FRIEDRICH—ALEXANDER—UNIVERSITAT ERLANGEN-NURNBERG
INSTITUT FUR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG)

Lehrstuhl fiir Informatik 10 (Systemsimulation)

N

A parallel K-SVD implementation for CT image denoising

D. Bartuschat, A. Borsdorf, H. Kostler, R. Rubinstein, M. Stiurmer

Lehrstuhlbericht 09-01

A parallel K-SVD implementation for CT image denoising

D. Bartuschat, A. Borsdorf, H. Kostler, R. Rubinstein, M. Stiirmer

Abstract

In this work we present a new patch-based approach for the reduction of quantum
noise in CT images. It utilizes two data sets gathered with information from the odd and
even projections respectively that exhibit uncorrelated noise for estimating the local noise
variance and performs edge-preserving noise reduction by means of the K-SVD algorithm.
It is an efficient way for designing overcomplete dictionaries and finding sparse represen-
tations of signals from these dictionaries. For image denoising, the K-SVD algorithm is
used for training an overcomplete dictionary that describes the image content effectively.
K-SVD has been adapted to the non-gaussian noise in CT images. In order to achieve close
to real-time performance we parallelized parts of the K-SVD algorithm and implemented
them on the Cell Broadband Engine Architecture (CBEA), a heterogenous, multicore, dis-
tributed memory processor. We show denoising results on synthetic and real medical data
sets.

1 Introduction

A major field in CT research has been the investigation of approaches for image noise reduction.
Reducing noise corresponds to an increase of the signal-to-noise ratio (SNR). Consequently, the
patient’s x-ray exposure can be reduced, since a smaller radiation dose sufficies for acquiring
the x-ray projection data, from which CT images are then reconstructed.

The main source of noise in CT is quantum noise. It results from statistical fluctuations
of x-ray quanta reaching the dectector. Noise in projection data is known to be poisson-
distributed. However, during the reconstruction process, by means of the (most common)
filtered backprojection method, noise distribution is changed. Due to complicated dependen-
cies of noise on scan parameters and on spatial position [15], noise distribution in the final CT
image is usually unknown and noise variance in CT images is spatially changing. Additionally,
strong directed noise in terms of streak artifacts may be present [13].

Several different algorithmic approaches for CT noise reduction exist, like methods that
suppress noise in projection data before image reconstruction. Other algorithms reduce noise
during CT reconstruction by optimizing statistical objective functions [17, 16]. Another com-
mon area of research includes the development of algorithms for noise reduction in recon-
structed CT images. These methods are required to reduce noise while preserving edges, as
well as small structures, that might be important for diagnosis. Standard edge-preserving
methods in the spatial domain are partial differential equation (PDE) based methods [20, 22].
In the frequency domain, wavelet-based methods for denoising are prevalently investigated
[9, 6].

We proposed CT denoising methods that deal with the complicated noise properties by
utilizing two spatially identical images containing uncorrelated noise. In order to differentiate
between structure and noise in a certain region, correlation can be computed and used as a
measure for similarity, what has been done for wavelet based methods in [3, 5]. Additionally,
position dependent noise estimation can be performed by computing the noise variance, as
in [4]. These wavelet based methods are compared to PDE based denoising methods with
nonlinear isotropic and anisotropic diffusion[18, 19].

2 METHODS 3

In this work, we present a new patch-based approach for the reduction of quantum noise
in CT images. It utilizes again the idea of using two data sets with uncorrelated noise for
estimating the local noise variance and performs edge-preserving noise reduction by means of
the K-SVD algorithm that is an efficient algorithm for designing overcomplete dictionaries and
then finding sparse representations of signals from these dictionaries [11]. For image denoising,
the K-SVD algorithm is used for training an overcomplete dictionary that describes the image
content effectively. This method performs very well for removing additive gaussian noise from
images and has been adapted to the non-gaussian noise in CT images.

In order to achieve close to real-time performance, the algorithm is — in addition to a
C++ implementation — also parallelized on the Cell Broadband Engine Architecture (CBEA),
a heterogenous, multicore, distributed memory processor. Its special architecture explicitly
parallelizes computations and transfer of data and instructions. For efficient code, this kind
of parallelism has to be exploited, together with data-level parallelism in the form of vector
processing and thread-level parallelism by means of software threads.

We introduce the idea of sparse representations and the K-SVD algorithm in section 2
and show how it can be used for CT image denoising. In section 3 we discuss the Cell imple-
mentation and in section 4 we present qualitative and quantitative denoising and performance
results both for synthetic and real medical data sets. Our work is summarized in section 5.

2 Methods

In the following, we describe sparse representations of signals, and methods for finding these,
given an overcomplete dictionary, which contains a set of elementary signals.

In combination with a dictionary representing the noise-free part of a noisy signal, sparse
representations can be used for signal denoising. A dictionary that has this property, can be
obtained by performing dictionary training with the K-SVD algorithm. The advantage of this
algorithm is, that it can be used for adapting the dictionary to the image to be denoised. This
trained dictionary can then be used for denoising the image, on which it was trained. This is
possible, since stationary Gaussian white noise is not learned by that dictionary.

2.1 Sparse Representations and the OMP Algorithm

By extending a set of elementary vectors beyond a basis of the signal vector space, signals can
be compactly represented by a linear combination of only few of these vectors. The problem
of finding the sparsest representation of a signal y € R™ among infinitely many solutions of
this underdetermined problem reads as

min||al|p subject to Da =y, (1)
a

where |[|-||o denotes the £y - seminorm that counts the nonzero entires of a vector |allo =
Z]K:o laj|°. The given full rank matrix D € R™ K represents the overcomplete dictionary,
which has a higher number of atoms K than the dimension of the atoms n. For known error
tolerance €, eq.(1) can be reformulated as

min||allp subject to [|[Da —y||2 <. (2)
a

This sparsest approximation allows a more compact representation of signals. It can be de-
ployed for removing noise from signals, if € fits the present noise.

2 METHODS 4

OMP Algorithm: Exactly determining the sparsest representation of signals is an NP-
hard combinatorial problem [8]. A simple greedy algorithm, the orthogonal matching pursuit
(OMP) algorithm [8] depicted in algorithm 1, is used for performing sparse-coding approxi-
mately by sequentially selecting dictionary atoms.

Algorithm 1 OMP algorithm: a = OMP(D, x,¢€ or L)

1 Init: Setrg=x,7=0,1=10
2 while j < L && ||r||3 > ¢ do
3 pP= DTI‘j_l
4 k= argmax |p|

k

5 I=1Uk

6 aI:D;rx

7 I'j:X—D[a[
8 j=7+1

9 end while

Here, I is a data structure for storing a sequence of chosen atoms’ indices. D; denotes
a matrix that comprises only those atoms of the dictionary, which have been selected in the
previous steps. In line 3, the projection of the residual on the dictionary is computed. After
that, the greedy selection step is performed in line 4. It selects the index k of the largest
element of p, which corresponds to the the atom with maximal correlation to the residual.
Having added the new atom index to the set I, the orthogonalization step in line 6 follows.
It ensures that all selected atoms are linearly independent [8]. Here, D]+ denotes the pseudo-
inverse of Dy. In step 7, the new residual is computed, which is orthogonal to all previously
selected atoms. When the stopping criterion is fulfilled, the coefficients have been found and
the algorithm terminates. The stopping criterion is fulfilled, if either the sparse representation
error is smaller than the error tolerance, or the maximum number of atoms L has been found.

OMP is guaranteed to converge in finite-dimensional spaces in a finite number of itera-
tions [8]. It consecutively removes those signal components, that are highly correlated to few
dictionary atoms. At the first iterations, the representation error decays quickly, as long as
highly correlated atoms have not yet been chosen. Later, when all similar atoms have been
selected, the residual decays only slowly and the residuals behave like realizations of white
noise [8]. Therefore, signal approximation is truncated, depending on the error tolerance € of

(2).

Batch-OMP Algorithm: The Batch-OMP algorithm [21], summarized in algorithm 2,
accelerates the OMP algorithm for large sets of signals by two techniques: It replaces the
computation of the pseudoinverse in the orthogonalization step, which is done in OMP by
a singular value decomposition (SVD), by a progressive Cholesky update. And it performs
pre-computation of the gram matrix G = DTD, which results in lower-cost computations at
each iteration.

The orthogonalization step and the following residual update in the OMP algorithm of the
previous section, can be written as

r=x-D;(DID;)'DFx. (3)

Due to the orthogonalization step, the matrix (D¥D;) stays non-singular. This matrix is
symmetric positive definite (SPD) and can therefore be decomposed by means of a Cholesky
decomposition. To this matrix, a new row and column are added at each iteration, since a

2 METHODS 5

Algorithm 2 a = Batch-OMP (p° = DTx, ¢ = xTx, G = D'D)

1 Init: Set I =0, L=[1],a=0,6=0,p=p’,n=1
2 while ¢! > ¢ do
3 k=argmax|p,_1|

k

Im=1"1tuk
5 if n>1 then
6 w = Solve for w {L"w =G, k}
| 0
7 where L™ = [W T wTw }
8 end if

ajn = Solve for {L" (L”)T apn = P(}n}
10 5 = Gmrajn
1 p,=p’ -4
12 " =alBm
13 e = n—1 _ gn 4 gn—1
14 n=n+1
15 end while

new atom is there added to D;. Thus, a new row is added at each iteration to its decomposed
lower triangular Cholesky matrix L.

The residual in the OMP algorithm does not need to be computed explicitly at each
iteration. Instead, only DTr, the projection of the residual on the dictionary, is required.
This can be exploited by directly computing D”r instead of the residual, yielding

p:DTr = pO—G[(DI)+X (4)
= p’—G/(Gr) 'p}. (5)

with p® = D”x. This is done in line 11 of algorithm 2.

One index I at a matrix indicates that only a sub-matrix is considered containing the columns
of the matrix which are indexed by I. For a vector this means that only those elements are
selected, which are indexed by I. Two indices I, denote that the sub-matrix consists of
indexed rows and columns.

From this, the projection can be computed without explicitly computing r. The update step
requires now only multiplication by the G, which can be selected from the pre-computed ma-
trix G. The matrix Gy s is inverted using the progressive Cholesky update yielding L" (L”)T.
This progressive Cholesky update is performed in lines 5 — 8. The new row of the decomposed
lower triangular Cholesky matrix is computed from the previous lower triangular Cholesky
matrix, and a vector that contains gram matrix entries from the k-th column of the gram
matrix and rows corresponding to the previously selected atoms I, by means of forward sub-
stitution. For more details, see [21].

The nonzero element coefficient vector ajn can then be computed from the formula

L" (L")Tapz = p?n, (6)

by means of a forward- and backward substitution, as done in line 9. Here, n denotes the
iteration counter.

However, when the OMP is used for solving an error-constrained sparse approximation
problem, the residual is required to check the termination criterion. Therefore, an incremental
formula for the 2 norm of the residual has been derived in [21]. This formula is used in line

2 METHODS 6

13 and the previous line to compute the residual norm. The stopping criterion is checked in
line 2.

It has been shown in [10], that for the presence of small amounts of noise, greedy algo-
rithms for computing sparse representations are locally stable. This holds, if the dictionary is
mutually incoherent and when it offers sufficiently sparse representations for the ideal noiseless
signal. The mutual coherence m (D) of a dictionary D is a measure for the similarity or linear
dependency of its atoms. It is defined as the maximal absolute scalar product between two
different normalized atoms of the dictionary:

df d;

D) = max ——+ 9.
m (D) A ddTd,

(7)

Dictionaries are called incoherent, if m (D) is small. Under these conditions, these algorithms
recover the ideal sparse signal representation, with an error that grows at most proportionally
to the noise level.

2.2 K-SVD Algorithm

K-SVD can be seen as a generalization of the K-means algorithm, that is commonly used for
vector quantization [2]. Given a set of N training signals in a matrix Y € R™*¥ the K-SVD
method searches for the dictionary D that best represents these signals.

It factors the matrix Y into the dictionary D € R™*¥ | which contains the K dictionary atoms,
and into the sparse coefficient matrix A € RE*N which comprises sparse representation
coefficients for each of the N signals y

i ; ' DA - Y% <e
min }_laifo subject to | 7 <e (8)
1

Here, a; denotes the sparse representation vector corresponding to the i-th training signal, €
denotes the error tolerance.

The K-SVD algorithm [2] consists of two steps. In the first step — the Sparse Coding Stage
— it finds sparse representation vectors a;. Any pursuit algorithm can be used to compute
a; for all training signals. The second step of the K-SVD algorithm — the Dictionary Update
Stage — updates the dictionary such that it best represents the training signals for the found
coefficients in A. Each of the K columns k£ in D is updated by the following steps of the
dictionary update:

e Find the set of training signals that use the current atom, defined by
wr = {i|1<i<K,ak(i) # 0}. Here, a%. denotes the kth row in A, which corresponds
to the atom that is updated.

e Compute the overall sparse representation error matrix E;. Each of the N columns of
this matrix stands for the error of the corresponding training signal, when the kth atom
is removed. It is computed by
E;=Y-) dal.

J#k

e In order to ensure sparsity when computing the representation vectors in the next step,
restrict E; by choosing only those columns that correspond to signals, which use the
current atom. I.e. choose only columns whose indices are contained in wy. The restricted
matrix is denoted by EkR.

2 METHODS 7

e Apply an SVD decomposition to obtain EkR = UXVT. The first column of U is assigned
to the dictionary atom di. The coefficient vector is updated to be the first column of V'
multiplied by the largest singular value ¥3(1,1).

The SVD finds the closest rank-1 matrix that approximates E;. By assigning the ele-
ments of this approximation to dj and a’% as shown before, the sparse representation error is
minimized.

By performing several iterations of these two steps, where the first step computes the co-
efficients of the given dictionary, and the second step updates the dictionary, the dictionary
is adapted to the training signals. The convergence of the K-SVD algorithm is guaranteed,
if the sparse coding stage is performed perfectly. In this case, the total representation error
|IDA — Y||% is decreased in each sparse coding step. In addition, the mean squared error
(MSE) can be reduced in the dictionary update stage, otherwise it does not change there.
The sparsity constraint is not violated. Thus, convergence of the K-SVD algorithm to a local
minimum is guaranteed, if the pursuit algorithm robustly finds a solution.

The approximate K-SVD algorithm (see Algorithm 3, [21]) starts with an initial dictionary,
which is improved in the following & iterations 4. In line 5, sparse representation coefficients
for each signal are computed by means of the OMP algorithm or any other suitable algorithm
for the current dictionary. Then, each of the K dictionary atoms is updated by a numerically
cheaper approximation than the one described above using SVD computation.

The first improvement in terms of numerical costs is, that it computes the error matrix only
for those signals, which use the atom to be updated. As can be seen in line 7, the error matrix
needs not to be computed explicitly. The set of indices of those signals, which corresponds to
wy from the previous section, is for simplicity denoted by I.

The update of the dictionary atoms is performed by optimizing ||E;||% = |[DA; — Y/||%,
over the dictionary atom and the coefficient vector

{dx, a’%} = argmin||E; ;, — dkagH% subject to ||dg|l2 = 1. (9)
dg,ap

For simplicity, (a% I)T is denoted by ay.
The second improvement in terms of numerical costs is that this problem is solved in the
approximate K-SVD algorithm by means of one iteration of a numeric power method. The
dictionary atom is obtained by

E; rop

d, = ————.
|Er ko||2

(10)

This is done in line 7. After having normalized the dictionary atom with respect to the ¢2
norm in line 8., the nonzero coefficients are computed by

ap — E?kdk (11)

in line 9. These coefficients are needed for the update of the next dictionary atom. As
mentioned before, the dictionary update step converges not to a global solution, but a local
solution. Thus, the approximate solution is sufficient, even if the power method is truncated
after one iteration.

2.3 Extension of K-SVD Algorithm to CT Image Denoising

The sparse approximation problem and the K-SVD algorithm are applied to remove noise from
a given image y and recover the original noise-free image = that is corrupted with additive,

2 METHODS 8

Algorithm 3 Approximate K-SVD algorithm

1 Input: Training Signals Y, initial dictionary Dy, sparse representation error tolerance € ,
number of iterations k

2 Output: Dictionary D and sparse coefficient matrix A
3 Init: Set D = Dy
4 forn=1...k do
5 Vi : A; = argmin a;
llallo
subject to |ly; — Da||3 < e
6 for k =1..K do
7 d=Yar, — DAq
8 d= 55
9 a=Y!'d - (DA))"d
10 D, =d,
11 Ak =al
12 end for
13 end for

zero-mean, white, and homogeneous Gaussian noise n with standard deviation o
y=x+n (12)

in [11]. The K-SVD algorithm trains the dictionary on the image y in order to learn structure
present in x while stationary Gaussian white noise is not learned.

Therefore, the image is decomposed into small patches of size y/n x /n stored in vectors
y € R™. The patches can be denoised by finding their sparse approximation for a given
dictionary and then reconstructing them from the sparse representation. The denoised patch
is obtained from X = Da, after the sparse representation a has been found by

a = argmin||al|o subject to |Da — y||3 < T. (13)
a

Here, T is dictated by € and the standard deviation of noise o of the patch. This optimization
problem can also be reformulated, such that the constraint becomes a penalty

a = argmin|Da — y|3 + ualo. (14)
a

The denoising K-SVD algorithm first trains the dictionary on patches of the noisy image
Y, and then reconstructs the denoised image X depending on the found dictionary. This can
be formulated as an optimization problem [11]:

X = argmin{A|Y = X|3+ Y mpllayllo + Y _|IDa, — R,X][3} (15)

7D7 p p

Here, the parameter A is a Lagrange multiplier that controls how close the denoised output
image X will be to the noisy image, as can be seen from the first term. The parameter p,
determines the sparsity of the patch p. R, denotes the matrix that extracts the patch p from
the image. These patches are generally overlapping in order to avoid blocking artifacts at
borders of patches.

In the K-SVD denoising algorithm, first the initial dictionary is defined, for example with
atoms that contain signals of a discrete cosine transform (DCT), or with noisy patches from
the image. The output image X is initialized with the noisy image, X = Y. Then, several
iterations of the K-SVD algorithm are performed with the following steps:

2 METHODS 9

e In the sparse coding stage, the sparse representation vectors a, of each patch ,X are
computed. Here, any pursuit algorithm can be used to approximate the solution of

vV, min||a,|| s.th. | Da, — R,X||3 < (Co?). (16)

The error tolerance is chosen to be the noise variance of the image multiplied by a gain
factor C.

e The dictionary update stage (as described in section 2.2) is performed on the patches of
the noisy image.

When the dictionary has been trained, the output image is computed by solving

X = argmin{\[Y — X|3 + 3 Day - B,X|3}. ()
x p

The closed-form solution of this simple quadratic term is

—1
X = ()\I +y° RZRP> <)\Y +y° RgDép> : (18)
p p

This solution can be computed by averaging the denoised patches, which are obtained from the
coefficients a,, and the dictionary D. Additionally, some relaxation is obtained by averaging
with the original noisy image, dependent on the parameter .

This original K-SVD denoising algorithm from [11] works for homogeneous white Gaussian
noise. But as described before, noise in CT images is nonstationary and can not assumed to be
white and gaussian. Thus, the K-SVD denoising algorithm is adapted to work for CT images
by means of considering the local noise variance, instead of assuming a constant global noise
level, in order to be able to eliminate nonstationary white Gaussian noise.

Instead of a single input image, two images u4 and up with uncorrelated noise are con-
sidered to estimate the noise distribution. These two images are obtained by separate recon-
structions from two disjoint subsets of projections with the same number of samples, P1 C P
and P2 C P, with P1N P2 = (), P1U P2 = P [5]. The average image wuy; is computed by
Uy = %. For each patch of uys that is considered in the algorithm, the noise variance is
computed from corresponding pixels of the noisy difference image up = ua — upg. This value
of the variance V (Ryup) for the corresponding patch (i, j) of the difference image is scaled
in order to obtain the noise variance of the patch P of the considered average image

V (Rpup)

(19)

The K-SVD denoising algorithm is decomposed into two stages:

e Dictionary Training Stage: Here, an initial dictionary Dry;; is defined and then trained
on randomly selected training patches of the noisy average image wj; by using the
general K-SVD algorithm. The resulting dictionary Dp;,. represents structure of the
image. After each dictionary update (except for the last) the dictionary is pruned from
having too similar atoms, in order to ensure low mutual coherence (7) of the dictionary.
These atoms are replaced by training patches with large relative representation error.
The representation error is normalized by the error tolerance in order to ensure that
no training patches with large representation error due to large amount of noise, are
used for replacing atoms. In the same way, atoms are replaced that are used in sparse
representations of too little training patches.

3 IMPLEMENTATION ON CELL BE. 10

e Image Denoising Stage: The formerly trained dictionary is used for denoising overlap-
ping patches of ups and then computing the denoised output image g, from a weighted
average of the original noisy image u;; and the obtained image from the denoised over-
lapping patches uger,-

In order to control the sparse approximation error tolerance in addition to the local noise
variance, we introduce gain factors that are multiplied by the local noise variance of each
patch. In the dictionary training stage, this parameter is denoted by Cryain. It is used there
as an additional means of controlling the proximity of noisy training patches and dictionary
atoms. In the denoising stage, this parameter is denoted by Cpe,. It steers the amount of
noise in the denoised image. In the dictionary training stage of the CT denoising K-SVD
algorithm, the error tolerance in the corresponding sparse coding stage of the original image
denoising K-SVD algorithm — as shown in (16) — is replaced by

Vp, € {TrPs} rrallin llapllo s.th. ||Da, — Ryunr|| < (Crrain - V (Rpun))) - (20)
P

Consequently, for each training patch in the set T'r Ps, sparse representation coefficients a,, are
computed up to the error tolerance controlled by Cryqy, and the local noise variance V (R,ups)
of the training patch. Likewise, the error tolerance in the sparse coding stage of the denoising
stage with the trained dictionary D p;,q is given by

Vp min |jayllo s.th. ||Drinaay — Rpunm|l < (Cpen - V (Rpunr))) (21)
ap

Since the error tolerances are now depenent on the noise variance of each patch, and not on a
global noise estimate, the Lagrange multiplier A in equation (17) becomes A p, whose elements
depend on the local noise variance of each patch, and the corresponding equation with the
notation used in this section reads

Uoyt = argmin{Ap|lurr — tgen||3 + ZHDFinalap — Rpugen|3}- (22)

Uden D

The output image uyy¢ can be computed according to equation (18) for each pixel of the

involved images by
1 UsupVar
up + 30 Uwght * UsupPt

Uout = 1+ 1 UsupVar . (23)
30 Uwgnt wght

This formula indicates which operations are applied to the corresponding pixels of each image.
Here, usyppt is the image that consists of the superimposed denoised patches, summed up at
their corresponding positions. The image w,4nt contains weights indicating in how many
different overlapping patches a certain pixel was contained. The pixel-wise quotient of these
two images results in the image uge, (which corresponds to X from equation (18)). The image
UsupVar contains the superposition of the local noise variances in each patch. The factor %
corresponds to the recommendation in [11] to set A\ = % for images in which a global noise
estimate exists.

3 Implementation on Cell BE.

The Cell Broadband Engine (BE) is distinguished from current standard cache-based multicore
architectures in that it contains two kinds of processors on a chip. One general purpose
PowerPC Processor Element (PPE) for control-intensive tasks and eight co-processors called
Synergistic Processor Elements (SPEs), 128-bit short-vector RISC processors specialized for

3 IMPLEMENTATION ON CELL BE. 11

data-rich and compute-intensive SIMD applications. Instead of a cache the SPEs include
local memory to store both instructions and data for the SPE. In that way, time demanding
cache misses are avoided, but explicit DMA transfers are required to fetch data from shared
main memory into the local store and back. This design explicitly parallelizes computation
and transfer of data and instructions [14], since those transfers have to be scheduled by the
programmer. In order to achieve maximum performance, the programmer has to exploit this
kind of parallelism, together with data-level parallelism and thread-level parallelism. Data
parallelism is available on PPE and particularly on SPEs in the form of vector processing,
where in one clock cycle, a single instruction operates on multiple data elements (SIMD).
Task parallelism is provided by the CBEA by means of software threads with one main thread
on the PPE that creates sub-threads which control SPEs. After initialization, execution can
proceed independently and in parallel on PPE and SPEs [12]. Depending on the most efficient
work partitioning, each of the SPE threads can operate concurrently on different data and
tasks. High performance in Cell programming can be achieved by making extensive use of
intrinsics. Intrinsics are inline assembly-language instructions in form of C function calls that
are defined in the SDK. By using these function calls, the programmer can control and exploit
the underlying assembly instructions without directly managing registers. This is done by
the compiler that generates code that uses these instructions and performs compiler-specific
optimization tasks, like data loads and stores and instruction scheduling, in order to make
the code efficient. SIMD registers are 128 bit wide and unified. Therefore, the same SIMD
operations can be performed on any of the vector data types that have been defined in the
SPE programming model for the C language. In this work, the single precision floating point
arithmetic is used. This is due to the fact that the first generation of Cell processors, on which
the algorithm has been programmed, is only fast for single precision. Hence, a SIMD vector
contains four floating point values.

Sparse Coding is the most time involving part of the K-SVD denoising algorithm, even
if the efficient Batch-OMP algorithm is used. This results mainly from the high number of
overlapping patches that have to be denoised, and from many training patches required to
train the dictionary properly. In order to speed up the algorithm, this part was chosen to be
implemented in parallel on the Cell processor. Due to the fact that the number of coefficients
is increasing in every iteration, an efficient vectorization of the complete Batch-OMP code is
hard to achieve. This is the case for operations in the progressive Cholesky update. However,
by restricting the size of patches to a multiple of 4, as well as the number of dictionary atoms K,
the matrix-vector multiplications can be performed with maximal SIMD performance. These
are used when computing the projection of the dictionary on the signal, as well as for updating
the projection of the dictionary on the current residual. Furthermore, SIMD can then be fully
exploited when searching the next atom with maximum correlation to the residual, as well as
for computing the initial residual norm.

3.1 Dictionary Training

Training patches do not influence each other, and thus the coefficient computation can be
done in parallel on different data.

In the parallelization strategy applied in this thesis, SPE threads are assigned with disjoint
sets of patches and corresponding error tolerances, for which they perform sparse coding.
Thus, work balancing is not an issue in terms of data dependencies.

However, it is not known a priori how long it takes for a certain SPE thread to perform
sparse coding for its set of patches. This results from the fact that depending on the er-
ror tolerance and the dictionary, the number of coefficients to be found varies for different
patches. Furthermore, the time a thread requires to start computation, to transfer patches

3 IMPLEMENTATION ON CELL BE. 12

and coefficients, and to perform sparse coding, is unpredictable. This results from the fact
that ressouces are shared between threads and that resources are managed by the operating
system. Thus, it would be no good strategy to predefine the patches for which each thread
has to compute coefficients. Instead, patches are distributed dynamically between threads in
chunks of a given number of patches.

The data structure in main storage, in which sparse representation coeflicients are stored
after being computed by the SPUs, requires a special ordering of the coefficients. It would
either take too long to let the PPU store the coefficients in this matrix while SPEs are running,
or require additional communication. Thus, data structures to which SPEs can transfer their
coeflicients, are defined. When the SPEs are finished, the PPU stores coeflicients from these
data structures in the coefficient matrix data structure.

In order to distribute disjoint chunks of patches among the SPE threads, an atomic counter
was used for synchronization. This counter indicates to SPE threads, for which patches
coefficients have to be found next. It also defines the location, to which the corresponding
cofficients have to be transferred. Each SPU program can compute the corresponding effective
addresses from the start address of the data structures on the PPE.

Each SPU computes the coefficients for trainings patches. Since many SPEs run concur-
rently, the work has to be distributed among them. As already mentioned above, the work
is dynamically distributed among the SPEs and the synchronization is done by an atomic
counter.

In the upper part of figure 1, the instance TrainPatches of class PatchSet is shown, in which
the patches and the corresponding error tolerances are stored in main memory. Training

TrainPatches

Training Patches

> EA(formerAtomCnt)
NN EE]
Error Tolerances
L LSA Y
I I | | HEEN
errTolsPatchsBuff[x].patches errTolsPatchsBuff]x].errTols

Figure 1: Work partitioning and DMA Transfer of Training Patches

patches are stored in an array that is denoted by TrainingPatches. The thin vertical lines
represent borders of training patches, which are actually stored in row-major order. Several
such training patches build a chunk of patches that is transferred to SPEs and for which co-
efficients are computed at once. These chunks are marked by bold lines. The corresponding
error tolerances are stored in an array of floats in the same class.

A chunk of patches and corresponding error tolerances is transferred to one of the structures

13
14
15

17
18
19
20

22
23
24
25
26

3 IMPLEMENTATION ON CELL BE. 13

in errTolsPatchsBuff on the SPE’s LS, which is shown in the lower part of this figure.

Since for each patch a fixed number of coefficients maxNumCoefsPATCH has been reserved by
the PPE, the address to which to transfer the coefficients, is uniquely defined.

Due to the double buffering that is described in the following, this offset is defined by the
atomic counter value oldAtomCnt of the last data transfer.

In order to speed up the coefficient calculation, data transfer is overlapped with compu-
tation by means of double buffering. Before the SPU starts transferring data, it increments
the atomic counter and stores the atomic counters’ value before it was incremented. In case
all other SPEs have already started computing coefficients of the last chunk of patches, the
SPE indicates the PPE that it has nothing more to do by sending a mailbox message, and
terminates.

The main part of the double buffering algorithm is shown below:

while (formerAtomCnt < ctx.numPatchPiles)

{

next_buffer = buffer"1; // switch buffer

// fetch patches and error tolerances to next buffer:
mfc_get ((void x) &errTolsPatchsBuff[next_buffer], [...],
tag_ids [next_buffer], 0, 0);

// wait for previously prefetched patches being transferred to LS
waittag (tag_ids[buffer]);

// compute coefficients of previously prefetched patches
compCoefs ((coefStruct *)&computedCoefsBuff|[buffer],
(errTolPatchStruct #)&errTolsPatchsBuff[buffer], [...]);

// transfer coefficients to PPE (main storage)
mfc_put ((void %) &computedCoefsBuff[buffer].coefVals, [...],
tag_ids [buffer],0,0);

// increase atomic counter and change corresponding variables
buffer = next_buffer;

oldAtomCnt = formerAtomCnt;

formerAtomCnt = _atomic_inc_return (synchronVars.cur_PatchPileCnt);

}

Inside the while loop, the buffer index that indicates to which buffer patches are transferred
next, is switched. Then the DMA transfer to this buffer is initiated. The command in line
11 makes sure that patches and error tolerances have already been transferred to the former
buffer. After that, the coefficient computation for patches in that former buffer is done by
calling the corresponding function. This function stores the calulated coefficients for the given
training patches and error tolerances in the buffer for coefficients with the same index from the
last patch transfer. In line 18 the command can be seen for putting the computed coefficient
values to the main storage. The same is done for the atom indices that correspond to the
coefficients, and for the number of coefficients. After having initiated this data transfer to
main memory, the buffer index of the patches that are currently transferred to the LS, is
assigned to the buffer for which coefficients are computed in the next iteration. The same is
done for the atom index.

In the last line, the atomic counter is incremented again. If it is smaller than the index of the
last chunk of patches, the while loop is executed again. If this is not the case, i.e. another
SPE has already reserved the last chunk, the following code is executed:

27
28

30
31
32

34
35
36
37

3 IMPLEMENTATION ON CELL BE. 14

// wait for previously prefetched data
waittag (tag_ids[buffer]);

// compute coefficients of previously prefetched patches
compCoefs ((coefStruct #)&computedCoefsBuff|buffer],
(errTolPatchStruct *)&errTolsPatchsBuff[buffer], [...]);

// transfer (last) coefficients to PPE (main storage)
mfc_put ((void %) &computedCoefsBuff[buffer].coefVals, [...],
tag_ids [buffer],0,0);

It first makes sure that all the DMA transfers to the buffer are completed. Then, the coefficient
computation for these patches is performed and the coefficients are stored in their buffer.
Finally, the DMA transfer of the coefficients to the main storage is started.

After that, the SPU waits until the coefficient transfer is completed, and then indicates the
PPU that it finished its work.

3.2 Image Denoising

When computing denoised patches in the image denoising stage on a CPU, a method of the
C++ K-SVD denoising framework can be used for extracting patches from the image. To let
the PPU use this method and then send these patches to the SPEs would be very inefficient.
Thus, patches have to be extracted by the SPEs from the noisy image stored in main storage.
For that purpose, to each SPE thread a stripe of the noisy image is assigned, from which the
SPU has to extract the patches. After having the patches at a certain position of the stripe
extracted and denoised, the superposition of these patches is computed by the SPUs. This
superposition is added to possibly formerly computed patch superpositions in the image at
the current position, and then transferred back to the PPE.

The syncronization strategy is analgous to that of the dictionary training. Once the SPE
thread finished denoising one stripe, it increases the atomic counter and denoises the next
available stripe. When all stripes have been denoised, the threads are terminated by the PPE.
If only one data structure for the superposition of the denoised patches was available on the
PPE, SPEs would have to add their stripes to the stripes transferred before. This would
require additional synchronization of SPEs’ accesses to this data structure. In order to avoid
this, separate data structures are provided by the PPE for each SPE.

The data structure SupImpPatchsImgPPE contains for each SPE thread a data structure of the
size of an image, to which it can add its stripes of denoised patches. WeightImgsPPE provides
a data structure of the same size, to which SPEs can add the number of patches in which
each pixel was contained. These data structures are needed for computing the final denoised
image by the PPE, after the SPEs have denoised all image stripes. First, the PPE sums up
the images SupImpPatchsImgPPE and WeightImgsPPE from all SPEs. Then it computes the
superposition of the noise variances for each patch, which will be needed by the C++ method
that is invoked later for computing the final denoised image.

Double-buffering that was used for the dictionary training, was extended to quadro-

buffering for the image denoising. This results from the fact that for extracting overlapping
patches in horizontal and vertical direction, two of the previously described buffers are needed
at once.
While at dictionary training a chunk of patches was assigned to each SPE, in the image de-
noising stage there is a horizontal stripe of the noisy image assigned to the SPEs. How these
stripes are chosen from the image is shown in Figure 2. Which horizontal stripe is assigned,
depends on the value of an atomic counter. Note that neighboring horizontal stripes are over-
lapping by PATCHSIZE elements.

3 IMPLEMENTATION ON CELL BE. 15

Image)
DoubleStripe
atomicCounter —» —
- A -
PATCHSIZE
viStrp numImgStripes+1
numDblStripes
' } 2 x PATCHSIZE

numlimgStripes

Figure 2: Work partitioning and DMA Transfer of Image Stripes

In order to be able to extract PATCHSIZE overlapping patches with distance of one pixel in
vertical direction from the stripe, this stripe has a height of twice the patch-size. Thus, it is
referred to as double-stripe.

Patches have to be extracted on the SPE from this double-stripe, since the data transfer
is performed by means of DMA, which requires in general alignment at 16 byte boundaries in
memory. Thus, blocks of the double-stripe with PATCHSIZE pixels in horizontal direction are
transferred between LS and main storage. These blocks are shown in Figure 2 as vertical lines
in the double-stripe.

Images in main storage are stored in row-major order. In order to let SPEs extract over-
lapping patches in vertical direction from the buffers in LS, PATCHSIZE pixel values from 2-
PATCHSIZE rows are stored in buffers on the LS. This is shown in Figure 3.

Image
<—atomicCounter
EA(atomicCounter)
L[] []
—
n(;gls nCols
Wit N]

Figure 3: Transfer of image blocks by means of DMA-lists

Thus, several DMA transfers are needed to transfer data that stored in a discontinuous
area in main storage to a continuous area in LS. These transfers can be managed by DM A-list
transfers on the Cell. For transferring denoised patches back to the main storage, the same
holds for the opposite direction.

1
2
3

0 3 O Ot

10
11

12

13

3 IMPLEMENTATION ON CELL BE. 16

For quadro buffering, four buffers at the local store (LS) are required for each of the
following data: Noisy patches, denoised patches, weights in how many different patches a
pixel was contained, and for the error tolerances.

Data in all of these buffers has to be transferred either from LS to main storage, or from
main storage to the LS. In order to be able to wait for data transfers to complete before
performing further steps, tag groups are built. For that purpose, four read - and four write
tags are needed.

Like in the dictionary training algorithm, the SPU increments for the image denoising
an atomic counter and is assigned with the corresponding double-stripe. In case the atomic
counter is already larger than the number of stripes in the image, the SPE indicates the PPE
that all double-stripes have already been distibuted among SPEs and terminates.

Then a loop over all double-stripes begins, and an inner loop over all blocks (vertical
stripes) in the current double-stripe (see Figure 2). In case the current vertical stripe is not
the last of those stripes in the double-stripe, the SPU waits for data with the current tag
to be written to main storage. Then the DMA-list transfer from the next vertical stripe of
the noisy image in the current double-stripe to a buffer for noisy image blocks in the LS, is
initiated. The same is done for the denoised patches. They will be needed after the current
patches have been denoised, and will be added to these already denoised patches in order to
compute the superposition. The weights and the error tolerances are stored to their buffers,
too. These buffers correspond to the current tag index (vtStrp)numBUFFs).

In case the current vertical stripe is the last one in the current double-stripe, no new data is
transferred to the LS buffers.

After these DMA-list transfers have been initiated, the SPU waits for the DMA-list trans-
fers that have been initiated in the previous iteration to finish. Of course only if the current
iteration is not the first one.

If there are already two buffers available, the following instructions, shown as soucre code,
are executed.

if (vtStrp >= 2) {
// determine the number of rows to be extracted from current double—patch
numPatchRowsExtract = (formerAtomCnt != (numDoublStripes—1)) ?
PATCHSIZE : PATCHSIZE+1;

// compute denoised patches, add them to two most recent buffers
for (curRow=0; curRow<numPatchRowsExtract; 4++curRow)

{
extractPatches ((errTolPatchStruct #*)&errTolsPatchsDen, (vec_floatd =)
noisyPatchsBuff [(vtStrp —2)7mumBUFFs] , (vec_floatd =)
noisyPatchsBuff [(vtStrp —1)%mumBUFFs] , curRow) ;
extractErrTols ((errTolPatchStruct #*)&errTolsPatchsDen, (vec_floatd =)
errTolsBuff [(vtStrp —2)%numBUFFs] , curRow) ;
compCoefs (...& computedCoefs, ...&errTolsPatchsDen, [...]);

reconstrAddPatchs ((vec_float4d *)densdPatchsBuff[(vtStrp —2)%numBUFFs] ,
(vec_float4 =*)densdPatchsBuff[(

vtStrp —1)%mumBUFFs] (coefStruct #)&computedCoefs, (vec_floatd =)
Dict, curRow);
addWeights ((vec_uint4 *)WeightsBuff [(vtStrp —2)%numBUFFs] , (
vec_uint4 x)WeightsBuff[(vtStrp —1)%mumBUFFs] curRow) ;
} // end for

First, the number of rows of the current buffers, for which the following computations will
be done in the following for-loop, is determined in line 3. The loop iterates over the rows of
the two current buffers for noisy patches, denoised patches, error tolerances and weights.

14

15
16

3 IMPLEMENTATION ON CELL BE. 17

In the current row of both buffers that contain noisy image blocks, patches are extracted.
These are stored in the input data structure for the Batch-OMP algorithm. The first buffer
in the function call is the buffer, from which patches have been extracted in the previous
iteration. This buffer corresponds to buffer2 in Figure 4. The content of second buffer has
just been transferred to the LS.

The next function that is invoked extracts error tolerances for sparse coding from its buffer and
stores them in the input data structure for the Batch-OMP algorithm. These error tolerances
correspond to the previously extracted patches.

Then the coefficients of the extracted noisy patches are computed. These coefficients are used
as input parameters for the next function.

This function reconstructs the noise-free patches from the coefficients and the dictionary. The
reconstructed patches are then shifted to the position from which they have previouly been
extracted, and are summed up with the previously denoised patches in the corresponding
buffers. Finally, the weights that correspond to the denoised patches are summed up with
previously computed weights in their buffers.

The reason for making the for-loop termination criterion dependent on the current double-
stripe is that usually from PATCHSIZE rows of the doublebuffer patches are extracted. The last
row is already the first patch of the next doublestripe. However, when the last doublestripe
is denoised, there is no next one. Thus, the last row of patches is also denoised in this case.

buffer 1 buffer 2

curRow »

PATCHSIZE < |

>— 2 x PATCHSIZE

PATCHSIZE

Figure 4: Extraction of overlapping patches from two buffers

Now that the patches in all rows of the buffers have been denoised, the buffer with de-
noised patches and the buffer with the weights, to which patches have been added twice, are
transferred to main storage.

putPatchsPPE ((void*)densdPatchsBuff[(vtStrp —2)%uumBUFFs] ,
SupImpPatchsImgPPE_ptr, cmpOffset_Patchs (formerAtomCnt
vtStrp —2), (vtStrp —2)%numBUFFs, write_tags [(vtStrp —2)%uumBUFFs]) ;

putWeightsPPE ((void*) WeightsBuff [(vtStrp —2)%uumBUFFs], ...);

} // end if

4 RESULTS 18

Here, all vertical stripes of the current double-stripe, except for the last one, have been de-
noised.

This last vertical stripe requires some special treatment. Like for the last double-stripe
described before, the last vertical stripe has no neighbour. Thus, the last patches in the
column also have to be denoised.

A last special case is the patch in the right lower corner of the image. For this case all
functions for extracting patches and tolerances, sparse coding and reconstruction of denoised
patches, and more are performed in a single function.

Since the current doublestripe has now completely been denoised, the atomic counter is
increased in order to get the next double-stripe assigned. Before that, the content of the buffer
to which denoised patches have been added twice, and of the corresponding weights buffer are
transferred to main storage.

At the end of this algorithm, the PPE is indicated by means of a mailbox message that the
computations are finished, and the SPU program terminates after having freed all allocated
memory and released all tag IDs.

4 Results

4.1 Computational Performance

Next we measure the performance of parts of the K-SVD algorithm. The time measurement
was performed by means of gettimeofday() C function.

Comparison of Runtime on Cell and CPU: First, the runtime of the Cell implementa-
tion on a PlayStation® 3 with 6 SPEs was compared to the corresponding C+4 implemen-
tation on an Intel® Core"2 Duo CPU 6400 with 2.13GHz. The following parameters were
used:

e The number of coefficients was set to 16 and the parameters Crp,qn and Cpe, were set
to zero.
This way, for each patch there is the same number of coefficients found, independently
of the local noise variance

e The number of training patches was set to 8000, since the original K-SVD algorithm
takes too long otherwise

e The number of dictionary atoms was set to 128, the patch size to 8
e The image that was denoised had a size of 512 x 512 pixel

Execution times are shown in table 1. We show times for sparse coding for computing the
sparse representation coefficients of training patches in the dictionary training stage (Train)
and the computation of the sparse representation of image patches and the superposition of
denoised patches in the image denoising stage (Denoise). In addition, the dictionary update
(Dict Update) and the dictionary pruning step (Clear Dict) are compared to each other. The
corresponding methods are implemented only in C+4. Thus, these methods were only run
by the PPE on the Cell.

4 RESULTS 19

Table 1: Execution times on CPU and Cell in seconds. CPU 1 uses K-SVD and OMP, CPU 2 and
Cell approximate K-SVD and Batch-OMP.

Method Train Dict Update Clear Dict Denoise

CPU1 21.10 374.10 0.02 700.00
CPU 2 1.55 0.69 0.02 51.00
Cell 0.10 1.75 0.11 3.10

Scaling on the Cell: Scaling results were produced on the PlayStation® 3 and the Cell
Blade QS20 and for the same setting and parameters as in the previous experiment.

Strong scaling was measured for the sparse coding in the dictionary training stage by
fixing the problem size to 24000 training patches and increasing the number of SPEs for
computations. Results for dictionary training and image denoising are shown in figure 5.
Measurements on PS3 and on the Cell Blade conincide. As expected with increasing number

strong scaling for dictionary training

2000 T \ \ \ T I
' . | 77 Cell Blade
1500 | TV —Ps3 i
. .
< 1000 .
500 B
O | 1 1 1 1 | |
0 2 4 6 8 10 12 14 16
number of SPEs
X 104 strong scaling for image denoising
2 1 \ \ \ T I
: ! | = Cell Blade
15F _e_ Fs3 H
. .
s 17]
05 B
O | 1 1 1 1 | |
0 2 4 6 8 10 12 14 16

number of SPEs

Figure 5: Strong scaling of K-SVD on Cell.

of SPEs the speedup is decreasing.
The parameters for weak scaling on the PS3 are summarized in table 2. Here, patches

Table 2: Weak scaling parameters.

#SPEs | 1 | 2 | 4 | 6 |
patches | 3000 | 6000 | 12000 | 18000
pixel 208 | 296 | 416 | 512

4 RESULTS 20

denotes the number of used training patches, and # pixel the number of pixel in each dimension
of the image. All other parameters had the same values as in the strong scaling measurements.
In figure 6, a graph of the weak scaling results is found. Here, the execution time stays almost
constant with increasing number of SPEs and thus weak scaling is nearly optimal.

weak scaling for dictionary training
T T T T

tinms

1501 i ‘ ‘ ‘ ‘ .

O I | | | |
0 1 2 3 4 5 6
number of SPEs

weak scaling for image denoising
4000 ! T T T

[S e

3000

- —

2000

tinms

1000 ; 1

O I | | | |
0 1 2 3 4 5 6
number of SPEs

Figure 6: Weak scaling of K-SVD on Cell.

4.2 Quantitative Denoising Results

In order to quantify how much noise is suppressed by a denoising method, the noise reduction
rate (NRR) is computed. A measure for how well structure is preserved is obtained from the
modulation transfer function (MTF). The MTF was determined at an edge of the phantom
images generated by the DRASIM software package [1]. In addition to the object data, also
quantum noise was simulated in these images and noise-free ground truth data is available for
computing noise reduction. In figure 7, we marked the region of a phantom image in which the
MTF was measured. As described in [5], the edge profile was sampled in the selected region
around an edge, and then this profile was averaged along the edge. By deriving the edge
profile, the line spread function (LSF) is obtained. The Fourier transform of the LSF leads to
the optical transfer function (OTF), whose magnitude is the MTF. The MTF is normalized
to MTF(0) = 1. For comparing different MTFs, the MTF(p59) = 0.5 value can be used. It
represents the spatial frequency for which an MTF has a value of 0.5. From the p5o value the
edge-preservation rate (EPR) is computed [5]

pdenoised
EPR="50____ (24)
original
50

4 RESULTS 21

MTF

Noise Reduction:" - S

Figure 7: Example of noisy phantom image with 10HU contrast for measuring NRR and MTF
(adapted from [5]).

It describes how well edges are preserved, by comparing the psg value of a denoised image
with the (ps0) value of an ideal noise-free image. The NRR is now defined as [5]

O.denozsed

NRR=1- ~noisy (25)
It is obtained by measuring the standard deviation of the noise in a homogeneous region of
the phantom images (see figure 7).

Reliable measurements of the MTF with the edge method described above can only be
achieved, if the contrast of the edge is much higher than the noise at the edge [7]. Since
this is not the case in the phantom images, for each MTF measurement for a given contrast,
the MTF was computed from the average of 100 denoised slices. The noise reduction rate
was also obtained by computing the standard deviation of the noise in these 100 slices and
then computing the mean value of these standard deviations. Note that when the K-SVD
algorithm is used for training a dictionary on these noisy phantoms, the dictionary will mainly
learn noise, if anything at all. This results from the fact that very little structure is present in
these images, since the phantoms consist mainly of homogeneous regions. Thus, the denoising
was performed with an untrained undercomplete DCT dictionary with 36 atoms, and with a
dictionary with 128 atoms, which has been trained before on Abdomen images for Cryqi = 30
with 5 K-SVD iterations.

MTFs for phantom images of different contrasts that have been denoised with the elsewhere
trained dictionary are shown in figure 8 for Cpe, = 30. In order to see how an ideal MTF
would look like for these images, an MTF is shown, which has been computed from the ideal
noise-free phantom image with 100HU contrast. This MTF is denoted by 100HU orig in
the MTF plot. The closer other MTFs are to this curve, the better the denoising result.
As expected, MTFs for smaller contrasts fall further below the ideal curve than MTFs of
images with higher contrasts. That means, the smaller the contrast is, the more resolution

4 RESULTS 22

is lost. However, edges are preserved well with this method for the given parameters, since
all MTFs are close to the ideal curve. The corresponding edge preservation rate and the
noise reduction rate are shown in figure 9. For the EPR, the reference images are for each
contrast the corresponding ideal phantom images. As already seen from the MTFs, the EPR
decreases for images with smaller contrasts. The NRR plot shows that the noise is reduced
by approximately 50% for all contrasts.

Edge MTF
1 T T T T i

% - =10HU
09[3 —+—20HU i

) —— 40HU
08" | —*—B0HU H

Y —+— 80HU
07F " ——100HU H

" — 100HU orig
06 N i
~
\.
05r Y -
%
\.
0.4 ‘\ 1
A
A
03[) -
\.
\.
02+ NN .
N\
\.
01) _
0 | | | | o HI
0 2 4 5 8 10 12 14
Ip/cm

Figure 8: MTFs of phantom images with different contrasts denoised with K-SVD for Cr;.qin = 30
and Cp., = 20.

In order to get an overview of the relationship between EPR and NRR for different values of
the parameter Cpey,, EPR and NRR are shown in figure 10 for Cp.,, € [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100].
The values of EPR and NRR were computed from denoised phantom images with 100HU con-
trast. The plot contains one curve for the untrained DCT dictionary, and one curve for the
dictionary that was trained on a real medical image (see figure 11). Measurement points with
a high NRR correspond to large values of Cpey, those points with a small NRR correspond to
small values of that parameter. As expected, the EPR rises with falling NRR, i.e. the more
noise is reduced, the stronger edges are blurred. The EPR for a given NRR is much better for
the trained dictionary than for the untrained one, even though the dictionary was trained on
a different CT image.

4.3 Qualitative Denoising Results

In order to get an impression of the visual quality of the CT denoising K-SVD algorithm and
to find parameters for which is works best, we tested it on real clinical CT data sets. A slice
of one of these of the upper body and mainly containing the liver is shown in figure 11. This
image has been obtained by averaging the two input images that have been reconstructed

5 CONCLUSION AND OUTLOOK 23

i i i i i i i i
10 20 30 40 50 60 70 80 20 100 10 20 30 40 50 60 70 80 90 100
contrast in HU contrast in HU

Figure 9: EPR (left) and NRR (right) for phantom images with different contrasts denoised with
K-SVD for Cry4in = 30 and Cpe,, = 20.

from disjoint projections (the odd and the even ones) of the same scan. This average image is
equal to the image that would be obtained when all projections are used for reconstructing the
image. The difference image up — computed by up = “45*2 for input images u4 and up -
visualizing uncorrelated noise contained in both reconstructed images is depicted in figure 11.
Since gray values in a reconstructed CT image can be distributed over different ranges of
houndsfield units (HUs), depending on the tissue and on scanning parameters, windowing is
performed for displaying the images. That means only HUs in a certain range, or window,
are represented as gray valued in the image. Parameters for windowing are ¢, the HU at the
center of the window, and w, the width of that window. The Liver image is displayed for
c =200 and w = 700, whereas the difference images are displayed for ¢ = 0 and w = 200.

In figure 12 denoised Liver images are found for different parameters and Crppqin = 30
together with the corresponding difference images. Best results in terms of noise reduction
and edge preservation seem to be achieved for Cp.,, = 20. For lower values, the edges are well
preserved, but the noise reduction decreases. For higher values edges are blurred too much.

5 Conclusion and Outlook

In this paper, a patch-based algorithm for denoising of images was adapted to medical CT
images.

Our first image denoising results are promising. A qualitative analysis was performed
showing that the K-SVD CT denoising algorithm considers the nonstationarity of noise. Fur-
thermore, structures and edges are preserved, while noise is reduced. A quantitative analysis
compared noise reduction and edge preservation dependent on the contrast of denoised images.
Here it is found that dictionary training is efficient, i.e. denosing by means of a dictionary that
was trained on other CT images delivered better results than an untrained DCT dictionary.

The implemented algorithm provides a solid basis for further investigations in several di-
rections. These include incorporation of the covariance into the sparse coding, in order to
reduce non-Gaussian noise more effectively. Additional statistical parameters like the correla-
tion coefficient could be incorporated into the K-SVD CT denoising. Furthermore, the existing
algorithm for 2D could be extended to 3D, which was shown to lead to further improvements
of the denoising properties for similar algorithms. In addition to the currently implemented
sparse coding for dictionary training and image denoising, also the dictionary update could be
migrated to the Cell. Another direction worthwhile to go is the implementation of the sparse
coding algorithm and the dictionary update on Graphics Cards.

REFERENCES

24

EPR vs. NRR
1 T T T T T T

—+— DCT Dicticnary
" elsewhere trained Dict

0.8

0.7

0.6

NRR

0.5

0.2

0.1 7

0.2 0.3 0.4 0.5

EPR

0.6 0.7 0.8 0.9 1

Figure 10: Relationship between EPR and NRR for different values of C'p.,, measured at phantom
image with 100HU contrast for an untrained DCT dictionary and a trained dictionary.

References

1]

2]

Segmented multiple plane reconstruction: A novel approximate reconstruction scheme for
multi-slice spiral CT.

M. Aharon, M. Elad, and AM Bruckstein. The K-SVD: An algorithm for designing of
overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Pro-
cessing, 54(11):4311-4322, 2006.

A. Borsdorf, R. Raupach, and J. Hornegger. Wavelet based Noise Reduction by Iden-
tification of Correlation. In K. Franke, K. Miiller, B. Nickolay, and R. Schéfer, editors,
Pattern Recognition (DAGM 2006), Lecture Notes in Computer Science, volume 4174,
pages 21-30, Berlin, 2006. Springer.

A. Borsdorf, R. Raupach, and J. Hornegger. Separate CT-Reconstruction for Orienta-
tion and Position Adaptive Wavelet Denoising. In A. Horsch, T. Deserno, H. Handels,
H. Meinzer, and T. Tolxdoff, editors, Bildverarbeitung fir die Medizin 2007, pages 232—
236, Berlin, 2007. Springer.

Anja Borsdorf, Rainer Raupach, and Joachim Hornegger. Separate CT-Reconstruction
for 3D Wavelet Based Noise Reduction Using Correlation Analysis. In Bo Yu, editor,
IEEE NSS/MIC Conference Record, pages 2633-2638, 2007.

REFERENCES 25

[6]

[11]

[12]

[13]

[14]

Figure 11: Liver CT scan average image (left) and noise image (right).

SG Chang, B. Yu, and M. Vetterli. Spatially adaptive wavelet thresholding with context
modeling forimage denoising. Image Processing, IEEE Transactions on, 9(9):1522-1531,
2000.

I. A. Cunningham and B. K. Reid. Signal and noise in modulation transfer function
determinations using the slit, wire, and edge techniques. Medical Physics, 19(4):1037—
1044, July 1992.

G. DAVIS, S. MALLAT, and M. AVELLANEDA. Adaptive greedy approximations.
Constructive approximation, 13(1):57-98, 1997.

D.L. Donoho. Denoising by soft-thresholding. IEEE Trans. Inform. Theory, 41(3):613—
627, 1995.

DL Donoho, M. Elad, and VN Temlyakov. Stable recovery of sparse overcomplete repre-
sentations in the presence of noise. Information Theory, IEEE Transactions on, 52(1):6—
18, 2006.

M. Elad and M. Aharon. Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Trans. Image Process, 15(12):3736-3745, 2006.

M. Gschwind. The Cell Broadband Engine: Exploiting Multiple Levels of Parallelism in
a Chip Multiprocessor. International Journal of Parallel Programming, 35(3):233-262,
2007.

J. Hsieh. Adaptive streak artifact reduction in computed tomography resulting from
excessive x-ray photon noise. Medical Physics, 25:2139, 1998.

IBM Corporation, Rochester MN, USA. Programming Tutorial, Software Development
Kit for Multicore Acceleration, Version 3.0, 2007.

A. C. Kak and Malcolm Slaney. Principles of Computerized Tomographic Imaging. IEEE
Press, 1988.

REFERENCES 26

[16]

[17]

[18]

[21]

[22]

(a) CDen =15 (b) CDen =20

(d) CDen =15 (e) CDen =20 (f) CDen =35

Figure 12: Denoised Liver CT scans (Cryain = 30).

P.J. La Riviere, Junguo Bian, and P.A. Vargas. Penalized-likelihood sinogram restoration
for computed tomography. Medical Imaging, IEEE Transactions on, 25(8):1022-1036,
Aug. 2006.

Tianfang Li, Xiang Li, Jing Wang, Junhai Wen, Hongbing Lu, Jiang Hsieh, and Zhengrong
Liang. Nonlinear sinogram smoothing for low-dose x-ray ct. Nuclear Science, IEEE
Transactions on, 51(5):2505-2513, Oct. 2004.

M. Mayer, A. Borsdorf, H. Késtler, J. Hornegger, and U. Riide. Nonlinear Diffusion Noise
Reduction in CT Using Correlation Analysis. In J. Hornegger, E. Mayr, S. Schookin,
H. Feuiner, N. Navab, Y. Gulyaev, K. Holler, and V. Ganzha, editors, 3rd Russian-
Bavarian Conference on Biomedical Engineering, volume 1, pages 155-159, Erlangen,
Germany, 2007. Union aktuell.

M. Mayer, A. Borsdorf, H. Kostler, J. Hornegger, and U. Riide. Nonlinear Diffusion vs.
Wavelet Based Noise Reduction in CT Using Correlation Analysis. In H.P.A. Lensch,
B. Rosenhahn, H.-P. Seidel, P. Slusallek, and J. Weickert, editors, Vision, Modeling, and
Visualization 2007, pages 223-232, 2007.

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intell., 12(7):629-639, 1990.

R. Rubinstein, M. Zibulevsky, and M. Elad. Efficient Implementation of the K-SVD
Algorithm and the Batch-OMP Method.

Joachim Weickert. Theoretical foundations of anisotropic diffusion in image processing.
In Theoretical Foundations of Computer Vision, pages 221-236, 1994.

