Schlussbericht

der Forschungsstelle(n)

1. Institut für Gesteinshüttenkunde (GHI), RWTH Aachen

2. Institut der Hüttentechnischen Vereinigung der Deutschen Glasindustrie (HVG)

zu dem über die

im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF)

> vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages

> > geförderten Vorhaben 16181 N

Einsatz alternativer boroxidhaltiger Rohstoffe in der Glasindustrie

(Bewilligungszeitraum: 01.08.2009 - 31.07.2011)

der AiF-Forschungsvereinigung

Hüttentechnische Vereinigung der Deutschen Glasindustrie e.V. -HVG

Reinhord Convart

Aachen, 25.11.2011 Ort, Datum Prof. Dr. rer. nat. Reinhard Conradt Name und Unterschrift des/der Projektleiter(s) an der/den Forschungsstelle(n)

Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

Inhaltsverzeichnis

Inhalt	sverze	ichnis	i
Abbilo	dungs	verzeichnis	ii
Tabel	lenver	zeichnis	iv
1.	Zusar	nmenfassung	1
2.	Forsc	hungsthema	3
3.	Wisse	enschaftlich-technische und wirtschaftliche Problemstellung	3
4.	Stand	l der Forschung & Vorarbeiten der RWTH Aachen University	4
5.	Forsc	hungsziel	6
6.	Lösur	ngsweg zur Erreichung des Forschungsziels	6
7.	Ergeb	onisse in Laborversuchen	8
	7.1	Recherche Boroxidträger	8
	7.2	Charakterisierung der einzelnen Borrohstoffe	.10
	7.3	Rohstoffauswahl und Gemengeberechnung	.16
	7.4	Elektrische Leitfähigkeit	.17
	7.5	Batch Free Time (BFT)	.24
	7.6	10 kg Tests	.27
	7.7	Thermochemische Berechnungen	.34
	7.8	Auswertung und Interpretationen der erarbeiteten Ergebnisse	.39
8.	Ergeb	onisse in der Industriekampagne	.40
	8.1	Schmelzversuche in der Industrieanlage	.40
	8.2	Emissionsmessungen	.46
9.	Wirts	chaftliche Bedeutung für kleinere und mittlere Unternehmen	.55
	9.1	Voraussichtliche Nutzung der erzielten Forschungsergebnisse	.55
	9.2	Möglicher Beitrag zur Steigerung der Leistungs- und Wettbewerbs-	
		fähigkeit der kmU	.56
10.	Plan z	zum Ergebnistransfer in die Wirtschaft	.56
11.	Verwe	endung der Zuwendung und Förderhinweis	.57
Litera	tur		.59
Anhai	ng		.64

Abbildungsverzeichnis

Abbildung 1:	Borlagerstätten auf der Welt [KIS 1975]8
Abbildung 2:	Kommerzielle Borherstellung zwischen 2002-20069
Abbildung 3:	Phasendiagramm des Systems $Na_2O \cdot B_2O_3 \cdot 4H_2O$ –
	$2CaO\cdot 3B_2O_3\cdot 5H_2O-H_2O~(isotherm\text{-}isobar)12$
Abbildung 4:	Phasendiagramm des Systems $2CaO\cdot 3B_2O_3\cdot 5H_2O$ –
	$2MgO\cdot 3B_2O_3\cdot 7H_2O-H_2O \12$
Abbildung 5:	Phasendiagramm des Systems $4CaO \cdot 5B_2O_3 \cdot 7H_2O - B_2O_3 \cdot H_2O - O_3 \cdot H_2O - $
	H ₂ O13
Abbildung 6:	Kernit und Tincal13
Abbildung 7:	DTA-TG Ergebnisse der Gruppe der Na-Borminerale; N = Na ₂ O,
	$B = B_2O_3, H = H_2O15$
Abbildung 8:	DTA-TG Ergebnisse für die natürliche Mineralmischung "Kernit"
	(vgl. Abb. 6); Detailauswertung15
Abbildung 9:	DTA-TG Ergebnisse der Gruppe der Mg-Ca-Na-Borminerale16
Abbildung 10:	Conductogramm eines Kalk-Natron-Silicat-Gemenges
Abbildung 11:	Elektrische Leitfähigkeit κ von Gemengen mit unterschiedlichen
	Boroxidträgern (Laborversuche, 10 K/min)18
Abbildung 12:	Thermodynamische Berechnung des Phasenbestandes im
	Gleichgewicht für eine kommerzielle Laborbedarfsglas-
	Zusammensetzung19
Abbildung 13:	Conductogramme vom Lampenglasgemengen mit unterschied-
	lichen Boroxidträgern19
Abbildung 14:	Phasendiagramm des Systems Na $_2O$ · BaO· B $_2O_3$ – Na $_2CO_3$ 20
Abbildung 15:	Conductogramme von E-Glasgemengen21
Abbildung 16:	Thermodynamische Berechnung des Phasenbestandes im
	Gleichgewicht für eine kommerzielle E-Glas-Zusammensetzung22
Abbildung 17:	Conductogramme von Gemengen einer Glaswolle23
Abbildung 18:	BFT-Ergebnisse von Laborbedarfsglas-Gemengen24
Abbildung 19:	BFT-Ergebnisse von Lampenglasgemengen25
Abbildung 20:	BFT-Ergebnisse von E-Glas-Gemengen

Abbildung 21:	BFT-Ergebnisse von Glaswolle-Gemengen				
Abbildung 22:	Schematische Darstellung der 10 kg Tests27				
Abbildung 23:	Vertikale Temperaturverteilung an fünf unterschiedlichen				
	Positionen im Gemenge (vgl. Abb. 22)28				
Abbildung 24:	Reproduzierbarkeit der Methode, bestimmt an früher				
	untersuchten Glaswollegemengen; Doppelversuch				
Abbildung 25:	Mittelwert des Zeitbedarfes für das Vollenden der endothermen				
	Reaktionen im Glaswollegemenge				
Abbildung 26:	Temperaturverteilung in Laborbedarfsglasgemengen im 10 kg				
	Test				
Abbildung 27:	Temperaturverteilung in Lampenglasgemengen im 10 kg Test31				
Abbildung 28:	Temperaturverteilung in E-Glas-Gemenges im10 kg Test32				
Abbildung 29:	Temperaturverteilung in Glaswollegemengen im 10 kg Test32				
Abbildung 30:	Conductogramme der Glaswollegemenge, ergänzt durch Daten				
	der Temperaturleitfähigkeit a der Gemenge als Funktion des				
	temperaturbezogenen Stadiums der Gemengeschmelze33				
Abbildung 31:	Wärmebilanz einer Schmelzwanne mit Wärmetauscher;35				
Abbildung 32:	Wärmebedarf der chemische Reaktionen ΔH_{chem} im Gemenge38				
Abbildung 33:	Nutzwärme ΔH_{ex} des Schmelzens				
Abbildung 34:	Eingangsleistung P _{in} [kW] der Wanne in der Abhängigkeit von der				
	Zeit [Tage] während einer industriellen Schmelzkampagne mit				
	borax-pentahydrat-haltigem (Referenz)- und ulexithaltigem				
	Gemenge41				
Abbildung 35:	Nutzleistung P_{ex} [kW] des Schmelzprozesses als Funktion der				
	Zeit [Tage], wie Abb. 3442				
Abbildung 36:	Entnahmetemperatur der Glasschmelze in Durchlass, T_{ex} ,				
	zwischen Referenz- und Test-Phase (mit Ulexit)43				
Abbildung 37:	Eingangsleistung P_{in} als Funktion des Durchsatzes in t/h44				
Abbildung 38:	Nutzleistung P_{ex} in kW als Funktion des Durchsatzes in t/h44				

Tabellenverzeichnis

Tabelle 1:	Borgehalt, Korngrößenverteilung und Phasenbestand von der
	Gruppe der Na-Borminerale11
Tabelle 2:	Borgehalt, Korngrößenverteilung und Phasenbestand von der
	Gruppe der Na-Ca-Mg-Borminerale14
Tabelle 3:	Thermochemische Berechnungen von realen Borosilicatgläsern
	(Laborbedarfs- bzw. Lampenglas) mit unterschiedlichen
	Boroxidträgern
Tabelle 4:	Thermochemische Berechnungen von realen E-
	Glasfasergemengen mit unterschiedlichen Boroxidträgern
Tabelle 5:	Thermochemische Berechnungen von realen Glaswolle-
	gemengen mit unterschiedlichen Boroxidträgern
Tabelle 6:	Durchschnittliche Wärmebilanz bei der Verwendung von Ulexit als
	alternative Boroxidträger in der industriellen C-Glaswanne
	(Glaswolle)45
Tabelle 7:	Mittelwerte der Emissionsmessungen im Rohgas vor der
	Filteranlage mit Borax-Pentahydrat (Referenzgemenge) und
	Ulexit als alternativer Boroxidrohstoff48
Tabelle 8:	Mittelwerte der Emissionsmessungen im Reingas hinter der
	Filteranlage mit Borax-Pentahydrat (Referenzgemenge) und
	Ulexit als alternativer Boroxidrohstoff49
Tabelle 9:	Analyse des abgeschiedenen Filterstaubes mit Borax-
	Pentahydrat (Referenzgemenge) und Ulexit als alternativer
	Boroxidrohstoff
Tabelle 10:	Bor-Analysen und Massenströme beim Einsatz von Borax-
	Pentahydrat und von Ulexit als Boroxidrohstoff53
Tabelle 11:	Bor-Bilanzen für die Systemgrenze Filteranlage beim Einsatz von
	Borax-Pentahydrat und von Ulexit als Boroxidrohstoff54
Tabelle 12:	Bor-Bilanzen für die Systemgrenze Wanne / Rohgasmessstelle
	beim Einsatz von Borax-Pentahydrat und von Ulexit als
	Boroxidrohstoff54

1. Zusammenfassung

Im Jahr 2007 hat die europäische Union eine Verordnung mit dem Namen REACH (Registration Evaluation, Authorization of Chemicals) erlassen. Das Ziel dieser Verordnung ist die Verminderung der Emission von Schadstoffen zur Vermeidung gesundheitlicher Schäden. Für die Spezial- und Isolierglasfaserhersteller sind die durch die Verordnung betroffenen Rohstoffe die industriell hergestellten Boroxid-träger Borsäure, Boroxid und Borax-Pentahydrat. Eine wirtschaftlich sinnvolle Antwort ist der Ersatz dieser Rohstoffe durch alternative natürliche Boroxidträger.

Der erste Schritt der vorliegenden Arbeit ist die Recherche des Vorkommens und der Verfügbarkeit einzelner natürlicher Boroxidträger. Dabei kommen vor allem Kernit (Na₂O·2B₂O₃·4H₂O), Tincal (Na₂O·2B₂O₃·9H₂O), Ulexit (Na₂O·2CaO·3B₂O₃·16H₂O), Colemanit (2CaO·3B₂O₃·5H₂O) und Hydroboracit (CaO·MgO·3B₂O₃·6H₂O) in Frage. Da die natürlichen Varianten dieser Rohstoffe mehrere Mineralphasen und Verunreinigungen enthalten, werden Korngrößenverteilung, Phasenbestand und chemische Zusammensetzung analysiert. Dies bildet die Grundlage für Zusammensetzungs-, Eigenschafts-, Gemenge- und thermochemische Berechnungen. Das Einschmelzverhalten von Gemengen unterschiedlicher borhaltiger Gläser (*Laborbedarfs-, Lampen- und E-Faser-Glas sowie Isolierglaswolle*) wird zum einen unter Verwendung konventioneller Borrohstoffe (Borax Pentahydrat) im Referenz-gemenge und zum anderen unter Einsatz alternativer Borrohstoffe untersucht.

Die Betrachtung der Reaktionskinetik im Gemenge wird durch geeignete Charakterisierungsmethoden vom Mikrobereich bis hin zum 10-kg-Maßstab durchgeführt. Physikalische und chemische Reaktionen der einzelnen Rohstoffe sowie binärer und ternärer Mischungen der Rohstoffe werden mit der Hilfe der konventionellen *DTA-TG* charakterisiert. Um die Laborergebnisse auf eine reale Glaswanne übertragen zu können, ist es nötig, die Experimente in größerem Maßstab durchzuführen. Die im Institut verfügbaren Methoden sind modifizierte *Batch-Free-Time*-Versuche (50 g Proben), *Conductometrie* (200 g Proben) und Schmelzversuche im *10-kg-Maßstab*, die in vertikaler Richtung den thermischen Randbedingungen einer Gemengeschicht in einer Glaswanne nahe kommen. Die Ergebnisse werden ausgewertet; es ergeben sich Empfehlungen für den Einsatz in der Industrie. Für einen Fall (Glaswolle) wird eine mehrwöchige Industriekampagne durchgeführt. Die Kampagne spiegelt das von den Laborversuchen her erwartete Verhalten wider: Die Anwendung von (in diesem Fall) Ulexit als alternativem Boroxidträger ist schmelztechnisch problemlos möglich. Die Wärmebilanz des Ofens wird nicht negativ beeinflusst. Die Abgasfilter müssen ggf. eine erhöhte Staubfracht bewältigen.

Die Gemengeberechnung, bei der das Viskosität-Temperatur-Verhalten an das des Ursprungsglases angepasst wurde, zeigt, dass für viele Spezialgläser keine geeigneten Bormineralien kommerziell verfügbar sind, was durch den Gehalt an Begleitoxiden und Verunreinigungen bedingt ist.

Es hat sich gezeigt, dass für viele Gläser (z.B. im Fall der Glaswolle) Anpassungen in der Zusammensetzung notwendig sind. Dies kann im Einzelfall zu Eigenschaftsänderungen führen.

Der Einsatz alternativer Borminerale kann, wie beim Einsatz von Ulexit, mit erheblichem Aufwand bei den Kosten und beim Handling (Verstaubungs- und Dosierungsprobleme) einhergehen.

Das im Labor beobachtete Einschmelzverhalten der Gemenge legt nahe, dass die Verwendung alternativer Borrohstoffe bei einigen Glasarten schmelztechnisch ohne negative Effekte möglich ist. Wirtschaftlich gesehen ist der begrenzende Faktor die bisher geringe Verfügbarkeit von Kernit, Tincal und Hydroboracit am Markt.

Das Ziel des Vorhabens, alternative boroxidhaltige Rohstoffe in der Glasindustrie zu finden und einzusetzen, wurde vollständig erreicht. Die Machbarkeit für den Fall der Anwendung von Ulexit wurde in einer Glasschmelzwanne zur Glaswolleherstellung im industriellen Maßstab demonstriert und durch Emissionsmessungen mit dem Ausgangszustand und Borax-Pentahydrat als Boroxidträger verglichen. Darüber hinaus konnten die Grenzen des Einsatzes von Bormineralien in der Glasindustrie aufgezeigt werden.

2. Forschungsthema

Einsatz alternativer boroxidhaltiger Rohstoffe in der Glasindustrie

3. Wissenschaftlich-technische und wirtschaftliche Problemstellung

Das Europäische Parlament hat eine Verordnung zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH = Registration, Evaluation, Authorization of Chemicals) erlassen. Aus der Sicht der Glasindustrie sind vor allem die industriell hergestellten Boroxidträger betroffen, insbesondere Borsäure (H₃BO₃), Boroxid (B₂O₃) und Borax-Pentahydrat (Na₂O·2B₂O₃·5H₂O). Andererseits kann Boroxid als Bestandteil von Spezialgläsern und Isolierglaswolle nur unter größtem wissenschaftlichen und technischen Aufwand durch andere Oxide substituiert werden; dies würde eine vollständige Neuentwicklung der Gläser erfordern. Dieser Schritt ist bisher nur im Bereich der Textilfasergläser gegangen worden [WAL 2006].

Eine wirtschaftlich sinnvollere Möglichkeit besteht darin, die unter die Einschränkungen von REACH fallenden Boroxid-Trägerrohstoffe durch alternative, nicht eingeschränkte Boroxidträger zu ersetzen. Für einige Stoffe, insbesondere solche natürlicher Herkunft, sind in REACH Freistellungen (examptions) vorgesehen. In diesem Fall ist aber mit Auswirkungen auf den Herstellungsprozess im Bereich Schmelztechnologie oder Emissionsproblematik [SCH 1983] zu rechnen. Es gibt daher einen sehr großen vorwettbewerblichen F&E-Bedarf, dessen Ziel es ist, die KMU der Spezialglas- und Isolierglaswolle-Hersteller in die Lage zu versetzen, ihre Produktion in der verbleibenden Frist an REACH anzupassen.

Die F&E-Arbeiten richten sich auf folgende Fragestellungen:

- das Einschmelzverhalten von Gemengen mit alternativen Boroxidträgern; bzgl. der Umsatzgeschwindigkeit und des Wärmebedarfes;
- das Emissionsverhalten von Gemengen mit alternativen Boroxidträgern (Carryover und primäre Emissionen).
- - Die durchgeführten Arbeiten sind verfahrensorientiert.

4. Stand der Forschung & Vorarbeiten der RWTH Aachen University

Im Hinblick auf belastbare Empfehlungen für industrielle Schmelzprozesse muss das Schmelzverhalten eines Gemenges auf vier Skalen verstanden und quantifiziert werden. Diese sind:

- (1) die atomare Skala der thermochemischen Reaktionen und lokalen Gleichgewichte;
- (2) die mikroskopische Skala der Korngrößen und Korn-zu-Korn-Kontakte;
- (3) die mesoskopische Skala der lokalen Transportprozesse (Wärmeleitung, viskoses Fließen, Gasaustausch);
- (4) die makroskopische Skala der Massen-, Wärme- und Leistungsbilanz des Gesamtprozesses, einschließlich der weiträumigen Transportphänomene (Ausbreitung der Gemengedecke, Carryover usw.).

Im Hinblick auf eine industrielle Anwendung ist stets nach den Auswirkungen der Phänomene (1) bis (3) auf den Gesamtprozess (4) zu fragen.

Zum Einschmelzen von Gemengen gibt es eine umfangreiche Literatur. Hinsichtlich der Skalenebene (1) wird auf thermodynamische Datenbasen [KUB 1993], [PHA 1998] sowie auch die Option der computergestützten Modellierung heterogener Gleichgewichte [GTT] verwiesen. Letztere Möglichkeit hat inzwischen einen Stand erreicht, der es erlaubt, viele glasbildende Systeme zu behandeln. Ausgehend von den frühen Arbeiten von Tammann [TAM 1930] sowie von Kröger [KRÖ 1948], [KRÖ 1952] [KRÖ 1953-1], [KRÖ 1955], [KRÖ 1957] finden sich glasbezogene Arbeiten zur Skalenebene (1) bei Kautz [KAU 1969], bei Frischat u. M. [FRI 1986], [FRI 1990], [FRI 1992] sowie bei Hrma [HRM 1982]. Keine der genannten Arbeiten legt aber einen Fokus auf boroxidhaltige Gemenge.

Die sehr umfangreiche Literatur zu differenzthermoanalytischen (DTA) und thermogravimetrischen (TG) Untersuchungen erfasst zum Teil auch den Übergang zwischen den Skalenebenen (1) und (2). Es geht jedoch primär um die thermochemischen Reaktionen und ihre Kinetik. Korngrößeneffekte werden nur insoweit berücksichtigt, als dies bei Probenmengen von typischerweise 10 - 100 mg überhaupt möglich ist. Hier sind vor allem die Arbeiten von Abou-EI-Azm [ABO 1953],

Wilburn u. M. [WIL 1961], [WIL 1963], [WIL 1965], Speyer u. M [SPY 1993-1], [SPY 1993-2], [SPY 1993-3] und Hrma [HRM 1985] zu erwähnen. Wiederum sind boroxidhaltige Gemenge kaum beschrieben.

Auf der Ebene der Korngrößen (2) finden sich vergleichsweise wenige frühere Arbeiten [HRM 199], [BAB 1985], [FLI 1995], [SHE 1990], die meist rein empirischer Natur sind. In eigenen Arbeiten [PIM 1993], [CON 1994], [PIM 1995], [CON 1997], [CON 1998] wurden hier aber neuartige Methoden entwickelt, die eine vollständige Quantifizierung der Vorgänge auf dieser Ebene und eine Berücksichtigung von Korngrößen bis zu 5 mm erlauben. Damit können insbesondere auch vorkonditionierte (z.B. granulierte) Gemenge untersucht werden.

Untersuchungen auf der mesoskopischen Skala, die die Ausbreitung des Temperaturfeldes in einem Gemengehaufen verfolgen, finden sich bei Fuhrmann [FUH 1973], Daniels [DAN 1973], Costa [COS 1977], bei Beerkens & de Waal et. al [BEE 1992-1], [BEE 1992-2] sowie in eigenen Arbeiten [CON 1994], [DUB 2004]; in letzteren gelang es erstmalig, neben dem Temperaturfeld auch die räumlich-zeitliche Entwicklung der Schmelzfront zu verfolgen. Die mesoskopische Betrachtung führt direkt zur Modellierung abschmelzender Gemengehaufen [MAS 1980], [HIL 1986], [UNG 1986]. Dieses Thema steckt – im Gegensatz zur sehr erfolgreichen Modellierung der Glasschmelze in der Wanne (siehe kommerziellen Programme der TNO, Niederlande bzw. Fa. Glass Service, Tschechische Republik) – noch in den Kinderschuhen.

Auf der Ebene der großräumigen Transportvorgänge sind die soeben genannten kommerziellen Programme weltweit führend, allerdings mit der schmerzlichen Einschränkung, dass die Dynamik der Gemengedecke (Ausbreitung auf der Schmelze) nicht direkt abgebildet werden kann. Bei der Bilanzierung von Masse, Energie und Leistung wurden die Grundlagen wiederum von Kröger u. M [KRÖ 1953-2] [KRÖ 1958] gelegt; sie wurden in eigenen Arbeiten weiter vorangetrieben [CON 1990] [CON 2008] und sind heute im Prinzip für beliebige Gemenge aus realen (nicht idealisierten) Rohstoffen genau berechenbar. Unabhängige kalorimetrische Messungen an mehr als 10 sehr unterschiedlichen, realen Gemengen ([MAD 1996], Zusammenstellung weiterer Daten in [CON 1990]) ergaben eine Übereinstimmung von ca. 3 - 5 %.

AiF 16181 N Schlussbericht -Einsatz alternativer Boroxidträger-

Im Rahmen eines DFG-Projektes [DFG 2002] sowie eines AiF-Projektes [AIF 2002] wurde die experimentelle Methodik der Gemengeuntersuchungen auf allen Skalen ausgebaut. Heute liegt ein Instrumentarium vor, mit dem das Einschmelzen von Gemengen umfassend charakterisiert werden kann. Allerdings gilt auch hier: Boroxidhaltige Gemenge wurden bisher nur gelegentlich (nicht systematisch) im Rahmen bilateraler, vertraulicher Industriekooperation vermessen.

5. Forschungsziel

Es ist das Ziel der vorgeschlagenen Arbeiten, das Einschmelzverhalten von Gemengen mit alternativen Boroxidträgern zu untersuchen und diese dann an die industriellen Forderungen anzupassen. Mit diesen Ergebnissen soll an industriellen Anlagen gezeigt werden, dass die industriellen Schmelzprozesse bei Bedarf problemlos auf solche Rohstoffe umgestellt und sicher geführt werden können. Dies betrifft die Aspekte:

- Umsatzgeschwindigkeit und Glasqualität,
- Ausdehnung der Gemengedecke auf der Schmelze,
- Primäremissionen und Carryover aus dem Gemenge,
- Energieaufwand zur Durchführung der Gemengeschmelze.

6. Lösungsweg zur Erreichung des Forschungsziels

Der erste Schritt für den Projekterfolg ist die chemisch-mineralogische Charakterisierung ausgewählter boroxidhaltiger Rohstoffe. Dieser wird vom Institut für Gesteinshüttenkunde, Lehrstuhl für Glas und keramische Verbundwerkstoffe der RWTH Aachen University (GHI) durchgeführt. Normalerweise werden die Eigenschaften des boroxidhaltigen Rohstoffes wie chemische Zusammensetzung, Korngröße, usw. aus dem Datenblatt entnommen, das von den Lieferanten mitgeschickt wird. Sofern keine verlässlichen Daten der Lieferanten verfügbar sind, werden die Rohstoffe chemisch-mineralogisch charakterisiert. Die chemische Zusammensetzung ist besonders wichtig für den Erfolg des nächsten Arbeitsschritts, da die Gemengeberechnungen bzw. die Eigenschaften der Schmelze (z.B. die Viskosität) stark davon abhängig sind.

Ausgangspunkte der Untersuchungen sind wissenschaftlich etablierte und in zahlreichen Industriekooperationen bestens bewährte unterschiedliche experimentelle Methoden zur Charakterisierung des Einschmelzverhaltens von Gemengen. Diese Methoden werden zur Erfassung der Abläufe während des Schmelzens boroxidhaltiger Gemenge auf vier Skalenebenen anwendet; jeweils im Vergleich nach Zugabe konventioneller bzw. alternativer Boroxidträger. Die folgenden Versuche werden durchgeführt:

• Thermoanalytische Verfahren

Mit einer Probenmasse von ca. 20-50 mg und einer vorgegebenen Aufheizrate werden die Umwandlungstemperaturen, Wärmetönungen und Massenumsätze mittels konventioneller DTA-TG bestimmt.

• Conductometrie in Tiegelöfen [AIF 2002]

Die Ionenbeweglichkeit im Gemenge wird als elektrische Leitfähigkeit gemessen und ist ein Indikator zur Beobachtung der Entwässerungskinetik sowie zur Bestimmung der Temperatur der Bildung einer Erstschmelze. Das Temperaturintervall der Primärschaumbildung wird Reaktionsschaumphase genannt. Die Conductometrie ermöglicht die Verifikation der Beobachtungen aus den vorherigen Methoden in einem gegenüber den Korngrößen hinreichend großen Volumenelement.

• Modifizierte Batch-Free-Time-Tests (BFT)

50 g Gemenge werden auf 200 g einer auf 1400 °C vorgeheizten Schmelze aufgelegt. Nach einer bestimmten Haltezeit wird die Probe entnommen und der Schmelzfortschritt (Oberfläche; ggf. Querschnitt) visuell ausgewertet.

• 10 kg Tests

4 kg eines Gemenges auf 7 kg einer bei 1200 °C vorgeheizten Schmelze aufgelegt und von oben einer Wärmestrahlung entsprechend 1400 °C, max. 5 kW, ausgesetzt (Höhe des Gemenges ca. 5 cm, Expositionsfläche ca. $0.25 \times 0.20 \text{ m}^2$). Die vertikale Temperaturverteilung wird an fünf Positionen als Funktion der Zeit gemessen.

Die Auswertung und Interpretation der Ergebnisse der oben genannten Methoden wird zur Entwicklung von Manipulationsmöglichkeiten zum möglichst frühen Auftreten einer schmelzflüssigen Phase angewandt, um Carryover und Primäremissionen zu unterdrücken. Dieser Teil der Arbeiten ließ sich allerdings noch nicht realisieren.

Die Hüttentechnische Vereinigung der Deutschen Glasindustrie e. V. (HVG) führte zur Charakterisierung der Abgaszusammensetzung im Rohgas vor und im Reingas hinter dem Elektrofilter an einer Industrieanlage Emissionsmessungen durch. Bei der ersten Messkampagne wurde der Ausgangszustand dokumentiert, bei der zweiten Messkampagne wurde der Einfluss eines alternativen Boroxidträger auf das Emissionsbild untersucht. Die Messstelle der HVG ist nach DIN EN ISO/IEC 17025:2005 akkreditiert.

7. Ergebnisse in Laborversuchen

7.1 Recherche Boroxidträger

Zu Beginn des Projekts wurde eine Literaturrecherche zu natürlichen Bormineralien (Vorkommen, kommerzielle Verfügbarkeit, mögliche Anwendung) für die unterschiedlichen borhaltigen Glasgemenge vorgenommen. Das Vorkommen der Bormineralien weltweit ist auf wenige Gebiete beschränkt (siehe Abb.1 und 2).

Abbildung 1: Borlagerstätten weltweit [KIS 1975]

Abbildung 2: Kommerzielle Borherstellung zwischen 2002-2006 (Quelle: USGS Jahresbuch 2007)

Die Bildung der verschiedenen Borminerale in der Natur hängt von der Quelle ab. Es werden drei verschiedene Ursprünge unterschieden. Diese sind: 1. magmatischen Ursprungs, wie der Skarn-Typ des Bors (Datolit, Tourmalin, Ludwigit), 2. marine Evaporiten für magnesiumhaltige Borrohstoffe und 3. Binnenvorkommen; zu letzteren gehören 90 % des Bormineralvorkommens der Erde. Meist verbinden sich die Borminerale aus diesem Ursprung mit Quarz, Kalkstein, Dolomit und Tonerde. Die Bildung der Borminerale ist das Ergebnis von thermischer und reaktiver Diagenese oder einer Kombination von beiden [CHR 1972]. Diagenese ist die Veränderungen in der chemischen Zusammensetzung der Sedimente nach ihrer Ablagerung. Druck-bzw. Temperaturunterschiede (thermische Diagenese) und Inhalt der Kationen in der Lösung (reaktive Diagenese) spielen eine große Rolle während der Ablagerung. Aus diesem Grund finden sich in Bormineralen immer Alkali- bzw. Erdalkaliionen sowie Hydrat- und Hydroxid-Wasser.

Mehr als hundert natürliche borhaltige Mineralien sind klassifiziert. Allerdings sind die meisten wegen ihrer Seltenheit nicht als kommerzielle Produkte im Tonnenmaßstab für die Glasherstellung erhältlich. Dem GHI ist es gelungen, als alternative Borrohstoffe Colemanit (CaO·3B₂O₃·5H₂O), Ulexit (Na₂O·2CaO·5B₂O₃·8H₂O), beide als kommerzielle Produkte verfügbar, sowie Hydroboracit (CaO·MgO·3B₂O₃·6H₂O), Tincal (Na₂O·2B₂O₃·5H₂O) und Kernit (Na₂O·2B₂O₃·5H₂O), ausschließlich aus Pilotprojekten verfügbar, zu erwerben. Die Gemenge von fünf unterschiedlichen borhaltigen Gläsern (Laborbedarfsglas, Lampenglas, Glaswolle und E-Glasfaser) wurden untersucht.

7.2 Charakterisierung der einzelnen Borrohstoffe

Der erste Schritt der Charakterisierung eines Borminerals ist die Siebanalyse. Durch die Aufbereitung der Rohstoffe ist die Kornverteilung unterschiedlich, da die Verunreinigungen, die in natürlichen Rohstoffen unvermeidbar sind, unterschiedliche physikalische Eigenschaften (z.B. Härte) haben. Wegen der erforderlichen Trocknungsprozesse bei der Aufbereitung werden manche Rohstoffe – ungeachtet ihres späteren Einsatzes in der Glasindustrie - auf extrem feine Fraktionen zerkleinert. Nach der Siebanalyse wurde der Phasenbestand (borhaltige Hauptphasen und Verunreinigungen) der Borrohstoffe mittels XRD untersucht. Die meisten natürlichen Borrohstoffe sind Gemische verschiedener Mineralien. Am Ende wurde die Bestimmung des Borgehalts mittels XRF und Titration durchgeführt. Tabelle 1 und 2 zeigen die Zusammenfassung der Ergebnisse der oben genannten Untersuchungen.

Im Anhang befinden sich die Ergebnisse der chemischen Vollanalyse der verwendeten Boroxidrohstoffe.

Produkt und Phasenbestand		Korngrößenverteilung		Hauptkomponente in Massen - %	
Borax-Pentahydrat		< 1200 µm > 600 µm > 500 µm > 315 µm < 250 µm	100.0% 91.2% 16.4% <u>11.6%</u> 2.54%	B₂O₃ Na₂O H₂O	48.5 21.6 29.9
Tincal Tincalconit (NB ₂ H ₉) Borax decahydrat (NB ₂ H ₁₀) Kernit (NB ₂ H ₄)	48 - 52 % 48 - 52 % 2 - 5 %	< 3000 µm > 2000 µm > 1200 µm > 600 µm < 500 µm	100.0% 99.5% 55.6% 49.9% 5.0%	B2O3 Na2O H2O	36.1 16.4 44.8
Kernit Kernit (NB ₂ H ₄) Tincalconit (NB ₂ H ₉)	80 - 90 % 10 - 20 %	< 5000 µm > 4000 µm > 3000 µm > 2000 µm > 1200 µm > 600 µm < 500 µm	100.0% 96.3% 96.9% 79.0% 70.2% 63.8% 6.2%	B ₂ O ₃ Na ₂ O H ₂ O	54.8 23.8 20.3

Tabelle 1:Boroxidgehalt, Korngrößenverteilung und Phasenbestand der Gruppe der Na-
Borminerale

 $N = Na_2O$, $B = B_2O_3$, $H = H_2O$

Tincal und Kernit ähneln sich in ihrem Vorkommen und man findet diese in der Natur als Mineralmischung. Im Phasendiagramm der Existenzbereiche der natürlichen Borminerale (siehe Abbildungen 3 bis 5) sind Tincal: Na₂[B₄O₅(OH)₄]·3H₂O bzw. in Phasenschreibweise $2NaBO_2 \cdot HBO_2 \cdot H_3BO_3 \cdot 3H_2O$ und Kernit: Na₂[B₄O₆(OH)₂]·3H₂O bzw. $2NaBO_2 \cdot 2HBO_2 \cdot 3H_2O$ nur durch den Gehalt an Hydroid-Wasser unterschieden. In Abbildung 6 sind Fraktionen einer als natürlicher "Kernit" angelieferten Mineralmischung dargestellt. Sie besteht im wesentlichen aus Kernit (längliche Kristallleisten) und Tincal (Rundkorn).

Abbildung 3: Phasendiagramm des Systems Na₂O⋅B₂O₃⋅4H₂O – 2CaO⋅3B₂O₃⋅5H₂O – H₂O (isotherm-isobar); durchgezogene Linien: Grenzen der Existenzbereiche in gesättigter Lösung im Gleichgewicht; gestrichelte Linien: metastabile Bereiche [CHR 1976].

Abbildung 4: Phasendiagramm des Systems 2CaO·3B₂O₃·5H₂O – 2MgO·3B₂O₃·7H₂O – H₂O; wie Abb. 3

Abbildung 5: Phasendiagramm des Systems 4CaO·5B₂O₃·7H₂O –B₂O₃·H₂O – H₂O; wie Abb. 3

Abbildung 6: **(a)** Natürlicher "Kernit", bestehend aus dem Mineralphasen Kernit und Tincal; **(b)** kernit-reiche Fraktion; **(c)** tincal-reiche Fraktion

Produkt und Phaser	Korngrößenv	Korngrößenverteilung		Hauptkomponen te in Massen - %	
Ulexit					
Ulexit (NC ₂ B ₅ H ₈)	85 – 95 %	< 500 µm	100.0%	B ₂ O ₃	37.7
Colemanit (C ₂ B ₃ H ₅)	3 – 5 %	> 315 µm	99.8%	CaO	16.7
Meyyerhofferit (C ₂ B ₅ H ₇)	2 – 5 %	> 250 µm	99.7%	Na ₂ O	6.4
Quarz(SiO ₂)	2 – 4 %	> 160 µm	97.4%	H ₂ O	33.8
Calcit (CaCO ₃)	8 – 10 %	> 90 µm	87.3%		
		> 63 µm	90.2%		
		< 63 µm	74.4%		
Colemanit					
Colemanit (C ₂ B ₃ H ₅)	70 - 80 %	< 160 µm	100.0%	B ₂ O ₃	43.1
Meyyerhofferit (C ₂ B ₃ H ₇)	15 - 20 %	> 90 µm	99.6%	CaO	26.7
Quarz (SiO ₂)	2-5 %	> 63 µm	96.8%	H ₂ O	21.3
Calcit (CaCÓ ₃)	5-8 %	< 63 µm	96.4%		
Hydroboracit					
Hydroboracit (CMB ₃ H ₆)	70 - 80 %	< 250 µm	100.0%	B ₂ O ₃	37.2
Quarz (SiO ₂)	8 - 12 %	> 160 µm	99.8%	CaO	12.7
Anorthit (CAS ₂)	5 - 10 %	> 90 µm	94.8%	MgO	8.1
Gismondin (CÁS ₂ H ₄)	3-5 %	> 63 µm	85.2%	H₂O	16.2
Dolomit (Ca,Mg (CO ₃) ₂)	4 - 8 %	< 63 µm	79.8%		

Tabelle 2:Boroxidgehalt, Korngrößenverteilung und Phasenbestand der Gruppe der Na-
Ca-Mg-Borminerale (N = Na $_2$ O, B = B $_2$ O $_3$, H = H $_2$ O, C = CaO, M = MgO)

Die Ergebnisse der thermoanalytischen Untersuchungen von Na-Bormineralien (DTG-TG) sind in den Abbildung 7 und 8 dargestellt. Entwässerung des Hydratwassers findet unterhalb von T = 200 °C statt. Danach tritt die exotherme Zersetzung der Hydroxide und Bildung von Borax-Anhydrit (Na₂O·2B₂O₃) ein. Der letzte (endotherme) Peak bei ca. 740 °C kennzeichnet den Schmelzpunkt von Borax-Anhydrit (Literaturwert 743 °C). Die Na-Ca- und Na-Mg-Borminerale verhalten sich beim Aufheizen ganz anders als die Na-Borminerale. Als erstes erfolgt wieder die endotherme Freisetzung von Hydratwasser, allerdings mehrstufig. Bei Colemanit ist dieser Effekt nicht scharf von der Zersetzung der Hydroxide zu unterscheiden. Bei Ulexit ist eine scharfe, exotherme Phasenumwandlung bei 650 °C zu beobachten. Anstelle klar definierter Schmelzpunkte zeigen die Verbindungen Schmelzbereiche (T_{solidus} bis T_{liquidus}); sie liegen zum Teil außerhalb des untersuchten Temperaturbereiches und sind in der Legende der Abbildung 9 angegeben.

Abbildung 7: DTA-TG Ergebnisse der Gruppe der Na-Borminerale; N = Na₂O, B = B_2O_3 , H = H_2O

Abbildung 8: DTA-TG Ergebnisse für die natürliche Mineralmischung "Kernit" (vgl. Abb. 6); Detailauswertung

Abbildung 9: DTA-TG Ergebnisse der Gruppe der Mg-Ca-Na-Borminerale; N = Na₂O, M = MgO, B = B₂O₃, H = H₂O; für jedes der reinen Anhydrit-Systeme werden berechnete Werte [GTT] für die Schmelzbereiche: $T_{solidus}$, $T_{liquidus}$ [°C] und die feste Phase am Liquidus angegeben: C_2B_3 : 989, 1098, CaB₂O₄; NC₂B₆: 561, 903, CaB₄O₇; CMB₃: 907, 1000, Mg₂B₂O₅; ± δ T = 5 K

7.3 Rohstoffauswahl und Gemengeberechnung

Nach der Charakterisierung der Borrohstoffe (hier insbesondere Phasen- und Oxidbestand) ist die Auswahl geeigneter Rohstoffe besonders wichtig, da die Gläser nur eine bestimmte Menge an Alkali- bzw. Erdalkali-Oxiden enthalten dürfen. Um die Zusammensetzung der Gläser anpassen zu können, wurden Gemengeberechnungen durchgeführt. Es wurde vereinbart, dass keine Kombination von Borrohstoffen untersucht wird, da dies die Verwendung zusätzlicher Silos in der realen Industrieanwendung zur Folge hätte – eine logistische Überforderung vieler KMU.

Die Gemengeberechnung dient nicht nur der Bestimmung der Menge des Rohstoffes, sondern auch dem Ausblick auf Schmelzeigenschaften wie der Viskosität in einem bestimmten Temperaturbereich. Es gibt keine wesentliche Viskositätsabweichung bei der Verwendung konventioneller und alternativer Boroxidträger, obwohl die natürlichen Borminerale in der vorliegenden Arbeit (Ulexit, Colemanit, Tincal und Kernit) Verunreinigungen (meist Alkali- bzw. Erdalkali-Ionen) beinhalten.

7.4 Elektrische Leitfähigkeit

Einen Überblick darüber, was im Gemenge beim Aufheizen mit einer Aufheizrate von 10 K/min passiert (Festkörperreaktion, Auftreten einer Erstschmelze im Gemenge, Schaumphase) liefert die vor etlichen Jahren selbst entwickelte Methode der Gemenge-Conductometrie (siehe Abbildung 10). Die Messung basiert auf der Beweglichkeit der Ionen im Gemenge, wobei insbesondere die einwertigen Ionen zu scharfen Sprüngen der Leitfähigkeit eines aufschmelzenden Gemenges führen.

Die Verwendung alternativer Boroxidträger in einem *Laborbedarfsglasgemenge* mit fast 50 Massen-% Scherben verschiebt die Temperatur des Auftretens der Erstschmelze (siehe Abbildung 11) von 800 °C im **Referenzgemenge** (mit Borax-Pentahydrat) zu 844 °C bei Einsatz von Kernit bzw. 890 °C bei Einsatz von Tincal. Die Scherben im Laborbedarfsglasgemenge beeinflussen das Schmelzverhalten in allen Varianten in gleicher Weise: sie erweichen oberhalb von ca. 550 °C; die thermodynamische Liquidustemperatur liegt laut Berechnungen [GTT] bei ca. 800 °C.

Die Vorbereitung der Gemenge für die DTA-TG und die Conductometrie ist unterschiedlich. Für die Versuche in der DTA-TG wurden die gemessenen Rohstoffe kleiner als 63 µm gemahlen, während bei der Messung der elektrischen Leitfähigkeit die Rohstoffe in ihrem Anlieferungszustand verwendet wurden. Wie in Tabelle 1 dargestellt, ist Borax-Pentahydrat viel feiner als Tincal und Kernit. Die Korngröße der Boroxidträger in diesen Gemengen hat einen großen Einfluss auf das Schmelzverhalten. Aus diesem Grund zeigen die Na-Borminerale auf der Skala der DTA-TG-Versuche sehr ähnliches, in den Conductometrie-Versuchen je nach Glas ein unterschiedliches Verhalten.

Abbildung 10: Conductogramm eines Kalk-Natron-Silicat-Gemenges; die unterschiedlichen Phasen der Gemengeschmelze (siehe Skizzen) lassen sich am Verlauf der elektrischen Leitfähigkeit κ als Funktion der Temperatur unmittelbar ablesen; dicke rote Linie: Leitfähigkeit einer reinen Sodaschmelze zum Vergleich

Abbildung 11: Elektrische Leitfähigkeit κ von Gemengen mit unterschiedlichen Boroxidträgern (Laborversuche, 10 K/min); im Gemenge mit Borax-Pentahydrat tritt eine Erstschmelze deutlich früher als bei alternativen Boroxidträgern auf

Abbildung 12: Thermodynamische Berechnung des Phasenbestandes im Gleichgewicht für eine kommerzielle Laborbedarfsglas-Zusammensetzung; Berechnung mittels FactSage [GTT]; Liquidustemperatur = 810 °C; bestimmende Phase: Quarz

Abbildung 13: Conductogramme vom Lampenglasgemengen mit unterschiedlichen Boroxidträgern

Abbildung 13 zeigt für das *Lampenglasgemenge*, dass bei Anwendung von alternativen Boroxidträgern kaum Unterschiede im Ablauf der Schmelze zu erwarten sind. Diese Gemenge enthalten etwa 40 Massen-% an Scherben. In diesen Gemengen wird der Schmelzbeginn beim Aufheizen weniger durch das Schmelzen der Boroxidträger, sondern vor allem durch das physikalische Aufschmelzen der Carbonate Soda (Na₂CO₃), Kaliumcarbonat (K₂CO₃) und ihre eutektischen Reaktionen mit den anderen Gemengebestandteilen bestimmt. Die Komponenten im Gemenge bilden eine Schmelzphase bei etwa 680 °C (siehe Abbildung 14). Dieses Temperaturniveau ist in Abb. 13 bei allen Gemengen deutlich zu erkennen.

Abbildung 14: Phasendiagramm des Systems Na₂O· BaO· B₂O₃ – Na₂CO₃ [PHA 1998]

Die Auswertung von *E-Glas-Gemenge* ist besonders schwierig, weil der Gehalt an Na⁺-Ionen sehr gering ist. Der Sprung des Leitfähigkeitswerts als Anzeichen des Anfangs des Aufschmelzens ist nicht durch das physikalische Aufschmelzen einzelner Rohstoffe (wie Soda) sondern allein durch eutektische Reaktionen im Gemenge bedingt (siehe Abbildung 15). Die Schmelzreaktionen finden im Gemenge erst oberhalb von 1000 °C statt. Danach steigt die Kurve der Leitfähigkeit steil an; bei der Liquidustemperatur wird die Kurve gleichmäßig flach. Beim ulexithaltigen Gemenge liegt Schmelze bereits bei 1095 °C vor, während dies bei den übrigen Gemengen erst bei 1120 °C der Fall ist (angezeigt durch rote Kreise in Abbildung 15). Dieser letztere Wert stimmt mit der thermodynamisch berechneten Liquidustemperatur der E-Glas-Zusammensetzung selbst sehr gut überein (siehe Abb. 16).

Abbildung 15: Conductogramme von E-Glasgemengen; hier ist der Sprung der Leitfähigkeit schwierig zu erkennen, da keine salzartige Erstschmelze auftritt und nur geringe Mengen an einwertigen Ionen vorliegen; bei E-Glas-Gemengen tritt Erstschmelze in nennenswerten Mengen erst am Liquidus des Systems auf; die berechneten Liquidustemperaturen stimmen mit den Flanken der Kurven (rote Kreise) überein

Abbildung 16: Thermodynamische Berechnung des Phasenbestandes im Gleichgewicht für eine kommerzielle E-Glas-Zusammensetzung; Berechnung mittels FactSage [GTT]; Liquidustemperatur = 1120 °C; bestimmende Phase: Wollastonit (CS)

Im E-Glas-Gemenge verhalten sich Borax Penthydrat und Tincal sehr ähnlich, das Auftreten von Erstschmelze im Gemenge mit Tincal vollzieht sich heftiger. Bei Ulexit setzt der Schmelzprozess bei den niedrigsten Temperaturen ein. Allerdings ist anzumerken, dass Ulexit wegen seines Na₂O-Gehaltes für einen Einsatz bei E-Glas-Gemenge nur bedingt in Frage kommt.

Im *Glaswollegemenge* wurde das Einschmelzverhalten conductometrisch mit Kernit, Ulexit und Hydroboracit als alternative Boroxidträger untersucht. Das Ergebnis ist in Abbildung 16 dargestellt. Bei allen alternativen Boroxidträgern im Glaswollegemenge wird ein sehr ähnliches Aufschmelzverhalten festgestellt. Der Eintritt der Erstschmelze im hydroboracithaltigen Gemenge liegt geringfügig höher im als kernitbzw. boraxhaltigen Gemenge, aber niedriger als im ulexithaltigen Gemenge. Allerdings hat das ulexithaltige Gemenge eine kürzere Schaumphase als kernit-, hydroboracit- und boraxhaltiges Gemenge. Eine umfassende Auswertung dieser Messung wird im folgenden Kapitel gegeben.

Abbildung 17: Conductogramme von Gemengen einer Glaswolle

Abschließend ist anzumerken, dass bei der Conductometrie, genau wie die Thermoanalyse, den untersuchten Proben eine extern vorgegebene Aufheizrate von 10 K/min aufgeprägt wird. Bestimmt werden jeweils die charakteristischen Temperaturen, bei denen bestimmte Vorgänge im Gemenge auftreten. Bei den nun folgenden Methoden wird das Schmelzverhalten bei Kontakt der Gemenge mit einem Wärmereservoir konstanter Temperatur oder mit zwei Wärmereservoirs (oben und unten) zweier unterschiedlicher, konstanter Temperaturen untersucht. Die Aufheizraten werden nun zeit- und ortsabhängig (wie in einem Industrieofen). Das Schmelzverhalten wird nun primär als Funktion der Zeit analysiert. Die Batch Free Time (BFT)–Experimente zeigen den Zustand nach Ablauf einer geeignet vorgegebenen Zeit, die 10-kg-Versuche zeigen die Vorgänge vertikal ortsaufgelöst als Funktion der Zeit.

7.5 Batch Free Time (BFT)

Das Schmelzverhalten von *Laborbedarfsglas* wurde bei freier, nur von der konstanten Umgebungstemperatur (1400 °C) bestimmter Aufheizrate untersucht. Als geeignete Zeitintervalle wurden für diesen Gemengetyp 30 und 60 min bestimmt. Die Zeitintervalle werden – im Gegensatz zum klassischen BFT-Experiment – so gewählt, dass man noch Reste des einschmelzenden Gemenges erkennen kann. Das Ergebnis (siehe Abbildung 18) unterscheidet sich nicht von den Befunden bei konstanter Aufheizrate (DTA-TG; Conductometrie). Bei boraxhaltigen Gemengen tritt der Anfang der Erstschmelze früher ein als bei tincal- bzw. kernithaltigen Gemengen. Bei 30 min Expositionszeit ist das Schmelzverhalten bei der Verwendung von Tincal im Gemenge (siehe Abb. 18 b) besser als bei borax- bzw. kernithaltigen Gemengen. Beim längeren Schmelzen ist kein wesentlicher Unterschied mehr zwischen borax- und tincalhaltigen Gemengen zu sehen. Die Oberfläche des kernithaltigen Gemenges ändert sich zwischen 30 und 60 min Expositionszeit kaum. Im Vergleich zu den anderen Gemengen bildet das kernithaltige Gemenge deutlich mehr Schaum.

Abbildung 18: BFT-Ergebnisse von Laborbedarfsglas-Gemengen; (a), (d): Referenzgemenge (Borax-Pentahydrat); (b), (e) tincalhaltiges Gemenge; (c), (f) kernithaltiges Gemenge; obere Reihe (a-c): 30 min Expositionszeit, untere Reihe (d-f) 60 min Expositionszeit bei 1400 °C

Die Schmelzvorgänge von konventionellem bzw. alternativem borhaltigen Gemenge für *Lampenglas* unterscheiden sich kaum voneinander. Als geeignete Zeitintervalle wurden für diesen Gemengetyp 10 und 40 min bestimmt. Die Ergebnisse der BFT-Versuche in Abbildung 19 zeigen, dass die Verwendung der alternativen Rohstoffe Tincal und Kernit im Lampenglas schmelztechnisch unkritisch ist. Das Schmelzen der Carbonate, wie es in Kapitel 7.4 diskutiert wurde, ist der Hauptgrund dafür, dass das Schmelzverhalten verschiedener Boroxidträger mit aufgeprägter und freier Aufheizrate identisch ist.

Abbildung 19: BFT-Ergebnisse von Lampenglasgemengen (a), (d): Referenzgemenge (Borax-Pentahydrat); (b), (e): tincalhaltiges Gemenge; (c), (f): kernithaltiges Gemenge; obere Reihe (a-c): 10 min Expositionszeit, untere Reihe (d-f) 40 min Expositionszeit bei 1400 °C

Eine ähnliche Tendenz beobachtet man auch im *E-Glas-Gemenge* (siehe Abbildung 20). Als geeignete Zeitintervalle wurden für diesen Gemengetyp 15 und 40 min bestimmt. Die Verwendung von alternativen Boroxidträgern führt auch hier nicht zu einer wesentlichen Änderung des Schmelzverhaltens. Tatsächlich ist heute in der Industrie der Einsatz von Colemanit ($2CaO\cdot3B_2O3\cdot5H_2O$) in E-Glas-Gemengen durchaus etabliert.

Abbildung 20: BFT-Ergebnisse von E-Glas-Gemengen; (a), (e): Referenzgemenge (Borax-Pentahydrat); (b), (f): ulexithaltiges Gemenge; (c), (g): kernithaltiges; (d), (h): tincalhaltiges Gemenge; obere Reihe (a-c): 15 min Expositionszeit, untere Reihe (d-f) 40 min Expositionszeit bei 1400 °C

Abbildung 21: BFT-Ergebnisse von Glaswolle-Gemengen (a), (e): Referenzgemenge (Borax-Pentahydrat); (b), (f): ulexithaltiges Gemenge; (c), (g): kernithaltiges Gemenge; (d), (h): hydroboracithaltiges Gemenge; obere Reihe (a-d): 5 min Expositionszeit, untere Reihe (e-h) 15 min Expositionszeit bei 1400 °C

AiF 16181 N Schlussbericht -Einsatz alternativer Boroxidträger-

Die *Glaswollegemenge* sind bereits nach 15 min vollständig geschmolzen (siehe Abbildung 21, vorhergehende Seite). Als geeignete Zeitintervalle wurden für diesen Gemengetyp 5 und 15 min bestimmt. Das Gemenge mit Ulexit als Boroxidträger schmilzt am schnellsten ein.

7.6 10 kg Tests

Wie auf Seite 7 beschrieben, werden 4 kg Gemenge auf 7 kg einer bei 1200 °C gehaltenen Glasschmelze chargiert. Sobald das Gemenge chargiert ist, wird der bei 1400 °C gehaltene Oberofen über das Gemenge abgesenkt. Im Gemenge wird die vertikale Temperaturverteilung an fünf Positionen im Abstand von jeweils 1 cm gemessen (siehe Abbildung 22). Die Temperaturverteilung (siehe Abbildung 23) liefert eine Aussage über die Zeit, die das Gemenge bis zum Vollenden der endothermen Reaktionen braucht (t_{endo}). Am Ende des Versuches liefert der Temperaturunterschied (Δ T) zwischen oberer und unterer Position ein Maß für die Homogenität der Gemengedurchwärmung (ebenfalls Abbildung 23). Die Methode ist in [DUB 2004] im Detail beschrieben.

Abbildung 22: Schematische Darstellung der 10 kg Tests: (a) Aufbau des Laborofens; (b) Anordnung der Thermoelemente im Gemenge, das auf eine Glasschmelze aufgelegt wird

Abbildung 23: Vertikale Temperaturverteilung an fünf unterschiedlichen Positionen im Gemenge (vgl. Abb. 22); vertikaler Abstand der Positionen: 1 cm; T₄ = Feuerseite

Die Gefahr von Ungenauigkeiten in der Temperaturmessung während der Versuche im 10 kg Maßstab ist im Vergleich zu den bisherigen Methoden relativ hoch, da eine größere Versuchsoberfläche und Probenmenge umfasst wird. Zum Nachweis der Reproduzierbarkeit werden Versuche aus einem früheren Industrieprojekt herangezogen, die an sechs sehr unterschiedlichen Glaswollegemengen jeweils im Doppelversuch unter gleichen Bedingungen wiederholt wurden. Abbildung 24 zeigt das Ergebnis eines dieser Doppelversuche (Nr. 3). Die folgende Tabelle zeigt die Ergebnisse aller sechs Doppelversuche:

Doppelversuch Nr.	t _{endo} ± δt _{endo} [s]	ΔT ± δΔΤ [K]
1	772 ± 7	45 ± 9
2	1506 ± 54	65 ± 11
3	1366 ± 1	62 ± 7
4	1304 ± 1	56 ± 8
5	1443 ± 5	69 ± 15
6	1066 ± 32	105 ± 8

Abbildung 24: Reproduzierbarkeit der Methode, bestimmt an früher untersuchten Glaswollegemengen; Doppelversuch

Abbildung 25: Mittelwert des Zeitbedarfes für das Vollenden der endothermen Reaktionen im Glaswollegemenge; die Fehlerbalken zeigt die obere bzw. untere Grenze der *dreifachen* Standardabweichung (± 3σ)

Die Verwendung von Tincal und Kernit als alternative Boroxidträger in Borosilicatglas (Laborbedarf- und Lampenglas) führt nicht zu einem wesentlichen Unterschied. In E-Glas-Gemenge zeigen ulexithaltige Gemenge im Vergleich zu der Benutzung von Na-Bormineralen (Tincal und Kernit) eine deutlich schnellere Zeit t_{endo} und ein besseres ΔT . Die Unterschiede, die sich bezüglich der verschiedenen Borträger bei Laborbedarfsglas-Gemenge in DTA-TG und Conductometrie gezeigt hatten, nivellieren sich aber offenbar beim Übergang zu freien Aufheizraten und größeren Dimensionen.

Abbildung 26: Temperaturverteilung in Laborbedarfsglasgemengen im 10 kg Test.

Abbildung 27: Temperaturverteilung in Lampenglasgemengen im 10 kg Test

Auch bei den E-Glas-Gemengen führt die Verwendung der verschiedenen Borträger nur zu unwesentlichen Unterschieden (siehe Abbildung 28 auf der folgenden Seite). Die alternativen Rohstoffe bieten hier schmelztechnisch sogar leichte Vorteile. Der – allerdings für E-Glas chemisch weniger gut geeignete – Ulexit führt, in Übereinstimmung mit den Ergebnissen der Conductometrie, zur kürzesten Zeit t_{endo} und sondern zum niedrigsten ΔT .

Abbildung 28: Temperaturverteilung in E-Glas-Gemengen im 10 kg Test

Abbildung 29: Temperaturverteilung in Glaswollegemengen im 10 kg Test

Im Gegensatz zu den E-Glas-Gemengen ist die Zeit, t_{endo} für ulexithaltige Gemenge im Glaswollegemenge am langsamsten, wie Abbildung 29 zeigt. Allerdings ist ΔT nach etwa 50 min bei ulexithaltigem Gemenge am niedrigsten, d.h. der anfangs mit Schmelzvorgang Ulexit ist langsamer; nach vollendetem vergleichmäßigt Reaktionsumsatz der endothermen Reaktionen sich der Zusammenspiel von Reaktionsumsatz Schmelzvorgang jedoch. Das und thermischen Vorgängen im Gemenge kann durch das Verhältnis der effektiven Temperaturleitfähigkeit **a** [cm²/s] des Gemenges und seiner elektrischen Leitfähigkeit beschrieben werden. Die effektive Temperaturleitfähigkeit a wird aus der Temperaturverteilung der 10-kg-Tests bestimmt (siehe Abbildung 30).

Abbildung 30: Conductogramme der Glaswollegemenge, ergänzt durch Daten der Temperaturleitfähigkeit **a** der Gemenge als Funktion des temperaturbezogenen Stadiums der Gemengeschmelze (linkes Bild); die Temperaturleitfähigkeit wurde anhand des 2. Fourier'schen Gesetzes anhand der Temperaturverteilung berechnet, die in den 10 kg gemessen wurde (Illustrationen rechts; oben: Bestimmung der ersten Zeitableitung aus der lokalen Aufheizrate; unten: Bestimmung der zweiten Ortsableitung anhand der Krümmung der Temperaturprofile) Als Ergebnis der Untersuchungen zum Einschmelzverhalten von Gemengen mit verschiedenen Bormineralen im größerem Maßstab ist festzuhalten: Es zeigen sich keine wesentlichen Unterschiede. Die auf der Mikroskala festgestellten Unterschiede nivellieren sich bzw. spiegeln sich nur in unwesentlichen Unterschieden wider. Diese Aussage gilt für das schmelztechnologische Verhalten. Bei der Beurteilung von Homogenität und Glasqualität sind die auf der Mikroskala beobachteten Versuche dennoch im Auge zu behalten. In E-Glas-Gemenge bietet sich der Einsatz von Colemanit an, in Glaswollegemenge der von Ulexit. Die Anwendung von Kernit und Tincal in Glaswollegemengen zeigt einen ähnlichen Effekt; die Verwendung dieser Rohstoffe kann aber derzeit wegen mangelnder Verfügbarkeit als kommerzielles Produkt nicht im industriellem Maßstab genutzt werden.

7.7 Thermochemische Berechnungen

Für die Umsetzung der Gemenge zur Glasschmelze wird eine bestimmte Wärmemenge benötigt. Diese ist nicht nur eine Funktion von Bauart und Betriebszustand der Wanne, sondern auch eine Eigenschaft des Gemenges selbst. Der intrinsische chemische Energiebedarf, bezogen auf 25 °C, ist gegeben durch die fiktive Reaktion

Rohstoffe, 25 °C
$$\rightarrow$$
 Glas, 25 °C + Gemengegase, 25 °C (1)

$$\Delta H_{chem} = \Delta H_{Glas} + \Delta H_{gas} - \Delta H_{Rohstoffe}$$
(2)

 ΔH_{chem} ist die Enthalpiedifferenz dieser Reaktion. Man kann ΔH_{chem} als Standardbildungsenthalpie von Glas und Gemengegasen aus den Rohstoffen bezeichnen. ΔH_{Glas} ist die Bildungsenthalpie von festem Glas bei 25 °C und 1 bar aus den Elementen. ΔH_{Gas} bzw. $\Delta H_{Rohstoffe}$ ist die Summe der Bildungsenthalpien der individuellen Gemengegase bzw. Rohstoffe.

Die Reaktion in Gleichung (1) bzw. (2) ist im großtechnischen Maßstab nur über den Umweg eines Hochtemperaturprozesses realisierbar. In der Bilanz (siehe Abbildung 31) kommen zum intrinsischen Wärmebedarf des Schmelzprozesses noch die physikalisch gespeicherten Wärmen der Glasschmelze ΔH_T (Glas) bzw. der

Gemengegase ΔH_T (Gase) beim Verlassen des Bilanzraumes hinzu. Dies erfolgt bei den Temperaturniveaus T_{ex} (Entnahmetemperatur am Durchlaß) bzw. T_{off} (Abgastemperatur am Kammerkopf) oder T_{stack} (Abgastemperatur am Kammerfuß).

Abbildung 31: Wärmebilanz einer Schmelzwanne mit Wärmetauscher; da alle Größen auf 25 °C bezogen sind, ist der Beitrag der physikalischen Wärme des eingelegten Gemenges gleich Null

Mit Hilfe thermodynamischer Berechnungen [CON 2008] kann man die Bilanzposten der Gleichung (2) sowie ΔH_T (Glas) und ΔH_T (Gase) für beliebige reale Gemenge berechnen, sofern man T_{ex} bzw. T_{off} oder T_{stack} kennt. Im folgenden wird die sogenannte Nutzwärme des Glasschmelzprozesses betrachtet. Es gilt

$$H_{ex} = \Delta H_{chem} \cdot (1-y_C) + \Delta H (T=T_{ex}) (Glas);$$
(3)

y_C ist der Scherbenanteil im Gemenge, bezogen auf 1 t produzierten Glases. Die kalorischen Größen H werden in Energieeinheiten je 1 t erschmolzenen Glases angegeben, im vorliegenden Bericht in kWh/t. Es gilt: 1 kWh = 3.6 MJ = 860.4 kcal. Ist die Produktionsleistung (der Durchsatz) p in t/h bekannt, so liefern die Produkte p·H die entsprechenden Leistungen P_{ex} etc. in kW. Kalorisch ist ein gegebenes Gemenge also charakterisiert durch: den chemischen Wärmebedarf, ΔH_{chem} , den Wärmeinhalt der Schmelze, ΔH_T (Glas) bei Entnahmetemperatur T_{ex}, den Scherbenanteil y_C, und ggf. durch den Wärmeinhalt der Gemengegase ΔH_T (Gase) bei geeignet gewählter Abgastemperatur.

AiF 16181 N Schlussbericht -Einsatz alternativer Boroxidträger-

Tabellen 3, 4 und 5 zeigen die Ergebnisse der thermochemischen Berechnungen für Borosilicatgläser (Laborbedarfs- bzw. Lampenglas), E-Glas und Glaswolle. Der Energieverbrauch (ΔH_{chem} bzw. ΔH_{ex}) ist am höchsten bei tincalhaltigen Gemengen, und zwar unabhängig von der Glasart. Die Verwendung von Kernit und Ulexit führ zu ähnlichen Ergebnissen wie bei konventionellem Borax-Pentahydrat. Tincal und Kernit haben sehr ähnliche Formeln wie Borax-Pentahydrat (Na₂O·2B₂O₃·5H₂O). Ausschlaggebend für die Ergebnisse ist die Menge an Hydrat- und Hydroxidwasser im Rohstoff. Der Gehalt an Wassermolekülen ist bei Tincal (9H₂O), im Vergleich zu Kernit (4H₂O) und Borax-Pentahydrat (5H₂O), am höchsten. Obwohl die Bildungsentalphien von Colemanit, Ulexit und Hydroboracit hoch sind, unterscheiden sich die chemischen Energien und Nutzwärmen von Glaswolle- bzw. E-Glas-Gemenge nicht wesentlich von Gemengen mit konventionellem Boroxidträger. Das liegt daran, dass ein Teil des Dolomits bzw. Kalksteins im Gemenge substituiert wird. Da die Entsäuerung der Erdalkalicarbonate stark endotherm ist, kompensieren sich hier die Effekte von Wasserfreisetzung und Entsäuerung weitgehend. Die Ergebnisse sind auch in den Abbildungen 32 und 33 graphisch dargestellt.

	Lab	orbedarfgl	as	L	ampenglas	S	
H in kWh/t	Referenz	Kernit	Tincal	Referenz	Kernit	Tincal	
H° _{Gemenge}	4658.10	4649.96	5063.01	4085.07	4070.40	4207.36	
H° _{Glas}	4174.37	4171.88	4171.32	3669.70	3669.05	3669.47	
H° _{Gas}	356.46	349.00	623.67	363.94	352.81	446.50	
H° _{chem}	127.28	129.08	268.02	51.42	48.55	91.39	
T _{off}	650	650	650	650	650	650	
T _{ex}	1300	1300	1300	1300	1300	1300	
y _c [Gew%]	39.98	39.98	39.43	22.69	22.69	24.357	
H _{TGas} (T _{off})	33.80	72.54	129.58	28.70	28.48	37.71	
H _{TGlas} (T _{ex})	419.26	419.84	419.90	407.89	408.33	408.41	
H _{ex}	495.66	497.32	582.25	447.65	445.86	477.55	

Tabelle 3:Thermochemische Berechnungen der kalorischen Größen realer Gemenge
von Laborbedarfsglas- bzw. Lampenglas; unterschiedliche Boroxidträger

	E-Glass						
H in kWh/t	Ref	Ulexit	Kernit	Tincal			
H° _{Gemenge}	4837.18	4842.93	4829.53	4859.37			
H° _{Glas}	4050.87	4053.19	4051.64	4051.56			
H° _{Gas}	531.58	532.79	525.51	546.03			
H° _{chem}	254.73	256.95	252.38	261.78			
T _{off}	650	650	650	650			
T _{ex}	1300	1300	1300	1300			
y _c [Gew%]	0.00	0.00	0.00	0.00			
H _{T Gas} (T _{off})	46.38	46.54	47.40	49.42			
H _{TGlas} (T _{ex})	458.27	458.60	458.49	458.46			
H _{ex}	713.00	715.55	710.86	720.24			

Tabelle 4:Thermochemische Berechnungen der kalorischen Größen realer Gemenge
von E-Glas; unterschiedliche Boroxidträger

Tabelle 5:Thermochemische Berechnungen der kalorischen Größen realer Gemenge
von Glaswolle; unterschiedliche Boroxidträger

	Glaswolle						
H in kWh/t	Referenz	Ulexit	Kernit	Tincal	Hydrobor.		
H° _{Gemenge}	4365.16	4351.38	4316.15	4520.09	4286.09		
H° _{Glas}	3952.72	3949.01	3952.63	3952.22	3951.57		
H° _{Gas}	330.10	314.87	290.58	429.54	305.17		
H° _{chem}	82.35	87.51	72.94	138.34	29.35		
T _{off}	650	650	650	650	650		
T _{ex}	1300	1300	1300	1300	1300		
y _C [Gew%]	0.00	0.00	0.00	0.00	0.00		
H _{T Gas} (T _{off})	39.62	38.48	35.82	49.14	26.04		
H _{TGlas} (T _{ex})	453.18	450.78	453.18	453.11	452.92		
H _{ex}	535.53	538.29	526.12	591.45	482.27		

Abbildung 32: Wärmebedarf der chemische Reaktionen ΔH_{chem} im Gemenge; verschiedene boroxidhaltige Glasarten, realisiert durch verschiedene Boroxidträger

Abbildung 33: Nutzwärme ΔH_{ex} des Schmelzens; verschiedene boroxidhaltige Glasarten, realisiert durch verschiedene Boroxidträger

7.8 Auswertung und Interpretationen der erarbeiteten Ergebnisse

Wie im Forschungsantrag im Arbeitspaket (AP) 3 und 4 beschrieben ist, wurden die Ergebnisse zum Einschmelzverhalten der borhaltigen Gemenge mit alternativen Boroxidträgern zur Entwicklung von möglichen und technisch realisierbaren Manipulationsmöglichkeiten verwendet. Ins Gemenge von einigen Borosilicatgläsern, Laborbedarfs- und Lampenglas passen Kernit und Tincal als mögliche alternative Boroxidträger, da die Erdalkalien im Borosilicatglas stark eingeschränkt sind. Colemanit, Ulexit, Tincal und Kernit sind für die Verwendung im E-Glas-Gemenge geeignet. Allerdings werden sind für die Verwendung von Hydroboracit auf Grund der hohen Anteile von MgO und B₂O₃ weitere Untersuchungen erforderlich. Die Änderung der E-Glaszusammensetzung beeinflusst nicht nur die Temperatureigenschaften, wie Liquidustemperatur, T_{lig} und Faserzugtemperatur, $T_{(3.0)}$, stark, sondern auch physikalische Glaseigenschafen, wie z. B. die chemische Beständigkeit. Normalerweise enthält E-Glas entweder einen hohen Anteil an MgO und einen niedrigen Anteil an B₂O₃ oder umgekehrt. Im Glaswollegemenge ist der Einsatz alternativer Boroxidträger am wenigsten problematisch, sowohl bei der Anpassung des Gemenges als auch bei der Anpassung der temperaturabhängigen Eigenschaften von Schmelze und Glas.

Der Einsatz von alternativen Boroxidträgern im Gemenge führt beim Einschmelzen bzw. beim Auftreten der Erstschmelze zu keinen wesentlichen Unterschieden im Vergleich zu den konventionellen boraxhaltigen Gemengen. Ulexithaltige Gemenge fördern ein frühes Auftreten der Erstschmelze im E-Glas- und Glaswollegemenge (siehe Abbildung 15 und 17). Allerdings zeigt das Schmelzverhalten mit freier Aufheizrate bei BFT-Versuchen eine Neigung zur Schaumbildung. Thermochemische Berechnungen zwischen borax- und ulexithaltigen Gemengen im E-Glas- bzw. Glaswollegemenge zeigen kaum Unterschiede. Die Verwendung von Ulexit substituiert einen Teil der Carbonate Kalkstein, Soda (Na₂CO₃) oder Dolomit. Dadurch bleibt die Gasfracht im Gemenge und der Energiebedarf zur Gasfreisetzung etwa konstant.

Bei der Verifizierung durch die 10 kg-Tests ist die Zeit bis zum Vollenden der endothermen Reaktionen im Gemenge schneller für das ulexithaltige Gemenge im E-Glas-System (siehe Abbildung 26) und langsamer für das Gemenge der Glaswolle (siehe Abbildung 27). Allerdings ist die Temperaturverteilung in ulexithaltigem Gemenge im Vergleich zu den anderen Gemengen nach 30 min Schmelzen am ausgeglichensten. Ulexit wird daher als geeigneter alternativer Boroxidträger insbesondere für Glaswolle vorgeschlagen.

8. Ergebnisse der Industriekampagne

8.1 Schmelzversuche in einer Industrieanlage

Wegen der mangelnden Verfügbarkeit von Kernit und Tincal ist eine Industriekampagne an Glasindustriewannen, in denen Laborbedarfsoder Lampenglas hergestellt wird, derzeit noch nicht möglich. Auch Hydroboracit ist zur Zeit noch nicht als kommerzielles Produkt verfügbar. Wie in der Interpretation der Ergebnisse besprochen wurde, wurde die Verwendung von Ulexit als Ersatz für Borax-Pentahydrat in einer industriellen Glaswanne durchgeführt. Wie in AP 5 und 6 im Forschungsantrag beschrieben, wurden in den Versuchen bei GHI und HVG nicht nur Betriebsparameter der Wanne (Energieeinsatz, Durchsatz, Temperaturen von Durchlass, Gewölbe, Abgas- und Luftstrecke) sondern auch der Carryover und die Primäremissionen erfasst. In dieser Arbeit wurde eine Kampagne in einer Oxy-Fuel-C-Glaswanne (Glaswollle) durchgeführt. Die E-Glashersteller waren bei Versuchsbeginn nicht zu einer Änderung ihrer Gemenge bereit, da das Risiko in der Produktion im Vergleich zur Glaswolle ungleich höher ist. Die Gemengezusammensetzung von ulexithaltigem Gemenge wurde dem konventionellen boraxhaltigen Gemenge so angepasst, dass die Temperatureigenschaften (T_{3.0}) und andere anwendungstechnische Eigenschaften dem boraxhaltigen Referenzgemenge so ähnlich wie möglich sind.

Die Firma STG hat im Unterauftrag der Forschungsstelle 2 (HVG) Versuche unternommen, an der für die Industriekampagne ausgewählten Wanne die Bedeckung der Schmelze mit Gemenge als Funktion der Zeit durch Bildanalyse zu dokumentieren. Einbauort und –winkel der Kamera waren dabei, bedingt durch die Bauart der Wanne, auf einen für diese Aufgabe sehr ungünstigen Bereich limitiert. Darüber hinaus konnten in der oxyfuel-befeuerten Wanne (kein Feuerwechsel) Bilder nur in Gegenwart der Flammen aufgenommen werden; die Bildqualität war entsprechend niedrig. Eine automatische Bildanalyse konnte daher nicht weiter sinnvoll durchgeführt bzw. ausgewertet werden. Auch der Versuch einer manuellen Auswertung von Einzelbildern war nicht zielführend.

Da die Benutzung von Ulexit einen Anteil von CaO-Trägern (Dolomit) im Gemenge teilweise ersetzt, sind die Ergebnisse der Berechnung der Wärmenutzung zwischen Borax-Pentahydrat und Ulexit ähnlich (siehe Tabelle 5 und Abbildung 30). Das Schmelzverhalten der beiden Gemenge (Borax-Pentahydrat und Ulexit) in der industriellen Glaswanne wurde mittels des Konzepts der Wärmebilanz ausgewertet. Es wurde nicht nur der Energiebedarf, sondern auch der Wärmeverlust sowie der Wirkungsgrad der Wärmenutzung vor und bei Einsatz des alternativen Rohstoffes im Gemenge betrachtet. Abb. 34 zeigt die von der Wanne aufgenommene Leistung P_{in}, Abb. 35 die jeweilige Nutzleistung P_{ex}.

Abbildung 34: Eingangsleistung P_{in} [kW] der Wanne in der Abhängigkeit von der Zeit [Tage] während einer industriellen Schmelzkampagne mit borax-pentahydrathaltigem (Referenz)- und ulexithaltigem Gemenge

Abbildung 35: Nutzleistung P_{ex} [kW] des Schmelzprozesses als Funktion der Zeit [Tage], wie Abb. 34

Die täglich aufgenommenen Daten der Glaswanne (Gemenge- und Glaszusammensetzung, Durchsatz, Brennstoffmenge, Luftmenge sowie die Temperaturen in den unterschiedlichen Positionen der Glaswanne) wurden mittels thermodynamischer Berechnungen ausgewertet. In der vorliegenden Arbeit ist der Durchsatz der Schmelze in t/h nahezu konstant. T_{ex} variiert allerdings in einem gewissen Intervall um einen Mittelwert. Die während ca. 30 Tagen für das Referenzgemenge aufgenommenen Daten wurden mit den in ebenfalls ca. 30 Tagen aufgenommenen Daten für das ulexithaltige Gemenge verglichen. Abbildungen 34 und 35 stellen die Ergebnisse dar. Die Verwendung von Ulexit führt im Rahmen der statistischen Schwankungen zu keiner Veränderung in der Eingangs- bzw. Nutzleistung (P_{in} bzw. P_{ex}). Die Eingangsleistung P_{in}, hängt vom Volumenstrom V'_H und unteren Heizwert H_u des Brennstoffes ab:

$$P_{in} [kW] = V'_{H} [m^{3}/h] \cdot H_{u} [kWh/m^{3}].$$
 (4)

Die Berechnungen zeigen, dass boraxhaltiges Gemenge im Vergleich zu ulexithaltigem Gemenge zwar einen niedrigeren chemischen Wärmebedarf ΔH_{chem} hat. Allerdings führt die leichte Verschiebung der Glaszusammensetzung beim ulexithaltigen Gemenge zu einer geringfügig niedrigeren Wärmekapazität. In der Bilanz entnimmt daher die Produktion von 1 t Glas der Wanne im Fall des

ulexithaltigen Gemenges eine etwas geringere Leistung als im Referenzfall. Der Effekt ist aber statistisch kaum signifikant. Um die Nutzwärme ΔH_{ex} zu bestimmen wird der Wärmeinhalt der Glasschmelze berechnet. Dieser ist stark von der Durchsatztemperatur T_{ex} abhängig (siehe Formel 3). Da die ΔH Enthalpiedifferenz zwischen T_{ex} und 25 °C darstellt. In Abbildung 36 ist dargestellt, dass die Entnahmetemperatur während der Testphase mit Ulexit geringfügig höher war (1164 ± 7 °C) als während der Referenzphase mit Borax-Pentahydrat (1158 ± 5 °C). Bei einem längeren Routinebetrieb mit ulexithaltigem Gemenge ist daher zu erwarten, dass dieses kleine ungenutzte Energieeinsparpotential noch auszunutzen wäre.

Abbildung 36: Entnahmetemperatur der Glasschmelze in Durchlass, T_{ex}, zwischen Referenzund Test-Phase (mit Ulexit)

Abbildung 37: Eingangsleistung P_{in} als Funktion des Durchsatzes in t/h; wegen des annähernd konstanten Durchsatzes liefert dieser Auftrag keine verwertbare Aussage

Abbildung 38: Nutzleistung P_{ex} in kW als Funktion des Durchsatzes in t/h; Referenzgemenge (links) und Ulexit (rechts); da die Nutzleistung bei Null-Durchsatz gleich Null wird, lässt sich ein Zusammenhang als Funktion des Durchsatzes darstellen

Die Eingangsleistung einer Wanne ist typischerweise stark vom Durchsatz abhängig. Es gilt

Da aber (Abbildung 37) der Durchsatz p während der Kampagne praktisch konstant war, lässt sich der Zusammenhang nicht weiter auswerten. Lediglich die etwas geringere statistische Schwankung der Eingangsleistung im Referenzfall fällt auf. Sie ist möglicherweise durch eine etwas größere Unsicherheit des Operateurs beim Betrieb mit dem ungewohnten Gemenge mit Ulexit zu erklären. Zwischen Durchsatz und Nutzleistung besteht ein linearer Zusammenhang der Form

$$P_{ex} = H_{ex} \cdot p$$

wie in Abbildung 38 gezeigt. Wie bereits oben erklärt, ist die der Wanne je t Glas entnommene Leistung beim ulexithaltigen Gemenge um 4 kWh/t geringer als im Referenzfall. Die vollständige Wärmebilanz, jeweils gemittelt über die Phasen der Kampagne, ist in Tabelle 6 zusammengefasst.

Tabelle 6:Wärmebilanz, gemittelt über die Kampagne an der industriellen C-Glaswanne,
bei Verwendung von Ulexit im Vergleich zum Referenzgemenge

Tabelle 6 zeigt, dass vom Wärmebedarf her das Referenz- und das alternative Gemenge sich sehr ähnlich verhalten. Aus den Laborversuchen ist zu schließen, dass in kinetischer Hinsicht das Gemenge mit Ulexit leichte Vorteile hat. Diese lassen sich aber in der relativ kurzen Kampagne nicht realisieren.

8.2 Emissionsmessungen

Die Hüttentechnische Vereinigung der Deutschen Glasindustrie e. V. (HVG) führte zur Charakterisierung der Abgaszusammensetzung Emissionsmessungen an einer erdgasbefeuerten C-Glas Schmelzwanne mit Sauerstoff als Oxidationsmedium (Oxy-Fuel-Wanne) durch.

Die beiden zeitlich getrennten Messkampagnen fanden jeweils in einem Zeitraum mit stationären Betriebsbedingungen statt. Bei der ersten Messkampagne wurde Borax-Pentahydrat, bei der zweiten Messkampagne wurde Ulexit als Borträger dem Gemenge zugegeben.

Die Emissionsmessungen und die Analysen wurden entsprechend den gültigen nationalen und internationalen Regelwerken durchgeführt, so wie sie auch bei behördlich geforderten Messungen nach § 28 des Bundes-Immissionsschutz-Gesetztes (BImSchG) angewendet werden.

Im Abgas vor und hinter der Elektrofilteranalge waren an beiden Messstellen folgende Emissionskomponenten zu bestimmen:

- 1. Gesamtstaub
- 2. Staubinhaltstoffe

(partikelförmig und filtergängig)	(B, Ca, K, Mg, Na, S, As, Cd, Co,			
	Cr, Cu, Mn, Ni, Pb, Sb, Se, Sn, V)			
3. Stickstoffoxide	(NO _x)			
4. Kohlenmonoxid	(CO)			
5. Schwefeloxide	(SO ₂)			
6. Anorg., gasf. Chlorverbindungen	(HCI)			
7. Anorg., gasf. Fluorverbindungen	(HF)			

Außerdem wurden der abgeschiedene Filterstaub, sämtliche Einsatzstoffe und das produzierte Glas auf ihren Gehalt an Bor analysiert. Begleitend wurden die Proben auch auf Schwefel hin analysiert.

Durch das Aufstellen von Bor- und Schwefelbilanzen waren die Messergebnisse zu plausibilisieren.

Die Ergebnisse der Emissionsmessungen wurden in zwei getrennten Berichten dokumentiert. Die Berichte wurden im Wesentlichen nach den Anforderungen des sog. Mustermessberichtes erstellt, so wie es bei Emissionsmessungen in Deutschland gefordert wird. Die Berichte enthalten zu viele Detailangaben über den Industriestandort, das erschmolzene Glas und das Schmelzaggregat, so dass nachfolgend nur die wichtigsten Ergebnisse der Untersuchungen aufgeführt werden. Die in den aufgeführten Tabellen 7 und 8 dargestellten Messergebnisse der Emissionsmessungen spiegeln jeweils einen Mittelwert wider, der sich aus drei bis fünf Halbstundenmittelwerten zusammensetzt. Die Messungen im Rohgas und im Reingas wurden nicht zeitparallel erfasst. Es wurde auf eine Betriebsweise ohne größere Schwankungen geachtet.

Die Abgastemperaturen an der Rohgasmessstelle lagen je nach Messtag zwischen 330 und 350 °C, die an der Reingasmessstelle hinter Elektrofilter zwischen 280 und 310 °C.

Tabelle 7: Mittelwerte der Emissionsmessungen im **Rohgas** vor der Filteranlage mit Borax-Pentahydrat (Referenzgemenge) und Ulexit als alternativer Boroxidrohstoff

	Borax-Pe Septem	entahydrat ber 2010	Ulexit Februar 2011		
	gemessene Konzentration	spez. Emission	gemessene Konzentration	spez. Emission [kɑ/təəə]	
	[9,]	L' Glass	[9,]	L. Gası	
Staubf. Emissionen					
Gesamtstaub	1173	2,12	1413	2,86	
Partikelf. Inhaltstoffe					
As	192 · 10-3	0,347 · 10-3	421 · 10-3	0,853 · 10-3	
Cd	336 · 10-3	0,609 · 10-3	88 · 10-3	0,178 · 10-3	
Со	4 · 10-3	0,008 · 10-3	< 1 · 10-3	< 0,002 · 10-3	
Cr	3381 · 10-3	6,12 · 10-3	2788 · 10-3	5,65 · 10-3	
Cu	87 · 10-3	0,158 · 10- ³	115 · 10-3	0,233 · 10-3	
Mn	10 · 10-3	0,018 · 10- ³	15 · 10- ³	0,030 · 10- ³	
Ni	53 · 10-3	0,097 · 10-3	39 · 10- ³	0,079 · 10 ⁻³	
Pb	555 · 10-3	1,005 · 10-3	110 · 10- ³	0,223 · 10 ⁻³	
Sb	57 · 10-3	0,103 · 10- ³	77 · 10-3	0,156 · 10- ³	
Se	82 · 10-3	0,148 · 10- ³	137 · 10- ³	0,278 · 10- ³	
Sn	6 · 10-3	0,010 · 10-3	18 · 10- ³	0,036 · 10- ³	
V	< 1 · 10 ⁻³	< 0,002 . 10 ⁻³	< 1 · 10- ³	< 0,002 · 10 ⁻³	
В	183,2	0,332	211,0	0,427	
S	32,9	0,060	43,0	0,087	
Na	178,0	0,322	49,3	0,100	
Са	23,0	0,004	28,3	0,057	
K	59,8	0,108	36,6	0,074	
Mg	0,6	0,001	2,5	0,005	
Gasf. Emissionen					
В	4,0	0,0073	4,1	0,0082	
NO _x (ber. als NO ₂)	454	0,82	230	0,47	
SO ₂	4	0,008	13,0	0,026	
HCI	< 0,7	< 0,002	< 0,7	< 0,002	
HF	1,12	0,002	1,8	0,004	
Abgasvolumenstrom	6463	8 m³/h	7515 m³/h		
Schmelzleistung	85,	7 t/d	89,04 t/d		

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

Tabelle 8: Mittelwerte der Emissionsmessungen im **Reingas** hinter der Filteranlage mit Borax-Pentahydrat (Referenzgemenge) und Ulexit als alternativer Boroxidrohstoff

	Borax-Pentahydrat September 2010		Ulexit Februar 2011		
	gemessene Konzentration [mg/m³]	spez. Emission [kg/t _{Glas}]	gemessene Konzentration [mg/m³]	spez. Emission [kg/t _{Glas}]	
Staubf. Emissionen					
Gesamtstaub	31,5	0,067	63,3	0,138	
Partikelf.					
Inhaltstoffe					
As	5,0 · 10- ³	0,011 · 10- ³	15,6 · 10- ³	0,034 · 10-3	
Cd	15,6 · 10-₃	0,033 · 10-3	6,4 · 10-3	0,014 · 10- ³	
Со	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	
Cr	124,4 · 10 ⁻³	0,263 · 10- ³	164,8 · 10- ³	0,360 · 10- ³	
Cu	96,1 · 10- ³	0,203 · 10-3	278,6 · 10-3	0,608 · 10-3	
Mn	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	
Ni	< 0,3 · 10 ⁻³	< 0,001 · 10 ⁻³	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	
Pb	6,1 · 10 ⁻³	0,013 · 10 ⁻³	7,7 · 10- ³	0,017 · 10-3	
Sb	1,7 · 10-₃	0,004 · 10-3	3,1 · 10- ³	0,007 · 10-3	
Se	1,6 · 10-₃	0,003 · 10-3	5,6 · 10- ³	0,012 · 10-3	
Sn	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	0,9 · 10 ⁻³ · 10 ⁻³	< 0,001 · 10 ⁻³	
V	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	< 0,2 · 10 ⁻³	< 0,001 · 10 ⁻³	
В	3,8	0,008	8,6	0,019	
S	0,7	0,001	1,7	0,004	
Na	6,6	0,014	1,2	0,026	
Са	127 · 10-3	0,27 · 10-3	275 · 10-3	0,60 · 10-3	
K	1,6	0,003	3,1	0,007	
Mg	25 · 10-3	0,05 · 10-3	34 · 10-3	0,07 · 10-3	
Gasf. Emissionen					
В	1,6	0,003	1,9	0,004	
NO _x (ber. als NO ₂)	460	0,97	250	0,55	
SO ₂	3	0,006	1,6	0,004	
HCI	< 0,6	< 0,001	< 0,6	< 0,002	
HF	0,6	0,001	0,6	0,001	
Abgasvolumenstrom	7547	⁷ m³/h	8099 m³/h		
Schmelzleistung	85,7 t/d		89,04 t/d		

(Volumenangaben sind bezogen auf trockenes Abgas im Normzustand)

Die Glasschmelzwanne war während der gesamten Messzeit kontinuierlich in Betrieb. Zwischen beiden Messkampagnen gab es nur geringfügige Unterschiede in der Schmelzleistung (ca. 4 % höhere Schmelzleistung beim Betrieb mit Ulexit). Im Vorfeld der zweiten Messkampagne wurden an der Produktionsanlage Reinigungsarbeiten durchgeführt. Hierzu wurde die Schmelzleistung deutlich abgesenkt und sog. Glasfritten erschmolzen. Die Arbeiten waren am Vorabend vor Messbeginn mit Ulexit als Borträger abgeschlossen. Geringe Beeinträchtigungen auf die Messergebnisse durch die anschließenden Maßnahmen zum Erreichen der Schmelzleistung sind nicht auszuschließen.

Aufgrund des Fehlens des Ballaststickstoffes bei der Verbrennung ergeben sich bei Brennstoff-Sauerstoff-beheizten Schmelzwannen (Oxy-Fuel-Wannen) abgasseitig hinsichtlich Abgasvolumenstrom, Emission und Schadstoffkonzentration ganz andere Verhältnisse als bei konventionell Brennstoff-Luft-beheizten Glasschmelzwannen. Um Konzentrationen im Abgas konventionell beheizter Anlagen miteinander vergleichen zu können, werden diese auf einen Bezugssauerstoffgehalt umgerechnet. Diese Umrechnung ist bei Brennstoff-Sauerstoff-Beheizung nicht möglich. Während bei der Verbrennung von 1 m³ Erdgas der Gruppe H mit Luft etwa 8,6 m³ trockenes Abgas pro m³ Erdgas entstehen, ergibt sich bei der Verbrennung mit reinem Sauerstoff lediglich eine trockene Abgasmenge von etwa 1 m3 pro m3 Erdgas. Außerdem kann bei der Betrachtung der Emissionen auf einen Bezugssauerstoffgehalt nicht unterschieden werden zwischen dem Sauerstoffüberschuss an reinem Sauerstoff (Oxidationsmedium) und dem mit der Umgebungsluft zuströmenden Sauerstoff. Oftmals liegt der O₂-Gehalt von Brennstoff-Sauerstoff-beheizten Glasschmelzwannen so nahe an 21 %, dass eine Umrechnung schon aus mathematischen Gründen nicht möglich ist.

Beim Vergleich der Emissionssituation zwischen erster und zweiter Messkampagne sind daher die spezifischen, auf das erschmolzene Glas bezogenen Emissionen heranzuziehen.

Vergleich der Emissionssituation vor der Filteranlage (Rohgas):

Die spezifischen Staubemissionen im Rohgas beim Einsatz von Ulexit liegen im Mittel mit 2,86 kg/t_{Glas} (gemessene mittlere Konzentration: 1413 mg/m³) etwa 35 % über dem Ausgangszustand mit Borax-Pentahydrat als Boroxidrohstoff (2,12 kg/t_{Glas} / 1173 mg/m³). Damit wird die Filteranlage beim Einsatz von Ulexit höher belastet.

Die Emissionen staubförmiger Borverbindungen verhalten sich ähnlich wie die Gesamtstaubemissionen. Beim Einsatz von Ulexit liegen die Emissionen knapp 30 % über denen beim Einsatz von Borax-Pentahydrat. Der Boranteil des emittierten Gesamtstaubes lag bei beiden Messkampagnen auf gleichem Niveau. Beim Einsatz von Borax-Pentahydrat wurde ein mittlerer Boranteil am Gesamtstaub von 15,6 %, beim Einsatz ein Wert von Ulexit von 14,9 % nachgewiesen.

Die Messergebnisse bei den Staubinhaltstoffen deuten darauf hin, dass Ulexit gegenüber Borax-Pentahydrat offenbar einen höheren Arsenanteil als Verunreinigung aufweist, auf der anderen Seite aber deutlich weniger Cadmium und Blei enthält.

Die Emissionen gasförmiger Verbindungen sind bei allen Komponenten sehr niedrig. Die Emissionen an gasförmigen Borverbindungen liegen bei beiden Kampagnen im Bereich von 7 bis 8 g/t_{Glas}.(ca. 4 mg/m³). In der Vergangenheit wurden an vergleichbaren Anlagen schon deutlich höhere Werte nachgewiesen.

Die Unterschiede in den NO_x-Emissionen sind nach den Erfahrungen der HVG ausschließlich auf eine etwas geänderte Feuerführung zurückzuführen.

Der abgeschiedene Filterstaub wird dem Gemenge beigemischt und wieder eingeschmolzen. Nennenswerte Auswirkungen der geänderten Filterstaubzusammensetzung auf die Produktqualität sind nicht zu erwarten.

Nachfolgend sind die Filterstaubanalysen aufgeführt, wie sie während der beiden Messkampagnen vorgefunden wurden:

Bei den angegebenen Werten muss auf die Problematik einer repräsentativen Entnahme des Filterstaubes sowie den Messunsicherheiten bei Probenahme und Analytik von Emissionsmessungen hingewiesen werden. Die Filterstaubmenge und der Borgehalt unterliegen auch bei kontinuierlicher Fahrweise gewissen Schwankungen. Insgesamt spiegeln sich die Erkenntnisse der gewonnenen Daten der Emissionsmessung mit guter Übereinstimmung wider.

Tabelle 9: Analyse des abgeschiedenen Filterstaubes mit Borax-Pentahydrat(Referenzgemenge) und Ulexit als alternativer Boroxidrohstoff

Komponente	Borax- Pentahydrat	Ulexit	
	Gehalt		
	[g/kg]	[g/kg]	
As	0,167	0,233	
Cd	0,976	0,105	
Со	< 0,01	< 0,01	
Cr	4,203	1,726	
Cu	0,003	0,01	
Mn	0,003	0,007	
Ni	< 0,002	< 0,002	
Pb	0,245	0,095	
Sb	0,052	0,040	
Se	0,037	0,085	
Sn	0,018	0,017	
V	< 0,002	< 0,002	
В	189	146	
S	51,33	23,98	
Na	188,8	195,7	
Са	2,1	17,4	
K	34,5	49,2	
Mg	0,6	1,6	

Vergleich der Emissionssituation nach der Filteranlage (Reingas):

Durch das Elektrofilter werden die Staubemissionen um etwa 95 bzw. 97 % reduziert. Der niedrige Wert wurde bei der zweiten Messkampagne mit Ulexit als Boroxidträger vorgefunden. Der schlechtere Wirkungsgrad führt zu einer deutlichen Erhöhung der Staubemissionen im Reingas. Die Verdoppelung der Staubfracht liegt zum einen an der höheren Staubmenge im Rohgas bei der Kampagne mit Ulexit und dürfte zum anderen auf den gestiegenen Abgasvolumenstrom zurückzuführen sein. Die Elektrofilteranlage hat unter den vorgefundenen Randbedingungen offenbar ihre Leistungsgrenze erreicht.

Bei der Auslegung von Filteranlagen sollte man die gewonnenen Erkenntnisse berücksichtigen. Die Minderung an gasförmigen Verbindungen spielt im Alltagsbetrieb nur eine untergeordnete Rolle, da bereits rohgasseitig sehr niedrige Konzentrationen vorgefunden wurden.

Rohstoffanalysen und Bilanzierungen

Die Rohstoffanalysen und insbesondere das Aufstellen von Bilanzen für die Komponente Bor sollten dazu dienen, die gewonnenen Messergebnisse der Emissionsmessungen zu plausibilisieren.

Tabelle 10:Bor-Analysen und Massenströme beim Einsatz von Borax-Pentahydratund von Ulexit als Boroxidrohstoff

Rohstoff	1. Kam Borax-Pe	npagne ntahydrat	2. Kampagne Ulexit		
		Bor - E	intrag		
	[g/kg]	[g/h]	[g/kg]	[g/h]	
Sand Soda Dolomit Nephelin Scherben (Floatglas) Boroxidträger Fritten (produziertes Glas) Scherben (Borosilicat)	0,079 0,049 0,056 0,053 0,065 175,3 16,43 26,47	58,7 21,0 15,7 14,0 105,1 55184 1626,6 6082,8 1370,7	0,017 0,000 0,003 0,029 0,105 112,76 15,67 16,55 145,85	12,1 0,0 0,2 8,8 182,5 50076,7 3202,9 2254,1	
Summe		64487,7	140,00	57210,4	

*) Die Filterstaubmenge wurde aus der Differenz der Staubmessungen im Rohgas und im Reingas abgeleitet.

Bei den Bilanzierungen muss insbesondere auf das Problem der repräsentativen Probenahme des Filterstaubes hingewiesen werden. Tabelle 11:Bor-Bilanzen für die Systemgrenze Filteranlage beim Einsatz vonBorax-Pentahydrat und von Ulexit als Boroxidrohstoff

	1. Kampagne Borax-Pentahydrat	2. Kampagne Ulexit	
	[g/h]	[g/h]	
Eintrag			
Staubförmig Gasförmig	1184 26	1586 31	
Summe	1210	1617	
Austrag			
Staubförmig Gasförmig Filterstaub	29 12 1380	70 16 1473	
Summe	1421	1559	
Differenz	211 (17,4 %)	58 (3,6 %)	

Tabelle 12:Bor-Bilanzen für die Systemgrenze Wanne / Rohgasmessstelle beimEinsatz von Borax-Pentahydrat und von Ulexit als Boroxidrohstoff

	1. Kampagne Borax-Pentahydrat	2. Kampagne Ulexit		
	[g/h]	[g/h]		
Eintrag				
Einzelkomponenten	64488	57210		
Austrag				
Erschmolzenes Glas	58669	58136		
Bor-Emission	1210	1617		
Summe	59879	59753		
Differenz	4609 (7,1 %)	2543 (4,4 %)		

Sämtliche Messergebnisse sind schlüssig und korrespondieren mit den bei der HVG vorliegenden Erfahrungen.

9. Wirtschaftliche Bedeutung für kleinere und mittlere Unternehmen

Die Ergebnisse des vorliegenden Vorhabens zeigen, dass die Anwendung alternativer Boroxidträger stark abhängig vom Typ des Glases ist. Für einige Laborbedarfsglas- und Lampenglashersteller sind Tincal und Kernit als Ersatz für Borax-Pentahydrat mögliche Boroxidträger. Allerdings sind diese momentan nicht kommerziell verfügbar.

Bei E-Glasfaser- und Isolierglaswolleherstellern ist Ulexit ein zusätzlicher alternativer Boroxidträger. Ulexit ist bereits als kommerzielles Produkt verfügbar.

Der Einsatz alternativer Borminerale kann, wie beim Einsatz von Ulexit, mit erheblichem Aufwand bei den Kosten und beim Handling (Verstaubungs- und Dosierungsprobleme) einhergehen.

Die im Rahmen einer Industriekampagne festgestellten Unterschiede im Emissionsbild zwischen Borax-Pentahydrat und Ulexit als Boroxidträger bei der Glaswollproduktion spielen auf dem Gebiet der Luftreinhaltung keine Rolle, sofern eine funktionstüchtige Abgasreinigungsanlage installiert ist und der Filterstaub in den Prozess zurückgeführt wird.

9.1 Voraussichtliche Nutzung der erzielten Forschungsergebnisse

Die Forschungsergebnisse sind hauptsächlich im Bereich der industriellen Glasschmelze anwendbar. Die Umstellung zu einem alternativen Boroxidträger (Ulexit) im Gemenge hat am Beispiel der Glaswolleproduktion keinen Einfluss auf das Schmelzverfahren oder die Qualität des Produktes. Eine Übertragbarkeit auf andere Gläser muss im Einzelfall überprüft werden.

Die Ergebnisse zeigen, dass der steigende experimentelle Maßstab und thermochemische Berechnung von Nutzwärme beim Schmelzen sehr hilfreich sind, um die thermodynamischen und kinetischen Aspekte des Einschmelzverhaltens von Glasgemenge zu verstehen. Wichtigste Nutznießer sind die Wirtschaftszweige der Glasindustrie, für die der Einsatz von Boroxid in der Glaszusammensetzung unverzichtbar ist; dies betrifft vor allem die Hersteller von Isolierglaswolle und von Spezialglas. Das Projekt fördert Ideen für andere Industriezweige, die Boroxidträger einsetzen, sowie für die Fachgebiete Mineralogie und Geowissenschaften.

9.2 Möglicher Beitrag zur Steigerung der Leistungs- und Wettbewerbsfähigkeit der KMU

Die Glasindustrie, insbesondere KMU der o.g. Wirtschaftszweige, ist in ihrer Wettbewerbsfähigkeit empfindlich durch REACH betroffen. Vorrangiger Beitrag des Projektes ist es, die Unternehmen rechtzeitig in die Lage zu versetzen, die Möglichkeiten und Risiken bei der Umstellung ihrer Prozesse auf nicht durch REACH eingeschränkte, natürliche Rohstoffe zu erkennen. Angesichts der kurzen Registrierungsfristen wird durch die vorgeschlagene vorwettbewerbliche Forschung ein Service geleistet, den speziell KMU nicht selbst erbringen können. Daneben liefert das Projekt ganz allgemein Strategien dafür, wie die Glasindustrie gezielt auf eine Verknappung strategischer Rohstoffe reagieren kann.

10. Plan zum Ergebnistransfer in die Wirtschaft

Eine Einbindung in die industrielle Praxis war während der kompletten Projektlaufzeit über die Mitglieder des projektbegleitenden Ausschusses durch insgesamt fünf Sitzungen gegeben. Zusätzlich zu den bestehenden Verpflichtungen wie projektbegleitender Ausschuss, Zwischenberichte und Schlussbericht wurden die Ergebnisse durch Vorträge auf folgenden Konferenzen und durch Publikationen Interessenten zugänglich gemacht:

- 83. Glastechnische Tagung in Amberg (2009)
- Institut für Gesteinshüttenkunde (GHI) Sommer Kolloquium in Aachen (2010)
- 10th ESG Conference in Magdeburg (2010)
- 22nd International Congress on Glass (ICG) Conference in Brasil (2010)
- 85. Glastechnische Tagung in Saarbrücken (2011)
- 9th Pacific RIM Conference on Ceramic and Glass in Cairns, Australien (2011)
- Die Ergebnisse der vorliegenden Arbeit werden in einer wissenschaftlichen Zeitschrift veröffentlicht.
- Ergebnisse der Arbeiten werden in die Dissertation von Herrn Jatmiko einfließen.

 Die gewonnen Erkenntnisse fließen in den Vorlesungsstoff des GHI und stehen damit unmittelbar den angehenden Ingenieuren zur weiteren Wissensvermittlung zur Verfügung.

Die in diesem Projekt erzielten Forschungsergebnisse stehen den Mitgliedern des projektbegleitenden Ausschusses als Datenpool zur weiteren Verwendung im Downloadbereich auf den Internetseiten der Forschungsstellen zur Verfügung. Ebenfalls ist es möglich für interessierte industrielle Anwender, den Abschlußbericht über die Internetportale der Forschungsstellen zu beziehen.

11. Verwendung der Zuwendung und Förderhinweis

Im Rahmen des Projektes wurden wissenschaftliche Mitarbeiter eingesetzt. Die geleistete Arbeit entspricht in vollem Umfang dem begutachteten und bewilligten Antrag und war daher für die Durchführung des Forschungsvorhabens notwendig Es ergab sich eine Vielzahl an wissenschaftlichen und angemessen. Fragestellungen, die nur mit einer entsprechenden Fachkompetenz ausgewertet und analysiert werden konnten. So zeigten die durchgeführten Diskussionen zur Versuchsdurchführung der Industriekampagne, dass es nur durch eine fachkompetente wissenschaftliche Begleitung sowohl von Seiten der beiden HVG-Ingenieure als auch des Doktoranden des GHI möglich ist, eine so komplexe Aufgabenstellung zu bewältigen und das Forschungsziel zu erreichen. Die sehr umfangreichen Messungen in den Laboren und Industriebetrieben und die komplexen Versuchsaufbauten erforderten jeweils die Mitarbeit von technischen Angestellten (Technikern). Im Weiteren war die studentische Hilfskraft am GHI für die Vorbereitungen der Versuche, wie Aufmahlen bzw. Zerkleinerung der Rohstoffe sowie während der Schmelzversuche notwendig, da die Versuche bei hohen Temperaturen mindestens von zwei Personen durchgeführt werden müssen. Der Techniker und der HiWi (GHI) unterstützten den wissenschaftlichen Mitarbeiter ganz allgemein in allen experimentellen Tätigkeiten im Labor, sowie bei der Versuchsplanung und den Literaturrecherchen. Die Leistungen Dritter zur Beobachtung der Gemengedecke wurden erbracht und entsprachen ebenfalls dem begutachteten und bewilligten Antrag.

Das IGF-Vorhaben Nr. 16181 N der Forschungsvereinigung "Glasindustrie" wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und –entwicklung (IGF) vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir bedanken uns bei den oben genannten Institutionen und allen Beteiligten für die gute Unterstützung.

Literatur

- [ABO 1953] A. Abou-El-Azm, Moore: A study on the reaction rates between silica and other oxides at various temperatures. Pt. 1. Reaction rates in binary mixtures. Pt. 2. Reaction rates in ternary mixtures. Pt. 3. Reaction rates in binary and ternary mixtures additional to those described in parts 1 and 2. Pt. 4. Influence of the form in which the non-silica constituents are introduced upon their rates of reaction with silica. Pt. 5. Theory of reaction rates in binary and ternary mixtures. J. Soc. Glass. Technol. 37 (1953). p. 129T-154T; p. 155T-167T, p. 168T-181T; p. 190T-212T.
- [AIF 2002] AiF/HVG Forschungsvorhaben Nr. 12414 N: "Steigerung von Leistung und Prozesssicherheit bei der Schmelze von Gemengen mit und ohne Scherben" (2000-2002).
- [BAB 1985] V. I. Babushkin, G. M. Matveyev, O. P. Mchedlov-Pterossyan: Thermodynamics of silicates. Springer Verlag, Berlin 1985
- [BEE 1992-1] A. J Faber, R. G. C. Beerkens, H. de Waal: Thermal behavior of glass batch on batch heating. Glastech. Ber. 65 (1992) no. 7. p. 177-185.
- [BEE 1992-2] A. J Faber, R. G. C. Beerkens, H. de Waal: The heating process of the glass batch. In: XVI International Congress on Glass, Madrid, 1992. Vol. 6 p. 155-160
- [CHR 1972] C. L. Christ: Some contribution of crystal chemistry to geochemistry. J. Geol. Education 20. p. 235-245.
- [COS 1977] P. Costa: Untersuchung des Einschmelzverhaltens von pelletiertem Gemenge zur Glasherstellung. Glastech. Ber. 50 (1977) no. 1. p. 10-18
- [CON 1990] R. Conradt, P. Pimkhaokham: An easy-to-apply method to estimate the heat demand for melting technical silicate glasses. Glastech. Ber. 63K (1990), 134-143.
- [CON 1994] R. Conradt, P. Suwannathada, P. Pimkhaokham: Local temperature distribution and primari melt formation in a melting batch heap. Glastech. Ber. Glass Sci. Technol. 67 (1994) p. 103-113.
- [CON 1997] R. Conradt, N. S Kham, C Eiumnog, P. Pimkhaokham: Melting behavior of batches containing ground cullets. Fundamental of Glass Science and Technology (1997) p. 290-296.
- [CON 1998] R. Conradt: Effect of minor batch additions on the rate of batch melting. Proc. XVIII International Congress on Glass, San Fransisco 10 (1998), !3, p. 16-21.

- [CON 2008] R. Conradt: The industrial glass melting process. In: The SGTE casebook Thermodynamics at work, edited by K. Hack, Woodhead Publishing in Materials, 2nd Edition (2008), chapter II.24, 282-303.
- [DAN 1973] M. Daniels: Melting behavior of glass batches. Glastech. Ber. 46 (1973) no. 3, p. 40-46.
- [DFG 2002] DFG-Forschungsvorhaben CO 249/2-1: "Stoff- und Wärmeumsatz in Rohstoffgemengen beim Glasschmelzprozess" (1998-2002).
- [DUB 2004] O. Dubois, R. Conradt: Experimental study on the effect of cullet and batch water content on the melting behavior of flint and amber container glass batches. Glass. Sci. Technol. 77 (2004), 137-148.
- [FLI 1995] C. Flick, G. Noelle: Redox conditions during the melting of batch. Glastech. Ber. Glass Sci. Techol. 68 (1995), p. 81-83
- [FRI 1986] E. Gehrmann, G. H. Frischat: Influence of batch moisture on melting behavior of glass. J. Am. Ceram. Soc. 6 (1986), no. 4, p. C84-C85.
- [FRI 1990] E. De. Kever, G. H. Frischat: Influence of batch moisture and atmosphere on melting behavior of lead oxide containing glass. J. Am. Ceram. Soc. 73 (1990), no. 2, p. 2165-2166.
- [FRI 1992] E. De. Kever, G. H. Frischat: Influence of batch moisture and atmosphere on melting behavior of As₂O₃- and Sb₂O₃-containing glass. Glastech. Ber. 65 (1992) no. 2, p. 64-66
- [FUH 1973] H. Fuhrmann: Beitrag zur n\u00e4herungsweisen Berechnung des Abschmelzens von Glasgemengeschichten. Pt. 1. Theoretische Ableitungen. Pt. 2. Numerische Ergebnisse. Glastech. Ber. 46 (1973) no. 10. p. 201-208; no. 11. p. 209-218
- [GTT] GTT Technologies: FactSage Software Version 5.2, Thermfact Montreal adn GTT- Technologies Aachen, 2004
- [HIL 1986] G. Hilbig, H. Kirmße: Das Temperaturfeld im Gemengekeil brennstoffbeheizter Glasschmelzwannen. Glastech. Ber. 59 (186). No. 6. p. 169-173.
- [HRM 1982] P. Hrma: Thermodynamics of batch melting. Glastech. Ber. 55 (1982) no. 7, p. 138-150.
- [HRM 1985] P. Hrma: Reaction between sodium carbonate and silica sand at 874 °C <T< 1022 °C. J. Am. Ceram. Soc. 68 (1985), no. 6, p. 337-341.
- [HRM 1999] P. Hrma: Batch melting reactions. In: Paul, A.: Chemistry of Glasses. Chapman and Hall, London, 1999, p. 157-177.

- [KAU 1969] K. Kautz: Bildung von Reaktionsprodukten beim Aufheizen von Glasgemengen. Untersuchungen in den Systemen SiO₂-Na₂O-CO₂, SiO₂-CaO-CO₂ und SiO₂-Na₂O-CaO-CO₂ (mit Anwesenheit von MgO) –eine Literaturzusammenstellung. Glastech. Ber. 42 (1969) no. 6, p. 244-250.
- [KIS 1975] R. B. Kistler, W. C. Smith: Boron and borates, in: S. J. Lefond: Industrial rock and minerals (4th ed.), American Institute of Mining, Metallurgical and Petroleum Engineers, p. 172.
- [KRÖ 1948] C. Kröger: Die ternären und quarternären Systeme Alkalioxyd-CaO-SiO2-CO2. Gleichgewichte, Reaktionsgeschwindigkeiten und ihre Beziehung zum Glasschmelzprozess, Pt. 2 Glastech. Ber. 22 (1948/1949) no. 15, p. 331-338
- [KRÖ 1952] C. Kröger: Gemengereaktionen und Glasschmelze. Glastech. Ber. 25 (1952) no. 10 p. 307-324
- [KRÖ 1953-1] C. Kröger, G. Ziegler, F. Marwan et. al.: Über die Geschwindigkeiten der zur Glasschmelze führenden Reaktionen.
 - II. Die Umsetzung von Natriumsilicat mit Soda und von Quarz mit Kalkstein.
 - III. Reaktionsgeschwindigkeiten um quarternären System Na₂O-CaO-SiO₂-CO₂
 - IV. Die Druckabhängigkeit der Umsetzungsgeschwindigkeiten im quarternären System Na₂O-CaO-SiO₂-CO₂.

V. Die Umsetzung von Natriumdisilicat und Disilicat-Quarz Gemischen.

VI. Der Einfluß von Zusätzen auf die Reaktionsgeschwindigkeit eines Soda-Kalkstein-Quarz-Grundgemenges.

VII. Die Tonerdeumsetzung

Glastech. Ber. 26 (1953) no. 11. p. 346-353; 27 (1954) no. 6. p. 199-212; 28 (1955) no. 2. p. 51-57; no.3 p. 89-08; 29 (1956) no. 7. p. 275-289; 30 (1957) no. 6. p. 222-229; 34 (1961 no. 8. p. 408-412.

- [KRÖ 1953-2] C. Kröger: Theoretischer Wärmebedarf der Glasschmelzprozesse. Glastech. Ber. 32 (1953) no. 7, p. 202-214.
- [KRÖ 1955] C. Kröger, E. Vogel: Über die Grundreaktionen des Sulfatglas-Schmelzprozess.
 - I. Die Sulfatreduktion

II. Die Sulfid-Sulfat-Reaktion und die Umsetzung im quinären System Na-S-O-Si-Ca.

Glastech. Ber. 28 (1955) no. 11, p. 426-437; 27 (1954) no. 12, p. 468-474.

[KRÖ 1957] C. Kröger: Über die Geschwindigkeit, den Mechanismus und die Phasenbildung bei den unter Schmelzbildung ablaufenden Festkörperreaktionen. Glastech. Ber. 30 (1957) no. 2, p. 42-45

- [KRÖ 1958] C. Kröger, W. Janetzko, G. Kreilow: Der Wärmebedarf der Silicatglasbildung. Glastech. Ber. 32 (1958) no. 6, p. 221-229.
- [KUB 1993] O. Kubaschewski, C. B. Alcock, O. J. Spencer: Materials Chemistry, Pergamon, Oxford, 1993
- [MAD 1996] C. Madiate, F. Müller, W. Wilsmann: Thermochemistry of the glass melting process – energy requirement in melting soda-lime-silicaglasses from cullet containing batches. Glastech. Ber. Glass Sci. Technol. 69 (1996) no. 6, p. 167-178.
- [MAS 1980] H. Mase, K. Oda: Mathematical model of glass tank furnace with batch melting process. J. Non-Cryst. Solids 38 & 39 (1980) p. 807-812.
- [PIM 1993] P. Pimkhaokham, R. Conradt: Study on the processes controlling the rate of glass batch melting. Rep. Asahi Glass Found., 1993, 281-284.
- [PIM 1995] P. Pimkhaokham, C. Eiumnoh, N. Sam Kham, R. Conradt: Study on the local and temporal distribution of temperature, oxygen activity and liquid phase formation in a melting batch blanket. Rep. Asahi Glass Found., (1995) p. 743-747.
- [PHA 1998] Phase equilibra diagrams. CD ROM Database Ver 2.1. The American Ceramic Societ, Westerville, Ohio, 1998
- [SCH 1983] H. Scholze, G. Tünker, R. Conradt: Verdampfung von Fluor aus Glasschmelze und beim Einschmelzprozeß. Glastech. Ber. 56 (1983), p. 131-137.
- [SHE 1990] C. A. Sheckler, D. R. Dinger: Effect of particle size distribution on the melting of soda-lime-silicate glass. J. Am. Ceram. Soc. 73 (1990) no. 1. p. 24-30.
- [SPY 1993-1] K.S Hong, R. F. Speyer: Thermal analysis of reactions in soda-limesilicate glass batches containing melting accelerants. I. One- and two-component system, J. Am. Ceram. Soc. 76 (1993), p. 598-604.
- [SPY 1993-2] K.S Hong, R. F. Speyer: Thermal analysis of reactions in soda-limesilicate glass batches containing melting accelerants. II. Multicomponent system, J. Am. Ceram. Soc. 76 (1993), p. 605-608.
- [SPY 1993-3] M. E. Savard, R. F Speyer: Effect of particle size on the fusion in soda-lime-silicate glass containing NaCl. J. Am. Ceram. Soc. 76 (1993), p. 671-677.
- [TAM 1930] G Tamman: Die Reaktionen beim Zusammenschmelzen von Glassätzen. Z. anorg. Allg. Chem. 193 (1930) p. 245-269
- [UNG 1986] A. Ungan, R. Viskanta: Melting behavior of continuously charged loose batch blankets in glass melting furnaces. Glastech. Ber. 59 (1986) no. 10, p. 279-291.

- [WAL 2006] F. T Wallenberger, R. J. Hicks, A. T. Bielhals: Effect of oxides on decreasing melt viscosity and energy demand of E-Glass. Am. Ceram. Soc. Bull. 85 (2006), 38-43.
- [WIL 1961] F. W. Wilburn, C. V. Thomasson. ibid. Pt. 3. The calcium carbonatesilica system. Phys. Chem. Glasses 2 (1961), p. 126-131.
- [WIL 1963] R. S. Warburton, F. W. Wilburn. ibid Pt. 4. The calcium carbonatesilica-alumina system Phys. Chem. Glasses 4 (1963), p. 91-98.
- [WIL 1965] F. W. Wilburn, S. A. Metcafe, R. S Warburton: Differential thermal analysis, differential thermogravimetric analysis, and high temperature microscopy of reactions between the major components of a sheet glass batch. Glass Technol. 6 (1965) no. 4, p. 107-114

ANHANG

Chemische Analyse der Boroxidträger in Massen -%

	Borax Pentahydrat	Tincal	Kernit	Ulexit	Colemanit	Hydroboracit
SiO ₂	0.000	1.736	0.428	2.902	4.398	12.118
Al ₂ O ₃	0.000	0.388	0.163	0.080	0.200	1.010
* B ₂ O ₃	48.549	35.891	54.790	37.726	43.183	37.365
Fe ₂ O ₃	0.000	0.141	0.057	0.300	0.077	0.505
Cr ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.001
TiO ₂	0.000	0.031	0.015	0.000	0.000	0.061
MnO	0.000	0.000	0.000	0.000	0.000	0.004
ВаО	0.000	0.000	0.000	0.000	0.000	0.007
СаО	0.000	0.414	0.235	16.712	26.752	12.623
MgO	0.000	0.274	0.111	1.421	1.884	8.079
K₂O	0.000	0.142	0.050	0.030	0.000	0.303
Na ₂ O	21.522	16.305	23.758	6.364	0.080	0.303
SO ₃	0.000	0.000	0.000	0.000	0.651	1.313
As ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.118
SrO	0.000	0.000	0.000	0.610	1,433	0.092
** H ₂ O	29,930	44.677	20.392	33.854	21.341	26.104
Summe	100.000	100.000	100.000	100.000	100.000	100.000

*) nasschemisch durch Titration,

**) als Glühverlust (1050 °C, 1h)

alle anderen Komponenten wurden mittels XFA untersucht