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Technical Report 08-2



waLBerla: Exploiting Massively Parallel Systems
for CFD
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The waLBerla project aims at the development of an efficient massively parallel lattice

Boltzmann software library providing the necessary features for several computational fluid

dynamics applications. In this article we focus on our parallelization of the framework, which

is based on a domain partitioning scheme named patch concept. This concept also enables

a seamless specialization of the partitions to the different application features as well as the

possibility for further optimization such as memory reduction. It is discussed in detail how

our design of the patches ensures an efficient and flexible implementation. Furthermore, the

communication of the framework is introduced, which includes process-local and global com-

munication. In order to discuss the suitability of the parallelization for massively parallel

usage, various test scenarios have been investigated on different architectures. These tests

include serial, weak and strong scaling experiments up to 810 cores and up to a domain size

of 15303 lattice cells.



1 Motivation

In computational fluid dynamics (CFD) many applications of scientific interest share physical and compu-

tational aspects. In research environments the usual practice is one program for each application, leading

to a reimplementation of the shared physics, the common data structures and also the parallelization,

which often requires a considerable effort. Additionally, this replicated functionality has to be validated

for each application, again leading to unnecessary work. Hence, there is a need for a fluid simulation

library flexible enough to support research for several physical applications that cannot be simulated by

existing software packages. The waLBerla software library has been designed to provide such a framework.

It further aims at an efficient parallel implementation together with a good usability. For a detailed de-

scription of the features of waLBerla e.g. parallel simulation output or input descriptions see [FGD+07].

Most of today’s flow simulations are based on numerical schemes that solve the Navier-Stokes (NS) equa-

tions directly. However, there exists an alternative approach named lattice Boltzmann method (LBM).

This method is based on solving an approximation of the Boltzmann equation and thus is a kinetic-based

approach. For the waLBerla software library the LBM has been chosen due to its advantages for the

parallelization as well as its suitability for the scheduled applications. These applications cover moving

charged colloids [HF01], fluid flow in blood vessels [SGR+07] and multiphase flows through micro porous

media in fuel cells. In addition to a design flexible enough to include further applications, the framework

has to be suitable for the simulation of large domains, e.g. a representative volume (REV) of the gas

diffusion layer (GDL) in a polymer electrolyte fuel cell [Fue07]. The reason for the need of a large domain

in the example above is, that the size of the REV1 is about 0.45 × 0.45 × 0.1 mm3 and that the volume

of a lattice cell has to be δx3 = 0.13µm3, due to accuracy reasons and the limitation of the LBM to small

Knudsen Numbers. With a 10% porosity this leads to 1.8 · 1010 fluid cells, which results in a memory

requirement of about 6.5 TB for the LBM (see following paragraph on LBM and [DGF+07] on resource

requirements of waLBerla). Such a simulation is not feasible on a single CPU. Hence, the framework has

to be adapted for massively parallel architectures.

Therefore one major target is the utilization of the HLRB II which is an SGI Altix 4700 [HLR07] featuring

39 TB memory. A rough estimation shows the power of this machine: With the performance of the current

implementation of waLBerla (see Sec. 4.1) the above example results in a theoretical computation time of

about 3 hours per time step, given a single core CPU with enough memory. Assuming a parallel efficiency

of 70%, a time step would take about 1.5 seconds on the 4864 dual-core CPUs of the HLRB II. Thus

1Minimum size of REV based on findings from internal projects. No publications yet.
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running fifty thousand time steps would require about 20 hours, instead of 17 years. Hence, only with an

efficient parallelization it is possible to simulate the fluid flow in a GDL.

The remainder of this paper is organized as follows: In the subsequent paragraph a brief overview of the

LBM is given, followed by the introduction of the waLBerla patch concept in Sec. 2. These patches are

subdivisions of the fluid domain, which are the basic components for the parallelization, the optimization

strategies, and the flexibility which is needed for the integration of further applications. In Sec. 3 the im-

plementation of the process-local and global communication is explained in detail. Performance results are

given in Sec. 4, where the serial performance as well as the parallel performance for various architectures

has been evaluated. This first investigation discusses the suitability of the parallel concept for massively

parallel usage in basic geometries. The article is concluded in Sec. 5 with a summary and outlook.

Brief Introduction to the Lattice Boltzmann Method

The lattice Boltzmann method is one possible approach to solve CFD problems numerically. It originates

from the lattice gas cellular automata (LGCA), whereas McNamara and Zanetti were the first to introduce

the Boltzmann collision operator to LGCA in 1988 [MZ88]. Further work [HL97] has shown that the

LBM can be directly derived from the continuous Boltzmann equation. Hence, it is independent of the

LGCA and based on kinetic theory. It can also be shown that the LBM is equivalent to an explicit

finite difference scheme of the Navier-Stokes equations with second order spatial accuracy and first order

temporal accuracy [JKL05]. Amongst others the LBM has been successfully applied to free surface flows

[KPR+05], multiphase flows [SC93], flows through porous media [ZFB+02], fluid mixtures [LG03, Asi06],

blood flows [AHS06] and metal foams [KPR+05].

The advantages of the LBM are the explicit update rule, the fast mesh generation due to the Cartesian

grids, and that many macroscopic and hydrodynamic effects result from mesoscopic quantities. A detailed

description of the LBM can be found in [Hän04][WG00][YMLS03]. In the remainder of this Section an

overview of the governing equations of the LBM is provided.

For the waLBerla software library the D3Q19 stencil [QDL92] and the LBGK [WG00] model are used. With

the D3Q19 stencil the LBM is based on cubic cells with 19 unknowns, the particle distribution functions

(PDF) fα(xi, t), which are defined as the expected amount of particles in the volume δx3 located at the

lattice position xi with the lattice velocity eα,i. The lattice direction α points towards the neighboring

cells (see Fig. 1 for an illustration). Discretized in time and space the LBGK model is given in tensor
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Figure 1: The D3Q19 stencil

notation by:

fα(xi + eα,iδt, t + δt)− fα(xi, t) = −δt

τ

[
fα(xi, t)− f (eq)

α (ρ(xi, t), ui(xi, t))
]
. (1)

Due to simplicity quantities depending on xi and t will be written without their dependencies, e.g. fα =

fα(xi, t). Further the relaxation time τ can be determined from the lattice viscosity (Eq. 7). The

equilibrium distribution f
(eq)
α (ρ, ui) (Eq. 2) depending on the macroscopic velocity ui (Eq. 4) and the

macroscopic density ρ (Eq. 5) for the isothermal case is given by the Maxwell-Boltzmann distribution

function discretized for low mach numbers:

f (eq)
α (ρ, ui) = ρ · wα ·

[
1 +

1
c2
s

(eα,i · ui) +
1

2c4
s

(eα,i · ui)2 − 1
2c2

s

u2
i

]
. (2)

In the D3Q19 model the thermodynamic speed of sound is given by cs = 1√
3

and the lattice velocities eα,i

and lattice weights wα are:

eα,i =

8
>>>>>><
>>>>>>:

(0, 0, 0),

(±1, 0, 0), (0,±1, 0), (0, 0,±1),

(±1,±1, 0), (0,±1,±1), (±1, 0,±1)
wα =

8
>>>>>><
>>>>>>:

1/3,

1/18,

1/36,

α = 0

α = 1, 2, 3, 4, 5, 6

α = 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18

. (3)
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