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Abstract

We derive a-priori estimates on the length of the primal-dual path that
results from a Moreau-Yosida approximation of the feasible set for state con-
strained optimal control problems. These bounds depend on the regularity of
the state and the dimension of the problem. Comparison with numerical re-
sults indicates that these bounds are sharp and are attained for the case of a
single active point.
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1 Introduction

In recent years, path-following methods based on the Moreau-Yosida (or quadratic
penalty) regularization of state constrained problems have received considerable at-
tention. While general results on the convergence of this method can be derived
under very mild assumptions, deriving estimates on the length of corresponding ho-
motopy path, the “primal-dual path”, and its asymptotic behavior is more delicate.
In particular, numerical experience shows that this asymptotic behavior varies from
problem to problem.

The purpose of this note is twofold. First, we present a-priori error estimates on
the order of convergence of the primal-dual path that depend on the dimensionality
of the problem and the smoothness of the solution. In comparison to the estimates
that were derived in [9] we obtain an improvement in the rate, compared to [3] our
results are based on a considerably weaker set of assumptions.

Second, we try to develop an understanding on the principles that govern the
rate of convergence of the primal dual path. This will be accomplished by compar-
ison of numerical and theoretical results. It will turn out that the topology of the
active set plays a decisive role for the rate of convergence. For the “worst case”,
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namely the case that the active set is a single touch point, our theoretical estimates
coincide with the numerical observations.

To render the discussion concrete, we consider the primal-dual path-following
method for a state constrained model problem in optimal control. The techniques
presented here are, however, applicable in a much broader context. The main idea
is to replace the problem:

min
y∈H2(Ω),u∈L2(Ω)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

subject to − ∆y − u = 0 in Ω

y = 0 in ∂Ω

y ≤ ψ in Ω

(1)

(here Ω is a smoothly bounded domain in R
d for d = 1, 2, 3, yd ∈ L2(Ω), and ψ is a

smooth, strictly positive function on Ω), by a family of problems

min
y∈H2(Ω),u∈L2(Ω)

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) +
γ

2
‖max(y − ψ, 0)‖2

L2(Ω)

subject to − ∆y − u = 0 in Ω

y = 0 in ∂Ω

(2)

and consider a sequence of solutions xγ := (yγ , uγ) of (2). It has been shown in [4]
that this sequence converges to the original solution x∗ := (y∗, u∗) of (1) as γ tends
to infinity.

Practical algorithms use a semi-smooth Newton method to solve discretizations
of the subproblems (2) approximately or exactly. For this purpose the first order
necessary conditions are derived for (2) which assert existence of an adjoint state
pγ ∈ H2(Ω) such that

yγ − yd + γmax(yγ − ψ, 0) − ∆pγ = 0 in Ω

pγ = 0 in ∂Ω
(3)

αuγ − pγ = 0 in Ω (4)

.
−∆yγ − uγ = 0 in Ω

yγ = 0 in ∂Ω.
(5)

This can be compared with the first order necessary conditions for the original
problem, which state existence of a measure valued Lagrangian multiplier m ∈
M(Ω) and an adjoint state p∗ ∈W 1,q′(Ω) (q′ < d/(d − 1)), such that

y∗ − yd +m− ∆p∗ = 0 in Ω

p∗ = 0 in ∂Ω

−∆y∗ − u∗ = 0 in Ω

y∗ = 0 in ∂Ω

αu∗ − p∗ = 0 in Ω

m ≥ 0, y∗ ≤ ψ, 〈m, y∗ − ψ〉
M(Ω)×C(Ω) = 0 in Ω.
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We observe that the function γmax(yγ −ψ, 0) plays the role of m in the regularized
setting.

Elimination of uγ from (3)–(5) yields the system

F (x; γ) :=















y − yd + γmax(y − ψ, 0) − ∆p = 0 in Ω
p = 0 in ∂Ω

−∆y − α−1p = 0 in Ω
y = 0 in ∂Ω,

(6)

which can be tackled by a semi-smooth Newton method as shown in [4].

2 Analysis of the Length of the Primal-Dual Path

In constrained optimization and in particular in state constrained optimal control
(c.f. e.g. [1]) the existence of a strictly feasible point (a Slater point) is a standard
assumption for the existence of Lagrange multipliers. In state constrained optimal
control this assumption is used to show that the corresponding Lagrange multipliers
are positive measures. We will assume existence of a Slater point throughout the
paper:

Assumption 2.1. Assume that there is a constant e > 0, such that

ψ − y̆ > e on Ω

for some pair (y̆, ŭ) that satisfies the state equation.

Existence of a strictly feasible point and smoothness of the state variable y will
allow us to bound the length of the primal-dual path by a power of γ−1, which is
clearly a stronger result that mere convergence of the primal-dual path for γ → ∞.

2.1 A-priori bounds for the Constraint Violation in L
1

In the following, denote by y+
γ the function max(y−ψ, 0). Our first aim is to show

that γ
∥

∥y+
γ

∥

∥

L1 is bounded uniformly for γ → ∞. The following technique is well
established by now, and used in various contexts (cf. e.g. [2, 8, 5]).

Lemma 2.2. The expression γ
∥

∥y+
γ

∥

∥

L1 is uniformly bounded for γ → ∞.

Proof. Let S be the solution operator of the PDE, i.e., the control to state map-
ping. We test (3) and (4) with a feasible direction (Sv, v) from the optimal control
problem, and add them (taking into account that 〈−∆pγ , Sv〉 = 〈pγ , v〉) to obtain

〈uγ , v〉 + 〈yγ − yd, Sv〉 + γ〈y+
γ , Sv〉 = 0 ∀v ∈ L2(Ω).

Inserting v := ŭ, Sŭ = y̆ we obtain

α〈uγ , ŭ〉 + 〈yγ − yd, y̆〉 − γ〈y+
γ , y̆〉 = 0.
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