
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

WILLIAM COOK1

THORSTEN KOCH2

DANIEL E. STEFFY1

KATI WOLTER3

An Exact Rational
Mixed-Integer Programming Solver

1 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA. Supported by NSF Grant CMMI-0726370, ONR Grant N00014-08-1-1104.
2 Zuse Institute Berlin, Germany.
3 Zuse Institute Berlin, Germany. Research funded by DFG Priority Program 1307 “Algorithm Engineering”.

ZIB-Report 11-07 (March 2011)



An Exact Rational Mixed-Integer Programming
Solver

William Cook⋆1, Thorsten Koch2, Daniel E. Steffy⋆1, and Kati Wolter⋆⋆2

1 School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA,
bico@isye.gatech.edu,desteffy@gatech.edu

2 Zuse Institute Berlin, Germany, {koch,wolter}@zib.de

Abstract We present an exact rational solver for mixed-integer lin-
ear programming that avoids the numerical inaccuracies inherent in the
floating-point computations used by existing software. This allows the
solver to be used for establishing theoretical results and in applications
where correct solutions are critical due to legal and financial conse-
quences. Our solver is a hybrid symbolic/numeric implementation of LP-
based branch-and-bound, using numerically-safe methods for all bind-
ing computations in the search tree. Computing provably accurate solu-
tions by dynamically choosing the fastest of several safe dual bounding
methods depending on the structure of the instance, our exact solver is
only moderately slower than an inexact floating-point branch-and-bound
solver. The software is incorporated into the SCIP optimization frame-
work, using the exact LP solver QSopt ex and the GMP arithmetic
library. Computational results are presented for a suite of test instances
taken from the Miplib and Mittelmann collections.

1 Introduction

Mixed-integer programming (MIP) is a powerful and flexible tool for modeling
and solving decision problems. Software based on these ideas is utilized in many
application areas. Despite their widespread use, few available software packages
provide any guarantee of correct answers or certification of results. Possible inac-
curacy is caused by the use of floating-point (FP) numbers [14]. FP calculations
necessitate the use of built-in tolerances for testing feasibility and optimality,
and can lead to calculation errors in the solution of linear-programming (LP)
relaxations and in the methods used for creating cutting planes to improve these
relaxations.

Due to a number of reasons, for many industrial MIP applications near op-
timal solutions are sufficient. Cplex, for example, defaults to a relative MIP
optimality tolerance of 0.001. Moreover, when data describing a problem arises
from imprecise sources, exact feasibility is usually not necessary. Nonetheless,

⋆ Research supported by NSF Grant CMMI-0726370, ONR Grant N00014-08-1-1104.
⋆⋆ Research funded by DFG Priority Program 1307 “Algorithm Engineering”.



2 W. Cook, T. Koch, D.E. Steffy and K. Wolter

accuracy is important in many settings. Direct examples arise in the use of
MIP models to establish fundamental theoretical results and in subroutines for
the construction of provably accurate cutting planes. Furthermore, industrial
customers of MIP software request modules for exact solutions in critical appli-
cations. Such settings include the following.

– Feasibility problems, e.g., chip verification in the VLSI design process [1].
– Compiler optimization, including instruction scheduling [22].
– Combinatorial auctions [21], where serious legal and financial consequences

can result from incorrect solutions.

Optimization software relying exclusively on exact rational arithmetic has
been observed to be prohibitively slow, motivating the development of more
sophisticated techniques to compute exact solutions. Significant progress has
been made recently toward computationally solving LP models exactly over the
rational numbers using hybrid symbolic/numeric methods [7,10,12,16,17], in-
cluding the release of the software package QSopt ex [6]. Exact MIP has seen
less computational progress than exact LP, but significant first steps have been
taken. An article by Neumaier and Shcherbina [19] describes methods for safe
MIP computation, including strategies for generating safe LP bounds, infeasibil-
ity certificates, and cutting planes. The methods they describe involve directed
rounding and interval arithmetic with FP numbers to avoid incorrect results.

The focus of this article is to introduce a hybrid branch-and-bound approach
for exactly solving MIPs over the rational numbers. Section 2 describes how
rational and safe FP computation can be coupled together, providing a fast and
general framework for exact computation. Section 3 describes several methods
for computing valid LP bounds, which is a critical component of the hybrid
approach. Section 4 describes an exact branch-and-bound implementation within
SCIP [1,2] and includes detailed computational results on a range of test libraries
comparing different dual bounding strategies. The exact solver is compared with
an inexact branch-and-bound solver and observed to be only moderately slower.

2 Hybrid Rational/Safe Floating-Point Approach

Two ideas for exact MIP proposed in the literature, and tested to some ex-
tent, are the pure rational approach [7] and the safe-FP approach [9,19]. Both
utilize LP-based branch-and-bound. The difference lies in how they ensure the
computed results are correct.

In the pure rational approach, correctness is achieved by storing the input
data as rational numbers, by performing all arithmetic operations over the ra-
tionals, and by applying an exact LP solver [12] in the dual bounding step. This
approach is especially interesting because it can handle a broad class of problems:
MIP instances described by rational data. However, replacing all FP operations
by rational computation will increase running times noticeably. For example,
while the exact LP solver QSopt ex avoids many unnecessary rational com-
putations and is efficient on average, Applegate et al. [7] observed a greater



An Exact Rational MIP Solver 3

slowdown when testing an exact MIP solver that relied on rational arithmetic
and called QSopt ex for each node LP computation.

In order to limit the degradation in running time, the idea of the safe-FP ap-
proach is to continue to use FP-numbers as much as possible, particularly within
the LP solver. However, extra work is necessary to ensure correct decisions in
the branch-and-bound algorithm. Correctness of certain computations can be
ensured by controlling the rounding mode for FP operations. Valid dual bounds
can often be obtained by post-processing approximate LP solutions; this type
of safe dual bounding technique has been successfully implemented in Con-

corde [5] for the traveling salesman problem. A generalization of the method
for MIPs is described in [19]. Furthermore, the idea of manipulating the round-
ing mode can be applied to cutting-plane separation. In [9], this idea was used
to generate numerically safe Gomory mixed-integer cuts. Nevertheless, whether
the safe-FP approach leads to acceptable running times for general MIPs has
not been investigated. Although the safe-FP version of branch-and-bound has
great advantages in speed over the pure rational approach, it has several disad-
vantages. Everything, including input data and primal solutions, is stored as FP
numbers. Therefore, correct results can only be ensured for MIP instances that
are given by FP-representable data and that have a FP-representable optimal
solution if they are feasible. Some rationally defined problems can be scaled to
have FP-representable data. However, this is not always possible due to the lim-
ited representation of floating-point numbers, and the resulting large coefficients
can lead to numerical difficulties. The applicability is even further limited as the
safe dual bounding method discussed in [19] requires, in general, lower and up-
per bounds on all variables. Weakness in the safely generated bound values may
also increase the number of nodes processed by the branch-and-bound solver.
Additionally, due to numerical difficulties, some branch-and-bound nodes may
only be processable by an exact LP solver.

To summarize, the pure rational approach is always applicable but introduces
a large overhead in running time while the safe-FP approach is more efficient
but of limited applicability.

Since we want to solve MIPs that are given by rational data efficiently and ex-
actly we have developed a version of branch-and-bound that attempts to combine
the advantages of the pure rational and safe-FP approaches, and to compensate
for their individual weaknesses. The idea is to work with two branch-and-bound
processes. Themain process implements the rational approach. Its result is surely
correct and will be issued to the user. The other one serves as a slave process,
where the faster safe-FP approach is applied. To achieve reasonable running
time, whenever possible the expensive rational computation of the main process
will be skipped and certain decisions from the faster safe-FP process will be sub-
stituted. In particular, safe dual bound computations in the slave process can
often replace exact LP solves in the main process. The rational process provides
the exact problem data, allows to correctly store primal solutions, and makes
exact LP solves possible whenever needed.



4 W. Cook, T. Koch, D.E. Steffy and K. Wolter

Algorithm 1 Branch-and-bound for exactly solving MIPs

Input : (MIP) max{cTx : x ∈ P} with P := {x ∈ Rn : Ax ≤ b, xi ∈ Z for all i ∈ I},
A ∈ Qm×n, b ∈ Qm, c ∈ Qn, and I ⊆ {1, . . . , n}.

Output : Exact optimal solution x⋆ of MIP with objective value c⋆ or conclusion that
MIP is infeasible (c⋆ = −∞).

1. FP-problem: Store (FP-MIP) max{c̃Tx : x ∈ P̃} with P̃ := {x ∈ Rn : Ãx ≤ b̃, xi ∈

Z for all i ∈ I}, Ã ∈ Mm×n, b̃ ∈ Mm, and c̃ ∈ Mn.

2. Init: Set L := {(P, P̃ )}, L := −∞, xMIP to be empty, and cMIP := −∞.

3. Abort: If L = ∅, stop and return xMIP and cMIP.

4. Node selection: Choose (Pj , P̃j) ∈ L and set L := L \ {(Pj , P̃j)}.

5. Dual bound: Solve LP-relaxation max{c̃Tx : x ∈ L̃P j} approximately.

(a) If L̃P j is claimed to be empty, safely check if LPj is empty.

i. If LPj is empty, set c⋆ := −∞.

ii. If LPj is not empty, solve LP-relaxation max{cTx : x ∈ LPj} exactly. Let
x⋆ be an exact optimal LP solution and c⋆ its objective value.

(b) If L̃P j is claimed not to be empty, let x⋆ be an approximate optimal LP solu-
tion and compute a safe dual bound c⋆ with max{cTx : x ∈ LPj} ≤ c⋆.

6. Bounding: If c⋆ ≤ L, goto Step 3.

7. Primal bound:

(a) If x⋆ is approximate LP solution and claimed to be feasible for FP-MIP, solve
LP-relaxation max{cTx : x ∈ LPj} exactly. If LPj is in fact empty, goto Step 3.
Otherwise, let x⋆ be an exact optimal LP solution and c⋆ its objective value.

(b) If x⋆ is exact LP solution and truly feasible for MIP:

i. If c⋆ > cMIP, set xMIP := x⋆, cMIP := c⋆, and L := c⋆.

ii. Goto Step 3.

8. Branching: Choose index i ∈ I with x⋆
i /∈ Z.

(a) Split Pj in Q1 := Pj ∩ {x : xi ≤ ⌊x⋆
i ⌋}, Q2 := Pj ∩ {x : xi ≥ ⌈x⋆

i ⌉}.

(b) Split P̃j in Q̃1 := P̃j ∩ {x : xi ≤ ⌊x⋆
i ⌋}, Q̃2 := P̃j ∩ {x : xi ≥ ⌈x⋆

i ⌉} .

Set L := L ∪ {(Q1, Q̃1), (Q2, Q̃2)} and goto Step 3.

The complete procedure is given in Alg. 1. The set of FP-representable num-
bers is denoted by M; lower and upper approximations of x ∈ Q are denoted
x ∈ M and x ∈ M, respectively. The slave process, which utilizes the safe-FP
approach, works on a MIP instance with FP-representable data. It is set up in
Step 1 of the algorithm. If the input data are already FP-representable, both pro-
cesses solve the same MIP instance, i.e., P̃ := P and c̃ := c in Step 1. In principle,
this results in employing only the safe-FP approach except for some necessary
exact LP solves. Otherwise, an approximation of the MIP with P ≈ P̃ , c ≈ c̃
or a relaxation with P ⊆ P̃ , c = c̃ is constructed; called FP-approximation and
FP-relaxation, respectively. The choice depends on the dual bounding method
applied in the slave process (see Sect. 3).


	An Exact Rational Mixed-Integer Programming Solver



