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Affine recourse for the robust network design problem:

between static and dynamic routing

Michael Poss § Christian Raack ¶

Abstract

Affinely-Adjustable Robust Counterparts provide tractable alternatives to (two-stage) ro-
bust programs with arbitrary recourse. We apply them to robust network design with poly-
hedral demand uncertainty, introducing the affine routing principle. We compare the affine
routing to the well-studied static and dynamic routing schemes for robust network design.
All three schemes are embedded into the general framework of two-stage network design with
recourse. It is shown that affine routing can be seen as a generalization of the widely used
static routing still being tractable and providing cheaper solutions. We investigate properties
on the demand polytope under which affine routings reduce to static routings and also develop
conditions on the uncertainty set leading to dynamic routings being affine. We show however
that affine routings suffer from the drawback that (even totally) dominated demand vectors
are not necessarily supported by affine solutions. Uncertainty sets have to be designed ac-
cordingly. Finally, we present computational results on networks from SNDlib. We conclude
that for these instances the optimal solutions based on affine routings tend to be as cheap as
optimal network designs for dynamic routings. In this respect the affine routing principle can
be used to approximate the cost for two-stage solutions with free recourse which are hard to
compute.

Keywords: Robust optimization; Network design; Recourse; Affine Adjustable Robust Coun-
terparts; Affine Routing; Demand polytope.

§Department of Computer Science, Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium,
mposs@ulb.ac.be

¶Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany, raack@zib.de. This research has been
supported by the DFG research Center Matheon

1



1 Introduction

In the classical deterministic network design problem, a set of point-to point commodities with
known demand values is given, and capacities have to be installed on the network links at minimum
cost such that the resulting capacitated network is able to accommodate all demands simultane-
ously by a multi-commodity flow. When demands are known with precision, this problem has been
studied extensively in the literature, involving decompositions algorithms, extended formulations
and strong cutting planes, see [5, 18, 22, 23, 25, 41], among others.

In practice however, exact demand values are usually not known at the time the design decisions
must be made. In telecommunications, demands are estimated which can be done for instance by
using traffic measurements (see [45], among others) or population statistics, see [19, 24]. These
estimations allow the problem to be formulated and solved using classical tools of deterministic
mathematical programming. However, the actual traffic forecast is strongly overestimated in order
to yield robust networks capable of routing potential traffic peaks. Such overestimation results
in overprovisioned networks wasting capital as well as operational expenditures such as energy
resources.

Robust optimization overcomes this problem by explicitly taking into account the uncertainty
of the data already in the modeling introducing so-called uncertainty sets. A solution is said to
be feasible if it is feasible for all realizations of the data in a predetermined uncertainty set D,
see [10, 11, 17, 44]. The original framework of Soyster [44] assumes that all decisions must be
identical for all values of the uncertain parameters. Introducing more flexibility, two-stage robust
optimization allows to adjust a subset of the problem variables only after observing the actual
realization of the data, see [12]. In fact, it is natural to apply this two-stage approach to network
design since very often first stage capacity design decisions are made in the long term while the
actual routing is adjusted based on observed user demands. This second stage adjusting procedure
is called recourse which in the context of (telecommunications) network design relates to what is
known as traffic engineering. Unrestricted second stage recourse in robust network design is called
dynamic routing, see [20, 28], and [34]. Given a fixed design, the commodity routing can be
changed arbitrarily for every realization of the demands. Chekuri et al. [20] and Gupta et al.
[28] show that allowing for dynamic routing makes robust network design intractable. Already
deciding whether or not a fixed capacity design allows for a dynamic routing of demands in a given
polytope is NP-complete (on directed graphs).

Even more general, Ben-Tal et al. [12] observe that two-stage robust linear programming with
free recourse is computationally intractable and suggest to limit the flexibility in the second stage
by affine functions which makes the problem tractable. Chen and Zhang [21] extend this idea by
using extended formulations of uncertainty sets and by applying affine recourse in the resulting
higher-dimensional variable spaces.

Interestingly, this limitation in the flexibility of the second stage recourse has been used earlier
in robust network design without relating it to two-stage optimization. Ben-Ameur and Kerivin
[8, 9] introduce the concept of static routing (or oblivious routing).After fixing the design, the
routing of a commodity is allowed to change but the actual flow has to be a linear function
of the observed demand of the same commodity. Static routing results in a fixed set of paths
for every commodity and also a fixed percental splitting of flow among these paths independent
of the realization of the commodity demand. In this context we speak of a routing template
used by all demand realizations. Robust network design with static routing can be handled as
a single-stage problem introducing template variables, see the next section. Static routing has
been used extensively since then. Ordóñez and Zhao [37] study structural properties of the robust
network design problem when cost and demand values belong to conic uncertainty sets. Altin
et al. [1] develop a compact integer linear programming model for virtual private network design
with continuous capacities and single path routing using. Altin et al. [2, 3] and Koster et al.
[32] study the network design problem assuming splittable flow and integer capacities. Polyhedral
investigations and computational evaluations of the models are carried out.

The restriction of routing templates for every commodity makes the problem tractable but it is
of course very conservative in terms of capacity cost compared to dynamic routing. Recently there
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have been several attempts to handle less restrictive routing principles. These could be shown to be
intractable just like the dynamic case. Ben-Ameur [7] partitions the demand uncertainty set into
two (or more) subsets using hyperplanes and devises specific routings for each subset. The resulting
optimization problem is NP-hard when no assumptions is made on the hyperplanes. Ben-Ameur
thus discusses simplifications where either the entire hyperplane or its direction is given. Scutellà
[42] allows for two (or more) routing templates to be used conjointly. These routing templates
are devised iteratively, that is, given a routing template and a capacity allocation, Scutellà [42]
allows some commodities to use a second routing template in order to reduce the overall capacity
allocation. The procedure is proved to be NP-hard in [43]. Mattia [34] provides a branch-and-
cut algorithm for robust network design with dynamic routing together with a computational
comparison to the static version.

As an alternative to these NP-hard approaches, Ouorou and Vial [40] and Babonneau et al.
[6] only recently apply directly the affine recourse from [12] to network design problems using
particular uncertainty sets. The resulting restrictive routing scheme is refereed to as affine routing
in the following. We will introduce affine routing as a generalization of static routing. In this
context affine routing provides an alternative in between static and dynamic routing yielding
tractable robust counterparts in contrast to the schemes used in [7, 43].

The contributions of this paper consists of a theoretical and empirical study of network design
under the affine routing principle for general polyhedral demand uncertainty sets D. We embed
affine routing into the context of two-stage network design with recourse and compare it to its
natural counterparts, static and dynamic routings. Section 2 introduces the mathematical models
and defines formally static, affine and dynamic routings. In Section 3 we show that, when D is full-
dimensional, affine routings decompose into a combination of cycles and paths, that is, a routing
template for every commodity can be affinely adjusted using a set of cycles, whenever a different
commodity is perturbed within the feasible demand region. We describe then necessary and
sufficient conditions on D under which affine routing is equivalent to static or dynamic routing. As
a bi-product, we obtain that static and dynamic routings are equivalent under certain assumptions
on D. We show that dominated demand vectors are not automatically supported by affine solutions
in contrast to static and dynamic solutions. In particular very small demand scenarios have to
be included in the uncertainty set. Finally, Section 4 presents numerical comparisons of dynamic,
affine and static routings carried out on instances from SNDlib, see [39]. It turns out that for
these instances the affine routing principle is numerically very close to the dynamic second stage
recourse rule. In fact, it provides enough flexibility to approximate the cost for optimal two-stage
solutions with full flexibility.

2 Robust network design with recourse

We are given a directed graph G = (V,A) and a set of commodities K. A commodity k ∈ K has
source s(k) ∈ V , destination t(k) ∈ V , and demand value dk ≥ 0. A flow for k is a vector fk ∈ RA+
satisfying: ∑

a∈δ+(v)

fka −
∑

a∈δ−(v)

fka = dkψvk for all v ∈ V, (1)

where δ+(v) and δ−(v) denote the set of outgoing arcs and incoming arcs at node v, respectively.
For node v ∈ V and commodity k ∈ K we set ψvk := 1 if v = s(k), ψvk := −1 if v = t(k), and
ψvk := 0 else. Flows are non-negative. A multi-commodity flow is a collection of flows, one for
each commodity in K. A circulation (or cycle-flow) is a vector g ∈ RA satisfying∑

a∈δ+(v)

ga −
∑

a∈δ−(v)

ga = 0 for all v ∈ V. (2)

A circulation is not necessarily non-negative. A value ga < 0 can be seen as a flow from the head
of arc a to its tail. We call a circulation g non-negative if g ≥ 0 and positive if additionally g 6= 0.
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Notice that any two flows f̂k, fk for k only differ by a circulation, that is, there always exists a

circulation g such that f̂k = fk + g.
In many practical situations, the demand vector d ∈ RK+ is uncertain. In the sequel we assume

that d ∈ D ⊂ RK where D is a bounded convex set. We often call D the uncertainty set. Any
d ∈ D is said to be a realization of the demand. A routing is a function f : D → RA×K+ that assigns
a multi-commodity flow to every realization of the demand. We say that f serves D and call f
a dynamic routing if there is no further restriction on the routing. A capacity allocation x ∈ RA+
is said to support the set D if there exists a routing f serving D such that for every d ∈ D the
corresponding multi-commodity flow f(d) is not exceeding the arc-capacities given by x. Robust
network design now aims at providing the cost minimal capacity allocation supporting D. In this
respect, robust network design is a two-stage robust program with recourse, following the more
general framework described by [12]. The capacity design has to be fixed in the first stage, and,
observing a demand realization d ∈ D, we are allowed to adjust the routing f(d) in the second
stage. The problem can be written as the following (infinite) linear program denoted by (RND)
in the following:

min
∑
a∈A

κaxa (3)

(RND) s.t.
∑

a∈δ+(v)

fka (d)−
∑

a∈δ−(v)

fka (d) = dkψvk, v ∈ V, k ∈ K, d ∈ D (4)

∑
k∈K

fka (d) ≤ xa, a ∈ A, d ∈ D (5)

fka (d) ≥ 0, a ∈ A, k ∈ K, d ∈ D (6)

xa ≥ 0, a ∈ A,

where κa ∈ R+ is the cost for installing one unit of capacity on arc a ∈ A. Ben-Tal et al.
[12] point out that allowing for arbitrary recourse very often makes robust optimization problems
intractable. In fact, this is true for two-stage robust network design with free recourse. It is known
that already deciding whether a given capacity vector x supports D is NP-complete for general
polytopes D, see [20, 28]. It follows from this NP-completeness result that it is impossible (unless
P = NP) to derive a compact formulation for (RND) given a general uncertainty polytope D
if there is no restriction on the second stage routing decision, contrasting with the reformulation
discussed in Section 3.1. Using a branch-and-cut approach to solve (RND) based on Benders
decomposition ([14]), Mattia [34] shows how to solve the NP-hard separation problem for robust
metric inequalities ([30, 36]) using bilevel and mixed integer programs.

Most authors ([2, 4, 9, 32, 35, 37], among others) use a simpler version of (RND) introducing
a restriction on the second stage recourse known as static routing (also called oblivious routing).
Each component fk : D → RA+ is forced to be a linear function of dk:

fka (d) := ykad
k a ∈ A, k ∈ K, d ∈ D. (7)

Notice that by (7) the flow for k is not changing if we perturb the demand for h 6= k. By combining
(4) and (7) it follows that the multipliers y ∈ RA×K+ define a multi-commodity (percentage) flow.
For every k ∈ K, the vector yk ∈ RA+ satisfies (1) setting dk = 1. The flow y is called a routing
template since it decides, for every commodity, which paths are used to route the demand and
what is the percental splitting among these paths. The routing template has to be used by all
demand scenarios d ∈ D under the static routing scheme.

Ben-Tal et al. [12] introduce Affine Adjustable Robust Counterparts restricting the recourse to
be an affine function of the uncertainties. Applying this framework to (RND) means restricting
fk to be an affine function of all components of d giving

fka (d) := f0k
a +

∑
h∈K

ykha dh ≥ 0, a ∈ A, k ∈ K, d ∈ D, (8)
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