
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

YUJI SHINANO
TOBIAS ACHTERBERG?

TIMO BERTHOLD??

STEFAN HEINZ??

THORSTEN KOCH

ParaSCIP – a parallel extension of SCIP

? ILOG, on IBM Deutschland GmbH, Ober-Eschbacher Str. 109, 61352 Bad Homburg v.d.H., Germany
?? Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

ZIB-Report 10-27 (December 2010)



ParaSCIP – a parallel extension of SCIP∗

Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

Abstract Mixed integer programming (MIP) has become one of the most impor-
tant techniques in Operations Research and Discrete Optimization. SCIP (Solving
Constraint Integer Programs) is currently one of the fastest non-commercial MIP
solvers. It is based on the branch-and-bound procedure in which the problem is
recursively split into smaller subproblems, thereby creating a so-called branching
tree. We present ParaSCIP, an extension of SCIP, which realizes a parallelization
on a distributed memory computing environment. ParaSCIP uses SCIP solvers as
independently running processes to solve subproblems (nodes of the branching tree)
locally. This makes the parallelization development independent of the SCIP devel-
opment. Thus, ParaSCIP directly profits from any algorithmic progress in future
versions of SCIP. Using a first implementation of ParaSCIP, we were able to solve
two previously unsolved instances from MIPLIB2003, a standard test set library for
MIP solvers. For these computations, we used up to 2048 cores of the HLRN II
supercomputer.

1 Introduction

Branch-and-bound is a very general and widely used method to solve discrete op-
timization problems. An important class of problems which can be solved using
this method are mixed integer programs (MIP). The challenge of these problems
is to find a feasible assignment to a set of decision variables which yields a mini-

Yuji Shinano · Timo Berthold · Stefan Heinz · Thorsten Koch
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
e-mail: {shinano, berthold, heinz, koch}@zib.de

Tobias Achterberg
ILOG, on IBM Deutschland GmbH, Ober-Eschbacher Str. 109, 61352 Bad Homburg v.d.H., Ger-
many, e-mail: achterberg@de.ibm.com

∗ Supported by the DFG Research Center MATHEON Mathematics for key technologies in Berlin.

1



2 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

mum/maximum value with respect to a given linear objective function. The feasible
region for these problems is described by linear inequalities. In addition a subset of
the variables are only allowed to take integer values. These problems are NP-hard
in general [12].

The well-known idea of branching is to successively subdivide the given problem
instance into smaller problems until the individual subproblems (or sub-MIPs) are
easy to solve. During the course of the algorithm, a branching tree is generated
in which each node represents one of the subproblems. To be able to prune the
vast majority of nodes at an early stage, sophisticated mathematical techniques are
used. This allows a dramatic reduction of the size of the branching tree. Typically,
problems with ten thousand variables and constraints (i.e., approximately 210000

potential solutions) can be solved by investigating a few hundred thousand branch-
and-bound nodes.

State-of-the-art MIP solvers such as CPLEX [3], Gurobi [1], or SCIP [8] are
based on a branch-and-cut [15] procedure, a mathematically involved variant of
branch-and-bound. Parallelizing branch-and-cut algorithms has been proven to be
difficult, due to fact that the decisions involved depend on each other [16]. State-of-
the-art codes learn from the decisions already taken, assuming a sequential order-
ing. Furthermore, basically all algorithmic improvements presented in the literature
aim at reducing the size of the branching tree, thereby making a parallelization less
effective and even more difficult. The latter is due to the observation, that they typi-
cally increase the need for communication and make the algorithm less predictable.
Therefore, a well-designed dynamic load balancing mechanism is an essential part
of the parallelizing branch-and-cut algorithms.

Since its introduction in 1992, the MIPLIB [11] has become a standard test set li-
brary used to compare the performance of MIP solvers. The MIPLIB contains a col-
lection of difficult real-world instances mostly from industrial applications. Its avail-
ability has provided an important stimulus for researchers in this active area. The
current version, MIPLIB2003 [9, 4], contains more than thirty unsolved instances
when it was originally released. This number could be reduced to six; stalling at this
level since 2007. These six instances resisted all attempts of the commercial vendors
and the research community to solve them to proven optimality.

Algorithmic improvements for state-of-the-art sequential MIP solvers have been
tremendous during the last two decades [10]. For an overview on large scale paral-
lelization of MIP solvers, see [18]. Most of these approaches struggled, however, to
catch up with the performance of state-of-the-art commercial and non-commercial
sequential MIP solvers when it comes to solving really hard MIP instances of gen-
eral nature. Many unsolved instances of MIPLIB2003 were first solved using se-
quential solvers [13].

In the following we describe how we developed a massive parallel distributed
memory version of the MIP solver SCIP [5] to harness the power of the HLRN II
supercomputer [2] in order to solve two of the remaining open instances of the
MIPLIB 2003.



ParaSCIP – a parallel extension of SCIP 3

2 SCIP– Solving Constraint Integer Programs

SCIP (Solving Constraint Integer Programs) is a framework for constraint integer
programming. Constraint integer programming is an extension of MIP and a special
case of the general idea of constraint programming (CP). The goal of SCIP is to
combine the advantages and compensate the weaknesses of CP and MIP.

An important point for the efficiency of MIP and CP solving algorithms is the in-
teraction between constraints. SCIP provides two main communication interfaces:

(i) propagation of the variables’ domains as in CP and
(ii) the linear programming relaxation as in MIP.

SCIP uses a branch-and-bound scheme to solve constraint integer programs (see
Section 2.2). The framework is currently one of the fastest MIP solvers [14], even
so it is suitable for a much richer class of problems. For more details about SCIP
we refer to [7, 8, 5].

2.1 Mixed integer programs

In this paper, we only focus on mixed integer programs (MIPs), which can be de-
fined as follows:

Definition 1 (mixed integer program). Let R̂ := R∪{±∞}. Given a matrix A ∈
R

m×n, a right-hand-side vector b∈Rm, an objective function vector c∈Rn, a lower
and an upper bound vector l,u∈ R̂n and a subset I⊆N = {1, . . . ,n}, the correspond-
ing mixed integer program MIP = (A,b,c, l,u, I) is to solve

min cT x

s.t. Ax≤ b

l ≤ x≤ u

x j ∈R for all j ∈ N \ I

x j ∈ Z for all j ∈ I.

The goal is to find an assignment to the (decision) variables x such that all lin-
ear constraints are satisfied and the objective function cT x is minimized. Note that,
the above format is quite general. First, maximization problems can be transformed
to minimization problems by multiplying the objective function coefficients by −1.
Similarly, “≥” constraints can be multiplied by−1 to obtain “≤” constraints. Equa-
tions can be replaced by two opposite inequalities.

The linear programming relaxation is achieved by removing the integrality con-
ditions. The solution of the relaxation provides a lower bound on the optimal solu-
tion value.



4 Yuji Shinano, Tobias Achterberg, Timo Berthold, Stefan Heinz, and Thorsten Koch

2.2 Branch-and-bound

One main technique to solve MIPs is the branch-and-bound procedure. The idea
of branching is to successively subdivide the given problem instance into smaller
subproblems until the individual subproblems are easy to solve. The best of all so-
lutions found in the subproblems yields the global optimum. During the course of
the algorithm, a branching tree is generated in which each node represents one of
the subproblems.

The intention of bounding is to avoid a complete enumeration of all potential
solutions of the initial problem, which usually are exponentially many. For a mini-
mization problem, the main observation is that if a subproblem’s lower (dual) bound
is greater than the global upper (primal) bound, the subproblem can be pruned.
Lower bounds are calculated with the help of the linear programming relaxation,
which typically is easy to solve. Upper bounds are obtained by feasible solutions,
found, e.g., if the solution of the relaxation is also feasible for the corresponding
subproblem.

3 ParaSCIP

In this section, we introduce ParaSCIP, a parallel extension of SCIP. The design
goals of ParaSCIP are to exploit SCIP’s complete functionality, to keep the inter-
face simple, and to scale to at least 10 000 cores in parallel.

We will focus on two important features, the dynamic load balancing and the
checkpointing mechanism.

3.1 A dynamic load balancing mechanism

In this section we illustrate the workflow of the dynamic load balancing mechanism
for ParaSCIP. Workload of a sub-MIP computation strongly depends on two fac-
tors. One is the number of branching nodes per solver, which may vary from one
to several millions. The other is the computing time of a single branch-and-bound
node, which may vary from less than one millisecond to several hours. Therefore,
the dynamic load balancing mechanism is a key factor for the parallelization of
branch-and-bound algorithms.

Initialization phase

In the beginning, the LOADCOORDINATOR, which acts as a master process, reads
the instance data for a MIP model which we refer to as the original instance. This
instance is presolved (see Section 4.2) directly inside the LOADCOORDINATOR.




