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ARMIN FÜGENSCHUH2

M ICHAEL HERTY3

LARS SCHEWE4

The Coolest Path Problem5

1RWTH Aachen University, Mathematik, Templergraben 55, D-52056 Aachen
2Zuse Institut Berlin, Takustr. 7, D-14195 Berlin
3RWTH Aachen University, Mathematik, Templergraben 55, D-52056 Aachen
4TU Darmstadt, Fachbereich Mathematik, Schlossgartenstrasse 7, D-64289 Darmstadt
5to appear in: Networks&Heterogeneous Media

ZIB-Report 09-37 (November 2009)



THE COOLEST PATH PROBLEM

MARTIN FRANK, ARMIN FÜGENSCHUH, MICHAEL HERTY, AND LARS SCHEWE

Abstract. We introduce the coolest path problem, which is a mixture of two
well-known problems from distinct mathematical fields. One of them is the
shortest path problem from combinatorial optimization. The other is the heat
conduction problem from the field of partial differential equations. Together,
they make up a control problem, where some geometrical object traverses a
digraph in an optimal way, with constraints on intermediate or the final state.
We discuss some properties of the problem and present numerical solution
techniques. We demonstrate that the problem can be formulated as a linear
mixed-integer program. Numerical solutions can thus be achieved within one
hour for instances with up to 70 nodes in the graph.

Continuous and discrete optimization are at present two distinct areas of math-
ematics. From time to time, discrete optimizers stumble over a problem which has
some intrinsic nonlinear continuous structure, sometimes modeled using partial dif-
ferential equations. Then they most likely would try to get rid of these continuous
parts, such that a pure combinatorial problem remains. Similarly, if a person with
a background in continuous optimization gets involved with a problem that involves
discrete decisions, he or she would most likely try to relax the discontinuities to
some continuous constraints, in order to apply some well-understood methods of
the field. For both of them it is true that if one only owns a hammer then every

problem must be a nail. However it is also true that if one always stays within its
own cosy corner of the world, nothing new can emerge from that.

Our research is motivated by the fact that both worlds can inspire the respective
other by sharing ideas and methods. So to start the discussion at some point we
combine two problems into a new one that was not studied before (to the best of our
knowledge). From the discrete world we consider the shortest path problem on a
directed graph. The contribution from the continuous world is the heat conduction
problem. Both problems are combined into a new optimization problem, which we
suggest to coin the coolest path problem.

1. The Coolest Path Problem

We consider the following problem. Given is a directed graph D = (V, A) with
vertex set V and arc set A, and two distinct nodes v, w ∈ V . An v-w-path P
in D of length n is defined as a sequence of vertices and arcs of the form P =
(v0, a1, v1, a2, v2, . . . , vn−1, an, vn), where v0 = v, vn = w, ai = (vi−1, vi), and the
arcs in P are pairwise different. Imagine that a geometric object Ω ⊂ R3 traverses
the network from v to w. The initial temperature of the object is given by u0 : Ω →
R+. Associated with each arc a ∈ A is a temperature Ta(x) ∈ R+ for x ∈ ∂Ω. On
each arc a the boundary of the object ∂Ω is exposed to the prevalent temperature
Ta(x) for x ∈ ∂Ω for a certain, arc-dependent time, so that the object is heated
up or cooled down. At the end, at vertex w, the temperature distribution within
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the object is given by the path-dependent function uP : Ω → R+. The coolest path

problem (CPP, for short) asks for an v-w-path P such that the average temperature
ūP := 1

vol(Ω)

∫

Ω
uP dV of the object at w is minimal. The coolest path problem

thus combines the combinatorial problem of finding a shortest v-w-path, where
“shortest” refers to the amount of absorbed heat on the path, which is modelled
by the heat equation.

As a real-world application of this problem one might think of a production line
where some product (the object) has to pass certain manufacturing steps. These
steps impose some heating or cooling to the material. After the end of one step
there is a number of other succeeding steps that have to be carried out afterwards,
until the product reaches the output. At the end, the product should be as cool as
possible.

Besides this basic version of the problem, there are natural variations and ex-
tensions which we also consider in the sequel.

(1) Other objective functions. For example, one can take the temperature
uP (x) at a certain point x ∈ Ω or the maximum temperature max{uP (x) :
x ∈ Ω} as objective functions.

(2) Temperature gradients. The goal here is to find a path P such that the
norm of gradient ‖grad(u)(·)‖ is minimal, either at a given point x, at the
maximum within Ω, or in the average.

(3) Restrictions along the path. The above objective functions, together with
a lower or upper bound can be taken as constraints. In this case we have to
deal with a feasibility problem (i.e., finding a path with the given property),
or together with any other of the objective functions from above, as an
optimization problem with further constraints on the path.

(4) Control problems. The goal is to achieve a final state, such as a desired
heat distribution at vertex w, and finding a path such that the actual heat
distribution is closest possible to the prescribed one.

Another interesting variant is the coolest Hamiltonian cycle (CHC, for short)
in a digraph. In the classical Hamiltonian cycle (HC) problem one is interested
in a tour (or cycle) through all nodes that starts and end at the same node, and
enters and leaves every node exactly ones. We remark that HC is NP -complete,
see the monograph by Garey and Johnson [7]. In the “cool” version, one wants to
end up with the coolest possible object (with respect to some objective functional).
The CHC can also be combined with all variations from the above list. We will
demonstrate that our methods are also able to solve CHC as a by-product.

The combination of shortest path with heat conduction gives rise to the question
whether some of the combinatorial shortest path algorithms can be modified to
solve this new problem. We will demonstrate in the sequel that this is only possible
in a very special case. In the general case we are in the same situation as with
the general shortest path problem with negative arc weights and negative cycles.
Thus we cannot give a simple combinatorial algorithm for its solution. Instead we
will formulate the problem as a mixed-integer linear program, which can be solved
numerically within the general linear programming (simplex) based branch-and-cut
framework (see Schrijver [14] or Nemhauser and Wolsey [11] for an introduction).

To formally state the coolest path (or coolest cycle) problem we introduce some
more notations. Denote by F one of the objective functionals from above. Select
two distinct nodes v, w ∈ V . Let Pv,w be the set of all paths from v to w in D. The
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time for traversing arc a ∈ P is denoted by τa. If we assume that the object Ω starts
at time t0 := 0 then the end time is t∗ :=

∑

a∈P τa. Function u(x, t) describes the
heat distribution in the object at location x and time t, depending on path P . To
be more precise, t 7→ u(x, t) depends only on those arcs that were traversed before
time t, for all x ∈ Ω and t ∈ [0, t∗]. Note that each point in time t ∈ [0, t∗] can be
mapped onto an arc a(t) ∈ P which the object traverses at time t.

Using this notation the problem can be formally stated as follows:

min
u;P∈Pv,w

F (u(x, t∗))(1)

such that
∂u

∂t
(x, t) = k ·

∂2u

∂x2
(x, t), ∀x ∈ Ω, ∀ t ∈ [0, t∗],(2)

∂

∂n
u(x, t) = h · (Ta(t)(x) − u(x, t)), ∀x ∈ ∂Ω, ∀ t ∈ [0, t∗],(3)

u(x, 0) = u0(x), ∀x ∈ Ω.(4)

2. Mathematical Background

Before actually solving the problem at hand we start with a survey of the shortest
path problem and the heat equation. From this study we can also show in which
directions our methods can be extended.

2.1. Shortest Paths in Graphs. One major ingredient is the classical shortest
path problem on (directed or undirected) graphs (SPP, for short). An instance of
the SPP is defined by a directed weighted graph D = (V, A, c), where c : A → R

are arc weights, and two distinct nodes v, w ∈ V . The cost (or length) of an v-w-
path P is hereby defined as the sum of weights of its arcs, i.e., c(P ) :=

∑

a∈P ca.
The problem asks for an v-w-path P of minimal length. In this spirit the coolest
path problem can be seen as a combination of a pure combinatorial problem with
an objective function that takes the amount of absorbed heat along the path into
account.

The mathematical study of the combinatorial shortest path problem in graphs
can be dated back to the 1950s (see Schrijver [15]). There exists several algorithms
for its solution.

The key observation that leads to efficient, i.e., polynomial time algorithms,
is the property that all subpaths of a shortest path are as well shortest paths.
However, this property holds if and only if the graph does not contain a negative
cycle. In this case we can use an algorithm due to Moore [10], Bellman [2], and
Ford [6], which has a running time proportional to the number of vertices cubed.
In the special case that all edge weights are non-negative one can use Dijkstra’s
algorithm [4] which has only a quadratic running time.

In the general shortest path case negative weights (and negative circles) are
allowed. There is no efficient combinatorial algorithm known in that case, and it is
most likely that no such algorithm exists (unless P = NP ). A special case of the
shortest path with negative cycles is the longest path problem, which asks for the
longest possible path (also called critical path) between two distinct nodes. More
general than this, one can consider the path problem with given length, where a
path is sought which connects the two nodes with a path of a prescribed length (or
to decide that no such path exists). This problem is also NP -hard. Later on, this
problem will occur as a subproblem in one of our solution methods for the CPP.
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The solution of the corresponding linear program from above is still integral, but
most likely cycles (with negative sum of its arcs) will occur. In order to obtain cycle-
free solutions, one can use the following model. Let a weighted digraph D = (V, A, c)
with arbitrary arc weights ca ∈ R for all a ∈ A be given. Select two distinct nodes
v, w ∈ V . We define a set A∗ := A × {1, . . . , |A|} and introduce binary variables
zi,j,p ∈ {0, 1} for all (i, j, p) ∈ A∗. If zi,j,p = 1 then arc (i, j) is selected as the
p-th arc in the v-w-path. Every arc of A can in principle occur in this v-w-path.
Hence the number of elements in A, i.e., |A|, is an upper bound on the number
of arcs in the path. Moreover we introduce binary variables yp ∈ {0, 1} for all
p ∈ {1, . . . , |A|}, where yp = 1 indicates that the path consists of exactly (|A| − p)
arcs.

Using these definitions the shortest path problem with arbitrary arc weights can
be formulated as follows:

min
∑

(i,j,p)∈A∗

cij · zi,j,p,(5)

s.t.
∑

i:(i,w)∈A

zi,w,|A| = 1,(6)

∑

j:(v,j)∈A

zv,j,p = yp, ∀ p ∈ {1, . . . , |A|},(7)

∑

p∈{1,...,|A|}

yp = 1,(8)

∑

p∈{1,...,|A|}

zi,j,p ≤ 1, ∀ (i, j) ∈ A,(9)

∑

i:(i,k)∈A

zi,k,p−1 =
∑

j:(k,j)∈A

zk,j,p, ∀ k ∈ V \{v, w}, ∀ p ∈ {2, . . . , |A|},(10)

yp ∈ {0, 1}, zi,j,p ∈ {0, 1}, ∀ (i, j) ∈ A, ∀ p ∈ {1, . . . , |A|}.(11)

Constraint (6) forces the last arc of the path to end at node w. By constraints (6)
the last arc of the path, which is the p-th arc within the path, connects node w.
Exactly one arc is the first arc, which is modeled by (7) and (8). Constraints (9)
ensure that every arc occurs at most once in the v-w-path. The connectivity of the
paths is due to the flow conservation constraints (10).

We note, that it is possible to formulate this problem only using a set of variables
that indicates whether an arc is in the path or not. In that case we can ensure the
condition that no cycle occurs by adding suitable cut constratints to the model.
This polyhedron has also recently been studied by Stephan [17]. However, for our
later models we will need an explicit encoding of the order of the arcs in the path
to help us compute the temperature distribution.

As a possible solution technique one can apply branch-and-bound or branch-and-
cut, which re-introduces the integrality after its relaxation. This technique will be
briefly described in the subsequent section.

This model can be replaced with a much simpler one if no negative cycles occur.
We introduce variables

(12) zi,j ∈ {0, 1}, ∀ (i, j) ∈ A.




