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Abstract

The track allocation problem, also known as train routing problem or
train timetabling problem, is to find a conflict-free set of train routes of
maximum value in a railway network. Although it can be modeled as a
standard path packing problem, instances of sizes relevant for real-world
railway applications could not be solved up to now. We propose a rapid
branching column generation approach that integrates the solution of
the LP relaxation of a path coupling formulation of the problem with a
special rounding heuristic. The approach is based on and exploits special
properties of the bundle method for the approximate solution of convex
piecewise linear functions. Computational results for difficult instances
of the benchmark library TTPlib are reported.

1 Introduction

Routing a maximum number of trains in a conflict-free way through a track
network is one of the basic scheduling problems for a railway company. This
optimal track allocation problem, also known as train routing problem or train
timetabling problem, has received growing attention in the operations research
literature, see [8, 2, 11, 6, 17] for some recent references. A branch on the study
of advanced models that incorporate, e.g., additional robustness aspects, has
already been started, see, e.g., [12]. However, the problem remains that up to
now the basic problem can hardly be solved even for small instances. Corridors
or single stations mark or are quickly beyond the limits of the current solution
technology, such that network optimization problems can not be addressed.

Finding a good track allocation model is a key prerequisite for progress to-
wards the solution of large-scale track allocation problems. The authors of
[4] proposed a novel path coupling formulation based on train path and track
configuration variables. The model provides a strong LP bound, is amenable
to standard column generation techniques, and therefore suited for large-scale
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computation. Indeed, it was shown that LP relaxations of large-scale track
allocation problems involving hundreds of potential trains could be solved to
proven or near optimality in this way. However, similar results for integer
solutions could not be provided at that time.

This topic is addressed in this paper. Extending the work in [4], we present
a sophisticated solution approach that is able to compute high-quality integer
solutions for large-scale railway track allocation problems. Our algorithm is
an adaptation of the rapid branching method introduced in [3] (see also the
thesis [20]) for integrated vehicle and duty scheduling in public transport. The
method solves a Lagrangean relaxation of the track allocation problem as a
basis for a branch-and-generate procedure that is guided by approximate LP
solutions computed by the bundle method. This successful second application
provides evidence that rapid branching is a general solution method for large-
scale path packing and covering problems.

The paper is structured as follows. Section 2 recapitulates the track allocation
problem and the path configuration model. Section 3 discusses the solution of
an associated Lagrangean relaxation by the bundle method. In Section 4 we
adapt the rapid branching heuristic to deal with track allocation (maximiza-
tion) problems. Section 5 reports computational results. We demonstrate that
rapid branching can be used to produce high quality solutions for large-scale
track allocation problems.

2 The Track Allocation Problem

We briefly recall in this section a formal description of the track allocation
problem; more details can be found in the articles [5, 8, 2]. Consider an
acyclic digraph D = (V,A) that represents a time-expanded railway network.
Its nodes represent arrival and departure events of trains at a set S of stations
at discrete times T ⊆ Z, its arcs model activities of running a train over a
track, parking, or turning around. Let I be a set of requests to route trains
through D. More precisely, train i ∈ I can be routed on a path through some
suitably defined subdigraph Di = (Vi, Ai) ⊆ D from a starting point si ∈ Vi
to a terminal point ti ∈ Vi. Denote by Pi the set of all routes for train i ∈ I,
and by P =

⋃
i∈I Pi the set of all train routes (taking the disjoint union).

Let s(v) ∈ S be the station associated with departure or arrival event v ∈ V ,
t(v) the time, and J = {s(u)s(v) : (u, v) ∈ A} the set of all railway tracks.
An arc (u, v) ∈ A blocks the underlying track s(u)s(v) for the time interval
[t(u), t(v)[, and two arcs a, b ∈ A are in conflict if their respective blocking
time intervals overlap. Two train routes p, q ∈ P are in conflict if any of
their arcs are in conflict. A track allocation or timetable is a set of conflict-
free train routes, at most one for each request set. Given arc weights wa,
a ∈ A, the weight of route p ∈ P is wp =

∑
a∈pwa, and the weight of a track
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allocation X ⊆ P is w(X) =
∑

p∈X wp. The track allocation problem is to find
a conflict-free track allocation of maximum weight.

The track allocation problem can be modeled as a multi-commodity flow prob-
lem with additional packing constraints, see [8, 2, 11]. This model is compu-
tationally difficult. We consider in this article an alternative formulation as
a path coupling problem based on ‘track configurations’ as proposed by the
authors of [4]. A valid configuration is a set of arcs on some track j ∈ J that
are mutually not in conflict. Denote by Qj the set of configurations for track
j ∈ J , and by Q =

⋃
j∈J Qj the set of all configurations. Introducing 0/1-

variables xp, p ∈ P , and yq, q ∈ Q, for train paths and track configurations,
the track allocation problem can be stated as the following integer program:

(PCP) max
∑
p∈P

wpxp (i)

s.t.
∑
p∈Pi

xp ≤ 1, ∀ i ∈ I (ii)∑
q∈Qj

yq ≤ 1, ∀ j ∈ J (iii)∑
a∈p∈P

xp −
∑

a∈q∈Q
yq ≤ 0, ∀ a ∈ A (iv)

xp, yq ≥ 0, ∀ p ∈ P, q ∈ Q (v)
xp, yq ∈ {0, 1}, ∀ p ∈ P, q ∈ Q. (vi)

The objective PCP (i) maximizes the weight of the track allocation. Con-
straints (ii) state that a train can run on at most one route, constraints (iii)
allow at most one configuration for each track. Inequalities (iv) link train
routes and track configurations to guarantee a conflict-free allocation, (v) and
(vi) are the non-negativity and integrality constraints. Note that the upper
bounds xp ≤ 1, p ∈ P , and yq ≤ 1, q ∈ Q, are redundant.

Introducing appropriately defined matrices A ∈ QI×P , B ∈ QJ×Q, C ∈ QI×A,
D ∈ QJ×A, and a weight vector w ∈ QP , program (PCP) can be stated in
matrix form as follows:

(PCP) max wTx, Ax = 1, By = 1, Cx−Dy ≤ 0, (x, y) ∈ {0, 1}P×Q.

The authors of [4] have shown that train path and track configuration variables
can be priced by solving shortest path problems in suitably defined acyclic
digraphs, such that the LP relaxation of program (PCP) can be solved in
polynomial time.

3 A Bundle Approach

The PCP consists of a train routing and a track configuration sub-model
that are linked by coupling constraints. The sub-models are easy, but time
consuming to solve using a column generation procedure based on acyclic
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shortest path computations, the coupling constraints are simple but numerous.
This combinatorial structure can be exploited using a Lagrangean relaxation
approach in which, of course, precision and speed of convergence are critical
issues. It turns out that the bundle method fits perfectly with such a scheme.

A Lagrangean dual of model PCP arises from a Lagrangean relaxation of
the coupling constraints PCP (iv) and a relaxation of the integrality con-
straints PCP (vi) and (vii):

(LD) min
λ≥0

 max
Ax=1,
x∈[0,1]P

(wT − λTC)x+ max
By=1,
y∈[0,1]Q

(λTD)y

 .
LD is equivalent to the dual of the LP relaxation of PCP, and hence provides
upper bounds for PCP. Introducing functions

fP : RA → R, λ 7→ max(wT − λTC)x, Ax = 1, x ∈ [0, 1]P

fQ : RA → R, λ 7→ max(λTD)y, By = 1, y ∈ [0, 1]Q

fP,Q := fP + fQ,

LD can be stated more shortly as follows:

(LD) min
λ≥0

fP,Q(λ) = min
λ≥0

[fP (λ) + fQ(λ)] .

The functions fP and fQ are convex and piecewise linear. Their sum fP,Q is
therefore a decomposable, convex, and piecewise linear function; fP,Q is, in
particular, non-smooth. This is precisely the setting for an application of the
proximal bundle method (PBM) to a maximization problem, see [14, 15, 13, 3,
20] for details.

When applied to LD, the PBM constructs cutting plane models of the func-
tions fP and fQ in terms of subgradient bundles J iP and J iQ that are used to
produce two sequences of iterates λi, µi ∈ RA, i = 0, 1, . . . . The points µi

are called stability centers; they converge to a solution of LD. The points λi

are trial points calculated by solving a quadratic program over a trust region
around the current stability center, whose size is controlled by some positive
weight u:

(QP iP,Q) λi+1 := argmin
λ

fP,Q(λ)− u
2

∥∥µi − λ∥∥2
. (1)

A function evaluation at a trial points results either in a shift of the stability
center, or in an improvement of the cutting plane model. A key point is that
the high-dimensional quadratic program (QP iP,Q) (the dimension is equal to
the number of coupling constraints) has a dual whose dimension coincides
with the number subgradients in the current bundle. The method converges
for a bundle size of two, typical sizes in practice are around 10 or 15. This
dimension reduction makes the problem computationally tractable.
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