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Abstract

The aim of this paper is to devise an adaptive timestep control in the
contact–stabilized Newmark method (ContacX) for dynamical contact prob-
lems between two viscoelastic bodies in the framework of Signorini’s condition.
In order to construct a comparative scheme of higher order accuracy, we ex-
tend extrapolation techniques. This approach demands a subtle theoretical
investigation of an asymptotic error expansion of the contact–stabilized New-
mark scheme. On the basis of theoretical insight and numerical observations,
we suggest an error estimator and a timestep selection which also cover the
presence of contact. Finally, we give a numerical example.
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1 Introduction

Dynamical contact problems arise in different applications such as biomechanics. In
classical approaches, they are modelled via Signorini’s contact conditions which are
based on the non-penetration of mass. Both in analytical models and in numerical
schemes, the resulting nonsmooth and nonlinear variational inequalities give rise to
fundamental mathematical difficulties.

Concerning the time discretization of dynamical contact problems, the Newmark
method is one of the most popular numerical integrators. As it is well-known, the
classical scheme may lead to artificial numerical oscillations at dynamical contact
boundaries, and even an undesirable energy blow-up during time integration may
occur [6, 19]. In [13], Kane, Repetto, Ortiz, and Marsden introduced an improved
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variant of Newmark’s method which is energy dissipative at contact, but still unable
to avoid the oscillations at contact boundaries. For this reason, Deuflhard, Krause,
and Ertel suggested a contact–stabilized Newmark method [6, 19] which avoids the
unphysical oscillations and is still energy dissipative at contact. This is the time
integration scheme of interest in the present paper.

In view of challenging real life problems (e.g., the motion of a human knee,
see [19]), an adaptive control of timestep is of crucial importance in order to increase
the efficiency of the contact–stabilized Newmark method (called CSN further on).
A mesh of equidistant timesteps can not be expected to be adequate for reaching a
given accuracy of the approximation of a reasonable computational effort.

The construction of an adaptive timestep control requires a realistic estimation
of the consistency error (cf., e.g., the textbook [5]). As a necessary preparatory step,
we studied the stability of dynamical contact problems under perturbation of the
initial data [16]. For viscoelastic materials, we found a characterization of a class
of problems for which a perturbation result can be expected even in the presence
of contact. This gave us the idea about a specific norm in function space which
has been exploited for the estimation of the consistency error of Newmark meth-
ods. In the unconstrained situation, the symmetric Newmark scheme is equivalent
to the Störmer-Verlet scheme which is well–known to be second order consistent
(see, e.g., [12]). In the constrained situation, we have proven an estimate for the
consistency error of the classical Newmark method, the modified Newmark method
by Kane et al., and the contact–stabilized Newmark method under the assumption
of bounded total variation of the solution [17].

The paper is organized as follows. We will start with a short exposition of the
dynamical Signorini contact problem and the contact–stabilized Newmark method
in Section 2. Further, we will sum up known consistency and sensitivity results
for the scheme. In Section 3, we will analyze the existence of an asymptotic error
expansion of the discretization error theoretically as well as numerically. These
results are the basis for the application of modified extrapolation methods in order
to construct a comparative scheme of higher order. Finally, in Section 4, we will
suggest a problem-adapted error estimator and a suitable timestep selection (called
ContacX). We will conclude the paper by a numerical example in Section 5.

2 Notation and Background

In order to fix notation, we write down the classical contact problem formulation
for linearly viscoelastic materials via Signorini’s contact conditions. Afterwards,
we present the corresponding contact–stabilized Newmark method, and we review
existing sensitivity and consistency results for the scheme.

2.1 Problem formulation

Our model for dynamical contact between two bodies is based on linearized Sig-
norini’s contact conditions. In view of existing perturbation and consistency results,
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see [16] and [17], we consider linear viscoelastic bodies fulfilling the Kelvin-Voigt
constitutive law. For the convenience of the reader, here we merely collect the
notation used therein.

Notation. Let the two bodies be identified with the union of two domains which
are understood to be bounded subsets in Rd with d = 2, 3. Each of the bound-
aries are assumed to be Lipschitz and decomposed into three disjoint parts: ΓD,
the Dirichlet boundary, ΓN , the Neumann boundary, and ΓC , the possible contact
boundary. The actual contact boundary is not known in advance, but is assumed to
be contained in a compact strict subset of ΓC . The Dirichlet boundary conditions
give rise to H1

D := {v |v ∈ H1, v|ΓD
= 0}.

Tensor and vector quantities are written in bold characters, e.g., v. Time deriva-
tives are indicated by dots ( ˙ ). For the sake of clear arrangement, we use the
abbreviation v̄ = (v, v̇) for a function and its first time derivative.

For given Banach space V and time interval t0 < T < ∞, let C([t0, T ],V)
be the continuous functions v : [t0, T ] → V. The space L2(t0, T ;V) consists of all
measurable functions v : (t0, T ) → V for which ‖v‖2

L2(t0,T ;V) :=
∫ T
t0
‖v(t)‖2

V dt < ∞
holds. We identify L2 with its dual space and obtain the evolution triple H1 ⊂
L2 ⊂ (H1)∗ where we denote the dual space to H1 by (H1)∗. With reference to
this evolution triple, the Sobolev space W1,2(t0, T ;H1,L2) means the set of all
functions v ∈ L2(t0, T ;H1) that have generalized derivatives v̇ ∈ L2(t0, T ; (H1)∗),
see, e.g., [24].

We will need the (total) variation TV(v, [t0, T ],V) of a function v : [t0, T ] → V.
The set of all functions from [t0, T ] into V that have bounded variation is denoted
by BV([t0, T ],V), compare, e.g., [22].

Non-penetration condition. At the contact interface ΓC , the two bodies may
come into contact but must not penetrate each other. We assume a bijective map-
ping φ : ΓS

C −→ ΓM
C between the two possible contact surfaces to be given. Follow-

ing [8], we define linearized non-penetration with respect to φ by

[u · ν]φ(x, t) = uS(x, t) · νφ(x) − uM (φ(x), t) · νφ(x) ≤ g(x) , x ∈ ΓS
C .

This condition is given with respect to the initial gap

ΓS
C 3 x 7→ g(x) = |x − φ(x)| ∈ R

between the two bodies in the reference configuration, and we have set

νφ =


φ(x) − x

|φ(x) − x|
, if x 6= φ(x) ,

µS(x) = −µM (x) , if x = φ(x) .




