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A solution generating technique is developed for D = 5 minimal supergravity with two commuting
Killing vectors based on the G2 U-duality arising in the reduction of the theory to three dimensions.
The target space of the corresponding 3-dimensional sigma-model is the coset G2(2)/(SL(2, R) ×
SL(2, R)). Its isometries constitute the set of solution generating symmetries. These include two
electric and two magnetic Harrison transformations with the corresponding two pairs of gauge
transformations, three SL(2, R) S-duality transformations, and the three gravitational scale, gauge
and Ehlers transformations (altogether 14). We construct a representation of the coset in terms of
7× 7 matrices realizing the automorphisms of split octonions. Generating a new solution amounts
to transforming the coset matrices by one-parametric subgroups of G2(2) and subsequently solving
the dualization equations. Using this formalism we derive a new charged black ring solution with
two independent parameters of rotation.

PACS numbers: 04.20.Jb, 04.50.+h, 04.65.+e

I. INTRODUCTION

The discovery of rotating black rings [1] (for a recent review see [2] and references therein) has attracted new interest
in five-dimensional minimal supergravity [3, 4]. Within this theory supersymmetric charged black ring solutions were
found [5, 6]. The bosonic sector of five-dimensional minimal supergravity is Einstein-Maxwell theory with a Chern-
Simons term, the structure of the Lagrangian being similar to that of eleven-dimensional supergravity [7, 8]. While in
pure Einstein-Maxwell theory in five and higher dimensions no charged black hole solution, generalizing the uncharged
Myers-Perry black holes [9], is known, the Chern-Simons term endows five-dimensional Einstein-Maxwell theory with
more hidden symmetries, implying the existence of exact charged rotating black hole solutions [10–12], Meanwhile
the most general black ring solution which might possess mass, two angular momenta, electric charge and magnetic
moment as independent parameters is still not found. Here we propose a new generating technique which can solve
this problem. It is based on the duality symmetries of the three-dimensional reduction of the theory.

The hidden symmetries arising upon dimensional reduction of five-dimensional minimal supergravity to three di-
mensions were studied by Mizoguchi and Ohta [7], by Cremmer, Julia, Lu and Pope [13] using the technique of [14],
and were more recently investigated both in the bosonic and fermionic sectors by Possel [15] (see also [16]). The
corresponding classical U-duality group is the non-compact version of the lowest rank exceptional group G2 [17]. In
three dimensions one obtains the gravity-coupled sigma-model with the homogeneous target space G2(2)/SO(4) for
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the Lorentzian signature of the 3-space, or G2(2)/(SL(2, R)×SL(2, R)) in the Euclidean case. Some further aspects of
these symmetries were discussed in [8], their infinite-dimensional extension upon reduction to two and one dimensions
was also explored [18].

Here we investigate the G2(2)/(SL(2, R)×SL(2, R)) sigma model in the context of the solution generating technique
which has proved to be extremely useful in various non-linear theories from pure gravity, Einstein-Maxwell theory
[19–23] and dilatonic gravity [24–30] to more general supergravity models [31–33] and string theory [34]. Some partial
use of hidden symmetries of this kind to generate new rotating rings recently became a rapidly developing industry.
One direction was to use the SL(2, R) subgroup of the U-duality group [35, 36]. Another line was related to the purely
gravitational sector (without the Maxwell field) which leads to SL(3, R) U-duality in three dimensions [20, 37, 38].
Further reduction to two dimensions gives rise to a Belinsky-Zakharov type integrable model which was extensively
used to construct soliton solutions [38–49]. However, the full G2 symmetry was never used for generating purposes
for lack of a convenient representation of the coset G2(2)/(SL(2, R)×SL(2, R)) in terms of the target space variables.
Although the 14-dimensional (adjoint) representation was given explicitly in [7], it is still too complicated for practical
generating applications. Here we construct a suitable representation in terms of 7×7 matrices and give two examples
of its application: a sigma-model construction of the electrically charged rotating black hole and the generation of a
non-BPS doubly rotating charged black ring from the black ring with two angular momenta of [47].

Five-dimensional minimal supergravity contains a graviton, two N = 2 symplectic-Majorana gravitini (equivalent
to a single Dirac gravitino), and one U(1) gauge field. The bosonic part of the Lagrangian is very similar to that of
D = 11 supergravity, being endowed with a Chern-Simons term [3, 4]:
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1
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−ĝ
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]

, (1)

where F̂ = dÂ. This theory can be obtained as a suitably truncated Calabi-Yau compactification of D = 11
supergravity [50].

Our purpose is to construct a generating technique for classical solutions with two commuting Killing symmetries.
Dimensional reduction leads to a three-dimensional sigma-model possessing a G2(2) target space symmetry [7]. To
explore it fully we need a convenient representation of the action of symmetries on the target space variables. We give
here an alternative derivation of the three-dimensional sigma-model which has the advantage of being more explicit
and easy to use for solution generation. The reduction is performed in Sect. 2 in two steps, first to four, then to
three dimensions. In Sect. 3 we reveal the symmetries of the three-dimensional sigma-model using a direct (computer
assisted) solution of the corresponding Killing equations1. The resulting symmetry transformations are identified in
the usual terms of gauge, S-duality and Harrison-Ehlers sectors. Then we reformulate in Sect. 4 the problem in terms
of a covariant (with respect to the two-Killing plane) reduction which is more suitable for constructing the matrix
representation, and give the coset matrix representative as a symmetrical 7 × 7 matrix. In Sect. 5 we identify the
charging transformation, and apply it to the construction of the doubly rotating charged black ring.

II. DIMENSIONAL REDUCTION

A. D=4

Assuming that the five-dimensional metric and the Maxwell field Â do not depend on a space-like coordinate z, we
arrive at the four-dimensional Einstein theory with two Maxwell fields, a dilaton and an axion. We parametrize the
five-dimensional interval and the Maxwell one-form as

ds2
5 = e−2φ(dz + Cµdxµ)2 + eφds2

4, (2)

Â = Aµdxµ +
√

3κdz, (3)

(µ = 1 . . . 4). The corresponding four-dimensional action reads
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1 A purely algebraic construction of the Killing vectors will be presented elsewhere [51].



where

G4 = G5/2πR5, G = dC, F = dA, F̃ = F +
√

3C ∧ dκ, (5)

and F ∗ is the four-dimensional Hodge dual of F .
The dilaton φ and the axion κ parametrize the coset SL(2, R)/U(1). To reveal the SL(2, R) S-duality symmetry

in the sector of vector fields (A is inherited from 5D theory, C is the Kaluza-Klein vector) one has to reparametrize
them using some dualization [8]. We will reveal S-duality later on the level of the further 3D reduction.

The field equations in terms of the four-dimensional variables read

∇2φ − e2φ(∂κ)2 +
1

4
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1

12
e−φF̃ 2 = 0, (6)
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3 e−φF̃µν∂µκ = 0, (9)

and the Bianchi identities are

∇µF ∗µν = 0, ∇µG∗µν = 0. (10)

It is convenient to introduce the modified Maxwell tensors

Fµν = e−φF̃µν + 2κF ∗µν , (11)

Gµν = e−3φGµν +
√

3
(

e−φκF̃µν + κ2F ∗µν
)

, (12)

in terms of which the Maxwell equations have the divergence form

∇µFµν = 0, ∇µGµν = 0. (13)

B. D=3

Further reduction to D = 3 is performed with respect to time, assuming the standard parametrization of the
stationary four-metric

ds2
4 = −f(dt − ωidxi)2 + f−1hijdxidxj . (14)

The spatial part of the Bianchi identities (10) is solved introducing the electric potentials C0 = v̄1, A0 = v̄2, so that

Gi0 = ∂iv̄1, Fi0 = ∂iv̄2. (15)

Similarly, the spatial components of the Maxwell equations (13) are solved by introducing magnetic potentials ū1, ū2:

Gij =
f√
h

ǫijk∂kū1, F ij =
f√
h

ǫijk∂kū2. (16)

The time components of the corresponding equations then give the second order equations for these potentials.
Straightforwardly we can find (with the convention ǫijk = −ǫ0ijk)

Gij =
f√
h

e3φ ǫijk(w1)k, (w1)k := ∂kū1 −
√

3 κ(∂kū2 − κ∂kv̄2), (17)

F̃ ij =
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eφ ǫijk(w2)k, (w2)k := ∂kū2 − 2κ∂kv̄2, (18)

F̃i0 = (z2)i, (z2)i := ∂iv̄2 −
√

3v̄1∂iκ. (19)

The remaining components of the Maxwell tensors are obtained using the following relations valid for any second rank
four-dimensional antisymmetric tensor Wµν with the assumed form of the metric (14):

W i0 = W ijωj − hijWj0, Wij = f−2hikhjlW
kl + 2W0[iωj]. (20)



Using this we find:
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and for the squared quantities:
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where (w1)
2 = (w1)i(w1)

i.
Now we turn to the Einstein equations:
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The Ricci tensor decomposes as follows

R00 =
1

2

(

f∇2f − (∂f)2 + τ2
)

, (27)
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where
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The 0i-part of (26) can be solved introducing the twist potential χ via
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Using this relation, we can rewrite the 00-component of the Einstein equations as
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and present the space-space part as
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From the Eq. (28) we then find that the Ricci tensor built on the three-dimensional metric hij will satisfy the following
three-dimensional Einstein equation
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