at least, say, 2/3. Las Vegas algorithms always return the correct
result, but their running time depends on the random bits. In this paper, we
consider Monte Carlo algorithms.

Often you can turn a randomized algorithm into a deterministic one by tech-
niques commonly referred to as derandomization. One possibility is to repeatedly
feed the algorithm several bit strings of length n instead of n random bits. Usu-
ally, however, a randomized algorithm requires random bits that are independent,
i.e., for n random bits, every combination occurs with equal probability 2−n. One
possibility to derandomize such an algorithm is therefore to run it 2n times with
every possible bit string of length n, which is usually too slow to be of practical
interest.

Sometimes, though, algorithms do not require n independent random bits.
Sometimes, it suffices if only every subset of k < n bits is independent. A set
of n-bit vectors with this property is called (n, k)-independent. Such randomized
algorithms that only require (n, k)-independent bits can often be derandomized
with the help of (n, k)-universal sets.

Definition 1. Let n and k be integers. An (n, k)-universal set is a set Ω of bit
strings b = b0 . . . bn−1 ∈ {0, 1}n, such that for all distinct positions i1, . . . , ik ∈ Zn

and all patterns x = x1 . . . xk ∈ {0, 1}k there is some b = b0 . . . bn−1 ∈ Ω with
bij = xj for all 1 ≤ j ≤ k.

Naor, Schulman, and Srinivasan [15] showed how to construct (n, k)-universal

sets of size 2k+O(log2 k) log n in linear time. This is nearly optimal, because there
is a lower bound of Ω(2k log n) on the size of (n, k)-universal sets [11].

Algorithms that can often be derandomized using (n, k)-universal sets are
those that use the so called color-coding technique [1], the random separation
technique [3], and those that use the randomized divide-and-conquer (also called
divide-and-color) [4, 5, 12] approach. In Section 2.1, we illustrate the random
separation technique in further detail on the problem Exact Partial Vertex

Cover: Given a graph and two integers k and t, is there a set C of k nodes
adjacent to exactly t edges? In short, the algorithm randomly partitions the
nodes into two sets colored 0 and 1, and then uses dynamic programming to find
a solution C that is colored with color 1 and whose neighborhood is colored with
color 0. This coloring step succeeds with a probability of at least 2−k−t when
uniform probabilities for the two colors are used.1 Furthermore, (n, k)-universal
sets can be used to obtain a deterministic algorithm with a running time of
2k+t+O(log2(k+t))poly(n).

Sometimes, however, it is not optimal to choose the colors with uniform
probabilities. This is, for example, the case, when much fewer elements shall
receive the color 0 than shall receive the color 1. Assume, for instance, that an

1 Note that a randomized algorithm with running time t(n) and success probability 2−x can
easily be turned into a randomized algorithm with constant success probability arbitrarily
close to one and a running time of O(2xt(n)). This standard technique is called probability
amplification (see, e.g., [14]). Whenever we compare randomized algorithms with determin-
istic algorithms, we mean the randomized algorithm with constant success probability.

4



instance of Exact Partial Vertex Cover is such that t = k2, and therefore
k2 nodes shall be colored with 0, but only k nodes with 1. Then the randomized
algorithm’s success probability is only 2−k2−k when using uniform probabilities,
but can be improved to

(1/k)k(1 − 1/k)k
2

∼ e−k lnk−k+1/2

by using probabilities 1/k for the color 1 and 1 − 1/k for the color 0. See Sec-
tion 2.2 for details. If we now simply use (n, k2 + k)-universal sets for the deran-
domization, we still only obtain a deterministic algorithm with running time of
2k2+k+O(log k)poly(n), which is much slower than the corresponding randomized
algorithm.

Please note, however, that here we do not need the whole power of (n, k2+k)-
universal sets: We do not need to find all possible subpatterns, but only those
having k ones. To capture this concept, we introduce (n, k, l)-universal sets2:

Definition 2. Let n ≥ k ≥ l be integers. An (n, k, l)-universal set is a set Ω of bit
strings b = b0 . . . bn−1 ∈ {0, 1}n, such that for all distinct positions i1, . . . , ik ∈ Zn

and all patterns x = x1 . . . xk ∈ {0, 1}k with Hamming weight at most l, there is
some b = b0 . . . bn−1 ∈ Ω with bij = xj for all 1 ≤ j ≤ k.

Using (n, k2 + k, k)-universal sets, we can get a better deterministic time
bound if we are able to construct (n, k2 + k, k)-universal sets much faster than
(n, k2 +k)-universal sets. The main result of this paper are (n, k, l)-universal sets
of size 2nk2l that can be constructed in time O(n2k2l+2).

1.1 Outline

In this paper, we present a construction of (n, k, l)-universal sets, which is self-
contained, very simple, and can easily be implemented, but has two drawbacks:

1. The size of the sets is not the smallest possible.

2. The method works well for l ≪ k, but is not optimal for l = Θ(k), in partic-
ular for l = k/2.

These issues will be addressed in the second part, where we will present a more
complicated technique, which allows for better constants and is useful for all
combinations of k and l.

This paper is organized as follows: In Section 2.1 we introduce the concept of
random separation with uniform probabilities using the example of the Exact

Partial Vertex Cover problem. In Section 2.2, we show how the running time
can be improved when certain conditions are met and motivate the introduction
of (n, k, l)-universal sets. Our construction of (n, k, l)-universal sets is presented in
Section 3. Another application is shown in Section 4, which contains the currently
fastest parameterized algorithm for the Unique Coverage problem introduced
by Demaine, Feige, Hajiaghayi, and Salavatipour [7].

2 Please do not confuse those with (n, k, l)-splitters [15], which are k-universal hash functions
on l colors, i.e., a (n, k, 2)-splitter is also an (n, k)-universal set.

5




