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POLYHEDRAL ASPECTS OF SELF-AVOIDING WALKS

AGNES DITTEL, ARMIN FÜGENSCHUH, AND ALEXANDER MARTIN

Abstract. In this paper, we study self-avoiding walks of a given length on a graph. We consider

a formulation of this problem as a binary linear program. We analyze the polyhedral structure

of the underlying polytope and describe valid inequalities. Proofs for their facial properties

for certain special cases are given. In a variation of this problem one is interested in optimal

configurations, where an energy function measures the benefit if certain path elements are placed

on adjacent vertices of the graph. The most prominent application of this problem is the protein

folding problem in biochemistry. On a set of selected instances, we demonstrate the computational

merits of our approach.

1. Introduction

A path in a graph is a sequence of adjacent vertices. A path is called simple if multiple occurrence of
vertices is prohibited. Paths in graphs give rise to various optimization questions. One of the most
prominent is the shortest-path problem, where one is interested in an optimal connection between
two given distinct vertices of the graph with respect to certain edge weights. If the edge weights are
all positive or, more general, if there is no cycle with negative total weight, then an optimal path
is automatically a simple path. Moreover, in this case, the solution of the shortest-path problem
can be obtained in polynomial time complexity.
Our work is motivated by a field of applications in physical chemistry, where linear polymer
molecules are modeled as simple paths in graphs featuring a certain regularity. These graphs
are then referred to as lattices, and a simple path in this context is called a self-avoiding walk
on the lattice. A prominent example is the protein folding problem which refers to the assembly
(“folding”) of a three-dimensional structure of a polypeptide molecule, which is a linear polymer
consisting of amino acids, in an aqueous solvent. Formulations of this problem as binary linear
programs were given in [10, 17]. Our work contributes to a deeper understanding of the respective
underlying polytopes. In particular, we are interested in the convex hull of the incidence vectors
of self-avoiding walks. To the best of our knowledge, a polyhedral analysis of families of valid in-
equalities was not done so far. Under certain conditions we are able to prove facet-defining criteria
for some substructures of interest.
The outline of the remainder of this article is the following. In Section 2 we introduce the necessary
mathematical description of the problem. In Section 3, we state a complete outer description for
P (2) by facet-defining inequalities. In the general case, one technical difficulty arising with the de-
scription of the facial structure of P (n) is the lack of dimensionality of these polytopes. We therefore
consider their down-monotonization as a full-dimensional relaxation. The down-monotonization of
P (n) yields the submonotone SAW-n polytope P (n;≤) which we study in Section 4. We describe
the structure of valid inequalities, and we provide a facet characterization for two special cases. In
Section 5, we demonstrate the application of cutting planes derived from the polyhedral structures
of P (2) and P (n;≤), respectively. Section 6 contains a conclusion and an outlook to further research
opportunities.
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2. Problem Description

Let G = (V,E) be a graph. A path in G is a sequence

ω = (ω0, . . . , ωm)

with ωi ∈ V for all i ∈ {0, . . . ,m} and {ωi−1, ωi} ∈ E for all i ∈ {1, . . . ,m}. We alternatively call
ω an m-step path (which refers to the number of its edges) or a path of length m+ 1 (which refers
to the number of its vertices). A self-avoiding walk (SAW) on G is a path in G without repetition
of vertices, i.e., ωi 6= ωj for i 6= j. At this point, we remark that the term “self-avoiding walk”
is typically associated with a lattice, which can be seen as an infinite graph featuring a certain
regular structure (usually originating from a regular tiling of the plane or space). Although the
results of this paper are valid for general graphs, we put the focus on finite subgraphs of regular
lattices, which we denote as x×y(×z) lattices. Examples of regular grid graphs include x×y square
(Qx×y) and triangular (Tx×y) lattices in two dimensions, as well as x× y × z cubic (Qx×y×z) and
tetrahedral (Tx×y×z) lattices in three dimensions. As an example, the 3 × 3 square lattice Q3×3 is
shown in Figure 1. As a convention, we number the vertices consecutively, starting with zero, as
indicated in Figure 1.

0 1 2

3 4 5

6 7 8

Figure 1. 3 × 3 square lattice

In order to emphasize the connection to lattice graphs, we use the term “self-avoiding walk”
instead of “path”. In the following, we consider SAWs in the context of their vertices and therefore

denote the set of all SAWs of length n on G (or (n− 1)-step SAWs, respectively) by Ω
(n)
G . We set

S(n) = {0, . . . , n− 1} and define the incidence vector for an SAW ω ∈ Ω
(n)
G as

x(ω) = (x(ω)sv)v∈V,s∈S(n) with x(ω)sv =

{

1, if ωs = v,
0, otherwise.

The aim of this paper is the investigation of the convex hull P (n) of the incidence vectors for all
SAWs of length n on a given graph G, i.e., we are going to study the structure of the polytope

P (n) = conv {x(ω) | ω ∈ Ω
(n)
G }

which we call the SAW-n polytope.

We start with the introduction of a terminology which enables a set-based representation for SAWs
of length n on a graph G = (V,E). For the remainder of this paper, we assume that G is connected
and consists of at least two vertices, and we assume n ≥ 2 to be fixed. Next, we introduce the
SAW-n graph associated to a graph G as the expansion

G(n) =
(

V (n), E(n)
)

where V (n) = V × S(n) and E(n) =
⋃

j∈S(n)\{0} {{(v, j − 1), (w, j)} | {v, w} ∈ E} .
In the following, we mention two properties of the SAW-n graph. The proofs for the respective
statements can be found in [16].

Property 2.1. The SAW-n graph G(n) is bipartite with the partition

V (n) = V × S
(n)
0 ∪̇ V × S

(n)
1 ,

where S
(n)
0 contains all even and S

(n)
1 all odd elements of S(n), i.e.,

S
(n)
k =

{

j ∈ S(n) | j ≡ k(mod 2)

}

for k = 0, 1.
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Property 2.2.

a) The number κ
(

G(n)
)

of connected components of G(n) is at most two.

b) G(n) is connected if and only if G is non-bipartite.

Example 2.3. Consider the 3×3 square lattice G = Q3×3. Since G is bipartite, the corresponding

SAW-n graph G(n) consists of two connected components for each n ≥ 2. Figure 2 shows the

corresponding SAW-4 graph and the decomposition into its two connected components.
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Figure 2. Connected components of the SAW-4 graph corresponding to the 3×3

square lattice

The SAW-n graph enables the representation of an SAW of length n on G as a subset of its vertices.
For this, we introduce the following terminology.

Definition 2.4. Let G = (V,E) be a graph and G(n) the corresponding SAW-n graph.

a) An SAW-n conformation in G(n) is a set

ψ =
{

(v, s) ∈ V (n) | ωs = v for some ω ∈ Ω
(n)
G

}

.

b) We denote the set of all SAW-n conformations in G(n) with Ψ
(n)
G .

c) For an SAW-n conformation ψ ∈ Ψ
(n)
G in G(n), the corresponding SAW-n vector is given

by the incidence vector χψ ∈ {0, 1}|V
(n)|.

d) We denote the set of SAW-n vectors in G(n) with X
(n)
G = {χψ | ψ ∈ Ψ

(n)
G }.

Thus the SAW-n polytope P (n) is given by P (n) = conv (X
(n)
) . In the sequel, we present a straight-

forward description of P (n) by linear constraints and integrality conditions which has already been
stated in [10, 17]. Throughout this article we will refer to this as the classical 0/1 model.
For each vertex v ∈ V and for each element s ∈ S(n), we introduce a binary variable xsv with

(1) xsv =

{

1, if ωs = v,
0, otherwise.

In order to guarantee the correct representation of a SAW of length n by the x-variables, the set
of possible assignments of these variables has to be restricted by the following constraints:

• Total Deployment

Each element s ∈ S(n) must occupy exactly one vertex v ∈ V :
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(2)
∑

v∈V

xsv = 1, ∀ s ∈ S(n).

• Self-Avoidance

Each vertex v ∈ V can be occupied by at most one element s ∈ S(n):

(3)
∑

s∈S(n)

xsv ≤ 1, ∀ v ∈ V.

• Contiguity

Successive elements s, s+ 1 ∈ S(n) have to occupy adjacent vertices of G:

(4) xsv ≤
∑

w∈δG(v)

xs+1
w , ∀ v ∈ V, s ∈ S(n)\{n− 1},

where δG (v) denotes the set of all vertices adjacent to v in G.

In the sections below, we are going to study certain polytopes related to P (n). Of particular interest
in this context are the inequalities defining their facets. Having regard to this issue, we introduce
the following notation which will be used throughout this article.

Definition 2.5. Let P be a polyhedron and aTx ≤ α an inequality.

a) An element x ∈ P is called a root of aTx ≤ α if aTx = α. The set of all such roots is

denoted as eq(P ; aTx ≤ α).

b) We call (a subset of) an SAW-n conformation ψ an SAW-n root (sub-) conformation of

aTx ≤ α for the associated polytope P if its incidence vector χψ constitutes a root of

aTx ≤ α.

3. The SAW-2 Polytope

The aim of this section is the investigation of a class of polytopes for the representation of one-
step paths (which are naturally self-avoiding). For these polytopes, we provide a complete outer
description by facet-defining inequalities. We observe that the set of 1-step SAWs on a graph G
can be bijectively mapped to the set of edges of the SAW-2 graph G(2) in the sense that an edge

e = {(v, s) , (w, 1 − s)} ∈ E(2) is assigned the 1-step SAW ω ∈ Ω
(2)
G given by ωs = v, ω1−s = w.

Thus an SAW-2 conformation in G(2) is equivalent to an edge of G(2).

3.1. Dimension. We provide an upper bound for the dimension of P (n) which is given by a linear
independent set of valid equations.

Theorem 3.1. For a given graph G, an upper bound for the dimension of the corresponding SAW-n

polytope P (n) is given by

dimP (n) ≤

{

n · |V | − n− (n− 1), if G is bipartite,

n · |V | − n, if G is not bipartite.

Proof. Since P (n) ⊆ [0, 1]|V
(n)|, its dimension is at most |V (n)| = n · |V |. Each vertex of P (n)

satisfies the total deployment conditions (2). For S(n) = {0, ..., n− 1}, we denote the deployment
condition for the element s ∈ S(n) with TD(s). The set {TD(s) | s ∈ S(n)} of all deployment
equations is linearly independent. Consequently, each of these n equations reduces the upper bound
of the dimension of P (n) by one. If moreover G = (V,E) is bipartite with vertex partition V =
VI ∪̇ VII , there are n− 1 additional parity equations

(5)
∑

v∈VI

(

xs−1
v + xsv

)

= 1 ∀ s ∈ S(n)\{0}.

Then this set {PARI(s) | s ∈ S(n)\{0}} of equations, joined with the set {TD(s) | s ∈ S(n)} of
deployment equations, is linearly independent, yielding the theorem. �




