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Abstract

We propose a combinatorial algorithm to track critical points of 2D
time-dependent scalar fields. Existing tracking algorithms such as Feature
Flow Fields apply numerical schemes utilizing derivatives of the data,
which makes them prone to noise and involve a large number of com-
putational parameters. In contrast, our method is robust against noise
since it does not require derivatives, interpolation, and numerical integra-
tion. Furthermore, we propose an importance measure that combines the
spatial persistence of a critical point with its temporal evolution. This
leads to a time-aware feature hierarchy, which allows us to discriminate
important from spurious features. Our method requires only a single,
easy-to-tune computational parameter and is naturally formulated in an
out-of-core fashion, which enables the analysis of large data sets. We ap-
ply our method to a number of data sets and compare it to the stabilized
continuous Feature Flow Field tracking algorithm.

1 Introduction

Time-dependent 2D scalar data arises in many scientific disciplines. For the
analysis of such data, the extraction of minima, saddles, and maxima of each
individual time step has been proven useful. These point features of the data
are often called critical points. To understand the dynamic behavior of time-
dependent data, it can be beneficial to analyze the temporal evolution of these
critical points.

To enable an efficient quantification of the temporal evolution of the criti-
cal points, we can track them over time. In this paper, we call such a tracked
critical point a critical line of the data. Many different algorithms that extract
critical lines have been proposed, see Section 2 for a small overview.

For smooth data, the Feature Flow Field method [TS03] provides a partic-
ularly sound mathematical foundation. Given a smooth time-dependent scalar
field, the critical lines are implicitly defined by streamlines in a higher dimen-
sional derived vector field. While this method works well for smooth data, its



application to data that is only continuous is problematic as derivatives have to
be computed. To circumvent this problem, derivative free algorithms employ-
ing concepts from algebraic topology have been developed recently, see Section 2.

The main remaining weakness of the available algorithms is their inability
to handle noisy data in a meaningful way. Such data usually contains an over-
whelming number of critical lines that hinder meaningful visual data analysis.
To reduce the number of critical lines, one typically smooths the data or discards
short critical lines. Both approaches can be problematic. A simple smoothing
of the data may remove important critical lines and affect the spatial position
of the critical lines, see Figure 7 for an example. Discarding short critical lines
may remove an important and stable, but short lived feature. See Figure 9 for
an example of such a short but important critical line.

This paper proposes a combinatorial algorithm that is able to track critical
points in noisy data. This robustness is achieved by combining Forman’s notion
of a combinatorial gradient field [For98a] with the notion of Persistence pro-
posed by Edelsbrunner et al.[EHZ01]. Persistence is a well founded importance
measure for critical points. Together, these concepts enable a robust and con-
sistent combinatorial representation of the gradient of a scalar function. Both
fundamental concepts will be briefly introduced in a graph theoretic formulation
in Section 3.1.

A definition for a critical line of a sequence of combinatorial gradient fields
was recently proposed by King et al. [KKMO08]. The basic idea is similar to
the continuous Feature Flow Field method - a higher dimensional field is con-
structed in which the critical lines are given by combinatorial streamlines. We
therefore refer to the higher dimensional field as a Combinatorial Feature Flow
Field in this paper. We formulate King’s definition of critical lines in combina-
torial gradient fields using a graph theoretic formulation in Section 3.2.

Our main contribution is the introduction of the first efficient algorithm that
extracts the critical minima, saddle, and maxima lines in 2D discrete scalar fields
using Combinatorial Feature Flow Fields.

The proposed algorithm has many valuable properties. It has a reasonable
running time and is naturally formulated in a out-of-core fashion enabling the
analysis of large data sets as only two subsequent time steps have to be kept
in memory. The input consists of a regular cell complex, so the algorithm can
deal with many widely used representations of discrete data like triangulations,
quadrangulations, or a mixture of these. It contains only one easily-tuned com-
putational parameter, the persistence threshold o, used to construct the com-
binatorial representation of the gradient fields.

Due to the combinatorial nature of our algorithm, we can formulate a nat-
ural spatio-temporal importance measure for the resulting critical lines called
Integrated Persistence (see Section 3.3).



2 Related Work

Many algorithms that track features in time-dependent data have been proposed
in many different scientific communities. A lot of this work has been partially
inspired by object tracking methods in the area of computer vision, see [YJS06]
for a survey. In the context of visual data analysis, tracking approaches can
roughly be categorized into three classes depending on the treatment of the
temporal dimension [Pos03].

The first class considers feature tracking as a two-step process: feature ex-
traction for each time slice and subsequent feature matching solving a cor-
respondence. Such methods do not rely on a temporal interpolation. Event
analysis mostly happens implicitly during tracking defined by event functions.
Common tracked features are volumes or areas, boundaries or contours and
points. Correspondence criteria use distance metrics of the domain and the
attribute space, which are in general based on application specific heuristics.
Typical attributes comprise feature size, shape descriptors or also texture char-
acteristics [CJRO7]. Features are linked, if their distance falls below a given
threshold [SSZC94, RPS99, LBM*06, dLvLO01]. Improvements using feature
overlap instead of Euclidean distances are used in [SW97]. A more global ap-
proach is followed in [Ji06] employing a best matching algorithm. Improved
tracking can be achieved by utilizing additional information for motion predic-
tion [RSVP02]. [BSS02] proposes a progressive tracking of isosurfaces using the
isosurface at time ¢ as an initial guess for the next time-step ¢+ 1. An extension
to tracking of the entire contour tree using volume overlap has been proposed
in [SBO6].

The second class of algorithms considers time as additional dimension, treated
equally to spatial dimensions. Features are extracted from space-time directly,
thus increasing the dimension of the domain and the features by one. Tracking is
accurate with respect to the chosen temporal interpolation. No explicit distance
metrics for features are needed. Event analysis is mostly a subsequent step after
tracking and is based on well-founded theory. Methods extracting isosurfaces
in space-time have been proposed in [WB98, JSW03]. A topological event anal-
ysis based on the Reeb-Graph of the surface resulting from sweeping contours
has been performed in [WBD*ar, BWP*10]. The development of topological
structures in 2D and 3D flow fields has been analyzed in [TWSHO02, GTS04].
These algorithms consider vector fields composed of space-time cells with lin-
ear interpolation, for which events are restricted to cell boundaries. Critical
point tracking thus reduces to the computation of entry and exit points for each
cell. Similarly, [BP02] introduces an algorithm to track vortex core lines over
time and scale space searching for features, represented as parallel vectors, on
all boundary cells of the space-time cell [BP02]. While giving accurate results,
these methods are prone to noisy data and a high feature density. To reduce the
number of extracted features and events, a common practice is to delete short
living features. A combinatorial approach to track critical points is based on the



definition of Jacobi sets [EHO04]. Tt consists of Jacobi edges, which are extracted
from a spatial-temporal simplicial complex assuming a linear interpolant. The
decision whether an edge belongs to the Jacobi curve involves the topological
analysis of the lower link of vertices and edges of the simplicial complex. While
providing a nice theoretical framework, the resulting Jacobi curves of real data
sets are often very complex and hard to analyze. Based on this work it is also
possible to track the evolution of the Reeb-graph of a scalar function [EHMT08].

The third class of algorithm combines aspects of both above-mentioned
types. They represent the dynamic behavior of features implicitly as streamlines
of a higher dimensional derived vector field in space-time. Critical points can
then be tracked by computing certain streamlines in this vector field, referred to
as a Feature Flow Field [TS03]. Recently, a combinatorial version of the Feature
Flow Field method has been proposed [KKMO08]. This method is discussed in
detail in Section 3.2 and provides the mathematical foundation for our novel
tracking algorithm presented in Section 4.

3 Fundamental Concepts

The purpose of this section is to introduce the reader to the main concepts that
build the mathematical foundation for our combinatorial tracking algorithm
described in detail in Section 4. We first introduce the reader to the well known
concept of combinatorial gradient vector fields (CGF) in Section 3.1 using a
graph theoretic formulation. Using this concept we can define the notion of
a combinatorial feature flow field (CFFF) in Section 3.2. We conclude this
Section with a definition of a time-aware importance measure for the tracked
critical points that is based on the notion of persistence.

3.1 Combinatorial Gradient Fields

For simplicity, we restrict ourselves to 2D manifolds while the mathematical
theory for combinatorial gradient fields is defined in a far more general setting
[For98al. Let C denote a finite regular cell complex of a 2D manifold. Examples
of such cell complexes are triangulations or quadrangular meshes. Given C', we
first define its cell graph G¢ = (S, L) that encodes the combinatorial information
contained in C in a graph theoretic setting.

The nodes S of the graph consist of the cells C' of the complex and each node
uP is labeled with the dimension p of the cell it represents. For a triangulation,
the nodes of the cell graph therefore consist of the vertices (0-cells), edges (1-
cells), and triangles (2-cells).

The links L of the graph encode the neighborhood relation of the cells in C":
if the cell represented by node u? is in the boundary of the cell represented by
node wP*! then ¢7 = {uP, wP*1} is a link in the graph. Note that we label each
link with the dimension of its lower dimensional node.





