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Abstract. In [CMN+11] the library modMC was presented which allows the
propagation of McCormick relaxations and their corresponding subgradients based
on the forward mode of Algorithmic Differentiation (AD). Subgradients are natu-
ral extensions of usual derivatives which allow the application of derivative based
methods on possibly nondifferentiable convex and concave functions. These sub-
gradients can be computed by AD, a method which allows the computation of
derivatives with machine accuracy even for highly complex functions implemented
by a computer program. In this article we present the advancement of modMC by
reverse mode AD. Reverse mode AD is an adjoint method for the propagation of
derivatives which is preferable when scalar functions are considered. We describe
the theory behind the application of reverse mode in subgradient propagation
as well as the improved library amodMC in detail. The calculated subgradients
are used in an deterministic global optimization algorithm which is based on a
branch-and-bound method. The improvements gained using Reverse instead of
Forward mode AD are illustrated by examples.

1 Motivation & Context

Optimization problems in engineering often have nonconvex objective and con-
straints and require global optimization algorithms. Deterministic global opti-
mization algorithms based on the branch-and-bound methods solve relaxations
of the original program. These are constructed by convex/concave under-/over-
estimators of the functions involved. One of the alternative methods to construct
these estimating functions are McCormick relaxations (see [McC76]). Without
auxiliary variables this technique results in nonsmooth estimators, and thus to
obtain derivative information, subgradients are needed. These can be calculated
using techniques from AD [MCB09],[CMN+11]. This is especially very useful if
the functions are given by a long and complex computer program. AD allows
the calculation of derivatives, and here additionally the relaxations, with ma-
chine accuracy. Hence numerical error based on finite difference approximations
are avoided. Two important methods of AD are the forward (or tangent-linear)
and the reverse (or adjoint) mode. The choice of the method depends on the
dimensionality of the function to be relaxed/differentiated.

The combination of the afore mentioned methods into global optimization
was first discussed in [MCB09] using forward mode AD. Enhancements of the
implementation were presented in [CMN+11] wherein runtimes were improved
by using Fortran specifics and compiler support enabled AD by source transfor-
mation. However, [CMN+11] was still lacking a reverse mode implementation,
which is a disadvantage since sometimes the number of inputs (optimization vari-
ables) is much greater than the number of outputs (objective, constraints). Such
an enhancement is given in this paper.



2 Theoretical Development

Let F : Z → IR be a function given on a convex set Z ⊆ IRn. Then, a convex
(concave) function F cv (F cc) for which F cv(z) ≤ F (z) (F cc(z) ≥ F (z)) holds for
all z ∈ Z is called a convex (concave) relaxation of F . As a special case we now
observe McCormick relaxations of factorizable functions. In [MCB09] a proce-
dure for propagating subgradients of relaxations is presented, which is based on
the forward mode of Algorithmic Differentiation (AD). Our goal is to extend this
procedure to a reverse mode.

Examine first the structure of propagating subgradients with AD methods.
The propagation of the convex and concave relaxation of the function

F : Z ⊆ IRn → IR, (z1, . . . , zn) 7→ y

can be considered as the composition g ◦ f =

(
F cv

F cc

)
of the two functions

f : Z ⊆ IRn → IR2n, (z1, . . . , zn) 7→ (zcv1 , z
cc
1 , . . . , z

cv
n , z

cc
n ) = (z1, z1, . . . , zn, zn)

and

g = (gcv, gcc) : Z+ ⊆ IR2n → IR2, (zcv1 , z
cc
1 , . . . , z

cv
n , z

cc
n ) 7→ (ycv, ycc) ,

where Z+ denotes the set
{

(z1, z1, . . . , zn, zn) ∈ IR2n | z = (z1, . . . , zn) ∈ Z
}

.

This means ycv = F cv(z) = gcv(f(z)) = gcv(z+) and ycc = F cc(z) =
gcc(f(z)) = gcc(z+). Here g really represents the simultaneous propagation pro-
cess of the convex and concave relaxation, for which the duplication f of the
variables is needed. (Note that both the convex and concave relaxation of the
identity f(z) = z are equal to f.)
The following Theorem explains our further proceedings. For a vector z =
(z1, . . . , zn) ∈ Z, z+ denotes the corresponding vector z+ = (z1, z1, . . . , zn, zn) ∈
Z+.

Theorem 1. Let g ◦ f be defined as the above composition, z ∈ Z and let

sgcv
(
z+
)

=
(
∂ycv

∂zcv1
, ∂y

cv

∂zcc1
, . . . , ∂y

cv

∂zcvn
, ∂y

cv

∂zccn

)
denote a subgradient of the convex relaxation gcv at z+ and

sgcc
(
z+
)

=
(
∂ycc

∂zcv1
, ∂y

cc

∂zcc1
, . . . , ∂y

cc

∂zcvn
, ∂y

cc

∂zccn

)
denote a subgradient of the concave relaxation gcc at z+.
Then a subgradient of the convex relaxation F cv of F at z is given by

sF cv(z) :=

(
∂ycv

∂zcv1
+
∂ycv

∂zcc1
, . . . ,

∂ycv

∂zcvn
+
∂ycv

∂zccn

)
. (1)

Similarly the subgradient of the concave relaxation F cc of F at z is given by

sF cc(z) :=

(
∂ycc

∂zcv1
+
∂ycc

∂zcc1
, . . . ,

∂ycc

∂zcvn
+
∂ycc

∂zccn

)
. (2)
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Proof. It is easy to see that Z+ is a convex set and gcv is a convex function for
all convex sets Z ⊆ IRn. This implies the existence of the above subgradients.
According to Definition 1.1.4 on page 165 in [HUL93] we need to show that

〈sF cv(z), d〉 ≤ (F cv)′(z,d) ∀d ∈ IRn , (3)

where

(F cv)′(z,d) := lim
t→+0

F cv(z + t · d)− F cv(z)

t
.

We observe for arbitrary d ∈ IRn:

〈sF cv(z),d〉 =

(
∂ycv

∂zcv1
+
∂ycv

∂zcc1
, . . . ,

∂ycv

∂zcvn
+
∂ycv

∂zccn

)
·

d1...
dn


= d1 ·

(
∂ycv

∂zcv1
+
∂ycv

∂zcc1

)
+ · · ·+ dn ·

(
∂ycv

∂zcvn
+
∂ycv

∂zccn

)
= d1 ·

∂ycv

∂zcv1
+ d1 ·

∂ycv

∂zcc1
+ · · ·+ dn ·

∂ycv

∂zcvn
+ dn ·

∂ycv

∂zccn

=

(
∂ycv

∂zcv1
,
∂ycv

∂zcc1
, . . . ,

∂ycv

∂zcvn
,
∂ycv

∂zccn

)
·


d1
d1
...
dn
dn


= 〈sgcv(z+),d+〉

≤
Def. of subgradient

lim
t→+0

gcv(z+ + t · d+)− gcv(z+)

t
)

= lim
t→+0

gcv(f(z + t · d))− gcv(f(z))

t

= (F cv)′(z,d) .

This shows (3) and completes the proof for the convex relaxation. The proof for
the concave relaxation is analogue by considering the convex function −F cc.

Remark 1. Theorem 1 yields the following view on the propagation of subgradi-
ents of convex and concave McCormick relaxations:
If we interprete the matrices

Dg :=


∂ycv

∂zcv1

∂ycv

∂zcc1
. . . ∂y

cv

∂zcvn

∂ycv

∂zccn

∂ycc

∂zcv1

∂ycc

∂zcc1
. . . ∂y

cc

∂zcvn

∂ycc

∂zccn

 ∈ IR2×2n . (4)
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