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ZU KIEL



Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

A Fast and Robust Optimization Methodology
for a Marine Ecosystem Model Using

Surrogates

M. Prieß, S. Koziel, T. Slawig

Bericht Nr. 1110

November 8, 2011

ISSN 2192-6247

e-mail: mpr@informatik.uni-kiel.de, koziel@ru.is,
ts@informatik.uni-kiel.de



A Fast and Robust Optimization Methodology for a Marine

Ecosystem Model Using Surrogates

M. Prießa,1,∗, S. Kozielc, T. Slawiga

aInstitute for Computer Science, Cluster The Future Ocean, Christian-Albrechts Universität zu Kiel, 24098
Kiel, Germany

bLeibniz Institute of Marine Science (IFM-GEOMAR), Marine Biogeochemistry, Biological Oceanography,
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Abstract

Model calibration in climate science plays a key role for simulations and predictions of the

earth’s climate system. Straightforward attempts by employing the high-fidelity (or fine)

model under consideration directly in an optimization loop using conventional optimization

algorithms are often tedious or even infeasible, since typically a large number of computa-

tionally expensive fine model evaluations are required. The development of faster methods

becomes critical, where the optimization of coupled marine ecosystem models, which simulate

biogeochemical processes in the ocean, are a representative example. In this paper, we in-

troduce a surrogate-based optimization (SBO) methodology where the expensive fine model

is replaced by its fast and yet reasonably accurate surrogate. As a case study, we consider

a representative of the class of one-dimensional marine ecosystem models. The surrogate is

obtained from a temporarily coarser discretized physics-based low-fidelity (or coarse) model.

and a multiplicative response correction technique. In our previous work, a basic formulation

of this surrogate was sufficient to create a reliable approximation, yielding a remarkably ac-

curate solution at low computational costs. This was verified by model generated, attainable

data. The application on real data is covered in this paper. Enhancements of the basic

formulation by utilizing additionally fine and coarse model sensitivity information as well as
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trust-region convergence safeguards allow us to further improve the robustness of the algo-

rithm and the accuracy of the solution. The trade-offs between the solution accuracy and

the extra computational overhead related to sensitivity calculation will be addressed. We

demonstrate that SBO is able to yield a very accurate solution at still low computational

costs. The optimization process – when compared to the direct fine model optimization – is

significantly speed up to about 85%.

Keywords: Climate models, marine ecosystem models, surrogate-based optimization,

parameter optimization, response correction, efficient optimization, surrogate

1. Introduction

Numerical simulations play a key role to simulate and predict processes in the earth’s

climate system, ranging from fluid mechanics, as in the atmosphere and ocean, to bio- and

biochemical interactions, e.g., in marine or other type of ecosystems. The underlying models

are typically given as time-dependent partial differential or differential algebraic equations

(PDEs/DAEs) [10, 17, 19].

Since many important processes are non-linear, the numerical effort to simulate the whole

or parts of the climate system with a satisfying accuracy and resolution is quite high. This

motivates the development and use of reduced order models by e.g. coarser discretizations

(in time and/or space) or by parametrizations to reduce the system size and thus the com-

putational effort [19]. Through those parametrizations, several additional parameters enter

the system. Many of them are not known beforehand and not directly measurable. Before

a transient simulation of a model (e.g., used for predictions) is possible, the latter has to be

calibrated and validated w.r.t. measurement data, i.e., relevant unknown parameters have

to be identified using large-scale optimization methods. Growth and dying rates in marine

ecosystem models [7, 26], one of which is taken as a test case for the proposed optimization

methodology, are examples for such unknown parameters. Marine ecosystem models describe

photosynthesis and other biogeochemical processes in the marine ecosystem that are impor-

tant, e.g., to compute and predict the oceanic uptake of carbon dioxide (CO2) as part of the

global carbon cycle [26].

The mathematical task of parameter optimization can be classified as a least-squares
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type optimization or inverse problem [2, 3, 31]. This optimization (or calibration) process

requires a substantial number of (typically expensive) function and optionally sensitivity or

even Hessian matrix evaluations.

Straightforward attempts by employing the high-fidelity or fine model under considera-

tion directly in an optimization loop using conventional optimization algorithms are therefore

tedious or even infeasible, especially when using traditional, gradient-based techniques. The

need for an accelerated optimization process, which especially becomes important while han-

dling complex three-dimensional models, becomes critical.

Surrogate-based optimization (SBO) addresses this issue by shifting the computational

burden from the accurate and expensive high-fidelity model to its fast but yet reasonably

accurate surrogate. More specifically, the idea of SBO is to replace the fine model in the opti-

mization process in the sense of providing predictions of the model optimum. The surrogate

can be created by approximating sampled fine model data (so-called function-approximation

surrogates, see [23, 28, 29]) or by employing a physics-based low-fidelity or coarse model,

a computationally cheap representation of the fine model. The latter approach is used in

this paper. Since the accuracy of the coarse model is usually not sufficient to directly use

the latter in an optimization loop, it is often necessary to use suitable alignment/correction

techniques to reduce the misalignment between the coarse and fine model responses. Popu-

lar correction/alignment techniques include response correction [30] and space mapping [1].

Surrogate-based optimization is widely and very successfully used in engineering sciences,

compare for example [1, 9, 15, 23].

As a case study, in order to investigate the applicability of a SBO methodology to the

optimization of marine ecosystem models, we consider a representative of the class of one-

dimensional models. Clearly, the computational effort in a one-dimensional simulation is

significantly smaller than in the three-dimensional case. However, since biochemistry mainly

happens locally in space and since the complexity of the biogeochemical processes included

in this specific model is high, this model serves as a good test example for the applicability

of SBO approaches, before considering computationally more expensive three-dimensional

models.

One straightforward way to introduce a physics-based coarse model is to reduce the spatial
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and/or temporal resolution, whereas the latter is used for the selected model in this paper.

We use a multiplicative response correction technique for the alignment of the coarse and

fine model response.

In our previous work [22], a basic formulation of this surrogate was sufficient to create a

reliable approximation, yielding a remarkably accurate solution at low computational costs.

This was verified by model generated, attainable data.

In this paper, the application on real data is covered. Utilizing additionally fine and

coarse model sensitivity information ensures the zero- and first-order consistency conditions

between the fine model and the surrogate, i.e., agreement in function values and first-order

derivatives. In conjunction with trust-region convergence safeguards [4, 13], this allows us

to further improve the robustness of the SBO and accuracy of its solution. The trade-offs

between the solution accuracy and the extra computational overhead related to sensitivity

calculation will be addressed.

We show the results of an exemplary SBO run and compare the solution to those obtained

by a direct fine and coarse model optimization. We demonstrate that a direct optimization of

the fine model requires a substantial number of comparably expensive fine model evaluations

whereas a direct coarse model optimization is computationally cheap but yields a rather

inaccurate solution only. We finally show that SBO yields a solution close to the one obtained

by a direct fine model optimization while greatly reducing the optimization costs – down to

15% of those of a direct fine model optimization.

The structure of the paper is as follows: We briefly describe the general form of numerical

model used in climate science and highlight the special properties of marine ecosystem models

in Section 2 (see also [22]). We introduce the basic idea of surrogate-based optimization in

Section 3. The ecosystem model and corresponding optimization problem, which is taken

as an example in this paper, is introduced in Section 4. The coarse model that we use

as a basis to create a surrogate, is recalled in Section 5 (see again [22]). The response

correction approch used to obtain the surrogate is motivated and described in Section 6. The

optimization setup, numerical results and discussion of exemplary test runs are provided in

Sections 7 and 8. Section 9 concludes the paper with a summary and an outlook.
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2. Climate Models – A General Formulation

Numerical models that are used to simulate processes in the climate system (what we de-

note by climate models) can be quite generally written as coupled systems of time-dependent

partial differential or differential algebraic equations (PDEs/DAEs) [10, 17, 19], for example

in the following form:

E
∂y

∂t
= f(y, u) in I × Ω

y(t0,x) = yinit in Ω

By = 0 on I × Γ,

(1)

where y(t, x) : I × Ω → R is the vector of the state variable, with a definite time interval

I = [t0, t0 + T ], t0 ∈ R an initial point in time, T ∈ R a duration, Ω ∈ R3 a domain and

where Γ = ∂Ω denotes its boundary. The time variable is denoted by t ∈ I and the spacial

variable by x = (x1, x2, x3)> ∈ Ω. We used a boldfaced notation to distinguish a vector from

a continous or scalar variable in the following.

The right-hand side f includes all spatial differential operators as well as the coupling

between the components of the state variable y. In climate models, it often additionally

depends explicitly on the space and time variables x and t, respectively, which, for simplicity,

is omiited in the notation. Moreover, f depends on a number of model parameters which are

summarized in the vector u. The vector-valued function yinit : Ω → R includes the initial

model data and B denotes the boundary operator which – when representing for example a

Neumann boundary condition – is nonlinear and includes the first normal derivative.

E is a matrix with the size of y, typically being the identity matrix for a PDE while having

rank deficiency for a PDAE [14]. We include PDAEs in this formulation since for example in

ocean circulation models [10], the underlying Navier-Stokes equations are – when written in

the above form – a PDAE system. Then y may for example consist of the velocity, pressure,

temperature or salinity field. In the case of marine ecosystem models, which are formulated

as a PDE system, the matrix E can be set to the identity and thus omitted. In this case,

the state vector y contains so-called biogeochemical tracers such as phyto- and zooplankton,
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see Section 2.1 below and 4 for details.

2.1. Marine Ecosystem Models

Marine ecosystem models mainly consist of two parts, namely the ocean circulation and

the biogeochemical model. The coupling between ocean circulation and the biogeochemical

interactions such as photosynthesis is mostly regarded as a one-way coupling. This means

that the influence of the biota on the circulation (including temperature and maybe salinity

distribution) is assumed to be negligible and thus is often omitted (so-called off-line mode).

Velocity and temperature fields are computed beforehand by an ocean circulation model and

only used as forcing data for the biogeochemical simulations which significantly reduces the

compuational effort. Our example model (cf. Section 4) uses this off-line mode.

The model equations consist of a system of coupled advection-diffusion-reaction equations,

where the reaction terms (also called source minus sink, or sms terms) are given by the

biogeochemical interactions between the biogeochemical tracers. As a special form of (1), a

system of these transport equations for nt tracers then generally reads

∂yi
∂t

= div(κ∇yi)− div(vyi) + qi(y,u), i = 1, . . . , nt (2)

where yi(t, x) : I×Ω→ R denotes the concentration of tracer i at time t and the spatial loca-

tion x. If no interactions with the atmosphere is taken into account, homogeneous Neumann

conditions on the boundary Γ for all concentrations are employed, i.e.,

∂yi
∂n

= n · ∇y = 0 on I × Γ, i = 1, . . . , nt, (3)

where n denotes the normal vector. The time dependent turbulent mixing/diffusion coef-

ficient κ(t, x) : I × Ω → R as well as the velocity vector field v(t, x) : I × Ω → R3 with

v = (vi)i=1,2,3, both satisfy the Navier-Stokes equations. Since the parameters u ∈ Rnp ,

which are subject to the parameter optimization, are scalar coefficients in the nonlinear

biogeochemical coupling terms qi, we use a boldfaced notation.
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(a) Direct Optimization.
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(b) Surrogate-Based Optimization.

Figure 1: In a direct optimization (Figure 1a), the complex high-fidelity or fine model under
consideration is directly used in an optimization loop using conventional (deterministic/local
or stochastic/global) optimization approaches. In a surrogate-based approach (Figure 1b),
the fine model is replaced in the optimization loop in iteration k by its computationally
cheaper but yet reasonably accurate surrogate. Here, uk denotes the parameter vector at
iteration k.

3. Surrogate-Based Optimization

For many optimization problems, a high computational cost or even the lack of sensitivity

information of the model under consideration is a major bottleneck.

The optimization problem typically is to solve for a solution of a minimization problem,

which can quite generally be formulated as

min
u
J(y(u)) (4)

where J denotes a cost function measuring the misfit between relevant quantities (which are

obtained from the discrete model response y at the parameters/design u) and some desired

specifications. For the considered optimization problem in this paper for example, these

quantities are tracer concentrations, whereas the desired specifications are given measure-

ment data. Also, for some applications, the optimization problem could include both, a

minimization and a maximization. However, for the purpose of this section, to sketch the
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basic ideas of SBO, we omit such a formulation as well as any detailed description of J here.

Straightforward attempts by employing the high-fidelity (or fine) model under consider-

ation directly in an optimization loop (cf. Figure 1a) using conventional optimization algo-

rithms are often tedious or even infeasible, since typically a large number of the expensive fine

model evaluations are required. The need for an accelerated optimization process becomes

critical, for which the optimization of complex marine ecosystem models is a representative

example.

Surrogate-based optimization (SBO) [1, 9, 15, 23] addresses these issues by replacing

the original fine model in the optimization loop by its computationally cheaper but yet

reasonably accurate surrogate (cf. Figure 1b). In particular, the surrogate at the iterate uk,

in the following denoted by sk(u), is contructed typically using available fine model data

from the current and possibly also from previous iterates (ui)i=0,...,k−1.

Possible ways to create a surrogate are through approximations of sampled fine model data

(cf. Section 3.1) or by correction/alignment of a less accurate but computationally cheaper

low-fidelity (or coarse) model (cf. Section 3.2).

The next iterate, uk+1, in a SBO scheme is obtained by optimizing the surrogate sk, i.e.,

uk+1 = argmin
u

J ( sk(u) ). (5)

assuming some general cost functional J as in (4). The process of updating the surrogate and

subsequent optimization is repeated a user-defined termination condition is satisfied, which

can use certain convergence criteria, assumed level of cost function value or a specific number

of iterations (particularly if the computational budget of the optimization process is limited).

A well performing surrogate-based algorithm is capable of yielding a reasonably accurate

solution at a low computational cost, typically corresponding to only a few evaluations of the

fine model. Key prerequisites to ensure this, are a cheap and yet reasonably accurate coarse

model as well as a properly selected and low-cost alignment procedure (i.e., using a limited

number of fine model evaluations, preferably just one).
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3.1. Functional Surrogates

One possibility, which will not be addressed further in this paper, is to create the surro-

gate by approximating sampled fine model data using suitable techniques, e.g., polynomial

regression [23], kriging [28] or support-vector regression [29]. Since these so-called function-

approximation surrogates are constructed without any particular knowledge of the system

they are easily transferable to other application areas. On the other hand, these surrogates

do not inherit any physical information about the fine model under consideration and nor-

mally require substantial amount of fine model data samples to ensure good accuracy.

3.2. Physics-Based Surrogates

Another possibility, explored in this paper, is to construct the surrogate from a physics-

based low-fidelity or coarse model, a usually computationally much cheaper but – on the other

hand – less accurate representation of the fine one. Since the accuracy of the coarse model is

typically not sufficient to directly directly replace the fine model in an optimization loop, it

is then necessary to use suitable alignment/correction techniques to reduce the misalignment

between the coarse and fine model responses and to ensure that the corrected model (the

surrogate) provides a reliable prediction of the fine model optimum.

There are several methods of constructing the surrogate from a physics-based low-fidelity

model. They include, among others, space mapping (SM) [1], various response correction

techniques [30], manifold mapping [5], and shape-preserving response prediction (SPRP)

[12]. An appropriate response correction technique is usually rather problem-specific.

These so-called physics-based surrogates, when the underlying coarse model and align-

ment technique is chosen properly, inherit relevant physical characteristics of the original

fine model so that only a few fine model data is necessary to ensure a sufficient accuracy.

Also, generalization capability of the physics-based models is typically much better than for

functional ones. As a results, SBO schemes working with physics-based surrogates normally

require small number of fine model evaluations to yield a satisfactory solution. On the other

hand, their transfer to other applications is less straightforward since the underlying coarse

model and chosen correction approach is rather problem specific..

Possible ways to create the underlying physical coarse model are by using a coarser dis-

cretization in time and/or space (while employing the same simulation tool as for the fine
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model), simplified physics or different ways of describing the same physical phenomenon or

even by using analytical formulas if available.

The surrogate, we use in this paper is physics-based. The specific coarse model is ob-

tained by a coarser time discretization (cf. Section 5) which is further aligned by using a

multiplicative response correction (cf. Section 6).

3.3. Consistency Conditions and Convergence of SBO

Provided that the surrogate sk satisifes so-called zero- and first-order consistency con-

ditions with the original fine model yf (uk) at the iterate uk, i.e., agreement between the

function values and first-order derivatives at the current iteration point, mathematically

written as

sk(uk) = y(uk), s′k(uk) = y′(uk), (6)

the surrogate-based scheme (5) is provable convergent to at least a local optimum of (4)

under mild conditions regarding the coarse and fine model smoothness, and provided that

the surrogate optimization scheme is enhanced by the trust-region (TR) safeguard, i.e.,

uk+1 = argmin
u∈Uad,

‖u−uk ‖≤ δk

J ( sk(u) ), (7)

with δk being the trust-region radius updated according to the TR rules. We refer the reader

to e.g. [4, 13] for more details.

In (6), y′ and s′k denote the derivatives of the model response w.r.t. the parameter vector

u and at the point uk, i.e., generally defined as

y′(uk) :=
d y

d u

∣∣∣∣
u=uk

. (8)

The surrogate in this paper uses both fine model sensitivity information as well as trust-

region convergence safeguards to increase the robustness of the optimization procedure and

the accuracy of the solution.
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4. Example: A Marine Ecosystem Model

The model developed by (author?) [20] is a coupled system of four tracers with dissolved

inorganic nitrogen (N), phytoplankton (P ), zooplankton (Z), and detritus (D), thus also

called NPZD model, in the following summarized in the tracer or state vector y = (yi)i=1,...,nt

with nt = 4.

The NPZD model simulates the tracer concentrations in one water column at a given

horizontal position. This is motivated by the fact that there have been special time series

studies at fixed locations [27]. Clearly, the computational effort in a one-dimensional simula-

tion is significantly smaller than in the three-dimensional case. However, since biochemistry

mainly happens locally in space and since the complexity of the biogeochemical processes

included in this specific model is high, this model serves as a good test example for the

applicability of SBO approaches.

The model basically fits into our general framework (2). In the specific NPZD model

considered here, no advection term “div(vyi)” as in (2) is used, since a reduction to vertical

advection would make no sense. Starting from a general continuous formulation, the model

is governed by the equations

∂yi
∂t

= ∂z (κ ∂zyi) + qi(y,u), i = 1, . . . , 4, (9)

where z denotes the vertical coordinate and where the coupling terms qi(y,u) are explicitly

given as

q1(y, u) = Φz
m y3 + γm y4 − J(y1, y2, t, z) y2,

q2(y, u) = J(y1, y2, t, z)y2 −G(y2, ε, g) y3 − Φp
m y2,

q3(y, u) = β G(y2, ε, g) y3 − Φz
m y3 − Φ∗z (y3)2,

q4(y, u) = (1− β)G(y2, ε, g) y3 + Φp
m y2 + Φ∗z (y3)2

− γm y4 − ws ∂zy4.

(10)

The system involves an explicit sinking velocity ws for the tracer detritus, and a non-

differentiability, namely in the growth rate of phytoplankton, which is modeled after the
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minimum principle of von Liebig [16] as

J(y1, y2, t, z) = min {µ̄(y2, t, z), Vp · u(y1, t, z)} , (11)

where the analytical solution for the light-limited growth rate, denoted as µ̄(y2, t, z), is given

according to (author?) [6], integrated down to the given depth z [20, 25]. Here, additional

parameters α, kw and κ are involved (cf. Table 1).

The factor for nutrient limited growth of phytoplankton u and the maximal phytoplankton

growth rate Vp are given as

u(y1, t, z) =
y1

kN + y1

, Vp = µm · (Cref )cΘ(t,z), (12)

where the parameters kN , Cref and c are briefly described in Table 1 and where Vp further

depends on the water temperature Θ, which has to be provided by an ocean circulation model.

Due to the minimum in the growth rate of phytoplankton in (11), the model becomes non-

differentiable. Another nonlinear term in the equations is the zooplankton grazing function

G given as

G(y2, ε, g) =
g ε (y2)2

g + ε (y2)2
, (13)

which describes the transfer from phytoplankton to zooplankton and detritus with the param-

eters ε and g again briefly described in Table 1. There are totally twelve model parameters

subject to the optimization, which are all summarized in Table 1. For the purpose of this pa-

per to demonstrate the applicability of the proposed SBO approach, we don’t want to provide

more details on the model and the involved parameters. We refer the reader to [20, 25, 27]

for a more thorough description.

4.1. Carbon Primary Production

In addition to the tarcers N,P, Z and D, the so-called carbon fixation or carbon primary

production measured as carbon uptake (denotes as CUP in the following) is additionally

taken into account in the optimization process for this model [25, 27] (see also below, Section
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Table 1: Model parameters (cf. Section 4). Those included in the parameter vector u =
(u)i=1,...,12 are subject to the optimization.

ui symbol value/range unit (d=86400 s) parameter meaning

Cref 1.066 1 growth coefficient

c 1 ◦C−1 growth coefficient

R 6.625 1 molar carbon to nitrogen ratio (redfield ratio)

kw 25 m−1 PAR extinction length

u1 β [0, 1] 1 assimilation efficiency of zooplankton

u2 µm R+
0 d−1 phytoplankton growth rate parameter

u3 α R+
0 m2W−1d−1 slope of photosynthesis versus light intensity

u4 Φzm R+
0 d−1 zooplankton loss rate

u5 κ R+
0 m2(mmol N)−1 light attenuation by phytoplankton

u6 ε R+
0 m6(mmol N)−2d−1 grazing encounter rate

u7 g R+
0 d−1 maximum grazing rate

u8 Φpm R+
0 d−1 phytoplankton linear mortality

u9 Φ∗z R+
0 m3(mmol N)−1d−1 zooplankton quadratic mortality

u10 γm R+
0 d−1 detritus remineralization rate

u11 kN R+
0 mmol Nm−3 half saturation for NO3 uptake

u12 ws R+
0 m d−1 detritus sinking velocity

4.4). For a given depth z and time t, it can be briefly formulated as

J(y1, y2, t, z) · y2(t, z) ·R

where R denotes the Redfiled ratio [27]. It depends non-linearly on the states y1 and y2,

i.e., the tracers dissolved inorganic nitrogen (N) and phytoplankton (P ). It states that the

relation between carbon (C), nitrogen (N) and phosphorus (P ) in marine phytoplankton is

given as C : N : P = 106 : 16 : 1. Thus N can be used as a model variable from which the

potential uptake of CO2 can be estimated (assuming that there is no limit on phosphorus P

and carbon dioxide CO2 in the water). The carbon primary production obeys a daily cycle

(cf. Figure 2), since the growth of phytoplankton, J(y1, y2, t, z), is light limited due to the

term µ̄(y2, t, z) (see (11) and [27] for details). The state CUP is calculated internally in the

model simuation and provided as an additional part of the model response y.
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4.2. Numerical Solution

In an off-line coupled marine ecosystem model (as for example the NPZD model con-

sidered here), there are two ways to make use of the precomputed ocean circulation data.

One approach, which the NPZD model is based on, is that the ocean model data is stored

directly and afterwards used for assembling the system matrices for the differential operators

for the diffusion and the sinking (usually, also for the advection, which is not considered in

this model) in the biogeochemical model itself. Another way is to employ the ocean model

that precomputes the data to generate the necessary, so-called transport matrices, see [11].

These matrices usually represent a mean ocean circulation field for one month.

The time discretization is performed by a sequential integration at the discrete time steps

0 = t0 < . . . < tj < . . . < tnτ−1 = T using a time step τ := tj − tj−1 and with totally nτ

steps. This integration is partially implicit. An explicit euler time-stepping scheme for the

nonlinear coupling terms qi and the sinking term for the tracer detritus is used while using an

implicit euler time-stepping scheme for the diffusion term. Furthermore, an operator splitting

method is used [18]. For details we refer the reader to [20, 22].

For the numerical simulation, one may consider a spin-up into a steady quasi-periodic or

periodic seasonal cycle, thus applying some kind of fixed point iteration. Another way, which

is employed in the NPZD model, is to perform a complete transient run with time-dependent

forcing data (as for example the temperature) to obtain a solution of (9). Assuming nz and

nτ discrete spatial and temporal grid points, with a time step τ = T/nτ and using a boldfaced

notation for discrete vectors in the following, we denote by

yi = (yijk)j=1,...,nτ
k=1,...,nz

(14)

the approximate solution of (9), i.e., yijk ≈ yi(tj, zk), denoting the concentration of tracer i

at the discrete time step j and vertical depth layer k. The four state vectors for the tracers

dissolved inorganic nitrogen (N), phytoplankton (P ), zooplankton (Z) and detritus (D) as

well as the state for the additional carbon primary production (CUP ) will be summarized

in the discrete vector y = (yi)i=1,...,5 in the following.
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4.3. Original Fine Model

In the original discrete model, the time step τ is chosen as one hour. By chosing this

time step all relevant processes are captured and further decrease of the time step does not

improve the accuracy of the model. The number of vertical depth layers nz and discrete time

steps nτ is 66 and 43800, respectively.

From now on, we will refer to this model and corresponding discrete solution as the

original high-fidelity or fine model and will denote its state variable, time step and number

of overall discrete time steps, to be distinguishable from the coarse model, by yf , τf and nτ,f ,

respectively.

4.4. Original Fine Model Optimization Problem

The optimization problem consists of finding optimal parameters yielding a minimal misfit

of the discrete model response yf to measurement data yd as defined by the least-squares

type cost function

argmin
u∈Uad

J1(yf (u)) (15)

where

J1(yf ) := ‖C1 yf − yd ‖2
σ,

Uad := {u ∈ Rnp : bl ≤ u ≤ bu},bl,bu ∈ Rnp ,bl < bu.

(16)

More specifically, the measurement data yd is considered for the years 1991-1995 and is taken

from the Bermuda Atlantic Time-Series Study, called BATS, located at 31◦N , 64◦W [27].

The inequalities in (16) in the definition of the set Uad of admissible parameters are meant

component-wise. The parameters u are the unknown scalar coefficients in the nonlinear

biogeochemical coupling terms qi in (9). The specific parameter bounds bu,bl that we employ

in the optimization runs in this paper are provided in Table 3.

Furthermore, we have np = 12 model parameters subject to optimization (cf. Table 1) and

the norm is weighted by assumed standard deviations of the measurements, σ = (σj)j=1...,5

(see [25, 27] for details).
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The functional J1 may additionally include a regularization term for the parameters,

which turned out to be not necessary to yield sufficient performance in the optimization runs

in this paper. Additional constraints on the state variable y might be necessary, e.g., to

ensure non-negativity of the tracer concentrations. In our example model, this is ensured by

using appropriate parameter bounds bl and bu. This was already observed and used in [25].

C1 is an operator describing transformations of the model response yf , to make it com-

mensurable with the given measurement data yd. More specifically, this operator includes

the following transformation:

• A linear transformation to chlorophyll a (denoted as CHL) as a function of phyto-

plankton P , using a constant conversion factor.

• A linear transformation to particulate organic nitrogen (denoted as PON), calculated

as the sum of phytoplankton P , zooplankton Z and detritus D.

• A spatial average of model response if the considered measurement data point lies in

between two adjacent spatial grid cells

• For zooplankton, a vertically averaged concentration in the water column down to the

given depth of the measurement point (which is approximately 200 meters) is calculated.

• The observed zooplankton (with state (yd)3) is furthermore transformed to (yd)3 =

1.23 · (yd)3 + 0.097 in order to attempt an estimate of the total zooplankton from the

measured mesozooplankton biomasss (for the sake of simplicity, this is omiited in our

cost function formulation (16))

• A constant temporal alignment of the model response is employed to make it commen-

surable with the measurement data point in time

• A 24-hourly temporal mean of the modeled carbon primary production CUP is calcu-

lated to make it commensurable with observations from 24-hourly incubation measure-

ments.

Except for zooplankton, only the data in the so-called euphotic zone – equivalent to the upper

20 discrete vertical depth layers in the model – is considered. For the sake of simplicity, we
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omit a more detailed description and mathematical formulation of these transformations and

refer the reader to.

Consequently, the measurement data in (16) is given as yd = (yd)i=1,...,5 with (yd)i denot-

ing the measurement state corresponding to the transformed model response C1 yf , i.e., cor-

responding to the concentration of dissolved inorganic nitrogen (N), of chlorophyll a (CHL),

of the total zooplankton biomass (ZOO), of particulate organic nitrogen (PON) and of

24-hourly incubation measurements of the carbon primary production (CUP ), respectively.

For this model whereas using the cost function formulation above, extensive optimization

runs with different methods including local, gradient-based and also global, genetic algorithms

have already been performed, see for example [25, 27]. From now on, we will refer to this

optimization problem and corresponding cost function formulation as the original fine model

one.

5. The Low-Fidelity Model

The way we follow here to obtain a physics-based low-fidelity (or coarse) model for the

time-dependent marine ecosystem model introduced in Section 4 is to employ a coarser

temporal discretization (see also Section 3.2). This has already been investigated in [22] and

is just briefly recalled below.

The coarse model is based upon the same model equations (9) and (10), whereas for its

numerical solution (cf. Section 4.2), a larger time step, in the following denoted as τc, is

employed with

τc = β · τf (17)

where we call β ∈ N \ {0, 1} the coarsening factor and where τf = 1 h denotes the time step

employed in the original fine model solution. The spatial discretization of the coarse model

is the same as for the original fine one (cf. Section 4.3). The sequential integration for the

coarse model (cf. Section 4.2) is performed over nτ,c = nτ,f/β discrete time steps, with nτ,f

the total number of discrete time steps employed in the original fine model solution. In the

following, the state variable of the coarse model will be denoted by yc, respectively.
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Clearly, the choice of the temporal discretization, or equivalently, the coarsening factor

β, determines the quality of the coarse model and of a surrogate if based upon the latter one.

Moreover, both the computational cost, the performance and quality of the solution obtained

by a SBO process might be affected. Overall, we seek for a reasonable trade-off between the

accuracy and speed of the coarse model. This has already been investigated in [22], where a

value of β = 40 turned out too be a reasonable choice.

Furthermore, it could be demonstrated that, for the given sequential integration approach

used to solve for a discrete solution of the model equations (cf. Section 4.2), a numerically

stable solution [8] can be obtained if additionally restricting the parameter u12, i.e., the

sinking velocity (cf. (10)), by using an appropriate upper bound. More specifically, from

visual inspection of the model responses and from various optimization experiments, it turned

out that (bu)12 = 5 (cf. Table 3) for the given coarsening factor β = 40 ensures that the

resulting coarse model response does not contain any numerical instabilities, at least none,

which seemed to significantly influence the optimization performance.

It is worth noticing that, when applying a slight modification of the sequential integra-

tion approach by employing an implicit Euler time-stepping scheme for the sinking term, a

numerically stable solution can be ensured without restrictions to the sinking velocity, which

was verified by numerical experiments. Clearly, a more thorough inspection of the latter as

well as a more mathematical investigation of the conditions for the numerical stability will

be useful to show the full capabilities of our approach.

Given the chosen temporal discretization with β = 40, we obtain for the discrete coarse

model response nτ,c = nτ,f/β = 43800/40 = 1095 discrete time steps whereas the spatial

vertical discretization with nz = 66 is kept fixed.

6. The Surrogate

In this paper, the surrogate is obtained by a multiplicative response correction approach.

It turned out that this multiplicative way of correcting the coarse model response is quite

suitable for the considered problem because the overall “shape” of the coarse model response

resembles that of the fine one and the relation between the coarse and the fine model re-

sponses is rather well preserved while moving from one parameter vector to another. This
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Figure 2: Fine and coarse model responses, both “raw” (yf ,yc) and smoothed (zf , zc),
employing a discrete time step of τf = 1 h for the fine and τc = 40 h for the coarse model,
respectively (cf. Section 5). Shown is the response for one illustrative tracer (here, N), at
some depth layer, part of the whole time interval and some parameter vector u.

technique has already been investigated in [22]. We briefly recall the key ideas and describe

modifications employed for the considered optimization problem below.

6.1. Smoothing

Due to the larger time step employed in the numerical solution of the coarse model

(cf. Section 5), the coarse model response is rather inaccurate. In [22], it has been demon-

strated that “smoothing” of the coarse model response is reasonable such that the resulting

smoothed response contains and tracks the main characteristics of the fine one (cf. Figure 2).

Since multiplicative correction to create the surrogate is obtained by both, the coarse and

the fine model response, we accordingly apply this smoothing to the fine one.

The smoothed fine and coarse model response (using an operator S) for the tracers N,P, Z

and D is briefly written as

(zf )i := S(ȳf )i, (zc)i := S(yc)i, i = 1, . . . , 4 (18)

where we consider the down-sampled fine model response ȳf given by

ȳf := Gyf , (ȳf )i,j,k := (yf )i, βj, i,

i = 1, . . . 5, j = 1, . . . , nτ,c, i = 1, . . . , nz

(19)

to be commensurable with the corresponding coarse model response.
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For the smoothing we use a walking average with span ±n, where a value of n = 3 and

“double” smoothing turned out to be suitable for the considered coarse model (see [22] for

details). Figure 2 shows the fine and coarse model responses, both “raw” and smoothed, for

the chosen temporal discretization with a coarsening factor of β = 40, for one illustrative

tracer (here, N), some depth layer, part of the whole time interval and for some parameter

vector u.

Note that Figure 2 shows one selected tracer for some illustrative section in the whole

time interval and at one selected depth layer. The total number of depth layers is 66 and the

entire discrete time scale is 43800 so that it is impossible to present a full model response here.

We emphasize that shown responses are representative for the overall qualitative behavior

of the other tracers, time sections and depth layers which also holds for all subsequent plots

shown in this paper.

6.1.1. Treatment of the Carbon Primary Production

The original (i.e., not down-sampled as in (19)) fine model response for the carbon primary

production obeys a daily cycle (cf. Section 4.1) as shown in Figure 3a.

When employing a coarser temporal discretization using a coarsening factor of β = 40,

or when down-sampling the fine model response accordingly (cf. Figure 3a), it is clearly not

possible to resemble this high-frequent fine model response with a period of 24 hours. Note,

that this would instead require a time step smaller than the period of the main features in

the reference response, i.e., τc < 24 (or, equivalently, β < 24).

However, as was described in Section 4.4, a 24-hourly temporal mean is applied to the

original fine model response for the state CUP to be commensurable with the measurement

data. Hence, for the considered optimization problem, an approximation of this temporal

mean would be sufficient.

Given the original, hourly fine model response for CUP , approximately half of the points

within one interval of 24 hours are zero (cf. Figure 3a). One way to approximately obtain

the temporal average would thus be to calculate a polygonal line over single positive points

within each 24 hourly interval and by subsequent division by the factor two.

For the coarse model response, we accordingly apply an interpolation over all positive
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(a) Original fine, down-sampled fine and coarse model response for the state CUP .
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(b) Original fine, and those responses after interpolation and smoothing was applied.

Figure 3: Fine (original and down-sampled) and coarse model response, yf , ȳf and yc (Figure
3a) for the carbon primary production (CUP ), at some illustrative depth layer (here, the
uppermost) and some parameter vector u. Figure 3b shows again the original fine model
response yf as well as the down-sampled fine and coarse model response after interpolation
and smoothing has been applied, yielding zf and zc.

points, which provides an approximation of this envelope. More specifically, as a simple

approach, we employ a piece-wise constant interpolation. Note that the subsequent division

by the factor two (to obtain an approximation of the 24-hourly mean of the original fine

model response) will be correspondingly included in the cost function formulation which we

use for the coarse model optimization (cf. Section 7.2).

As described in Section 4.1, the carbon primary production, CUP , depends non-linearly

on the tracers dissolved inorganic nitrogen (N) and phytoplankton (P ). It is calculated

internally in the model simulation and provided as an additional part of the model response.

Since the smoothing applied to the tracers N,P, Z and D as given in the last Section is

employed outside of the model simulation, we accordingly also have to smoothen the response

for CUP . Another approach would be to calculating CUP from the smoothed responses of N
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and P instead. Clearly, an investigation of the difference when employing the two approaches

would be useful.

The smoothing is applied in the same way as for the tracers N , P , Z and D as described

in the last Section (cf. Figure 3b).

Again, since the multiplicative correction which we use to create the surrogate is obtained

by both the coarse and the (down-sampled) fine model response, the same operations, i.e.,

interpolation and smoothing are applied to the latter one for the state CUP , yielding the

commensurable fine model response (cf. Figure 3b).

Altogether, we briefly write for the model state for CUP

(zf )5 := SI(ȳf )5, (zc)5 := SI(yc)5, (20)

with S denoting the sampling operator, I the one describing the applied interpolation and

where ȳf , again, denotes the down-sampled fine model response as defined by (19).

6.2. Surrogate Construction

The surrogate in iteration k, denoted as sk, is obtained by a multiplicative correction of

the coarse model response at the iterate uk. Before, the response for CUP is interpolated as

motivated above and smoothing to all five states is applied as described in Section 6.1.

The correction factor, denoted as ak, is given by the point-wise division of the (down-

sampled) and smoothed fine by the smoothed coarse model response (cf. 18) at the iterate

uk, i.e.,

ak :=
zf (uk)

zc(uk)
, k = 1, 2, . . . (21)

where the smoothed responses zf and zc are given by (18) and (20) and the correction factors

are summarized in the vector ak.

6.2.1. Zero-order Consistent Surrogate

A zero-order consistent surrogate s̄k (cf. (6)) can be simply obtained as

s̄k(u) := ak zc(u) (22)
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where the multiplication in is again meant point-wise.

The surrogate defined in (22) does not satisfy the first-order consistency condition (i.e.,

agreement between 1st-order derivatives at the current iteration point) exactly. However,

since the physics-based surrogate inherits substantial knowledge about the marine model

under consideration its derivatives are expected to be at least similar to those of the fine

model. The surrogate in (22) has been used in [22] and demonstrated to already yield a

remarkably accurate solution at the cost of a few fine model evaluations only.

For the considered optimization problem in this paper, it turned out from numerical

experiments that first order consistency is reasonable to further improve the accuracy of the

surrogate and to locate the fine model optimum more precisely.

6.2.2. Zero- and First-Order Consistent Surrogate

To ensure exact first-order consistency with the fine model response, we furthermore

include an additive correction term Ek in the formulation (22) as follows

sk(u) := s̄k(u) + Ek (u− uk),

Ek := z′f (uk)− s̄′k(uk),

(23)

where z′f and s̄′ denote the derivatives of the smoothed coarse and (down-sampled) fine model

response, defined by (8), and where the term s̄k is defined by (22).

Obviously, the surrogate in (23) satisfies the zero- as well as first-order consistency con-

dition with the fine model response in the point uk, more specifically with the down-sampled

and smoothed response (cf. Section 6.1) as

sk(uk) = zf (uk), s′k(uk) = z′f (uk). (24)

6.2.3. Improvements of the Basic Surrogate Formulation

Occasionally, there might occur a situation where the coarse model response is close to

zero (and maybe even negative due to approximation errors) and a few magnitudes smaller

than the fine one, which leads to large (possibly negative) correction factors ak. While such

a correction ensures zero-order consistency at the point where it was established (i.e., uk),
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it may lead to (locally) poor approximation in the vicinity of this point. Resulting “spikes”

appearing in the response due to large values of the correction term can be viewed, in a way,

as a numerical noise that slows down the algorithm convergence and makes the optimum

more difficult to locate. This has already been investigated in [21], where an upper bound

for ak as well as a non-negative bound for the coarse model response (the negative response

is non-physical and is a result of large time steps employed in the coarse model solution) has

been suggested to address these issues.

More specifically, we apply the following modifications at each iteration k of an SBO run

(cf. (5)):

(i) yc =

 0; if yc ≤ 0

yc; else
, (ii) ak =

 aub; if ak ≥ aub

ak; else
,

(iii) ak = 1 if (zc ≤ δ and zf ≤ δ),

(25)

where the operations are again meant point-wise, where (i) is applied before smoothing and

where δ should be of the order of the discretization error below which the responses can be

treated as zero. For the considered problem, aub = 5 turned out to be a reasonable choice

and we furthermore consider δ = 10−4.

Clearly, as a consequence of restricting the correction factors ak as in (25), the zero-order

consistency condition in (24) can only be satisfied approximately, i.e.,

sk(uk) = zf (uk) + ε (26)

with ε thus denoting the difference between the corrected coarse model and the fine model

response in the point uk. Although consistency in the first-order derivative of the surrogate

model (23) and the fine model response as in (24) is nevertheless satisfied, agreement in the

first-order derivative of the corresponding cost function values is not, as is explained below.

Assuming a general Euclidean least-squares norm J , measuring the misfit between the
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model response y and some specification yd, the gradient J ′ is given by

J ′(y) =
dJ(y)

du

∣∣∣∣
u=uk

=
(
y(uk)− yd

)T
y′(uk),

J(y) :=
1

2
‖y(u)− yd ‖2

2.

(27)

The surrogate’s cost function gradient is thus given by

J ′(sk(uk)) =
(
sk(uk)− yd

)T
s′k(uk)

=
(
zf (uk) + ε− yd

)T
z′f (uk).

(28)

Clearly, exact agreement in the cost function gradients, i.e., J ′(sk(uk)) = J ′(zf (uk)), can only

be satisfied exactly, if, besides the first-order consistency, also exact zero-order consistency

as is in (24) is ensured, i.e., if ε = 0.

It is not clear, whether an exact agreement in the first-order derivative is actually neces-

sary in practice. Nevertheless, we use another additive term, denoted as Dk, in the definition

of the surrogate (23), that allows us to eliminate any possible influence of the problem de-

scribed above. The surrogate, which we finally employ in the optimization, is formulated

as

sk(u) := s̄k(u) +Dk + Ek (u− uk),

Dk := zf (uk)− s̄k(uk) = ε,

(29)

where the terms s̄k and Ek are defined in (22) and (23) and where the underlying correction

factors ak are restricted as suggested in (25).

The surrogate in (29) now satisfies exact zero- and first-order consistency, both with the

fine model response zf as well as with its cost function value J(zf ) in the current point uk.

7. Optimization Setup

The operation and performance of the proposed surrogate-based algorithm is illustrated

through the results of exemplary optimization runs with nz = 33, nτ,f = 8760 · 5 and β = 40,

which means that we obtain nτ,c = nτ,f/β = 1095 discrete time steps for the coarse model.

25



The specific choice of β has been motivated in Section 5 (see also [22]). In [24] it has already

been demonstrated that, at least from point of view of the optimization results, the vertical

model grid can be reduced to nz = 33 depth layers, instead of the originally employed 66.

Optimization of both models yield practically identical results w.r.t. parameter match and

quality of the solution.

We compare the quality of the solution and the computational cost of the surrogate-based

optimization to what can be obtained by a direct fine and coarse model optimization. The

quality of the solutions is assessed by visual inspection of the model response and inspec-

tion of the corresponding cost function and parameter values. The computational costs of

the distinct optimization processes is measured in so-called equivalent fine model evalua-

tions (cf. Section 7.5). For all optimization runs we used the MATLAB2 function fmincon,

exploiting the active-set algorithm.

As has been verified in [25], the solution obtained by using both local, gradient-based and

global, genetic algorithms, provided no suitable fit of the target. Obtaining a better result

with other optimization methods seems not very likely. Thus we tentatively accept the found

minima in [25] and argue that the NPZD model in the current formulation will have to be

changed or extended to yield a better quality of the fit.

However, it should not be the focus of this paper to further address this issue. Our aim

is to demonstrate the applicability of the proposed approach to the parameter optimization

of the considered model. More specifically, the focus is to demonstrate that, by exemplary

optimization runs, SBO is able to yield a solution close to the one obtained by a direct fine

model optimization at a low optimization cost.

It is worth noticing that, given attainable measurement data on the other hand, firstly, fine

model optimization is able to reconstruct the target and corresponding optimal parameters

(i.e., the discrete model is well suited for parameter identification, see [25]) and, secondly, the

performance of SBO would be similar, i.e., a solution close to the target can be obtained at

remarkably low computational costs. In [22], this has been verified using model-generated,

attainable target data, where a surrogate as formulated in (22) has been employed in an

2MATLAB is a registered trademark of The MathWorks, Inc., http://www.mathworks.com
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illustrative SBO run.

For the fine and coarse model optimization, we furthermore employ a random search

algorithm prior to the MATLAB’s gradient-based fmincon. This turned out to be quite

suitable for the considered problem to locate a rough solution initially at low computational

costs (since no sensitivity data is used). More specifically, we use 500 model evaluations

within this algorithm, which turned out to yield a reasonable trade-off between the accuracy

of the solution and the optimization cost.

We furthermore utilize the optimal solution obtained by the coarse model optimization

as initial guess for the SBO run. In numerical tests it turned out that the accuracy of the

coarse model response is sufficient to obtain an approximate solution in a first step. Most

importantly, this solution is obtained at a very low optimization cost since we do not use any

information from the fine model within this optimization process.

7.1. Reference Fine Model

To be precise, we have to distinguish between two fine model responses and corresponding

optimization problems.

Firstly, we consider the optimization of the original fine model for comparison which has

been utilized in [24] for example and which we briefly described in Section 4.4. Recalling,

original denotes the fine model with a time step of τf = 1 h where no further operations such

as down-sampling and smoothing have been applied.

However, the coarse model response, due to the employed coarser temporal discretization

and applied smoothing is supposed to provide an approximation of the down-sampled and

smoothed fine model response zf . Moreover, by definition, the surrogate, as proposed in (29),

is zero- and first-order consistent with the transformed fine model response zf (cf. (24)).

Consequently, in order to obtain a fair comparison, the down-sampled and smoothed fine

model response and corresponding optimization has to be treated as the actual reference.

A formulation of the corresponding reference cost function is provided below in Section

7.2. A well performing surrogate-based algorithm, exploiting the proposed surrogate, is

thus expected converges to at least a local minimum of this reference optimization problem

(cf. Section 3.3).
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The difference in original and reference fine model solution is mainly due to the down-

sampling and smoothing which we apply to the fine model but, here, as a first straightforward

approach, not to the target data. It is worth noticing that given interpolated target data on

the whole original fine model grid, a formulation of an equivalent optimization problem for

the reference fine model (i.e., one that ensures a solution close to the original one, or, in case of

nonunique solutions, one that also provides a solution of the original fine model optimization

problem (15)) is rather simple since, in this case, the down-sampling and smoothing can be

applied quite easily (cf. [22]). Clearly, further investigations of this issue will be neccessary

to demonstrate the full capabilities of the proposed SBO approach. See also the discussion

in Section 8.1.

However, even when handling the scattered measurement data as considered in the orig-

inal optimization problem (i.e., no prior interpolation applied), solutions of the original and

reference fine model optimization are rather close, most importantly in terms of matching

the target data (cf. Section 8.1).

7.2. Cost Function – Reference Fine, Corse and Surrogate Model Optimization

The cost function used in conjunction with the original fine model response yf has already

been formulated in Section 4.4.

In this section we now propose a formulation for the reference fine (cf. Section 7.1), coarse

model and for the surrogate-based optimization, which briefly reads

J2 ( z ) := ‖C2 z− yd ‖2
σ,

z =


reference fine model response, z = zf

smoothed coarse model response, z = zc

surrogate’s response at iteration k, z = sk

(30)

where, again, we choose an Euclidean norm weighted by assumed standard deivations of the

measurements σ = (σj)j=1...,5 and where the operator C2, which has to be used to make the

model response commensurable with the measurements, is similar to the one, C1, used in the

original cost function (cf. Section 4.4).

Differently to the operator C1 in (16), the constant temporal alignment is adjusted to the
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coarser temporal grid. As was motivated in Section 6.1.1, for the state CUP use a simple

division of the smoothed response (z)5 by the factor two here, instead of the 24-hourly mean

which is applied to original hourly fine model response for this state. Again, for the sake of

simplicity, we omit any detailed formulation of the operator C2.

7.3. Trust Region Approach

For the SBO, we use a trust-region (TR) safeguard (cf. Section 3.3) to further increase

the robustness of the optimization process, i.e., to guarantee convergence to at least a local

minimum of the (reference) optimization problem. The TR radius δk updated as follows

(cf. [4, 13]):

δ0 = 2, δk =

δk/mdecr, if ρk < rdecr

δk ·mincr, if ρk > rincr

,

rincr = 0.75, rdecr = 0.01, mincr = 3, mdecr = 20,

(31)

with ρk denoting the gain ratio in iteration k defined as

ρk :=
fnew − fold

snew − sold

,

fold := J2( zf (uk) ), fnew := J2( zf (uk+1) ),

sold := J2( sk(uk) ), snew := J2( sk(uk+1) ).

(32)

7.4. Stopping Criterion

As a termination condition for the SBO, we use the absolute step size (measured in the

Euclidean norm) between two successive iterates uk and uk−1 as well as a lower bound for

the TR radius δk, in the following denoted by δmin
k . In practive, we choose a smaller bound

for TR radius than for gamma because of the large value of mdecr. The solution u∗s obtained

by SBO is thus defined as

u∗s :=
{

uk
∣∣ (‖uk − uk−1 ‖2 ≤ γ

)
∨
(
δk ≤ δmin

k

) }
. (33)
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An approximate solution might be sufficient as the surrogate model is not perfectly accurate

anyway. Thus, in practice, it might not be necessary to run the SBO until convergence, which

keeps the optimization costs low.

To trade the quality of the solution obtained by SBO against the corresponding compu-

tational costs we consider three distinct values for the threshold, more specifically

{γ, δmin
k } = {10−2, 10−3}, {10−4, 10−5}, {2.5 · 10−5, 2.5 · 10−6}.

7.5. Optimization Cost

We measure the optimization costs of the different runs in terms of the total number of

equivalent fine model evaluations. This means, that for the considered coarse model, β (with

β = 40 in this paper) evaluations are equivalent to (or, as expensive as) one fine model evalu-

ation, which is a result of the chosen coarser discretization employing the factor β (cf. Section

5). On the other hand, the cost of one iteration of the surrogate-based optimization (O.4) (in

terms of equivalent fine model evaluations) equals to the number of coarse model evaluations

necessary to optimize the surrogate model divided by this factor β, and increased by the cost

for the response correction.

For the proposed surrogate in (29), the cost for the correction is approximately given by

13 equivalent fine model evaluations. This mainly results from the cost for the fine model

evaluation, i.e., one, plus the cost to evaluate its jacobian, which is 12 for the considered

problem (since 12 model parameters are considered and finite differences are used to obtain

the derivatives). The further cost of the coarse model evaluation plus its jacobian, corre-

spondingly 13 divided by the factor β = 40, is negligible here.

7.6. Optimization Problems and Comparison of Solutions

In the following, we account for the solutions of both an illustrative reference (cf. Section

7.1) and original fine model optimization (cf. Section 4.4), denoted as u∗f2 and u∗f1, respec-

tively. We further consider the solution u∗c of a coarse model optimization which is used as

initial guess for an illustrative SBO with its solution denoted by u∗s in the following.

For the sake of brevity, results of the priorily performed random search as mentioned

above are omitted in the following. The underlying cost functions have been formulated
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Table 2: Optimization problems considered in this paper with u denoting the optimization
variable. Uad := {u ∈ R12 : bl ≤ u ≤ bu}, denotes the space of admissible parameters with
component-wise upper and lower bounds bu and bl, respectively, as more specifically given
in Table 3 (cf. Section 4.4). Cost functions J1 and J2 are formulated in (16) and (30). Prior
to (O.1) - (O.3) we further perform a random search with an initial guess u0. For the sake
of brevity, corresponding results are omitted here.

ui Description Optimization Problem

u0 Randomly chosen initial parameter vector

u∗f1 Result of an original fine model optimization u∗f1 := argmin
u∈Uad

J1( yf (u) ) (O.1)

u∗f2 Result of a reference fine model optimization u∗f2 := argmin
u∈Uad

J2( zf (u) ) (O.2)

u∗c Result of a coarse model optimization u∗c := argmin
u∈Uad

J2( zc(u) ) (O.3)

u∗s Result of a SBO run using u∗c as initial guess uk+1 = argmin
u∈Uad,‖u−uk ‖2≤ δk

J2( sk(u) ) (O.4)

k = 0, 1, . . . , u0 := u∗c

in Sections 4.4 and 7.2. The four optimization problems (omitting the random search) are

denoted as (O.1) - (O.4) and are again summarized in Table 2.

To verify the performance of the propsed method, we consider the reference fine model

response zf (cf. Section 7.1) and corresponding cost function value J2(zf ) (cf. (30)) at the

respective optima u∗f2,u
∗
c and u∗s.

In order to also account for the solution u∗f1 obatined by the original fine model opti-

mization (cf. Section 4.4), we accordingly present the original fine model response yf (u) and

corresponding cost function value J1(yf ).

8. Numerical Results and Outlook

In Figure 4a, the solutions of the exemplary optimization runs as described in Section 7.6

(cf. optimization problems (O.2) - (O.4) in Table 2) are presented, comparing the reference

fine model response zf at the respective optima. More specifically, the Figure shows the

model response which is transformed (using the operator C2) to be commensurable with the

given measurement data yd, i.e., C2 zf (cf. Section 7.2).

The solution u3 obtained by SBO after 3 iterations (corresponding to a stopping criterion

of {γ, δmin
k } = {10−2, 10−3}), as well as – by means of the tracer Chlorophyll a – also the
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(a) Response is transformed using the operator C2 to make it commensurable with the measurement data yd.
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(b) Untransformed response to assess the overall quality.

Figure 4: Reference fine model response zf at the solutions u∗f2,u
∗
c ,u3 of an exemplary

(reference) fine, coarse model and of a surrogate-based optimization run after three iterations
(cf. Table 2). Responses are shown for three illustrative tracers, for some depth layer and
in 4b, for the sake of better visibility, for a section of the whole time interval. Lower right
plots: subsequent iterates u4 and u10 obtained in the SBO, here, by means of chlorophyll
and phytoplankton and for an even smaller time section, since changes are very small.

subsequent solutions u4 and u10 after 4 and 10 iterations (corresponding to {10−4, 10−5} and

{2.5 · 10−5, 2.5 · 10−6}, respectively). In order to verify that also the overall quality of the

solution obtained by SBO is sufficiently close to the one obtained by fine model optimization,

we present the corresponding “untransformed” response zf in Figure 4b.

It can be observed that SBO converges to the optimal solution u∗f,2 obtained by the

reference fine model optimization as shown in Figures 4a, 4b, 5 and 6 (see also Table 3).

Whereas coarse model optimization provides a rather inaccurate solution (i.e., far away from

the reference fine one), SBO is able to yield a remarkably accuracy already after 3 iterations
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Figure 5: Optimization history of the original and the reference cost function value J1

and J2, both versus number of iterations and the computational costs which is measured in
required equivalent number of fine model evaluations. Also shown are the corresponding cost
function values at optimal solutions u∗f,1 and u∗f,2, obtained by the original and reference fine
model optimization, the optimization history of the trust-region radius δk and of the squared
step size norm. Horizontal red solid/dashed lines denote the distinct termination conditions
considered in the SBO used to assess the solution’s quality at different iterates.

– both in terms of quality of the solution (cf. Figure 4a, 4b and 5) and parameter match

(cf. Figure 6 and Table 3). Only approximately 60 equivalent fine model evaluations were

required (cf. Figure 5). This corresponds to a dramatical reduction in the optimization cost

down to 15% of a direct fine model optimization.

Subsequently iterations within the SBO (or, equivalently, decreasing the threshold γ used

in the stopping criterion (33)), as shown in lower right plots in Figures 4a and 4b and in Figure

6 and Table 3, only slightly increases the accuracy of its solution, whereas approximately 150

additional equivalent fine model evaluations are required.

This is due to the fact that the algorithm is already very close to the fine model optimum.

The accuracy of the surrogate might be not sufficient to even locate the optimal parameters
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Table 3: Specific parameter values of the solutions obtained by coarse and fine (original and
reference) model optimization, of iterates 3,4 and 10 obtained in a SBO run (cf. Table 2) as
well as upper and lower parameter bounds bu and bl employed in the four optimization runs.

iterate uk,1 uk,2 . . . uk,12

Solution of SBO (O.4):

u3 1.000 1.195 0.052 0.035 0.024 4.000 4.000 0.003 0.089 0.010 1.000 5.000

u4 1.000 1.193 0.052 0.034 0.026 4.000 4.000 0.004 0.095 0.010 1.000 5.000

u10 1.000 1.176 0.048 0.035 0.018 4.000 4.000 0.004 0.094 0.010 1.000 5.000

Solution of a coarse model optimization (O.3)

u∗c 1.000 0.522 0.051 0.040 0.010 4.000 4.000 0.007 0.059 0.010 0.747 5.000

Solution of a (reference) fine model optimization (O.2)

u∗f,2 1.000 1.145 0.049 0.035 0.020 4.000 4.000 0.003 0.095 0.010 1.000 5.000

Solution of a (original) fine model optimization (O.1)

u∗f,1 1.000 1.063 0.112 0.043 0.082 4.000 4.000 0.004 0.081 0.010 1.000 5.000

bl 0.300 0.200 0.001 0.000 0.010 0.025 0.040 0.000 0.010 0.010 0.100 2.000

bu 1.000 1.460 0.253 0.630 0.730 4.000 4.000 0.630 1.000 0.150 1.000 5.000

more precisely. On the other hand, the considered model is less sensitive w.r.t. some pa-

rameters which makes them more difficult to locate. This was already demonstrated in [25].

However, as was shown, the solution after 3 iterations is definitely sufficiently accurate in

terms of matching the corresponding fine model response.

Furthermore, the trade-offs between the solution accuracy and the extra computational

overhead related to sensitivity calculation have been investigated by additional numerical

experiments. It turned out that without using fine/coarse model sensitivity, the solution of

SBO is not sufficiently accurate for the considered problem, whereas, clearly, the cost savings

are higher. However, using sensitivity here seems reasonable and the obtained speedup in

the optimization is nevertheless remarkably high.

8.1. Quality of Reference and Original Fine Model Solution

In order to also assess the difference between the solutions obtained by the reference and

original fine model optimization, Figures 7a and 7b furthermore present the original fine

model response at the two fine model solutions, uf,1 and uf,2.
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Figure 6: Optimization history of the parameters uk obtained in the SBO as well as optimal
parameter u∗f,1 and u∗f,2 obtained by direct fine model optimization (original and reference).

Shown is, again, the transformed (using the operator C1) model response C2 yf in Figure

7a to assess the quality and difference of the responses with respect to the given measurement

data as well as the “untransformed” one, yf , in Figure 7b to investigate furthermore the

overall quality.

Figures 5 and 6 shows the optimal parameters u∗f,1 and corresponding cost function value

J1(yf (u
∗
f,1)), for comparison with the corresponding values for the reference solution, u∗f,2,

respectively.

It can be observed that both solutions are rather close in terms of the quality of the

responses w.r.t the given measurement data and parameter match. The difference in the

optimal cost function values is rather small (cf. center left plot in Figure 5). Clearly, in some

time sections in the model response and for some parameters and tracers, the difference is

more noticeable.

The key question to address this issue is how to formulate the reference cost function

(cf. (30)), in order to yield an equivalent optimization problem. In terms of a more mathe-
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(a) Response is transformed using the operator C1 to make it commensurable with the measurement data yd.
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(b) Untransformed response to assess the overall quality.

Figure 7: Original fine model response yf , for comparison, at the solutions u∗f,1, u∗f,2 of
an original and reference fine model optimization. Responses are shown for two illustrative
tracers, some depth layer and in 7b, for the sake of better visibility, for a section of the whole
time interval.

matical formulation, the question is how to chose and what conditions an operator A in

J2( zf ) := ‖C2 zf − Ayd ‖2
σ (34)

would have to satisfy. The solution is very straightforward, given interpolated target data

wd on the whole original fine model grid. If we assume, for the sake of simplicity, a simplified

original cost function formulation

J1( yf ) := ‖yf −wd ‖2
σ. (35)

(i.e., here, the model response directly corresponds to the target data), then, the equivalent

formulation for the reference cost function considering the down-sampled and smoothed fine

model response zf := SGyf would simply be given as

J2( zf ) := ‖SGyf − SGwd ‖2
σ, (36)

where S and G denote the operators for the sampling and smoothing, respectively. It is trivial

that the two formulation are equivalent. As additional evidence, numerical experiments
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verified that the two optimization problems (34) and (35) practically yield identical results

[22].

Firstly, it is not clear, whether interpolations of the measurement data is actually rea-

sonable. However, whether interpolations of the target are applied or not, investigations

regarding these issues clearly will be necessary to show the full capabilities of this SBO

approach.

9. Conclusions

Solving nonlinear optimization problems where computation of the objective function

involves time consuming computer simulations may be quite challenging. Since typically,

a large number of objective function evaluations are required, the computational costs is

prohibitively high. For such problems, where the optimization of complex marine ecosystem

models is a representative example, the development of methods that would reduce the

number of expensive simulations necessary to yield a satisfactory solution becomes critical.

Computationally efficient optimization of expensive simulation models can be realized

using surrogate-based optimization (SBO). The principal idea of SBO is to replace the high-

fidelity (or fine) model in the optimization loop by its computationally cheap, but yet rea-

sonably accurate surrogate which is updated at each iteration using available data from the

fine model. For a well performing SBO, iterative updating and subsequent optimization

of the surrogate can yield a remarkably accurate solution while dramatically reducing the

optimization cost.

In this paper, we analyze the applicability of a surrogate obtained from a temporarily

coarser discretized physics-based low-fidelity (or coarse) model. We employ a multiplicative

correction to the coarse model response to obtain a reliable approximation of the fine model.

As a case study, we consider a selected representative of the class of one-dimensional marine

ecosystem models. This complexity of the involved processes in this model is very high.

Thus, although one-dimensional, this model serves as a suitable test case before investigating

computationally more expensive three-dimensional models.

A basic formulation of this approach has already been investigated in [22] and demonstrate

to yield a reasonably accurate solution at low computational costs. This was verified by using
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model-generated synthetic measurement data.

In this paper, we investigated the application to real data. We furthermore included

enhancements of the basic formulation by utilizing coarse/fine model sensitivity data as well

as trust-region convergence safeguards to further increase the robustness of the optimization

process and accuracy of the solution.

We could demonstrate convergence of the SBO to the solution obtained by a direct fine

model optimization. We furthermore showed that already after 3 iterations of the SBO, a

solution very close to the optimal fine model one could be obtained.

Although rather expensive fine model sensitivity data was used in the SBO, optimization

costs are nevertheless remarkably low – only 60 fine model, or, equivalently, 5 fine model

gradient evaluations were required corresponding to a speedup of 85% when compared to the

direct fine model optimization.
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