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A solution generating technique is developed for D = 5 minimal supergravity with two commuting
Killing vectors based on the G2 U-duality arising in the reduction of the theory to three dimensions.
The target space of the corresponding 3-dimensional sigma-model is the coset Ga2y/(SL(2, R) X
SL(2,R)). Its isometries constitute the set of solution generating symmetries. These include two
electric and two magnetic Harrison transformations with the corresponding two pairs of gauge
transformations, three SL(2, R) S-duality transformations, and the three gravitational scale, gauge
and Ehlers transformations (altogether 14). We construct a representation of the coset in terms of
7 x 7 matrices realizing the automorphisms of split octonions. Generating a new solution amounts
to transforming the coset matrices by one-parametric subgroups of G2y and subsequently solving
the dualization equations. Using this formalism we derive a new charged black ring solution with
two independent parameters of rotation.

PACS numbers: 04.20.Jb, 04.50.+h, 04.65.+e

I. INTRODUCTION

The discovery of rotating black rings [1] (for a recent review see [2] and references therein) has attracted new interest
in five-dimensional minimal supergravity [3, 4]. Within this theory supersymmetric charged black ring solutions were
found [5, 6]. The bosonic sector of five-dimensional minimal supergravity is Einstein-Maxwell theory with a Chern-
Simons term, the structure of the Lagrangian being similar to that of eleven-dimensional supergravity [7, 8]. While in
pure Einstein-Maxwell theory in five and higher dimensions no charged black hole solution, generalizing the uncharged
Myers-Perry black holes [9], is known, the Chern-Simons term endows five-dimensional Einstein-Maxwell theory with
more hidden symmetries, implying the existence of exact charged rotating black hole solutions [10-12], Meanwhile
the most general black ring solution which might possess mass, two angular momenta, electric charge and magnetic
moment as independent parameters is still not found. Here we propose a new generating technique which can solve
this problem. It is based on the duality symmetries of the three-dimensional reduction of the theory.

The hidden symmetries arising upon dimensional reduction of five-dimensional minimal supergravity to three di-
mensions were studied by Mizoguchi and Ohta [7], by Cremmer, Julia, Lu and Pope [13] using the technique of [14],
and were more recently investigated both in the bosonic and fermionic sectors by Possel [15] (see also [16]). The
corresponding classical U-duality group is the non-compact version of the lowest rank exceptional group G [17]. In
three dimensions one obtains the gravity-coupled sigma-model with the homogeneous target space Gy(2)/SO(4) for
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the Lorentzian signature of the 3-space, or G(2)/(SL(2, R) x SL(2, R)) in the Euclidean case. Some further aspects of
these symmetries were discussed in [8], their infinite-dimensional extension upon reduction to two and one dimensions
was also explored [18].

Here we investigate the Gy (2)/(SL(2, R) x SL(2, R)) sigma model in the context of the solution generating technique
which has proved to be extremely useful in various non-linear theories from pure gravity, Einstein-Maxwell theory
[19-23] and dilatonic gravity [24-30] to more general supergravity models [31-33] and string theory [34]. Some partial
use of hidden symmetries of this kind to generate new rotating rings recently became a rapidly developing industry.
One direction was to use the SL(2, R) subgroup of the U-duality group [35, 36]. Another line was related to the purely
gravitational sector (without the Maxwell field) which leads to SL(3, R) U-duality in three dimensions [20, 37, 38].
Further reduction to two dimensions gives rise to a Belinsky-Zakharov type integrable model which was extensively
used to construct soliton solutions [38-49]. However, the full G5 symmetry was never used for generating purposes
for lack of a convenient representation of the coset Gy /(SL(2, R) x SL(2, R)) in terms of the target space variables.
Although the 14-dimensional (adjoint) representation was given explicitly in [7], it is still too complicated for practical
generating applications. Here we construct a suitable representation in terms of 7 x 7 matrices and give two examples
of its application: a sigma-model construction of the electrically charged rotating black hole and the generation of a
non-BPS doubly rotating charged black ring from the black ring with two angular momenta of [47].

Five-dimensional minimal supergravity contains a graviton, two N = 2 symplectic-Majorana gravitini (equivalent
to a single Dirac gravitino), and one U (1) gauge field. The bosonic part of the Lagrangian is very similar to that of
D = 11 supergravity, being endowed with a Chern-Simons term [3, 4]:

Sy = {/d%@@_iﬁ?)_l mﬁmy (1)
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where F' = dA. This theory can be obtained as a suitably truncated Calabi-Yau compactification of D = 11
supergravity [50].

Our purpose is to construct a generating technique for classical solutions with two commuting Killing symmetries.
Dimensional reduction leads to a three-dimensional sigma-model possessing a Gy 2y target space symmetry [7]. To
explore it fully we need a convenient representation of the action of symmetries on the target space variables. We give
here an alternative derivation of the three-dimensional sigma-model which has the advantage of being more explicit
and easy to use for solution generation. The reduction is performed in Sect. 2 in two steps, first to four, then to
three dimensions. In Sect. 3 we reveal the symmetries of the three-dimensional sigma-model using a direct (computer
assisted) solution of the corresponding Killing equations!. The resulting symmetry transformations are identified in
the usual terms of gauge, S-duality and Harrison-Ehlers sectors. Then we reformulate in Sect. 4 the problem in terms
of a covariant (with respect to the two-Killing plane) reduction which is more suitable for constructing the matrix
representation, and give the coset matrix representative as a symmetrical 7 x 7 matrix. In Sect. 5 we identify the
charging transformation, and apply it to the construction of the doubly rotating charged black ring.

II. DIMENSIONAL REDUCTION
A. D=4

Assuming that the five-dimensional metric and the Maxwell field A do not depend on a space-like coordinate z, we
arrive at the four-dimensional Einstein theory with two Maxwell fields, a dilaton and an axion. We parametrize the
five-dimensional interval and the Maxwell one-form as

ds? e 2% (dz + O dx™)? + eds], (2)
A = A,dz" + V3kdz, (3)
(uw=1...4). The corresponding four-dimensional action reads
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where
G, =Gs/2tRs, G=dC, F=dA, F=F+3CAdk, (5)

and F* is the four-dimensional Hodge dual of F.

The dilaton ¢ and the axion k parametrize the coset SL(2, R)/U(1). To reveal the SL(2, R) S-duality symmetry
in the sector of vector fields (A is inherited from 5D theory, C' is the Kaluza-Klein vector) one has to reparametrize
them using some dualization [8]. We will reveal S-duality later on the level of the further 3D reduction.

The field equations in terms of the four-dimensional variables read

1 1 ~
V2p — *?(0k)* + Ze_wG2 + Ee_qu2 = 0, (6)
1 - 1
V. (e2°VFi) — 3 [\/3 V(e ?FM ) + QFWF*””] = 0, (7)
v, (e—¢ﬁ’ﬂ” + QKF*IW) = 0, (8)
YV, (e72°G") +V3e P FM o,k = 0, (9)
and the Bianchi identities are

V, EF™ =0, V,.G™ = 0. (10)

It is convenient to introduce the modified Maxwell tensors
FH = e PFM 4 2k, (11)
g1 = &G V3 (ORI 4 kZF) (12)

in terms of which the Maxwell equations have the divergence form

V. F =0,  V,G" =0. (13)

B. D=3

Further reduction to D = 3 is performed with respect to time, assuming the standard parametrization of the
stationary four-metric

dsi = —f(dt — w;dz")?* + f~ hyjda'da?. (14)
The spatial part of the Bianchi identities (10) is solved introducing the electric potentials Cy = 01, Ag = ¥, so that
Gio = 031, Fyo = 0;02. (15)

Similarly, the spatial components of the Maxwell equations (13) are solved by introducing magnetic potentials @y, us:

GY = jﬁ €TR O, F = % €9F 0 s (16)
The time components of the corresponding equations then give the second order equations for these potentials.
Straightforwardly we can find (with the convention €% = —¢0iiF)
Gij = ie?"ﬁ Gijk(’wl)k, (wl)k = Ol — \/g I{(akﬂg — /iakijg), (17)
Vh
Fij = \'/fﬁe(b Eijk(’wg)k, (U)Q)k = Oplia — 2K04 D2, (18)
Fi = (Zg)i, (Zg)i = 0;09 — \/5’17182‘,%. (19)

The remaining components of the Maxwell tensors are obtained using the following relations valid for any second rank
four-dimensional antisymmetric tensor W, with the assumed form of the metric (14):

WO =Wiw; — hTWjo, Wi = f2hihy W + 2Wouw;). (20)



Using this we find:
f

GP = ﬁe?’d’ €Tk, (wy)g — 001, (21)
Gy = fVhe® eijp(wi)® + 20,0501, (22)
FO = jﬁe‘ﬁ eijkwj(wg)k — ()%, (23)
Fyj = [7'Vhe? eiju(w2)* + 2w(22)), (24)
and for the squared quantities:
G? = —2(001)% + 265 (w1)?,  F? = —2(2)% + 2% (w)?, (25)

where (w1)? = (wq);(wy)".
Now we turn to the Einstein equations:

1 1 1 L.
Rp,y - g (au¢au¢ + 62458“&81,/%) - 56_3¢ (GuaGl/a - 4G29m/> - 7e_¢ (FMOCFV(X - Fzglﬂ’) =0. (26)

The Ricci tensor decomposes as follows

1
Rop = 5 (fV2f=(0f) +7%), (27)
7 f ij

Ry = Vs k91, (28)
R = fPRY — % [0 £ f + 777] + h¥ Ry, (29)

where

2

Tt = I €Ik 0;wy,. (30)

Vh

The Oi-part of (26) can be solved introducing the twist potential x via

T = aiX + % {’518{&1 — w10;01 + V20;U9 — Ug0;U2 + \/§ [5217182-172 — 77282'(/52@1)] — \/g [H@laiﬂg — ﬂzai(liﬁl)]} . (31)

Using this relation, we can rewrite the 00-component of the Einstein equations as
Roo = if {e_3¢ [(0v1)* + e6¢(w1)2] +e? [(22)* + e2¢(w2)2] } (32)
and present the space-space part as
R = g SPRRTY (0,005¢ + *?0qk0pK)

- %e_?"bf (07010701 + €5 (w1)" (w1)’] + ie_?’d’fhij [(0v1)® + 66¢(w1)2]
- %e_‘i’f [(22) (22)7 + €2 (w2) (w2)T] + ie_"ﬁfhij [(22)% + e (w2)?] . (33)

From the Eq. (28) we then find that the Ricci tensor built on the three-dimensional metric h;; will satisfy the following
three-dimensional Einstein equation
1 3 2¢
Rij = TfQ (81fa]f + TiTj) + 5 (azqﬁaj(ﬁ +e 8¢/€8j/€)

B % [eigd)aﬂ?lajﬁl + eg¢(w1)i(w1)j + ei¢(22)i(2’2)j + e¢(w2)i(w2)j] . (34)





